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Abstract. This paper studies transformations for conjoined bases of symplectic differ-
ence systems Yi+1 = SiYi with the symplectic coefficient matrices Si. For an arbitrary
symplectic transformation matrix Pi we formulate most general sufficient conditions
for Si, Pi which guarantee that Pi preserves oscillatory properties of conjoined bases Yi.
We present examples which show that our new results extend the applicability of the
discrete transformation theory.
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1 Introduction

In this paper we investigate transformations of the symplectic difference systems [2]

Yi + 1 = Si Yi, Si =

[
Ai Bi
Ci Di

]
, Yi =

[
Xi
Ui

]
, i = M, M + 1, . . . , M ∈ Z, (1.1)

where Si, Yi are real partitioned matrices with n× n blocks Ai, Bi, Ci, Di, Xi, Ui. The matrix
Si is assumed to be symplectic, i.e.

ST
i JSi = J, J =

[
0 I
−I 0

]
,

and I, 0 are the identity and zero matrices.
Together with system (1.1) we consider the transformed system

Ỹi+1 = S̃iỸi, Ỹi = PiYi, S̃i = Pi+1SiP−1
i , (1.2)

where Pi is an arbitrary symplectic transformation matrix, i.e.

PT
i JPi = J, i = M, M + 1, . . .
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For the special case Pi = J, (1.2) takes the form of the so called reciprocal system [3]

JYi+1 = S̃i JYi, S̃i = JSi JT =

[
Di −Ci
−Bi Ai

]
. (1.3)

The main aim of the paper is to formulate the most general sufficient conditions for Pi and
Si such that systems (1.1), (1.2) have the same oscillatory properties.

Recall now some results from the continuous case which we are going to extend to (1.1).
Consider the continuous counterpart of (1.1) – the differential Hamiltonian system

x′ = A(t)x + B(t)u, u′ = −C(t)x− AT(t)u, B(t) = BT(t), C(t) = CT(t). (1.4)

Let P(t) be a 2n× 2n continuously differentiable matrix and suppose that the matrix P(t) is
symplectic, i.e. PT(t)JP(t) = J. Then the transformation(

y
z

)
= P(t)

(
x
u

)
(1.5)

transforms (1.4) into another Hamiltonian system

y′ = Ā(t)y + B̄(t)z, z′ = −C̄(t)y− ĀT(t)z, (1.6)

where the matrices Ā(t), B̄(t), C̄(t) may be expressed via A(t), B(t), C(t) and blocks of P(t)
(see [1]). The natural problem is to look for invariants of the above transformation, in partic-
ular, to ask when this transformation preserves oscillatory properties of transformed systems.
If P(t) = J in (1.5) and the matrices B(t), C(t) are nonnegative definite it has been shown
in [15] that (1.4) is nonoscillatory iff (1.6) is nonoscillatory. This statement is now commonly
referred as reciprocity principle for Hamiltonian systems. It has been shown that the reciprocity-
type statement extends under natural additional assumptions to general transformation (1.5)
(see [5]).

Discrete analogs of these results based on the reciprocity principle for the discrete Hamil-
tonian systems [13]

∆xi := xi+1 − xi = Aixi+1 + Biui, Bi = BT
i ,

∆ui = − Cixi+1 − AT
i ui, Ci = CT

i , det (I − Ai) 6= 0,
(1.7)

were presented for the first time in [3, Theorem 3]. Later this principle was generalized for
symplectic systems (1.1) in [7, 11, 12].

In this paper we formulate the most general reciprocity-type statements for symplectic
system (1.1) (see Theorem 3.3). Previous versions of reciprocity-type statements in [3, 7, 11]
are based on the assumptions that some symmetric matrices associated with Si and Pi are
nonnegative definite. For example, it was proved in [11, Corollary 3.6] that system (1.1) and
the reciprocal system (1.3) oscillate and do not oscillate simultaneously under the assumption

AiBT
i ≥ 0, AT

i Ci ≤ 0, (1.8)

where the inequality A ≥ 0 (A ≤ 0) means that A = AT is nonnegative (nonpositive) definite.
However, conditions of the given type impose serious restrictions on the applicability of the
discrete transformation theory. For example, for the Fibonacci sequence yi+2 = yi+1 + yi
rewritten in form (1.1), assumption (1.8) does not hold (see Section 4). Condition (1.8) was
generalized to the case ind(AiBT

i ) = ind(AT
i Ci) (see Theorem 3.2 and formula (3.11) in [12]),
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where ind A is the number of negative eigenvalues of A = AT. However, [12, Theorem 3.2]
deals with the constant transformation matrix Pi = P in (1.2). The main theorem of this paper
covers and explains all these special cases.

