Loitering at the hilltop on exterior domains

Joseph A. Iaia ${ }^{\boxtimes}$
University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203, USA

Received 10 June 2015, appeared 23 November 2015
Communicated by Gennaro Infante

Abstract

In this paper we prove the existence of an infinite number of radial solutions of $\Delta u+f(u)=0$ on the exterior of the ball of radius $R>0$ centered at the origin and f is odd with $f<0$ on $(0, \beta), f>0$ on (β, δ), and $f \equiv 0$ for $u>\delta$. The primitive $F(u)=\int_{0}^{u} f(t) d t$ has a "hilltop" at $u=\delta$ which allows one to use the shooting method to prove the existence of solutions.

Keywords: radial, hilltop, semilinear.
2010 Mathematics Subject Classification: 34B40, 35J25.

1 Introduction

In this paper we study radial solutions of:

$$
\begin{align*}
\Delta u+f(u)=0 & \text { in } \Omega \tag{1.1}\\
u=0 & \text { on } \partial \Omega \tag{1.2}\\
u \rightarrow 0 & \text { as }|x| \rightarrow \infty \tag{1.3}
\end{align*}
$$

where $x \in \Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ is the complement of the ball of radius $R>0$ centered at the origin. We assume there exist β, γ, δ with $0<\beta<\gamma<\delta$ such that f is odd, locally Lipschitz with $f(0)=f(\beta)=f(\delta)=0$, and $F(u)=\int_{0}^{u} f(s) d s$ where:

$$
\begin{equation*}
f<0 \text { on }(0, \beta), \quad f>0 \text { on }(\beta, \delta), \quad f \equiv 0 \text { on }(\delta, \infty), \quad F(\gamma)=0, \quad \text { and } \quad F(\delta)>0 \tag{1.4}
\end{equation*}
$$

In addition we assume:

$$
\begin{equation*}
f^{\prime}(\beta)>0 \quad \text { if } N>2 \tag{1.5}
\end{equation*}
$$

In an earlier paper [6] we studied (1.1), (1.3) when $\Omega=\mathbb{R}^{N}$ and we proved existence of an infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \rightarrow 0$ as $|x| \rightarrow \infty$. Interest in the topic for this paper comes from some recent papers [$5,8,10$] about solutions of differential equations on exterior domains.

When f grows superlinearly at infinity i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty$, and $\Omega=\mathbb{R}^{N}$ then the problem (1.1), (1.3) has been extensively studied $[1-3,7,11]$. However, the type of nonlinearity addressed in this paper has not.

[^0]Since we are interested in radial solutions of (1.1)-(1.3) we assume that $u(x)=u(|x|)=$ $u(r)$ where $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that u solves:

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0, \tag{1.6}\\
u(R)=0, \quad u^{\prime}(R)=a>0 . \tag{1.7}
\end{gather*}
$$

We will show that there are infinitely many solutions of (1.6)-(1.7) on $[R, \infty)$ such that:

$$
\lim _{r \rightarrow \infty} u(r)=0 .
$$

Main theorem. There exists a positive number d^{*} and positive numbers a_{i} so that:

$$
0<a_{0}<a_{1}<a_{2}<\cdots<d^{*}
$$

and $u\left(r, a_{i}\right)$ satisfies (1.6)-(1.7), $u\left(r, a_{i}\right)$ has exactly i zeros on (R, ∞), and $\lim _{r \rightarrow \infty} u\left(r, a_{i}\right)=0$.
We will first show that there exists a $d^{*}>0$ so that the corresponding solution, $u\left(r, d^{*}\right)$, of (1.6)-(1.7) satisfies: $u\left(r, d^{*}\right)>0$ on (R, ∞) and $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=\delta$. Once d^{*} is determined we will then find the a_{i}.

An important step in proving this result is showing that solutions can be obtained with more and more zeros by choosing a appropriately. Intuitively it can be of help to interpret (1.6) as an equation of motion for a point $u(r)$ moving in a double-well potential $F(u)$ subject to a damping force $-\frac{N-1}{r} u^{\prime}$. This potential however becomes flat at $u= \pm \delta$. According to (1.7) the system has initial position zero and initial velocity $a>0$. We will see that if $a>0$ is sufficiently small then the solution will "fall" into the well at $u=\beta$ and - due to damping - it will be unable to leave the well whereas if $a>0$ is sufficiently large the solution will reach the top of the hill at $u=\delta$ and will continue to move to the right indefinitely. For an appropriate value of a - which we denote d^{*} - the solution will reach the top of the hill at $u=\delta$ as $r \rightarrow \infty$. For values of a slightly less than d^{*} the solutions will not make it to the top of the hill at $u=\delta$ and they will nearly stop moving. Thus the solution "loiters" near the hilltop on a sufficiently long interval and will usually "fall" into the positive well at $u=\beta$ or the negative well at $u=-\beta$ after passing the origin several times. The closer a is to d^{*} with $a<d^{*}$ the more times the solution passes the origin. Given $n \geq 0$ for the right value of a - which we denote as a_{n} the solution will pass the origin n times and come to rest at the local maximum of the function $F(u)$ at the origin as $r \rightarrow \infty$.

In contrast to a double-well potential that goes off to infinity as $|u| \rightarrow \infty$ - for example $F(u)=u^{2}\left(u^{2}-4\right)$ - the solutions behave quite differently. Here as a increases the number of zeros of u increases as $a \rightarrow \infty$. Thus the number of times that u reaches the local maximum of $F(u)$ at the origin increases as the parameter a increases. See for example [7,9].

2 Preliminaries

Since $R>0$ existence of solutions of (1.6)-(1.7) on $[R, R+\epsilon)$ for some $\epsilon>0$ follows from the standard existence-uniqueness theorem [4] for ordinary differential equations. For existence on $[R, \infty)$ we consider:

$$
\begin{equation*}
E(r)=\frac{1}{2} u^{\prime 2}+F(u), \tag{2.1}
\end{equation*}
$$

and using (1.6) we see that:

$$
\begin{equation*}
E^{\prime}(r)=-\frac{N-1}{r} u^{\prime 2} \leq 0 \tag{2.2}
\end{equation*}
$$

so E is nonincreasing. Therefore:

$$
\begin{equation*}
\frac{1}{2} u^{\prime 2}+F(u)=E(r) \leq E(R)=\frac{1}{2} a^{2} \quad \text { for } r \geq R . \tag{2.3}
\end{equation*}
$$

It follows from the definition of f in (1.4) that F is bounded from below and so there exists a real number, F_{0}, so that:

$$
\begin{equation*}
F(u) \geq F_{0} \quad \text { for all } u . \tag{2.4}
\end{equation*}
$$

Therefore (2.3)-(2.4) imply u^{\prime} and hence (from (1.6)) $u^{\prime \prime}$ are uniformly bounded wherever they are defined. It follows from this then that u, u^{\prime}, and $u^{\prime \prime}$ are defined and continuous on $[R, \infty)$.

