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Abstract. In this paper, we are concerned with the multiplicity of nontrivial radial
solutions for the following elliptic equation{

−∆u + V(x)u = −λQ(x)|u|q−2u + Q(x) f (u), x ∈ RN ,
u(x)→ 0, as |x| → +∞,

(P)λ

where 1 < q < 2, λ ∈ R+, N ≥ 3, V and Q are radial positive functions, which can be
vanishing or coercive at infinity, f is asymptotically linear or superlinear at infinity.
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1 Introduction and main results

In this paper, we deal with the multiplicity of nontrivial radial solutions for the following
elliptic equation {

−∆u + V(x)u = −λQ(x)|u|q−2u + Q(x) f (u), x ∈ RN ,

u(x)→ 0, as |x| → +∞,
(P)λ

where 1 < q < 2, λ ∈ R+, N ≥ 3, V and Q are radial positive functions, which can be
vanishing or coercive at infinity.

When Ω is a smooth bounded domain in RN , the problem{
−∆u = ±λ|u|q−2u + f (x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(P′±)λ

where 1 < q < 2, λ > 0, N ≥ 3, has been widely studied in the literature. It plays a
central role in modern mathematical sciences, in the theory of heat conduction in electrically
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conductive materials, in the study of non-Newtonian fluids. However, it is not possible to
give here a complete bibliography. Here we just list some representative results. In the case
f is superlinear in u near infinity, problem (P′+)λ is the famous concave-convex problem, after
the celebrated works [2, 6], this kind of problem has been drawn much attention. In the case
f is linear in u, in [12], at least two nonnegative solutions have been got for a more general
question {

−∆u = h(x)uq + f (x, u), x ∈ Ω,

0 ≤ u ∈ H1
0(Ω), 0 < q < 1,

where the function h ∈ L∞(Ω) satisfies some additional conditions. For problem (P′−)λ, in
the special case: f (u) = au + |u|p, where 2 < p < 2N

N−2 , one nonnegative solution for any
a ∈ R and λ > 0 was found in [15] via the mountain pass theorem. Several papers have also
been devoted to the study of nonlinearities with indefinite sign, for example [9, 20] and the
references therein.

When Ω = RN , there are a large number of papers devoted to the following equation,

− ∆u + V(x)u = f (x, u), with u ∈W1,2(RN). (Q)

So far, in almost all the results concerning equation (Q), the nonlinear function f is assumed
to be globally superlinear, that is to say, lim|u|→0

f (x,u)
u = 0 and there exists θ > 2 such that

0 < θF(x, u) ≤ u f (x, u) for all (x, u) ∈ RN × (R\{0}), where F(x, u) =
∫ u

0 f (x, t)dt. The case
in which V(x)→ +∞, |x| → ∞ and f is globally superlinear was firstly studied by Rabinowitz
in [16]. The assumptions in [16] ensure that the associated functional of the equation satisfies
the Palais–Smale condition, this fact was observed in [4, 5] where the results in [16] were
generalized. For a radially symmetric Schrödinger equation with an asymptotically linear
term, one radial solution has been obtained in [17, 25] by Stuart and Zhou and their results
were generalized to more general situations in [8, 10, 11, 13].

Since the class Sobolev embedding is W1,2(RN) ↪→ Lp(RN), p ∈ (2, 2N
N−2 ), we cannot study

the sublinear problems in W1,2(RN) via variational methods directly. In order to overcome
this obstacle, a regular way is to add some restrictions on potentials V and Q. For example
in [14], the authors obtained the existence of infinitely many nodal solutions for problem (Q),
where V ∈ C(RN , R), V(x) ≥ 1,

∫
RN

1
V(x)dx < +∞, the nonlinearity f is symmetric in the

sense of being odd in u, and may involve a combination of concave and convex terms. There
are also some other results about the concave and convex problem on RN , such as [7,21,23,24]
and the references therein. However, to the best of our knowledge there is few result about
problem (P)λ with both sublinear terms and asymptotically linear terms.

Recently, in [18], the authors established a weighted Sobolev type embedding of radially
symmetric functions which provides a basic tool to study quasilinear elliptic equations with
sublinear nonlinearities. Motivated by the works of [18], we consider (P)λ with more general
potentials and nonlinearities. In this paper, we assume that

(V) V ∈ C
(
RN , (0,+∞)

)
is radially symmetric and there exists a1 ∈ R such that

lim inf
|x|→+∞

V(x)
|x|a1

> 0;

(Q) Q ∈ C
(
RN , (0,+∞)

)
is radially symmetric and there exists a2 ∈ R such that

lim sup
|x|→+∞

Q(x)
|x|a2

< ∞.
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It is clear that the indexes a1 and a2 describe the behaviors of V and Q near infinity. On a1, a2,
we assume that

(A1) a2 ≥
2(N − 1) + a1

2
− N,

N − 2
2
− N ≤ a2 ≤ −2;

(A2) a2 <
2(N − 1) + a1

4
− N,

N − 2
2
− N ≤ a2 ≤ −2 ;

(A3) a1 ≤ −2,
N − 2

2
− N < a2 <

2(N − 1) + a1

2
− N;

(A4) a2 ≤
N − 2

2
− N,

2(N − 1) + a1

4
− N ≤ a2 <

2(N − 1) + a1

2
− N;

(A5) a1 ≥ −2,
2(N − 1) + a1

4
− N ≤ a2 <

2(N − 1) + a1

2
− N.

