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Abstract. This paper deals with the global existence and energy decay of solutions for
some coupled system of higher-order Kirchhoff-type equations with nonlinear dissipa-
tive and source terms in a bounded domain. We prove the existence of global solutions
for this problem by constructing a stable set in Hm1

0 (Ω)× Hm2
0 (Ω) and give the decay

estimate of global solutions by applying a lemma of V. Komornik.
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1 Introduction

In this paper we investigate the following system of nonlinear higher-order Kirchhoff-type
equations

utt + Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)(−∆)m1 u + a|ut|q−2ut = f1(u, v), x ∈ Ω, t > 0, (1.1)

vtt + Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)(−∆)m2 v + a|vt|q−2vt = f2(u, v), x ∈ Ω, t > 0, (1.2)

with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (1.4)

and boundary value

∂iu
∂νi = 0, i = 0, 1, 2, . . . , m1 − 1, x ∈ ∂Ω, t ≥ 0, (1.5)

∂jv
∂νj = 0, j = 0, 1, 2, . . . , m2 − 1, x ∈ ∂Ω, t ≥ 0, (1.6)
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where a > 0 and q ≥ 2 are real numbers and mi ≥ 1 (i = 1, 2) are positive integers.
Φ(s) is a positive locally Lipschitz function like Φ(s) = α + βsγ with the constants α > 0,
β ≥ 0, γ ≥ 1 and s ≥ 0. Ω is a bounded domain in Rn with smooth boundary ∂Ω so
that the divergence theorem can be applied, ν denotes the unit outward normal vector on
∂Ω, and ∂i

∂νi denotes the ith order normal derivation. D denotes the gradient operator, that
is Du = ∇u = ( ∂u

∂x1
, ∂u

∂x2
, . . . , ∂u

∂xn
). Moreover, Dmu = ∆ku if m = 2k and Dmu = D∆ku if

m = 2k + 1. fi(·, ·) : R2 → R (i = 1, 2) are given functions to be determined later.
When m1 = m2 = 1, (1.1)–(1.6) becomes the following initial-boundary value problem for

the system of nonlinear wave equations of Kirchhoff-type:

utt −Φ(‖∇u‖2 + ‖∇v‖2)∆u + a|ut|q−2ut = f1(u, v), x ∈ Ω, t > 0, (1.7)

vtt −Φ(‖∇u‖2 + ‖∇v‖2)∆v + a|vt|q−2vt = f2(u, v), x ∈ Ω, t > 0, (1.8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.9)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (1.10)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.11)

The equation (1.7)–(1.8) has its origin in the nonlinear vibrations of an elastic string [19]. Many
authors have investigated the global existence and uniqueness of solutions to the problem
related to the system (1.7)–(1.8) through various approaches and assumptive conditions. L. Liu
and M. Wang [15] have dealt with the global existence for regular and weak solutions for the
problem (1.7)–(1.11) by using Galerkin method. When the initial energy E(0) is non-positive
or positive, applying the concavity method [12, 13] and the potential well method [3, 26, 28],
they proved the blow-up of solutions in finite time, and give some estimates for the lifespan
of solutions. When Φ(s) = sγ, γ ≥ 1, J. Y. Park and J. J. Bae [22] studied the existence and
uniform decay of strong solutions of the problem (1.7)–(1.11). In [23, 24], they showed the
global existence and asymptotic behavior of solutions of the problem (1.7)–(1.11) under some
restrictions on the initial energy. S. T. Wu and L. Y. Tsai [30] considered the system (1.7)–
(1.11) with Φ(‖∇u‖2 + ‖∇v‖2) = Φ(‖∇u‖2) in (1.7) and Φ(‖∇u‖2 + ‖∇v‖2) = Φ(‖∇v‖2) in
(1.8), respectively. They obtain the existence of local and global solutions and give the blow-
up result for small positive initial energy. When nonlinear dissipative terms in (1.7) and (1.8)
become the strong dissipative terms, S. T. Wu [31] discusses the existence, asymptotic behavior
and blow-up of solutions of the problem (1.7)–(1.11) under some conditions. Moreover, he
gives the decay estimates of the energy function and the estimates for the lifespan of solutions.