Lemma 2.1. Let $u(r, a)$ be a solution of (1.6)-(1.7) with $a>0$ and suppose $M_{a} \in(R, \infty)$ is a positive local maximum of $u(r, a)$. Then $|u(r, a)|<u\left(M_{a}, a\right)$ for $r>M_{a}$.

Proof. If there were an $r_{0}>M_{a}$ such that $\left|u\left(r_{0}, a\right)\right|=u\left(M_{a}, a\right)$ then integrating (2.2) on (M_{a}, r_{0}) and noting that $u^{\prime}\left(M_{a}, a\right)=0$ and F is even (since f is odd) we obtain:

$$
\begin{aligned}
F\left(u\left(M_{a}, a\right)\right)=F\left(u\left(r_{0}, a\right)\right) \leq & \frac{1}{2} u^{\prime 2}\left(r_{0}, a\right)+F\left(u\left(r_{0}, a\right)\right) \\
& +\int_{M_{a}}^{r_{0}} \frac{N-1}{r} u^{\prime 2} d r=E\left(M_{a}\right)=F\left(u\left(M_{a}, a\right)\right) .
\end{aligned}
$$

Thus:

$$
\int_{M_{a}}^{r_{0}} \frac{N-1}{r} u^{\prime 2} d r=0
$$

so that $u^{\prime}(r, a) \equiv 0$ on (M_{a}, r_{0}) and hence by uniqueness of solutions of initial value problems it follows that $u(r, a)$ is constant on $[R, \infty)$. However, $u^{\prime}(R, a)=a>0$ and thus $u(r, a)$ is not constant. Therefore we obtain a contradiction and the lemma is proved.

Lemma 2.2. Let $u(r, a)$ be a solution of (1.6)-(1.7) with $a>0$ on $\left(R, T_{a}\right]$ where $u\left(T_{a}, a\right)=\delta$ and $u^{\prime}(r, a)>0$ on $\left[R, T_{a}\right)$. Then $u^{\prime}(r, a)>0$ on $[R, \infty)$.

Proof. Since $u^{\prime}(r, a)>0$ on $\left[R, T_{a}\right)$ then by continuity we have $u^{\prime}\left(T_{a}, a\right) \geq 0$. If $u^{\prime}\left(T_{a}, a\right)=0$ then since $u\left(T_{a}, a\right)=\delta$ we have $f\left(u\left(T_{a}, a\right)\right)=0$ and therefore by (1.6) we have $u^{\prime \prime}\left(T_{a}, a\right)=0$ which would imply $u(r, a) \equiv \delta$ (by uniqueness of solutions of initial value problems) contradicting $u^{\prime}(R, a)=a>0$. Thus we see $u^{\prime}\left(T_{a}, a\right)>0$. Therefore $u(r, a)>\delta$ on $\left(T_{a}, T_{a}+\epsilon\right)$ for some $\epsilon>0$ and so $f(u(r, a)) \equiv 0$ on this set. Then from (1.6) we have $u^{\prime \prime}+\frac{N-1}{r} u^{\prime}=0$ and thus:

$$
\begin{equation*}
r^{n-1} u^{\prime}(r, a)=T_{a}^{n-1} u^{\prime}\left(T_{a}, a\right)>0 \tag{2.5}
\end{equation*}
$$

on $\left(T_{a}, T_{a}+\epsilon\right)$. It follows from this that $u(r, a)$ continues to be greater than δ so $f(u(r, a)) \equiv 0$ and therefore (1.6) reduces to $u^{\prime \prime}+\frac{N-1}{r} u^{\prime}=0$ so that (2.5) continues to hold on $[R, \infty)$. This completes the proof.

Lemma 2.3. Let $u(r, a)$ be a solution of (1.6)-(1.7) with $a>0$. Then there is an $r_{a}>R$ such that $u^{\prime}(r, a)>0$ on $\left[R, r_{a}\right]$ and $u\left(r_{a}, a\right)=\beta$. In addition, if $u(r, a)$ has a positive local maximum, M_{a}, with $\beta<u\left(M_{a}, a\right)<\delta$ then there exists $r_{a_{2}}>M_{a}$ such that $u^{\prime}(r, a)<0$ on $\left(M_{a}, r_{a_{2}}\right]$ and $u\left(r_{a_{2}}, a\right)=\beta$.

Proof. Since $u^{\prime}(R, a)=a>0$ we see that $u(r, a)$ is increasing for values of r close to R. If $u(r, a)$ has a first critical point, $t_{a}>R$, with $u^{\prime}(r, a)>0$ on $\left[R, t_{a}\right)$ then we must have $u^{\prime}\left(t_{a}, a\right)=0, u^{\prime \prime}\left(t_{a}, a\right) \leq 0$ and in fact $u^{\prime \prime}\left(t_{a}, a\right)<0$ (by uniqueness of solutions of initial value problems). Therefore from (1.6) it follows that $f\left(u\left(t_{a}, a\right)\right)>0$ so that $u\left(t_{a}, a\right)>\beta$. Thus the existence of r_{a} is established by the intermediate value theorem provided that $u(r, a)$ has a critical point. On the other hand, if $u(r, a)$ has no critical point then $u^{\prime}(r, a)>0$ for all $r \geq R$ so $\lim _{r \rightarrow \infty} u(r, a)=L$ where $0<L \leq \infty$. If $L=\infty$ then again we see by the intermediate value theorem that r_{a} exists. If $L<\infty$ then since E is nonincreasing by (2.2) and bounded below by (2.4), it follows that $\lim _{r \rightarrow \infty} E(r)$ exists which implies $\lim _{r \rightarrow \infty} u^{\prime}(r, a)$ exists. This limit must be zero for if $u^{\prime} \rightarrow A>0$ as $r \rightarrow \infty$ then integrating this on $\left(r_{0}, r\right)$ for large r_{0} and r implies $u \rightarrow \infty$ as $r \rightarrow \infty$ but we know u is bounded by $L<\infty$. Thus it must be the case that $\lim _{r \rightarrow \infty} u^{\prime}(r, a)=0$. It follows then from (1.6) that $\lim _{r \rightarrow \infty} u^{\prime \prime}(r, a)$ exists and by an argument similar to the proof that $\lim _{r \rightarrow \infty} u^{\prime}(r, a)=0$ it follows that $\lim _{r \rightarrow \infty} u^{\prime \prime}(r, a)=0$ so that by (1.6) we have $f(L)=0$. Since $L>0$ it follows from the definition of f that $L=\beta$ or $L=\delta$. If $L=\delta>\beta$ then again we see by the intermediate value theorem that r_{a} exists and so the only case we need to consider is if $u^{\prime}(r, a)>0$ and $L=\beta$. In this case we see that $f(u(r, a)) \leq 0$ for all $r \geq R$ so that $u^{\prime \prime}+\frac{N-1}{r} u^{\prime} \geq 0$ by (1.6). Thus, $\left(r^{N-1} u^{\prime}(r, a)\right)^{\prime} \geq 0$ and so $r^{N-1} u^{\prime}(r, a) \geq R^{N-1} u^{\prime}(R, a)=a R^{N-1}>0$ for $r \geq R$ and hence if $1 \leq N<2$ then $u(r, a)=u(r, a)-u(R, a) \geq \frac{a R^{n-1}}{2-N}\left(r^{2-N}-R^{2-N}\right) \rightarrow \infty$ as $r \rightarrow \infty$ and if $N=2$ then $u(r, a)=$ $u(r, a)-u(R, a) \geq a R \ln (r / R) \rightarrow \infty$ as $r \rightarrow \infty$. These however contradict that $u(r, a) \leq \beta$ and so it follows then in both of these situations that r_{a} exists and so we now only need to consider the case where $N>2$ with $u^{\prime}(r, a)>0$ and $\lim _{r \rightarrow \infty} u(r, a)=\beta$. So suppose $u^{\prime}(r, a)>0$ and $u(r, a)-\beta<0$ for $r \geq R$. Rewriting (1.6) we see:

$$
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\frac{f(u)}{u-\beta}(u-\beta)=0
$$

Recalling (1.5) we see that:

$$
\lim _{r \rightarrow \infty} \frac{f(u(r, a))}{u(r, a)-\beta}=\lim _{u \rightarrow \beta} \frac{f(u)}{u-\beta}=f^{\prime}(\beta)>0
$$

Thus $\frac{f(u(r, a))}{u(r, a)-\beta} \geq \frac{1}{2} f^{\prime}(\beta)$ for $r>r_{0}$ where r_{0} is sufficiently large. Next suppose v is a solution of:

$$
v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+\frac{1}{2} f^{\prime}(\beta)(v-\beta)=0
$$

with $v\left(r_{0}\right)=u\left(r_{0}\right)$ and $v^{\prime}\left(r_{0}\right)=u^{\prime}\left(r_{0}\right)$.
Then it is straightforward to show that:

$$
v(r)-\beta=r^{-\frac{N-2}{2}} J\left(\sqrt{\frac{1}{2} f^{\prime}(\beta) r}\right)
$$

where J is a solution of Bessel's equation of order $\frac{N-2}{2}$:

$$
J^{\prime \prime}+\frac{1}{r} J^{\prime}+\left(1-\frac{\left(\frac{N-2}{2}\right)^{2}}{r^{2}}\right) J=0
$$

It is well-known [4] that J has an infinite number of zeros on $(0, \infty)$ and so in particular there is an $r_{1}>r_{0}$ where $v\left(r_{1}\right)-\beta=0$. It then follows by the Sturm comparison theorem [4] that
$u(r, a)-\beta$ has a zero on $\left(r_{0}, r_{1}\right)$ contradicting our assumption that $u(r, a)-\beta<0$ for $r \geq R$. This therefore completes the proof of the first part of the lemma.

Suppose now that $u(r, a)$ has a maximum, M_{a}, so that $u^{\prime}\left(M_{a}, a\right)=0$ and $\beta<u\left(M_{a}, a\right)<\delta$. A similar argument using the Sturm comparison theorem shows that $u(r, a)$ again must equal β for some $r>M_{a}$. This completes the proof of the lemma.

3 Proof of the Main theorem

Before proceeding to the proof of the main theorem, we will first show that there is a $d^{*}>0$ such that $u^{\prime}\left(r, d^{*}\right)>0$ for $r \geq R, 0<u(r, a)<\delta$ for $r>R$, and $u(r, a) \rightarrow \delta$ as $r \rightarrow \infty$.

Let ϵ be chosen so that $0<\epsilon<\delta-\gamma$. (Recall that $\beta<\gamma<\delta$ and $F(\gamma)=0$).
Lemma 3.1. Let $u(r, a)$ be a solution of (1.6)-(1.7) with $a>0$. If $0<a<\sqrt{2 F(\delta-\epsilon)}$ then $u(r, a)<\delta-\epsilon$ on $[R, \infty)$.

Proof. Since $E^{\prime} \leq 0$ by (2.2) we see for $r \geq R$ that:

$$
\begin{equation*}
F(u(r, a)) \leq \frac{1}{2} u^{\prime 2}(r, a)+F(u(r, a))=E(r) \leq E(R)=\frac{1}{2} a^{2}<F(\delta-\epsilon) . \tag{3.1}
\end{equation*}
$$

Now if there is an $r_{0}>R$ such that $u\left(r_{0}, a\right)=\delta-\epsilon$ then substituting in (3.1) gives: $F(\delta-\epsilon) \leq$ $\frac{1}{2} a^{2}<F(\delta-\epsilon)$ which is impossible.

Lemma 3.2. Let $u(r, a)$ be a solution of (1.6)-(1.7) with $a>0$. If $0<\epsilon<\delta-\gamma$ and $0<$ $a<\sqrt{2 F(\delta-\epsilon)}$ then there exists an $M_{a}>R$ such that $u(r, a)$ has a local maximum at M_{a} with $u\left(M_{a}, a\right)<\delta$ and $u^{\prime}(r, a)>0$ on $\left[R, M_{a}\right)$.

