Periodic solutions of second-order systems with subquadratic convex potential

Yiwei Ye^{\boxtimes}
College of Mathematics Science, Chongqing Normal University, Chongqing, 401331, P. R. China

Received 17 October 2014, appeared 15 July 2015
Communicated by Ivan Kiguradze

Abstract

In this paper, we investigate the existence of periodic solutions for the second order systems at resonance: $$
\left\{\begin{array}{l} \ddot{u}(t)+m^{2} \omega^{2} u(t)+\nabla F(t, u(t))=0 \quad \text { a.e. } t \in[0, T] \\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \end{array}\right.
$$ where $m>0$, the potential $F(t, x)$ is convex in x and satisfies some general subquadratic conditions. The main results generalize and improve Theorem 3.7 in J. Mawhin and M. Willem [Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989].

Keywords: second order Hamiltonian systems, critical points, variational methods, Sobolev's inequality.
2010 Mathematics Subject Classification: 34B15, 34C25.

1 Introduction and main results

Consider the second order Hamiltonian systems

$$
\left\{\begin{array}{l}
\ddot{u}(t)+m^{2} \omega^{2} u(t)+\nabla F(t, u(t))=0 \quad \text { a.e. } t \in[0, T] \tag{1.1}\\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

where $T>0, \omega=2 \pi / T$ and $m>0$ is an integer. The potential $F:[0, T] \times R^{N} \rightarrow R$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for every $x \in R^{N}$ and continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(R^{+}, R^{+}\right), b \in L^{1}\left(0, T ; R^{+}\right)$such that

$$
|F(t, x)| \leq a(|x|) b(t), \quad|\nabla F(t, x)| \leq a(|x|) b(t)
$$

for all $x \in R^{N}$ and a.e. $t \in[0, T]$.

[^0]If $m=0$, the non-resonant second order Hamiltonian systems have been extensively investigated during the past two decades. Different solvability hypotheses on the potential are given, such as: the convexity conditions (see $[6,8,12,13]$); the coercivity conditions (see $[1,5,10]$); the subquadratic conditions (including the sublinear nonlinearity case, see [$7,9,11-14,16,18]$); the superquadratic conditions (see $[3,7,17,18,21]$) and the asymptotically quadratic conditions (see [19,21,24]).

Using the variational principle of Clarke and Ekeland together with an approximate argument of H. Brézis [2], Mawhin and Willem [6] proved an existence theorem for semilinear equations of the form $L u=\nabla F(x, u)$, where L is a noninvertible linear selfadjoint operator and F is convex with respect to u and satisfies a suitable asymptotic quadratic growth condition. This result was applied to periodic solutions of first order Hamiltonian systems with convex potential. In [5], the authors considered the second order systems (1.1) with $m=0$. They proved that when the potential F satisfies the following assumptions:
(A^{\prime}) $F(t, x)$ is measurable in t for every $x \in R^{N}$, and continuously differentiable and convex in x for a.e. $t \in[0, T]$;
$\left(A_{1}\right)$ There exists $l \in L^{4}\left(0, T ; R^{N}\right)$ such that

$$
(l(t), x) \leq F(t, x), \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T] ;
$$

(A_{2}^{\prime}) There exist $\alpha \in\left(0, \omega^{2}\right)$ and $\gamma \in L^{2}\left(0, T ; R^{+}\right)$such that

$$
F(t, x) \leq \frac{1}{2} \alpha|x|^{2}+\gamma(t), \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T] ;
$$

$\left(A_{3}^{\prime}\right) \int_{0}^{T} F(t, x) d t \rightarrow+\infty$ as $|x| \rightarrow \infty, x \in R^{N}$;
then problem (1.1) has at least one solution, see [5, Theorem 3.5]. This result was slightly improved in Tang [8] by relaxing the integrability of l and γ. In [12], Tang and Wu dealt with the (β, γ)-subconvex case, i.e.,

$$
\begin{equation*}
F(t, \beta(x+y)) \leq \gamma(F(t, x)+F(t, y)), \quad \forall x, y \in R^{N} \text { and a.e. } t \in[0, T] \tag{1.2}
\end{equation*}
$$

for some $\gamma>0$. Under assumptions $(A),\left(A_{3}^{\prime}\right)$ and (1.2) and the subquadratic condition: there exist $0<\mu<2$ and $M>0$ such that

$$
(\nabla F(t, x), x) \leq \mu F(t, x), \quad \forall|x| \geq M \text { and a.e. } t \in[0, T],
$$

they obtained the existence result by taking advantage of Rabinowitz's saddle point theorem. Recently, Tang and Wu [13] extended a theorem established by A. C. Lazer, E. M. Landesman and D. R. Meyers [4] on the existence of critical points without compactness assumptions, using the reduction method, the perturbation argument and the least action principle. As a main application, they successively studied the existence of periodic solutions of problem (1.1) ($m=0$) with subquadratic convex potential, with subquadratic $\mu(t)$-convex potential and with subquadratic $k(t)$-concave potential, which unifies and significantly generalizes some earlier results in $[5,8,15,22,23]$ obtained by other methods.

If $m \neq 0$, it is a resonance case. Using the dual least action principle and the perturbation technique, Mawhin and Willem [5] also obtained the following theorem.

