Asymptotic character of non-oscillatory solutions to functional differential systems

Helena Šamajová ${ }^{\boxtimes}$, Branislav Ftorek and Eva Špániková
University of Žilina, Faculty of Mechanical Engineering, Deptartment of Applied Mathematics, Univerzitná 8215/1, Žilina 010 26, Slovakia

Received 12 June 2014, appeared 14 July 2015
Communicated by Josef Diblík

Abstract

In this paper the behaviour of solutions to systems of three functional differential equations is investigated. We are interested in the acquirement of conditions which ensure that certain of four possible non-oscillatory types holds. A sub-linear as well as a super-linear system is studied.

Keywords: neutral differential equation, system of functional differential equation, non-oscillatory solution, asymptotic properties of solutions.
2010 Mathematics Subject Classification: 34K11, 34K25, 34K40.

1 Introduction

We consider the system of three functional differential equations with deviating arguments

$$
\begin{align*}
{\left[y_{1}(t)+a(t) y_{1}(g(t))\right]^{\prime} } & =p_{1}(t) y_{2}(t) \\
y_{2}^{\prime}(t) & =p_{2}(t) f_{2}\left(y_{3}\left(h_{3}(t)\right)\right) \tag{1.1}\\
y_{3}^{\prime}(t) & =f_{3}\left(t, y_{1}\left(h_{1}(t)\right)\right), \quad t \geq t_{0} \geq 0
\end{align*}
$$

where the following assumptions are given:
(a) $a \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$;
(b) $g \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \lim _{t \rightarrow \infty} g(t)=\infty$;
(c) $p_{i} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), p_{i}(t) \not \equiv 0$ on any interval $[T, \infty) \subset\left[t_{0}, \infty\right), \int_{t_{0}}^{\infty} p_{i}(t) d t<\infty$ for $i=1,2 ;$
(d) $h_{i} \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \lim _{t \rightarrow \infty} h_{i}(t)=\infty, i=1,3$ and $h_{3}(t) \leq t$ for $t \geq t_{0}$;
(e) $f_{2} \in C(\mathbb{R}, \mathbb{R}),\left|f_{2}(u)\right| \leq K|u|^{\beta}$ for $u \in \mathbb{R}$, constants K, β satisfy $K>0,0<\beta \leq 1$;

[^0](f) $f_{3} \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}, \mathbb{R}\right),\left|f_{3}(t, v)\right| \leq \omega(t,|v|)$ for $(t, v) \in\left[t_{0}, \infty\right) \times \mathbb{R}$, $\omega \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}_{0}^{+}, \mathbb{R}_{0}^{+}\right)$, where \mathbb{R}_{0}^{+}is the set of all nonnegative real numbers and $\omega(t, z)$ is non-decreasing with respect to z for any $t \in\left[t_{0}, \infty\right)$.

Functional differential equations with deviating arguments and their systems have been studied by many authors. The asymptotic behaviour of solutions to functional differential equations and systems is studied for example in $[3,10,11]$ and to equations of neutral type in $[4,5,7]$. The classification of non-oscillatory solutions to systems of neutral differential equations is given in [12-14] and to systems of neutral dynamic equations on time scales in [1]. For nonlinear equations some comparison theorems were introduced in [9] and existence of positive solutions is investigated in $[2,6]$.

This paper brings a generalization to results for asymptotic properties presented in [8] for systems of three equations if one of the equations is of neutral type. The system (1.1) can be transformed neither to third-order neutral differential equation nor to differential equation of neutral type with quasi-derivatives.

A function $y=\left(y_{1}, y_{2}, y_{3}\right)$ is a solution to (1.1) if

1. there exists $t_{1} \geq t_{0}$ such that y is continuous for

$$
t \geq \min \left\{t_{1}, \inf _{t \geq t_{1}} h_{1}(t), \inf _{t \geq t_{1}} h_{3}(t), \inf _{t \geq t_{1}} g(t)\right\} ;
$$

2. functions $y_{i}(t), i=2,3$ and $z_{1}(t)$, which is defined as $z_{1}(t)=y_{1}(t)+a(t) y_{1}(g(t))$ for $t \geq t_{1}$, are continuously differentiable on $\left[t_{1}, \infty\right)$;
3. y satisfies (1.1) on $\left[t_{1}, \infty\right)$.

The set of solutions y to (1.1) that satisfy the condition

$$
\sup _{t \geq T}\left\{\sum_{i=1}^{3}\left|y_{i}(t)\right|\right\}>0 \quad \text { for any } T \geq t_{1}
$$

is denoted as W. A solution $y \in W$ is considered to be non-oscillatory if there exists a $T_{y} \geq t_{1}$ such that every component is different from zero for $t \geq T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

2 Main results

In this section we establish conditions under which one of four possible types of asymptotic properties holds.

The system (1.1) is super-linear [sub-linear] if $\frac{\omega(t, z)}{z}, z>0$ is non-decreasing [non-increasing] with respect to z for any $t \geq t_{0}$.

We define the functions h_{*}, r_{*} as

$$
h_{*}(t)=\min \left\{h_{1}(t), t\right\}, \quad r_{*}(t)=\inf _{s \geq t} h_{*}(s) .
$$

For $t \geq t_{0}$ the following integrals are defined

$$
\begin{aligned}
& P_{i}(t)=\int_{t}^{\infty} p_{i}(s) d s, \quad i=1,2 ; \\
& Q(t)=\int_{t}^{\infty} p_{1}(s) P_{2}(s) d s .
\end{aligned}
$$

It is obvious that the inequality $Q(t) \leq P_{1}(t) P_{2}(t)$ holds for $t \geq t_{0}$. Functions $P_{1}(t), P_{2}(t)$ and $Q(t)$ are non-increasing and $\lim _{t \rightarrow \infty} P_{i}(t)=0, i=1,2$ and $\lim _{t \rightarrow \infty} Q(t)=0$.