Proof. From Lemma 3.1 we see that since $0<\epsilon<\delta-\gamma$ and $0<a<\sqrt{2 F(\delta-\epsilon)}$ then $u(r, a)<\delta-\epsilon$ on $[R, \infty)$. Also $u(r, a)$ is increasing near $r=R$ since $u^{\prime}(R, a)=a>0$. We suppose now by the way of contradiction that $u^{\prime}(r, a)>0$ for all $r \geq R$. Then by Lemma 3.1 there is an $L>0$ such that $\lim _{r \rightarrow \infty} u(r, a)=L \leq \delta-\epsilon$. Since E is bounded from below by (2.4), $E^{\prime} \leq 0$ by (2.2), and $\lim _{r \rightarrow \infty} u(r, a)=L$, it follows that $\lim _{r \rightarrow \infty} u^{\prime}(r, a)$ exists and in fact this must be zero (as in the proof of Lemma 2.3). From (1.6) it follows that $\lim _{r \rightarrow \infty} u^{\prime \prime}(r, a)=-f(L)$ and in fact this must also be zero (as in the proof that $\lim _{r \rightarrow \infty} u^{\prime}(r, a)=0$ from Lemma 2.3) and therefore $f(L)=0$. Since $0<L \leq \delta-\epsilon$ it then follows that $L=\beta$. However, from Lemma 2.3 we know that $u(r, a)$ must equal β for some $r_{a}>R$ and since we are assuming $u^{\prime}(r, a)>0$ for $r \geq R$ we see that $u(r, a)$ exceeds β for large r so that $L>\beta$ - a contradiction. Thus there is an $M_{a}>R$ with $u\left(M_{a}, a\right)<\delta-\epsilon, u^{\prime}(r, a)>0$ on $\left[R, M_{a}\right), u^{\prime}\left(M_{a}, a\right)=0$, and $u^{\prime \prime}\left(M_{a}, a\right) \leq 0$. We have in fact that $u^{\prime \prime}\left(M_{a}, a\right)<0$ (by uniqueness of solutions of initial value problems) and therefore M_{a} is a local maximum for $u(r, a)$. This completes the proof.

Lemma 3.3. Let $u(r, a)$ be a solution of (1.6)-(1.7). For sufficiently large $a>0$ there exists $T_{a}>R$ such that $u\left(T_{a}, a\right)=\delta, u(r, a)<\delta$ on $\left[R, T_{a}\right)$, and $u^{\prime}(r, a)>0$ on $[R, \infty)$.

Proof. Suppose $u(r, a)<\delta$ for all $r \geq R$ for all sufficiently large a. We first show that $|u(r, a)|<$ δ for all $r \geq R$. If $u(r, a)$ is nondecreasing for all $r \geq R$ then of course we have $u(r, a)>0>-\delta$ and so $|u(r, a)|<\delta$ for all $r \geq R$. On the other hand if u is nondecreasing on $\left[R, M_{a}\right)$ such that $u(r, a)$ has a local maximum at M_{a} with $u\left(M_{a}, a\right)<\delta$ then by Lemma 2.1 we have $|u(r, a)|<u\left(M_{a}, a\right)<\delta$ for $r>M_{a}$. Thus in either case we see that:

$$
\begin{equation*}
|u(r, a)|<\delta \quad \text { for all } r \geq R . \tag{3.2}
\end{equation*}
$$

Now we let $v_{a}(r)=\frac{u(r, a)}{a}$. Then v_{a} satisfies:

$$
\begin{gather*}
v_{a}^{\prime \prime}+\frac{N-1}{r} v_{a}^{\prime}+\frac{1}{a} f\left(a v_{a}\right)=0, \tag{3.3}\\
v_{a}(R)=0, \quad v_{a}^{\prime}(R)=1 . \tag{3.4}
\end{gather*}
$$

It also follows from (2.2)-(2.3) that:

$$
\left(\frac{1}{2} v_{a}^{\prime 2}+\frac{1}{a^{2}} F\left(a v_{a}\right)\right)^{\prime} \leq 0 \quad \text { for } r \geq R,
$$

and so integrating this on $[R, r)$ gives:

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}+\frac{1}{a^{2}} F\left(a v_{a}\right) \leq \frac{1}{2} \quad \text { for } r \geq R . \tag{3.5}
\end{equation*}
$$

From (3.2) we know $\left|v_{a}\right|=\left|\frac{u(r, a)}{a}\right|<\frac{\delta}{a}$ and since F is bounded from below by (2.4) it follows from (3.5) that the $\left\{v_{a}^{\prime}\right\}$ are uniformly bounded for large values of a. From (3.3) it also follows that the $\left\{v_{a}^{\prime \prime}\right\}$ are uniformly bounded for large values of a and so by the ArzelàAscoli theorem there is a subsequence of $\left\{v_{a}\right\}$ and $\left\{v_{a}^{\prime}\right\}$ (still denoted $\left\{v_{a}\right\}$ and $\left\{v_{a}^{\prime}\right\}$) such that $v_{a} \rightarrow v$ and $v_{a}^{\prime} \rightarrow v^{\prime}$ uniformly on compact subsets of $[R, \infty)$ as $a \rightarrow \infty$. But clearly $v \equiv 0$ (since $\left|v_{a}\right|=\left|\frac{u(r, a)}{a}\right|<\frac{\delta}{a}$ by (3.2) thus $\left|v_{a}\right| \rightarrow 0$ as $a \rightarrow \infty$) whereas $v^{\prime}(R)=1$ - a contradiction.

Therefore it must be the case that if a is sufficiently large then there exists $T_{a}>R$ such that $u\left(T_{a}, a\right)=\delta$ and $u(r, a)<\delta$ on $\left[R, T_{a}\right)$. In addition, it must be the case that $u^{\prime}(r, a)>0$ on $\left[R, T_{a}\right)$ for if not then there exists an $M_{a}<T_{a}$ such that $u^{\prime}\left(M_{a}, a\right)=0$ and $u\left(M_{a}, a\right)<\delta$. But from Lemma 2.1 it would follow that $|u(r, a)|<u\left(M_{a}, a\right)<\delta$ for $r>M_{a}$ contradicting that $u\left(T_{a}, a\right)=\delta$. Thus $u^{\prime}(r, a)>0$ on $\left[R, T_{a}\right)$. Now from Lemma 2.2 it follows that $u^{\prime}(r, a)>0$ on $[R, \infty)$. This completes the proof.

Now let:

$$
\begin{aligned}
& S=\left\{a>0 \mid \exists M_{a} \text { with } M_{a}>R \mid u^{\prime}(r, a)>0 \text { on }\left[R, M_{a}\right),\right. \\
& \left.\qquad u^{\prime}\left(M_{a}, a\right)=0, u^{\prime \prime}\left(M_{a}, a\right)<0, \text { and } u\left(M_{a}, a\right)<\delta\right\} .
\end{aligned}
$$

From Lemma 3.2 it follows that S is nonempty and from Lemma 3.3 it follows that S is bounded above. Next we set:

$$
0<d^{*}=\sup S
$$

Lemma 3.4. Let $u\left(r, d^{*}\right)$ be the solution of (1.6)-(1.7) with $a=d^{*}$. Then:

$$
\begin{gathered}
0<u\left(r, d^{*}\right)<\delta \text { for all } r>R, \\
u^{\prime}\left(r, d^{*}\right)>0 \quad \text { for all } r \geq R, \text { and: } \\
\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=\delta .
\end{gathered}
$$

Proof. We first note that $d^{*} \notin S$ for if $d^{*} \in S$ then by continuity with respect to initial conditions that $d^{*}+\epsilon \in S$ for $\epsilon>0$ sufficiently small contradicting the definition of d^{*}. Thus $d^{*} \notin S$. Therefore there exist $a \in S$ with $a<d^{*}$ and a arbitrarily close to d^{*}.

