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Abstract. The purpose of the paper is to study asymptotic properties of the third-order
delay differential equation(

r2(t)
(

r1(t)
(
y′(t)

)γ
)′)′

+ p(t)
(
y′(t)

)γ
+ q(t) f (y (τ(t))) = 0. (E)

Employing comparison principles with a suitable first order delay differential equation
we shall establish criteria for all nonoscillatory solutions of (E) to converge to zero,
while oscillation of a couple of first order delay differential equations yields oscillation
of (E). An example is provided to illustrate the main results.
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1 Introduction

In this paper, we are dealing with the oscillation and asymptotic behavior of solutions of the
third-order nonlinear delay differential equation(

r2(t)
(

r1(t)
(
y′(t)

)γ
)′)′

+ p(t)
(
y′(t)

)γ
+ q(t) f (y (τ(t))) = 0, (E)

where r2, r1, p, q ∈ C(I, R), I = [t0, ∞) ⊂ R, t0 ≥ 0, f ∈ C(−∞, ∞). Throughout the paper, we
will assume that the following conditions are fulfilled:

(H1) r1(t), r2(t), q(t) are positive functions, p(t) is nonnegative,

(H2) τ(t) ∈ C1(I, R) satisfies 0 < τ(t) ≤ t, τ′(t) > 0 and lim
t→∞

τ(t) = ∞,

(H3) γ is the quotient of two positive odd integers,
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(H4) x f (x) > 0, f ′(x) ≥ 0 for x 6= 0, − f (−xy) ≥ f (xy) ≥ f (x) f (y) for xy > 0,

(H5) R2(t) =
∫ t

t0
r−1

2 (s)ds → ∞ as t→ ∞.

By a solution of (E), we mean a function y(t) such that r2(t)
(
r1(t) (y′(t))

γ)′ ∈ C1[Ty, ∞)

for a certain Ty ≥ t0 and y(t) satisfies (E) on the half-line [Ty, ∞). Our attention is restricted to
only such extendable solutions y(t) of (E) which satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty.
Further, we make a standing hypothesis that (E) possesses such a solution. As customary,
a solution y(t) of (E) is said to be oscillatory if it has arbitrarily large zeros on [Ty, ∞) and
otherwise it is called to be nonoscillatory. Equation (E) itself is called oscillatory if all of its
solutions are oscillatory.

As is well known, differential equations of third order have long been considered as valu-
able tools in the modeling of many phenomena in different areas of applied mathematics and
physics. Indeed, it is worthwhile to mention their use in the study of entry-flow phenomenon
[11], the propagation of electrical pulses in the nerve of a squid approximated by the famous
Nagumo’s equation [16], the feedback nuclear reactor problem [23] and so on.

Hence, a great deal of work has been done in recent decades and the investigation of oscil-
latory and asymptotic properties for these equations has taken the shape of a well-developed
theory turned mainly toward functional differential equations. In fact, the development of
oscillation theory for the third order differential equations began in 1961 with the appearance
of the work of Hanan [10] and Lazer [15]. Since then, many authors contributed to the sub-
ject studying different classes of equations and applying various techniques, see, for instance,
[1–23]. A systematic survey of the most significant efforts in this theory can be found in the
excellent monographs of Swanson [21], Greguš [9] and the very recent-one of Padhi and Pati
[19].

In fact, determination of trinomial delay differential equations of third order often depends
on the close related second order differential equation. The case when this associated equation
is oscillatory was object of research in [7]. Taking under the assumption the nonoscillation of
the corresponding auxiliary equation, special cases of (E) has been considered in many papers.

The partial case of (E), namely

y′′′(t) + p(t)y′(t) + q(t)y(τ(t)) = 0

has been studied e.g., by present authors [6], Parhi and Padhi [17, 18].
Series of articles [3–5] deal with the case of (E) when γ = 1, i.e.,(

r2(t)
(
r1(t)y′(t)

)′)′
+ p(t)y′(t) + q(t) f (y(τ(t))) = 0. (E′)

By means of a generalized Riccati transformation and integral averaging technique, authors
have established some sufficient conditions which ensure that any solution of (E′) oscillates
or converges to zero. Further oscillation criteria have been obtained by establishing a useful
comparison principle with either first or second order delay differential inequality, given in [1].
Another approach of investigation (E′), which depends on the sign of a particular functional,
was proposed in [8] as a generalization of known results for ordinary case [15].