The paper is organized as follows. In the next section we recall basic facts concerning os-
cillatory properties of (1.1) (see [3,14]). We also recall relatively new results of the comparative
index theory for (1.1) (see [9–12]) and complete their by new relations between the number of
focal points for solutions of (1.1) and (1.2). In Section 3 we prove the main result of the paper
(see Theorem 3.3) and its corollaries. In Section 4 we provide several examples illustrating the
results of Section 3.

2 The comparative index in the transformation theory

We will use the following notation. For a matrix A, we denote by AT, A−1, A−T, A†, rank A,
ind A, A ≥ 0, A ≤ 0, respectively, its transpose, inverse, transpose and inverse, Moore–
Penrose pseudoinverse, rank (i.e., the dimension of its image), index (i.e., the number of its
negative eigenvalues), positive semidefiniteness, negative semidefiniteness. We also use the
notation ∆Ak for the forward difference operator Ak+1 − Ak and the notation Ai|NM for the
difference AN − AM. By I and 0 we denote the identity and zero matrices of appropriate
dimensions.

Oscillatory properties of discrete symplectic systems are defined using the concept of focal
points of conjoined bases of (1.1). A 2n× n matrix solution Y =

(
X
U
)

of (1.1) is said to be a
conjoined basis of this system if

XT
i Ui = UT

i Xi and rank
(

Xi

Ui

)
= n. (2.1)

Note that if (2.1) holds for a fixed i = i0, then it holds for any i ∈ Z. The concept of the
multiplicity of a focal point of a conjoined basis was introduced by W. Kratz [14] as follows.
Given a conjoined basis, introduce the matrices

Mi = (I − Xi+1X†
i+1)Bk, Ti = I −M†

i Mi, Pi = TT
i XiX†

i+1BiTi.

Then obviously MiTi = 0 and it can be shown (see [14]) that the matrix Pi is symmetric. The
multiplicity of a forward focal point of a conjoined basis Y =

(
X
U
)

in the interval (i, i + 1] is
defined as the number

m(i) := rank Mi + ind Pi.

The number of focal points q(i) of a conjoined basis of (1.2) can be defined similarly. Recall (see
[3]) that the conjoined basis Y(M)

i of (1.1) given by the initial conditions X(M)
M = 0, U(M)

M = I is
said to be the principal solution of (1.1) at M.

System (1.1) is said to be nonoscillatory (see [3]), if there exists M ∈ N such that the
principal solution at M of (1.1) has no focal points in the discrete interval (M, ∞), i.e., m(i) = 0
for i ∈ (M, ∞). In the opposite case (1.1) is said to be oscillatory.

Define the numbers of focal points in (M, N + 1]

l(Yi, M, N) =
N

∑
i=M

m(i), l(Ỹi, M, N) =
N

∑
i=M

q(i) (2.2)

for conjoined bases Yi and Ỹi = PiYi.
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Another important notion we use is the concept of the comparative index as introduced and
treated in [9–12]. We define the comparative index for 2n× n matrices Y =

(
X
U
)
, Ŷ =

(
X̂
Û

)
with condition (2.1) using the notation

M = (I − XX†)X̂,

T = I −M†M,

D = DT = T wT(Y, Ŷ)X†X̂T ,

where w(Y, Ŷ) is the Wronskian given by

w(Y, Ŷ) = YT JŶ. (2.3)

The comparative index is defined by

µ(Y, Ŷ) = µ1(Y, Ŷ) + µ2(Y, Ŷ), µ1(Y, Ŷ) = rankM, µ2(Y, Ŷ) = indD.

