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Abstract. Let m be a positive integer and q be a positive real number. We prove that the
m-dimensional and q-periodic system

ẋ(t) = A(t)x(t), t ∈ R+, x(t) ∈ Cm (∗)

is Hyers–Ulam stable if and only if the monodromy matrix associated to the family
{A(t)}t≥0 possesses a discrete dichotomy, i.e. its spectrum does not intersect the unit
circle.
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1 Introduction

The notion of exponential dichotomy comes from a paper published in 1930 by Oscar Perron
[25]. Over the years this concept has proven to be very useful in investigating properties of
the solutions of ordinary and functional differential equations. In particular, the existence of
bounded and periodic solutions of several families of semi-linear systems has been studied
using the Green matrix G(t, s) of the system (∗) and concluding that for any bounded f , the
convolution G ∗ f is a bounded solution of the non-homogeneous linear system

ẋ(t) = A(t)x(t) + f (t). (1.1)

In 1940 S. M. Ulam has tackled some open problems (see [30] and [31]), one of those problems
concerns the stability of a certain functional equation. The first answer to that problem was
provided by D. H. Hyers in 1941, see [15]. Later on, this was coined as the Hyers–Ulam
problem and its study became an extensive object for many mathematicians. See for example
[1, 3–7, 12, 13, 16–24, 27–29, 32] and the references therein.
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The set of all m×m matrices having complex entries will be denoted by Cm×m. Denote by
Im the identity matrix in Cm×m. Assume that the map t 7→ A(t) : R 7→ Cm×m is continuous
and then the Cauchy problem{

Ẋ(t) = A(t)X(t), t ∈ R, X(t) ∈ Cm×m

X(0) = Im,
(1.2)

has a unique solution denoted by ΦA(t). It is well known that ΦA(t) is an invertible matrix
and that its inverse is the unique solution of the Cauchy problem{

Ẋ(t) = −X(t)A(t), t ∈ R

X(0) = Im.

The evolution family UA = {UA(t, s) : t, s ∈ R}, where

UA(t, s) := ΦA(t)Φ−1
A (s),

has the following properties:

(i) UA(t, t) = Im, for all t ∈ R;

(ii) UA(t, s) = UA(t, r)UA(r, s) for all t, s, r ∈ R;

(iii) ∂
∂t UA(t, s) = A(t)UA(t, s) for all t, s ∈ R;

(iv) ∂
∂s UA(t, s) = −UA(t, s)A(s) for all t, s ∈ R;

(v) the map (t, s) 7→ UA(t, s) : R2 → Cm×m is continuous.

If, in addition, the map A(·) is q- periodic, for some positive number q, then:

(vi) UA(t + q, s + q) = UA(t, s) for all t, s ∈ R;

(vii) there exist ω > 0 and Mω ≥ 1 such that

‖UA(t, s)‖ ≤ Mωeω(t−s), t ≥ s;

(viii) ΦA(t + q) = ΦA(t) ·ΦA(q) for all t ∈ R.

To prove the latter statement, we remark that the map t 7→ ΦA(t + q)(ΦA(q))−1 is a
solution of (1.2). Now, by using the uniqueness it must be ΦA(·). The matrix Tq := UA(q, 0) is
the matrix of monodromy associated with the family A. Having in mind that Tq is invertible
there exists a matrix B ∈ Cm×m such that Tq = eqB. Thus there is a periodic (period q) matrix
function t 7→ R(t) such that ΦA(t) = R(t)etB for all t ∈ R. This will be used to show that
certain family of projections described below is periodic.

The complex unit circle is denoted by Γ := {z ∈ C : |z| = 1}. Recall that the matrix A
is said to be dichotomic (or that it possesses a discrete dichotomy) if its spectrum does not
intersect the unit circle, i.e. σ(A) ∩ Γ = ∅. An m × m complex matrix P, verifying P2 = P
is called projection. The circle and closed disk centered in the eigenvalue λj ∈ σ(A) are
respectively denoted by

Cr(λj) = {z ∈ C : |z− λj| = r}
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and
Dr(λj) = {z ∈ C : |z− λj| ≤ r}.