According to the indexes a1, a2, we define the bottom index 2∗,

2∗ =


2(a2 + N)

N − 2
, if (a1, a2) ∈ Ai, i = 1, 2, 3;

4(a2 + N)

2(N − 1) + a1
, if (a1, a2) ∈ Ai, i = 4, 5.

Let C∞
0 (RN) denote the collection of smooth functions with compact support and

C∞
0,r(R

N) :=
{

u ∈ C∞
0 (RN) | u is radial

}
.

Denote by D1,2
r (RN) the completion of C∞

0,r(R
N) under the norm

‖u‖D1,2 =

(∫
RN
|∇u(x)|2 dx

) 1
2

.

Define

W1,2
r (RN ; V) :=

{
u ∈ D1,2

r (RN)
∣∣∣ ∫

RN
V(x)|u(x)|2 dx < ∞

}
,

which is a Hilbert space [1, 19] equipped with the norm

‖u‖ =
(∫

RN
|∇u(x)|2 + V(x)|u(x)|2 dx

) 1
2

.

Let

Lp(RN ; Q) :=
{

u : RN 7→ R

∣∣∣ u is Lebesgue measurabe,
∫

RN
Q(x)|u(x)|pdx < ∞

}
,

which is a Banach space equipped with the norm

‖u‖Lp(RN ;Q) =

(∫
RN

Q(x)|u(x)|pdx
) 1

p

.

Following [18, Theorem 1.2], under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, it
holds that the embedding W1,2

r (RN ; V) ↪→ Lp(RN ; Q) is compact for p ∈ (2∗, 2N
N−2 ). We remark

that the index 2∗ < 2 by (Ai), i = 1, . . . , 5, so it is possible to study (P)λ with sublinear
nonlinearities. We make the following assumptions on f :
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( f1) f ∈ C(R, R);

( f2) there exists a positive constant C, such that | f (u)| ≤ C(1 + |u|p−1), 2 < p < 2∗ := 2N
N−2 ;

( f3) there exist one small positive constant r0 and another positive constant C′, such that
| f (u)| ≤ C′|u|, for |u| ≤ r0;

( f4) lim
|u|→∞

2F(u)
|u|2 = b.

Since under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, it holds that the embedding
W1,2

r (RN ; V) ↪→ L2(RN ; Q) is compact, the eigenvalue problem{
−∆u + V(x)u = µQ(x)u, x ∈ RN ,

u(x)→ 0, as |x| → +∞,
(P)µ

has the eigenvalue sequence

0 < µ1 < µ2 ≤ µ3 ≤ · · · → +∞.

Similar to the eigenvalue problem in bounded domain, µ1 > 0 is simple, isolated and has an
associated eigenfunction φ1 which is positive in RN .

Our main results are the following.

Theorem 1.1. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies ( f1), ( f3) and
( f4) with µ1 < b, (P)λ has at least two nontrivial solutions.

Theorem 1.2. Let us assume that conditions (V), (Q) and (Ai), i = 1, . . . , 5 hold, and that f satisfies
( f1) and ( f4) with µk+1 < b < +∞ for some k ∈N, moreover,

( f3)′ F(u) ≥ µm

2
u2, u ∈ R, lim sup

u→0

2F(u)
u2 < µm+1, for some m ∈N, m ≤ k;

( f5) lim
|u|→∞

H(u) = +∞, where H(u) =
1
2

f (u)u− F(u) ≥ 0, u ∈ R, F(u) =
∫ u

0
f (s)ds.

Then, there exists λ∗ > 0, such that for λ ∈ (0, λ∗), (P)λ has at least three nontrivial solutions.

In the case b = +∞, we establish the following version of Theorem 1.2.

Theorem 1.3. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies ( f1), ( f2) and

( f4)
′ lim
|u|→+∞

F(u)
|u|2 = +∞;

( f6) there exists θ ≥ 1, such that θH(u) ≥ H(su), (s, u) ∈ [0, 1]×R. Moreover, F(u) ≥ µm

2
u2,

u ∈ R, lim sup
u→0

F(u)
u2 <

1
2

µm+1, for some m ∈N.

Then, there exists λ∗∗ > 0, such that for λ ∈ (0, λ∗∗), (P)λ has at least three nontrivial solutions.

Remark 1.4. In Theorem 1.1, f may be superlinear or asymptotically linear near zero, we can
get two nontrivial solutions by the mountain pass theorem and the truncation technique. In
Theorem 1.2 and 1.3, in order to guarantee the functional associated to problem (P)λ enjoys
linking structure, f has to satisfy some stricter growth condition near zero.
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Remark 1.5. In Theorems 1.2 and 1.3, we can get three nontrivial solutions: two mountain pass
solutions and one linking solution. We can distinguish them by choosing special “paths”.

Remark 1.6. As we have known, there are few results about problems on RN with both
sublinear and asymptotically linear nonlinearities at the same time.

