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Abstract. In this paper, we investigate the existence of infinite nonradial solutions for
the Schrödinger equations{

−4u + b(|x|)u = f (|x|, u), x ∈ RN ,
u ∈ H1(RN),

where b is allowed to be sign-changing. Under some assumptions on b ∈ C([0, ∞), R)
and f ∈ C([0, ∞)×RN , R), we obtain that the above system possesses infinitely many
nonradial solutions. The method of proof relies on critical point theorem.
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1 Introduction and statement of the main result

In this paper, we study the existence of infinitely many nonradial solutions for the follow-
ing semilinear Schrödinger equation{

−4u + b(|x|)u = f (|x|, u), x ∈ RN ,

u ∈ H1(RN).
(1.1)

We suppose that b : [0, ∞)→ R and f : [0, ∞)×RN → R satisfy the following assumptions:
(B1) b ∈ C([0, ∞), R) and infx∈RN b(|x|) > −∞;

(B2) there exists a constant a > 0 such that

lim
|y|→+∞

meas
{

x ∈ RN : |x− y| ≤ a, b(|x|) ≤ M
}
= 0, ∀ M > 0,

where meas(·) denotes the Lebesgue measure in RN ;
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(B3) f ∈ C([0, ∞)×RN , R) and there exist constants a1, a2 > 0 and p ∈ (1, N+2
N−2 ) such that

| f (x, u)| ≤ a1|u|+ a2|u|p, ∀ (x, u) ∈ RN ×R; (1.2)

(B4) there exist µ > 2 and R > 0 such that

0 < µF(r, u) := µ
∫ u

0
f (r, v) dv ≤ u f (r, u), for any r ≥ 0 and |u| ≥ R; (1.3)

(B5) f (|x|,−u) = − f (|x|, u), ∀ (x, u) ∈ RN ×R.

We say that a solution u : RN → R is a radial solution (see for instance in [4, 7–9]) if u(x) =

u(|x|), that is, solution u has spherical symmetry. In the present paper, we consider the
solutions of (1.1) which are different from the radial ones.

The following theorems are the main results of the paper.

Theorem 1.1. Under assumptions (B1)–(B5), if N = 4 or N ≥ 6, then system (1.1) possesses an
unbounded sequence of solutions ±uk, k ∈ N, which are not radial. The solutions are classical if f is
locally Lipschitz with respect to u.

Recently, by using variational methods and critical point theory, many authors have stud-
ied the existence of solution for system (1.1) or the following general type:

−4u + b(x)u = f (x, u), x ∈ RN . (1.4)

The interest in equation (1.1) or (1.4) originates from various problems in physics and mathe-
matical physics. In cosmology and constructive field theory, system (1.1) or (1.4) is also called
nonlinear Euclidean scalar field equation (see [8,9]). As it was mentioned in [4], a solution of (1.1)
can also be interpreted as a stationary state (see [8, 9]) of the reaction diffusion:

ut = −4u− b(|x|)u + f (|x|, u),

for more physics background of (1.1), we refer the readers to [8, 9] and the references therein.
In [28], professor W. A. Strauss did pioneering work for the autonomous case of (1.1), that

is:
−4u = g(u), x ∈ RN , (1.5)

where g : R → R is continuous and odd in u. In [8, 9], Berestycki and Lions obtained the
existence of infinitely many radial solutions of (1.5) under almost necessary growth conditions
on g. The solutions they obtained have exponential decay at infinity. When N = 1, they
obtained a necessary and sufficient condition for the existence of a solution of problem (1.5).
Some open problems are also mentioned in [8, 9]. For more results of radial solutions of (1.1)
or (1.2) , we refer the readers to [5,7,32]. For more applications of critical point theory to PDE,
we refer the readers to the work of Michel Willem [32], Strauss [30], Rabinowitz [26], Zou [35]
and T. Bartsch, Z. Q. Wang, M. Willem [7].

