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Abstract. Let Ω be an open bounded set of Rn with its boundary Γ constituted of two
disjoint parts Γ0 and Γ1 with Γ0 ∩ Γ1 = ∅. This paper deals with the existence of local
solutions to the nonlinear hyperbolic problem∣∣∣∣∣∣∣∣∣

u′′ −4u + |u|ρ = f in Ω× (0, T0),

u = 0 on Γ0 × (0, T0),
∂u
∂ν

+ h(·, u′) = 0 on Γ1 × (0, T0),

(∗)

where ρ > 1 is a real number, ν(x) is the exterior unit normal at x ∈ Γ1 and h(x, s)
(for x ∈ Γ1 and s ∈ R) is a continuous function and strongly monotone in s. We obtain
existence results to problem (∗) by applying the Galerkin method with a special basis,
Strauss’ approximations of continuous functions and trace theorems for non-smooth
functions. As usual, restrictions on ρ are considered in order to have the continuous
embedding of Sobolev spaces.
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1 Introduction

Motivated by a nonlinear theory of mesons field introduced by L. I. Schiff [27], K. Jörgens
in [5, 6] began a rigorous mathematical investigation, from a mathematical point of view, of
equations of the type

∂2u
∂t2 −4u + F′(|u|2)u = 0. (1.1)

Specifically, K. Jörgens [6] proved the existence and uniqueness of solutions for the equation

∂2u
∂t2 −4u + µ2u + η2|u|2u = 0 in Ω× (0, ∞),
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where Ω is a bounded open set of Rn with boundary Γ. This equation is of the type (1.1) when

F(s) = µ2s +
1
2

η2s2.

Motivated by the works of K. Jörgens [5, 6], the authors J.-L. Lions and W. A. Strauss [28]
initiated and developed a large field of research on nonlinear evolution equations that includes
K. Jörgens’ model. See also, F. E. Browder [1], J. A. Goldstein [3, 4], L. A. Medeiros [14],
I. E. Segal [26], W. A. Strauss [28] and von Wahl [30].

Medeiros et al. [15] proved the existence and uniqueness of global solutions of the nonlin-
ear hyperbolic problem∣∣∣∣∣∣∣

u′′ −4u + |u|ρ = f in Ω× (0, ∞),

u = 0 on Γ× (0, ∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

(1.2)

where ρ > 1 is a real number with restrictions given by the continuous embedding of Sobolev
spaces and the initial data u0 and u1 do not have restrictions on their norms.

Considering the boundary Γ of Ω constituted of two disjoint parts Γ0 and Γ1 such that
Γ0 ∩ Γ1 = ∅ and denoting by ν(x) the unit exterior normal vector at x ∈ Γ1, Milla Miranda
and Medeiros [20] studied the existence and uniqueness of solutions of the problem∣∣∣∣∣∣∣∣∣∣∣

u′′ − µ(t)4u = 0 in Ω× (0, ∞),

u = 0 on Γ0 × (0, ∞),

µ(t)
∂u
∂ν

+ δ(x)u′ = 0 on Γ1 × (0, ∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

(1.3)

When µ > 0 is constant, existence and uniqueness of global strong solutions for (1.3) has
been proved by Komornik and Zuazua [7], Quinn and Russell [25] applying semigroup the-
ory. This method does not work for (1.3) because the boundary condition (1.3)3 depends on
µ(t). For this reason Milla Miranda and Medeiros [20] constructed a special basis where lie
approximations of the initial data, so the Galerkin method works well with this basis. Using
this approach they proved the well-posedness for (1.3).

The existence of solutions of problem (1.3) with nonlinear boundary conditions has been
obtained, by using the theory of monotone operators by Zuazua [7], Lasiecka and Tataru [18],
and applying the Galerkin method by Lourêdo and Milla Miranda [12].

Motivated by (1.2) and (1.3) we consider in this paper the following problem:∣∣∣∣∣∣∣∣∣∣∣

u′′ −4u + |u|ρ = f in Ω× (0, T0),

u = 0 on Γ0 × (0, T0),
∂u
∂ν

+ h(·, u′) = 0 on Γ1 × (0, T0),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

(1.4)

With restrictions on the real number ρ > 1 due to the continuous embedding of Sobolev
spaces, we obtain the existence of local solutions to problem (1.4) in two cases: first, h(x, s) =
δ(x)p(s) with p Lipschitzian and strongly monotone. In the second case h(x, s) is only con-
tinuous in s and strongly monotone in s, and the initial data belong to a class more regular
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than in the first case. In our approach, we apply the Galerkin method with a special ba-
sis, the Strauss’ approximations of continuous functions and trace theorems for non-smooth
functions.

It is worth noting that the term
∫

Ω |u|
ρu′ dx does not have a definite sign. This fact brings

serious difficulties to obtain global solutions to problem (1.4) without considering restrictions
on the norms of the initial data.

Hereafter, this paper is organized in three sections, namely, Section 2 is devoted to the
notations and statements of the two main results. In Section 3 we present the proof of Theorem
2.1 in which the case h = δp is considered, where p is a Lipschitz continuous function. In
Section 4, Theorem 2.2 is proved which contains the case where s 7→ h(·, s) is only a continuous
function in s.

