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Abstract. Motivated by considerations on the success of integrated pest management
strategies and on the associated economically relevant thresholds, this paper is con-
cerned with the finite time dynamics of a class of impulsive functional differential sys-
tems with delay. By using an approach based on the Lyapunov-Razumikhin method,
we determine sufficient conditions for the finite-time contractive stability of the null
solution, these findings being then interpreted in biological terms as predictors for the
success of a pest management strategy. Numerical simulations are also carried out to
illustrate the feasibility of our results.
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1 Introduction

Nonlinear phenomena with inherent discontinuities or involving abrupt perturbations or sud-
den behavioral changes can be successfully modeled by using hybrid dynamical systems, char-
acterized by the coexistence of continuous and discrete dynamics. In this regard, impulsive
dynamical systems can be viewed as particular types of hybrid dynamical systems which are
characterized by three elements: a differential equation or system, which governs the dynam-
ics of the model between the occurrences of the impulsive perturbations (also called resetting
events), a difference equation, which describes the change of states as a result of impulsive
perturbations and a criterion to decide whether or not the states of the system are to be reset
(Nersesov and Haddad [28]). If the impulsive perturbations occur whenever trajectories reach
a given manifold of the state space, the so-called resetting set, the corresponding impulsive
dynamical system is called state-dependent, while if the impulsive perturbations occur at pre-
scribed times, independent of the system states, then the corresponding impulsive dynamical
system is called time-dependent.
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During recent years, impulsive functional differential equations (IFDEs) and impulsive
ordinary differential equations (IODEs) have found their applications in mechanics (impact
mechanical systems, Galyaev et al. [12], Tornambe [41]), aeronautics (satellite manoeuver-
ing, Wiesel [44], Ryo et al. [32]), communication security (encryption via signal masking or
modulation, Khadra et al. [20, 21]), economics (control of financial markets, Sakellaris [33]),
population dynamics (hunting, harvesting or stocking of predator-prey models, Jin et al. [18],
Zhang et al. [46], Apreutesei et al. [5]), neural networks (amplifiers with finite switching speed
or perturbation by external stimuli, Chen and Shen [8], Stamov and Stamova [35]), control
theory (synchronization of chaotic systems, Li et al. [25], Tao and Chua [40]), agriculture (inte-
grated pest management, Tang and Cheke [39], Georgescu and Zhang [14], Shi and Chen [34]),
medicine (vaccination strategies, Stone et al. [37], Gao et al. [13], immunotherapy, Bunimovich-
Mendrazitsky et al. [7]), to mention only a few fields. See also Aihara and Suzuki [1] and
Haddad et al. [16] for general overviews of the theory of hybrid and impulsive dynamical
systems. It should also be noted that processes described by IFDEs or IODEs often exhibit
dependence on their past history (see Gopalsamy [15], Kuang [22] and the references therein).

The Lyapunov stability of IFDEs and IODEs has received a lot of attention in recent years,
often as a quantifier for the success of integrated pest management (IPM) strategies or of vac-
cination campaigns (Rafikov et al. [30], Georgescu and Zhang [14], Shi and Chen [34], Stone et
al. [37], Gao et al. [13], Pei et al. [29]). However, while it is natural to gauge the success of an
IPM strategy in terms of the asymptotic properties of the pest-eradication solution (or of the
susceptible pest-eradication solution, if the control strategy relies on the release of infective
pests, with the purpose of spreading a disease into the pest population), this characterization
does not account neither for the concrete values of the action thresholds involved (the eco-
nomic injury level (EIL), defined as the amount of pest injury which justifies the cost of using
controls or the lowest pest density which causes economic damage, or the economic threshold
(ET) (lower than the EIL), defined as the density at which control measures should be used to
prevent an increasing pest population from reaching EIL) nor for the fact that pest outbreaks
should usually be contained within a prescribed time frame.

For this situation, and for other similar contexts, an adaptation of Lyapunov stability con-
cepts in order to deal with stabilization under maximal bounds within prescribed time in-
tervals is more meaningful. To this purpose, the concept of finite-time stability was first
introduced in the control literature in the early fifties (Kamenkov [19], Lebedev [24]). See also
Dorato [10], Weiss and Infante [43]. Here, it is to be noted that Lyapunov stability (LAS) and
finite-time stability (FTS) are essentially independent concepts, the former dealing with the
long-term behavior of a system (after enough time has passed, that is) and the latter with
the behavior of a system within a specified (possibly short) time frame. Particularly, LAS
does not guarantee FTS due to possible artifacts and odd short-term behavior arising from
particular initial conditions, while a Lyapunov unstable system can be FTS with respect to
suitable boundedness thresholds when considered on a suitably small time interval. Also,
from a qualitative viewpoint, LAS is an absolute concept, while FTS is not, being tied to the
concrete values of the upper bounds involved and being more of a boundedness concept with
strict specifications.

A more recent notion of FIS, which requires the convergence of the trajectories to the
null solution in finite time has been employed in Bhat and Bernstein [6] and Nersesov and
Haddad [28]. Without specifying bounding regions or time frames, but requiring convergence
and being useful in certain control problems, this notion is related to LAS, but unrelated to
the classical viewpoint on FTS adopted in this paper.
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Sufficient conditions for the finite-time stability and finite time stabilization of impulsive
and hybrid systems have recently been obtained by a number of authors (Xu and Sun [45],
Zhao et al. [48]). However, only a few papers have considered approaches based on the use
of Lyapunov functions to discuss the finite time stability of impulsive systems (Amato et
al. [2], Ambrosino et al. [4], Chen et al. [9], Moulay and Perruquetti [26]). In this regard,
Lyapunov-Razumikhin method (see Myshkis [27] for an overview), based on the use of Lya-
punov guiding functions in combination with conditions which ensure the impossibility of a
tirst breakdown (a crossing of the boundary of a vicinity, for instance) has already proven its
usefulness for investigating the LAS of solutions of systems with delays.