The dual comparative index is introduced as µ∗(Y, Ŷ) = µ1(Y, Ŷ) + µ∗2(Y, Ŷ), where µ∗2(Y, Ŷ) =
ind(−D). For the comparative indices µ(Y, Ŷ), µ∗(Y, Ŷ) we have the estimates (see Property 7
in [10, p. 449]):

µ(Y, Ŷ) ≤ rank w(Y, Ŷ) ≤ n, µ∗(Y, Ŷ) ≤ rank w(Y, Ŷ) ≤ n. (2.4)

For the special case Y := Yk+1, Ŷ := Sk[0 I]T the numbers µ1 and µ2 are actually equal to the
quantities rank Mk and ind Pk from the definition of the multiplicity of a forward focal point
(see [10, Lemma 3.1]). Based on this connection and properties of the comparative index [10]
we prove the following result of the transformation theory of (1.1).

Lemma 2.1. Let Yi, Ỹi = PiYi be conjoined bases of (1.1) and (1.2), then

q(i)−m(i)− ∆µ(Ỹi, Pi[0 I]T) = ui, (2.5)

ui = µ(Pi+1[0 I]T, S̃i[0 I]T)− µ∗(P−1
i [0 I]T,S−1

i [0 I]T)

= µ∗(S−1
i [0 I]T, P−1

i [0 I]T)− µ(S̃i[0 I]T, Pi+1[0 I]T),
(2.6)

where m(i) and q(i) are the numbers of focal points in (i, i + 1] for Yi and Ỹi = PiYi, respectively.

Proof. The proof of the first representation of the sequence ui in (2.6) is given in [11, Lemma
3.1]. Consider the proof of the second one. By Property 5 in [10, p. 448]

µ(Pi+1[0 I]T, S̃i[0 I]T) + µ(S̃i[0 I]T, Pi+1[0 I]T) = rank w(Pi+1[0 I]T, S̃i[0 I]T),

analogously

µ∗(P−1
i [0 I]T,S−1

i [0 I]T) + µ∗(S−1
i [0 I]T, P−1

i [0 I]T) = rank w(P−1
i [0 I]T,S−1

i [0 I]T),

where the Wronskians are evaluated according to (2.3). It is easy to verify that

w(Pi+1[0 I]T, S̃i[0 I]T) = [0 I]PT
i+1 JS̃i[0 I]T = [0 I]JP−1

i+1S̃i[0 I]T

= [0 I]JSiP−1
i [0 I]T = [0 I]S−T

i JP−1
i [0 I]T = −wT(P−1

i [0 I]T,S−1
i [0 I]T)).
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So we have rank w(Pi+1[0 I]T, S̃i[0 I]T) = rank w(P−1
i [0 I]T,S−1

i [0 I]T)) and then the second
representation of ui in (2.6) follows from the identity

µ(Pi+1[0 I]T, S̃i[0 I]T) + µ(S̃i[0 I]T, Pi+1[0 I]T)

= µ∗(P−1
i [0 I]T,S−1

i [0 I]T) + µ∗(S−1
i [0 I]T, P−1

i [0 I]T).

The proof is completed.

Note that we can interchange the roles of systems (1.1) and (1.2) in Lemma 2.1. In this
case we have to replace Pi, Yi, Si by P−1

i , Ỹi, S̃i, respectively. This approach makes it possible
to derive new formulas presenting the difference q(i)−m(i).

Lemma 2.2. Under the notation of Lemma 2.1 we have

q(i)−m(i) + ∆µ(Yi, P−1
i [0 I]T) = ũi, (2.7)

ũi = µ∗(Pi[0 I]T, S̃−1
i [0 I]T)− µ(P−1

i+1[0 I]T,Si[0 I]T)

= µ(Si[0 I]T, P−1
i+1[0 I]T)− µ∗(S̃−1

i [0 I]T, Pi[0 I]T),
(2.8)

where
ũi − ui = ∆ rank([I 0]Pi[0 I]T) (2.9)

for ui given by (2.6).