For the initial boundary value problem of a single nonlinear higher-order wave equation
of Kirchhoff-type

utt + Φ(‖Dmu‖2)(−∆)mu + a|ut|q−2ut = b|u|p−2u, x ∈ Ω, t > 0, (1.12)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.13)

∂iu
∂νi = 0, i = 0, 1, 2, . . . , m− 1, x ∈ ∂Ω, t ≥ 0. (1.14)

The original physical models governed by (1.12) are vibrating beams of the Woinowsky–
Krieger type with a nonlinear damping a|ut|q−2ut effective in Ω, but without internal material
damping term of the Kelvin–Voigt type [4, 10, 25]. G. Autuori et al. [4] studied the asymptotic
stability for solutions of the equation (1.12)–(1.14). Q. Gao et al. [7] proved the local existence
and the blow-up property of solution for the problem (1.12)–(1.14).

When Φ(s) = βsγ in (1.12), F. C. Li [14] investigated the problem (1.12)–(1.14) and ob-
tained that the solution exists globally if p ≤ q, while if p > max{q, 2γ}, then for any initial



Existence and asymptotic behavior for a system of Kirchhoff equations 3

data with negative initial energy, the solution blows up at finite time in Lγ+2 norms. Later,
S. A. Messaoudi and B. Said-Houari [18] improved the results in [14] by modification of the
proof and showed the same result when the initial energy has an upper bound. Meanwhile,
V. A. Galaktionov and S. I. Pohozaev [6] proved the global existence and nonexistence results
of solutions for the Cauchy problem of equation (1.12) without the dissipation (i.e., (1.12) with-
out the term a|ut|q−2ut) in the whole space Rn. However, their approach can not be applied
to the problem (1.12)–(1.14).

Motivated by the above researches, in this paper, we prove the global existence for the
problem (1.1)–(1.6) by constructing a stable set in Hm1

0 (Ω) × Hm2
0 (Ω) and give the energy

decay of global solutions by applying a lemma of V. Komornik [11].
We adopt the usual notations and convention. Let Hm(Ω) denote the Sobolev space with

the usual scalar products and norm. Meanwhile, Hm
0 (Ω) denotes the closure in Hm(Ω) of

C∞
0 (Ω). For simplicity of notations, hereafter we denote by ‖ · ‖r the Lebesgue space Lr(Ω)

norm and ‖ · ‖ denotes L2(Ω) norm, we write equivalent norm ‖Dm · ‖ instead of Hm
0 (Ω) norm

‖ · ‖Hm
0 (Ω) (see [2,5,8]). Moreover, Ci (i = 0, 1, 2, 3, . . . ) denotes various positive constants which

depend on the known constants and may be different at each appearance.
This paper is organized as follows: in the next section, we give some preliminaries. In

Section 3, we prove the existence of global solutions for problem (1.1)–(1.6). The Section 4 is
devoted to the study of the energy decay of global solutions.

2 Preliminaries

To state and prove our main results, we make the following assumptions:

(A1) Φ : R+ → R+ is a C1-class locally Lipschitz function satisfying

Φ(s) ≥ α, sΦ(s) ≥
∫ s

0
Φ(θ) dθ.

(A2) p satisfies

1 < p < +∞, n ≤ 2 min(m1, m2),

1 < p ≤ min
(

n
n− 2m1

,
n

n− 2m2

)
, n > 2 max(m1, m2).

Concerning the functions f1(u, v) and f2(u, v), we assume that

f1(u, v) = b1|u + v|2(p−1)(u + v) + b2|u|p−2u|v|p,

f2(u, v) = b1|u + v|2(p−1)(u + v) + b2|v|p−2v|u|p,
(2.1)

where b1, b2 > 0 and p > 1 are constants.
It is easy to see that

u f1(u, v) + v f2(u, v) = 2pF(u, v), ∀(u, v) ∈ R2, (2.2)

where

F(u, v) =
b1

2p
|u + v|2p +

b2

p
|uv|p. (2.3)
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Moreover, a quick computation will show that there exist two positive constants C0 and C1

such that the following inequality holds (see [17])