The remaining part of this paper is structured as follows. The next section introduces
certain preliminary notions and notations pertaining to a class of finite-time impulsive dy-
namical systems, together with several auxiliary results which are employed throughout this
paper. These conditions are then used in Section 3 to obtain finite-time stability results for the
model presented in Section 2, which represent the main contribution of this paper. Finally,
a few concluding remarks are given in Section 4 together with numerical simulations which
illustrate the feasibility of our results.

2 Preliminaries

Let R denote the set of real numbers, let R, denote the set of positive real numbers and let
R" denote the real n-dimensional space endowed with the usual Euclidean norm || - ||. For
any interval ] C Ry and set S C R™, we shall denote by C(],S) the set of functions ¢: ] — S
which are continuous on | and by PC(J, S) the set of functions ¢: ] — S which are piecewise
continuous on | and have a finite number points of discontinuity where they are continuous
from the left. For x € R™ and r > 0, let us denote by B, = {x € R" : ||x|| < r} the open ball of
center 0 and radius r.
Let us consider the delayed system of time-dependent impulsive differential equations

X'(t) = f(t,x1), te [To, To+TI\T,
Ax(t)]t:tk = Ik(tk,x(tk),xtk), 1 < k < N, (21)
x(To+6) = ¢(To + ), 6 [—7,0]

We assume that the initial time Tj is a positive real number, the delay 7 is strictly positive, the
time horizon T is also strictly positive and finite and the time interval (To, To + T) includes
a finite set of resetting points 7 = {t1,t2,...,tn}. Also, f is assumed to be continuous on
([To, To+ T)\T) x D, where D is an open set in PC(|—7,0],R"), and ¢ € D. For each t > T,
the function x; € D is defined by x¢(s) = x(t +5), —t < s < 0. In the case when T = oo, the
interval [Ty — 7, Tp] is understood to be replaced by (—oo, Ty].

For each 1 < k < N, the instantaneous jump in the state of the system at the reset-
ting point t; is given by Ax(t)|—y, = x(tx+) — x(tx), while the impulsive perturbation I €
C([To, To + T) x R" x PC([—7,0],R"),IR"). For a finite delay 7, the norm of the function
¢ € PC([—7,0],R") is given by [|¢[|x = supyc|_. g [[¢(0)]|, while in the case T = oo the norm
is given by [[¢]le = supye ) [9(6)]]

We further suppose that f(t,0) = 0 and I(t,0,0) = 0 for all 1 < k < N, where by 0 we
mean the null function in PC([—7,0],R"), so that the system (2.1) admits the null solution,
whose stability we shall discuss in what follows. Let us also denote ty = Tj. To introduce a
theoretical framework for our considerations, we also need the following notations, definitions
and functional classes.
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Definition 2.1 ([23]).

(i) A function a is said to belong to class K if a € C(Ry,R;), a(0) = 0 and a(u) is strictly
increasing in u.

(ii) A function a is said to belong to class Ky if a € C(Ry,Ry), a(0) = 0 and a(u) is
nondecreasing in u.

Definition 2.2 ([17]). Let V: [Ty — 7,00) x R” — R. Then V is said to belong to class Vj if

(i) For all1 < k < mn, V is continuous on (t;_1,t] x R" and the limit

lim  V(ty) = V(t,x)
ottt Y k

exists and is finite;
(ii) V is locally Lipschitzian in the second variable and V'(¢,0) = 0.

Definition 2.3 ([36]). Define the upper Dini derivative of V along the solution (¢, x(t)) of (2.1)
by
D*V(t,x) = limsup ~ [V(t + h, x(t) + hf(t, 1)) — V (£, x(1))].
h—0+ h

It is known that the Dini derivatives can be used to characterize the monotonicity of con-
tinuous functions. In this regard, the following result holds.

Lemma 2.4 ([31]). Suppose that u € C([a,b),R) and that
Du(t) <0 fort e [a,b)\S,

D being a fixed Dini derivative and S being an at most countable subset of [a,b). Then u is nonin-
creasing on [a,b).

For further details, including a general comparison lemma, see [31], Appendix 1.

We are now ready to introduce the concepts of finite-time stability and finite-time con-
tractive stability which will be employed in what follows. Essentially, finite time stability
represents the capacity of the trajectories to obey a given maximal bound within a specified
time interval, provided that the initial data also satisfies a prescribed boundedness estima-
tion. Finite-time contractive stability represents, in addition to the above, the capacity of the
trajectories to “shrink” under the estimation provided for the initial data from some moment
onwards.

Definition 2.5. Given an initial time Ty and an initial condition ¢, denote by x(t) = x(t; Ty, ¢)
the solution of (2.1) which satisfies the initial condition x(t; Ty, ¢) = ¢(t — Tp) for Tp — 7 <
t<Tp.

* The null solution of (2.1) is said to be finite-time stable with respect to («,, To, T, || - ||),
a < 1, if for every trajectory x(t), ||¢||c < « implies x(t) € B, forall t € [Tp, Tp + T).

¢ The null solution of (2.1) is said to be finite-time quasi-contractively stable with respect
to (a, B, To, T, | - ||), B < a, if for every trajectory x(t), ||¢|- < « implies that there exists
a Ty € (To, To + T) such that x(t) € Bg forall t € (Ty, To + T).
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* The null solution of (2.1) is said to be finite-time contractively stable with respect to
(a,B,7,To, T, || - ||), if it is finite-time stable with respect to («,v, Ty, T,| - ||), and it is
quasi-contractively stable with respect to («, B, To, T, || - ||)-

To the best of our knowledge, the concept of finite stability has been introduced in Ka-
menkov [19] and Lebedev [24], while the concept of finite time contractive stability appears
for the first time in Weiss and Infante [43]. It is to be noted that finite time stability concepts
require, loosely speaking, bounds on the initial conditions such that, for a finite time horizon,
the solutions resulting from these initial conditions do not exceed certain thresholds. Having
this in view, one would perhaps be left wondering if pest management strategies would not
be better addressed in the setting of asymptotic stabilization, in which the solutions do not
exceed the given thresholds forever, not only within a given time horizon.