We are motivated by [4] written by T. Bartsch and Michel Willem. They make the following
assumptions.

(A1) b ∈ C([0, ∞), R) is bounded from below by a positive constant a0.

(A2) f ∈ C([0, ∞)×R, R) and there are positive constants a1, R and a constant 1 < q < N+2
N−2

such that
| f (r, u)| ≤ a1|u|q for any r ≥ 0, |u| ≥ R.
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(A3) There exists µ > 2 such that

µF(r, u) := µ
∫ u

0
f (r, v) dv ≤ u f (r, u), for any r ≥ 0, u ∈ R. (1.6)

(A4) There exists K > 0 such that infr>0,|u|=K F(r, u) > 0.

(A5) f (r, u) = o(|u|) for u→ 0 uniformly in r ≥ 0.

(A6) f is odd in u: f (r,−u) = − f (r, u) for any r ≥ 0, u ∈ R.

They state the following result.

Theorem 1.2. Suppose N = 4 or N ≥ 6. If the assumptions (A1)–(A6) hold, then there exists an
unbounded sequence of solutions ±uk, k ∈N, of (1.1) which are not radial. The solutions are classical
if f is locally Lipschitz with respect to u.

Remark 1.3. (1) As it is mentioned in [4] that solutions of (1.1) always occur in pairs because
of the oddness of f .

(2) Compared with Theorem 1.2, our result allows b to be sign-changing.

(3) Assumption (1.6) is known as global A–R condition which was introduced by A. Ambrosetti
and R. H. Rabinowitz (see for instance in [26]). It is obvious that the second part of
assumption (1.3) is weaker than (1.6).

(4) In our result, assumption (A5) is not necessary.

In [4], (A5) together with (A3) plays a key role while discussing the functional ϕ (see later)
corresponding to the system (1.1) satisfying the (P.S.)-condition (see [26,30,32,35]). If a function
f ∈ C(RN ×R, R) satisfies (A3) and (A5), then for any ε > 0 (in application, we only concern
about sufficiently small positive ε, that is 0 < ε � 1), there exists a finite Cε = C(ε) > 0 such
that

| f (x, u)| ≤ ε|u|+ Cε|u|q. (1.7)

Though in (1.7), Cε may change for different ε > 0, but by (A3) and (A5) one can easily show
that we can always assume that

Cε < ∞, uniformly for any ε > 0, x ∈ RN and u ∈ R. (1.8)

That is, Cε is independent of x ∈ RN and u ∈ R. But under our assumptions in Theorem 1.1,
(1.7) does not work any more, for example, let f (r, u) = f (u) = u + |u|p−1u

(
1 < p < N+2

N−2

)
,

then one can easily check that f satisfies the conditions (B3) and (B5) in our result. Now we
are going to prove that f also satisfies condition (B4): firstly, we have F(r, u) = u2

2 + |u|p+1

p+1 and
u f (r, u) = u2 + |u|p+1, choose some µ ∈ (2, p + 1).

From
0 < µF(r, u) ≤ u f (r, u),

that is,

µu2

2
+

µ|u|p+1

p + 1
≤ u2 + |u|p+1,

⇔ µ− 2
2

u2 ≤ p + 1− µ

p + 1
|u|p+1,
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⇔ µ− 2
2
≤ p + 1− µ

p + 1
|u|p−1,

⇔ (µ− 2)(p + 1)
2(p + 1− µ)

≤ |u|p−1,

⇔
[
(µ− 2)(p + 1)
2(p + 1− µ)

] 1
p−1

≤ |u|.

