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1 Introduction

We consider the system of three functional differential equations with deviating arguments[
y1(t) + a(t)y1(g(t))

]′
= p1(t)y2(t)

y′2(t) = p2(t) f2(y3(h3(t)))

y′3(t) = f3(t, y1(h1(t))), t ≥ t0 ≥ 0,

(1.1)

where the following assumptions are given:

(a) a ∈ C([t0, ∞), [0, ∞));

(b) g ∈ C([t0, ∞), R), limt→∞ g(t) = ∞;

(c) pi ∈ C([t0, ∞), [0, ∞)), pi(t) 6≡ 0 on any interval [T, ∞) ⊂ [t0, ∞),
∫ ∞

t0
pi(t) dt < ∞ for

i = 1, 2;

(d) hi ∈ C([t0, ∞), R), limt→∞ hi(t) = ∞, i = 1, 3 and h3(t) ≤ t for t ≥ t0;

(e) f2 ∈ C(R, R), | f2(u)| ≤ K|u|β for u ∈ R, constants K, β satisfy K > 0, 0 < β ≤ 1;
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(f) f3 ∈ C([t0, ∞)×R, R), | f3(t, v)| ≤ ω(t, |v|) for (t, v) ∈ [t0, ∞)×R,
ω ∈ C([t0, ∞)×R+

0 , R+
0 ), where R+

0 is the set of all nonnegative real numbers and ω(t, z)
is non-decreasing with respect to z for any t ∈ [t0, ∞).

Functional differential equations with deviating arguments and their systems have been
studied by many authors. The asymptotic behaviour of solutions to functional differential
equations and systems is studied for example in [3, 10, 11] and to equations of neutral type
in [4, 5, 7]. The classification of non-oscillatory solutions to systems of neutral differential
equations is given in [12–14] and to systems of neutral dynamic equations on time scales in
[1]. For nonlinear equations some comparison theorems were introduced in [9] and existence
of positive solutions is investigated in [2, 6].

This paper brings a generalization to results for asymptotic properties presented in [8] for
systems of three equations if one of the equations is of neutral type. The system (1.1) can be
transformed neither to third-order neutral differential equation nor to differential equation of
neutral type with quasi-derivatives.

A function y = (y1, y2, y3) is a solution to (1.1) if

1. there exists t1 ≥ t0 such that y is continuous for

t ≥ min
{

t1, inf
t≥t1

h1(t), inf
t≥t1

h3(t), inf
t≥t1

g(t)
}

;

2. functions yi(t), i = 2, 3 and z1(t), which is defined as z1(t) = y1(t) + a(t)y1(g(t)) for
t ≥ t1, are continuously differentiable on [t1, ∞);

3. y satisfies (1.1) on [t1, ∞).

The set of solutions y to (1.1) that satisfy the condition

sup
t≥T

{
3

∑
i=1
|yi(t)|

}
> 0 for any T ≥ t1

is denoted as W. A solution y ∈W is considered to be non-oscillatory if there exists a Ty ≥ t1

such that every component is different from zero for t ≥ Ty. Otherwise a solution y ∈ W is
said to be oscillatory.

2 Main results

In this section we establish conditions under which one of four possible types of asymptotic
properties holds.

The system (1.1) is super-linear [sub-linear] if ω(t,z)
z , z > 0 is non-decreasing [non-increasing]

with respect to z for any t ≥ t0.
We define the functions h∗, r∗ as

h∗(t) = min{h1(t), t}, r∗(t) = inf
s≥t

h∗(s).

For t ≥ t0 the following integrals are defined

Pi(t) =
∫ ∞

t
pi(s) ds, i = 1, 2;

Q(t) =
∫ ∞

t
p1(s)P2(s) ds.
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It is obvious that the inequality Q(t) ≤ P1(t)P2(t) holds for t ≥ t0. Functions P1(t), P2(t)
and Q(t) are non-increasing and limt→∞ Pi(t) = 0, i = 1, 2 and limt→∞ Q(t) = 0.