Here r is any positive real number, small enough such that σ(A) ∩ Dr(λj) = {λj}, for every
1 ≤ j ≤ k. The projection Eλj(A) := Ej(A) : Cm → Cm, defined by

Ej(A) =
1

2πi

∮
Cr(λj)

(zIm − A)−1 dz,

is called spectral projection associated to the eigenvalue λj, [10, Chap. 7]. Obviously, Im =

Eλ1(A) + Eλ2(A) + · · ·+ Eλk(A). The stable spectral projection of A is given by

Π−(A) :=
1

2πi

∮
Cr(0)

(zIm − A)−1 dz,

where 0 < r < 1 is large enough such that

{λ ∈ σ(A) : |λ| < 1} ⊂ {λ ∈ C : |λ| < r}.

Clearly, Π−(A) commutes with any natural power of A.
Coming back to the non-autonomous case let Π− := Π−(Tq) and let

Π−(t) := ΦA(t)Π−(ΦA(t))−1 and Π+(t) := Im −Π−(t)

for t ∈ R. Next, we list the main properties of this family of projections.

(i) Π2
−(t) = Π−(t) and Π2

+(t) = Π+(t) for all t ∈ R.

(ii) Π±(t)U(t, s) = U(t, s)Π±(s) for all t, s ∈ R, (the signs correspond).

(iii) The maps t 7→ Π±(t) are continuous on R and q-periodic.

(iv) Π−(t) + Π+(t) = Im and Π−(t) ·Π+(t) = 0 for all t ∈ R.

(v) For each t, s ∈ R, U(t, s) is an isomorphism from ker(Π−(s)) to ker(Π−(t)).

Proposition 1.1. The following two statements, concerning an invertible m×m matrix A, are equiv-
alent.

(1) A possesses a discrete dichotomy.

(2) There exist four positive constants N1 = N1(A), N2 = N2(A), ν1 = ν1(A), ν2 = ν2(A) such
that

(i) ‖AnΠ−(A)x‖ ≤ N1e−ν1n‖Π−(A)x‖, for all x ∈ Cm and all n ∈ Z+.

(ii) ‖AnΠ+(A)x‖ ≤ N2eν2n‖Π+(A)x‖, for all x ∈ Cm and all n ∈ Z− := {0,−1,−2, . . . }.

The argument is standard and the details are omitted. Mention that the above result can
be stated in a more general form with any projection P, commuting with A, instead of Π−(A).
Moreover, the assumption of invertibility can be removed. See, for example, Proposition 2.1
from [2]. For further details about the concept of dichotomy see for example [8, 26].
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Let t 7→ f (t) be a Cm-valued locally Riemann integrable function on R+ and let x ∈ Cm be
a given vector. Consider the Cauchy problem{

ẋ(t) = A(t)x(t) + f (t), t ≥ 0

x(0) = x.
(1.3)

The solution of (1.3) is given by

φ f ,x(t) = UA(t, 0)x +
∫ t

0
UA(t, s) f (s) ds.

In order to prove Theorem 1.3 below, we need the following proposition, which contains
equivalent characterizations for exponential dichotomy.

Proposition 1.2. The following three statements concerning the matrix family A are equivalent.

(1) Tq is dichotomic.

(2) There exist the positive constants N′1, N′2, ν′1, ν′2 such that

(i) ‖UA(t, s)Π−(s)‖ ≤ N′1e−ν′1(t−s), for all t ≥ s ≥ 0, and

(ii) ‖UA(t, s)Π+(s)‖ ≤ N′2eν′2(t−s), for all 0 ≤ t ≤ s.

(3) For each locally Riemann integrable and bounded function f : R+ → Cm there exists a unique
x ∈ ker(Π−), such that φ f ,x(·) is bounded on R+.

Proof. (1) ⇒ (2) Let t ≥ s ∈ R+ and let n and k be the integer parts of t
q and s

q respectively,
i.e., n = [ t

q ] and k = [ s
q ]. Therefore t = nq + µ and s = kq + ρ, with n, k ∈ Z+ and µ, ρ ∈ [0, q).