Although this setting is perhaps more mathematically established, asymptotic stabiliza-
tion may not necessarily be cost effective, desirable, or even possible, since the use of control
measures (in this paper, the impulsive perturbations) comes at a price, may have negative con-
sequences upon the ecosystem (may bring resistance to chemical control measures, or wipe
out beneficial species in the process) and may be useless after the time horizon passes. Actu-
ally, quantifying the success of a control strategy in terms of the asymptotic stability properties
of the null solution is a better option for disease control models, in which the permanent erad-
ication of a disease is sought after, rather than in agricultural-based or ecosystem-based pest
control models, which have different concerns, some of them seasonal or not amounting to
complete species extinction.

As previously mentioned, FTS concepts are well tailored to describe the concrete problems
which arise when conceiving IPM strategies. In this regard, y can be thought as being the the
economic injury level EIL, B can be thought as being the economic threshold ET and a can
be considered as an estimation of the initial pest population size. Under this scenario, for a
finite-time contractively stable system, after the period [T, Tp + T) in which control measures
are employed passes the pest population size is left under the ET without ever reaching EIL.
This is the “safer”, proactive way, in which the pest do not get to cause sustained economic
damage.

The second possible choice is to think of 7y as being the carrying capacity of the environ-
ment for the given pest, B as being the EIL and & as being an estimation of the initial pest
population size. This is the less demanding course of action, in which for a finite-time con-
tractively stable system, after the period [Ty, Tp + T) in which control measures are employed
passes, the pest population size is left under the EIL. Consequently, the pests are not suscep-
tible to cause serious economic losses in the short term, although since the pest population
size may have surpassed the ET, it is possible they will soon surpass the EIL as well. Also,
the pests never cause irreparable damage to the environment (since the carrying capacity of
the environment for the given pest is never surpassed), although economic losses may be
incurred, more severe than for the first course of action.

In this regard, an approach towards the finite-time stabilization of a three-dimensional
predator-pest model with diseased pest has been proposed in Amato et al. [3]. Since only the
finite-time stability is discussed therein, the contractive stability not being of concern, the pur-
pose of the control strategy is that the size of the pest populations (susceptibles and infectives)
do not surpass their respective EILs. A maximal threshold for the predator population is also
defined, the boundedness constants for all populations being used to define a polytope in the
space of states inside of which all trajectories are steered by using impulsive controls.
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3 Main results

In this section, we shall establish theoretical results which provide sufficient conditions for
the finite-time contractive stability of the null solution of the IFDE (2.1), our approach relying
upon the use of Lyapunov-Razumikhin method.

Theorem 3.1. Assume that there exist functions Wi, Wo € K, ¢ € Ky, ¢ € C(Ry,Ry), p €

PC(R4,Ry) and V € Vy, and constants T* > Ty, p > 0,17 > 0, {Bx}, C [0,00), {1}, C
[0,00) and M > 1 such that the following conditions hold:

(i) Fors > 0,5 < g(s) < Ms, and inf,~o ") > 0, infy> p(s) > 0;
(ii) Fort € [Ty—1,T*) and ¢ € PC([—7,0],B,),
Wi(l[x(t; To, ¢)I1) < V(8 x(t; To, ) < Wa([lx(t; To, @) 1);
(iii) Fort € [To, T*)\T and ¢ € PC([—7,0],B,), if

V(t+0,x(t+6;To, ¢))
M

g(V(t,x(£:To, ¢)) exp(y(t — To))) > for 6 € [=7,0],

then
DV (t,x(t;To, ¢)) < —p(t)e(V(t x(t; To, ¢)));

(iv) Forall (t,¢) € T x PC([—7,0],B,), 1 <k < Nand 6 € [—7,0]

V(x5 To, ¢)) < (14 )V (it x(t; To, @) + 1V (k4 6, x(t + 6; To, §));

(v)
. t P cMt du
i, | () du> sup [0,
where
to = T, = n(t; —t;_
o = To, ¢ 1152(\,{9XP(”1(1 1-1))}
with 5
A : 3 i .1 .
= min {0 i S0 (o |

(vi) There are v € (0,p) and H € (0,1) with the property that there exist T € (0,T* — Tp),
Ty € (To, To+T), a € (0, W{l(m&))) and B € (0, ) such that

1 . Wa(a)MM*

T1 > ﬁ(h‘l W](‘B)

+ 77TO)/

where

M= T] (1+ B+ Myjexp(i)).
155N

Then the null solution of (2.1) is finite-time contractively stable with respect to (a, 8,7, To, T, | - ||)-
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Proof. Let us observe that since & < W, 1 (VA\QZ(\Z*) ) and MM* > 1, it follows that

Wi(7)

Wz(DC) < MM

< Wi(y) < Wa(y),

which implies that & < «.
We start by proving that the null solution is finite-time stable w.r.t. («,, Ty, T, || - ||). To this
purpose, let us fix ¢ such that ||¢||: < « and prove that x(¢; To, ¢) € B, for all t € [Tp, To + T).
Choose € € (H, ), denote

x(t) = x(5To, @);  V(E) = V(L x(h))

and define
V(t)exp(e(t —Tp)), te|Ty, To+T
() = () exp(e( ) [ ) (3.1)
V(t), t € [T()—T,To).
Define also tny+1 =To+ T, Bo =0, 70 = 0 and
Mg = ] (14 B+ Myjexp(y7)), 0<k<N.
0<j<k
We shall prove that
@(t) < MM;:W2(DC), t e (tk, tk+1], 0<k<N, (32)

the interval (tn,tn+1) replacing (tn,tn+1] for k = N, inequality which will be of crucial
importance in what follows. Note that all inequalities in terms of ® are easily translatable as
inequalities in terms of V by means of (3.1).

For k = 0, we need to prove that

@(t) < MWQ(D{), t e (to, tl]. (33)
First, it is seen by (ii) that
D(to) = V(to) < Wa(([x(to)l) < Wa(a) < MWa(a).

Suppose to the contrary that (3.3) does not hold, and consequently there exists t € (to, t1] such
that ®(t) > MW, («). Let us note that ® is continuous on (fy, t;] and define

F = inf{t € (to, 1] | D(t) > MWs(a)}.