Theorem A ([5, Theorem 3.7]). Suppose that $F(t, x)$ satisfies conditions $\left(A^{\prime}\right),\left(A_{1}\right)$ and the following:
$\left(A_{2}\right)$ There exist $\alpha \in\left(0,(2 m+1) \omega^{2}\right)$ and $\gamma \in L^{2}\left(0, T ; R^{+}\right)$such that

$$
F(t, x) \leq \frac{1}{2} \alpha|x|^{2}+\gamma(t), \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T] .
$$

$\left(A_{3}\right) \int_{0}^{T} F(t, a \cos m \omega t+b \sin m \omega t) d t \rightarrow+\infty \quad$ as $|a|+|b| \rightarrow \infty, \quad a, b \in R^{N}$.
Then problem (1.1) has at least one solution in H_{T}^{1}, where

$$
H_{T}^{1}=\left\{\begin{array}{l|l}
u:[0, T] \rightarrow R^{N} & \begin{array}{l}
u \text { is absolutely continuous, } \\
u(0)=u(T) \text { and } \dot{u} \in L^{2}\left(0, T ; R^{N}\right)
\end{array}
\end{array}\right\}
$$

is a Hilbert space with the norm defined by

$$
\|u\|=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{1 / 2}
$$

Motivated by the works mentioned above, in this paper, we are interested in problem (1.1), where the potential is convex and satisfies conditions which are more general than $\left(A_{2}\right)$. Applying the abstract critical point theory established in [13], we prove some existence results, which generalize Theorem A and complement the results in [13]. The main results are the following theorems.
Theorem 1.1. Suppose that assumption (A) holds and $F(t, x)$ is convex in x for a.e. $t \in[0, T]$. Assume that $\left(A_{3}\right)$ holds and:
$\left(A_{4}\right)$ There exists $\gamma \in L^{1}\left(0, T ; R^{+}\right)$such that

$$
\begin{equation*}
F(t, x) \leq \frac{2 m+1}{2} \omega^{2}|x|^{2}+\gamma(t) \tag{1.3}
\end{equation*}
$$

for all $x \in R^{N}$ and a.e. $t \in[0, T]$, and

$$
\begin{equation*}
\text { meas }\left\{\left.t \in[0, T]\left|F(t, x)-\frac{2 m+1}{2} \omega^{2}\right| x\right|^{2} \rightarrow-\infty \quad \text { as }|x| \rightarrow \infty\right\}>0 \tag{1.4}
\end{equation*}
$$

Then problem (1.1) has at least one solution in H_{T}^{1}.
Remark 1.2. Theorem 1.1 extends Theorem A, since $\left(A_{4}\right)$ is weaker than $\left(A_{2}\right)$ and assumption (A) holds for functions F in Theorem A (see [13, Remark 1.3] for a proof). There are functions F which match our setting but not satisfying Theorem A. For example, let

$$
F(t, x)=\frac{2 m+1}{2} \omega^{2}\left(|x|^{2}-\left(1+|x|^{2}\right)^{\frac{3}{4}}\right)+(l(t), x)
$$

where $l \in L^{3}\left(0, T ; R^{N}\right) \backslash L^{\infty}\left(0, T ; R^{N}\right)$. Then by Young's inequality, one has

$$
\begin{aligned}
-\frac{2 m+1}{2} \omega^{2}\left(1+|x|^{2}\right)^{\frac{3}{4}}+(l(t), x) \leq & -\frac{2 m+1}{2} \omega^{2}|x|^{\frac{3}{2}}+|l(t)||x| \\
\leq & -\frac{2 m+1}{2} \omega^{2}|x|^{\frac{3}{2}} \\
& +\frac{2 m+1}{2}\left(\omega^{\frac{4}{3}}|x|\right)^{\frac{3}{2}}+\frac{2 m+1}{4}\left(\frac{4}{3(2 m+1)}\right)^{3} \omega^{-4}|l(t)|^{3} \\
\leq & \frac{16}{27(2 m+1)^{2}} \omega^{-4}|l(t)|^{3}
\end{aligned}
$$

for all $x \in R^{N}$ and a.e. $t \in[0, T]$. Thus F satisfies (1.3) with $\gamma(t)=\frac{16}{27(2 m+1)^{2}} \omega^{-4}|l(t)|^{3}$. Evidently, $\left(A_{3}\right)$ and (1.4) are satisfied, and $F(t, \cdot)$ is convex because

$$
f(x):=g(h(x))
$$

is convex by the fact that

$$
g(s):=\left(s-(1+s)^{\frac{3}{4}}\right), \quad s>0
$$

is convex and increasing, and

$$
h(x):=|x|^{2}, \quad x \in R^{N}
$$

is convex. Hence F satisfies all the conditions of Theorem 1.1. But it does not satisfy Theorem A , for $\left(A_{2}\right)$ does not hold.

Theorem 1.1 yields immediately the following corollary.
Corollary 1.3. The conclusion of Theorem 1.1 remains valid if we replace $\left(A_{4}\right)$ by
$\left(A_{5}\right) F(t, x)-\frac{2 m+1}{2} \omega^{2}|x|^{2} \rightarrow-\infty \quad$ as $|x| \rightarrow \infty \quad$ for a.e. $t \in[0, T]$.
Remark 1.4. It is easy to see that $\left(A_{5}\right)$ is weaker than $\left(A_{2}\right)$. So Corollary 1.3 also generalizes Theorem A.

Corollary 1.5. The conclusion of Theorem 1.1 remains valid if we replace $\left(A_{4}\right)$ by
$\left(A_{6}\right)$ There exist $\alpha \in L^{\infty}\left(0, T ; R^{+}\right)$with meas $\left\{t \in[0, T]: \alpha(t)<(2 m+1) \omega^{2}\right\}>0$ and $\alpha(t) \leq$ $(2 m+1) \omega^{2}$ for a.e. $t \in[0, T]$, and $\gamma \in L^{1}\left(0, T ; R^{+}\right)$such that

$$
\begin{equation*}
F(t, x) \leq \frac{1}{2} \alpha(t)|x|^{2}+\gamma(t) \quad \text { for all } x \in R^{N} \text { and a.e. } t \in[0, T] . \tag{1.5}
\end{equation*}
$$