In spite of a substantial number of existing papers on asymptotic behavior of solutions of
third order trinomial equation (E′), many interesting questions regarding oscillatory proper-
ties remain without answers. More exactly, existing literature does not provide any criteria
which directly ensure oscillation of (E′) as well as condition

∫ ∞
t0

r−1
1 (s)ds = ∞ has been always

assumed to hold.
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In view of the above motivation, our purpose in this paper is to extend the technique
presented in [6] to cover also more general differential equation (E). We stress that our criteria
does not require any condition on the function r1(t).

As convenient, all functional inequalities considered in this paper are assumed to hold
eventually, that is, they are satisfied for all sufficiently large t.

We say that (E) has the property (P) if all of its nonoscillatory solutions y(t) satisfy the
condition

y(t)y′(t) < 0. (1.1)

As will be shown, the properties of (E) are closely connected with the positive solutions of
the auxiliary second-order differential equation

(
r2(t)v′(t)

)′
+

p(t)
r1(t)

v(t) = 0, (V)

as the following theorem says.

Theorem 1.1. Let (V) possess a positive solution v(t). Then the operator

Ly =

(
r2(t)

(
r1(t)

(
y′(t)

)γ
)′)′

+ p(t)
(
y′(t)

)γ

can be represented as

Ly ≡ 1
v(t)

(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

. (1.2)

Proof. It is straightforward to see that

Ly ≡ 1
v(t)

(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

=
1

v(t)

(
r2(t)

(
r1(t)

(
y′(t)

)γ
)′

v(t)− r1(t)r2(t)
(
y′(t)

)γ v′(t)
)′

=

(
r2(t)

(
r1(t)

(
y′(t)

)γ
)′)′

− r1(t) (r2(t)v′(t))
′

v(t)
(
y′(t)

)γ

=

(
r2(t)

(
r1(t)

(
y′(t)

)γ
)′)′

+ p(t)
(
y′(t)

)γ .

Corollary 1.2. If v(t) is a positive solution of (V), then (E) can be written as the binomial equation(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

+ q(t)v(t) f (y (τ(t))) = 0. (Ec)

It is convenient if the Eq. (Ec) is in the canonical form, i.e.

∞∫
t

ds
r2(s)v2(s)

= ∞ (1.3)
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and
∞∫

t

(
v(s)
r1(s)

)1/γ

ds = ∞, (1.4)

because such equations (as will be shown later) have simpler structure of possible nonoscilla-
tory solution.

In what follows, we first investigate the properties of the positive solutions of (V) and then,
instead of studying properties of the trinomial equation (E), we will study the behavior of its
pertaining binomial representation (Ec).

The following result is a consequence of Sturm’s comparison theorem and guarantees the
existence of a nonoscillatory solution of (V).

Lemma 1.3. Assume that

R2
2(t)

r2(t)
r1(t)

p(t) ≤ 1
4

, for t ≥ t0. (1.5)

Then (V) posseses a positive solution.

To be sure that (V) possesses a positive solution, in what follows, we will assume that (1.5)
holds.

For our next purposes, the following lemma will be useful.

Lemma 1.4. Assume that (1.5) is fulfilled, then (V) always possesses a nonoscillatory solution satisfy-
ing (1.3).

Proof. If v1(t) is a positive solution of (V), such that∫ ∞ ds
r2(s)v2

1(s)
< ∞,

then another linearly independent solution of (V) is given by

v2(t) = v1(t)
∞∫

t

ds
r2(s)v2

1(s)
. (1.6)

Really, taking (1.6) into account, it is easy to see that

(
r2(t)v′2(t)

)′
=
(
r2(t)v′1(t)

)′ ∞∫
t

ds
r2(s)v2

1(s)
= − p(t)

r1(t)
v1(t)

∞∫
t

ds
r2(s)v2

1(s)

= − p(t)
r1(t)

v2(t).

