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Abstract. In this note we investigate the topological structure of the mild solution set of
nonlocal Cauchy problems governed by semilinear differential inclusions in separable
Banach spaces. We show that the mild solution set is a compact absolute retract (and
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periodic mild solution set is deduced. An illustrating example is supplied.
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1 Introduction

The problem of studying the topological properties of the solution set (also known as Peano
funnel) arose in 1890 when Peano [22] showed that, under the only assumption of continuity,
the uniqueness of solutions for the classic Cauchy problem does not hold. Peano himself
proved that the fibers of the solution set are connected and compact in R. In 1923 this result
was extended to differential equations in Rn by Kneser and, five years later, Hukuhara proved
in [17] that the solution set is a continuum (i.e. a nonempty compact and connected set) in
the Banach space of continuous functions. Later on, Aronszajn [1] succeeded in defining a
new topological concept for more precisely describing the structure of this set. By introducing
the notion of Rδ-set (in particular it is an acyclic set, i.e. it has the cohomology of a single
point), he obtained a more precise characterization of the solution set. Therefore, without
a Lipschitz assumption, the solution set may not consist of a unique element but, from the
point of view of algebraic topology, it is equivalent to a point (in the sense that it has the same
cohomology). In the literature the results showing that the Peano funnel is a continuum are
called “Hukuhara type theorems”, while the results establishing the Rδ-property are known
as “Aronszajn type theorems”.

The first papers devoted to Cauchy problems involving differential inclusions studied the
finite dimensional case (see, e.g. [10, 13]); then Tolstonogov [25], Papageorgiou [20] and others
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deal with this research in abstract spaces. Of course, the study in abstract spaces presents
several additional difficulties compared to the finite dimensional case.

Our aim is to analyze in a Banach separable space E the topological structure of the solu-
tion set for the following Cauchy problem driven by a semilinear differential inclusion under
a nonlocal condition {

ẋ ∈ A(t)x + F(t, x)

x(0) + θ(x) = x0.
(P)

Here {A(t)}t∈[0,b] is a family of linear operators in E, x0 ∈ E, F : [0, b] × E → P(E) is a
multimap and θ : C([0, b]; E)→ E is a given function.

The research on nonlocal Cauchy problems in Banach spaces, which are more general than
the initial ones, is only twenty years old and results concerning the existence of mild solutions
are mainly presented. Byszewski [4] emphasizes the importance of nonlocal conditions in or-
der to describe physical problems which cannot be studied by means of classical Cauchy prob-
lems. Successively, several mathematicians obtained existence theorems for nonlocal problems
governed by ordinary differential equations or inclusions either with autonomous and nonau-
tonomous linear part (we refer for instance to the recent papers [3, 6, 7, 9, 15, 19]).

In Section 3, we prove a new “Aronszajn–Hukuhara type theorem” for the nonlocal prob-
lem (P) by requiring the nonlinearity to be measurable in the first variable and Lipschitzian
in the second one, while on the linear part usual conditions are assumed. We note that under
our assumptions the topological properties of the solution set are non trivial, even in the more
restrictive case when the differential inclusion does not present a linear part and the nonlocal
condition comes down to a classical initial one (see Example 3.5).

Our approach is based on a very interesting result proved by Ricceri [23] for compact-
valued multimaps, together with a Saint-Raymond theorem [24] for convex-valued multimaps.

Thanks to our previous result we deduce an Aronszajn–Hukuhara type theorem for peri-
odic problems governed by the same semilinear differential inclusion. This result extends in
a broad sense an existence theorem due to Bader (see [2, Theorem 8]).

Finally, in Section 4 we present an example as an application of our Theorem 3.1.

2 Preliminaries

Let Y be a topological space. We will use the following notations:

P(Y) = {H ⊂ Y : H 6= ∅};
P f (Y) = {H ∈ P(Y) : H closed};
Pk(Y) = {H ∈ P(Y) : H compact};

moreover, if Y is a linear topological space, we mean

Pc(Y) = {H ∈ P(Y) : H convex}; P f c(Y) = P f (Y) ∩ Pc(Y); etc.