Next we show $u\left(r, d^{*}\right)<\delta$ for all $r \geq R$. First since $u(r, a)<\delta$ for all $a<d^{*}$ then by continuity with respect to initial conditions it follows that $u\left(r, d^{*}\right) \leq \delta$. Now suppose that
there exists $T_{d^{*}}>R$ such that $u\left(T_{d^{*}}, d^{*}\right)=\delta$ with $u\left(r, d^{*}\right)<\delta$ for $R \leq r<T_{d^{*}}$. Then by Lemma 2.2 we have $u^{\prime}\left(r, d^{*}\right)>0$ on $[R, \infty)$. So there exists $r_{0}>T_{d^{*}}$ such that $u\left(r_{0}, d^{*}\right)>\delta+\epsilon$ for some $\epsilon>0$. Then by continuity with respect to initial conditions it follows that $u\left(r_{0}, a\right)>$ $\delta+\frac{1}{2} \epsilon$ for $a<d^{*}$ and a sufficiently close to d^{*}. But this contradicts that for $a<d^{*}$ we have $u(r, a)<\delta$ by Lemma 2.1. Thus there is no such $T_{d^{*}}$ and so:

$$
\begin{equation*}
u\left(r, d^{*}\right)<\delta \quad \text { for all } r \geq R . \tag{3.6}
\end{equation*}
$$

Now for $a<d^{*}$ and $a \in S$ there is an M_{a} where $u(r, a)$ has a local maximum. If $u\left(r, d^{*}\right)$ has a local maximum, $M_{d^{*}}$, then $u\left(M_{d^{*}} d^{*}\right)<\delta$ by (3.6) and $u^{\prime \prime}\left(M_{d^{*}}, d^{*}\right) \leq 0$. In fact, $u^{\prime \prime}\left(M_{d^{*}}, d^{*}\right)<$ 0 (by uniqueness of solutions to initial value problems) and so by continuity with respect to initial conditions this implies that:

$$
\begin{equation*}
u(r, a) \text { has a local maximum, } M_{a} \text {, for } a \text { slightly larger than } d^{*} . \tag{3.7}
\end{equation*}
$$

But for $a>d^{*}$ we have $a \notin S$ so either $u^{\prime}(r, a)>0$ on $[R, \infty)$ or there exists N_{a} such that $u^{\prime}\left(N_{a}, a\right)=0$ and $u\left(N_{a}, a\right) \geq \delta$.

Clearly the first option does not hold because this contradicts (3.7) so therefore the second must be true. Then since $u\left(N_{a}, a\right) \geq \delta$ we have $f\left(u\left(N_{a}, a\right)\right)=0$ and since $u^{\prime}\left(N_{a}, a\right)=0$ then $u^{\prime \prime}\left(N_{a}, a\right)=0$ (from (1.6)) which implies $u(r, a)$ is constant (by uniqueness of solutions of initial value problems). But $a>d^{*}>0$ and thus $u^{\prime}(R, a)=a>0$ so that $u(r, a)$ is not constant. This contradiction implies that the second option does not hold either so $u\left(r, d^{*}\right)$ has no local maximum and therefore $u^{\prime}\left(r, d^{*}\right)>0$ for all $r \geq R$. Thus $u\left(r, d^{*}\right)$ is increasing and bounded above by δ so $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=L$ with $0<L \leq \delta$ and as in the proof of Lemma 2.3 we see $\lim _{r \rightarrow \infty} u^{\prime}(r, a)=\lim _{r \rightarrow \infty} u^{\prime \prime}(r, a)=0$ and so $f(L)=0$. Thus $L=\beta$ or $L=\delta$. By Lemma 2.3 we know that u must equal β for some $r>R$ and since $u^{\prime}(r, a)>0$ for $r \geq R$ we see that $u(r, a)$ exceeds β for large r. Thus we see that $L=\delta$. This completes the proof.

Lemma 3.5. Let $u(r, a)$ be a solution on (1.6)-(1.7). For $0<a<d^{*}$ and $a \in S, u(r, a)$ has a local maximum, M_{a}, on (R, ∞) such that:

$$
\lim _{a \rightarrow d^{*-}} M_{a}=\infty,
$$

and:

$$
\lim _{a \rightarrow d^{+}} u\left(M_{a}, a\right)=\delta .
$$

Proof. Since $a \in S$ then we know that M_{a} exists. If the $\left\{M_{a}\right\}$ were bounded independent of a then there is a subsequence (still labeled $\left\{M_{a}\right\}$) and a real number M such that $M_{a} \rightarrow M$. Also, by (2.3) and since F is bounded from below by (2.4) it follows that $\left\{u^{\prime}(r, a)\right\}$ are uniformly bounded. It then follows from (1.6) that $\left\{u^{\prime \prime}(r, a)\right\}$ are uniformly bounded. Also $0<u(r, a)<\delta$ on (R, ∞) and so by the Arzelà-Ascoli theorem there is a subsequence of $\{u(r, a)\}$ and $\left\{u^{\prime}(r, a)\right\}$ (still labeled $\{u(r, a)\}$ and $\left\{u^{\prime}(r, a)\right\}$) such that $u(r, a) \rightarrow u\left(r, d^{*}\right)$ and $u^{\prime}(r, a) \rightarrow u^{\prime}\left(r, d^{*}\right)$ uniformly on compact sets and so in particular $u^{\prime}\left(M, d^{*}\right)=0$. However, we know from Lemma 3.4 that $u^{\prime}\left(r, d^{*}\right)>0$ for $r \geq R$ and so we obtain a contradiction. Thus $\lim _{a \rightarrow d^{*}} M_{a}=\infty$. Next since $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=\delta$ by Lemma 3.4 then given $\epsilon>0$ there is $r_{0}>R$ such that $u\left(r_{0}, d^{*}\right)>\delta-\frac{\epsilon}{2}$. Since $u(r, a) \rightarrow u\left(r, d^{*}\right)$ uniformly on compact subsets of $[R, \infty)$ as $a \rightarrow d^{*}$ it then follows that for a sufficiently close to d^{*} there is some p_{a} close to r_{0} with $u\left(r_{p}, a\right)>\delta-\epsilon$. And since $u(r, a)$ has its maximum at M_{a} we have $u\left(M_{a}, a\right) \geq u\left(p_{a}, a\right)>\delta-\epsilon$. Thus $\lim _{a \rightarrow d^{*-}} u\left(M_{a}, a\right)=\delta$.