Theorem 2.1. We suppose that (1.1) is either
(A) a super-linear one and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} P_{1}\left(h_{*}(s)\right) P_{2}\left(h_{*}(s)\right) \omega(s, c) d s<\infty \tag{2.1}
\end{equation*}
$$

for all $c>0$;
or
(B) the system (1.1) is sub-linear and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{P_{i}\left(h_{*}(s)\right) \omega\left(s, c P_{1}\left(h_{*}(s)\right) P_{2}\left(h_{*}(s)\right)\right) d s}{P_{i}\left(h_{1}(s)\right)}<\infty \tag{2.2}
\end{equation*}
$$

for $i=1,2$ and all $c>0$,
then for any non-oscillatory $y \in W$, one of the following cases (I)-(IV) holds:
(I)

$$
\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\lim _{t \rightarrow \infty}\left|y_{2}(t)\right|=\lim _{t \rightarrow \infty}\left|y_{3}(t)\right|=\infty ;
$$

(II) there exists a nonzero constant α_{1} that

$$
\lim _{t \rightarrow \infty} z_{1}(t)=\alpha_{1}, \quad \lim _{t \rightarrow \infty} y_{2}(t) P_{1}(t)=\lim _{t \rightarrow \infty} y_{3}(t) Q(t)=0 ;
$$

(III) there exists a nonzero constant α_{2} that

$$
\lim _{t \rightarrow \infty} \frac{-z_{1}(t)}{P_{1}(t)}=\lim _{t \rightarrow \infty} y_{2}(t)=\alpha_{2}, \quad \lim _{t \rightarrow \infty} y_{3}(t) P_{2}(t)=0 ;
$$

(IV) there exists a constant α_{3} that

$$
\lim _{t \rightarrow \infty} y_{3}(t)=\alpha_{3}, \quad \lim _{t \rightarrow \infty} \frac{z_{1}(t)}{Q(t)}=\lim _{t \rightarrow \infty} \frac{-y_{2}(t)}{P_{2}(t)}=f_{2}\left(\alpha_{3}\right)
$$

Proof. Let $y \in W$ be a non-oscillatory solution to (1.1). Let $t_{2} \geq t_{1}$, such that for $t \geq t_{2}$ the functions $y_{1}(t), y_{1}(g(t)), y_{2}(t), y_{3}(t), z_{1}(t)$ are of a constant sign and the inequality (2.3) holds. From the definition of $z_{1}(t)$, the first equation of (1.1), (a) and (c) we conclude that $z_{1}(t)$ is monotonous and fulfills

$$
\begin{equation*}
\left|z_{1}(t)\right| \geq\left|y_{1}(t)\right| \quad \text { for } t \geq t_{2} \tag{2.3}
\end{equation*}
$$

Case (A) We suppose that (1.1) is super-linear and (2.1) holds. Let $T \geq t_{2}$. We consider T in such a way that $r_{*}(T) \geq t_{2}$ and for $P_{i}(T)$ hold

$$
\begin{equation*}
P_{i}(T) \leq 1, \quad i=1,2 \tag{2.4}
\end{equation*}
$$

By integrating the first equations of (1.1) from T to t we have

$$
\begin{align*}
& \left|z_{1}(t)\right| \leq\left|z_{1}(T)\right|+\int_{T}^{t} p_{1}\left(x_{1}\right)\left|y_{2}\left(x_{1}\right)\right| d x_{1}, \quad t \geq T \tag{2.5}\\
& \left|y_{2}(t)\right| \leq\left|y_{2}(T)\right|+\int_{T}^{t} p_{2}\left(x_{2}\right)\left|f_{2}\left(y_{3}\left(h_{3}\left(x_{2}\right)\right)\right)\right| d x_{2}, \quad t \geq T \tag{2.6}
\end{align*}
$$

and a combination of (2.5) and (2.6) yields

$$
\begin{align*}
\left|z_{1}(t)\right| \leq & \left|z_{1}(T)\right|+\left|y_{2}(T)\right| \int_{T}^{t} p_{1}\left(x_{1}\right) d x_{1} \tag{2.7}\\
& +\int_{T}^{t} p_{1}\left(x_{1}\right) \int_{T}^{x_{1}} p_{2}\left(x_{2}\right)\left|f_{2}\left(y_{3}\left(h_{3}\left(x_{2}\right)\right)\right)\right| d x_{2} d x_{1}, \quad t \geq T
\end{align*}
$$

By integrating the third equation of (1.1) from T to t with using (f) and (2.3) we obtain

$$
\begin{equation*}
\left|y_{3}(t)\right| \leq\left|y_{3}(T)\right|+\int_{T}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq T \tag{2.8}
\end{equation*}
$$

Considering (d), (e), (2.8) and Taylor's theorem we have

$$
\begin{align*}
\left|f_{2}\left(y_{3}\left(h_{3}(t)\right)\right)\right| & \leq K\left|y_{3}\left(h_{3}(t)\right)\right|^{\beta} \leq K\left(\left|y_{3}(T)\right|+\int_{T}^{h_{3}(t)} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s\right)^{\beta} \tag{2.9}\\
& \leq M+N \int_{T}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq \bar{T}>T
\end{align*}
$$

where $M=K\left|y_{3}(T)\right|^{\beta}$ and $N=K \beta\left|y_{3}(T)\right|^{\beta-1}$ and \bar{T} fulfill a condition, that $h_{3}(t) \geq T$ for $t \geq \bar{T}$.