We analyze the following cases.
Case 1. When n > k, then

UA(t, s)Π−(s) = UA(nq + µ, nq)UA(nq, (k + 1)q)UA((k + 1)q, kq + ρ)Π−(kq + ρ)

= UA(µ, 0)UA((n− k− 1)q, 0)UA(q, ρ)Π−(ρ)

= UA(µ, 0)Tn−k−1
q Π−UA(q, ρ).

In the view of Proposition 1.1 and taking into account that Π−(0) = Π−(q) = Π−, we get

‖UA(t, s)Π−(s)‖ ≤ MeωqN1e−ν1(n−k−1)Meωq‖Π−‖
≤ N′1e−ν′1(t−s),

where N′1 = N1M2e2ωqe2ν1‖Π−‖ and ν′1 = ν1
q .

Case 2. When n = k, then µ ≥ ρ and

‖UA(s, t)Π−(s)‖ = ‖UA(µ, ρ)Π−(ρ)‖.

By using supρ∈[0,q] ‖Π−(ρ)‖ ≤ c < ∞ and letting ν be an arbitrary positive number, we
may choose N ∈ R+ large enough, such that

‖UA(t, s)Π−(s)‖ ≤ Meω(µ−ρ)‖Π−(ρ)‖ ≤ cNe−ν(µ−ρ) = N′1e−ν′1(t−s).

Similar estimations can be obtained in order to prove (2) (ii). We omit the details.
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(2) ⇒ (1). Put s = 0 and t = nq in (2) (i), (ii) and apply Proposition 1.1 with Tq instead
of A.

(2)⇒ (3). The map

t 7→ y(t) :=
∫ t

0
UA(t, s)Π−(s) f (s) ds−

∫ ∞

t
UA(t, s)Π+(s) f (s) ds

is a solution of (1.1), [8, Chap. 3]. Indeed, the second integral is well defined because, from
(2) (ii), have that ∫ ∞

t
‖UA(t, s)Π+(s) f (s)‖ ds ≤

∫ ∞

t
N′2eν′2(t−s)‖ f ‖∞ ds

=
N′2
ν′2
‖ f ‖∞.

Also from (2), the solution is bounded, and

sup
t≥0
|y(t)| ≤

(
N′1
ν′1

+
N′2
ν′2

)
sup
t≥0
| f (t)|.

Moreover, since ker(Π−) is a closed subspace, the initial value

y(0) = −
∫ ∞

0
UA(0, s)Π+(s) f (s) ds ∈ ker(Π−).

Let us suppose that there exist two bounded solutions of the differential equation ẋ(t) =
A(t)x(t) + f (t), t ≥ 0 having their start in ker(Π−). Denote them by y1(·) and y2(·). Then

y1(t) = UA(t, 0)x1 +
∫ t

0
UA(t, s) f (s) ds, x1 ∈ ker(Π−)

and

y2(t) = UA(t, 0)x2 +
∫ t

0
UA(t, s) f (s) ds, x2 ∈ ker(Π−).

Their difference is bounded and y1(t)− y2(t) = UA(t, 0)(x1 − x2). Since the map y1(·)− y2(·)
is bounded on R+, and because Tq is dichotomic it follows that x1 − x2 ∈ Range(Π−). On the
other hand, x1, x2 ∈ ker(Π−) yields x1 − x2 ∈ ker(Π−) and therefore x1 = x2.

(3)⇒ (1). Suppose that there exists λ ∈ σ(T), with |λ| = 1. Then, there exists x0 6= 0 such
that Tqx0 = λx0, and therefore UA(nq, 0) = λnx0, for all n ∈ Z+.

Set

f (t) :=

{
UA(s, 0)x0, if s ∈ [0, q)

x0, if s = q,

and let us denote also by f its continuation by periodicity on R+. By assumption there exists
a unique y0 ∈ ker(Π−) such that the map

t 7→ ψ(t) := UA(t, 0)y0 +
∫ t

0
UA(t, s) f (s) ds

is bounded on R+. Next we analyze two cases.
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Case 1. When λ = 1. The sequence (ψ(nq))n∈Z+ should be bounded. But,

ψ(nq) := UA(nq, 0)y0 +
∫ nq

0
UA(nq, s) f (s) ds

= UA(nq, 0)y0 +
n−1

∑
k=0

∫ (k+1)q

kq
UA(nq, s) f (s) ds

= UA(nq, 0)y0 +
n−1

∑
k=0

UA(nq, (k + 1)q)
∫ q

0
UA(q, r) f (r) dr

= UA(nq, 0)y0 +
n−1

∑
k=0

UA(nq, kq)x0 = UA(nq, 0)y0 + nx0.