Lemma 3.6. Let $u(r, a)$ be a solution of (1.6)-(1.7). For sufficiently small $a>0$ we have $u(r, a)>0$ for all $r>R$.

Proof. We observe that from (2.2):

$$
\begin{equation*}
\left\{r^{2 N-2} E(r)\right\}^{\prime}=(2 N-2) r^{2 N-3} F(u) \leq 0 \quad \text { when } 0 \leq u \leq \gamma \tag{3.8}
\end{equation*}
$$

We denote $r_{a_{1}}$ as the smallest value of $r>R$ such that $u\left(r_{a_{1}}, a\right)=\frac{1}{2} \beta$ and r_{a} as the smallest value of $r>R$ such that $u\left(r_{a}, a\right)=\beta$. We know that these numbers exist by Lemma 2.3 and it also follows from Lemma 2.3 that $u^{\prime}(r, a)>0$ on $\left[R, r_{a}\right]$. By the definition of f and F we see that on the set $\left[\frac{1}{2} \beta, \beta\right]$ there exists $c_{0}>0$ such that $F(u) \leq-c_{0}<0$. Therefore integrating (3.8) on $\left[R, r_{a}\right]$ and estimating we obtain:

$$
\begin{align*}
r_{a}^{2 N-2} E\left(r_{a}\right) & =R^{2 N-2} E(R)+\int_{R}^{r_{a}}(2 N-2) r^{2 N-3} F(u) d r \\
& \leq \frac{1}{2} R^{2 N-2} a^{2}+\int_{r_{a_{1}}}^{r_{a}}(2 N-2) r^{2 N-3} F(u) d r \leq \frac{1}{2} R^{2 N-2} a^{2}-c_{0}\left[r_{a}^{2 N-2}-r_{a_{1}}^{2 N-2}\right] \\
& \leq \frac{1}{2} R^{2 N-2} a^{2}-(2 N-2) c_{0}\left[r_{a}-r_{a_{1}}\right] r_{a_{1}}^{2 N-3} \tag{3.9}
\end{align*}
$$

Recalling (2.3) and rewriting we have:

$$
\begin{equation*}
\frac{\left|u^{\prime}\right|}{\sqrt{a^{2}-2 F(u)}} \leq 1 \quad \text { on }[R, \infty) \tag{3.10}
\end{equation*}
$$

Integrating (3.10) on $\left[R, r_{a_{1}}\right]$ where $u^{\prime}(r, a)>0$ gives:

$$
\begin{equation*}
\int_{0}^{\frac{\beta}{2}} \frac{d s}{\sqrt{a^{2}-2 F(s)}}=\int_{R}^{r_{a_{1}}} \frac{u^{\prime}}{\sqrt{a^{2}-2 F(u)}} d t \leq r_{a_{1}}-R \tag{3.11}
\end{equation*}
$$

On $[0, \beta]$ we have $2 F(s) \geq-c_{1}^{2} s^{2}$ for some $c_{1}>0$ and therefore:

$$
\begin{equation*}
\int_{0}^{\frac{\beta}{2}} \frac{d s}{\sqrt{a^{2}-2 F(s)}} \geq \int_{0}^{\frac{\beta}{2}} \frac{d s}{\sqrt{a^{2}+c_{1}^{2} s^{2}}}=\frac{1}{c_{1}} \ln \left(\frac{c_{1} \beta}{2 a}+\sqrt{1+\left(\frac{c_{1} \beta}{2 a}\right)^{2}}\right) \rightarrow \infty \quad \text { as } a \rightarrow 0^{+} \tag{3.12}
\end{equation*}
$$

Therefore by (3.11) and (3.12) we have:

$$
\begin{equation*}
r_{a_{1}} \rightarrow \infty \quad \text { as } a \rightarrow 0^{+} \tag{3.13}
\end{equation*}
$$

In addition, integrating (3.10) on $\left[r_{a_{1}}, r_{a}\right]$ gives for small a :

$$
\begin{equation*}
\int_{\frac{\beta}{2}}^{\beta} \frac{d s}{\sqrt{a^{2}+c_{1}^{2} s^{2}}} \leq \int_{\frac{\beta}{2}}^{\beta} \frac{d s}{\sqrt{a^{2}-2 F(s)}}=\int_{r_{a_{1}}}^{r_{a}} \frac{u^{\prime}}{\sqrt{a^{2}-2 F(u)}} d t \leq r_{a}-r_{a_{1}} \tag{3.14}
\end{equation*}
$$

The left-hand side of (3.14) approaches $\int_{\frac{\beta}{2}}^{\beta} \frac{d s}{c_{1} s}=\frac{\ln (2)}{c_{1}} \geq \frac{1}{2 c_{1}}$ as $a \rightarrow 0^{+}$therefore it follows from (3.9) and (3.13)-(3.14) that:

$$
r_{a}^{2 N-2} E\left(r_{a}\right) \leq \frac{1}{2} R^{2 N-2} a^{2}-\frac{(N-1) c_{0} r_{a_{1}}^{2 N-3}}{c_{1}} \rightarrow-\infty
$$

as $a \rightarrow 0^{+}$. Thus for sufficiently small a we see that E becomes negative on $\left[R, r_{a}\right]$ and since E is nonincreasing by (2.2), E remains negative for all $r \geq r_{a}$. It follows that $u(r, a)$ cannot be zero for any $r>r_{a}$ because at any such point z we would have $E(z)=\frac{1}{2} u^{\prime 2}(z, a) \geq 0$. We also know $u(r, a)$ is increasing on $\left[R, r_{a}\right]$ by Lemma 2.3 and so $u(r, a)>0$ on $\left[R, r_{a}\right]$. Thus $u(r, a)$ stays positive for all $r>R$ for small $a>0$. This completes the proof.

Lemma 3.7. There exists d_{1} with $0<d_{1}<d^{*}$ such that $u\left(r, d_{1}\right)$ has at least one zero on $[R, \infty)$. In addition, if $a<d^{*}$ and a is sufficiently close to d^{*} then $u(r, a)$ has a local minimum, m_{a}, and $u\left(m_{a}, a\right) \rightarrow-\delta$ as $a \rightarrow d^{*-}$.