Let X, Y be Hausdorff topological spaces, we introduce the following definitions for mul-
timaps (see e.g. [11, Definition 4.1.3]). A map F : X → P(Y) is said to be

upper semicontinuous at x0 ∈ X if, for every open set Ω ⊆ Y with F(x0) ⊆ Ω, there exists a
neighborhood V of x0 such that F(x) ⊆ Ω for every x ∈ V;
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lower semicontinuous at x0 ∈ X if, for every open set Ω ⊆ Y with F(x0) ∩Ω 6= ∅, there exists
a neighborhood V of x0 such that F(x) ∩Ω 6= ∅ for every x ∈ V;

continuous at x0 ∈ X if F is both lower and upper semicontinuous at x0 ∈ X.

From now on we consider the real interval [0, b] endowed with the usual Lebesgue mea-
sure. A multimap F : [0, b] × X → P(Y) satisfies the Scorza-Dragoni property [lower Scorza-
Dragoni property] if

(SD) [(l-SD)] for every ε>0 there exists a compact Kε ⊂ [0, b] such that µ([0, b] \ Kε)< ε and
F|Kε×X is continuous [lower semicontinuous].

Moreover if X, Y are metric spaces, endowed respectively by the metric d and d′, a multimap
F : X → Pb(Y), where Pb(Y) = {H ∈ P(Y) : H bounded}, is said to be a contraction if there
exists a constant α ∈ [0, 1[ such that

H(F(x), F(y)) ≤ αd(x, y), for all x, y ∈ X,

where H is the usual Hausdorff distance, i.e. H(A, B) = max{e(A, B), e(B, A)} for A, B
bounded subsets of Y, being e(A, B) the excess of A over B (see [11, Definition 4.1.40]).

In this framework, if F takes compact values, then the above definitions of upper semi-
continuity, lower semicontinuity and continuity respectively coincide (see [11, Proposition
4.1.51]) with the definitions of H-upper semicontinuity, H-lower semicontinuity, H-continuity
(see [11, Definition 4.1.45]) .

Let (Ω,SΩ) be a measurable space, i.e. a nonempty set Ω equipped with a suitable σ-
algebra SΩ and Y be a separable metric space. A map F : Ω → P(Y) is said to be measurable
[strongly measurable] if F−(A) ∈ SΩ, for each open [closed] set A ⊂ Y, where F−(A) =

{x ∈ Ω : F(x) ∩ A 6= ∅}.
In the sequel, by E we will denote a real Banach space endowed with the norm ‖ · ‖E,

by C([0, b], E) the space of E-valued continuous functions on [0, b] with the usual norm ‖ · ‖C
and by L1([0, b], E) the space of E-valued Bochner integrable functions on [0, b] with norm
‖u‖1 =

∫ b
0 ‖u(t)‖E dt; moreover L1

+([0, b]) = { f ∈ L1([0, b], R) : f (t) > 0, for all t ∈ [0, b]}.
Given a multimap G : [0, b]→ P(E), we put

S1
G =

{
g ∈ L1([0, b]; E) : g(t) ∈ G(t), a.e. t ∈ [0, b]

}
.

Further, we will need the following two important theorems. Let us recall some topological
notions involved in Aronszajn type theorems.

A subset A of a metric space X is an Rδ-set if it is the intersection of a decreasing sequence
of nonempty compact absolute retracts. Recall that a set D ⊂ X is an absolute retract if,
for every metric space Y and closed C ⊂ Y, every continuous f : C → D has a continuous
extension f̂ : Y → D (see [12, Definition 2.3.15]).

Remark 2.1. The following statements hold for a nonempty subset A of a metric space X (cf. [12,
Remark 2.3.16]):

if A is an Rδ-set, then A is a continuum;

if A is a closed convex subset of a normed space, then A is an absolute retract.

Theorem 2.2 (cf. [24]). Let X be a complete metric space and Φ : X → Pk(X) be a contraction. Then
Fix(Φ), i.e. the set of all fixed points of Φ, is nonempty and compact in X.
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Theorem 2.3 (cf. [23]). Let H be a closed convex subset of a Banach space E and Φ : H → P f c(H)

be a contraction. Then Fix(Φ) is a nonempty absolute retract.

Finally, we relate the following version of the strongly measurable selection theorem (see
[5, Lemma 3.1]).

Theorem 2.4. Let E be a separable Banach space, x ∈ C([0, b]; E) and F : [0, b] × E → Pk(E) be
a map satisfying the lower Scorza-Dragoni property. Then the multimap F(·, x(·)) has a strongly
measurable selection.