Since ®(ty) < MW(«), it is seen that t* € (to, t1]. Also, due to the definition of t*, it follows
that
D(t) < MWy (a) for t € [to, ), () = MW, (w), (3.4)

which in turn yields using (i) that
g(B()) > B(F) = MWa(a). (35)

Note also that
$(D(to)) < MB(t) < MWs(a).

Let us then define
" = sup{t € (to,t"] | g(P(t)) < MW (a)},
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and note that t** € (to, t*), while

g(@(t)) > MWy(x) forte (K%,F],  g(®(F*)) = MW, (a). (3.6)
By (3.1) and (3.6), one sees that

g(V (1) exp(y(t — Ty))) > g(@(t)) > MWy(a) for t € (¢, ). (3.7)

We shall now prove the opposite inequality for V (s), which would enable us to use condition
(iii). For s € [to, t*], one has using (3.1) and (3.4) that

V(s) < P(s) < MWy (w).
while for s € [ty — T, ty] one obtains from (ii) that
V(s) = V(s,x(s)) = V(s,¢(s)) < Wa(l[p(s)[|) < Wa(a).

Consequently,
V(s) < MW,(a) fors e [t —1,t"]. (3.8)

From (3.7) and (3.8), one obtains that
g(V(t)exp(n(t—Tp))) > V(t+6) forte (t',t"] and 0 € [—T,0].

We are now ready to establish the monotonicity of ® on [t**,t*] with the help of condition
(iii). Using this condition, it follows that, for t € [t**,*],

DT®(t) = DTV (t)exp(e(t — Tp)) + eV (t) exp(e(t — Tp))

< —p(B)e(V(t)) exp(e(t — To)) + €V (t) exp(e(t — To))

= V) explet - T) (i) W) ) ©)

<0.

Consequently, ® is nonincreasing on [t**,t*] and therefore ®(+**) > ®(t*). However, since
() < g(®(t7)) = MWz (a) = O(t7),

this is a contradiction. It now follows that (3.2) holds for k = 0.
Suppose now that (3.2) holds for 0 < k <1 —1 and prove that it is also valid for k = . To
this purpose, we first prove that
D(t) < Mj_Wr(a). (3.10)

Suppose to the contrary that ®(#;) > M, ;W,(«). Then either ®(t) > M, ;W>(«) for all
t € (tj_1, 1], or there exists t € (t;_y,t] such that ®(t) < M; ;W (a).
In the first case, since (3.2) holds for k = [ — 1, it is seen that

P(t+0)

D(t M W, >
( ) > -1 2(“) - M ’

t e (tl,1, tl], RS [—T,O]. (3.11)
Note that, due to (ii) and to the fact that, by its definition, {M,’(‘}{(\]:O is an increasing sequence,
(3.11) holds even if T > t; — t;_1. In fact, if t + 6 belongs to a previous interval (f;_1, t] rather
than to the working interval (f;_1, t;], then the better estimation ®(f 4 6) < MM} ,W(«) is
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available, rather than the required one, ®(t +60) < MM, W, (a), while if t + 6 € [Ty — T, To],
then ®(t +60) < Wy(a). This implies that

Then, by the definition of @,
MV (t; ) exp(e(t; = To)) > V(1) exp(e(ti-1 — To)),

that is,
MV (t] ) exp(e(t; —ti—1)) > V().
Let us now define
— t—t_
& 122(\]{6Xp(e( 1—t-1))}

and observe that §; < ¢. Then
EMV (1) > EMV(t) > V(). (3.12)

By (i), (3.1) and (3.11), it is seen that, for t € (;_1,t] and 6 € [—7,0],

(

0) o V(

t+ t+0
sV exp(n(t — 1)) > g(@() > @(p) > T 0
Using condition (iii), it follows that the inequality D"V (t) < —p(t)c(V(¢)) holds for all

t € (t;_1,t]. Also, from (3.12) we obtain that

V() EMV(t) &Ms
/ ) du / L (3.13)
vy clu) vy e(u) T oo s e(u)
However, by means of condition (v), one notes that
V() du f t
_ > > .
/V(tl) ) 2 /tzl p(u)du > 131?§fN - p(u)du, (3.14)

which leads to a contradiction.
Next, we consider the second case. Let us define

t' =sup{t € (t;_1, 1] | P(t) < M; Wa(a)}.
Then ¢’ € (t;_1,t] and
D(t) > M Wa(a) forte (t,t], O(t') = Mj_{Wa(a),

which implies that, for t € [t/,#;] and 0 € [—7,0],

P(

i t+0) _ V(t+6
V() exply(t —To))) > g(@(1)) > B(1) > M Wy(a) > TEED S VL)
By applying the same argument as in the proof of (3.9), we then obtain that ® is nonincreasing
on [/, t]. In particular,

O(t') > d(t) = D(t;).
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However, this contradicts the fact that
O(t;7) > Mj_Wa(a) = D(t).

As a result, we can claim that (3.10) holds. In the following we shall prove that (3.2) holds for
k =1, that is,
q)(t) < MMZ*WQ(IX), t e (tl,tl+1].

Suppose that this assertion is not true. There then exists t € (t;, ;1] such that
D(t) > MM; Wy ().
Let us define
t" =inf{t € (t;,t;11] | ©(t) > MM;Wy(a)}.
Then ¢’ € (#,t;,1) and
D(t) < MM;Wy(a) fort € (t,t"), O(t") = MM Wa(a).
It is easy to see that
§(@(t")) = g(MM[Wa(a)) > MM Wa(«)
and, by (i), (iv) and (3.10),
§(@(t)) < Mo(t]")
= MV (") exp(e(t; — Tp))
< M((1+B)V(H) + 7V (t+0)) exp(e(t; — To))
< M((1+B) () + mexp(yT)@(t +6))

< M(1+ B;+ My exp(nt))M;_{Wa(a)
= MMl*Wz(lX).

Consequently, we may define
F=sup{t € (,1"] | g(@(t)) < MM Wa(a)}.
Then f € (t;,t"] and
(@) > MMiWa(a) forte (5],  g(®(F) = MM Ws(a).
Thus, we also have
g(V(t)exp(n(t = To))) = g(P(t)) > MM;Wa(a) = ®(t+90)

V(t+0)

>
- M

for t € (£,t"] and 6 € [—,0].