Theorem 2.1. We suppose that (1.1) is either

(A) a super-linear one and ∫ ∞

t0

P1(h∗(s))P2(h∗(s))ω(s, c) ds < ∞ (2.1)

for all c > 0;

or

(B) the system (1.1) is sub-linear and∫ ∞

t0

Pi(h∗(s))ω(s, cP1(h∗(s))P2(h∗(s))) ds
Pi(h1(s))

< ∞ (2.2)

for i = 1, 2 and all c > 0,

then for any non-oscillatory y ∈W, one of the following cases (I)–(IV) holds:

(I)
lim
t→∞
|z1(t)| = lim

t→∞
|y2(t)| = lim

t→∞
|y3(t)| = ∞;

(II) there exists a nonzero constant α1 that

lim
t→∞

z1(t) = α1, lim
t→∞

y2(t)P1(t) = lim
t→∞

y3(t)Q(t) = 0;

(III) there exists a nonzero constant α2 that

lim
t→∞

−z1(t)
P1(t)

= lim
t→∞

y2(t) = α2, lim
t→∞

y3(t)P2(t) = 0;

(IV) there exists a constant α3 that

lim
t→∞

y3(t) = α3, lim
t→∞

z1(t)
Q(t)

= lim
t→∞

−y2(t)
P2(t)

= f2(α3).

Proof. Let y ∈ W be a non-oscillatory solution to (1.1). Let t2 ≥ t1, such that for t ≥ t2 the
functions y1(t), y1(g(t)), y2(t), y3(t), z1(t) are of a constant sign and the inequality (2.3) holds.
From the definition of z1(t), the first equation of (1.1), (a) and (c) we conclude that z1(t) is
monotonous and fulfills

|z1(t)| ≥ |y1(t)| for t ≥ t2. (2.3)

Case (A) We suppose that (1.1) is super-linear and (2.1) holds. Let T ≥ t2. We consider T in
such a way that r∗(T) ≥ t2 and for Pi(T) hold

Pi(T) ≤ 1, i = 1, 2. (2.4)

By integrating the first equations of (1.1) from T to t we have

|z1(t)| ≤ |z1(T)|+
∫ t

T
p1(x1)|y2(x1)| dx1, t ≥ T, (2.5)

|y2(t)| ≤ |y2(T)|+
∫ t

T
p2(x2)| f2(y3(h3(x2)))| dx2, t ≥ T (2.6)
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and a combination of (2.5) and (2.6) yields

|z1(t)| ≤ |z1(T)|+ |y2(T)|
∫ t

T
p1(x1) dx1

+
∫ t

T
p1(x1)

∫ x1

T
p2(x2)| f2(y3(h3(x2)))| dx2 dx1, t ≥ T.

(2.7)

By integrating the third equation of (1.1) from T to t with using (f) and (2.3) we obtain

|y3(t)| ≤ |y3(T)|+
∫ t

T
ω(s, |z1(h1(s))|) ds, t ≥ T. (2.8)

Considering (d), (e), (2.8) and Taylor’s theorem we have

| f2(y3(h3(t)))| ≤ K|y3(h3(t))|β ≤ K
(
|y3(T)|+

∫ h3(t)

T
ω(s, |z1(h1(s))|) ds

)β

≤ M + N
∫ t

T
ω(s, |z1(h1(s))|) ds, t ≥ T > T,

(2.9)

where M = K|y3(T)|β and N = Kβ|y3(T)|β−1 and T fulfill a condition, that h3(t) ≥ T for
t ≥ T.

From (2.7) and (2.9) for z1(t) the following inequality holds

|z1(t)| ≤ |z1(T)|+ |y2(T)|
∫ t

T
p1(x1) dx1

+ M
∫ t

T
p1(x1)

∫ x1

T
p2(x2) dx2 dx1

+ N
∫ t

T
p1(x1)

∫ x1

T
p2(x2)

∫ x2

T
ω(s, |z1(h1(s))|) ds dx2 dx1, t ≥ T.