Remark 1.6. Corollary 1.5 also generalizes Theorem A. There are functions F satisfying our Corollary 1.5 and not satisfying Theorem A and Corollary 1.3. For example, let

$$
F(t, x)=\frac{1}{2} \beta(t)|x|^{2}+(l(t), x)
$$

where $\beta \in L^{\infty}\left(0, T ; R^{+}\right)$with $\beta(t) \leq(2 m+1) \omega^{2}$ for a.e. $t \in[0, T], \int_{0}^{T} \beta(t) d t>0$,

$$
\operatorname{meas}\left\{t \in[0, T]: \beta(t)<(2 m+1) \omega^{2}\right\}>0
$$

and $l \in L^{\infty}\left(0, T ; R^{N}\right)$ with $|l(t)| \leq \frac{1}{2}\left((2 m+1) \omega^{2}-\beta(t)\right)$ for a.e. $t \in[0, T]$. Then one has

$$
F(t, x) \leq \frac{1}{2} \beta(t)|x|^{2}+|l(t)||x| \leq \frac{1}{2}(\beta(t)+|l(t)|)|x|^{2}+\frac{1}{2}|l(t)|
$$

which is just (1.5) with $\alpha=\beta(t)+|l(t)|$ and $\gamma=|l(t)| / 2$. Hence F satisfies Corollary 1.5. But in the case that meas $\left\{t \in[0, T]: \beta(t)=(2 m+1) \omega^{2}\right\}>0, F$ does not satisfy the conditions of Theorem A and Corollary 1.3.

Theorem 1.7. Suppose that assumption (A) holds and $F(t, x)$ is convex in x for a.e. $t \in[0, T]$. Assume that $\left(A_{3}\right)$ holds and the following condition is fulfilled.
$\left(A_{7}\right)$ There exists $\alpha \in L^{\infty}\left(0, T ; R^{+}\right)$with meas $\left\{t \in[0, T] \mid \alpha(t)<(2 m+1) \omega^{2}\right\}>0$ and $\alpha(t) \leq$ $(2 m+1) \omega^{2}$ for a.e. $t \in[0, T]$ such that

$$
\underset{|x| \rightarrow \infty}{\limsup }|x|^{-2} F(t, x) \leq \frac{1}{2} \alpha(t) \quad \text { uniformly for a.e. } t \in[0, T] .
$$

Then problem (1.1) has at least one solution in H_{T}^{1}.
Remark 1.8. The conditions $\left(A_{6}\right)$ and $\left(A_{7}\right)$ are not equivalent in general. There are functions F satisfying $\left(A_{7}\right)$ but not $\left(A_{6}\right)$. For example, let

$$
F(t, x)=\frac{1}{2} \mu(t)|x|^{2}+|x|^{\frac{3}{2}}, \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T],
$$

where $\mu \in L^{1}(0, T ; R)$ with $\mu(t) \leq(2 m+1) \omega^{2}$ for a.e. $t \in[0, T], \int_{0}^{T} \mu(t) d t>0$, and meas $\left\{t \in[0, T]: \mu(t)<\omega^{2}\right\}>0$. Then $\left(A_{7}\right)$ holds with $\alpha=\mu^{+}(t)$. But F does not satisfy $\left(A_{6}\right)$ if meas $\left\{t \in[0, T]: \mu(t)=\omega^{2}\right\}>0$. On the other hand, there are functions F satisfying $\left(A_{6}\right)$ but not $\left(A_{7}\right)$. For example, let

$$
F(t, x)=\frac{1}{3} t^{-\frac{1}{8}}(\sqrt{2 m+1} \omega|x|)^{\frac{3}{2}}, \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T] .
$$

By Young's inequality, one has

$$
F(t, x) \leq \frac{1}{3}\left(\frac{3}{4}(\sqrt{2 m+1} \omega|x|)^{2}+\frac{\left(t^{-\frac{1}{8}}\right)^{4}}{4}\right)=\frac{(2 m+1) \omega^{2}}{4}|x|^{2}+\frac{t^{-\frac{1}{2}}}{12}
$$

which is just (1.5) with $\alpha=(2 m+1) \omega^{2} / 2$ and $\gamma=t^{-\frac{1}{2}} / 12$. However, $F(t, x)$ does not satisfy $\left(A_{7}\right)$, because

$$
\limsup _{|x| \rightarrow \infty} \frac{\frac{1}{3} t^{-\frac{1}{8}}(\sqrt{2 m+1} \omega|x|)^{\frac{3}{2}}}{|x|^{2}} \leq \frac{(2 m+1) \omega^{2}}{4}
$$

does not uniformly hold for a.e. $t \in[0, T]$.
Remark 1.9. Theorem 1.7 generalizes Theorem A. There are functions F satisfying our Theorem 1.7 and not satisfying Theorems A and 1.1. For example, let

$$
F(t, x)=\frac{1}{2} \alpha(t)|x|^{2}+|x|^{\frac{3}{2}}+(l(t), x),
$$

where $\alpha \in L^{\infty}\left(0, T ; R^{+}\right)$with $\alpha(t) \leq(2 m+1) \omega^{2}$ for a.e. $t \in[0, T], \int_{0}^{T} \alpha(t) d t>0$,

$$
\text { meas }\left\{t \in[0, T]: \alpha(t)<(2 m+1) \omega^{2}\right\}>0,
$$

and $l \in L^{\infty}\left(0, T ; R^{N}\right)$. Then F satisfies all the conditions of Theorem 1.7. But obviously F does not satisfy Theorems A and 1.1.