2 Notations and main results

Let Ω be an open bounded set of Rn with a C2 boundary Γ, which has two disjoint parts Γ0

and Γ1 such that meas Γ0 > 0; meas Γ1 > 0; and Γ0 ∩ Γ1 = ∅. Let ν(x) be the unit normal
vector at x ∈ Γ1.

The scalar product and norm of the space L2(Ω) will be denoted by (·, ·) and | · |, respec-
tively. We represent by V the Hilbert space V = {v ∈ H1(Ω); v = 0 on Γ0}, equipped with
the scalar product and norm

((u, v)) =
n

∑
i=1

∫
Ω

∂u
∂xi

(x)
∂v
∂xi

(x) dx and ‖u‖2 = ((u, u)),

respectively. All scalar functions considered in this paper are real-valued.
In what follows, we introduce necessary hypotheses on some objects of problem (1.4) in

order to state our first result.
Let p : R→ R be a function satisfying:

p is Lipschitz-continuous and strongly monotone in the second variable, i.e.
(p(s)− p(r))(s− r) ≥ b0(s− r)2, ∀s, r ∈ R, (b0 is a positive constant).

(2.1)

The function δ : Γ1 → R is such that

δ ∈W1,∞(Γ1) and δ(x) ≥ δ0, ∀x ∈ Γ1 (δ0 is a positive constant). (2.2)

The real number ρ is chosen according to the spatial dimension n.

ρ > 1 if n = 1, 2 and
n + 1

n
≤ ρ ≤ n

n− 2
if n ≥ 3. (2.3)

Theorem 2.1. Suppose (2.1)–(2.3) hold, f ∈ H1(0, T; L2(Ω)), {u0, u1} ∈ (V ∩ H2(Ω)) × V and
satisfies the compatibility condition

∂u0

∂ν
+ δ(·)p(u1) = 0 on Γ1. (2.4)

Then there exist a real number T0 with 0 < T0 ≤ T and a unique function u in the class

u ∈ L∞(0, T0; V ∩ H2(Ω)),

u′ ∈ L∞(0, T0; V),

u′′ ∈ L∞(0, T0; L2(Ω)) ∩ L2(0, T0; L2(Γ1)),

(2.5)



4 A. T. Lourêdo, M. Milla Miranda, M. R. Clark and H. R. Clark

satisfying the equations
u′′ −4u + |u|ρ = f in L∞(0, T0; L2(Ω)), (2.6)

∂u
∂ν

+ δp(u′) = 0 in L∞(0, T0; H1/2(Γ1)),

∂u′

∂ν
+ δp′(u′)u′′ = 0 in L∞(0, T0; L2(Γ1)),

(2.7)

and the initial conditions
u(0) = u0, u′(0) = u1. (2.8)

Moreover, T0 is explicitly given by

T0 = min
{

1
2L

(1
2
|u1|2 + 1

2
‖u0‖2 + 2

)(1−ρ)/2
, T
}

, (2.9)

where

L =
(ρ− 1)

2

[
21/2‖ f ‖L∞(0,T;L2(Ω)) + 2(ρ+1)/2kρ

1

]
(2.10)

and k1 > 0 is the constant of the continuous embedding of V in L2(Ω), defined in inequality (3.2).

To state our second result we make the following considerations: let A = −4 be the self-
adjoint operator of L2(Ω) defined by the triplet {V, L2(Ω); ((·, ·))}. Then the domain of −4
is given by

D(−4) =

{
u ∈ V ∩ H2(Ω);

∂u
∂ν

= 0 on Γ1

}
(2.11)

and it is known that D(−4) is dense in V, see this statement for instance, in Lions [10].
We suppose the function h : Γ1 ×R→ R satisfies

r 7→ h(·, r) ∈ C0(R; L∞(Γ1)), h(x, 0) = 0, for almost all x ∈ Γ1,
h is strongly monotone in the second variable, i.e.
[h(x, r)− h(x, s)] (r− s) ≥ d0(r− s)2, ∀r, s ∈ R, for almost all x ∈ Γ1,
(d0 is a positive constant).

(2.12)

Theorem 2.2. Assume that hypotheses (2.3)–(2.12) are satisfied, f ∈ H1(0, T; L2(Ω)) and {u0, u1} ∈
D(−4)× H1

0(Ω). Then there exist a real number T0 > 0 (the same T0 given in Theorem 2.1) and at
least one function u in the class

u ∈ L∞(0, T0; V), 4u ∈ L∞(0, T0; L2(Ω)),

u′ ∈ L∞(0, T0; V),

u′′ ∈ L∞(0, T0; L2(Ω)) ∩ L2(0, T0; L2(Γ1)),

(2.13)

satisfying

u′′ −4u + |u|ρ = f in L∞(0, T0; L2(Ω)), (2.14)
∂u
∂ν

+ h(·, u′) = 0 in L1(0, T0; L1(Γ1)), (2.15)

and
u(0) = u0, u′(0) = u1. (2.16)

Remark 2.3. Note that in Theorem 2.2 the set of initial data satisfies ∂u0

∂ν + h(·, u1) = 0.