(2.10)

From (2.6) and (2.9) by changing of the order of integration we have

|y2(t)| ≤ |y2(T)|+ M
∫ t

T
p2(x2) dx2 + N

∫ t

T
ω(s, |z1(h1(s))|)P2(s) ds, t ≥ T. (2.11)

Since there exists limt→∞ |z1(t)|, there are two possibilities: either limt→∞ |z1(t)| = ∞ or
limt→∞ |z1(t)| < ∞. Let us assume the first possibility, thus

lim
t→∞
|z1(t)| = ∞. (2.12)

We will prove by contrapositive that the case (I) stands.
Let lim supt→∞ |y2(t)| < ∞, then from (2.5) we have a contradiction to (2.12).
Let lim supt→∞ |y3(t)| < ∞. Then from (2.7) and (e) we obtain a contradiction to (2.12).
Hence if limt→∞ |z1(t)| = ∞, then lim supt→∞ |y3(t)| = lim supt→∞ |y2(t)| = ∞ hold and

the case (I) stands.
Let limt→∞ |z1(t)| < ∞. The relation (2.1) implies that the function P1(t)P2(t)ω(t, c) is

integrable on [T, ∞) for any constant c > 0. We will prove that also the function p1(t)y2(t) is
integrable on [T, ∞). Because of (2.11), by changing of the order of integration we have∫ ∞

T
p1(t)|y2(t)| dt ≤ |y2(T)|

∫ ∞

T
p1(t) dt + M

∫ ∞

T
p1(t)

∫ t

T
p2(x2) dx2 dt

+ N
∫ ∞

T
P1(s)P2(s)ω(s, |z1(h1(s))|) ds.



Asymptotic character of non-oscillatory solutions 5

The first equation of (1.1) gives

z1(t) = α1 −
∫ ∞

t
p1(s)y2(s) ds, t ≥ T, (2.13)

where α1 = z1(T) +
∫ ∞

T p1(s)y2(s) ds, α1 ∈ R.
The relation (2.13) ensures that limt→∞ z1(t) = α1. From (2.11) for t ≥ T we have

P1(t)|y2(t)| ≤ P1(t)
[
|y2(T)|+ MP2(T) + N

∫ t1

T
ω(s, |z1(h1(s))|)P2(s) ds

]
+ N

∫ t

t1

ω(s, |z1(h1(s))|)P1(s)P2(s) ds.

From (2.8) for t ≥ T we have

Q(t)|y3(t)| ≤ Q(t)
[
|y3(T)|+

∫ t1

T
ω(s, |z1(h1(s))|) ds

]
+
∫ t

t1

ω(s, |z1(h1(s))|)P1(s)P2(s) ds.

The formulae P1(t)|y2(t)| and Q(t)|y3(t)| can be made arbitrarily small by choosing t1

sufficiently large and then letting t tend to ∞. Consequently

lim
t→∞

P1(t)y2(t) = 0 = lim
t→∞

Q(t)y3(t)

and if α1 6= 0 the case (II) holds.
Let α1 = 0. The super-linearity of (1.1) and (2.1), (2.4) imply that the functions

P1(h1(t))P2(t)ω(t, 1), P1(t)P2(t)ω(t, 1), P2(t)ω(t, cP1(h1(t)))

are integrable on [T, ∞) for any c > 0.
We can choose T1 ≥ T in such a way that not only T∗1 = r∗(T1) ≥ T but also

|z1(h1(t))| ≤ 1, t ≥ T1, (2.14)

N
∫ ∞

T1

P1(h1(s))P2(s)ω(s, 1) ds ≤ 1
3

, (2.15)

N
∫ ∞

T1

P1(s)P2(s)ω(s, 1)) ds ≤ 1
3

. (2.16)

Combining (2.11), (2.13) and by changing of the order of integration we get

|z1(t)| ≤ P1(t)
[
|y2(T)|+ MP2(T) + N

∫ t

T
P2(s)ω(s, |z1(h1(s))|) ds

]
+ N

∫ ∞

t
P1(s)P2(s)ω(s, |z1(h1(s))|)ds, t ≥ T.

(2.17)

The inequality above may be rearranged to the form

|z1(t)|
P1(t)

≤ K1 + N
∫ t

T1

P2(s)ω(s, |z1(h1(s))|) ds

+
N

P1(t)

∫ ∞

t
P1(s)P2(s)ω(s, |z1(h1(s))|) ds, t ≥ T1,

(2.18)
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where

K1 ≥ |y2(T)|+ MP2(T) + N
∫ T1

T
P2(s)ω(s, |z1(h1(s))|) ds

is a positive constant.
Denote for t ≥ T1 two types of sets

I1
t = {s ∈ [T1, ∞), h1(s) ≤ t} and J1

t = {s ∈ [T1, ∞), h1(s) > t}.