As done above for the proof of (3.9), we can obtain that @ is nonincreasing on [f,"]. Thus,

one notes that
() > o(t"),

which contradicts the fact that

() = MM} Wa(w) = g(0(F)) > (F).
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By the above, it is seen that (3.2) holds globally. Consequently,
P(t) < MM*Wy(a) forte [To, To+T)
and, by (ii),

Wi([|x(£)]]) < V(1) < MM*Wy(a) exp(—e(t —Tp)) fort e [To, To+ T).

Since & < W, 1(?%}2 ), this implies
Wi([lx(t)]]) < Wi(y) fort e [To, To+T)

and consequently
x(t) € B, forte [Ty, To+T).

It now follows that the null solution of the system (2.1) is finite-time stable with respect to

(‘X/ Y, To, T, || ’ H)
Similarly, using again (ii) and (3.2),

Wi(]|x(8)]]) < MM*Ws(a) exp(—e(Ty — Tp)) forte (Th, To+T),
which implies, by the choices of € and H,
Wi(lx(#)]) < Wi(B) exp(Ty(H — ) + To(e — 1)) < Wi(B) fort € (T, Ty +T),

and consequently
x(t) € Bﬁ fort € (Tl, To + T)

It now follows that the null solution of the system (2.1) is finite-time quasi-contractively stable
with respect to (a, B, To, T, || - ||), which finishes the proof. O

At this point, it should be noted that Theorem 3.1 (our main result, actually), is related
in its purpose and approach towards proof to Theorem 3.1 of Fu and Li [11], Theorem 3.1 of
Wang and Zhu [42] and Theorem 3.1 of Sun and Li [38], although these results are stated as
classical exponential stability results and the impulsive perturbations are applied in a slightly
different manner. While our results have a different scope than those of [11], [38] and [42]
(estimations on a finite time horizon as opposed to global exponential estimations), in techni-
cal terms the approaches are directly related, and in this regard one notes that our condition
(iv) is weaker than the corresponding condition (iii) in Theorem 3.1 of Fu and Li [11], while
condition (i) in Theorem 3.1 of Wang and Zhu [42] and condition (i) in Theorem 3.1 of Sun
and Li [38] are particular cases of our condition (i). Also, Theorem 3.1 is an improvement of
our previous related result, Theorem 1 in Zhang and Georgescu [47], which does not account
for the influence of delay and features a significantly stronger form of condition (iii).

Let us also elaborate upon the significance of the conditions employed in the statement of
Theorem 3.1. In this regard, hypothesis (iii) of Theorem 3.1 states that if a function of V(t)
is larger than another function of all previous values of V(s) for s in the “history” interval
[t — T,t], then DTV(t) should satisfy an estimation which in particular ensures its negative
sign. That is, if V' grows too large in an interval of length equal with the value of the delay,
then it should decrease with at least a certain speed in order to ensure that the solution x still
obeys the finite stability estimation. The use of a function g (which in concrete situations is
usually a multiple of identity), subject to condition (i), leads to a more general and perhaps
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flexible growth condition. Common examples of functions Wi and W, are multiples of the
square of the norm (the norm measuring the size of the pest population), at least in the case
in which V is a (possibly perturbed) multiple of the square of the norm as well. See also the
examples in Section 4 for further insight.

Typical examples of impulsive perturbations Iy which appear in integrated pest manage-
ment are I (t, x(tx)) = —prex(tx) (proportional reduction of the pest population size due to
pesticide spraying), I(t, x(tx)) = pxx(t¢) (proportional increase of the pest population size
due to birth pulses) and Ii(t, x(tx)) = p (impulsive release of a constant amount of individu-
als, of use especially in models with disease in the pest). In this regard, B;’s may be thought
as accounting for the effects of birth pulses, although both f;’s and <;’s can also be thought
as “safety” parameters, allowing for possible errors in the estimation of V' (that is, for possible
errors in the estimation of the size of the pest population).

One way of interpreting Theorem 3.1 is as a controllability result. In this regard, it is
seen that even large values of B;’s are allowed, on condition that they are balanced by a
corresponding decrease of V between pulses, which yields the optimistic conclusion that even
pests with strong reproductive potential (or perhaps with successive immigrational waves)
can successfully be controlled provided that appropriate control measure are taken.

Remark 3.2. Note that the conclusions of Theorem 3.1 (boundedness estimations, in their
essence) hold with the same proof if (iv) is replaced by the following condition

(iv') For all (t,¢) € T x PC([—7,0],B,),1 <k < Nand 6 € [-T,0]
V(S x(t5To, ¢) < (14 Bi) (1= 8V (t, x(t To, @) + iV (t + 0, x(t + 6, To, ¢)),

where {5;{},1{\’:1 C [0,1). However, M;, 0 < k < N, and M* should be replaced by M,
0<k<N,and M, respectively, where

M =TT (A+B))(1—=6;) + Myjexp(yt)), 0<k<N,

0<j<I

M = max My, M = max My, 6 =0.
0<I<k 0<I<N

Of course, one would ask which is the motivation of using an estimation of type (i),
which showcases two distinct tendencies: one (involving Bx’s) possibly increasing the pest
population size and the other (involving J;’s) causing a decrease of the population size. Ac-
tually, as mentioned before, the system (2.1) may be subject to both impulsive pest control
measures (decreasing the pest population size) and pulse birth phenomena (increasing the
pest population size). Even if these types of perturbations do not actually occur simultane-
ously, they may be thought as formally acting in this manner by choosing the appropriate B
or d;’s as being zero. Further remarks in this direction will be made in the next section.

From the above Theorem 3.1, by choosing g(t) = Mt, p(t) = p > 0and c¢(u) = u > 0, one
obtains the following practical consequence.