Remark 2.4. As h(x, s) is only continuous in s, the uniqueness of solutions of Theorem 2.2 is
an open problem.
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3 Case p Lipschitz

We begin by making some considerations. Since p : R→ R is a Lipschitz continuous function
then p(v) ∈ H1/2(Γ1) for v ∈ H1/2(Γ1) and the mapping p : H1/2(Γ1) → H1/2(Γ1), v 7→ p(v)
is continuous, for this result we refer to Marcus and Mizel [13].

Remark 3.1. The regularity of the trace mapping of order zero, γ0 : V → H1/2(Γ1) ensures
that the mapping p̃ = p ◦ γ0 with p̃ : V → H1/2(Γ1) is continuous.

Remark 3.2. Throughout this section, in order to facilitate the notation, the mapping p̃(v) for
v ∈ V will be denoted just by p(v).

Remark 3.3. Since δ ∈ W1,∞(Γ1) then δv ∈ H1/2(Γ1) for all v ∈ H1/2(Γ1), and the linear oper-
ator δ : H1/2(Γ1)→ H1/2(Γ1), v 7→ δv is continuous. In fact, using the theory of interpolation
for Hilbert spaces (see for instance the reference [11]) it can be shown that the linear operators
δ : H1(Γ1)→ H1(Γ1), v 7→ δv and δ : L2(Γ1)→ L2(Γ1), v 7→ δv are continuous.

Remark 3.4. As a consequence of (2.11), the intersection V ∩ H2(Ω) is dense in V.

Proposition 3.5. In V ∩ H2(Ω) the norm of H2(Ω) and the norm

u 7→
[
|4u|2 +

∥∥∥∥∂u
∂ν

∥∥∥∥2

H1/2(Γ1)

]1/2

are equivalent.

Proposition 3.6. Let δ ∈ W1,∞(Γ1), p : R → R be a Lipschitz continuous function with p(0) = 0,
u0 ∈ V ∩ H2(Ω), u1 ∈ V, and

∂u0

∂ν
+ δ(·)p(u1) = 0 on Γ1.

Then, for each ε > 0 there exist w and z in V ∩ H2(Ω) such that

‖w− u0‖V∩H2(Ω) < ε, ‖z− u1‖ < ε and
∂w
∂ν

+ δ(·)p(z) = 0 on Γ1.

The proof of the preceding propositions can be found in Milla Miranda and Medeiros [20]
and Milla Miranda and Lourêdo [19].

Under the restrictions (2.3) on ρ, we have (ρ − 1)n ≤ 2ρ ≤ 2n
n−2 = q for n ≥ 3, and this

implies

V ↪→ Lq(Ω) ↪→ L2ρ(Ω) ↪→ L(ρ−1)n(Ω), n ≥ 3. (3.1)

In (3.1) we mean by X ↪→ Y that the spaces X, Y satisfy X ⊂ Y and the injection of X in Y is
continuous. We denote by k0, k1 and k2 the constants immersion that satisfying

‖u‖Lq(Ω) ≤ k0‖u‖, ‖u‖L2ρ(Ω) ≤ k1‖u‖, ‖u‖L(ρ−1)n(Ω) ≤ k2‖u‖ ∀u ∈ V. (3.2)

We now can proceed to the proof of our first result.
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Proof of Theorem 2.1. Proposition 3.6 provides us sequences (u0
l ) and (u1

l ) of vectors of V ∩
H2(Ω) such that ∣∣∣∣∣∣∣∣∣∣∣

lim
l→∞

u0
l = u0 in V ∩ H2(Ω),

lim
l→∞

u1
l = u1 in V,

∂u0
l

∂ν
+ δp(u1

l ) = 0 on Γ1 for l ∈N.

(3.3)

We now construct a special basis of V ∩H2(Ω) in the following way: for l ∈N we consider the
basis {wl

1, wl
2, . . . , wl

j, . . .} of V ∩ H2(Ω) satisfying u0
l , u1

l ∈ [wl
1, wl

2], where [wl
1, wl

2] denotes the
subspace generated by wl

1, wl
2. According to this basis we determine approximate solutions

ulm(t) of problem (3.4) with h = δp, that is, ulm(t) = ∑m
j=1 gjlm(t)wl

j, where gjlm(t) is defined
as the solutions of the approximate problem∣∣∣∣∣∣

(u′′lm(t), v) + ((ulm(t), v)) + (|ulm(t)|ρ, v) +
∫

Γ1

δp(u′lm(t))v dΓ = ( f (t), v), ∀v ∈ V l
m,

ulm(0) = u0
l , u′lm(0) = u1

l ,
(3.4)

where V l
m is the subspace generated by wl

1, wl
2, . . . , wl

m. The solution ulm of (3.4) is defined on
[0, tlm) with 0 < tlm ≤ T0. The next estimate enables us to extend ulm to the whole interval
[0, T0].