The paper is organized as follows. In Section 2, we give some preliminary results. The
proof of our main results will be given in Section 3.

2 Preliminary

In this section we give some preliminaries that will be used to prove the main results of this
paper. We begin with a special case of results on Sobolev embedding which is due to [18].

Lemma 2.1 ([18]). Let (V), (Q), (Ai), i = 1, . . . , 5 be satisfied, the Sobolev space W1,2
r (RN ; V) is

compactly embedded in Lp(RN ; Q), for any p such that 2∗ < p < 2N
N−2 .

For u ∈W1,2
r (RN ; V), we denote

Iλ(u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u(x)|q dx−
∫

RN
Q(x)F(u(x)) dx, (2.1)

I±λ (u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u±(x)|q dx−
∫

RN
Q(x)F(u±(x)) dx, (2.2)

where u+ = max{u, 0}, u− = min{u, 0}, then under the conditions ( f1)–( f3), by (2.1) and
(2.2), Iλ and I±λ ∈ C1(W1,2

r (RN ; V), R).
Recall that a sequence {un} is a (PS)c sequence for a functional I, if

I(un)→ c, I′(un)→ 0, as n→ ∞.

a sequence {un} is a (C)c sequence for a functional I, if

I(un)→ c, (1 + ‖un‖)I′(un)→ 0, as n→ ∞.

Definition 2.2. Assume X is a Banach space, I ∈ C1(X, R), we say that I satisfies the (PS)c con-
dition, if every (PS)c sequence {un} has a convergent subsequence. I satisfies (PS) condition if
I satisfies (PS)c at any c ∈ R.

Definition 2.3. Assume X is a Banach space, I ∈ C1(X, R), we say that I satisfies the (C)c

condition, if every (C)c sequence {un} has a convergent subsequence. I satisfies (C) condition
if I satisfies (C)c at any c ∈ R.

Lemma 2.4 (Mountain pass theorem, Ambrosetti–Rabinowitz, 1973, [22]). Let X be a Banach
space, I ∈ C1(X, R), e ∈ X and r > 0 be such that ‖e‖ > r and

b := inf
‖u‖=r

I(u) > I(0) ≥ I(e).

If I satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

Γ := {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = e}.

Then c is a critical value of I.
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Lemma 2.5 (Linking theorem, Rabinowitz, 1978, [22]). Let X = Y ⊕ Z be a Banach space with
dim Y < ∞. Let R > r > 0 and z ∈ Z be such that ‖z‖ = r. Define

M := {u = y + tz | ‖u‖ ≤ R, t ≥ 0, y ∈ Y},
M0 := {u = y + tz | y ∈ Y, ‖u‖ = R and t ≥ 0 or ‖u‖ ≤ R and t = 0},
N := {u ∈ Z | ‖u‖ = r}.

Let I ∈ C1(X, R) be such that
d := inf

N
I > a := max

M0
I.

If I satisfies the (PS)c condition with

c := inf
γ∈Γ

max
u∈M

I(γ(u)),

Γ := {γ ∈ C(M, X) | γ|M0 = id}.

Then c is a critical value of I.

It is well known that the above two minimax theorems are still valid under (C)c condition.
In our paper, we denote X := W1,2

r (RN ; V), C denotes various positive constants.

Lemma 2.6. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies ( f1)–( f3), then
for given λ > 0, there exist ρ1, β1 > 0, such that

inf
u∈X, ‖u‖=ρ1

I+λ (u) ≥ β1 > 0. (2.3)

Proof. By ( f1)–( f3), there exists c > 0, such that |F(u)| ≤ c(|u|2 + |u|p). Then,

I+λ (u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u+(x)|q dx−
∫

RN
Q(x)F(u+(x)) dx

≥ 1
2
‖u‖2 − c

∫
RN

Q(x)|u+(x)|2 dx− c
∫

RN
Q(x)|u(x)|p dx +

λ

q

∫
RN

Q(x)|u+(x)|q dx

≥ 1
2
‖u‖2 − c

∫
RN

Q(x)|u+(x)|2 dx− c′‖u‖p +
λ

q

∫
RN

Q(x)|u+(x)|q dx.

Hence, for ‖u‖ small enough

I+λ (u) ≥ 1
3
‖u‖2 − c

∫
RN

Q(x)|u+(x)|2 dx +
λ

q

∫
RN

Q(x)|u+(x)|q dx. (2.4)

Then, we can choose i ∈ N, such that c ∈
( µi

4 , µi+1
4

)
. Let Xj := span{φj}, j ∈ N, and

Gi := X1 ⊕ X2 ⊕ · · · ⊕ Xi, where φj is the eigenfunction associated to the eigenvalue µj and
⊕ means the orthogonal sum of the subspace. We note that X := Gi ⊕ G⊥i , thus, u+ can be
decomposed as u+ = v + w, where v ∈ Gi, w ∈ G⊥i . Observe that for v ∈ Gi, there holds

‖v‖2 ≥ µ1

∫
RN

Q(x)v2 dx,

and for w ∈ G⊥i , there holds

‖w‖2 ≥ µi+1

∫
RN

Q(x)w2 dx.
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Therefore, (2.4) implies that