Proof. As it was mentioned above, we derive (2.7), (2.8) just replacing the roles of (1.1) and
(1.2) in (2.5). Then, by (2.7), (2.5) ũi − ui = ∆{µ(Yi, P−1

i [0 I]T) + µ(Ỹi, Pi[0 I]T)}. By Property 9
in [10, p. 449] we have

µ(Ỹi, Pi[0 I]T)− µ([0 I]T, Pi[0 I]T) = µ(P−1
i [0 I]T, P−1

i [0 I]T)− µ(Yi, P−1
i [0 I]T)

= −µ(Yi, P−1
i [0 I]T),

then µ(Yi, P−1
i [0 I]T) + µ(Ỹi, Pi[0 I]T) =µ([0 I], Pi[0 I]T) = rank([I 0]Pi[0 I]T) and the proof of

(2.9) is completed.

For the most important special case Pi = J we have the following corollary to Lemmas 2.1,
2.2.

Corollary 2.3. For the case Pi = J the sequences ui, ũi in Lemmas 2.1, 2.2 are defined by the formulas

ui = ind(−AT
i Ci)− ind(AiBT

i ), (2.10)

ũi = ind(−CiDT
i )− ind(BT

i Di), (2.11)

ui = ũi,

where Ai, Bi, Ci, Di are the blocks of Si in (1.1). Similarly, for the comparative indexes µ(Ỹi, Pi[0 I]T),
µ(Yi, P−1

i [0 I]T) in the left hand sides of (2.5), (2.7) for the case Pi = J we have the representations

µ(JYi, [I 0]T) = rank(I −UiU†
i ) + ind(XT

i Ui), (2.12)

µ(Yi, [−I 0]T) = rank(I − XiX†
i ) + ind(−XT

i Ui) (2.13)

Proof. Formulas (2.10), (2.11), (2.12), (2.13) are verified by direct computations according to
the definition of the comparative index. Note that for the special case Pi = J we have
rank([I 0]Pi[0 I]T) = n, then ui = ũi according to (2.9).
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3 Generalized reciprocity principle

Based on Lemmas 2.1, 2.2 we can derive connections between total numbers of focal points
(2.2) of conjoined bases of (1.1), (1.2).

Theorem 3.1. Let Yi, Ỹi = PiYi be conjoined bases of (1.1) and (1.2) then

l(Ỹ, M, N)− l(Y, M, N)− µ(Ỹi, Pi[0 I]T)|N+1
M = S(M, N),

S(M, N) = S̃(M, N)− rank([I 0]Pi[0 I]T)|N+1
M ,

S(M, N) =
N

∑
i=M

ui, S̃(M, N) =
N

∑
i=M

ũi,

(3.1)

where the sequences ui, ũi are defined by (2.6), (2.8), respectively and l(Yi, M, N), l̃(Ỹi, M, N) given
by (2.2) are the numbers of focal points for Yi, Ỹi in (M, N + 1].

Proof. Summing (2.5), (2.7) from i = M to i = N and using (2.9) we derive (3.1).

Remark 3.2. Note that by (2.4) and (2.9) for the partial sums S(M, N), S̃(M, N) in (3.1) we
have the estimate

|S(M, N)− S̃(M, N)| ≤ max(rank([I 0]TPN+1[0 I]T), rank([I 0]TPM[0 I]T)) ≤ n. (3.2)

It follows from (3.2) that either the partial sums S(M, N) and S̃(M, N) are simultaneously
bounded for a fixed M ∈ Z as N → ∞, i.e. the inequalities

|S(M, N)| ≤ C(M), ∀N ≥ M,

|S̃(M, N)| ≤ C̃(M), ∀N ≥ M.
(3.3)

hold for some C(M) > 0, C̃(M) > 0 or these sums are simultaneously unbounded.

The main result of this paper is the following.

Theorem 3.3 (Generalized reciprocity principle).

(i) If the sequences S(M, N), S̃(M, N) defined in Theorem 3.1 are bounded as N → ∞, i.e. there
exists M ∈ Z such that (3.3) hold, then systems (1.1) and (1.2) oscillate or do not oscillate
simultaneously.

(ii) If systems (1.1), (1.2) are nonoscillatory, then the sequences S(M, N), S̃(M, N) are bounded, i.e.
(3.3) hold;

(iii) If the sequences S(M, N), S̃(M, N) defined in Theorem 3.1 are unbounded, then at least one of
systems (1.1), (1.2) is oscillatory.

Proof.