Then for s ∈ I1
t or s ∈ J1

t respectively hold

|z1(h1(s))|
P1(h1(s))

≤ sup
T∗1≤σ≤t

|z1(σ)|
P1(σ)

for s ∈ I1
t

and since |z1(t)| is a non-increasing function on [t2, ∞), we obtain

|z1(h1(s))| ≤ |z1(t)| for s ∈ J1
t .

The super-linearity of (1.1) implies

ω(s, ab) ≤ aω(s, b) for 0 < a ≤ 1, b > 0. (2.19)

The inequality (2.18) may be modified based on (2.14)–(2.16) to

|z1(t)|
P1(t)

≤ K1 + N sup
T∗1≤s≤t

|z1(s)|
P1(s)

[∫
I1
t ∩[T1,t)

P1(h1(s))P2(s)ω(s, 1) ds

+
1

P1(t)

∫
I1
t ∩[t,∞)

P1(h1(s))P1(s)P2(s)ω(s, 1) ds
]

+ N
|z1(t)|
P1(t)

[
P1(t)

∫
J1
t ∩[T1,t)

P2(s)ω(s, 1) ds +
∫

J1
t ∩[t,∞)

P1(s)P2(s)ω(s, 1) ds
]

≤ K1 + sup
T∗1≤s≤t

|z1(s)|
P1(s)

N
∫ ∞

T1

P1(h1(s))P2(s)ω(s, 1) ds

+
|z1(t)|
P1(t)

N
∫ ∞

T1

P1(s)P2(s)ω(s, 1) ds

≤ K1 +
1
3

sup
T∗1≤s≤t

|z1(s)|
P1(s)

+
1
3
|z1(t)|
P1(t)

for t ≥ T1,

and
|z1(t)|
P1(t)

≤ K1 +
1
2

sup
T1≤s≤t

|z1(s)|
P1(s)

for t ≥ T1,

where

K1 =
3
2

K1 +
1
2

sup
T∗1≤s≤T1

|z1(s)|
P1(s)

.

Thus we have the estimation

|z1(t)|
P1(t)

≤ sup
T1≤s≤t

|z1(s)|
P1(s)

≤ 2K1 for t ≥ T1.

The inequality above leads to

|z1(h1(t))| ≤ K∗1 P1(h1(t)) for t ≥ T, (2.20)
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where K∗1 is an appropriate positive constant.
The function p2(t) f2(y3(h3(t))) is integrable on [T, ∞) which means that from (2.9) and

(2.20) by changing of the order of integration we have∫ ∞

T
p2(t)| f2(y3(h3(t)))| dt ≤ M

∫ ∞

T
p2(t) dt + N

∫ ∞

T
P2(s)ω(s, K∗1 P1(h1(s))) ds.

Then for y2(t) the equality

y2(t) = α2 −
∫ ∞

t
p2(s) f2(y3(h3(s))) ds, t ≥ T, (2.21)

holds, where

α2 = y2(T) +
∫ ∞

T
p2(s) f2(y3(h3(s))) ds.

Since from (2.21) we have that limt→∞ y2(t) = α2, thus (2.13) (where α1 = 0) by L’Hôpital’s
rule implies

lim
t→∞

z1(t)
P1(t)

= −α2.

The condition (f), and (2.8), (2.20) give

P2(t)|y3(t)| ≤ P2(t)
[
|y3(T)|+

∫ t1

T
ω(s, K∗1 P1(h1(s))) ds

]
+
∫ t

t1

P2(s)ω(s, K∗1 P1(h1(s))) ds, t ≥ T.

The formula P2(t)|y3(t)| can be made arbitrarily small by choosing t1 sufficiently large and
then letting t tend to ∞. Consequently limt→∞ P2(t)|y3(t)| = 0. If α2 6= 0 the case (III) comes
into being.

Let α1 = α2 = 0.
The super-linearity of (1.1), (2.1) and (2.4) imply that the functions P2(h1(t))ω(t, cP1(h1(t))),

P2(t)ω(t, cP1(h1(t))) and ω(t, cP1(h1(t))P2(h1(t))) are integrable on the interval [T, ∞) for any
constant c > 0.