3 Main results

In this section we investigate the very general problem (P). We study the existence of mild
solutions as well as the topological structure of the mild solution set.

On the family of linear operators {A(t)}t∈[0,b] we assume the next hypothesis:

(HA) A(t) : D(A) ⊆ E → E, with D(A) not depending on t ∈ [0, b] and dense in E, and
{A(t)}t∈[0,b] generates an evolution system {T(t, s)}(t,s)∈∆, ∆ = {(t, s) ∈ [0, b] × [0, b] :
0 ≤ s ≤ t ≤ b},

Recall that (see, e.g. [21]) a two parameter family {T(t, s)}(t,s)∈∆ is called an evolution
system if T(t, s) : E → E, for every (t, s) ∈ ∆, is a bounded linear operator and the following
conditions are satisfied.

(i) T(s, s) = I, s ∈ [0, b]; T(t, r)T(r, s) = T(t, s) for 0 ≤ s ≤ r ≤ t ≤ b;

(ii) (t, s) 7→ T(t, s) is strongly continuous on ∆.

In the following by L(E) we denote the space of all bounded linear operators from E in E
endowed with the usual norm ‖ · ‖L(E). It is easy to see that by (ii) there exists a positive
constant M such that

‖T(t, s)‖L(E) ≤ M, (t, s) ∈ ∆. (3.1)

On the map F : [0, b]× E→ Pkc(E) we assume the following hypotheses:

(F1) for every x ∈ E, the map F(·, x) is measurable;

(F2) there exists α ∈ L1
+([0, b]) with

∫ b
0 α(s) ds < 1

2M such that

H(F(t, x), F(t, y)) ≤ α(t)‖x− y‖E, for a.a. t ∈ [0, b] and x, y ∈ E;

(F3) there exist m ∈ L1
+([0, b]) and a nondecreasing function ρ : R+

0 → R+ such that

‖F(t, x)‖ ≤ m(t)ρ(‖x‖E), for a.e. t ∈ [0, b] and all x ∈ E,

where ‖F(t, x)‖ = supz∈F(t,x) ‖z‖E.

On the operator θ : C([0, b], E)→ E we assume that

(Hθ) there exists γ > 2 such that

‖θ(x)− θ(y)‖E ≤
1

γM
‖x− y‖C, for all x, y ∈ C([0, b], E).
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The constant M in (F2) and (Hθ) has been introduced in (3.1).
Recall that a function x ∈ C([0, b]; E) is said to be a mild solution for (P) if

x(t)=T(t, 0) (x0 − θ(x))+
∫ t

0
T(t, s) f (s) ds, for all t ∈ [0, b]

where f ∈ S1
F(·,x(·)) =

{
g ∈ L1([0, b], E) : g(t) ∈ F(t, x(t)) for a.e. t ∈ [0, b]

}
.

Now, we state and prove our main result.

Theorem 3.1. Let E be a separable Banach space and assume that {A(t)}t∈[0,b], F : [0, b] × E →
Pkc(E) and θ : C([0, b], E)→ E satisfy respectively (HA), (F1)–(F3) and (Hθ).

Then the set of all mild solutions of problem (P) is a nonempty compact absolute retract in C([0, b], E).

Proof. First of all, we consider the operator Γ : C([0, b], E)→ P(C([0, b], E)) defined, for every
x ∈ C([0, b], E), as

Γ(x) =
{

h ∈ C([0, b], E) : h(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s)g(s) ds,

for all t ∈ [0, b], where g ∈ S1
F(·,x(·))

}
.

Let us show that the multioperator Γ fulfills all the hypotheses of Theorems 2.2 and 2.3.
We proceed by steps.

Step 1. We prove that Γ(x) 6= ∅, for all x ∈ C([0, b], E).
Fix x ∈ C([0, b], E). By (F2), since F takes compact values, we can say that F(t, ·) is

continuous in E, for every t ∈ [0, b]. Further, (F1) is satisfied and the Banach space E is
separable, so from [11, Proposition 4.4.29] we deduce that F has the Scorza-Dragoni property.
Now Theorem 2.4 implies that the multimap F(·, x(·)) has a strongly measurable selection g
such that g(t) ∈ F(t, x(t)) for all t ∈ [0, b].