If y0 = 0, obviously we arrive at a contradiction, since the map n 7→ nx0 is unbounded,
and if y0 6= 0, let denote y0(n) := UA(nq, 0)y0. Then, one has

‖y0‖ = ‖UA(0, nq)y0(n)‖
= ‖UA(0, nq)Π+y0(n)‖ ≤ N′2e−ν′2nq‖UA(nq, 0)y0‖,

where the fact that

Π+y0(n) = UA(nq, 0)Π+y0 = UA(nq, 0)(y0 −Π−y0) = y0(n),

was used. This yields

‖UA(nq, 0)y0‖ ≥
1

N′2
eν′2nq‖y0‖,

and a contradiction arises again.
Case 2. When λ = eiuq 6= 1, u ∈ R, i2 = −1. Then 1 ∈ σ(e−iuqT), Tu(q) := e−iuqTq is the
monodromy matrix of the evolution family

{UA,u(t, s) := e−iu(t−s)UA(t, s) : t, s ∈ R}

and, as before, we obtain that the sequence

(e−iunqψ(nq))n∈Z+ = (UA,u(nq, 0)y0 + qnx0)n∈Z+ ,

is unbounded, which is a contradiction.

In the present paper we assume that the matrix-valued map t 7→ A(t) is continuous and
q-periodic for some positive q. Next we outline the Hyers–Ulam problem for a family of m×m
matrices A = {A(t)}t≥0, m being a positive integer. Let R+ be the set of all nonnegative real
numbers and let ρ(·) be a Cm-valued function defined on R+. Consider the systems

ẋ(t) = A(t)x(t), t ∈ R, x(t) ∈ Cm (1.4)

and
ẋ(t) = A(t)x(t) + ρ(t), t ∈ R+, x(t) ∈ Cm. (1.5)

Let ε be a positive real number. A continuous Cm-valued function y(·) defined on R+ := [0, ∞)

is called ε-approximate solution for (1.4) if it is continuously differentiable on R+ \ (qZ+) and

‖ẏ(t)− A(t)y(t)‖ ≤ ε, ∀t ∈ R+ \ (qZ+). (1.6)
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The family A is said to be Hyers–Ulam stable if there exists a nonnegative constant L such
that, for every ε-approximate solution φ(·) of (1.4), there exists an exact solution θ(·) of (1.4)
such that

sup
t∈R+

‖φ(t)− θ(t)‖ ≤ Lε. (1.7)

The result of this paper reads as follows.

Theorem 1.3. The family A = {A(t)}t≥0 is Hyers–Ulam stable if and only if its monodromy matrix
Tq possesses a discrete dichotomy.

2 Hyers–Ulam stability and exponential dichotomy for linear differ-
ential systems

We can see an ε-approximate solution of (1.4) as an exact solution of (1.5) corresponding to a
forced term ρ(·) which is bounded by ε.

Remark 2.1. Let ε be a given positive number. The following two statements are equivalent:

1. The matrix family A (or the system (1.4)) is Hyers–Ulam stable.

2. There exists a nonnegative constant L such that for every function ρ(·), continuous on
R+ \ (qZ+), with supt≥0 ‖ρ(t)‖ ≤ ε, and every x ∈ Cm there exists x0 ∈ Cm and

sup
t≥0

∥∥∥∥UA(t, 0)(x− x0) +
∫ t

0
UA(t, s)ρ(s) ds

∥∥∥∥ ≤ Lε. (2.1)

Proof. Let ε be a given positive number. Assume first that the system (1.4) is Hyers–Ulam
stable and let L be a positive constant verifying (1.7). Let ρ(·) be as assumed in the second
statement and x ∈ Cm. Obviously, the solution φ(·) of the Cauchy problem

ẋ(t) = A(t)x(t) + ρ(t), x(0) = x

is an ε-approximative solution for (1.4). Thus, by assumption, there exists an exact solution
θ(·) of (1.4) such that (1.7) holds true. Let x0 := θ(0). Now, in view of (1.6) the inequality in
(2.1) holds true as well.