Let R =
[ (µ−2)(p+1)

2(p+1−µ)

] 1
p−1 , then we know that f satisfies condition (B4). But for any given ε0 > 0,

there does not exist a finite Cε0 > 0 such that

| f (|x|, u)| ≤ ε0|u|+ Cε0 |u|p, uniformly for any ε > 0, x ∈ RN and u ∈ R. (1.9)

If not, we assume that for some ε0 > 0 (without loss of generality, we suppose that
0 < ε0 < 1), there exists some finite C = Cε0 > 0 such that

| f (|x|, u)| = |u|+ |u|p ≤ ε0|u|+ Cε0 |u|p. (1.10)

By (1.10) we have Cε0 > 1 and

(1− ε0)|u| ≤ (Cε0 − 1)|u|p,

this implies that

Cε0 ≥
1− ε0

|u|p−1 + 1→ +∞ as |u| → 0.

This is obviously a contradiction. That is, in this case Cε0 in (1.10) depends on u. Also, one can
easily show that f does not satisfy (A3) and (A5). As far as we know, while using the fountain
theorem [32,34] to discuss the existence of solutions of second order elliptic partial differential
equations , many authors always assume that (A5), or similar type: f (x, u) = o(|u|) for u→ 0
uniformly in x ∈ RN holds (see for instance in [12, 25, 32]).

Finally, we recall an abstract critical point lemma which we shall use later. Let X be a
Banach space. We say that I ∈ C1(X, R) satisfies (C)c-condition (or weak-(P.S.)-condition [35])
if any sequence {un} such that

I(un)→ c, ‖I′(un)‖(1 + ‖un‖)→ 0 (1.11)

has a convergent subsequence.

Lemma 1.4 ([3, 26]). Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where Y is finite
dimensional. If I ∈ C1(X, R) satisfies (C)c-condition for all c > 0, and

(I1) I(0) = 0, I(−u) = I(u) for all u ∈ X;

(I2) there exist constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that I(u) ≤ 0 on
X̃ \ BR;

then I possesses an unbounded sequence of critical values.
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2 Variational setting and proof of Theorem 1.1

Our proof is divided into a sequence of lemmas. Throughout this section, we make the
following assumption instead of (B1).
(B′1) b ∈ C(RN , R) and infRN b(|x|) > 0.

We work in the Hilbert space

X =

{
u ∈ H1(RN) :

∫
RN

(
|∇u|2 + b(|x|)u2) dx < +∞

}
equipped with the inner product

(u, v) =
∫

RN
(∇u · ∇v + b(|x|)uv) dx, u, v ∈ X,

the associated norm

‖u‖ =
{∫

RN

(
|∇u|2 + b(|x|)u2) dx

}1/2

, u ∈ X.

Evidently, C∞
0 (RN , R) ⊂ X and X is continuously embedded into H1(RN) and hence contin-

uously embedded into Lr(RN) for 2 ≤ r ≤ 2∗, (where 2∗ = 2N
N−2 for N ≥ 3 and 2∗ = ∞ for

N = 1, 2), i.e., there exists Sr > 0 such that

‖u‖r ≤ Sr‖u‖, ∀ u ∈ X, (2.1)

where ‖ · ‖r denotes the usual norm in Lr(RN) for all 2 ≤ r ≤ 2∗. In fact we further have the
following lemma due to [7].

Lemma 2.1 ([7, Lemma 3.1]). Under assumptions (B′1) and (B2), the embedding from X into Ls(RN)

is compact for 2 ≤ s < 2∗.

Now we define a functional Φ on X by

Φ(u) =
1
2

∫
RN

(
|∇u|2 + b(|x|)u2) dx−

∫
RN

F(|x|, u) dx (2.2)

for all u ∈ X. Then it is well known that u ∈ X is a solution of (1.1) if and only if u is a critical
point of Φ in X. By assumption (B3), we have

|F(x, u)| ≤ a1

2
|u|2 + a2

p + 1
|u|p+1, ∀ (x, u) ∈ RN ×R. (2.3)

Consequently, under assumptions (B′1), (B2) and (B3), the functional Φ is of class C1(X, R).
Moreover, we have

Φ(u) =
1
2
‖u‖2 −

∫
RN

F(|x|, u) dx, ∀ u ∈ X, (2.4)

〈Φ′(u), v〉 = (u, v)−
∫

RN
f (|x|, u)v dx, ∀ u, v ∈ X. (2.5)

By (2.3), for |u| < R (R is the same as in (B4)), we have

| f (|x|, u)u|+ µ|F(|x|, u)| ≤ d|u|2, (2.6)
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where d = 2+µ
2 a1 +

p+1+µ
p+1 a2Rp−1.