1. Consider the proof of (i). Note first that in the definition of nonoscillation of (1.1) (see
Section 2) it is possible to replace the principal solution Y(M)

i by any conjoined basis of
(1.1) according to the inequality

|l(Y, M, N)− l(Y(M), M, N)| ≤ n (3.4)
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proved in [8]. Our purpose is to show that under assumption (3.3) the similar inequality
holds for the numbers of focal points l(Y, M, N), l(Ỹ, M, N) of conjoined bases of (1.1),
(1.2). Indeed, by (3.3), (3.1), and (2.4) we have

−C(M) ≤ l(Ỹ, M, N)− l(Y, M, N)− µ(ỸN+1, PN+1) + µ(ỸM, PM)

= S(M, N) ≤ C(M),

−C(M)− n ≤ −C(M)− µ(ỸM, PM) ≤ l(Ỹ, M, N)− l(Y, M, N)

≤ C(M) + µ(ỸN+1, PN+1) ≤ C(M) + n,

then,
|l(Ỹ, M, N)− l(Y, M, N)| ≤ C(M) + n, ∀N ≥ M. (3.5)

So we have proved that (3.3) implies (3.5). Since l(Y, M, N), l(Ỹ, M, N) are the partial
sums of the series with natural or zero members, then, by (3.5), l(Y, M1, N) = 0 for for
some M1 and for all N ≥ M1 iff l(Ỹ, M2, N) = 0 for some M2 and for all N > M2. So we
see that (1.1) is nonoscillatory if and only if so is (1.2).

2. To prove (ii) we assume that (1.1), (1.2) are simultaneously nonoscillatory. Then there ex-
ists sufficiently large M such that l(Y, M, N) = l(Ỹ, M, N) = 0. Then, according to (3.1),
(2.4) we see that |S(M, N)| ≤ n and by Remark 3.2 the sequence S̃(M, N) is bounded as
well.

3. It is easy to see that assertion (ii) is equivalent to assertion (iii).

The proof is completed.

Note that Theorem 3.3 answers the question about the oscillation (nonoscillation) of one
system ((1.1) or (1.2)) provided we posses information on oscillation (nonoscillation) of other
one in all situations except the case when S(M, N), S̃(M, N) are unbounded (see Theorem 3.3
(iii)) and one of the systems ((1.1) or (1.2)) is oscillatory. This case demands additional infor-
mation. For example, we can offer the following criterion.

Corollary 3.4. Assume that
lim

N→∞
S(M, N) = ∞ (−∞) (3.6)

and system (1.1) ((1.2)) is oscillatory. Then system (1.2) ((1.1)) is oscillatory as well.

Proof. Assume the converse, i.e. that (1.2) is not oscillatory. Then there exists M such that
l(Ỹ, M, N) = 0 for all N > M. Applying (3.1) we have

S(M, N) + l(Y, M, N) = −µ(Ỹi, Pi[0 I]T)|N+1
M ,

and then, by (2.4) the sum S(M, N) + l(Y, M, N) is bounded as N → ∞. This contradiction
proves the first claim. The proof of the second claim (for the case −∞) is similar. Certainly, by
Remark 3.2 the sum S(M, N) in (3.6) can be replaced by S̃(M, N).

The following theorem formulates the simplest sufficient conditions for the boundedness
of S(M, N), S̃(M, N) in (3.1).
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Theorem 3.5. Systems (1.1) and (1.2) oscillate and do not oscillate simultaneously if at least one of
the sequences ui, ũi given by (2.6), (2.8) tends to zero as i→ ∞, i.e. there exists M > 0 such that

ui = 0⇔ µ(Pi+1[0 I]T, S̃i[0 I]T) = µ∗(P−1
i [0 I]T,S−1

i [0 I]T), i ≥ M, (3.7)

or

ũi = 0⇔ µ∗(Pi[0 I]T, S̃−1
i [0 I]T) = µ(P−1

i+1[0 I]T,Si[0 I]T), i ≥ M. (3.8)

In particular, for Pi = J we have the corollary to Theorem 3.5.

Corollary 3.6. Systems (1.1) and (1.3) oscillate and do not oscillate simultaneously if there exists
M > 0 such that

ind(−AT
i Ci) = ind(AiBT

i ), i ≥ M, (3.9)

and (3.9) is equivalent to

ind(−CiDT
i ) = ind(BT

i Di), i ≥ M. (3.10)

Remark 3.7.