Theorem 1.10. Suppose that assumption (A) holds and $F(t, x)$ is convex in x for a.e. $t \in[0, T]$. Assume that $\left(A_{3}\right)$ holds and:
$\left(A_{8}\right)$ There exist $\alpha \in L^{1}\left(0, T ; R^{+}\right)$with $\int_{0}^{T} \alpha(t) d t<\frac{12(2 m+1)}{T(m+1)^{2}}$ and $\gamma \in L^{1}\left(0, T ; R^{+}\right)$such that

$$
\begin{equation*}
F(t, x) \leq \frac{1}{2} \alpha(t)|x|^{2}+\gamma(t), \quad \forall x \in R^{N} \text { and a.e. } t \in[0, T] . \tag{1.6}
\end{equation*}
$$

Then problem (1.1) has at least one solution in H_{T}^{1}.

Remark 1.11. There are functions F satisfying our Theorem 1.10 and not satisfying the results mentioned above. For example, let

$$
F(t, x)=\frac{1}{2} \beta(t)|x|^{2}+(l(t), x)
$$

where $\beta \in L^{1}\left(0, T ; R^{+}\right)$with $0<\int_{0}^{T} \beta(t) d t<\frac{12(2 m+1)}{T(m+1)^{2}}$ and $l \in L^{2}\left(0, T ; R^{N}\right)$. Then one has

$$
\begin{aligned}
F(t, x) & \leq \frac{1}{2} \beta(t)|x|^{2}+|l(t)||x| \\
& \leq \frac{1}{2}\left(\beta(t)+\frac{12(2 m+1)-T(m+1)^{2}|\beta|_{1}}{2 T^{2}(m+1)^{2}}\right)|x|^{2}+\frac{T^{2}(m+1)^{2}}{12(2 m+1)-T(m+1)^{2}|\beta|_{1}}|l(t)|^{2}
\end{aligned}
$$

which is just (1.6) with

$$
\alpha=\beta(t)+\frac{12(2 m+1)-T(m+1)^{2}|\beta|_{1}}{2 T^{2}(m+1)^{2}} \quad \text { and } \quad \gamma=\frac{T^{2}(m+1)^{2}}{12(2 m+1)-T(m+1)^{2}|\beta|_{1}}|l(t)|^{2} .
$$

Thus F satisfies all the conditions of Theorem 1.10. But in the case that

$$
\text { meas }\left\{t \in[0, T]: \beta(t)>(2 m+1) \omega^{2}\right\}>0
$$

F does not satisfy the conditions of Theorems A, 1.1 and 1.7.

2 Proofs of the theorems

Under assumption (A), the energy functional associated to problem (1.1) given by

$$
\varphi(u)=-\frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T} F(t, u(t)) d t
$$

is continuously differentiable and weakly upper semi-continuous on H_{T}^{1}. Furthermore,

$$
\left\langle\varphi^{\prime}(u), v\right\rangle=-\int_{0}^{T}(\dot{u}(t), \dot{v}(t)) d t+m^{2} \omega^{2} \int_{0}^{T}(u(t), v(t)) d t+\int_{0}^{T}(\nabla F(t, u(t)), v(t)) d t
$$

for all $u, v \in H_{T}^{1}$, and φ^{\prime} is weakly continuous. It is well known that the weak solutions of problem (1.1) correspond to the critical points of φ (see [5]).

For $u \in \widetilde{H}_{T}^{1} \triangleq\left\{u \in H_{T}^{1}: \int_{0}^{T} u(t) d t=0\right\}$, we have

$$
\|u\|_{\infty} \leq \frac{T}{12} \int_{0}^{T}|\dot{u}(t)|^{2} d t \quad \text { (Sobolev's inequality) }
$$

which implies that

$$
\begin{equation*}
\|u\|_{\infty} \leq C\|u\|, \quad \forall u \in H_{T}^{1} \tag{2.1}
\end{equation*}
$$

for some $C>0$, where $\|u\|_{\infty}=\max _{t \in[0, T]}|u(t)|$ (see [5, Proposition 1.3]).
We recall an abstract critical point theorem which will be used in the sequel.

Proposition 2.1 ([13, Theorem 1.1]). Suppose that V and W are reflexive Banach spaces, $\varphi \in$ $C^{1}(V \times W, R), \varphi(v, \cdot)$ is weakly upper semi-continuous for all $v \in V$ and $\varphi(\cdot, w): V \rightarrow R$ is convex for all $w \in W$, that is,

$$
\varphi\left(\lambda v_{1}+(1-\lambda) v_{2}, w\right) \leq \lambda \varphi\left(v_{1}, w\right)+(1-\lambda) \varphi\left(v_{2}, w\right)
$$

for all $\lambda \in[0,1]$ and $v_{1}, v_{2} \in V, w \in W$, and φ^{\prime} is weakly continuous. Assume that

$$
\varphi(0, w) \rightarrow-\infty \quad \text { as }\|w\| \rightarrow \infty
$$

and for every $M>0$,

$$
\varphi(v, w) \rightarrow+\infty \quad \text { as }\|v\| \rightarrow \infty \quad \text { uniformly for }\|w\| \leq M
$$

Then φ has at least one critical point.
Proposition 2.2 ([13, Lemma 5.1]). Assume that H is a real Hilbert space, $f: H \times H \rightarrow R$ is a bilinear functional. Then $g: H \rightarrow R$ given by

$$
g(u)=f(u, u), \quad \forall u \in H
$$

is convex if and only if

$$
g(u) \geq 0, \quad \forall u \in H
$$

For $m>0$, set

$$
H_{m}=\left\{\sum_{j=0}^{m}\left(a_{j} \cos j \omega t+b_{j} \sin j \omega t\right): a_{j}, b_{j} \in R^{N}, j=0, \ldots, m\right\}
$$

and denote the orthogonal complement of H_{m} in H_{T}^{1} by H_{m}^{\perp}. Applying Proposition 2.2, we obtain the following result.
Lemma 2.3. Assume that $F(t, x)$ is convex in x for a.e. $t \in[0, T]$. Then, for every $w \in H_{m}^{\perp}, \varphi(v+w)$ is convex in $v \in H_{m}$.