Proof. Suppose first that $a \in S$ and $u^{\prime}(r, a)<0$ on $\left(M_{a}, r\right)$. Then integrating (2.2) on $\left(M_{a}, r\right)$, using (2.3)-(2.4), and using the fact from Lemma 2.1 that $-\delta<u(r, a)<\delta$ on $\left(M_{a}, r\right)$ gives:

$$
\begin{aligned}
E\left(M_{a}\right)-E(r) & =\int_{M_{a}}^{r} \frac{N-1}{t} u^{\prime 2}(t, a) d t \leq \frac{N-1}{M_{a}} \int_{M_{a}}^{r}\left|u^{\prime}(t, a)\right|\left|u^{\prime}(t, a)\right| d t \\
& \leq \frac{N-1}{M_{a}} \int_{M_{a}}^{r} \sqrt{a^{2}-2 F(u(t, a))}\left[-u^{\prime}(t, a)\right] d t \\
& \leq \frac{N-1}{M_{a}} \int_{u(r, a)}^{u\left(M_{a}, a\right)} \sqrt{a^{2}-2 F(s)} d s \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{M_{a}} .
\end{aligned}
$$

Thus we see:

$$
\begin{equation*}
E\left(M_{a}\right)-E(r) \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{M_{a}} \tag{3.15}
\end{equation*}
$$

We now have two possibilities. Either:
(i) $u^{\prime}(r, a)<0$ for all $r>M_{a}$ for a sufficiently close to d^{*},
or:
(ii) there exists $m_{a}>M_{a}$ such that $u^{\prime}(r, a)<0$ on $\left(M_{a}, m_{a}\right)$ and $u^{\prime}\left(m_{a}, a\right)=0$ for a sufficiently close to d^{*}.

If (i) holds then $u(r, a) \rightarrow L$ and as in the proof of Lemma 2.3 it follows that $u^{\prime}(r, a) \rightarrow 0$ and $u^{\prime \prime}(r, a) \rightarrow 0$ as $r \rightarrow \infty$ where $f(L)=0$. By Lemma 2.1 we also have $|u(r, a)|<u\left(M_{a}, a\right)<\delta$ for $r>M_{a}$ so that $L=0$ or $L= \pm \beta$. In particular, $|L| \leq \beta$. Also as $r \rightarrow \infty$ we see from (3.15):

$$
\begin{equation*}
0<F\left(u\left(M_{a}, a\right)\right)-F(L)=E\left(M_{a}\right)-E(\infty) \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{M_{a}} \tag{3.16}
\end{equation*}
$$

As $a \rightarrow d^{*-}$ the right-hand side of (3.16) goes to 0 by Lemma 3.5. Also by Lemma 3.5, $F\left(u\left(M_{a}, a\right)\right) \rightarrow F(\delta)>0$ as $a \rightarrow d^{*-}$ and therefore it follows from (3.16) that $F(L)>0$ for a sufficiently close to d^{*}. This however implies that $|L| \geq \gamma>\beta$ which contradicts that $|L| \leq \beta$. Therefore we see that (i) does not hold for a sufficiently close to d^{*}. Thus it must be the case that (ii) holds for a sufficiently close to d^{*}. With $r=m_{a}$ then we have from (3.15):

$$
\begin{equation*}
F\left(u\left(M_{a}, a\right)\right)-F\left(u\left(m_{a}, a\right)\right)=E\left(M_{a}\right)-E\left(m_{a}\right) \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{M_{a}} \tag{3.17}
\end{equation*}
$$

As above the right-hand side of (3.17) goes to 0 by Lemma 3.5 and $F\left(u\left(M_{a}, a\right)\right) \rightarrow F(\delta)>0$ as $a \rightarrow d^{*-}$. Therefore it follows that $F\left(u\left(m_{a}, a\right)\right) \rightarrow F(\delta)>0$ and hence $\left|u\left(m_{a}, a\right)\right| \rightarrow \delta$ for $a \rightarrow d^{*}$. Also since $u^{\prime}\left(m_{a}, a\right)=0$ and $u^{\prime}(r, a)<0$ on $\left(M_{a}, m_{a}\right)$ we must have $u^{\prime \prime}\left(m_{a}\right) \geq 0$ so that $f\left(u\left(m_{a}, a\right)\right) \leq 0$. This implies $u\left(m_{a}, a\right) \leq-\beta<0$ thus $u(r, a) \rightarrow-\delta$ and in particular we see that $u(r, a)$ must be zero somewhere on the interval $\left(M_{a}, m_{a}\right)$ provided a is sufficiently close to d^{*}. So there exists a d_{1} with $0<d_{1}<d^{*}$ such that $u\left(r, d_{1}\right)$ has at least one zero on (R, ∞). This completes the proof of the lemma.

Now let:

$$
W_{0}=\left\{0<a<d_{1} \mid u(r, a)>0 \text { on }[R, \infty)\right\} .
$$

By Lemma 3.6 we know that W_{0} is nonempty, and clearly W_{0} is bounded above by d_{1}. So we let:

$$
a_{0}=\sup W_{0} .
$$

Then we have the following lemma.
Lemma 3.8. $u\left(r, a_{0}\right)>0$ on $[R, \infty)$ and $\lim _{r \rightarrow \infty} u\left(r, a_{0}\right)=0$. In addition, there is an $M_{a_{0}}$ such that $u^{\prime}\left(r, a_{0}\right)>0$ on $\left[R, M_{a_{0}}\right)$ and $u^{\prime}\left(r, a_{0}\right)<0$ on $\left(M_{a_{0}}, \infty\right)$.

Proof. If $u\left(r, a_{0}\right)$ has a zero, z, then $u^{\prime}\left(z, a_{0}\right) \neq 0$ (by uniqueness of solutions of initial value problems) and so $u(r, a)$ will have a zero for a slightly larger than a_{0} which contradicts the definition of a_{0}. Thus $u\left(r, a_{0}\right)>0$ on $[R, \infty)$.