(i) Note that for the case rank([I 0]Pi[0 I]T) = const, i ≥ M conditions (3.7) and (3.8) are
equivalent according to (2.9). In particular, rank([I 0]Pi[0 I]T) = n for the case Pi = J (see
Corollary 3.6).

(ii) Conditions (3.7), (3.8) will be satisfied if we assume

µ(Pi+1[0 I]T, S̃i[0 I]T) = µ∗(P−1
i [0 I]T,S−1

i [0 I]T) = 0, i ≥ M, (3.11)

or

µ∗(Pi[0 I]T, S̃−1
i [0 I]T) = µ(P−1

i+1[0 I]T,Si[0 I]T) = 0, i ≥ M. (3.12)

In particular, for the case P = J from (3.11) we derive conditions (1.8) while (3.12) implies

CiDT
i ≤ 0, BT

i Di ≥ 0. (3.13)

In the next section we give examples illustrating the applicability of Theorems 3.3, 3.5.

4 Applications

The following example illustrates Theorem 3.3 (iii). According to Theorem 3.3 (iii), if (1.1) does
not oscillate and the sum S(M, N) is unbounded, then (1.2) is necessary oscillatory.

Example 4.1. Consider system (1.1) with the matrix Si =
[

1 0
3 1

]
. It is easy to verify that for any

conjoined basis the number of focal points m(i) = 0, i.e. this system is nonoscillatory. For
the transformation matrix Pi = J the assumptions of Theorem 3.3 (iii) are satisfied by virtue
of ui = ind(−AT

i Ci) = 1, S(M, N) = ∑N
i=M(1) = N − M + 1, i.e. S(M, N) is unbounded.

The transformed system (1.3) with the matrix S̃i = JTSi J =
[

1 −3
0 1

]
is oscillatory. Indeed, the

conjoined basis Yi = [1 0]T of this system has l(Y, M, N) = ∑N
i=M ind(−3) = N −M + 1 focal

points in (M, N + 1].

The following example presents the situation when conditions (1.8) do not hold, but (3.9)
is true.
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Example 4.2. Consider the second order difference equation

∆((−1)i∆yi) + (−1)iyi+1 = 0

associated with Fibonacci sequence yi+2 = yi+1 + yi. If we introduce Yi = [yi (−1)i∆yi]
T,

then symplectic system (1.1) has the matrix

Si =

[
1 (−1)i

(−1)i+1 0

]
.

Since for the principal solution at 0 we have y0 = 0, y1 = 1, yi+2 = yi + yi+1 > 0, then the
number of focal points of this solution is defined as m(i) = m2(i) = ind(−1)i, i ≥ 1, i.e.
system (1.1) is oscillatory. Note that for the given system condition (1.8) does not hold, but
(3.9) is true for all i, then the transformed system (1.3) is also oscillatory. Point out that for the
given example conditions (3.13) are trivially satisfied by Di = 0.

Example 4.3. This example illustrates the situation when condition (3.9) does not hold, but
(3.3) is true. Consider system (1.1) with the matrix

Si =

[
1 0

−(−2)i+1 1

] [
1 1
0 1

] [
1 0

(−2)i 1

]
=

[
1 + (−2)i 1

(−2)i(3− (−2)i+1) 1− (−2)i+1

]
.

(4.1)

This system is nonoscillatory because it is derived using the low triangular transformation
matrix [

1 0
−(−2)i 1

]
applied to conjoined bases Yi of the nonoscillatory symplectic system Yi+1 =

[
1 1
0 1

]
Yi. Indeed,

the number of focal points of the conjoined basis Yi = [1 0] of the last system equals m(i) =
ind(1) = 0 and low triangular transformation matrices do not change the number of focal
points (see [6, Corollary 2.2]). For the matrix Si given by (4.1) we have

ind(BiAT
i ) = ind(1 + (−2)i) =

{
0, i = 2k;

1, i = 2k + 1

and

ind(−AT
i Ci) = ind((1 + (−2)i)(−2)i(−3 + (−2)i+1)) =

{
1, i = 2k;

0, i = 2k + 1.