Proof. The convexity of $F(t, \cdot)$ implies that $F(t, v+w)$ is convex in $v \in H_{m}$ for every $w \in H_{m}^{\perp}$, and hence $\int_{0}^{T} F(t, v+w) d t$ is convex in $v \in H_{m}$ for every $w \in H_{m}^{\perp}$. Notice that

$$
-\frac{1}{2} \int_{0}^{T}|\dot{v}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|v(t)|^{2} d t \geq 0, \quad \forall v \in H_{m}
$$

Lemma 2.2 implies that

$$
-\frac{1}{2} \int_{0}^{T}|\dot{v}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|v(t)|^{2} d t
$$

is convex in $v \in H_{m}$. Hence, for each $w \in H_{m}^{\perp}$,

$$
\begin{aligned}
\varphi(v+w)= & -\frac{1}{2} \int_{0}^{T}|\dot{v}(t)+\dot{w}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|v(t)+w(t)|^{2} d t+\int_{0}^{T} F(t, v(t)+w(t)) d t \\
= & \left(-\frac{1}{2} \int_{0}^{T}|\dot{v}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|v(t)|^{2} d t\right)+\int_{0}^{T} F(t, v(t)+w(t)) d t \\
& -\frac{1}{2} \int_{0}^{T}|\dot{w}(t)|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}|w(t)|^{2} d t
\end{aligned}
$$

is convex in $v \in H_{m}$. This completes the proof.

Lemma 2.4. Suppose that assumptions (A) and $\left(A_{3}\right)$ hold and $F(t, x)$ is convex in x for a.e. $t \in[0, T]$. Then for every $M>0$,

$$
\varphi(v+w) \rightarrow+\infty \quad \text { as }\|v\| \rightarrow \infty, v \in H_{m},
$$

uniformly for $w \in H_{m}^{\perp}$ with $\|w\| \leq M$.
Proof. We prove this assertion by contradiction. Suppose that the statement of the theorem does not hold, then there exist $M>0, c_{1}>0$ and two sequences $\left(v_{n}\right) \subset H_{m}$ and $\left(w_{n}\right) \subset H_{m}^{\perp}$ with $\left\|v_{n}\right\| \rightarrow \infty(n \rightarrow \infty)$ and $\left\|w_{n}\right\| \leq M$ for all n such that

$$
\varphi\left(v_{n}+w_{n}\right) \leq c_{1}, \quad \forall n \in N .
$$

For $v \in H_{m}$, write

$$
v=u+a \cos m \omega t+b \sin m \omega t,
$$

where $a, b \in R^{N}$ and

$$
u \in H_{m-1} \triangleq\left\{\sum_{j=0}^{m-1}\left(a_{j} \cos j \omega t+b_{j} \sin j \omega t\right) \mid a_{j}, b_{j} \in R^{N}, j=0,1, \ldots, m-1\right\} .
$$

Define the function $\bar{F}: R^{2 N} \rightarrow R$ by

$$
\bar{F}(a, b)=\int_{0}^{T} F(t, a \cos m \omega t+b \sin m \omega t) d t .
$$

It follows from the continuous differentiability and the convexity of $F(t, \cdot)$ that \bar{F} is continuously differentiable and convex on $R^{2 N}$, which yields that \bar{F} is weakly lower semi-continuous on $R^{2 N}$. Using $\left(A_{3}\right)$, one has

$$
\bar{F}(a, b)=\int_{0}^{T} F(t, a \cos m \omega t+b \sin m \omega t) d t \rightarrow+\infty \quad \text { as }|a|+|b| \rightarrow \infty .
$$

Hence, by the least action principle [5, Theorem 1.1], \bar{F} has a minimum at some $\left(a_{0}, b_{0}\right) \in R^{2 N}$ for which

$$
\begin{aligned}
\int_{0}^{T} & \left(\nabla F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right), \cos m \omega t\right) d t \\
& =\int_{0}^{T}\left(\nabla F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right), \sin m \omega t\right) d t \\
& =0 .
\end{aligned}
$$

By the convexity of $F(t, \cdot)$, we obtain

$$
\begin{aligned}
F(t, v+w) \geq & F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right) \\
& +\left(\nabla F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right), u+w+\left(a-a_{0}\right) \cos m \omega t+\left(b-b_{0}\right) \sin m \omega t\right),
\end{aligned}
$$

and then, using assumption (A), (2.2) and (2.1),

$$
\begin{aligned}
\int_{0}^{T} F(t, v+w) d t \geq & \int_{0}^{T} F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right) d t \\
& +\int_{0}^{T}\left(\nabla F\left(t, a_{0} \cos m \omega t+b_{0} \sin m \omega t\right), u+w\right) d t \\
\geq & -\max _{s \in\left[0,\left|a_{0}\right|+\left|b_{0}\right|\right]} a(s) \int_{0}^{T} b(t) d t-\max _{s \in\left[0,\left|a_{0}\right|+\left|b_{0}\right|\right]} a(s) \int_{0}^{T} b(t)|u+w| d t \\
\geq & -\max _{s \in\left[0,\left|a_{0}\right|+\left|b_{0}\right|\right]} a(s) \int_{0}^{T} b(t) d t\left(1+\|u\|_{\infty}+\|w\|_{\infty}\right) \\
\geq & -c_{2}\left(1+\|u\|_{\infty}\right)
\end{aligned}
$$

for all $w \in H_{m}^{\perp}$ with $\|w\| \leq M$, where $c_{2}=\max _{s \in\left[0\left|a_{0}\right|+\left|b_{0}\right|\right]} a(s) \int_{0}^{T} b(t) d t(1+C M)$. Rewrite $v_{n}=u_{n}+a_{n} \cos m \omega t+b_{n} \sin m \omega t$, where $a_{n}, b_{n} \in R^{N}$ and $u_{n} \in H_{m-1}$. Then one has