From (2.7) and (2.9) for $z_{1}(t)$ the following inequality holds

$$
\begin{align*}
\left|z_{1}(t)\right| \leq & \left|z_{1}(T)\right|+\left|y_{2}(T)\right| \int_{T}^{t} p_{1}\left(x_{1}\right) d x_{1} \\
& +M \int_{T}^{t} p_{1}\left(x_{1}\right) \int_{T}^{x_{1}} p_{2}\left(x_{2}\right) d x_{2} d x_{1} \tag{2.10}\\
& +N \int_{T}^{t} p_{1}\left(x_{1}\right) \int_{T}^{x_{1}} p_{2}\left(x_{2}\right) \int_{T}^{x_{2}} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s d x_{2} d x_{1}, \quad t \geq \bar{T}
\end{align*}
$$

From (2.6) and (2.9) by changing of the order of integration we have

$$
\begin{equation*}
\left|y_{2}(t)\right| \leq\left|y_{2}(T)\right|+M \int_{T}^{t} p_{2}\left(x_{2}\right) d x_{2}+N \int_{T}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) P_{2}(s) d s, \quad t \geq \bar{T} . \tag{2.11}
\end{equation*}
$$

Since there exists $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|$, there are two possibilities: either $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty$ or $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|<\infty$. Let us assume the first possibility, thus

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty . \tag{2.12}
\end{equation*}
$$

We will prove by contrapositive that the case (I) stands.
Let limsup $\operatorname{sim}_{\infty}\left|y_{2}(t)\right|<\infty$, then from (2.5) we have a contradiction to (2.12).
Let $\limsup _{t \rightarrow \infty}\left|y_{3}(t)\right|<\infty$. Then from (2.7) and (e) we obtain a contradiction to (2.12).
Hence if $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty$, then $\lim \sup _{t \rightarrow \infty}\left|y_{3}(t)\right|=\lim \sup _{t \rightarrow \infty}\left|y_{2}(t)\right|=\infty$ hold and the case (I) stands.

Let $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|<\infty$. The relation (2.1) implies that the function $P_{1}(t) P_{2}(t) \omega(t, c)$ is integrable on $[T, \infty)$ for any constant $c>0$. We will prove that also the function $p_{1}(t) y_{2}(t)$ is integrable on $[T, \infty)$. Because of (2.11), by changing of the order of integration we have

$$
\begin{aligned}
\int_{\bar{T}}^{\infty} p_{1}(t)\left|y_{2}(t)\right| d t \leq & \left|y_{2}(T)\right| \int_{\bar{T}}^{\infty} p_{1}(t) d t+M \int_{\bar{T}}^{\infty} p_{1}(t) \int_{T}^{t} p_{2}\left(x_{2}\right) d x_{2} d t \\
& +N \int_{T}^{\infty} P_{1}(s) P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s .
\end{aligned}
$$

The first equation of (1.1) gives

$$
\begin{equation*}
z_{1}(t)=\alpha_{1}-\int_{t}^{\infty} p_{1}(s) y_{2}(s) d s, \quad t \geq T \tag{2.13}
\end{equation*}
$$

where $\alpha_{1}=z_{1}(T)+\int_{T}^{\infty} p_{1}(s) y_{2}(s) d s, \alpha_{1} \in \mathbb{R}$.
The relation (2.13) ensures that $\lim _{t \rightarrow \infty} z_{1}(t)=\alpha_{1}$. From (2.11) for $t \geq \bar{T}$ we have

$$
\begin{aligned}
P_{1}(t)\left|y_{2}(t)\right| \leq & P_{1}(t)\left[\left|y_{2}(T)\right|+M P_{2}(T)+N \int_{T}^{t_{1}} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) P_{2}(s) d s\right] \\
& +N \int_{t_{1}}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) P_{1}(s) P_{2}(s) d s
\end{aligned}
$$

From (2.8) for $t \geq T$ we have

$$
\begin{aligned}
Q(t)\left|y_{3}(t)\right| \leq & Q(t)\left[\left|y_{3}(T)\right|+\int_{T}^{t_{1}} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s\right] \\
& +\int_{t_{1}}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) P_{1}(s) P_{2}(s) d s
\end{aligned}
$$

The formulae $P_{1}(t)\left|y_{2}(t)\right|$ and $Q(t)\left|y_{3}(t)\right|$ can be made arbitrarily small by choosing t_{1} sufficiently large and then letting t tend to ∞. Consequently

$$
\lim _{t \rightarrow \infty} P_{1}(t) y_{2}(t)=0=\lim _{t \rightarrow \infty} Q(t) y_{3}(t)
$$

and if $\alpha_{1} \neq 0$ the case (II) holds.
Let $\alpha_{1}=0$. The super-linearity of (1.1) and (2.1), (2.4) imply that the functions

$$
P_{1}\left(h_{1}(t)\right) P_{2}(t) \omega(t, 1), \quad P_{1}(t) P_{2}(t) \omega(t, 1), \quad P_{2}(t) \omega\left(t, c P_{1}\left(h_{1}(t)\right)\right)
$$

are integrable on $[T, \infty)$ for any $c>0$.
We can choose $T_{1} \geq \bar{T}$ in such a way that not only $T_{1}^{*}=r_{*}\left(T_{1}\right) \geq \bar{T}$ but also

$$
\begin{gather*}
\left|z_{1}\left(h_{1}(t)\right)\right| \leq 1, \quad t \geq T_{1}, \tag{2.14}\\
N \int_{T_{1}}^{\infty} P_{1}\left(h_{1}(s)\right) P_{2}(s) \omega(s, 1) d s \leq \frac{1}{3}, \tag{2.15}\\
\left.N \int_{T_{1}}^{\infty} P_{1}(s) P_{2}(s) \omega(s, 1)\right) d s \leq \frac{1}{3} . \tag{2.16}
\end{gather*}
$$