Next suppose that $u\left(r, a_{0}\right)$ has a positive local minimum, $m_{a_{0}}$, so that $u^{\prime}\left(m_{a_{0}}, a_{0}\right)=0$, $u^{\prime \prime}\left(m_{a_{0}}, a_{0}\right) \geq 0$, (and in fact $u^{\prime \prime}\left(m_{a_{0}}, a_{0}\right)>0$ by uniqueness of solutions of initial value problems), so therefore $f\left(u\left(m_{a_{0}}, a_{0}\right)\right)<0$. Then $0<u\left(m_{a_{0}}, a_{0}\right)<\beta$ and $E\left(m_{a_{0}}\right)=F\left(u\left(m_{a_{0}}, a_{0}\right)\right)<0$. Thus for $a>a_{0}$ and a close to a_{0} then $u(r, a)$ must also have a positive local minimum, m_{a}, and $E\left(m_{a}\right)<0$. But since $a>a_{0}$ then $u(r, a)$ must have a zero, z_{a}, with $z_{a}>m_{a}$. Since E is nonincreasing this implies $0 \leq \frac{1}{2} u^{\prime 2}\left(z_{a}, a\right)=E\left(z_{a}\right) \leq E\left(m_{a}\right)<0$ which is a contradiction.

Thus it must be that $u^{\prime}\left(r, a_{0}\right)<0$ for $r>M_{a_{0}}$. Since $u\left(r, a_{0}\right)>0$ it follows then that $u\left(r, a_{0}\right) \rightarrow \beta$ or $u\left(r, a_{0}\right) \rightarrow 0$ as $r \rightarrow \infty$ but from Lemma 2.3 we know that $u\left(r, a_{0}\right)$ will become less than β for sufficiently large r. Thus $u\left(r, a_{0}\right) \rightarrow 0$ as $r \rightarrow \infty$. This completes the proof of the lemma.

Proof of the Main theorem. Now for $a_{0}<a<d^{*}$ it follows that $u(r, a)$ has at least one zero on $[R, \infty)$. By Lemma 4 from [9], for $a>a_{0}$ and a close to a_{0} then $u(r, a)$ has at most one zero on $[R, \infty)$. Hence for $a>a_{0}$ and a sufficiently close to a_{0} then $u(r, a)$ has exactly one zero on $[R, \infty)$.

Next we can use a similar argument as in Lemma 3.7 to prove that there exists d_{2} with $d_{1} \leq d_{2}<d^{*}$ such that $u\left(r, d_{2}\right)$ has at least two zeros on $[R, \infty)$.

To see this, using a nearly identical argument as in Lemma 3.7 it follows that:

$$
\begin{equation*}
E\left(m_{a}\right)-E(r) \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{m_{a}} \tag{3.18}
\end{equation*}
$$

where m_{a} is the minimum obtained in Lemma 3.7. Then either:
(i) $u^{\prime}(r, a)>0$ for $r>m_{a}$ for a sufficiently close to d^{*},
or:
(ii) there exists $M_{2, a}>m_{a}$ such that $u^{\prime}(r, a)>0$ on $\left(m_{a}, M_{2, a}\right)$ and $u^{\prime}\left(M_{2, a}\right)=0$ for a sufficiently close to d^{*}.

If (i) holds then it follows as in the proof of Lemma 3.7 that $u(r, a) \rightarrow L$ where $L=0$ or $L= \pm \beta$. And as $r \rightarrow \infty$ we see from (3.18):

$$
\begin{equation*}
F\left(u\left(m_{a}, a\right)\right)-F(L)=E\left(m_{a}\right)-E(\infty) \leq \frac{2(N-1) \delta \sqrt{a^{2}-2 F_{0}}}{m_{a}} . \tag{3.19}
\end{equation*}
$$

As $a \rightarrow d^{*-}$ the right-hand side of (3.19) goes to zero since $m_{a}>M_{a}$ and $M_{a} \rightarrow \infty$ by Lemma 3.5. Also by Lemma 3.7, $F\left(u\left(m_{a}, a\right)\right) \rightarrow F(\delta)>0$ as $a \rightarrow d^{*-}$ and so $F(L)>0$ for a
sufficiently close to d^{*} which implies $|L| \geq \gamma>\beta$ which contradicts $|L| \leq \beta$. Thus it must be the case that (ii) holds and as in the proof of Lemma 3.7 it follows that $u(r, a)$ must be zero on $\left(m_{a}, M_{2, a}\right)$. So there exists a d_{2} with $d_{1}<d_{2}<d^{*}$ such that $u\left(r, d_{2}\right)$ has at least two zeros on (R, ∞).

Then we define:

$$
W_{1}=\left\{a_{0}<a<d_{2} \mid u(r, a) \text { has exactly one zero on }[R, \infty)\right\} .
$$

Clearly W_{1} is nonempty since from Lemma 3.7 we have $d_{1} \in W_{1}$. Also W_{1} is bounded above by d_{2}. Thus we set:

$$
a_{1}=\sup W_{1} .
$$

Then it can be shown in an argument similar to the one in Lemma 3.8 that $u\left(r, a_{1}\right)$ has one zero on (R, ∞) and $u\left(r, a_{1}\right) \rightarrow 0$ as $r \rightarrow \infty$. Proceeding inductively we can show for $n \geq 1$ that there exists a_{n} with $a_{n-1}<a_{n}<d^{*}$ such that $u\left(r, a_{n}\right)$ has exactly n zeros on (R, ∞) and $u\left(r, a_{n}\right) \rightarrow 0$ as $r \rightarrow \infty$. This completes the proof of the main theorem.

References

[1] H. Berestycki, P. L. Lions, Non-linear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal. 82(1983), 313-345. MR695535; url
[2] H. Berestycki, P. L. Lions, Non-linear scalar field equations II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82(1983), 347-375. MR695536; url
[3] M. S. Berger, Nonlinearity and functional analysis, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. MR0488101
[4] G. Birkноғf, G.-C. Rota, Ordinary differential equations, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR0138810
[5] A. Castro, L. Sankar, R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl. 394(2012), No. 1, 432-437. MR2926234; url
[6] J. Iaia, H. Warchall, F. B. Weissler, Localized solutions of sublinear elliptic equations: loitering at the hilltop, Rocky Mountain J. Math. 27(1997), No. 4, 1131-1157. MR1627682; url
[7] C. K. R. T. Jones, T. Kupper, On the infinitely many solutions of a semilinear equation, SIAM J. Math. Anal. 17(1986), 803-835. MR846391; url
[8] E. Lee, L. Sankar, R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differential Integral Equations, 24(2011), No. 9-10, 861-875. MR2850369
[9] K. McLeod, W. C. Troy, F. B. Weissler, Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, J. Differential Equations 83(1990), No. 2, 368-373. MR1033193; url
[10] L. Sankar, S. Sasi, R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl. 401(2012), No. 1, 146-153. MR3011255; url
[11] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55(1977), 149-162. MR0454365

[^0]: ${ }^{\boxtimes}$ Email: iaia@unt.edu