First estimate: Setting v = u′lm(t) in (3.4), we obtain

1
2

d
dt
|u′lm(t)|2 +

1
2

d
dt
‖ulm(t)‖2 +

∫
Γ1

δp(u′lm(t))u
′
lm(t)) dΓ

= ( f (t), u′lm(t))− (|ulm(t)|ρ, u′lm(t)).
(3.5)

By usual inequalities and (3.2) we get

|(|ulm(t)|ρ, u′lm(t))| ≤ ‖ulm(t)‖
ρ

L2ρ(Ω)
|u′lm(t)| ≤ kρ

1‖ulm(t)‖ρ|u′lm(t)|. (3.6)

Taking

ϕlm(t) =
1
2
|u′lm(t)|2 +

1
2
‖ulm(t)‖2 + 1 (3.7)

and combining (3.6), (3.7), (3.5), and using hypotheses (2.1) and (2.2) on p and δ, we get

d
dt

ϕlm(t) + δ0b0

∫
Γ1

u′2lm(t) dΓ ≤ | f (t)||u′lm(t)|+ kρ
1‖ulm(t)‖ρ|u′lm(t)|. (3.8)

Observing that

‖ulm(t)‖ρ ≤ 2
ρ
2 ϕ

ρ
2
lm(t) and |u′lm(t)| ≤ 2

1
2 ϕ

1
2
lm(t),

and together with ϕlm(t) ≥ 1, we find

| f (t)||u′lm(t)|+ kρ
1‖ulm(t)‖ρ|u′lm(t)| ≤

[
2

1
2 ‖ f ‖L∞(0,T;L2(Ω)) + 2

ρ+1
2 kρ

1

]
ϕ

ρ+1
2

lm (t).

Combining this inequality with (3.8), we derive

d
dt

ϕlm(t) + δ0b0

∫
Γ1

u′2lm(t) dΓ ≤ Mϕ
ρ+1

2
lm (t),
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where
M = 2

1
2 ‖ f ‖L∞(0,T;L2(Ω)) + 2

ρ+1
2 kρ

1.

This means that
ϕ
− ρ+1

2
lm (t)

d
dt

ϕlm(t) ≤ M, (3.9)

and recalling the identity

d
dt

[
2

1− ρ
ϕ

1−ρ
2

lm (t)
]
= ϕ

− ρ+1
2

lm (t)
d
dt

ϕlm(t).

We obtain by (3.9) that
d
dt

ϕ
1−ρ

2
lm (t) ≥ −ρ− 1

2
M,

which implies

ϕ
1−ρ

2
lm (t) ≥ ϕ

1−ρ
2

lm (0)− Lt. (3.10)

In the above expression L was defined in (2.10). By the convergences in (3.3) we find

ϕ
ρ−1

2
lm (0) <

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

] ρ−1
2

, ∀l ≥ l0, ∀m,

which is equivalent to

ϕ
1−ρ

2
lm (0) >

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

] 1−ρ
2

, ∀l ≥ l0, ∀m.

Thus, from (3.10) it follows that

ϕ
1−ρ

2
lm (t) ≥

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

] 1−ρ
2

− Lt. (3.11)

By hypothesis (2.9), we obtain

Lt ≤ 1
2

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

] 1−ρ
2

, ∀t ∈ [0, T0].

Then (3.11) provides

ϕ
1−ρ

2
lm (t) ≥ 1

2

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

] 1−ρ
2

, ∀t ∈ [0, T0].

Thus

ϕlm(t) ≤ 2
2

ρ−1

[
1
2
|u1|2 + 1

2
‖u0‖2 + 2

]
= N, ∀t ∈ [0, T0], ∀l ≥ l0, ∀m. (3.12)

With this limitation and taking into account (3.7), we find

(ulm) is bounded in L∞(0, T0; V),

(u′lm) is bounded in L∞(0, T0; L2(Ω)),

(u′lm) is bounded in L2(0, T0; L2(Γ1)),

(3.13)

where these limitations are independent of l ≥ l0 and m.
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Second estimate: Differentiating the approximate equation in (3.4)1 with respect to t and
taking v = u′′lm(t), we find

1
2

d
dt
[|u′′lm(t)|2 + ‖u′lm(t)‖2] + (ρ|ulm(t)|ρ−2ulm(t)u′lm(t), u′′lm(t)) +

∫
Γ1

δp′(u′lm(t))[u
′′
lm(t)]

2dΓ

= ( f ′(t), u′′lm(t)) (3.14)

By Hölder’s inequality with 1
n + 1

q +
1
2 = 1, we obtain

|(|ulm(t)|ρ−2u′lm(t), u′′lm(t))| ≤ ‖ulm(t)‖
ρ−1
L(ρ−1)n(Ω)

‖u′lm(t)‖Lq(Ω)|u′′lm(t)|

From this, notations (3.2) and using the constant N introduced in (3.12) that bounds ϕlm(t),
we get

ρ|(|ulm(t)|ρ−2u′lm(t), u′′lm(t))| ≤ ρkρ−1
2 k0‖u′lm(t)‖ρ−1‖u′lm(t)‖|u′′lm(t)|

≤ ρkρ−1
2 k02

ρ−1
2 N

ρ−1
2 ‖u′lm(t)‖|u′′lm(t))|,

that is
ρ|(|ulm(t)|ρ−2u′lm(t), u′′lm(t))| ≤ R‖u′lm(t)‖|u′′lm(t))|

where
R = ρkρ−1

2 k02
ρ−1

2 N
ρ−1

2 .