From (F3) we have

‖g(t)‖E ≤ m(t)ρ(‖x‖C), for a.e. t ∈ [0, b]

and so g ∈ L1([0, b], E). Clearly, the map h : [0, b]→ E defined by

h(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s)g(s) ds, for all t ∈ [0, b]

belongs to Γ(x) and then Γ(x) is nonempty.
Step 2. Γ has convex and compact values.
Fixed x ∈ C([0, b], E), the convexity of Γ(x) immediately follows from the convexity of the

values of F and from the linearity of the operator T(t, s) : E→ E, for every (t, s) ∈ ∆.
We show that the set Γ(x) is compact.
First of all, we prove that Γ(x) is relatively compact.
Let (zn)n be a sequence such that zn ∈ Γ(x), n ∈N, and ( fn)n be a sequence such that, for

every n ∈N, fn ∈ S1
F(·,x(·)) and

zn(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s) fn(s) ds, for all t ∈ [0, b].

Let us note that, by (F3), the set { fn}n is integrably bounded, i.e.

‖ fn(s)‖E ≤ ‖F(s, x(s))‖ ≤ m(s)ρ(‖x‖C) := m̃(s), for a.e. s ∈ [0, b],
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where m̃ ∈ L1
+([0, b]).

On the other hand, for all t ∈ [0, b], the set { fn(t)}n is relatively compact in E being a
subset of the compact F(t, x(t)).

Therefore the set { fn}n satisfies the hypotheses of [18, Proposition 4.2.1], so that it is
weakly compact in L1([0, b], E); hence w.l.o.g. we can assume fn ⇀ f̄ in L1([0, b], E). Now, by
using [8, Theorem 2] we can apply [18, Theorem 5.1.1], so that∫ ·

0
T(·, s) fn(s) ds→

∫ ·
0

T(·, s) f̄ (s) ds in C([0, b], E).

Hence the sequence (zn)n converges in C([0, b], E) and, therefore, Γ(x) is relatively compact in
C([0, b], E).

Now, we have to prove that Γ(x) is closed.
Let (yn)n be a sequence in Γ(x) such that yn → ȳ in C([0, b], E). Let ( fn)n be a sequence in

S1
F(·,x(·)) such that

yn(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s) fn(s) ds, for all t ∈ [0, b].

By means of the same arguments as above, we can claim that passing to a subsequence, if
necessary, one has

yn → T(·, 0)(x0 − θ(x)) +
∫ ·

0
T(·, s) f̄ (s) ds in C([0, b], E).

The uniqueness of the limit algorithm guarantees that

ȳ(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s) f̄ (s) ds, for every t ∈ [0, b].

By [18, Lemma 5.1.1], it is f̄ ∈ S1
F(·,x(·)); hence, we can conclude that ȳ ∈ Γ(x).

So Γ(x) is closed and, hence, compact.
Step 3. Γ is a contraction.
Let us fix x, y ∈ C([0, b], E) and h ∈ Γ(x). We have

h(t) = T(t, 0)(x0 − θ(x)) +
∫ t

0
T(t, s)g(s) ds, for all t ∈ [0, b],

where g ∈ S1
F(·,x(·)).

Now, by noting that the multimap F(·, y(·)) and the function g satisfy the hypotheses
of [26, Lemma 3.9], we have that there exists a measurable selection w : [0, b] → E of the
multimap F(·, y(·)), such that

‖g(t)− w(t)‖E = δ(g(t), F(t, y(t))), for all t ∈ [0, b], (3.2)

where δ(g(t), F(t, y(t))) = infz∈F(t,y(t)) ‖g(t)− z‖E.
By (F3), the map w is Bochner integrable. We associate to this map the function p : [0, b]→ E

defined as

p(t) = T(t, 0)(x0 − θ(y)) +
∫ t

0
T(t, s)w(s) ds, for all t ∈ [0, b].

Clearly p ∈ Γ(y).