$$
\begin{aligned}
c_{1} \geq & \varphi\left(v_{n}+w_{n}\right) \\
= & -\frac{1}{2} \int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}\left|u_{n}\right|^{2} d t-\frac{1}{2} \int_{0}^{T}\left|\dot{w}_{n}\right|^{2} d t \\
& +\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}\left|w_{n}\right|^{2} d t+\int_{0}^{T} F\left(t, v_{n}+w_{n}\right) d t \\
\geq & \frac{1}{2}\left(m^{2}-(m-1)^{2}\right) \omega^{2} \int_{0}^{T}\left|u_{n}\right|^{2} d t-\frac{M^{2}}{2}-c_{2}\left(1+\left\|u_{n}\right\|_{\infty}\right)
\end{aligned}
$$

for all n, which implies that $\left(u_{n}\right)$ is bounded by the equivalence of the norms on the finitedimensional space H_{m-1}. Combining this with assumption (A), the convexity of $F(t, \cdot)$ and (2.1), we obtain

$$
\begin{aligned}
c_{1} \geq & \varphi\left(v_{n}+w_{n}\right) \\
\geq & -c_{3}+\int_{0}^{T} F\left(t, v_{n}+w_{n}\right) d t \\
\geq & -c_{3}+2 \int_{0}^{T} F\left(t, \frac{1}{2}\left(a_{n} \cos m \omega t+b_{n} \sin m \omega t\right)\right) d t-\int_{0}^{T} F\left(t,-u_{n}-w_{n}\right) d t \\
\geq & -c_{3}+2 \int_{0}^{T} F\left(t, \frac{1}{2}\left(a_{n} \cos m \omega t+b_{n} \sin m \omega t\right)\right) d t \\
& -\max _{s \in\left[0, C\left\|u_{n}+w_{n}\right\|\right]} a(s) \int_{0}^{T} b(t) d t
\end{aligned}
$$

which yields that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are also bounded. This contradicts the fact that $\left\|v_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Therefore the conclusion holds.

Now we are in the position to prove our theorems.
Proof of Theorem 1.1. According to Proposition 2.1, it remains to show that

$$
\begin{equation*}
\varphi(w) \rightarrow-\infty \quad \text { as }\|w\| \rightarrow \infty, w \in H_{m}^{\perp} \tag{2.2}
\end{equation*}
$$

We follow an argument in [13]. Arguing indirectly, assume that there exists a sequence $\left(u_{n}\right) \subset H_{m}^{\perp}$ satisfying $\left\|u_{n}\right\| \rightarrow \infty$ and

$$
\begin{equation*}
\varphi\left(u_{n}\right) \geq c_{4}, \quad \forall n \in N \tag{2.3}
\end{equation*}
$$

for some $c_{4} \in R$. Write $u_{n}=a_{n}\left\|u_{n}\right\| \cos (m+1) \omega t+b_{n}\left\|u_{n}\right\| \sin (m+1) \omega t+w_{n}$, where $a_{n}, b_{n} \in R^{N}$ and $w_{n} \in H_{m+1}^{\perp}$. Then we have, using (1.3),

$$
\begin{aligned}
c_{4} & \leq \varphi\left(u_{n}\right) \\
& \leq-\frac{1}{2} \int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}\left|u_{n}\right|^{2} d t+\frac{(2 m+1)}{2} \omega^{2} \int_{0}^{T}\left|u_{n}\right|^{2} d t+\int_{0}^{T} \gamma(t) d t \\
& =-\frac{1}{2} \int_{0}^{T}\left|\dot{w}_{n}\right|^{2} d t+\frac{m^{2} \omega^{2}}{2} \int_{0}^{T}\left|w_{n}\right|^{2} d t+\frac{(2 m+1)}{2} \omega^{2} \int_{0}^{T}\left|w_{n}\right|^{2} d t+\int_{0}^{T} \gamma(t) d t \\
& \leq-\frac{1}{2}\left(1-\frac{m^{2}}{(m+2)^{2}}-\frac{(2 m+1)}{(m+2)^{2}}\right) \int_{0}^{T}\left|\dot{w}_{n}\right|^{2} d t+\int_{0}^{T} \gamma(t) d t \\
& =-\frac{2 m+3}{2(m+2)^{2}} \int_{0}^{T}\left|\dot{w}_{n}\right|^{2} d t+\int_{0}^{T} \gamma(t) d t
\end{aligned}
$$

which implies that $\left(w_{n}\right)$ is bounded. Taking $v_{n}=u_{n} /\left\|u_{n}\right\|$, then $\left\|v_{n}\right\|=1$, and hence the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are bounded. Up to a subsequence, we can assume that

$$
a_{n} \rightarrow a \quad \text { and } \quad b_{n} \rightarrow b \text { as } n \rightarrow \infty
$$

for some $a, b \in R^{N}$. By the boundedness of $\left(w_{n}\right)$, one has $w_{n} /\left\|u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence,

$$
v_{n} \rightarrow a \cos (m+1) \omega t+b \sin (m+1) \omega t \quad \text { in } H_{T}^{1}
$$

and $|a|+|b| \neq 0$, which yields that $v_{n}(t) \rightarrow a \cos (m+1) \omega t+b \sin (m+1) \omega t$ uniformly for a.e. $t \in[0, T]$ by (2.1). Hence $\left|u_{n}(t)\right| \rightarrow \infty$ as $n \rightarrow \infty$ for a.e. $t \in[0, T]$, because $a \cos (m+1) \omega t+b \sin (m+1) \omega t$ only has finite zeros.