Combining the last inequality with (3.14) and considering hypothesis (2.1)3, we obtain

1
2

d
dt
[|u′′lm(t)|2 + ‖u′lm(t)‖2] + δ0b0

∫
Γ1

[u′′lm(t)]
2dΓ

≤ 1
2
| f ′(t)|2 + R2

2
‖u′lm(t)‖2 +

1
2
|u′′lm(t)|, ∀t ∈ [0, T0].

Then

1
2

[
|u′′lm(t)|2 + ‖u′lm(t)‖2

]
+ δ0b0

∫ t

0

∫
Γ1

[u′′lm(t)]
2 dΓ

≤ 1
2
|u′′lm(0)|2 +

1
2
‖ulm(0)‖2 +

1
2

∫ T

0
| f ′(t)|2 dt

+
∫ t

0

[
R2

2
‖u′lm(s)‖2 +

1
2
|u′′lm(s)|

]
ds, ∀t ∈ [0, T0].

(3.15)

Remark 3.7. To apply Gronwall’s lemma in inequality (3.15) we need to derive an upper
bound for (u′′lm(0)). This is the key point of the proof of Theorem 2.1. We get this limitation
thanks to the choice of the special basis of V ∩ H2(Ω), previously built in this section.

We make t = 0 in the approximate system (3.4)1, take v = u′′lm(0), and after that apply
Gauss’ theorem, to obtain

|u′′lm(0)|2 + (−4u0
l , u′lm(0)) +

∫
Γ1

[
∂u0

l
∂ν

+ δp(u1
l )

]
u′′lm(0) dΓ + (|u0

l |ρ, u′′lm(0)) = ( f (0), u′′lm(0)).

Using (3.3)3, we find

|u′′lm(0)|2 ≤ |4u0
l ||u′′lm(0)|+ ‖u0

l ‖
ρ

L2ρ(Ω)
|u′′lm(0)|+ | f (0)||u′′lm(0)|.

From this and convergence (3.3)1 and (3.3)2, and notations (3.2) we get

|u′′lm(0)|2 ≤
[
|4u0

l |+ k1‖u0‖+ | f (0)|+ 1 + kρ
1

]
|u′′lm(0)|, ∀l ≥ l0, ∀m.
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Thus,
|u′′lm(0)| ≤ |4u0

l |+ k1‖u0‖+ | f (0)|+ 1 + kρ
1 = S, ∀l ≥ l0, ∀m. (3.16)

Inequality (3.15), (3.16), convergences (3.3)1, (3.3)2 and Gronwall’s lemma provide

1
2
|u′′lm(t)|+

1
2
‖u′lm(t)‖2 + δ0b0

∫ t

0
‖u′′lm(s)‖2

L2(Γ1)
dΓ ≤ P, (3.17)

where the constant P is independent of l ≥ l0, m and t ∈ [0, T0].
With the above estimate, we obtain

(u′lm) is bounded in L∞(0, T0; V),

(u′′lm) is bounded in L∞(0, T0; L2(Ω)),

(u′′lm) is bounded in L2(0, T0; L2(Γ1)).

(3.18)

Passage to the limit in m. The constants N and P in (3.12) and (3.17) are independent of
l ≥ l0, m and t ∈ [0, T0]. Thus, the estimates (3.13) and (3.18), allow us to find a subsequence
of (ulm), which still will be denoted by (ulm), and a function ul such that

ulm → ul weak star in L∞(0, T0; V),

u′lm → u′l weak star in L∞(0, T0; V),

u′′lm → u′′l weak star in L∞(0, T0; L2(Ω)),

u′lm → u′l weak in L2(0, T0; L2(Γ1)),

u′′lm → u′′l weak in L2(0, T0; L2(Γ1)).

(3.19)

The convergence (3.19)1, (3.19)2 and the Aubin–Lions theorem provide the convergence ulm →
ul in L2(0, T0; L2(Ω)). Therefore,

|ulm(x, t)|ρ → |ul(x, t)|ρ a.e. in Ω× (0, T0) = Q0. (3.20)

We also have ∫
Ω
[|ulm(t)|ρ]2 dx ≤ k1‖ulm(t)‖2ρ ≤ k2ρ

1 22ρNρ,

where k1 and N are introduced in (3.2) and (3.12), respectively. From this

‖|ulm|ρ‖L∞(0,T0;L2(Ω)) ≤ C, ∀l ≥ l0 and ∀m. (3.21)

Applying Lemma 3.1 of Lions [8] and using (3.20) and (3.21),

|ulm|ρ → |ul |ρ weak star in L∞(0, T0; L2(Ω)). (3.22)