Combining (2.11), (2.13) and by changing of the order of integration we get

$$
\begin{align*}
\left|z_{1}(t)\right| \leq & P_{1}(t)\left[\left|y_{2}(T)\right|+M P_{2}(T)+N \int_{T}^{t} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s\right] \tag{2.17}\\
& +N \int_{t}^{\infty} P_{1}(s) P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq \bar{T}
\end{align*}
$$

The inequality above may be rearranged to the form

$$
\begin{align*}
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq & K_{1}+N \int_{T_{1}}^{t} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s \tag{2.18}\\
& +\frac{N}{P_{1}(t)} \int_{t}^{\infty} P_{1}(s) P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq T_{1}
\end{align*}
$$

where

$$
K_{1} \geq\left|y_{2}(T)\right|+M P_{2}(T)+N \int_{T}^{T_{1}} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s
$$

is a positive constant.
Denote for $t \geq T_{1}$ two types of sets

$$
I_{t}^{1}=\left\{s \in\left[T_{1}, \infty\right), h_{1}(s) \leq t\right\} \quad \text { and } \quad J_{t}^{1}=\left\{s \in\left[T_{1}, \infty\right), h_{1}(s)>t\right\} .
$$

Then for $s \in I_{t}^{1}$ or $s \in J_{t}^{1}$ respectively hold

$$
\frac{\left|z_{1}\left(h_{1}(s)\right)\right|}{P_{1}\left(h_{1}(s)\right)} \leq \sup _{T_{1}^{*} \leq \sigma \leq t} \frac{\left|z_{1}(\sigma)\right|}{P_{1}(\sigma)} \quad \text { for } s \in I_{t}^{1}
$$

and since $\left|z_{1}(t)\right|$ is a non-increasing function on $\left[t_{2}, \infty\right)$, we obtain

$$
\left|z_{1}\left(h_{1}(s)\right)\right| \leq\left|z_{1}(t)\right| \quad \text { for } s \in J_{t}^{1} .
$$

The super-linearity of (1.1) implies

$$
\begin{equation*}
\omega(s, a b) \leq a \omega(s, b) \quad \text { for } 0<a \leq 1, b>0 . \tag{2.19}
\end{equation*}
$$

The inequality (2.18) may be modified based on (2.14)-(2.16) to

$$
\begin{aligned}
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq & K_{1}+N \sup _{T_{1}^{T_{1}^{*} \leq s \leq t}} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}\left[\int_{I_{t}^{1} \cap\left[T_{1}, t\right)} P_{1}\left(h_{1}(s)\right) P_{2}(s) \omega(s, 1) d s\right. \\
& \left.+\frac{1}{P_{1}(t)} \int_{I_{t}^{1} \cap[t, \infty)} P_{1}\left(h_{1}(s)\right) P_{1}(s) P_{2}(s) \omega(s, 1) d s\right] \\
& +N \frac{\left|z_{1}(t)\right|}{P_{1}(t)}\left[P_{1}(t) \int_{J_{t}^{1} \cap\left[T_{1}, t\right)} P_{2}(s) \omega(s, 1) d s+\int_{J_{t}^{1} \cap[t, \infty)} P_{1}(s) P_{2}(s) \omega(s, 1) d s\right] \\
\leq & K_{1}+\sup _{T_{1}^{*} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)} N \int_{T_{1}}^{\infty} P_{1}\left(h_{1}(s)\right) P_{2}(s) \omega(s, 1) d s \\
& +\frac{\left|z_{1}(t)\right|}{P_{1}(t)} N \int_{T_{1}}^{\infty} P_{1}(s) P_{2}(s) \omega(s, 1) d s \\
\leq & K_{1}+\frac{1}{3} \sup _{T_{1}^{*} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}+\frac{1}{3} \frac{\left|z_{1}(t)\right|}{P_{1}(t)} \text { for } t \geq T_{1},
\end{aligned}
$$

and

$$
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq \bar{K}_{1}+\frac{1}{2} \sup _{T_{1} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)} \quad \text { for } t \geq T_{1}
$$

where

$$
\bar{K}_{1}=\frac{3}{2} K_{1}+\frac{1}{2} \sup _{T_{1}^{*} \leq s \leq T_{1}} \frac{\left|z_{1}(s)\right|}{P_{1}(s)} .
$$

Thus we have the estimation

$$
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq \sup _{T_{1} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)} \leq 2 \bar{K}_{1} \quad \text { for } t \geq T_{1} .
$$

The inequality above leads to

$$
\begin{equation*}
\left|z_{1}\left(h_{1}(t)\right)\right| \leq K_{1}^{*} P_{1}\left(h_{1}(t)\right) \quad \text { for } t \geq T, \tag{2.20}
\end{equation*}
$$

where K_{1}^{*} is an appropriate positive constant.
The function $p_{2}(t) f_{2}\left(y_{3}\left(h_{3}(t)\right)\right)$ is integrable on $[T, \infty)$ which means that from (2.9) and (2.20) by changing of the order of integration we have

$$
\int_{\bar{T}}^{\infty} p_{2}(t)\left|f_{2}\left(y_{3}\left(h_{3}(t)\right)\right)\right| d t \leq M \int_{\bar{T}}^{\infty} p_{2}(t) d t+N \int_{T}^{\infty} P_{2}(s) \omega\left(s, K_{1}^{*} P_{1}\left(h_{1}(s)\right)\right) d s .
$$

Then for $y_{2}(t)$ the equality

$$
\begin{equation*}
y_{2}(t)=\alpha_{2}-\int_{t}^{\infty} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) d s, \quad t \geq T \tag{2.21}
\end{equation*}
$$

holds, where

$$
\alpha_{2}=y_{2}(T)+\int_{T}^{\infty} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) d s
$$