Now, we shall show that Φ defined as (2.4) in X satisfies all the conditions in Lemma 1.4.
By (B5), it is obvious that Φ(0) = 0 and Φ(−u) = Φ(u) for all u ∈ X. That is, (I1) is satisfied.
In order to prove that Φ satisfies the (C)c-condition, we firstly introduce an inequality (see for
instance in [1]) which we will use later: if 1 ≤ p < ∞ and a, b ≥ 0, then

(a + b)p ≤ 2p−1(ap + bp). (2.7)

Lemma 2.2. Under assumptions (B′1) and (B2)–(B4), any sequence {un} ⊂ X satisfying

Φ(un)→ c > 0, 〈Φ′(un), un〉 → 0 (2.8)

is bounded in X. Moreover, {un} contains a convergent subsequence.

Proof. Let {un} ⊂ X be a sequence satisfying (2.8), for the sake of discussion below, we
introduce an auxiliary function F (|x|, u) = f (|x|, u)u − µF(|x|, u) and Ωn = {x ∈ RN :
|un(x)| < R} where R is the same as in (B4). By (B4) and (2.6), without loss of generality, we
may assume that for all n ∈N, we have:

c + 1 ≥ Φ(un)−
1
µ
〈Φ′(un), un〉

=
µ− 2

2µ
‖un‖2 +

1
µ

∫
RN

[
f (|x|, un)un − µF(|x|, un)

]
dx

=
µ− 2

2µ
‖un‖2 +

1
µ

∫
Ωn

F (|x|, un) dx +
1
µ

∫
RN\Ωn

F (|x|, un) dx

≥ µ− 2
2µ
‖un‖2 +

1
µ

∫
Ωn

F (|x|, un) dx

≥ µ− 2
2µ
‖un‖2 − 1

µ

∫
Ωn

[
| f (|x|, un)un|+ µ|F(|x|, un)|

]
dx

≥ µ− 2
2µ
‖un‖2 − d

µ

∫
RN

u2
n dx

=
µ− 2

2µ
‖un‖2 − d

µ
‖un‖2

2. (2.9)

By (2.9), we have
‖un‖2

2
‖un‖2 ≥

µ− 2
2d
− µ(c + 1)

d‖un‖2 .

So for sufficiently large ‖un‖2 (actually we only require ‖un‖2 ≥ 4(c+1)µ
(µ−2) ),

‖un‖2
2

‖un‖2 ≥
µ− 2

4d
> 0. (2.10)

If {un} ⊂ X is an unbounded sequence in X, passing to a subsequence if necessary, we may
assume that ‖un‖ → ∞ as n→ ∞. Let vn = un

‖un‖ , then (2.10) implies that

‖vn‖2
2 > 0. (2.11)

Let An = {x ∈ RN : vn 6= 0}, then meas(An) > 0. Furthermore, under the assumption that
‖un‖ → ∞ as n→ ∞, we obtain

|un(x)| → ∞ as n→ ∞ for x ∈ An. (2.12)



Nonradial solutions for Schrödinger equations 7

Hence An ⊆ RN \Ωn for sufficiently large n ∈N. By (B4), there exists some d1 > 0 such that

F(|x|, u) ≥ d1|u|µ for x ∈ RN and |u| ≥ R.