On the other hand, the convergence (3.19)2 implies u′lm → u′l weak in L2(0, T0; H1/2(Γ1)).
This, convergence (3.19)5 and the Aubin–Lions theorem provide u′lm → u′l in L2(0, T0; L2(Γ1)).
As p is Lipschitzian, δp(u′lm) → δp(u′l) in L2(0, T0; L2(Γ1)). Note that |δp(u′lm)|L2(Γ1) ≤ C for
all l ≥ l0, for all m and t ∈ [0, T0]. This and the preceding convergence provide

δp(u′lm)→ δp(u′l) in L∞(0, T0; L2(Γ1)). (3.23)

Now taking θ ∈ L2(0, T0) and v ∈ V then the convergence (3.19), (3.22), and (3.23) allow
us to pass to the limit in the approximate equation (3.4). Moreover, observing that V ∩ H2(Ω)

is dense in V, we obtain∫ T0

0
(u′′l (t), v)θ dt +

∫ T0

0
((ul(t), v))θ dt +

∫ T0

0
(|ul(t)|ρ, v)θ dt +

∫ T0

0

∫
Γ1

δp(u′l(t))vθ dΓ dt

=
∫ T0

0
( f (t), v)θ dt.

(3.24)
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Taking, in particular, v ∈ D(Ω) and θ ∈ D(0, T0), in the preceding equation yields

u′′l −4ul + |ul |ρ = f in D′(Q0), where Q0 = Ω× (0, T0).

The regularities of ul and f permit us to write

u′′l −4ul + |ul |ρ = f in L∞(0, T0; L2(Ω)). (3.25)

Since ul ∈ L∞(0, T0; V) and 4ul ∈ L∞(0, T0; L2(Ω)), then ∂ul
∂ν ∈ L∞(0, T0; H−1/2(Γ1)), as shown

in Milla Miranda [21]. Multiplying both sides of (3.25) by vθ, with v ∈ V and θ ∈ L2(0, T0),
and integrating on Q0, we obtain∫ T0

0
(u′′l (t), v)θ dt +

∫ T0

0
((ul(t), v))θ dt +

∫ T0

0
(|ul(t)|ρ, v)θ dt +

∫ T0

0

〈
∂ul(t)

∂ν
, v
〉

θ dt

=
∫ T0

0
( f (t), v)θ dt,

where 〈·, ·〉 denotes the duality pairing H−1/2(Γ1) and H1/2(Γ1). This equality and (3.24) imply

∂ul

∂ν
+ δp(u′l) = 0 in L2(0, T0; H−1/2(Γ1)).

Since u′l ∈ L∞(0, T0; H1/2(Γ1)), then δp(u′l) ∈ L∞(0, T0; H1/2(Γ1)), and thus

∂ul

∂ν
+ δp(u′l) = 0 in L∞(0, T0; H1/2(Γ1)). (3.26)

By the facts ul ,4ul ∈ L∞(0, T0; L2(Ω)) and ∂ul
∂ν ∈ L∞(0, T0; H

1
2 (Γ1)), and by Proposition 3.5,

we conclude
ul ∈ L∞(0, T0; V ∩ H2(Ω)). (3.27)

Differentiating with respect to t the equality (3.26) and noting that u′′l ∈ L2(0, T0; L2(Γ1)), we
obtain the regularities in (2.7). As estimates (3.13) and (3.18) are independent of l ≥ l0, we
obtain in a similar way a function u in class (2.5), u satisfying (2.6)-(2.8).

The verification of the initial data (2.8) follows from estimatee (3.19)1– (3.19)3.

Uniqueness of solutions. Let u and v be two functions in class (2.5) which satisfy equations
(2.6), (2.7) and initial conditions (2.8). Considering the difference w = u− v, we have

w′′ −4w + |u|ρ − |v|ρ = in L∞(0, T0; L2(Ω)),
∂w
∂ν

+ δ
[
p(u′)− p(v′)

]
= 0 in L∞(0, T0; H

1
2 (Γ1)),

w(0) = 0, w′(0) = 0.

(3.28)

Multiplying both sides of (3.28)1 by w′, integrating on Ω and using Gauss’ theorem, we obtain

1
2

d
dt
[
|w′(t)|2 + ‖w(t)‖2]+ ∫

Γ1

δ[p(u′(t))− p(v′(t))] dΓ = −
(
|u(t)|ρ − |v(t)|ρ, w′(t)

)
. (3.29)

By the mean value theorem, |u(x, t)|ρ − |v(x, t)|ρ = ρ|ξ|ρ−2ξw(x, t), where ξ is between u(x, t)
and v(x, t), and thus

∣∣u(x, t)|ρ − |v(x, t)|ρ
∣∣ ≤ |g(x, t)|ρ−2|w(x, t)|, where g(x, t) = |u(x, t)| +
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|v(x, t)|. Therefore

|(|u(t)|ρ − |v(t)|ρ)w′(t)| ≤ ρ
∫

Ω
gρ−1|w(t)||w′(t)| dx

≤ ρ‖g‖ρ−1
L(ρ−1)n(Ω)

‖w(t)‖Lq(Ω)|w′(t)|

≤ ρ
[
‖u(t)‖L(ρ−1)n(Ω) + ‖v(t)‖L(ρ−1)n(Ω)

]ρ−1
‖w(t)‖Lq(Ω)|w′(t)|.