Since from (2.21) we have that $\lim _{t \rightarrow \infty} y_{2}(t)=\alpha_{2}$, thus (2.13) (where $\alpha_{1}=0$) by L'Hôpital's rule implies

$$
\lim _{t \rightarrow \infty} \frac{z_{1}(t)}{P_{1}(t)}=-\alpha_{2}
$$

The condition (f), and (2.8), (2.20) give

$$
\begin{aligned}
P_{2}(t)\left|y_{3}(t)\right| \leq & P_{2}(t)\left[\left|y_{3}(T)\right|+\int_{T}^{t_{1}} \omega\left(s, K_{1}^{*} P_{1}\left(h_{1}(s)\right)\right) d s\right] \\
& +\int_{t_{1}}^{t} P_{2}(s) \omega\left(s, K_{1}^{*} P_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geq T
\end{aligned}
$$

The formula $P_{2}(t)\left|y_{3}(t)\right|$ can be made arbitrarily small by choosing t_{1} sufficiently large and then letting t tend to ∞. Consequently $\lim _{t \rightarrow \infty} P_{2}(t)\left|y_{3}(t)\right|=0$. If $\alpha_{2} \neq 0$ the case (III) comes into being.

Let $\alpha_{1}=\alpha_{2}=0$.
The super-linearity of (1.1), (2.1) and (2.4) imply that the functions $P_{2}\left(h_{1}(t)\right) \omega\left(t, c P_{1}\left(h_{1}(t)\right)\right)$, $P_{2}(t) \omega\left(t, c P_{1}\left(h_{1}(t)\right)\right)$ and $\omega\left(t, c P_{1}\left(h_{1}(t)\right) P_{2}\left(h_{1}(t)\right)\right)$ are integrable on the interval $[T, \infty)$ for any constant $c>0$.

We choose T_{2} in such a manner that $T_{2}^{*}=r_{*}\left(T_{2}\right) \geq \bar{T}$ and moreover,

$$
\begin{gather*}
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq 1, \quad t \geq T_{2} \tag{2.22}\\
N \int_{T_{2}}^{\infty} P_{2}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \leq \frac{1}{3}, \tag{2.23}\\
N \int_{T_{2}}^{\infty} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \leq \frac{1}{3} \tag{2.24}
\end{gather*}
$$

are fulfilled.
From (2.13) (with $\alpha_{1}=0$), (2.21) (with $\alpha_{2}=0$) and (2.9) by changing of the order of integration we have

$$
\begin{aligned}
\left|z_{1}(t)\right| \leq & P_{1}(t) P_{2}(t)\left[M+N \int_{T}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s\right] \\
& +N P_{1}(t) \int_{t}^{\infty} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq \bar{T}
\end{aligned}
$$

The inequality above may be rearranged to

$$
\begin{align*}
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq & P_{2}(t)\left[M+N \int_{T}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s\right] \tag{2.25}\\
& +N \int_{t}^{\infty} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq \bar{T} .
\end{align*}
$$

We define a function $u(t)$ in the following way $u(t)=\sup _{s \geq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}$. It is evident, that $u(t)$ is non-increasing and $\lim _{t \rightarrow \infty} u(t)=0$. Since the right-hand side of (2.25) is non-increasing with respect to t we have

$$
\begin{align*}
\frac{u(t)}{P_{2}(t)} \leq & K_{2}+N \int_{T_{2}}^{t} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s \tag{2.26}\\
& +\frac{N}{P_{2}(t)} \int_{t}^{\infty} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s, \quad t \geq T_{2}
\end{align*}
$$

where $K_{2} \geq M+N \int_{T}^{T_{2}} \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s$ is a positive constant.
Denote for $t \geq T_{2}$

$$
I_{t}^{2}=\left\{s \in\left[T_{2}, \infty\right) ; h_{1}(s) \leq t\right\} \quad \text { and } \quad J_{t}^{2}=\left\{s \in\left[T_{2}, \infty\right) ; h_{1}(s)>t\right\} .
$$

Then we have

$$
\frac{u\left(h_{1}(s)\right)}{P_{2}\left(h_{1}(s)\right)} \leq \sup _{T_{2}^{*} \leq \sigma \leq t} \frac{u(\sigma)}{P_{2}(\sigma)} \quad \text { for } s \in I_{t}^{2}
$$

and

$$
u\left(h_{1}(s)\right) \leq u(t) \quad \text { for } s \in J_{t}^{2} .
$$

The super-linearity of system given by (2.19) implies that we may rearrange (2.26) on the basis of (2.22)-(2.24) to

$$
\begin{aligned}
\frac{u(t)}{P_{2}(t)} \leq & K_{2}+N \sup _{T_{2}^{*} \leq s \leq t} \frac{u(s)}{P_{2}(s)}\left[\int_{I_{t}^{2} \cap\left[T_{2}, t\right)} P_{2}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s\right. \\
& \left.+\frac{1}{P_{2}(t)} \int_{I_{t}^{2} \cap[t, \infty)} P_{2}(s) P_{2}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s\right] \\
& +N \frac{u(t)}{P_{2}(t)}\left[\int_{J_{t}^{2} \cap\left[T_{2}, t\right)} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s+\int_{J_{t}^{2} \cap[t, \infty)} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s\right] \\
\leq & K_{2}+N \sup _{T_{2}^{*} \leq s \leq t} \frac{u(s)}{P_{2}(s)} \int_{T_{2}}^{\infty} P_{2}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \\
& +\frac{u(t)}{P_{2}(t)} N \int_{T_{2}}^{\infty} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \\
\leq & K_{2}+\frac{1}{3} \sup _{T_{2}^{*} \leq s \leq t} \frac{u(s)}{P_{2}(s)}+\frac{1}{3} \frac{u(t)}{P_{2}(t)}, \quad t \geq T_{2}
\end{aligned}
$$

and we have

$$
\frac{u(t)}{P_{2}(t)} \leq \bar{K}_{2}+\frac{1}{2} \sup _{T_{2} \leq s \leq t} \frac{u(s)}{P_{2}(s)} \quad \text { for } t \geq T_{2}
$$

where

$$
\bar{K}_{2}=\frac{3}{2} K_{2}+\frac{1}{2} \sup _{T_{2}^{*} \leq s \leq T_{2}} \frac{u(s)}{P_{2}(s)} .
$$