I+λ (u) ≥ 1
12
‖u‖2 +

1
4

(
1− 4c

µi+1

)
‖w‖2 − 1

4

(
4c
µ1
− 1
)
‖v‖2 +

λ

q

∫
RN

Q(x)|u+(x)|q dx

=:
1
12
‖u‖2 + ξ‖w‖2 − η‖v‖2 +

λ

q

∫
RN

Q(x)|u+(x)|q dx.
(2.5)

It suffices to show that there exists ρ1 > 0 small enough, such that for 0 < ‖u‖ ≤ ρ1,

I+λ1(u) := ξ‖w‖2 − η‖v‖2 +
λ

q

∫
RN

Q(x)|u+(x)|q dx ≥ 0. (2.6)

Seeking a contradiction, we suppose that there exist un 6= 0 satisfying ‖un‖ → 0 as n → ∞,
and I+λ1(un) ≤ 0. Decompose u+

n = vn + wn, where vn ∈ Gi, wn ∈ G⊥i . We have

I+λ1(un) = ξ‖wn‖2 − η‖vn‖2 +
λ

q

∫
RN

Q(x)|u+
n (x)|q dx < 0. (2.7)

Then u+
n 6= 0, in X. Let zn = u+

n
‖u+

n ‖
, up to a subsequence, we get that

zn ⇀ z, as n→ ∞, in X,

zn → z, as n→ ∞, in Ls(RN ; Q), 2∗ < s <
2N

N − 2
,

zn(x)→ z(x), as n→ ∞, a.e. x ∈ RN .

Dividing both sides of (2.7) by ‖u+
n ‖q,

ξ‖wn‖2 − η‖vn‖2

‖u+
n ‖2

‖u+
n ‖2−q +

λ

q

∫
RN

Q(x)|zn(x)|q dx ≤ 0.

Let n → ∞, there holds
∫

RN Q(x)|z(x)|q dx ≤ 0, in view of ‖u+
n ‖ → 0, as n → ∞. Thus,

z(x) = 0, a.e. x ∈ RN . Then, we have

‖vn‖2

‖u+
n ‖2
≤

C‖vn‖2
L2(RN ;Q)

‖u+
n ‖2

≤ C‖zn‖2
L2(RN ;Q) → 0, as n→ ∞. (2.8)

Using the equivalence of all norms on the finite dimensional space, choosing n sufficient large,
we obtain that

I+λ1(un) = ξ‖wn‖2 − η‖vn‖2 +
λ

q

∫
RN

Q(x)|u+
n (x)|q dx

≥ ξ‖u+
n ‖2 − (ξ + η)‖vn‖2

=

[
ξ − (ξ + η)

‖vn‖2

‖u+
n ‖2

]
‖u+

n ‖2,

(2.9)

in view of (2.8), we get a contradiction from (2.9). Therefore, from (2.5) and (2.6) we can
choose ρ1 > 0 small enough such that for ‖u‖ = ρ1,

I+λ (u) ≥ 1
12
‖u‖2 + I+λ1(u) ≥

1
12

ρ2
1 =: β1 > 0.

Therefore, (2.3) is true.
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Using a similar argument as in Lemma 2.6, we have the following result.

Lemma 2.7. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies ( f1)–( f3), then
for given λ > 0, there exist ρ2, β2 > 0, such that

inf
u∈X, ‖u‖=ρ2

I−λ (u) ≥ β2 > 0.

Remark 2.8. In fact, for any λ > 0, 0 is a local minimizer of I±λ . In the bounded domain,
it is easy to obtain this result by the fact that the local H1

0(Ω)-minimizer is also the local
C1

0(Ω)-minimizer (see [3]).

3 Proof of main results

Proof of Theorem 1.1. It is easy to see that I+λ (0) = 0. We note that ( f1) and ( f4) with µ1 < b <

+∞ imply ( f2). Then, from Lemma 2.6, given λ > 0, there exist ρ1 > 0, β1 > 0, such that

inf
u∈X, ‖u‖=ρ1

I+λ (u) ≥ β1 > 0.

On the other hand, ( f1) and ( f4) imply that

lim
|u|→+∞

2F(u)
|u|2 = b > µ1. (3.1)

Thus, choosing u = φ1,

I+λ (tφ1) =
1
2

t2‖φ1‖2 +
λtq

q

∫
RN

Q(x)|φ1|q dx−
∫

RN
Q(x)F(tφ1) dx

= t2
(

1
2
‖φ1‖2 +

λtq−2

q

∫
RN

Q(x)|φ1|q dx−
∫

RN
Q(x)

F(tφ1)

t2φ2
1

ϕ2
1 dx

)
.

By (3.1) and 1 < q < 2, we have I+λ (tφ1) → −∞, as t → +∞. Thus, for large enough t1,
we have ‖t1φ1‖ > ρ1, and I+λ (t1φ1) < 0. Define

c+ = inf
γ∈Γ+

max
0≤t≤1

I+λ (γ(t))

where Γ+ := {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = t1φ1}.
Now, in order to apply Lemma 2.4 to prove Theorem 1.1, it is sufficient to verify that I+λ

satisfies the (C)c+ condition.