(3.30)

From the embedding (3.1) we find ‖u(t)‖L(ρ−1)n(Ω) ≤ k2‖u(t)‖ ≤ C, ∀t ∈ [0, T0] and simi-
larly, ‖v(t)‖L(ρ−1)n(Ω) ≤ k2‖u(t)‖ ≤ C, ∀t ∈ [0, T0]. Combining (3.30) with the two preceding
inequalities, we get

|(|u(t)|ρ − |v(t)|ρ)| ≤ C1‖w(t)‖|w′(t)| ≤ C2
1

2
‖w(t)‖2 +

1
2
|w′(t)|2.

This inequality, (3.29) and properties (2.1) of p, imply

1
2

d
dt
[
|w′(t)|2 + ‖w(t)‖2]+ δ0b0

∫
Γ1

w′(t)2 dΓ ≤ 1
2
|w′(t)|+ C2

1
2
‖w(t)‖2.

Then the Gronwall inequality provides w′(t) = 0 and w(t) = 0 a.e. in [0, T0]. This concludes
the proof of Theorem 2.1.

4 Case h(x, s) continuous in s

Initially note that, since h is a continuous function, the following Strauss’ approximations were
shown by Louredo and Milla Miranda [12] .

Proposition 4.1. Assume that h satisfies hypotheses (2.11). Then there exists a sequence (hl) of
functions of C0(R; L∞(Γ1)) satisfying the following conditions:

(i) hl(x, 0) = 0 for almost all x in Γ1;

(ii) [hl(x, s)− hl(x, r)] (s− r) ≥ d0(s− r)2, ∀s, r ∈ R and for almost all x in Γ1;

(iii) there exists a function cl ∈ L∞(Γ1) such that

|hl(x, s)− hl(x, r)| ≤ cl(x)|s− r|, ∀s, r ∈ R for almost all x in Γ1;

(iv) (hl) converges to h uniformly on bounded sets of R for almost all x in Γ1.

Proof of Theorem 2.1. We proceed as in Theorem 2.1, changing the function δ(x)p(s) into
hl(x, s). Let (u1

l ) be a sequence of functions of D(Ω) such that

u1
l → u1 in H1

0(Ω). (4.1)

Note that
∂u0

∂ν
+ hl(·, u1

l ) = 0, ∀l. (4.2)
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For fixed l ∈ N we construct the special basis {wl
1, wl

2, . . .} of V ∩ H2(Ω) such that u0
l , u1

l be-
long to [wl

1, wl
2]. With this basis we determine the approximate solutions ulm(t) = ∑m

j=1 gjlm(t)wl
j

of (4.3), where gjlm(t) is defined by the approximate problem∣∣∣∣∣∣
(u′′lm(t), v) + ((ulm(t), v)) + (|ulm(t)|ρ, v) +

∫
Γ1

hl(·, u′lm(t))v dΓ = ( f (t), v), ∀v ∈ V l
m,

ulm(0) = u0, u′lm(0) = u1
l .

(4.3)

In a similar way as we made to obtain the estimates (3.12), (3.16) and (3.17) of Section 3, we
find

1
2
|u′lm(t)|2 +

1
2
‖ulm(t)‖2 ≤ N, d0

∫ t

0

∫
Γ1

[u′lm(x, s)]2dΓ ds ≤ D,

1
2
|u′′lm(t)|2 +

1
2
‖u′lm(t)‖2 + d0

∫ t

0

∫
Γ1

[u′′lm(x, s)]2 dΓ ds ≤ P,
(4.4)

where the constants N, D and P are independent of l ≥ l0, m and t ∈ [0, T0]. The estimates
(4.4) provide a subsequence of (ulm), which still will be denoted by (ulm), such that

ulm → ul weak star in L∞(0, T0; V),

u′lm → u′l weak star in L∞(0, T0; V),

u′′lm → u′′l weak star in L∞(0, T0; L2(Ω)),

u′lm → u′l weak in L2(0, T0; L2(Γ1)),

u′′lm → u′′l weak in L2(0, T0; L2(Γ1)).