Now assume that the second statement is true and let L be a positive constant verifying
(2.1) and φ(·) be an ε-approximative solution of (1.4). Set ρ(t) := φ̇(t) − A(t)φ(t) for t ∈
R+ \ (qZ+) and ρ(t) := ε in the rest, and let x := φ(0). Thus ‖ρ‖∞ ≤ ε and, by assumption
(2.1) holds true for a certain x0 ∈ Cm. The required exact solution of (1.4), verifying (1.7), is
defined by θ(t) := U(t, 0)x0.

Proof of Theorem 1.3.
Necessity. Suppose that Tq is not dichotomic. Then, there exist an integer j with 1 ≤ j ≤ k and
λj = eiµjq ∈ σ(Tq), where µj is a certain real number. Let ε > 0 be fixed and let

ρ(t) :=

{
UA(s, 0)u0, if s ∈ [0, q)

u0, if s = q,

where u0 ∈ Cm and ‖u0‖ ≤ (Mωeωq)−1ε. Let us denote also by ρ the continuation by period-
icity of the previous function. Obviously, the function ρ(·) is locally Riemann integrable on
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R+ and bounded by ε. By assumption, the family matrix A is Hyers–Ulam stable. Hence, the
solution

φ(t) = UA(t, 0)(x− x0) +
∫ t

0
UA(t, s)ρ(s) ds,

of the Cauchy problem {
ẏ(t) = A(t)y(t) + ρ(t), t ≥ 0

y(0) = x− x0,

is bounded by Lε for certain x− x0 ∈ Cm. Then, the sequence

n 7→ Ej(Tq)φ(nq) = Ej(Tq)

[
UA(nq, 0)(x− x0) +

∫ nq

0
UA(nq, s)ρ(s) ds

]
should be also bounded by Lε. On the other hand, see for example [2, Lemma 4.5], [9, 11, 14],
there exists an m×m matrix-valued polynomial Pj = Pj(Tq) (in n) having the degree at most
mj − 1, such that

Ej(Tq)UA(nq, 0) = eiµjqnPj(n), ∀n ∈ Z+.

But,

Ej(Tq)

[
UA(nq, 0)(x− x0) +

∫ nq

0
UA(nq, s)ρ(s) ds

]
= eiµjnqPj(n)(x− x0) +

∫ nq

0
Ej(Tq)UA(nq, s)ρ(s) ds

= eiµjnqPj(n)(x− x0) +
n−1

∑
k=0

∫ (k+1)q

kq
Ej(Tq)UA(nq, s)ρ(s) ds

= eiµjnqPj(n)(x− x0) +
n−1

∑
k=0

∫ q

0
Ej(Tq)UA(nq, (k + 1)q)UA(q, s)ρ(s) ds

= eiµjnqPj(n)(x− x0) +
n−1

∑
k=0

λn−k
j Pj(n− k)u0.

Now, if λj = 1 then by choosing an appropriate u0 6= 0, we have that

deg[Pj(n)(x− x0)] ≤ deg[Pj(n)] = deg[Pj(n)u0] < 1 + deg[Pj(n)]

= deg[qj(n)],

where qj(n) := ∑n−1
k=0 Pj(n− k)u0 and the fact that the degree of the polynomial in n, p(n) =

1k + 2k + · · · + nk, is equal to k + 1 was used. Therefore, the sequence (Pj(n)(x − x0) +

qj(n))n∈Z+ , is unbounded and a contradiction arises.
When λj 6= 1, then 1 ∈ σ(Tµj(q)) and the map t 7→ e−iµjtφ(t) should be bounded on R+.

Then the sequence
n 7→ e−iµjnqφ(nq), n ∈ Z+,

is bounded as well. On the other hand

e−iµjnqEj(Tµj(q))φ(nq) = Ej(Tµj(q))
[

UA,µj(nq, 0)(x− x0) +
∫ nq

0
UA,µj(nq, s)e−iµjsρ(s) ds

]
.