Lemma 3.1. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies ( f1), ( f3) and
( f4) with µ1 < b, then for any fixed λ > 0, the functional I+λ satisfies the (C)c+ condition.

Proof. For every (C)c+ sequence {un}

I+λ (un)→ c+, as n→ ∞, (3.2)

(1 + ‖un‖)I+λ
′
(un)→ 0, as n→ ∞, (3.3)
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we claim that the sequence {un} is bounded in X. Seeking a contradiction, we suppose that
‖un‖ → ∞. Let zn = un

‖un‖ , up to a subsequence, we get that

zn ⇀ z, as n→ ∞, in X,

zn → z, as n→ ∞, in Ls(RN ; Q), 2∗ < s <
2N

N − 2
,

zn(x)→ z(x), as n→ ∞, a.e. x ∈ RN .

We claim that z 6= 0. otherwise, z = 0, since by (3.3)

o(1) = 〈I+λ
′
(un), un〉 = ‖un‖2 + λ

∫
RN

Q(x)u+
n (x)q dx−

∫
RN

Q(x) f (u+
n (x))u+

n (x) dx. (3.4)

Dividing both sides of (3.4) by ‖u+
n ‖2,

o(1) = 1−
∫

RN
Q(x)

f (u+
n (x))u+

n (x)
‖un‖2 dx. (3.5)

Assumptions ( f1), ( f3) and ( f4) with µ1 < b < +∞ imply that there exists C > 0, such that

| f (u+
n (x))| ≤ Cu+

n (x). (3.6)

Combining (3.5) and (3.6), we have

1 =
∫

RN
Q(x)

f (u+
n (x))u+

n (x)
‖un‖2 dx + o(1)

≤ C
∫

RN
Q(x)|z+n (x)|2 dx + o(1).

Letting n→ ∞, we get a contradiction. Thus, z 6= 0 in X.
Set

Pn(x) =


f (un(x))

un(x)
, for x ∈ RN , un(x) > 0,

0, for x ∈ RN , un(x) ≤ 0.

From I+λ
′
(un) = o(1), we can get that∫

RN
∇un∇φdx +

∫
RN

V(x)unφ dx + λ
∫

RN
Q(x)(u+

n )
q−1φ dx−

∫
RN

Q(x) f (u+
n )φ dx = o(1),

for all φ ∈ C∞
0,r(R

N). Dividing ‖un‖ in both sides of the above equality, there holds∫
RN
∇zn∇φ dx +

∫
RN

V(x)znφ dx−
∫

RN
Q(x)Pn(x)z+n φ dx = o(1). (3.7)

By (3.6), |Pn(x)| ≤ C for x ∈ RN . Then we have∣∣∣∣∫{x∈RN |z+(x)=0}
Q(x)Pn(x)z+n (x)φ(x) dx

∣∣∣∣
≤ C

∫
{x∈RN |z+(x)=0}

Q(x)z+n (x)|φ(x)| dx

= o(1) + C
∫
{x∈RN |z+(x)=0}

Q(x)z+(x)|φ(x)| dx = o(1).

(3.8)
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On the other hand, since z+n (x) → z+(x) for a.e. x ∈ RN , we have limn→∞ u+
n (x) = +∞ for

a.e. x ∈ {x ∈ RN | z+(x) > 0}, which implies that limn→∞ Pn(x) = b, for a.e. x ∈ {x ∈ RN |
z+(x) > 0}. Besides, |Pn(x)| ≤ C, for a.e. x ∈ RN . Using Lebesgue’s dominated convergence
theorem, we obtain that∣∣∣∣∫{x∈RN | z+(x)>0}

Q(x)(Pn(x)− b)z+n (x)φ(x) dx
∣∣∣∣

≤
∫
{x∈RN | z+(x)>0}

Q(x)|Pn(x)− b|z+n (x)|φ(x)| dx

≤ C
(∫
{x∈RN | z+(x)>0}

Q(x)|Pn(x)− b|2|φ(x)| dx
) 1

2

= o(1).

(3.9)

By (3.8) and (3.9),∫
RN

Q(x)Pn(x)z+n (x)φ(x) dx

=
∫
{x∈RN | z+(x)=0}

Q(x)Pn(x)z+n (x)φ(x) dx

+
∫
{x∈RN | z+(x)>0}

Q(x)Pn(x)z+n (x)φ(x) dx

= o(1) +
∫
{x∈RN | z+(x)>0}

Q(x)Pn(x)z+n (x)φ(x) dx

= o(1) + b
∫

RN
Q(x)z+(x)φ(x) dx.

(3.10)

Combining (3.7) and (3.10), letting n→ ∞, there holds∫
RN

(∇z∇φ + V(x)zφ) dx = b
∫

RN
Q(x)z+φ dx. (3.11)

We claim that meas{x ∈ RN | z+(x) 6= 0} > 0. Otherwise z+ = 0, taking φ = z in (3.11), we
have z = 0, which is impossible. Taking φ = z− in (3.11), we can get z ≥ 0. Moreover by the
Hopf lemma, we also can get z > 0 in RN . Taking φ = φ1 in (3.11), we obtain∫

RN
(∇z∇φ1 + V(x)zφ1) dx = b

∫
RN

Q(x)z+φ1 dx.