C0

2p
(|u|2p + |v|2p) ≤ F(u, v) ≤ C1

2p
(|u|2p + |v|2p). (2.4)

Now, we define the following functionals:

J([u, v]) =
1
2

∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds−

∫
Ω

F(u, v) dx, (2.5)

K([u, v]) =
∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds− 2p

∫
Ω

F(u, v) dx, (2.6)

for [u, v] ∈ Hm1
0 (Ω)× Hm2

0 (Ω).
Then we can define the stable set W of the problem (1.1)–(1.6) as follows

W =
{
[u, v] ∈ Hm1

0 (Ω)× Hm2
0 (Ω) : K([u, v]) > 0

}
∪ {[0, 0]}.

We denote the total energy related to the equations (1.1) and (1.2) by

E(t) =
1
2
(‖ut‖2 + ‖vt‖2) +

1
2

∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds−

∫
Ω

F(u, v) dx

=
1
2
(‖ut‖2 + ‖vt‖2) + J([u, v])

(2.7)

for [u, v] ∈ Hm1
0 (Ω)× Hm2

0 (Ω), t ≥ 0 and

E(0) =
1
2
(‖u1‖2 + ‖v1‖2) +

1
2

∫ ‖Dm1 u0‖2+‖Dm2 v0‖2

0
Φ(s) ds−

∫
Ω

F(u0, v0) dx (2.8)

is the initial total energy.
We state some known lemmas which will be needed later.

Lemma 2.1. Let r be a number with 2 ≤ r < +∞ if n ≤ 2m and 2 ≤ r ≤ 2n
n−2m if n > 2m. Then

there is a constant C depending on Ω and r such that

‖u‖r ≤ C
∥∥∥(−∆)

m
2 u
∥∥∥ = C‖Dmu‖, ∀u ∈ Hm

0 (Ω).

Lemma 2.2 (Young’s inequality). Let X, Y and ε be positive constants and ς, σ ≥ 1, 1
ς +

1
σ = 1.

Then one has the inequality

XY ≤ εςXς

ς
+

Yσ

σεσ
.

Lemma 2.3. Let [u, v] be a solution of the problem (1.1)–(1.6), then E(t) is a non-increasing function
for t > 0 and

d
dt

E(t) = −a(‖ut‖q
q + ‖vt‖q

q) ≤ 0. (2.9)

Proof. Multiplying equation (1.1) by ut and (1.2) by vt, and integrating over Ω × [0, t], then,
adding them together, and integrating by parts, we get

E(t)− E(0) = −a
∫ t

0

(
‖ut(s)‖q

q + ‖vt(s)‖q
q
)

ds (2.10)

for t ≥ 0.
Being the primitive of an integrable function, E(t) is absolutely continuous and equality

(2.9) is satisfied.



Existence and asymptotic behavior for a system of Kirchhoff equations 5

The local existence and uniqueness of solutions for the problem (1.1)–(1.6) can be obtained
by a similar way as done in [1, 7, 16, 20, 21, 27, 32]. The result reads as follows.

Theorem 2.4 (Local existence). Suppose that the assumptions (A1) and (A2) hold. If [u0, v0] ∈
(Hm1

0 (Ω) ∩ H2m1(Ω))× (Hm2
0 (Ω) ∩ H2m2(Ω)), [u1, v1] ∈ L2(Ω)× L2(Ω), then there exists T > 0

such that the problem (1.1)–(1.6) has a unique local solution [u, v] which satisfies

[u, v] ∈ C([0, T); Hm1
0 (Ω)× Hm2

0 (Ω)),

ut ∈ C([0, T); L2(Ω)) ∩ Lq(Ω× [0, T)),

vt ∈ C([0, T); L2(Ω)) ∩ Lq(Ω× [0, T)).

Moreover, at least one of the following statements holds true:

(1) ‖ut‖2 + ‖vt‖2 + ‖Dm1 u‖2 + ‖Dm2 v‖2 → ∞ as t→ T−;

(2) T = +∞.