Again, as above, there exists a matrix valued polynomial Qj(n) = Qj(Tµj(q)) (in n) having the
degree at most mj − 1 such that

Ej(Tµj(q))UA,µj(nq, 0) = Qj(n) for every n ∈ Z+.
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Thus after a standard calculation

e−iµjnqEj(Tµj(q))φ(nq) = Qj(n)(x− x0) +
n−1

∑
k=0

Qj(n− k)u0.

For an appropriate u0 ∈ Cm, the last expression is a vector valued polynomial of degree at
least one and so it is unbounded and a contradiction is provided again.

Sufficiency. The absolute constant L will be settled later. Let ρ : R+ → Cm be a bounded
locally Riemann integrable function on R+, with ‖ρ‖∞ ≤ ε and let x ∈ Cm. By Proposition 1.1,
there exists a unique bounded solution y(·) of the equation (1.5) starting from the subspace
ker(Π−). Let denote u0 := y(0). Then

‖y(t)‖ =
∥∥∥∥UA(t, 0)u0 +

∫ t

0
UA(t, s)ρ(s) ds

∥∥∥∥
=

∥∥∥∥∫ t

0
UA(t, s)Π−(s)ρ(s)ds−

∫ ∞

t
UA(t, s)Π+(s)ρ(s) ds

∥∥∥∥
≤
(

N′1
ν′1

+
N′2
ν′2

)
ε.

The desired assertion follows by choosing L =
(

N′1
ν′1

+
N′2
ν′2

)
and setting x0 = x− u0.

A more general result, described in the following, can be stated. Its proof is very similar
to that given before and we omit the details.

Let X be a complex, finite dimensional Banach space and let A = {A(t)}t∈R+ and P =

{P(t)}t∈R+ be two families of linear operators acting on X. Assume the following.

H1. A(t + q) = A(t) and P(t + q) = P(t), for all t ∈ R+ and some positive q.

H2. P(t)2 = P(t), for all t ∈ R+, i.e., P is a family of projections.

H3. UA(t, s)P(s) = P(t)UA(t, s), for any t ≥ s ∈ R+. In particular, this yields that UA(t, s)x ∈
ker(P(t)) for each x ∈ ker(P(s)).

H4. For each t ≥ s ∈ R+, the map

x 7→ UA(t, s)x : ker(P(s))→ ker(P(t))

is invertible. Denote by UA|(s, t) its inverse.

We say that the family A is P-dichotomic if there exist four positive constants N1, N2, ν1

and ν2 such that

(i) ‖UA(t, s)P(s)‖ ≤ N1e−ν1(t−s) for all t ≥ s ≥ 0;

(ii) ‖UA|(t, s)(I − P(s))‖ ≤ N2eν2(t−s) for all 0 ≤ t < s.

Proposition 2.2. Assume that the families A and P satisfy H1–H4 above. Thus the following three
statements are equivalent.

(1) Tq possesses a discrete dichotomy.

(2) The family A is P-dichotomic.
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(3) The family A is Hyers–Ulam stable.

We conclude this note with the one-dimensional version of our result.

Corollary 2.3. Let t 7→ a(t) : R+ → C be a given continuous and q-periodic function (for some
positive q). The scalar differential equation

ẋ(t) = a(t)x(t), t ∈ R+, x(t) ∈ C (2.2)

is Hyers–Ulam stable if and only if ∫ q

0
<[a(r)] dr 6= 0.

Proof. Indeed, we have

Tq = e
∫ q

0 a(r) dr, σ(Tq) = {Tq} and |Tq| = e
∫ q

0 <[a(r)] dr.

From Theorem 1.3 follows that (2.2) is Hyers–Ulam stable if and only if |Tq| 6= 1 or equivalently
if and only if

∫ q
0 <[a(r)] dr 6= 0.
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[3] J. Brzdęk, D. Popa, B. Xu, Remarks on stability of linear recurrence of higher order,
Applied Mathematics Letters 23(2010), 1459–1463. MR2718530; url
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