Corollary 3.3. Assume that there exist functions Wy, Wy € K, c € C(Ry,Ry), and V € V, and
constants T* > Ty, p > 0,77 > 0, p > 0, {Bx ., € [0,00), {1}, C [0,00) and M > 1 such that
the following conditions hold:

(i) For t € [Ty, T*) and ¢ € PC([—7,0],B,),

Wi([lx(t To, @)II) < V(t, x(£To, ¢)) < Wa(llx(; To, ¢)[1);
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(ii) Fort € [Ty, T*)\T and ¢ € PC([—7,0],By), if
M2V (t,x(t; Ty, ¢)) > V(t+6,x(t +6; To, ¢)) exp(—n(t—Tp)) for6 € [—1,0],

then
DV (t,x(t;To, ¢)) < —pe(V(t,x(t;To, §)));

(iii) Forall (ty,¢) € T x PC([~7,0],B,), 1 <k < Nand 6 € [-7,0]

V(5 x(tTo, 0)) < (14 B) Vit x(t; To, ¢)) + 7V (b + 6, x(t + 6, To, §));

(iv)

1
e —t > —(m te — t— InM |,
1f<f}<1<nN{k k1) p< lfgf}?N{k k-1} +1n )

where
i = min{p, 7, p};

(v) There are v € (0,p) and H € (0,m) with the property that there exist T € (0, T* — Tp),
Ty € (To, To+T), a € (0,W; (W) and B € (0,a) such that
1 W MM*
where
M* = (14 Bj + My;exp(nT)).
1<j<N

Then the null solution of (2.1) is finite-time contractively stable with respect to («, B, 7y, To, T, | - ||)-

Remark 3.4. Again, note that the conclusions of Corollary 3.3 still hold if condition (iv) is
replaced by condition (iv’), provided that M}, 0 < k < N, and M* are replaced by M,
0<k<N,and M, respectively, as done above.

To prove the LAS of a certain solution via the Lyapunov—-Razumikhin method in the clas-
sical situation (i.e. no impulses), the functional V needs to be decreasing in certain circum-
stances. The same viewpoint has been proven true for Theorem 3.1. However, we shall observe
that it is possible to obtain FTS results even if the functional V is not decreasing at all. The
reason is actually twofold. Apart from the fact that for the FTS of the null solution only the
fulfilment of a certain boundedness estimation for a certain interval of time is necessary, rather
than the classical null convergence, the burden of stabilizing the null solution can actually be
shifted to the impulsive perturbation. Actually, the hypotheses can be further weakened by
giving up one of the two inequalities satisfied by ¢ in (i) of Theorem 3.1. Of course, if V is
not assumed to be decreasing anymore, stronger hypotheses should be imposed on the im-
pulsive perturbations. Considering impulsive perturbations of this form, one then obtains the
following result.

Theorem 3.5. Assume that there exist functions Wi, W, € K, ¢ € Ky, ¢ € C(Ry,Ry), p €
PC(Ri,Ry) and V € Vo, and constants T* > Ty, m > 1,7 > 0, ¢ > 0, {Bx}}, C [0,00),
{51(}]](\]:1 - [0/1)/ {')/k}llg\lzl C [011) and

m > exp((17 +pc)o),
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= max {t —t1} < i () (3.15)
g_lg}(ag)%] k k—1 77_}_?5 =0 .

. 1 i
P =5 { te — te—1 /tk—l p(s)ds} '

such that the following conditions hold:

and

(i) Fors >0, g(s) > ms, c(s) < Cs;
(ii) For (t,x(t)) € [Ty —1,T*) x B,,

Wi([lx())[) < V(¢ x(t; To, ¢)) < Wa(llx(E)[]);
(iii) For any ¢ € PC([—7,0],B,), if

V(t+6,9(6))

nrexp(T) for0 € [—7,0], t&T,

g(V(t,x(£:To, ¢)) exp(y(t — To))) >

then
DV (t,x(t;To,¢)) < p(t)e(V (L x(t; To, §)));

(iv) Forall (t,¢) € T x PC([-7,0],B,), 1 <k < Nand 6 € [—7,0],

V(255 To, ) < (1+ Br) (1= 0) V(t, x(ts To, @) + 1V (b + 6, x(t + 6; To, ¢));

(v) There are v € (0,p) and H €
Ty € (To, To+ T), & € (0, W, (

(0, 7i1) with the property that there exist T € (0,T* — Tp),
WYY gnd B € (0,a) such that

m
1 mWa (a) >
T > —(In +nTy |,
: H( wig)
in which
it = min{p, 17}.

Then the null solution of (2.1) is finite-time contractively stable with respect to («, B, v, To, T, || - ||)-

Proof. Since m > 1, one easily observes using (ii) that « < 7. Let us fix ¢ € PC(|—7,0],R")
such that ||¢||r < a and then prove that x(t;To,¢) € B, for all t € [Ty, To + T). To this
purpose, let us define ty, tN41, Bo and &y as in the proof of Theorem 3.1, choose € € (H, 1),
V(t) = V(t,x(t)) and again define ®(¢) as in the proof of Theorem 3.1.

We shall prove that

O(t) <mV(ty), t€ (ttry1], 0<k<N, (3.16)

the interval (ty, ty+1) replacing (tn, tn+1] for k = N, inequality which plays a role similar to
the one played by (3.2) in the proof of Theorem 3.1. First, it is seen by (ii) that

D(ty) = V(tg) < mV(tp).

We then show that
O(t) <mV(ty),  te (tot) (3.17)
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Suppose that (3.17) does not hold, and consequently there exists ¢ € (fo,t;) such that ®(t) >
mV (tp). Let us note that ® is continuous on (o, ;) and define

F = inf{t € (to, 1) | D(t) > mV(to)}.

Since ®(ty) < mV (tp), it is seen that t* € (fy,t1). Also, due to the definition of +*, it follows
that
D(t) <mV(ty) fort € [ty, "), D) =mV(y).