The initial estimation can be refined

$$
\frac{\left|z_{1}(t)\right|}{P_{1}(t) P_{2}(t)} \leq \frac{u(t)}{P_{2}(t)} \leq \sup _{T_{2} \leq s \leq t} \frac{u(s)}{P_{2}(s)} \leq 2 \bar{K}_{2} \quad \text { for } t \geq T_{2}
$$

The inequality above gives

$$
\begin{equation*}
\left|z_{1}\left(h_{1}(t)\right)\right| \leq K_{2}^{*} P_{1}\left(h_{1}(t)\right) P_{2}\left(h_{1}(t)\right) \quad \text { for } t \geq T \tag{2.27}
\end{equation*}
$$

where K_{2}^{*} is an adequate positive constant.
Since the function $f_{3}\left(t, y_{1}\left(h_{1}(t)\right)\right)$ is integrable on $[T, \infty)$ because of (2.3), (2.27) and (f) we get

$$
\begin{aligned}
\int_{T}^{\infty}\left|f_{3}\left(t, y_{1}\left(h_{1}(t)\right)\right)\right| d t & \leq \int_{T}^{\infty} \omega\left(t,\left|z_{1}\left(h_{1}(t)\right)\right|\right) d t \\
& \leq \int_{T}^{\infty} \omega\left(t, K_{2}^{*} P_{1}\left(h_{1}(t)\right) P_{2}\left(h_{1}(t)\right)\right) d t
\end{aligned}
$$

Integrating the third equation of (1.1) we gain

$$
\begin{equation*}
y_{3}(t)=\alpha_{3}-\int_{t}^{\infty} f_{3}\left(s, y_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geq T \tag{2.28}
\end{equation*}
$$

where $\alpha_{3}=y_{3}(T)+\int_{T}^{\infty} f_{3}\left(s, y_{1}\left(h_{1}(s)\right)\right) d s$.
The relation (2.28) shows that $\lim _{t \rightarrow \infty} y_{3}(t)=\alpha_{3}$ and from (2.13) and (2.21) we obtain (by L'Hôpital's rule)

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{z_{1}(t)}{Q(t)}=\lim _{t \rightarrow \infty} \frac{\int_{t}^{\infty} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) f_{2}\left(y_{3}\left(h_{3}\left(x_{2}\right)\right)\right) d x_{2} d x_{1}}{\int_{t}^{\infty} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) d x_{2} d x_{1}}=f_{2}\left(\alpha_{3}\right) \\
\lim _{t \rightarrow \infty} \frac{y_{2}(t)}{P_{2}(t)}=\lim _{t \rightarrow \infty} \frac{-\int_{t}^{\infty} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) d s}{\int_{t}^{\infty} p_{2}(s) d s}=-f_{2}\left(\alpha_{3}\right)
\end{gathered}
$$

The case (IV) holds. The proof of case (A) of Theorem 2.1 is completed.

Case (B)

We suppose that (1.1) is sub-linear and (2.2) holds. This implies that the function $P_{1}(t) P_{2}(t) \omega(t, c)$ is integrable on $[T, \infty)$.

The cases (I) and (II) we prove similarly to the previous case (A). Let $\alpha_{1}=0$. The relation (2.2) and the sub-linearity of (1.1) imply that the functions $P_{2}(t) \omega\left(t, c P_{1}\left(h_{1}(t)\right)\right)$ and

$$
\frac{P_{1}(t) P_{2}(t) \omega\left(t, P_{1}\left(h_{1}(t)\right)\right)}{P_{1}\left(h_{1}(t)\right)}
$$

are integrable on $[T, \infty)$ for any $c>0$.
We will prove that the function $\frac{\left|z_{1}(t)\right|}{P_{1}(t)}$ is bounded on $[T, \infty)$. For the sake of contradiction we estimate T_{3}, T_{4} and T_{5} in such a manner that $\bar{T}<T_{3}<T_{4}<T_{5}$ where $T_{3}^{*}=r_{*}\left(T_{3}\right) \geq \bar{T}$ and moreover we have

$$
\begin{gather*}
\left|z_{1}\left(T_{3}^{*}\right)\right| \geq P_{1}\left(T_{3}^{*}\right) \tag{2.29}\\
\sup _{T_{3}^{*} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}=\sup _{T_{4} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}, \quad t \geq T_{4} \tag{2.30}\\
N \int_{T_{4}}^{\infty} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \leq \frac{1}{4} \tag{2.31}
\end{gather*}
$$

$$
\begin{gather*}
N \int_{T_{4}}^{\infty} \frac{P_{1}(s) P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s}{P_{1}\left(h_{1}(s)\right)} \leq \frac{1}{4} \tag{2.32}\\
\left|y_{2}(T)\right|+M P_{2}(T)+N \int_{T}^{T_{4}} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s \leq \frac{\left|z_{1}\left(T_{5}\right)\right|}{4 P_{1}\left(T_{5}\right)} . \tag{2.33}
\end{gather*}
$$