Aronszajn–Hukuhara type theorem 7

We are now in the position to estimate e(Γ(x), Γ(y)), i.e. the excess of Γ(x) over Γ(y).
Indeed, by using (Hθ), (3.2) and (F2), we get the following inequality:

‖h(t)− p(t)‖E ≤ ‖T(t, 0)(θ(y)− θ(x))‖E +
∫ t

0
‖T(t, s)(g(s)− w(s))‖E ds

≤ M‖θ(y)− θ(x)‖E + M
∫ b

0
‖g(s)− w(s)‖E ds

≤ 1
γ
‖x− y‖C + M

∫ b

0
δ(g(s), F(s, y(s))) ds

≤ 1
γ
‖x− y‖C + M

∫ b

0
H(F(s, x(s)), F(s, y(s))) ds

≤ 1
γ
‖x− y‖C + M

∫ b

0
α(s)‖x− y‖C ds

≤ 1
γ
‖x− y‖C +

1
2
‖x− y‖C = L‖x− y‖C,

for all t ∈ [0, b], where L = 1
γ + 1

2 . Hence

δ(h, Γ(y)) = inf
z∈Γ(y)

‖h− z‖C ≤ ‖h− p‖C ≤ L‖x− y‖C.

We deduce that
e(Γ(x), Γ(y)) = sup

h∈Γ(x)
δ(h, Γ(y)) ≤ L‖x− y‖C. (3.3)

Of course, analogously it is
e(Γ(y), Γ(x)) ≤ L‖x− y‖C. (3.4)

From (3.3) and (3.4), we get H(Γ(x), Γ(y)) ≤ L‖x− y‖C; being L < 1 (see (Hθ)), we can say
that Γ is a contraction.

Step 4. We can now apply Theorems 2.2 and 2.3, so that the set Fix(Γ) of all mild solutions
of problem (P) is a nonempty compact absolute retract in C([0, b], E).

Remark 3.2. Obviously the set of all mild solutions of problem (P) is an Rδ-set and, according
to Remark 2.1, a continuum too. For this reason we say that our result is an Aronszajn–
Hukuhara type theorem.

From Theorem 3.1 we deduce the topological properties of the classical solution set for a
nonlinear differential inclusion with nonlocal condition.

Corollary 3.3. Let E be a separable Banach space and x0 ∈ E. Let F : [0, b] × E → Pkc(E) and
θ : C([0, b], E) → E satisfy respectively (F1)–(F3) and (Hθ), by assuming M = 1 both in (F2) and in
(Hθ). Then the solution set of problem {

ẋ ∈ F(t, x)

x(0) + θ(x) = x0
(NP)

is a nonempty compact absolute retract in C([0, b], E).

Proof. It is enough to observe that (NP) is a particular case of (P), just by taking A(t) = 0 for
every t ∈ [0, b], where 0 is the null-operator in L(E). So T(t, s) = I for every (t, s) ∈ ∆ and
M = 1 (see (3.1)).
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Therefore, Theorem 3.1 immediately implies that the set of solutions (which in this setting
are absolutely continuous){

x ∈ C([0, b], E) : x(t) = x0 − θ(x) +
∫ t

0
g(s) ds, for all t ∈ [0, b], where g ∈ S1

F(·,x(·))

}
is a nonempty compact absolute retract in C([0, b], E).

Remark 3.4. We wish to note that under our hypotheses the topological structure of the
solution set can be not trivial, since in general the uniqueness of the solution for a Cauchy
problem governed by a differential inclusion is not guaranteed, even in very classical settings.
We show it by means of the following example.

Example 3.5. Consider the Cauchy problem{
ẋ ∈ F(t, x),

x(0) = 1,

where F : [0, 1]×R→ Pkc(R) is defined by

F(t, x) =
1
4
[1, x] :=

{
y ∈ R : y =

λ + (1− λ)x
4

, λ ∈ [0, 1]
}

.

Here A(t) ≡ 0 for all t ∈ [0, 1] and θ ≡ 0.
It is easy to see that the problem has infinitely many solutions.
On the other hand, the multimap F takes compact convex values and satisfies hypotheses

(F1). Further, put α(t) = 1
4 for all t ∈ [0, 1], we have that (F2) holds (with M = 1). Also, if

we consider ρ(s) = 1+s
4 for all s ∈ [0,+∞) and m(t) = 1 for all t ∈ [0, 1], we can say that F

satisfies (F3). Therefore we can use Corollary 3.3 and obtain that the solution set of the given
problem is a nonempty compact absolute retract in C([0, 1], R).

3.1 Semilinear differential inclusions under periodic conditions

Very important nonlocal Cauchy problems are the periodic ones, namely{
ẋ ∈ A(t)x + F(t, x),

x(0) = x(b).
(PP)

In this setting, each mild solution is a function x ∈ C([0, b], E) such that

x(t) = T(t, 0)x(b) +
∫ t

0
T(t, s) f (s) ds, for all t ∈ [0, b],

where f ∈ S1
F(·,x(·)).