Using (i), one sees that g(®(t*)) > mP(+*) > mV(ty).
Let us then define t** = sup{t € [tp — 7,t*) | g(P(t)) < mV(tp)}, and note that t** €
[to — T, t*), together with

Q(@(1) > mV(t)) forte (#,¢],  g(@(F) = mV(t). (3.19)
Also, by the definition of ® and (3.18)

SV (D exp(n(t — t))) = g(®(1)) > mV(tg) fort € ("],
and consequently, since ®(t) < mV(ty) for t € [tp — T, "],

V(t+s)

rrexp(7) fort € (t"*,t*] and s € [—T,0].

g(V(t)exp(n(t—to))) >

Using condition (iii), it follows that, for t € [**,*],

Vi) 2 v expl- [ ) )

h (3.19)

Q(P(t")) =mV(tg) = () = V() exp(e(t* —to))

As a result, we get that
g(P(t)) < exp((n+pc)o)(t™),

which contradicts (i). Consequently, the inequality (3.17) holds true. Let us now suppose that
(3.16) holds for 0 < k <[ —1 and then show that it is also valid for k = [, that is,

q)(t) < mV(to), t e (tl, tl+1].

In this regard, since

n (max {0+8 )(11—5 T T)}>
max {tk N tkfl} < 1<k<N k Jk kexpy
1<k<N N+ pc

7
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note first that, forany 1 </ <N,

1
max1<k<N{ 1 + ,Bk)(l - 5k) + Yk eXp(ﬂT)}

> exp(gpc +n(t11 — ).

Consequently,

V() < (1+81) V(t) +1V(t +s)
(t

( (1=6)V(t)
= (14 B1)(1 = 0)@(t;) exp(—e(t; — to)) + 1P(t1 +5) exp(—e(t +5 — fo))
[(1+B1)(1—d1) + miexp(eT)|mV (to) exp(—€(t; — to))
exp(—gpc) exp(—e(ti41 — tr))mV (to) exp(—€(t; — to))

= exp(—gpc)mV (to) exp(—e(ti11 — to))

< mV (ty) exp(—e(tj41 —to)),
which implies that ®(t;") < mV (to). In the following we shall prove that (3.16) holds for k = I.
Suppose that this assertion is not true. There then exists t € (¢}, ;1] such that

<
<

D(t) > mV (to).

Let us define

=inf{t € (t;,t;11] | P(t) > mV(ty)}.
Then ¢’ € (#;,t;,1) and

(") = mV (to), D(t) <mV(ty) forte (t,t").
It is easy to see that
V() < exp(—opc)mV (to) exp(—e(t;1 —to))
<mV(ty) exp(—e(t" —to)) = V().

This implies that there exists t € (#;,#") such that

V(F) = exp(—gpE)mV (to) exp(—e(trs1 — to)).
and
V() < V()< V(") forte (tt").
Then, for t € (t,¢") and @ € [T, 0], we have that either t + 6 € (to — T, t;) or t +6 € (t;,t"). In
both cases, one notes that
V(E+6)  V(t+6)

Tl _
exp(et) = mexp(nT) fort € (t,t")and 6 € [—7,0].

g(V(t)exp(n(t—To))) >
It follows that from condition (iii), for t € [?, t"],

V(") < V(1) exp(gpc).

As a result, we obtain that

V(t") < exp(—gpe)mV (o) exp(—e(ti1 — to)) exp(gpc)
< mV (ty) exp(—e(t;11 —to))
< mV(to) exp(—e(t" —to)) = V(t"),
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which leads to a contradiction. By the above, it is seen that (3.16) holds. Consequently,
O(t) <mV(Ty) fort € [to,to+T)
and, by (ii),
Wi([|x(£)]]) < V(t) <mV(to) exp(—e(t —tg)) fort € [to,to+ T).
Since, from (ii),
V(to) < Wa([[x(to)l]) < Wa(a),
one sees using (3.16) and (ii) that

Wi(]|lx(8)]]) < mWy(a)exp(—e(t—ty)) < Wi(y) fort € [to,to+T)

and consequently
x(t) € B, forte[To, To+T).

It now follows that the null solution of the system (2.1) is finite-time stable with respect to

(a, 7, To, T, || - [])-
Similarly, using again (ii) and (3.16),

Wi ([|x(t)]]) < mWa(a) exp(—e(Ty — Tp)) fort e (Ty, To+T),
which implies, by the choices of € and H,

Wi([lx(£)]]) < Wi(B) exp(Ti(H —€) + To(e — 7))
< Wl(ﬁ), fort e (Tl,Tg + T),

and consequently
X(t) € Bﬁ fort € (Tl, To + T)

It now follows that the null solution of the system (2.1) is finite-time quasi-contractively stable
with respect to (&, B, v, To, T, || - ||), which completes the proof. O

Note that condition (3.15) precludes the pest population size from increasing each time the
impulsive perturbations occur, as the denominator of the fraction under the logarithm should
be subunitary, so that the logarithm be positive. This is certainly conceivable, since if (iii)
does not ensure anymore that the size of the pest population is decreasing then one should
ensure that the size of the pest population is decreasing by using impulses. Actually, it might
be possible to weaken (3.15), as it might not be necessary to decrease the size of the pest
population each time the impulsive perturbations occur, but only in certain circumstances.
This, however, is subject for further research.

From the above result, by particularizing ¢(t) = mt, p(t) = p > 0 and ¢(t) = ct, one may
obtain the following practical consequence.

Corollary 3.6. Assume that there exist functions Wy, W € K, V € Vgand p € PC(Ry,R), and
constants T* > To, 7 > 0, p > 0,¢ >0, {Bx} I, C [0,00), {G} Y, C [0,1), {m}, € [0,1)

m > exp((1n + pc)o)

and

= max {t _y } < n (maxlgng{(lJrﬁk)(llf(Sk)jL'ykexp(;ﬂv)}) L
£ ST —— =0

such that the following conditions hold:
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(i) for (t,x(t)) € [To, T*) x By,
Wi(llx(®)) < V(t x(t; To, ) < Wa([lx()]]);
(ii) for any ¢ € PC([—7,0],B,), if
m2V (4, x(tTo, @) > V(t+8,9(0)) exp(—n(t — To+ 7)) for 6 € [-7,0], t £ T,

then
DYV (t,x(t; To,¢)) < pcV (L, x(t;To, ¢));

(iii) for all (t, ¢) € T x PC([—-7,0],B,),1 <k < Nand 6 € [—7,0],
V(x5 To, ) < (T4 Bi) (1 — ) V (i, x(t; To, @) + 1V (£ + 6, x (1 + 6; To, ¢));

(iv) there are v € (0,p) and H € (0,1m) with the property that there exist T € (0,T* — Tp),
Ty € (To, To+ T), & € (0, W, (22 1Y) and B € (0,a) such that

1 mWa (a) )
T > — (1 +n1nTy |,
' H (“ mg) 7
in which
it = min{p, 17}.