We see that condition (3.9) is not satisfied, but the partial sum S(M, N) = ∑N
i=M(−1)i is

bounded, then reciprocal system (1.3) associated with (1.1) given by (4.1) is nonoscillatory by
Theorem 3.3 (i).

The last example is devoted to the so-called trigonometric difference systems [4] and illus-
trates recent results of the transformation theory in [6, Lemma 3.2].

Example 4.4. Consider the trigonometric difference system (1.1) for M = 0 with the orthogo-
nal matrix

Si =


cos(ϕ1

i ) 0 sin(ϕ1
i ) 0

0 cos(ϕ2
i ) 0 sin(ϕ2

i )

− sin(ϕ1
i ) 0 cos(ϕ1

i ) 0
0 − sin(ϕ2

i ) 0 cos(ϕ2
i )

 , ϕ1
i =

πi
2

, ϕ2
i =

π(i + 1)
2

. (4.2)
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The principal solution at 0 for this system has the upper blocks Xi given by

Xi =

sin
(

i(i−1)π
4

)
0

0 sin
(

i(i+1)π
4

) ,

then we can calculate the numbers of focal points of (1.1) which form the periodic sequence
with the minimal period 4: m(0) = m(1) = 0, m(2) = m(3) = 1, m(i) = m(i + 4), i ≥ 0. So
we see that system (1.1) is oscillatory. Note that the block Bi in (1.1) associated with (4.2) is
singular for all i and rank Bi = 1. Introduce the following orthogonal transformation matrix

Pi =

[
cos(αi)I − sin(αi)I
sin(αi)I cos(αi)I

]
, αi =

π

4(i + 1)
. (4.3)

The matrix of the transformed system (1.2) takes the form (4.2) where the angles ϕ1,2
i have to

be replaced by ϕ̃1,2
i = ϕ1,2

i − ∆αi. The upper blocks of the transformed principal solution are

X̃i =

sin
(

i(i−1)π
4 − αi

)
0

0 sin
(

i(i+1)π
4 − αi

) ,

then the transformation with (4.3) regularizes the system (1.1) in the following sense: trans-
formed system (1.2) has the nonsingular block B̃i and, additionally, the transformed principal
solution has the nonsingular upper block X̃i. Moreover, the transformation with (4.3) pre-
serves the oscillation properties of (1.1), i.e. system (1.2) is also oscillatory. Indeed, applying
(2.5) we have

ui = µ(Pi+1[0 I]T, S̃i[0 I]T)− µ∗(PT
i [0 I]T,ST

i [0 I]T),

where µ is the comparative index and µ∗ is the dual comparative index. As can be verified by
a direct computation

µ(Pi+1[0 I]T, S̃i[0 I]T) = ind(diag(θ1
i , θ2

i )), θ
j
i =

sin(ϕ
j
i + αi) sin(ϕ

j
i − ∆αi)

sin(αi+1)
, (4.4)

µ∗(PT
i [0 I]T,ST

i [0 I]T) = ind(diag(ϑ1
i , ϑ2

i )), ϑ
j
i =

sin(ϕ
j
i + αi) sin(ϕ

j
i)

sin(αi)
. (4.5)

Then

ui =
2

∑
j=1

(ind(θ j
i )− ind(ϑj

i)).

Using (4.4), (4.5) it is possible to show that ui = 0, i ≥ 0. Assume first that for the fixed j = 1, 2
we have ϕ

j
i = πk, then ϑ

j
i = 0 while θ

j
i > 0 because of

sin(αi+1) > 0, sin(ϕ
j
i + αi) sin(ϕ

j
i − ∆αi) = sin(αi) sin(−∆αi) > 0.

Then, for the given case ind(θ j
i ) = ind(ϑj

i) = 0. For the opposite case sin(ϕ
j
i) 6= 0 we have

that the signs of sin(ϕ
j
i) and sin(ϕ

j
i − ∆αi) are the same because of the definition of the angles

in (4.2), (4.3). Then for this case ind(θ j
i ) − ind(ϑj

i) = 0. Applying Theorem 3.5 we see that
system (1.2) is oscillatory. This fact can be verified by a direct computation. We have that
q(0) = q(1) = 1, q(2) = q(3) = 0, q(i + 4) = q(i), i ≥ 0, where q(i) is the number of focal
points of the transformed principal solution Ỹi.
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