Since φ1 > 0 is the eigenfunction associated to µ1, and z ≥ 0, we have∫
RN

(∇z∇φ1 + V(x)zφ1) dx = µ1

∫
RN

Q(x)zφ1 dx.

This is impossible, since b > µ1. Then {un} is bounded in X. Since the embedding from X
into Ls(RN ; Q), s ∈ (2∗, 2N

N−2 ) is compact, there exists u ∈ X, such that un → u strongly in X.
Thus from (3.2) and (3.3), we can get that

I+λ (u) = c+ ≥ β1, I+λ
′
(u) = 0.
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Finally, we are now ready to conclude the proof of Theorem 1.1. Since I+λ
′
(u)u− = 0, then∫

RN
(∇u∇u− + V(x)uu−) dx = −λ

∫
RN

Q(x)(u+)q−1u− dx +
∫

RN
Q(x) f (u+)u− dx = 0.

We have u− = 0, i.e. u ≥ 0. Thus, u is a nonnegative solution for problem (P)λ. Similarly, for

I−λ (u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u−|q dx−
∫

RN
Q(x)F(u−) dx,

we can also get a nonpositive solution for problem (P)λ. Thus, problem (P)λ has at least two
nontrivial solutions. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. In order to prove Theorem 1.2, we firstly verify that the functional Iλ

enjoys the linking structure.

Lemma 3.2. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies the assumptions
of Theorem 1.2, then there exist positive numbers r, d, R and η = η(λ), such that

(i) for all u ∈ Xm :=
⊕m

j=1 ker(−∆ + V − µjQ), we have

Iλ(u) ≤ η(λ), lim
λ→0+

η(λ) = 0;

(ii) for all u ∈ N := {u ∈ X⊥m | ‖u‖ = r}, we have

Iλ(u) ≥ d > 0, for all λ > 0;

(iii) for all u ∈ Xm+1, and ‖u‖ ≥ R, we have Iλ(u) ≤ 0.

Proof. (i) Let u ∈ Xm, since F(u) > 1
2 µmu2, u ∈ R, there exists ε1 > 0, such that F(u) ≥

1
2 (µm + ε)u2, then

Iλ(u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u|q dx−
∫

RN
Q(x)F(u) dx

≤
(

1
2
− µm + ε1

2µm

)
‖u‖2 +

Cλ

q
‖u‖q.

(3.12)

Let g(t) =
(

1
2 −

µm+ε1
2µm

)
t2 + Cλ

q tq, we have

max
t>0

g(t) = g(t0), where t0 =

(
µm

ε1
Cλ

) 1
2−q

,

and

g(t0) = −
ε1

2µm

(
µm

ε1
C
) 2

2−q

λ
2

2−q +
Cλ

q

(
µm

ε1
Cλ

) q
2−q

=

(
− ε1

2µm

(
µm

ε1

) 2
2−q

+
1
q

(
µm

ε1

) q
2−q
)
(Cλ)

2
2−q .

Then from (3.12), we can get that

Iλ(u) ≤
(
− ε1

2µm

(
µm

ε1

) 2
2−q

+
1
q

(
µm

ε1

) q
2−q
)
(Cλ)

2
2−q =: η(λ)→ 0, as λ→ 0.
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(ii) Let u ∈ X⊥m , by ( f1) and ( f4) with µk+1 < b < +∞, and lim supu→0
F(u)
u2 < 1

2 µm+1, we
have that there exists ε2 > 0, C > 0, p > 2, such that F(u) ≤ 1

2 (µm+1 − ε2)u2 + C|u|p. Then

Iλ(u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u|q dx−
∫

RN
Q(x)F(u) dx

≥ 1
2
‖u‖2 − 1

2
(µm+1 − ε2)

∫
RN

Q(x)|u|2 dx− C
∫

RN
Q(x)|u|p dx

≥ 1
2

(
1− µm+1 − ε2

µm+1

)
‖u‖2 − C‖u‖p,

(3.13)

thus, choosing r > 0 small enough, (3.13) implies that

inf
u∈X⊥m , ‖u‖=r

Iλ(u) ≥ d > 0, independent of λ > 0.

(iii) For any u ∈ Xm+1, set f (u) = bu + g(u), by ( f4), we have G(u)
u2 → 0, as |u| → ∞,

where G(u) =
∫ u

0 g(s) ds. Then

Iλ(u) =
1
2
‖u‖2 +

λ

q

∫
RN

Q(x)|u|q dx− b
2

∫
RN

Q(x)|u|2 dx−
∫

RN
Q(x)G(u) dx.