We choose T2 in such a manner that T∗2 = r∗(T2) ≥ T and moreover,

|z1(t)|
P1(t)

≤ 1, t ≥ T2, (2.22)

N
∫ ∞

T2

P2(h1(s))ω(s, P1(h1(s))) ds ≤ 1
3

, (2.23)

N
∫ ∞

T2

P2(s)ω(s, P1(h1(s))) ds ≤ 1
3

(2.24)

are fulfilled.
From (2.13) (with α1 = 0), (2.21) (with α2 = 0) and (2.9) by changing of the order of

integration we have

|z1(t)| ≤ P1(t)P2(t)
[

M + N
∫ t

T
ω(s, |z1(h1(s))|) ds

]
+ NP1(t)

∫ ∞

t
P2(s)ω(s, |z1(h1(s))|) ds, t ≥ T.
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The inequality above may be rearranged to

|z1(t)|
P1(t)

≤ P2(t)
[

M + N
∫ t

T
ω(s, |z1(h1(s))|) ds

]
+ N

∫ ∞

t
P2(s)ω(s, |z1(h1(s))|) ds, t ≥ T.

(2.25)

We define a function u(t) in the following way u(t) = sups≥t
|z1(s)|
P1(s)

. It is evident, that u(t) is
non-increasing and limt→∞ u(t) = 0. Since the right-hand side of (2.25) is non-increasing with
respect to t we have

u(t)
P2(t)

≤ K2 + N
∫ t

T2

ω(s, |z1(h1(s))|) ds

+
N

P2(t)

∫ ∞

t
P2(s)ω(s, |z1(h1(s))|) ds, t ≥ T2,

(2.26)

where K2 ≥ M + N
∫ T2

T ω(s, |z1(h1(s))|) ds is a positive constant.
Denote for t ≥ T2

I2
t = {s ∈ [T2, ∞); h1(s) ≤ t} and J2

t = {s ∈ [T2, ∞); h1(s) > t}.

Then we have
u(h1(s))
P2(h1(s))

≤ sup
T∗2≤σ≤t

u(σ)
P2(σ)

for s ∈ I2
t

and
u(h1(s)) ≤ u(t) for s ∈ J2

t .

The super-linearity of system given by (2.19) implies that we may rearrange (2.26) on the basis
of (2.22)–(2.24) to

u(t)
P2(t)

≤ K2 + N sup
T∗2≤s≤t

u(s)
P2(s)

[∫
I2
t ∩[T2,t)

P2(h1(s))ω(s, P1(h1(s))) ds

+
1

P2(t)

∫
I2
t ∩[t,∞)

P2(s)P2(h1(s))ω(s, P1(h1(s))) ds
]

+ N
u(t)
P2(t)

[∫
J2
t ∩[T2,t)

P2(s)ω(s, P1(h1(s))) ds +
∫

J2
t ∩[t,∞)

P2(s)ω(s, P1(h1(s))) ds
]

≤ K2 + N sup
T∗2≤s≤t

u(s)
P2(s)

∫ ∞

T2

P2(h1(s))ω(s, P1(h1(s))) ds

+
u(t)
P2(t)

N
∫ ∞

T2

P2(s)ω(s, P1(h1(s))) ds

≤ K2 +
1
3

sup
T∗2≤s≤t

u(s)
P2(s)

+
1
3

u(t)
P2(t)

, t ≥ T2

and we have
u(t)
P2(t)

≤ K2 +
1
2

sup
T2≤s≤t

u(s)
P2(s)

for t ≥ T2,

where

K2 =
3
2

K2 +
1
2

sup
T∗2≤s≤T2

u(s)
P2(s)

.
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The initial estimation can be refined

|z1(t)|
P1(t)P2(t)

≤ u(t)
P2(t)

≤ sup
T2≤s≤t

u(s)
P2(s)

≤ 2K2 for t ≥ T2.