We rearrange the inequality (2.17) to the form

$$
\begin{align*}
\frac{\left|z_{1}(t)\right|}{P_{1}(t)} \leq & \left|y_{2}(T)\right|+M P_{2}(T)+N \int_{T}^{T_{4}} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s \\
& +N \int_{T_{4}}^{t} P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s+\frac{N}{P_{1}(t)} \int_{t}^{\infty} P_{1}(s) P_{2}(s) \omega\left(s,\left|z_{1}\left(h_{1}(s)\right)\right|\right) d s \tag{2.34}
\end{align*}
$$

for $t \geq T_{4}$.
We define v_{1} as follows

$$
v_{1}(t)=\sup _{T_{3}^{*} \leq s \leq t} \frac{\left|z_{1}(s)\right|}{P_{1}(s)}, \quad t \geq T_{3}^{*}
$$

The function $v_{1}(t)$ is non-decreasing, $\lim _{t \rightarrow \infty} v_{1}(t)=\infty$ and $v_{1}\left(T_{3}^{*}\right) \geq 1$. It is obvious that the right-hand side of (2.34) is nondecreasing with respect to t. Since (1.1) is sub-linear for ω we have

$$
\begin{equation*}
\omega(s, a b) \leq a \omega(s, b) \quad \text { for } a \geq 1, b>0 \tag{2.35}
\end{equation*}
$$

We may convert the inequality (2.34) to

$$
\begin{aligned}
P_{1}(t) v_{1}(t) \leq & \frac{\left|z_{1}\left(T_{5}\right)\right| P_{1}(t)}{4 P_{1}\left(T_{5}\right)}+N P_{1}(t) \int_{T_{4}}^{t} P_{1}(s) v_{1}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \\
& +N \int_{t}^{\infty} P_{1}(s) P_{2}(s) v_{1}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geq T_{5}
\end{aligned}
$$

and since

$$
\frac{\left|z_{1}\left(T_{5}\right)\right|}{P_{1}\left(T_{5}\right)} \leq v_{1}(t), \quad t \geq T_{5}
$$

we have

$$
\begin{align*}
\frac{3}{4} P_{1}(t) v_{1}(t) \leq & N P_{1}(t) \int_{T_{4}}^{t} P_{2}(s) v_{1}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \tag{2.36}\\
& +N \int_{t}^{\infty} P_{1}(s) P_{2}(s) v_{1}\left(h_{1}(s)\right) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geq T_{5}
\end{align*}
$$

Denote for $t \geq T_{3}$

$$
\widetilde{I}_{t}^{1}=\left\{s \in\left[T_{3}, \infty\right), h_{1}(s) \leq t\right\} \quad \text { and } \quad \widetilde{J}_{t}^{1}=\left\{s \in\left[T_{3}, \infty\right), h_{1}(s)>t\right\}
$$

It follows that

$$
v_{1}\left(h_{1}(s)\right) \leq v_{1}(t) \quad \text { for } s \in \widetilde{I}_{t}^{1}
$$

and

$$
P_{1}\left(h_{1}(s)\right) v_{1}\left(h_{1}(s)\right) \leq \sup _{\sigma \geq t}\left(P_{1}(\sigma) v_{1}(\sigma)\right) \quad \text { for } s \in \widetilde{J}_{t}^{1}
$$

It is obvious that $0<\sup _{\sigma \geq t}\left(P_{1}(\sigma) v_{1}(\sigma)\right)<\infty$. From (2.36), (2.31) and (2.32) we have

$$
\begin{aligned}
\frac{3}{4} P_{1}(t) v_{1}(t) \leq & N P_{1}(t) v_{1}(t)\left[\int_{\tilde{T}_{t} \cap\left[T_{4}, t\right)} P_{1}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s\right. \\
& \left.+\frac{1}{P_{1}(t)} \int_{\tilde{T}_{t} \cap[t, \infty)} P_{1}(s) P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s\right] \\
& +N \sup _{s \geq t}\left(P_{1}(s) v_{1}(s)\right)\left[P_{1}(t) \int_{\tilde{T}_{t} \cap\left[T_{4}, t\right)} \frac{P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s}{P_{1}\left(h_{1}(s)\right)}\right. \\
& \left.+\int_{\tilde{T}_{t} \cap[t, \infty)} \frac{P_{1}(s) P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s}{P_{1}\left(h_{1}(s)\right)}\right] \\
\leq & P_{1}(t) v_{1}(t) N \int_{T_{4}}^{\infty} P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s \\
& +\sup _{s \geq t}\left(P_{1}(s) v_{1}(s)\right) N \int_{T_{4}}^{\infty} \frac{P_{1}(s) P_{2}(s) \omega\left(s, P_{1}\left(h_{1}(s)\right)\right) d s}{P_{1}\left(h_{1}(s)\right)} \\
\leq & \frac{1}{4} P_{1}(t) v_{1}(t)+\frac{1}{4} \sup _{s \geq t}\left(P_{1}(s) v_{1}(s)\right), \quad t \geq T_{5} .
\end{aligned}
$$

Since it is evident that $0<\sup _{s \geq t}\left(P_{1}(s) v_{1}(s)\right)<\infty$, it implies

$$
P_{1}(t) v_{1}(t) \leq \frac{1}{2} \sup _{s \geq t}\left(P_{1}(s) v_{1}(s)\right), \quad t \geq T_{5}
$$

and there is the contradiction.
The function $\frac{\left|z_{1}(t)\right|}{P_{1}(t)}$ is bounded on $[T, \infty)$ and (2.20) holds. We will prove analogically that (2.27) holds. In the following we continue similarly to the case of the super-linear system, which completes the proof.