Then the null solution of (2.1) is finite-time contractively stable with respect to («, 8,7, To, T, || - ||)-

4 Numerical examples

We now attempt to illustrate the applicability of our abstract results. Although these examples
are mostly of an academic nature, showcasing our techniques, rather than actively modelling
concrete situations encountered in integrated pest management, they are still able to describe
the dynamics of species whose evolution depend on their past history and are subject to
impulsive perturbation.

Example 1

We first consider the time-dependent impulsive dynamical system given by the following
delayed ordinary differential equation which is subject to impulsive perturbations given below

X (t) =exp (—L) x(t—1) = 3x(t),  te[0,6)\ {g k= 1,2,...,11},
Ax(t) = (\/ﬁ 1)x(t), t=3%2 k=1,234,
Ax(t) = (+/0.000188 — 1)x(t), t=3*1 k=1,234, (4.1)
Ax(f) = \J22(0) 42— 1) —x(t),  t=% k=123,

o(t) = 104, t €[-1,0).

The resetting conditions can now be expressed as

o x(%:27) = x(352) V1000, k=1,2,3,4;



Biologically motivated stability results 19

o x(%17) = x(%:1) V0.000188, Kk =1,2,3,4;

- x(%7) = \/2x2(32k> +x2(¥-1), k=123

Note that both the differential equation and some of the impulsive perturbations are now
subject to delay. Let To = 0,7 =1, ¢c(s) =s, g(s) =2s, T = 6, T* = 7, Wy(||x||) = 0.98]x]?,
Wa(||lx|)) = 1.01]|x||2, V(t,x(t)) = x*(t), T = 1, H = 099, v = 10°%, a = 750, B = 80 and

o (Lot

X
+ _
(x (3"21 ) — 0.000188V (x <3k21>> ,

ﬁ3k2;2 = 999, 53}(sz = 0, 731<sz = 0,
‘Bs’kz;l =0, 5L{1 = (0.999812, 73;%1 =0.

3k , (3k , (3k
o3 )22 () (3 )

Vv
Vv
and consequently

Also,

and consequently

One then sets

Bos = 999 do5 =0 Y05 =0
B1=0 61 = 0.999812 71 =0

Prs = 015 =0 15 =1
B2 =999 60 =0 72 =0
182-5 = 52_5 = 0.999812 Y25 = 0

Bi=0 | 6,=0999812 | 74, =0
Pas = 045 =0 Y45 =1
Bs = 999 05 =0 75 =0
Pss5 =0 | d55 =0.999812 | 55 =0

and

M = [(1+B))(1 = 6;) + My exp(n7)] ~ 1.0275.
j=0.5,1,15,...,5.5

Also, if 4x%(t) > x2(s) exp(—t), s € [t — 1,1], that is,
2x(t) exp (;) > x(s), set—1,t],
one sees that

DHV(f) = 2x(£)%(£) = 2x(t) [exp <—§> (t—1) = 3x(t)

< —2x2(t),
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~wf
~

Figure 4.1: The solution of the system (4.1). Red dashed lines represent the impulsive
perturbations.

which indicates that p = 2 and

o 1 lm1.o1>k(750)2*1.0275
170982 0.98 * 6400

After analyzing the above data and using Corollary 3.3, we conclude that the system (2.1) is
finite-time contractively stable with respect to (750, 80, 10, 0, 7, || - ||) as shown in Figure 4.1.

~ 4.6165.

Example 2

We now consider the second hybrid dynamical system given by

X(t)=exp(—L)x(t—3)ds— (10+Ve)x(t), t#1,2,...,7,
Ax(t) = 1/0.0522(t) +0.052 (£ — 1) — x(t), F=1,3,5,7
Ax(t) = 1/0.0323(t) +0.052 (£ — 1) — x(t), =2, )
Ax(t) = 1/0.0223(t) +0.052 (¢ — 1) — x(t), t=4,
Ax(r) = /0.04x2(1) +0.0522 (£ — 1) — x(0), t=6,
o(t) = 10%, te[-1,0).

Let To = 0,7 =1, ¢c(s) = s
Wa([lx]|) = 1.01]|x[|, V(¢ x(£)) = x*(8),
p = 10'°. One then notes that

7, T =8, T =9 Wi(|lx[|) = 0.98]x?
9933, v = 10'%, & = 5000, B = 2000 and

‘31 =0 51 = 0.95 Y1 = 0.05
‘32 = (52 = 0.985 Y2 = 0.05
‘53 = 53 = 0.95 Y3 = 0.05
Bs=1| 04=099 | 74 =0.05
‘35 = (55 = 0.95 Y5 = 0.05
ﬁé = 56 = 0.98 Yo = 0.05
ﬁ7 =0 (57 = 0.95 Y7 = 0.05
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and then g = UG ~ 131 > g = 1. Also, if 81x%(£) > x2(s) exp(— (1 +1)), s € [t — L, 1],

1 2 - 7 2/ 7

one sees that

DTV (t) = 2x(t)x'(t) = 2x(t) [exp (—;) X (t — ;) — (10 + %)x(t)]
< 2(8v/e —10)x(t),
which indicates that p = 16v/e — 20 ~ 0.5444 and

1, 9-(5000)%-1.01

=~ 4.0873.
> 0.9933 " 0.98- (20002 +0873

T;

After analyzing the above data and using Corollary 3.6, we conclude that the system (4.2)
is finite-time contractively stable with respect to (5000, 2000, 10'°, 0, 9, | - ||) as shown in
Figure 4.2.

Figure 4.2: The solution of the system (4.2). Red dashed lines represent the impulsive
perturbations.
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