(4.5)

In a similar way as in the convergence (3.22) and (3.23), we get

|ulm|ρ → |ul |ρ weak star in L∞(0, T0; L2(Ω)),

hl(·, u′lm)→ hl(·, u′l) weak star in L∞(0, T0; L2(Γ1)).
(4.6)

Convergence (4.5) and (4.6) allow us to pass to limit in m in the approximate equations of
(4.3). Therefore,∫ T0

0
(u′′l (t), v)θ dt +

∫ T0

0
((ul(t), v))θ dt +

∫ T0

0
(|ul(t)|ρ, v)θ dt +

∫ T0

0

∫
Γ1

hl(·, u′l)vθ dΓ dt

=
∫ T0

0
( f (t), v)θ dt,

for v ∈ V and θ ∈ L2(0, T0). By analogous arguments used to obtain (3.25) and (3.26), we find

u′′l −4ul + |ul |ρ = f in L∞(0, T0; L2(Ω)), (4.7)

∂ul

∂ν
+ hl(·, u′l) = 0 in L∞(0, T0; H1/2(Γ1)). (4.8)

Estimates (4.4) imply in the existence of a subsequence of (ul), which still will be denoted
by (ul), and a function u such that

ul → u weak star in L∞(0, T0; V),

u′l → u′ weak star in L∞(0, T0; V),

u′′l → u′′ weak star in L∞(0, T0; L2(Ω)),

u′l → u′ weak in L2(0, T0; L2(Γ1)),

u′′l → u′′ weak in L2(0, T0; L2(Γ1)).

(4.9)
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As in (4.6)1, we derive

|ul |ρ → |u|ρ weak star in L∞(0, T0; L2(Ω)).

By using this, convergence (4.9)1 and (4.9)3 in (4.7) yield

u′′ −4u + |u|ρ = f in L∞(0, T0; L2(Ω)).

Using the convergence (4.9)2, (4.9)5, and the Aubin–Lions theorem, we obtain u′l → u′ strong
in L2(0, T0; L2(Γ1)), which implies

u′l → u′ a.e. in Σ0. (4.10)

Let (x, t) ∈ Σ0 = Γ1 × (0, T0) be fixed, then the convergence (4.10) ensures that the set
{u′l(x, t) : l ∈ N} is bounded. The item (iv) of Proposition 4.1 guarantees that hl converges
to h uniformly on bounded sets of R and for almost all in Γ1. These two results and the
convergence (4.10) provide

hl(·, u′l)→ h(·, u′) a.e on Σ0. (4.11)

On the other hand, by equations (4.7) and (4.8), we obtain∫
Γ1

hl(·, u′l(t))u
′
l(t) dΓ = −1

2
d
dt
|u′l(t)|2 −

1
2

d
dt
‖ul(t)‖2 − (|ul(t)|ρ, u′l(t)) + ( f (t), u′l(t)). (4.12)

By (3.2), hypothesis on f and estimates (4.4), we obtain

|(|ul(t)|ρ, u′l(t))| ≤ C and |( f (t), u′l(t))| ≤ C,

where the constant C > 0 is independent of l ≥ l0 and t ∈ [0, T0]. By (4.9) we find that
ul ∈ C0([0, T0]; V) and u′l ∈ C0([0, T0]; L2(Ω)), and by (4.4), the sequences (ul(T0)) and (u′l(T0))

are bounded in V and L2(Ω), respectively. Thus by (4.12), we obtain∫ T0

0

∫
Γ1

hl(·, u′l(t))u
′
l(t) dΓ dt = −1

2
|u′l(T0)|2 +

1
2
|u1

0|2 −
1
2
‖ul(T0)‖2 +

1
2
‖u0‖2 ≤ C,

para todo l ≥ l0 and t ∈ [0, T0]. Since hl(x, s)s ≥ 0, we derive∫ T0

0

∫
Γ1

hl(·, u′l(t))u
′
l(t) dΓ dt ≤ C, ∀l ≥ l0 and t ∈ [0, T0]. (4.13)

By (4.11), (4.13) and Strauss’ theorem in [28], we find

hl(·, u′l)→ h(·, u′) in L1(Γ1 × (0, T0)). (4.14)

On the other hand, by convergence (4.9)1–(4.9)3 and equation (4.7), we find ul → u weak
in L2(0, T0, V) and 4ul → 4u weak in L2(0, T0, L2(Ω)). From this, as shown in Milla Miranda
[21], we conclude

∂ul

∂ν
→ ∂u

∂ν
weak in L2(0, T0, H−1/2(Γ1)).

From convergence (4.14) and equation (4.8), we obtain ∂ul
∂ν → −h(·, u′) in L1(Γ1 × (0, T0)).

These last two convergence assure that

∂u
∂ν

+ h(·, u′) = 0 in L1(0, T0; L1(Γ1)).
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The verification of the initial data follow from the convergence (4.9). This conclude the
proof of Theorem 2.2 for the case n ≥ 3.

When n = 1, 2 we consider ρ > 1, and in this case V ↪→ Lr(Ω) for all r ≥ 1, r ∈ R. Thus we
obtain inequality (3.6) since V ↪→ L2ρ(Ω). For second estimate we apply the Hölder inequality
in

|(|ulm(t)|ρ−2ulm(t)u′lm(t), u′′lm(t))|

considering
1

(ρ− 1)k
+

1
s
+

1
2
= 1,

where k is a natural number such that (ρ− 1)k > 2 and s = 2(ρ−1)k
(ρ−1)k−2 . With these considerations

and applying similar arguments to those used in Sections 3 and 4 we are able to conclude the
proofs of Theorems 2.1 and 2.2 for the case n = 1, 2.
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