Moreover, v2(t) meets (1.3) by now. To see that, denote U (t) =
∫ ∞

t
ds

r2(s)v2
1(s)

, then limt→∞ U (t) =
0 and

∞∫
t0

1
r2(t)v2

2(t)
dt =

∞∫
t0

U−2(t)
r2(t)v2

1(t)
dt = −

∞∫
t0

U ′(t)
U 2(t)

dt

= lim
t→∞

(
1
U (t) −

1
U (t0)

)
= ∞.
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Bringing together all the previous results, it is reasonable to conclude the following.

Lemma 1.5. Let (1.5) hold. Then the trinomial equation (E) can be written in its binomial form (Ec).
Moreover, if (1.4) is satisfied, then (Ec) is in canonical form.

From now on, we are prepared to study the properties of (E) with the help of its equiv-
alent representation (Ec). In view of familiar Kiguradze’s lemma [12], we have the following
structure of nonoscillatory solutions of (E).

Lemma 1.6. Let (1.5) hold and assume that v(t) is such positive solution of (V) that satisfies (1.3). If
(1.4) is satisfied, then every positive solution of (Ec) is either of degree 0, that is

r1(t)
v(t)

(
y′(t)

)γ
< 0, r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′

> 0,(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

< 0,
(1.7)

or of degree 2, that is,

r1(t)
v(t)

(
y′(t)

)γ
> 0, r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′

> 0,(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

< 0.
(1.8)

In the case when (1.4) fails, there may exists one extra class, that is

r1(t)
v(t)

(
y′(t)

)γ
< 0, r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′

< 0,(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

< 0.
(1.9)

If we denote the classes of positive solutions of (Ec) satisfying (1.7), (1.8) and (1.9) by N0,
N2 and N∗, respectively, Then the set N of all positive solutions of (Ec) (as well as (E)) has the
following decomposition

N = N0 ∪N2

provided that both (1.3) and (1.4) hold and

N = N0 ∪N2 ∪N∗

if (1.4) fails.

2 Canonical form

Since (Ec) is in a canonical form, the set of all positive solutions of (Ec) is given by

N = N0 ∪N2.

Now we are prepared to provide criteria for property (P) of (E) and later also for oscillation
of (E).
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Let us denote

Q(t) = q(t)v(t) f

 τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds

 .

Theorem 2.1. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. If the first order nonlinear differential equation

z′(t) + Q(t) f
(

z1/γ(τ(t))
)
= 0 (EP)

is oscillatory, then (E) has property (P).

Proof. Assume that (E) has an eventually positive solution y(t). Then y(t) is also solution of
(Ec). It follows from Lemma 1.6 that y(t) is either of degree 2 or degree 0. If y(t) ∈ N2, then
by making use of the fact that

z(t) = r2(t)v2(t)
(

r1(t)
v(t)

(
y′(t)

)γ
)′

> 0

is decreasing, we have

r1(t)
v(t)

(
y′(t)

)γ ≥
t∫

t1

1
r2(u)v2(u)

(
r2(u)v2(u)

(
r1(u)
v(u)

(
y′(u)

)γ
)′)

du

≥ z(t)
t∫

t1

1
r2(u)v2(u)

du.

Integrating from t1 to t, we are led to

y(t) ≥
t∫

t1

 v(s)
r1(s)

z(s)
s∫

t1

1
r2(u)v2(u)

du

1/γ

ds

≥ z1/γ(t)
t∫

t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds.

Hence,

y(τ(t)) ≥ z1/γ(τ(t))
τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds.

Combining the last inequality together with (Ec), we obtain

−z′(t) ≥ q(t)v(t) f

z1/γ(τ(t))
τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds


≥ q(t)v(t) f

 τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds

 f
(

z1/γ(τ(t))
)

.
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Therefore, it is clear that z(t) is a positive solution of differential inequality

z′(t) + Q(t) f
(

z1/γ(τ(t))
)
≤ 0.