The inequality above gives

|z1(h1(t))| ≤ K∗2 P1(h1(t))P2(h1(t)) for t ≥ T, (2.27)

where K∗2 is an adequate positive constant.
Since the function f3(t, y1(h1(t))) is integrable on [T, ∞) because of (2.3), (2.27) and (f) we

get ∫ ∞

T
| f3(t, y1(h1(t)))| dt ≤

∫ ∞

T
ω(t, |z1(h1(t))|) dt

≤
∫ ∞

T
ω(t, K∗2 P1(h1(t))P2(h1(t))) dt.

Integrating the third equation of (1.1) we gain

y3(t) = α3 −
∫ ∞

t
f3(s, y1(h1(s))) ds, t ≥ T, (2.28)

where α3 = y3(T) +
∫ ∞

T f3(s, y1(h1(s))) ds.
The relation (2.28) shows that limt→∞ y3(t) = α3 and from (2.13) and (2.21) we obtain (by

L’Hôpital’s rule)

lim
t→∞

z1(t)
Q(t)

= lim
t→∞

∫ ∞
t p1(x1)

∫ ∞
x1

p2(x2) f2(y3(h3(x2))) dx2 dx1∫ ∞
t p1(x1)

∫ ∞
x1

p2(x2) dx2 dx1
= f2(α3),

lim
t→∞

y2(t)
P2(t)

= lim
t→∞

−
∫ ∞

t p2(s) f2(y3(h3(s))) ds∫ ∞
t p2(s) ds

= − f2(α3).

The case (IV) holds. The proof of case (A) of Theorem 2.1 is completed.
Case (B)
We suppose that (1.1) is sub-linear and (2.2) holds. This implies that the function P1(t)P2(t)ω(t, c)
is integrable on [T, ∞).

The cases (I) and (II) we prove similarly to the previous case (A). Let α1 = 0. The relation
(2.2) and the sub-linearity of (1.1) imply that the functions P2(t)ω(t, cP1(h1(t))) and

P1(t)P2(t)ω(t, P1(h1(t)))
P1(h1(t))

are integrable on [T, ∞) for any c > 0.
We will prove that the function |z1(t)|

P1(t)
is bounded on [T, ∞). For the sake of contradiction

we estimate T3, T4 and T5 in such a manner that T < T3 < T4 < T5 where T∗3 = r∗(T3) ≥ T
and moreover we have

|z1(T∗3 )| ≥ P1(T∗3 ), (2.29)

sup
T∗3≤s≤t

|z1(s)|
P1(s)

= sup
T4≤s≤t

|z1(s)|
P1(s)

, t ≥ T4, (2.30)

N
∫ ∞

T4

P2(s)ω(s, P1(h1(s))) ds ≤ 1
4

, (2.31)
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N
∫ ∞

T4

P1(s)P2(s)ω(s, P1(h1(s))) ds
P1(h1(s))

≤ 1
4

, (2.32)

|y2(T)|+ MP2(T) + N
∫ T4

T
P2(s)ω(s, |z1(h1(s))|) ds ≤ |z1(T5)|

4P1(T5)
. (2.33)

We rearrange the inequality (2.17) to the form

|z1(t)|
P1(t)

≤ |y2(T)|+ MP2(T) + N
∫ T4

T
P2(s)ω(s, |z1(h1(s))|) ds

+ N
∫ t

T4

P2(s)ω(s, |z1(h1(s))|) ds +
N

P1(t)

∫ ∞

t
P1(s)P2(s)ω(s, |z1(h1(s))|) ds

(2.34)

for t ≥ T4.
We define v1 as follows

v1(t) = sup
T∗3≤s≤t

|z1(s)|
P1(s)

, t ≥ T∗3 .

The function v1(t) is non-decreasing, limt→∞ v1(t) = ∞ and v1(T∗3 ) ≥ 1. It is obvious that
the right-hand side of (2.34) is nondecreasing with respect to t. Since (1.1) is sub-linear for ω

we have
ω(s, ab) ≤ aω(s, b) for a ≥ 1, b > 0. (2.35)

We may convert the inequality (2.34) to

P1(t)v1(t) ≤
|z1(T5)|P1(t)

4P1(T5)
+ NP1(t)

∫ t

T4

P1(s)v1(h1(s))ω(s, P1(h1(s))) ds

+ N
∫ ∞

t
P1(s)P2(s)v1(h1(s))ω(s, P1(h1(s))) ds, t ≥ T5

and since
|z1(T5)|
P1(T5)

≤ v1(t), t ≥ T5

we have

3
4

P1(t)v1(t) ≤ NP1(t)
∫ t

T4

P2(s)v1(h1(s))ω(s, P1(h1(s))) ds

+ N
∫ ∞

t
P1(s)P2(s)v1(h1(s))ω(s, P1(h1(s))) ds, t ≥ T5.