Now set

$$
E=\left\{\left.t \in[0, T]\left|F(t, x)-\frac{(2 m+1)}{2} \omega^{2}\right| x\right|^{2} \rightarrow-\infty \quad \text { as }|x| \rightarrow \infty\right\} .
$$

It follows from Fatou's lemma (see [20]) that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \varphi\left(u_{n}\right) & \leq \limsup _{n \rightarrow \infty} \int_{0}^{T}\left[\left(-\frac{(m+1)^{2} \omega^{2}}{2}+\frac{m^{2} \omega^{2}}{2}\right)\left|u_{n}\right|^{2}+F\left(t, u_{n}\right)\right] d t \\
& =\limsup _{n \rightarrow \infty} \int_{0}^{T}\left(F\left(t, u_{n}\right)-\frac{(2 m+1) \omega^{2}}{2}\left|u_{n}\right|^{2}\right) d t \\
& \leq \limsup _{n \rightarrow \infty} \int_{E}\left(F\left(t, u_{n}\right)-\frac{(2 m+1) \omega^{2}}{2}\left|u_{n}\right|^{2}\right) d t+\int_{0}^{T} \gamma(t) d t \\
& =-\infty,
\end{aligned}
$$

a contradiction with (2.3).
A combination of (2.2), Lemmas 2.3, 2.4 and Proposition 2.1 shows that φ has at least a critical point. Consequently, problem (1.1) possesses at least one solution in H_{T}^{1} and the proof is completed.

Proof of Theorem 1.7. First, we claim that there exists a constant $a_{0}<\frac{2 m+1}{(m+1)^{2}}$ such that

$$
\begin{equation*}
\int_{0}^{T} \alpha(t)|u|^{2} d t \leq a_{0} \int_{0}^{T}|\dot{u}|^{2} d t, \quad \forall u \in H_{m}^{\perp} \tag{2.4}
\end{equation*}
$$

The proof is similar to the first part of [13, Proof of Theorem 3.2], for the convenience of the readers we sketch it here briefly. Arguing indirectly, we assume that there exists a sequence $\left(u_{n}\right) \subset H_{m}^{\perp}$ such that

$$
\begin{equation*}
\int_{0}^{T} \alpha(t)\left|u_{n}\right|^{2} d t>\left(\frac{2 m+1}{(m+1)^{2}}-\frac{1}{n}\right) \int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t, \quad \forall n \in N, \tag{2.5}
\end{equation*}
$$

which implies that $u_{n} \neq 0$ for all n. By the homogeneity of the above inequality, we may assume that $\int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t=1$ and

$$
\begin{equation*}
\int_{0}^{T} \alpha(t)\left|u_{n}\right|^{2} d t>\frac{2 m+1}{(m+1)^{2}}-\frac{1}{n^{\prime}}, \quad \forall n \in N . \tag{2.6}
\end{equation*}
$$

It follows from the weak compactness of the unit ball of H_{m}^{\perp} that there exists a subsequence, still denoted by $\left(u_{n}\right)$, such that $u_{n} \rightharpoonup u$ in $H_{m}^{\perp}, u_{n} \rightarrow u$ in $C\left(0, T ; R^{N}\right)$. This, jointly with (2.6), shows that

$$
\int_{0}^{T} \alpha(t)|u|^{2} d t \geq \frac{2 m+1}{(m+1)^{2}} .
$$

Hence

$$
\frac{2 m+1}{(m+1)^{2}} \geq \frac{2 m+1}{(m+1)^{2}} \int_{0}^{T}|\dot{u}|^{2} d t \geq(2 m+1) \omega^{2} \int_{0}^{T}|u|^{2} d t \geq \int_{0}^{T} \alpha(t)|u|^{2} d t \geq \frac{2 m+1}{(m+1)^{2}}
$$

and then

$$
1=\int_{0}^{T}|\dot{u}|^{2} d t=(m+1)^{2} \omega^{2} \int_{0}^{T}|u|^{2} d t
$$

and

$$
\int_{0}^{T}\left((2 m+1) \omega^{2}-\alpha(t)\right)|u|^{2} d t=0
$$

which implies that $u=a \cos (m+1) \omega t+b \sin (m+1) \omega t, a, b \in R^{N}, u \neq 0$ and $u=0$ on a positive measure subset. This contradicts the fact that $u=a \cos (m+1) \omega t+b \sin (m+1) \omega t$ only has finite zeros if $u \neq 0$.

It follows from assumptions (A) and $\left(A_{7}\right)$ that, for $\varepsilon \in\left(0, \frac{2 m+1}{(m+1)^{2}}-a_{0}\right)$, there exists $M_{\varepsilon}>0$ such that

$$
F(t, x) \leq \frac{1}{2}\left(\alpha(t)+\varepsilon(m+1)^{2} \omega^{2}\right)|x|^{2}+\max _{s \in\left[0, M_{\varepsilon}\right]} a(s) b(t)
$$

for all $x \in R^{N}$ and a.e. $t \in[0, T]$. Combining this with (2.4), we obtain

$$
\begin{aligned}
\varphi(w) & \leq-\frac{1}{2} \int_{0}^{T}|\dot{w}|^{2} d t+\frac{m^{2} w^{2}}{2} \int_{0}^{T}|w|^{2} d t+\frac{1}{2} \int_{0}^{T}\left(\alpha(t)+\varepsilon(m+1)^{2} w^{2}\right) w^{2} d t+c_{5} \\
& \leq-\frac{1}{2}\left(1-\frac{m^{2}}{(m+1)^{2}}-a_{0}-\varepsilon\right) \int_{0}^{T}|\dot{w}|^{2} d t+c_{5} \\
& \leq-\frac{1}{2}\left(\frac{2 m+1}{(m+1)^{2}}-a_{0}-\varepsilon\right) \int_{0}^{T}|\dot{w}|^{2} d t+c_{5}
\end{aligned}
$$

for $w \in H_{m}^{\perp}$, where $c_{5}=\max _{s \in\left[0, M_{\varepsilon}\right]} a(s) \int_{0}^{T} b(t) d t$, which implies that

$$
\varphi(w) \rightarrow-\infty \quad \text { as }\|w\| \rightarrow \infty \quad \text { on } H_{m}^{\perp}
$$

by the equivalence of the L^{2}-norm of \dot{w} and the H_{T}^{1}-norm on H_{m}^{\perp}. This, jointly with Lemmas 2.3, 2.4 and Proposition 2.1, yields that φ possesses at least one critical point, and hence problem (1.1) has at least one solution in H_{T}^{1}. This concludes the proof.