On the other hand, in view of Theorem 1 of Philos [20], the corresponding differential equation
(EP) also has a positive solution. This is a contradiction and we conclude that y(t) is of degree
0 and the first two inequalities of (1.7) implies property (P) of equation (E).

Employing criteria for oscillation of (EP) we immediately get criteria for property (P) of
(E).

Corollary 2.2. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Let f (u) = uγ. Assume that

lim inf
t→∞

t∫
τ(t)

q(u)v(u)

 τ(u)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(x)v2(x)

dx

1/γ

ds


γ

du >
1
e

, (C1)

then (E) has the property (P).

Corollary 2.3. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Let γ > 1, f (u) = u. If

∞∫
t0

q(t)v(t)
τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds dt = ∞, (2.1)

then (E) has property (P).

Corollary 2.4. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Suppose γ ∈ (0, 1), θ ∈ (0, 1) > 0, τ(t) = θt, f (u) ≡ u. If there exists

λ > ln(γ)/ ln(θ),

such that

lim inf
t→∞


q(t)v(t)

τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds

 exp(−tλ)

 > 0

holds, then (E) has property (P).

Corollary 2.5. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Suppose γ ∈ (0, 1), θ ∈ (0, 1) > 0, τ(t) = tθ , f (u) ≡ u.
If there exists

λ > ln(γ)/ ln(θ),

such that

lim inf
t→∞


q(t)v(t)

τ(t)∫
t1

 v(s)
r1(s)

s∫
t1

1
r2(u)v2(u)

du

1/γ

ds

 exp(− lnλ(t))

 > 0

holds, then (E) has property (P).
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The sufficient conditions for oscillation of (EP) in previous corollaries are recalled from
[14], [13] and [22], respectively.

Now, we enhance our results to ensure stronger asymptotic behavior of the nonoscillatory
solutions of (E). We impose an additional condition on the coefficients of (E) to guarantee that
every solution of (E) either oscillates or tends to zero as t→ ∞.

Lemma 2.6. Assume that equation (E) posseses property (P). If

∞∫
t0

 v(u)
r1(u)

∫ ∞

u

1
r2(s)v2(s)

∞∫
s

v(x)q(x)dx ds

1/γ

du = ∞, (2.2)

then every nonoscillatory solution of (E) tends to zero as t→ ∞.

Proof. Let y(t) be an eventually positive solution of (E). Recall (E) possesses property (P), iff
y(t)y′(t) < 0. It is clear that there exists a limt→∞ y(t) = ` ≥ 0. Assume for contradiction
` > 0. On the other hand, y(t) is also a solution of (Ec) of degree 0. Using (H4) in (Ec), we
have

−
(

r2(t)v2(t)
(

r1(t)
v(t)

(
y′(t)

)γ
)′)′

= v(t)q(t) f (y (τ(t))) ≥ f (l)v(t)q(t).

Then, integration of the previous inequality from t to ∞ leads to

r2(t)v2(t)
(

r1(t)
v(t)

(
y′(t)

)γ
)′
≥ f (l)

∞∫
t

v(x)q(x)dx.

Integrating the last inequality from t to ∞, we conclude

− r1(t)
v(t)

(
y′(t)

)γ ≥ f (l)
∫ ∞

t

1
r2(s)v2(s)

∞∫
s

v(x)q(x)dx ds.

Integrating once more the last inequality from t to ∞, we obtain

y(t) ≤ y(t1)− f 1/γ(l)
t∫

t1

 v(u)
r1(u)

∫ ∞

u

1
r2(s)v2(s)

∞∫
s

v(x)q(x)dx ds

1/γ

du.

Letting t → ∞ and using (2.2), it is easy to see that limt→∞ y(t) = −∞, which contradicts the
fact that y(t) is a positive solution of (Ec). Therefore, we deduce that ` = 0. The proof is
complete.

Requiring oscillation of another suitable first order differential equation, we can obtain
even oscillation of (E).