(2.36)

Denote for t ≥ T3

Ĩ1
t = {s ∈ [T3, ∞), h1(s) ≤ t} and J̃1

t = {s ∈ [T3, ∞), h1(s) > t}.

It follows that
v1(h1(s)) ≤ v1(t) for s ∈ Ĩ1

t

and
P1(h1(s))v1(h1(s)) ≤ sup

σ≥t
(P1(σ)v1(σ)) for s ∈ J̃1

t .

It is obvious that 0 < supσ≥t(P1(σ)v1(σ)) < ∞. From (2.36), (2.31) and (2.32) we have
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3
4

P1(t)v1(t) ≤ NP1(t)v1(t)
[∫

Ĩ1
t ∩[T4,t)

P1(s)ω(s, P1(h1(s))) ds

+
1

P1(t)

∫
J̃1
t ∩[t,∞)

P1(s)P2(s)ω(s, P1(h1(s))) ds
]

+ N sup
s≥t

(P1(s)v1(s))
[

P1(t)
∫

J̃1
t ∩[T4,t)

P2(s)ω(s, P1(h1(s))) ds
P1(h1(s))

+
∫

J̃1
t ∩[t,∞)

P1(s)P2(s)ω(s, P1(h1(s))) ds
P1(h1(s))

]
≤ P1(t)v1(t)N

∫ ∞

T4

P2(s)ω(s, P1(h1(s))) ds

+ sup
s≥t

(P1(s)v1(s)) N
∫ ∞

T4

P1(s)P2(s)ω(s, P1(h1(s))) ds
P1(h1(s))

≤ 1
4

P1(t)v1(t) +
1
4

sup
s≥t

(P1(s)v1(s)), t ≥ T5.

Since it is evident that 0 < sups≥t(P1(s)v1(s)) < ∞, it implies

P1(t)v1(t) ≤
1
2

sup
s≥t

(P1(s)v1(s)) , t ≥ T5

and there is the contradiction.
The function |z1(t)|

P1(t)
is bounded on [T, ∞) and (2.20) holds. We will prove analogically that

(2.27) holds. In the following we continue similarly to the case of the super-linear system,
which completes the proof.

Theorem 2.1 is a generalization of Theorem 2.1 in [8].

Corollary 2.2. If the assumptions of Theorem 2.1 are fulfilled, y(t) ∈W is a solution and limt→∞ z1(t) =
limt→∞ yi(t) = 0, i = 2, 3, then

lim
t→∞

y2(t)
P2(t)

= lim
t→∞

z1(t)
P2(t)

= lim
t→∞

y1(t)
P2(t)

= 0.

Example 2.3. We consider (1.1) as follows[
y1(t) +

1
6

y1

(
3t
2

)]′
= e−ty2(t)

y′2(t) = e−ty3

(
t
2

)
y′3(t) = −

(
48e−2t + 40e−6t) y1

(
t
2

)
, t ≥ 0,

(2.37)

where p1(t) = p2(t) = e−t, f2(t) = t, f3(t, v) = −(48e−2t + 40e−6t) · v, a(t) = 1
6 , h1(t) = t

2 ,
h3(t) = t

2 , g(t) = 3t
2 , ω(t, v) = (48e−2t + 40e−6t) · v.

The system (2.37) is super-linear as well as sub-linear and for t ≥ 0 has a non-oscillatory
solution with components

y1(t) = e−4t, y2(t) = −4e−3t − e−5t, y3(t) = 12e−4t + 5e−8t.
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All assumptions of Theorem 2.1 are satisfied, moreover, P1(t) = e−t, P2(t) = e−t and
Q(t) = e−2t

2 .
Thus

lim
t→∞

y3(t) = 0, lim
t→∞

y2(t)
P2(t)

= 0, lim
t→∞

z1(t)
P2(t)

= 0,

meaning that the case (IV) stands.
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