Theorem 2.1 is a generalization of Theorem 2.1 in [8].
Corollary 2.2. If the assumptions of Theorem 2.1 are fulfilled, $y(t) \in W$ is a solution and $\lim _{t \rightarrow \infty} z_{1}(t)=$ $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=2,3$, then

$$
\lim _{t \rightarrow \infty} \frac{y_{2}(t)}{P_{2}(t)}=\lim _{t \rightarrow \infty} \frac{z_{1}(t)}{P_{2}(t)}=\lim _{t \rightarrow \infty} \frac{y_{1}(t)}{P_{2}(t)}=0 .
$$

Example 2.3. We consider (1.1) as follows

$$
\begin{align*}
{\left[y_{1}(t)+\frac{1}{6} y_{1}\left(\frac{3 t}{2}\right)\right]^{\prime} } & =\mathrm{e}^{-t} y_{2}(t) \\
y_{2}^{\prime}(t) & =\mathrm{e}^{-t} y_{3}\left(\frac{t}{2}\right) \tag{2.37}\\
y_{3}^{\prime}(t) & =-\left(48 \mathrm{e}^{-2 t}+40 \mathrm{e}^{-6 t}\right) y_{1}\left(\frac{t}{2}\right), \quad t \geq 0
\end{align*}
$$

where $p_{1}(t)=p_{2}(t)=\mathrm{e}^{-t}, f_{2}(t)=t, f_{3}(t, v)=-\left(48 \mathrm{e}^{-2 t}+40 \mathrm{e}^{-6 t}\right) \cdot v, a(t)=\frac{1}{6}, h_{1}(t)=\frac{t}{2}$, $h_{3}(t)=\frac{t}{2}, g(t)=\frac{3 t}{2}, \omega(t, v)=\left(48 \mathrm{e}^{-2 t}+40 \mathrm{e}^{-6 t}\right) \cdot v$.

The system (2.37) is super-linear as well as sub-linear and for $t \geq 0$ has a non-oscillatory solution with components

$$
y_{1}(t)=\mathrm{e}^{-4 t}, \quad y_{2}(t)=-4 \mathrm{e}^{-3 t}-\mathrm{e}^{-5 t}, \quad y_{3}(t)=12 \mathrm{e}^{-4 t}+5 \mathrm{e}^{-8 t} .
$$

All assumptions of Theorem 2.1 are satisfied, moreover, $P_{1}(t)=\mathrm{e}^{-t}, P_{2}(t)=\mathrm{e}^{-t}$ and $Q(t)=\frac{\mathrm{e}^{-2 t}}{2}$.

Thus

$$
\lim _{t \rightarrow \infty} y_{3}(t)=0, \quad \lim _{t \rightarrow \infty} \frac{y_{2}(t)}{P_{2}(t)}=0, \quad \lim _{t \rightarrow \infty} \frac{z_{1}(t)}{P_{2}(t)}=0
$$

meaning that the case (IV) stands.

Acknowledgements

The authors gratefully acknowledge the Scientific Grant Agency (VEGA) of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences for supporting this work under Grant No. 1/1245/12.

The authors would like to thank the anonymous referees for their valuable comments.

References

[1] Z. Chen, T. Sun, Q. Wang, H. XI, Nonoscillatory solutions for system of neutral dynamic equations on time scales, Scientific World J. 2014, Art. ID 768215, 10 pp. url
[2] J. Diblík, M. Kúdelčíková, Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type, Abstr. Appl. Anal. 2011, Art. ID 754701, 16 pp. MR2739690
[3] J. Diblík, M. Ružičкová, Z. Šutá, Asymptotical convergence of the solutions of a linear differential equation with delays, Adv. Difference Equ. 2010, Art. ID 749852, 12 pp. MR2660941
[4] J. G. Dix, Oscillation of solutions to a neutral differential equation involving an n-order operator with variable coefficients and a forcing term, Differ. Equ. Dyn. Syst. 22(2014), No. 1, 15-31. MR3149172
[5] J. G. Dix, N. Misra, L. Padhy, R. Rath, Oscillatory and asymptotic behaviour of a neutral differential equation with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ. 2008, No. 19, 1-10. MR2407546
[6] B. Dorociaková, M. Kubjatková, R. Olach, Existence of positive solutions of neutral differential equations, Abstr. Appl. Anal. 2012, Art. ID 307968, 14 pp. MR2889078
[7] J. Džurina, B. Baculíková, T. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Diff. Equ. 2011, No. 23, 1-10. MR2853029
[8] Y. Kitamura, T. Kusano, Asymptotic properties of solutions of two-dimensional differential systems with deviating argument, Hiroshima Math. J. 8(1978), 305-326. MR0492742
[9] I. Mojsej, J. Ohriska, Comparison theorems for noncanonical third order nonlinear differential equations, Cent. Eur. J. Math. 5(2007), No. 1, 154-163. MR2287717
[10] Z. Šmarda, J. Rebenda, Asymptotic behaviour of a two-dimensional differential system with a finite number of nonconstant delays under the conditions of instability, Abstr. Appl. Anal. 2012, Art. ID 952601, 20 pp. MR2959744
[11] J. Rebenda, Z. Šmarda, Stability and asymptotic properties of a system of functional differential equations with nonconstant delays, Appl. Math. Comput. 219(2013), 6622-6632. MR3027830
[12] H. Šamajová, E. ŠPÁniková, J. G. Dix, Decay of non-oscillatory solutions for a system of neutral differential equations, Electron. J. Diff. Equ. 2013, No. 271, 1-11. MR3158231
[13] H. Šamajová, E. Špániková, On asymptotic behaviour of solutions to n-dimensional systems of neutral differential equations, Abstr. Appl. Anal. 2011, Art. ID 791323, 19 pp. MR2854933
[14] E. ŠpÁniková, H. Šamajová, Asymptotic properties of solutions to n-dimensional neutral differential systems, Nonlinear Anal. 71(2009), 2877-2885. MR2532814

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: helena.samajova@fstroj.uniza.sk