Theorem 2.7. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Suppose that there exists a function ξ(t) ∈ C1([t0, ∞)) such that

ξ ′(t) ≥ 0, ξ(t) > t, η(t) = τ(ξ(ξ(t))) < t. (2.3)

If both the first-order delay differential equations (EP) and

z′(t) +

 v(t)
r1(t)

ξ(t)∫
t

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

1/γ

f 1/γ (z[η(t)]) = 0 (E0)

are oscillatory, then (E) is oscillatory.
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Proof. Let y(t) be an eventually positive solution of (E). It follows from Lemma 1.6 that either
y(t) ∈ N0 or y(t) ∈ N2. In view of the proof of Theorem 2.1, it is known that oscillation of
(EP) eliminates all solutions of degree 2. Therefore, y(t) is of degree 0.

An integration of (Ec) from t fo ξ(t) yields

r2(t)v2(t)
(

r1(t)
v(t)

(
y′(t)

)γ
)′
≥

ξ(t)∫
t

v(x)q(x) f (y[τ(x)])dx

> f (y[τ(ξ(t))])

ξ(t)∫
t

v(x)q(x)dx.

Then (
r1(t)
v(t)

(
y′(t)

)γ
)′
≥ f (y[τ(ξ(t))])

r2(t)v2(t)

ξ(t)∫
t

v(x)q(x)dx.

Integrating the above inequality from t to ξ(t) once more, we have

− r1(t)
v(t)

(
y′(t)

)γ ≥
ξ(t)∫
t

f (y[τ(ξ(s))])
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

≥ f (y[η(t)])

ξ(t)∫
t

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds.

Finally, integration from t to ∞ leads us

y(t) ≥
∞∫

t

 v(u)
r1(u)

f (y[η(u)])

ξ(u)∫
u

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

1/γ

du.

Let us denote the right-hand side of the above inequality by z(t). Then y(t) ≥ z(t) > 0
and it is easy to verify that

0 = z′(t) +

 v(t)
r1(t)

ξ(t)∫
t

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

1/γ

f 1/γ (y[η(t)])

≥ z′(t) +

 v(t)
r1(t)

ξ(t)∫
t

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

1/γ

f 1/γ (z[η(t)]) .

Consequently, Theorem 1 of Philos [20] implies that the corresponding differential equation
(E0) has also a positive solution z(t), which contradicts our assumption. We conclude that
also N0 = ∅ and thus, (E) is oscillatory. The proof is complete.

Corollary 2.8. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) and (1.4)
are satisfied. Let f (u) = uγ. Suppose that there exists a function ξ(t) ∈ C1([t0, ∞)) such that (2.3)
holds. If, moreover, (C1) is satisfied and

lim inf
t→∞

t∫
η(t)

 v(u)
r1(u)

ξ(u)∫
u

1
r2(s)v2(s)

ξ(s)∫
s

v(x)q(x)dx ds

1/γ

du >
1
e

(C2)
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holds, then (E) is oscillatory.

Proof. Conditions (C1) and (C2) implies that (EP) and (E0) are oscillatory. The assertion imme-
diately follows from Theorem 2.7.

2.1 Example

We support the criteria obtained by the following illustrative example.

Example 2.9. We consider the differential equation(
t1/4 (y′(t))1/3

)′′
+

3
16t7/4

(
y′(t)

)1/3
+

a
t25/12 y1/3(λt) = 0, λ ∈ (0, 1). (Ex)

Now, (V) takes the form

y′′(t) +
3

16t2 y(t) = 0

with couple of positive solutions v1(t) = t1/4 and v2(t) = t3/4. For our considerations, we
take v(t) = t1/4, since it obeys both conditions (1.3) and (1.4). Some computations shows that
(C1) reduces to

a 3

√
16
5

λ5/6 ln
(

1
λ

)
>

1
e

(2.4)

and by Corollary 2.2 this condition guarantees that (Ex) has property (P). What is more, it
is easy to verify that (2.2) holds true, which by Lemma 2.6 ensures, that every nonoscillatory
solution of (Ex) tends to zero as t→ ∞. For a = 7