Since b > µm+1, for every z ∈ span{φm+1}, t ∈ R, w ∈ Xm,

t2‖z‖2 + ‖w‖2 − b
∫

RN
Q(tz + w)2 dx < 0. (3.14)

Arguing by contradiction, we find a sequence {un}, satisfying ‖un‖ → ∞, un = tnz0 + wn,
where z0 ∈ span{φm+1}, tn ∈ R, wn ∈ Xm, such that

Iλ(un) =
1
2

t2
n‖z0‖2 +

1
2
‖wn‖2 +

λ

q

∫
RN

Q(x)|un|q dx−
∫

RN
Q(x)F(un) dx ≥ 0. (3.15)

Dividing both sides of (3.15) by ‖un‖2, there holds

Iλ(un)

‖un‖2 =
1
2

τ2
n‖z0‖2 +

1
2
‖vn‖2 +

λ

q‖un‖2

∫
RN

Q(x)|un|q dx−
∫

RN
Q(x)

F(un)

‖un‖2 dx ≥ 0, (3.16)

where τn := tn
‖un‖ , vn := wn

‖un‖ . Since τ2
n‖z0‖2 + ‖vn‖2 = 1, after passing to a subsequence

τn → τ, in R, vn → v in Xm. Let u′ = τz0 + v, by (3.14), there exists a bounded domain
Ω ⊂ RN , such that

τ2‖z0‖2 + ‖v‖2 − b
∫

Ω
Q(x)(τz0 + v)2 dx < 0. (3.17)

As F(u) = 1
2 bu2 + G(u), it follows from (3.16) that

0 ≤ 1
2

τ2
n‖z0‖2 +

1
2
‖vn‖2 −

∫
Ω

Q(x)
F(un)

‖un‖2 dx +
λ

q‖un‖2

∫
RN

Q(x)|un|q dx

=
1
2

τ2
n‖z0‖2 +

1
2
‖vn‖2 − 1

2
b
∫

Ω
Q(x)(τnz0 + vn)

2 dx

−
∫

Ω
Q(x)

G(un)

‖un‖2 dx +
λ

q‖un‖2

∫
RN

Q(x)|un|q dx.
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Clearly, |G(u)| ≤ c0u2, for some c0 > 0 and G(u)
u2 → 0, as |u| → ∞. Since τn → τ, in R,

vn → v, in Xm, then τnz0 + vn → u′ = τz0 + v, in L2(RN ; Q). It is easy to see from Lebesgue’s
dominated converge theorem that∫

Ω
Q(x)

G(un)

‖un‖2 dx =
∫

Ω
Q(x)

G(un)

u2
n

(τ2
n + v2

n) dx → 0.

Hence, together with (3.17)

0 ≤ 1
2

τ2‖z0‖2 +
1
2
‖v‖2 − 1

2
b
∫

Ω
Q(x)|tz0 + v|2 dx < 0,

this is impossible.

Therefore, for Y = Xm, Z = X⊥m , z ∈ span{φm+1} with ‖z‖ = r,

M := {u = y + tz | ‖u‖ ≤ R, t ≥ 0, y ∈ Y},

M0 := {u = y + tz | y ∈ Y, ‖u‖ = R and t ≥ 0 or ‖u‖ ≤ R and t = 0},

N := {u ∈ Z | ‖u‖ = r}.

Lemma 3.2 implies that there exists λ∗ > 0, such that for 0 < λ < λ∗,

inf
u∈N

Iλ(u) > sup
u∈M0

Iλ(u).

Define
cλ := inf

γ∈Γ
max
u∈M

Iλ(γ(u)),

Γ := {γ ∈ C(M, X) | γ|M0 = id}.

Next, we prove that the functional Iλ satisfies the (C)cλ
condition.

Lemma 3.3. Under the assumptions (V), (Q) and (Ai), i = 1, . . . , 5, if f satisfies the assumptions
of Theorem 1.2, then for any given λ > 0, the functional Iλ satisfies the (C)cλ

condition.

Proof. For every (C)cλ
sequence {un},

Iλ(un)→ cλ, as n→ +∞. (3.18)

(1 + ‖un‖)I′λ(un)→ 0, as n→ +∞. (3.19)

We just prove that {un} is bounded. Seeking a contradiction we suppose that ‖un‖ → ∞. Let
wn = un

‖un‖ , up to a subsequence, we get that

wn ⇀ w in X,

wn → w in Ls(RN ; Q), 2∗ < s <
2N

N − 2
,

wn(x)→ w(x) a.e. x ∈ RN .

Now, we consider the two possible cases.
Case 1. w = 0 in X. From o(1) = 〈I′λ(un), un〉, we have

o(1) = ‖un‖2 + λ
∫

RN
Q(x)|un|q dx−

∫
RN

Q(x) f (un)un dx.
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Dividing both sides of the above equality by ‖un‖2, we get that

o(1) = 1−
∫

RN
Q(x)

f (un)un

‖un‖2 dx. (3.20)

Assumptions ( f1), ( f3)′ and ( f4) with µk+1 < b < +∞ imply that there exists C > 0, such that

| f (un)un| ≤ C|un|2. (3.21)

Combining (3.20) and (3.21), we have

1 =
∫

RN
Q(x)

f (un)un

‖un‖2 dx + o(1) ≤ C
∫

RN
Q(x)|wn|2 dx + o(1).

Letting n→ ∞, we get a contradiction.
Case 2. w 6= 0 in X. (3.18) and (3.19) imply that

cλ + o(1) = Iλ(un)−
1
2
〈I′λ(un), un〉

=
∫

RN
Q(x)

(
1
2

f (un)un − F(un)

)
dx + λ

(
1
q
− 1

2

) ∫
RN

Q(x)|un|q dx

≥
∫

RN
Q(x)

(
1
2

f (un)un − F(un)

)
dx.