Hence by µ > 2, we obtain

lim
|u|→∞

F(|x|, u)
|u|2 = +∞. (2.13)

By (2.1), (2.3), (2.4), (2.11), (2.13) and Fatou’s lemma [21], for sufficiently large n ∈N, we have

0 = lim
n→∞

Φ(un)

‖un‖2

=
1
2
−
∫

RN

F(|x|, un)

u2
n

v2
n dx

=
1
2
−
∫

Ωn

F(|x|, un)

u2
n

v2
n dx−

∫
RN\Ωn

F(|x|, un)

u2
n

v2
n dx

≤ 1
2
+

(
a1

2
+

a2

p + 1
Rp−1

)
S2 − lim inf

n→∞

∫
RN\Ωn

F(|x|, un)

u2
n

v2
n dx

≤ 1
2
+

(
a1

2
+

a2

p + 1
Rp−1

)
S2 −

∫
RN\Ωn

lim inf
n→∞

F(|x|, un)

u2
n

v2
n dx

≤ 1
2
+

(
a1

2
+

a2

p + 1
Rp−1

)
S2 −

∫
An

lim inf
n→∞

F(|x|, un)

u2
n

[χAn(x)]v2
n dx

→ −∞, as n→ ∞. (2.14)

This is an obvious contradiction. Hence {un} ⊂ X is bounded.
Now we shall prove {un} contains a convergent subsequence. Without loss of generality,

by the Eberlein–Shmulyan theorem (see for instance in [33]), passing to a subsequence if
necessary, there exists a u ∈ X such that un ⇀ u in X. Again by Lemma 2.1, un → u in Lr(RN)

for 2 ≤ r < 2∗, that is
‖un − u‖r → 0 as n→ ∞, (2.15)

and un → u a.e. x ∈ RN . Observe that

‖un − u‖2 = 〈Φ′(un)−Φ′(u), un − u〉+
∫

RN
[ f (|x|, un)− f (|x|, u)](un − u) dx. (2.16)

It is clear that
〈Φ′(un)−Φ′(u), un − u〉 → 0, n→ ∞. (2.17)

By (B3), (2.7), (2.15), Hölder’s inequality and the fact 2 < p + 1 < 2∗,∫
RN
|( f (|x|, un)− f (|x|, u))(un − u)| dx

≤
∫

RN
(| f (|x|, un)|+ | f (|x|, u)|)|un − u| dx

≤
∫

RN

[
a1(|un|+ |u|) + a2(|un|p + |u|p)

]
|un − u| dx

≤
∫

RN

[
2a1(|un − u|+ |u|) + 2pa2(|un − u|p + |u|p)

]
|un − u| dx

=
∫

RN

[
2a1(|un − u|2 + |u||un − u|) + 2pa2(|un − u|p+1 + |u|p|un − u|)

]
dx

≤ 2a1(‖un − u‖2
2 + ‖u‖2‖un − u‖2) + 2pa2

(
‖un − u‖p+1

p+1 + ‖u‖
p

p+1
p+1‖un − u‖p+1

)
→ 0, as n→ ∞. (2.18)
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This together with (2.16), (2.17) implies un → u in X as n→ ∞.

Let {ej} be an orthonormal basis of X and define Xj = Rej,

Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=k+1Xj, k ∈ Z. (2.19)

Lemma 2.3. Under assumptions (B′1) and (B2), for 2 ≤ r < 2∗, we have

βk(s) := sup
u∈Zk ,‖u‖=1

‖u‖s → 0, k→ ∞. (2.20)

Proof. By Lemma 2.1, X ↪→ Lr(RN) is compact, then Lemma 2.3 can be proved by a similar
way as Lemma 3.8 in [28] or Lemma 3.3 in [4].

By Lemma 2.3, we can choose an integer m ≥ 1 such that

‖u‖2
2 ≤

1
2a1
‖u‖2, ‖u‖p+1

p+1 ≤
p + 1
4a2
‖u‖p+1, ∀ u ∈ Zm. (2.21)

Lemma 2.4. Under the assumptions (B′1), (B2) and (B3), there exist constants ρ, α > 0 such that
Φ|∂Bρ∩Zm ≥ α.