9
3
√

λ one such solution is y(t) = 1/t.
On the other hand, we set ξ(t) = αt, where α = (1 +

√
λ)/(2λ). Then condition (C2)

transforms to
18a
5

(1− α−5/6)(1− α−1/3) ln
(

1
λα2

)
>

1
e

, (2.5)

which by Corollary 2.8 guarantees oscillation of (Ex).
For clearness for λ = 0.4 condition a > 0.5847 guarantees that every nonoscillatory solu-

tion of (Ex) tends to zero as t → ∞, for a = 3
√

1.08 one such solution is y(t) = 1/t2, while the
condition a > 16.1197 guarantees oscillation of (Ex).

3 Noncanonical form

Now, we consider (Ec) in its noncanonical form, thus the set of all positive solutions of (Ec) is
given by

N = N0 ∪N2 ∪N∗.
To obtain oscillation of (E), we need to empty enymore the extra class N∗. Let us denote

P(t) =
∞∫

t

(
v(s)
r1(s)

)1/γ

ds.

Theorem 3.1. Let (1.5) hold and assume that v(t) is such positive solution of (V) that (1.3) is satisfied.
Suppose that there exists a function ξ(t) ∈ C1([t0, ∞)) such that (2.3) hold. If both the first-order delay
differential equations (EP) and (E0) are oscillatory and

∞∫
t1

 v(x)
r1(x)

x∫
t1

1
r2(u)v2(u)

u∫
t1

q(s)v(s) f (P(τ(s))) ds du

1/γ

dx = ∞ (3.1)
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holds, then equation (E) is oscillatory.

Proof. To ensure oscillation of (E), assume for the sake of contradiction that y(t) is a positive
solution of (E). Then y(t) is also solution of (Ec). Using result of Theorem 2.7, oscillation
of (EP) and (E0) guaranties that classes N0 and N2 are empty. So assume that y(t) ∈ N∗.
Therefore, y(t) is decreasing and integration from t to ∞ yields

y(t) ≥ −
∞∫

t

(
v(s)
r1(s)

)1/γ ( r1(s)
v(s)

(
y′(s)

)γ
)1/γ

ds ≥ −
(

r1(t)
v(t)

(
y′(t)

)γ
)1/γ

P(t).

Since −
(

r1(t)
v(t) (y

′(t))γ
)1/γ

is positive and increasing, there exists L > 0 such that

−
(

r1(t)
v(t)

(
y′(t)

)γ
)1/γ

> L.

Consequently
y(t) ≥ LP(t).

Setting the above inequality into (Ec), we have(
r2(t)v2(t)

(
r1(t)
v(t)

(
y′(t)

)γ
)′)′

+ q(t)v(t) f (L) f (P(τ(t))) ≤ 0.

Integrating from t1 to t, we obtain

r2(t)v2(t)
(

r1(t)
v(t)

(
y′(t)

)γ
)′

+ f (L)
t∫

t1

q(s)v(s) f (P(τ(s)))ds ≤ 0.

Repeating integration from t1 to t, we get

r1(t)
v(t)

(
y′(t)

)γ
+ f (L)

t∫
t1

1
r2(u)v2(u)

u∫
t1

q(s)v(s) f (P(τ(s)))ds du ≤ 0

or

y′(t) + f 1/γ(L)

 v(t)
r1(t)

t∫
t1

1
r2(u)v2(u)

u∫
t1

q(s)v(s) f (P(τ(s)))ds du

1/γ

≤ 0.

Finally, integrating once more,

y(t1) ≥ f 1/γ(L)
t∫

t1

 v(x)
r1(x)

x∫
t1

1
r2(u)v2(u)

u∫
t1

q(s)v(s) f (P(τ(s)))ds du

1/γ

dx,

which contradicts with our assumption. The proof is complete.

4 Summary

In this paper, we have extended the technique presented in [6] to cover a more general dif-
ferential equation (E). Easily verifiable criteria are established to complement other known
results for the case γ = 1. We point out that our main theorems do not require any restricted
conditions to coefficient r1(t) and can ensure oscillation of all solutions of (E).
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