Proof of Theorem 1.10. By $\left(A_{8}\right)$ and Sobolev's inequality, we have

$$
\begin{aligned}
\varphi(w) & \leq-\frac{1}{2}\left(1-\frac{m^{2}}{(m+1)^{2}}\right) \int_{0}^{T}|\dot{w}|^{2} d t+\frac{1}{2} \int_{0}^{T} \alpha(t)|w|^{2} d t+\int_{0}^{T} \gamma(t) d t \\
& \leq-\frac{2 m+1}{2(m+1)^{2}} \int_{0}^{T}|\dot{w}|^{2} d t+\frac{1}{2} \int_{0}^{T} \alpha(t) d t \cdot\|w\|_{\infty}^{2}+\int_{0}^{T} \gamma(t) d t \\
& \leq-\frac{2 m+1}{2(m+1)^{2}} \int_{0}^{T}|\dot{w}|^{2} d t+\frac{1}{2} \int_{0}^{T} \alpha(t) d t \cdot \frac{T}{12} \int_{0}^{T}|\dot{w}|^{2} d t+\int_{0}^{T} \gamma(t) d t \\
& \leq-\frac{1}{2}\left(\frac{2 m+1}{(m+1)^{2}}-\frac{T}{12} \int_{0}^{T} \alpha(t) d t\right) \int_{0}^{T}|\dot{w}|^{2} d t+\int_{0}^{T} \gamma(t) d t
\end{aligned}
$$

for all $w \in H_{m}^{\perp}$. Noting $\int_{0}^{T} \alpha(t) d t<\frac{12(2 m+1)}{T(m+1)^{2}}$, the last inequality implies that

$$
\varphi(w) \rightarrow-\infty \quad \text { as }\|w\| \rightarrow \infty, w \in H_{m}^{\perp}
$$

Consequently, Theorem 1.10 follows from Lemmas 2.3, 2.4 and Proposition 2.1. This completes the proof.

Acknowledgements

The work is partially supported by National Natural Science Foundation of China (No. 11471267) and supported by the Fund of Chongqing Normal University (14XLB008).

References

[1] M. S. Berger, M. Schechter, On the solvability of semilinear gradient operator equations, Advances in Math. 25(1977), 97-132. MR0500336
[2] H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. 8(1983), 409-426. MR693957; url
[3] G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differential Equations 8(2002), 1-12. MR1884977
[4] A. C. Lazer, E. M. Landesman, D. R. Meyers, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52(1975), 594-614. MR0420389
[5] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989. MR982267
[6] J. Mawhin, M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3(1986), 431-453. MR870864
[7] P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33(1980), 609-633. MR586414
[8] C.-L. Tang, An existence theorem of solutions of semilinear equations in reflexive Banach spaces and its applications, Acad. Roy. Belg. Bull. Cl. Sci. 4(1993), 317-330.
[9] C.-L. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126(1998), 3263-3270. MR1476396; url
[10] C.-L. Tang, X.-P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259(2001), 386-397. MR1842066; url
[11] C.-L. Tang, X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl. 275(2002), 870-882. MR1943785; url
[12] C.-L. Tang, X.-P. Wu, Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl. 285(2003), 8-16. MR2000135; url
[13] C.-L. Tang, X.-P. Wu, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. Differential Equations 248(2010), 660-692. MR2578444; url
[14] J. Wang, F. Zhang, J. Wei, Existence and multiplicity of periodic solutions for secondorder systems at resonance, Nonlinear Anal. Real World Appl. 11(2010), 3782-3790. MR2683831; url
[15] X. Wu, Saddle point characterization and multiplicity of periodic solutions of nonautonomous second-order systems, Nonlinear Anal. 58(2004), 899-907. MR2086063; url
[16] Y.-W. Ye, C.-L. Tang, Periodic solutions for some nonautonomous second order Hamiltonian systems, J. Math. Anal. Appl. 344(2008), 462-471. MR2416320; url
[17] Y.-W. Ye, C.-L. Tang, Periodic and subharmonic solutions for a class of superquadratic second order Hamiltonian systems, Nonlinear Anal. 71(2009), 2298-2307. MR2524437; url
[18] Y. Ye, C.-L. TANG, Infinitely many periodic solutions of non-autonomous second-order Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 144(2014), 205-223. MR3164544; url
[19] Y. Ye, C.-L. Tang, Existence and multiplicity of periodic solutions for some second order Hamiltonian systems, Bull. Belg. Math. Soc. Simon Stevin 21(2014), 613-633. MR3271324; url
[20] K. Yosida, Functional analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 123, 6th edition, Springer-Verlag, Berlin, 1980. MR617913
[21] Q. Zhang, C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential Equations 251(2011), 816-833. MR2812572; url
[22] F. Zhao, X. Wu, Saddle point reduction method for some non-autonomous second order systems, J. Math. Anal. Appl. 291(2004), 653-665. MR2039076; url
[23] F. Zhao, X. Wu, Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60(2005), 325-335. MR2101882; url
[24] W. Zou, S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations 186(2002), 141-164. MR1941096; url

[^0]: ${ }^{\boxtimes}$ Email: yeyiwei2011@126.com