Proof. By (2.4) and (2.21), we have

Φ(u) =
1
2
‖u‖2 −

∫
RN

F(x, u) dx

≥ 1
2
‖u‖2 − a1

2
‖u‖2

2 −
a2

p + 1
‖u‖p+1

p+1

≥ 1
4
(‖u‖2 − ‖u‖p+1). (2.22)

Let 0 < ρ < 1, then α = 1
4 (ρ

2 − ρp+1) > 0 satisfies the conditions of the lemma.

Lemma 2.5. Under assumptions (B′1), (B2)–(B4), for any finite dimensional subspace X̃ ⊂ X, there
holds

Φ(u)→ −∞, ‖u‖ → ∞, u ∈ X̃. (2.23)

Proof. Arguing indirectly, assume that there exists a sequence {un} ⊂ X̃ with ‖un‖ → ∞ and
M > 0 such that Φ(un) ≥ −M for all n ∈ N. Set vn = un/‖un‖, then ‖vn‖ = 1. Passing to a
subsequence, we may assume that vn ⇀ v in X. Since X̃ is finite dimensional, then vn → v ∈ X̃
in X, vn → v a.e. on RN , and so ‖v‖ = 1. Hence, we can conclude a contradiction by a similar
fashion as (2.14).

By (B1), there exists a constant b0 > 0 such that b̄(|x|) := b(|x|) + b0 ≥ 1 for all x ∈ RN .
Let f̄ (|x|, u) = f (|x|, u) + b0u. Then b̄ and f̄ satisfy (B′1), (B2)–(B5) and it is also easy to verify
the following lemma.

Lemma 2.6. Problem (1.1) is equivalent to the following problem{
−4u + b̄(|x|)u = f̄ (|x|, u), x ∈ RN ,

u ∈ H1(RN).
(2.24)

At last, to complete the proof of Theorem 1.1, we need the following result (see [4]).
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Lemma 2.7. Let G be a group acting on X via orthogonal maps ρ(g) : X → X and such that the
following hold.

(i) Φ : X → R is G-invariant.

(ii) The inclusion XG ↪→ Ls(RN) is compact for every s ∈ (2, 2∗).

(iii) dim XG = ∞.

Here XG = {u ∈ X : ρ(g)u = u for all g ∈ G} is the G-fixed point set. Then Φ has unbounded
sequence of critical values with associated critical points lying in XG.

Proof of Theorem 1.1. Firstly we shall find a group G and an action of G on X which satisfies
the assumptions of Lemma 2.7. We should point out the main idea of the discussion below
due to the work of T. Bartsch and M. Willem in [4]. G ⊂ O(N) is defined as follows. Choose
an integer 2 ≤ m ≤ N

2 satisfying 2m 6= N − 1. This always holds for N = 4 or N ≥ 6. The
action of

H = O(m)×O(m)×O(N − 2m)

on X is defined by

gu(x) = u(g−1x).

Let τ be the involution defined on RN = Rm ⊕Rm ⊕RN−2m by

τ(x1, x2, x3)
.
= (x2, x1, x3),

where (x1, x2, x3) ∈ Rm ⊕Rm ⊕RN−2m. Let G = 〈H ∪ {τ}〉 ⊂ O(N). Then elements of G can
be represented uniquely as h or hτ with h ∈ H and the action of G on X defined as

ρ(g)u(x) := hu(x) = u(h−1x), g = h ∈ H,

:= −τu(x) = −u(τx), g = hτ.

Then it is clear that 0 is the only radial function in XG. By the work of T. Bartsh and M. Willem
in [4] (also see in [32]) we know that G and the action ρ(g) satisfy all the assumptions in
Lemma 2.7. Thus we obtain an unbounded sequence of critical values ck of Φ : X → R. By
Lemma 2.7, we know the associated critical points uk lie in XG, from discussion above we
know that uk are of nonradial solutions of (2.24). By Lemma 2.6, we know that uk are also of
nonradial solutions of (1.1). When f is locally Lipschitz with respect to u, by [14] we know
that uk are classical.
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