Set Ω1 := {x ∈ RN | w(x) 6= 0}, thus, for x ∈ Ω1, un(x) → +∞, as n → +∞. By ( f5), we
obtain that

cλ + o(1) ≥
∫

Ω1

Q(x)H(un) dx. (3.22)

Since |Ω1| > 0 and for a.e. x ∈ Ω1, limn→∞ H(un) = +∞. Using Fatou’s lemma,

lim
n→∞

∫
Ω1

Q(x)H(un) dx = +∞,

which contradicts to (3.22). Thus, every (C)cλ
sequence is bounded.

Finally, following the above two lemmas, all the conditions of Lemma 2.5 are verified.
Then, there exists uλ ∈ X, such that Iλ(uλ) = cλ > d, I′λ(uλ) = 0. Thus, there exists λ∗ > 0,
such that for 0 < λ < λ∗, uλ is a nontrivial solution of problem (P)λ. Furthermore, from the
proof of Theorem 1.1, we know that for any given λ ∈ (0, λ∗), problem (P)λ has already had at
least two nontrivial solutions. We can estimate the mountain pass levels by considering paths
γ ∈ Γ±, whose images are contained in Xm. By Lemma 3.2 (i), the maxima on such paths
are at most η(λ) < d, for 0 < λ < λ∗, then c± < d, this implies that the linking solution is
different from the two mountain pass solutions. Thus, for 0 < λ < λ∗, problem (P)λ has at
least three nontrivial solutions, where one is nonnegative, one is nonpositive. this finishes the
proof of Theorem 1.2.

Proof of Theorem 1.3. In view of the proof of Theorem 1.1 and Theorem 1.2, under the assump-
tions of Theorem 1.3 we can get the functionals enjoy the mountain pass structure and linking
structure easily. We only need to prove that for any c ∈ R all the (C)c sequences for Iλ and I±λ
are bounded under assumptions of Theorem 1.3.

For {un} satisfying

c + o(1) = Iλ(un),

o(1) = (1 + ‖un‖)I′λ(un).
(3.23)
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We will prove that {un} is bounded in X.
Since {Iλ(un)} is bounded, dividing both sides of (3.23) by ‖un‖2, we have

lim
n→∞

∫
RN

Q(x)
F(un)

‖un‖2 dx =
1
2
< +∞. (3.24)

Set vn := un
‖un‖ , then there exists v ∈ X such that vn ⇀ v in X, denote Ω :={x ∈ RN | v(x) 6= 0},

then |un(x)| → +∞ for a.e. x ∈ Ω. If meas(Ω) > 0, then by ( f4)
′

F(un)

‖un‖2 =
F(un)

|un|2
v2

n → +∞, as n→ ∞.

Since Q(x) > 0, using Fatou’s lemma, we obtain

lim
n→∞

∫
RN

Q(x)
F(un)

‖un‖2 dx = +∞,

which is a contradiction to (3.24). So meas(Ω) = 0. Therefore, v = 0.
Next, we set

Iλ(tnun) = max
t∈[0,1]

Iλ(tun).

For any M > 0, set vn =
√

2Mvn, by ( f1), ( f2) and ( f6), there exists C > 0 such that

|F(u)| ≤ C(|u|2 + |u|p), for all u ∈ R.

Then ∣∣∣∣∫
RN

Q(x)F(vn) dx
∣∣∣∣ ≤ C

∫
RN

Q(x)(|vn|2 + |vn|p) dx → 0, as n→ ∞.

Consequently, for large enough n, one has

Iλ(tnun) ≥ Iλ(vn) ≥
1
2
‖vn‖2 −

∫
RN

Q(x)F(vn) dx ≥ M
2

.

This means that limn→∞ Iλ(tnun) = +∞ and tn ∈ (0, 1).
In view of the choice of tn, we know that 〈I′λ(tnun), tnun〉 = 0. Hence

+∞← 2Iλ(tnun)− 〈I′λ(tnun), tnun〉

=

(
2
q
− 1
)

λ
∫

RN
Q(x)|tnun|q dx +

∫
RN

Q(x)
(

f (tnun)tnun − 2F(tnun)
)

dx

≤
(

2
q
− 1
)

λ
∫

RN
Q(x)|un|q dx + θ

∫
RN

Q(x)
(

f (un)un − 2F(un)
)

dx

≤ θ
(
2Iλ(un)− 〈I′λ(un), un〉

)
.

This is a contradiction to (3.23), so {un} is bounded in X.
Similarly, we can prove that I±λ satisfies the (C)c condition, the details are omitted.

Remark 3.4. The sublinear term |u|q−2u can be relaxed to more general type, and the function
Q before the sublinear term and the asymptotically linear or superlinear term can also be
different.

Remark 3.5. Generally, the sublinear term determines the geometry structure of the functional
near zero. In this paper, 0 is a local minimizer. In our forthcoming work, we will discuss the
other case {

−∆u + V(x)u = λQ(x)|u|q−2u + Q(x) f (u), x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(Q)λ
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