In order to let our Theorem 3.1 be easily usable in the periodic setting, we deduce the
following result.

Corollary 3.6. Let E be a separable Banach space and {A(t)}t∈[0,b] be a family of linear operators
satisfying (HA) and M < 1

2 , where M is defined in (3.1). Assume that F : [0, b] × E → Pkc(E)
satisfies properties (F1)–(F3).

Then the mild solution set of problem (PP) is a nonempty compact absolute retract in C([0, b], E).
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Proof. Of course, problem (PP) is a particular case of problem (P) by taking x0 = 0 and
θ : C([0, b], E) → E as θ(x) = −x(b), for all x ∈ C([0, b], E). This map is trivially Lipschitzian
with L = 1; hence, put L = 1

Mγ , we have γ = 1
M > 2, as required in (Hθ). From Theorem 3.1

it immediately follows that the mild solution set for the periodic problem (PP) is a nonempty
compact absolute retract in C([0, b], E).

4 An example

We investigate the following nonlocal Cauchy problem driven by a partial differential inclu-
sion 

∂
∂t y(t, z) ∈ ∂2

∂z2 y(t, z) + 1
4 [1, y(t, z)], (t, z) ∈ [0, 1]× [0, 1]

y(t, 0) = y(t, 1), t ∈ [0, 1]

y(0, z) = ∑
q
j=1 k jy(sj, z), z ∈ [0, 1], sj ∈ [0, 1], k j ∈ R, j = 1, . . . , q.

(4.1)

Put E = L2([0, 1], R), we consider the family of operators {A(t)}t∈[0,1] = {A}, being A : D(A) ⊂
E→ E is the Laplace operator

A(ω) =
∂2

∂z2 ω, for all ω ∈ D(A),

where D(A) = {ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(1)}. Fur-
ther, we can consider the evolution operator T defined in ∆ = {(t, s) : 0 ≤ s ≤ t ≤ 1} by
{T(t, s)}(t,s)∈∆ = {U(t− s)}(t,s)∈∆, being {U(t)}t∈[0,+∞[ the C0-semigroup generated by A.

We assume that ∑
q
j=1 |k j| = 1

4M , where M > 0 is the constant defined in (3.1). Moreover,
we put

F(t, x) =
1

4M
[1, x] :=

{
y ∈ E : y =

λ + (1− λ)x
4M

, λ ∈ [0, 1]
}

for all (t, x) ∈ [0, 1]× E, and

θ(x) = −
q

∑
j=1

k jx(sj), for all x ∈ C([0, 1], E).

Now, problem (4.1) can be rewritten as a nonlocal Cauchy problem where the differential
inclusion presents autonomous linear term, that is{

ẋ ∈ Ax + F(t, x),

x(0) + θ(x) = 0.
(4.2)

Note that the operator θ satisfies condition (Hθ), since

‖θ(x)− θ(y)‖E ≤
q

∑
j=1
|k j|‖x(sj)− y(sj)‖E ≤

1
4M
‖x− y‖C,

for all x, y ∈ C([0, 1], E), being γ = 4 > 2. Moreover, it is easy to see that (F1) is satisfied.
Further, put α(t) = 1

4M for all t ∈ [0, 1], we have α ∈ L1
+([0, 1]),

∫ 1
0 α(t) dt = 1

4M < 1
2M and the

following inequality holds

H(F(t, x), F(t, y)) ≤ 1
4M
‖x− y‖E, for all x, y ∈ E,
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so (F2) is satisfied. We also have

‖F(t, x)‖ = sup
h∈F(t,x)

‖h‖E =
1

4M
sup

λ∈[0,1]
‖λ + (1− λ)x‖E

≤ 1 + ‖x‖E

4M
≤ m(t)ρ(‖x‖E), for all t ∈ [0, 1] and x ∈ E,

where we have chosen the nondecreasing function ρ : R+
0 → R+ as

ρ(s) =
1 + s
4M

, for all s ∈ R+
0

and the Lebesgue integrable function m(t) = 1 for all t ∈ [0, 1]. Therefore, (F3) is satisfied too.
Then, by applying our Theorem 3.1, we claim the existence of a least one mild solution

for (4.2) and, as a consequence, for (4.1); moreover, we have characterized the topological
structure of the solution set.
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