3 Global existence of solutions

The following lemmas play an important role in the proof of global existence of solutions.

Lemma 3.1. If [u, v] ∈W, then

p− 1
2p

∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds < J([u, v]). (3.1)

Proof. By (2.5) and (2.6), we have the following equality

J([u, v]) =
p− 1

2p

∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds +

1
2p

K([u, v]). (3.2)

Since [u, v] ∈W, so we get K([u, v]) > 0. Therefore, by (3.2), we find that (3.1) is valid.

Lemma 3.2. Let (A1) and (A2) hold. If [u0, v0] ∈W and [u1, v1] ∈ L2(Ω)× L2(Ω) such that

η =
C2B2p

α

[
2p

(p− 1)α
E(0)

]p−1

< 1, (3.3)

where C2 is given by (3.10), then [u, v] ∈W, for each t ∈ [0, T).

Proof. Since [u0, v0] ∈ W, so K([u0, v0]) > 0. Then it follows from the continuity of [u, v] on t
that

K([u, v]) ≥ 0, (3.4)

for some interval near t = 0. Let τ > 0 be a maximal time (possibly τ = T), when (3.4) holds
on [0, τ).

We have from (A1) and (3.1) that

‖Dm1 u‖2 + ‖Dm2 v‖2 ≤ 2p
(p− 1)α

J([u, v]). (3.5)

It follows from (2.7), (3.5) and (2.9) in Lemma 2.3 that

‖Dm1 u‖2 + ‖Dm2 v‖2 ≤ 2p
(p− 1)α

E(t) ≤ 2p
(p− 1)α

E(0), (3.6)
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for ∀t ∈ [0, τ).
By Minkowski’s inequality and Lemma 2.1, we get that

‖u + v‖2
2p ≤ 2(‖u‖2

2p + ‖v‖2
2p) ≤ 2B2(‖Dm1 u‖2 + ‖Dm2 v‖2), (3.7)

where B = max(B1, B2) and Bi (i = 1, 2) is the optimal Sobolev’s constant from Hmi
0 (Ω)

(i = 1, 2) to L2p(Ω).
Also, we have from Hölder’s inequality, Lemma 2.1 and Lemma 2.2 that

‖uv‖p ≤ ‖u‖2p · ‖v‖2p ≤
1
2
(‖u‖2

2p + ‖v‖2
2p) ≤

B2

2
(‖Dm1 u‖2 + ‖Dm2 v‖2). (3.8)

We get from (A1), (2.3), (3.3) in Lemma 3.2, (3.6)–(3.8) that

2p
∫

Ω
F(u, v) dx ≤ C2B2p(‖Dm1 u‖2 + ‖Dm2 v‖2)p

≤ C2B2p
[

2p
(p− 1)α

E(0)
]p−1

(‖Dm1 u‖2 + ‖Dm2 v‖2)

≤ C2B2p

α

[
2p

(p− 1)α
E(0)

]p−1

α(‖Dm1 u‖2 + ‖Dm2 v‖2)

< α(‖Dm1 u‖2 + ‖Dm2 v‖2) ≤
∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds,

(3.9)

for all t ∈ [0, τ). Here

C2 = 2pb1 +
b2

2p−1 . (3.10)

Therefore, ∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds− 2p

∫
Ω

F(u, v) dx > 0, ∀t ∈ [0, τ), (3.11)

which implies that [u, v] ∈ W for ∀t ∈ [0, τ). By repeating this procedure (3.5)–(3.11), and
using the fact that

lim
t→τ

C2B2p

α

[
2p

(p− 1)α
E(t)

]p−1

< 1,

τ is extended to T. Thus, we conclude that [u, v] ∈W on [0, T).

The main result in this section reads as follows.

Theorem 3.3 (Global solutions). Suppose that (3.3), (A1) and (A2) hold, and [u, v] is a local solution
of problem (1.1)–(1.6) on [0, T). If [u0, v0] ∈ W, [u1, v1] ∈ L2(Ω)× L2(Ω), then [u, v] is a global
solution of the problem (1.1)–(1.6).

Proof. It suffices to show that ‖ut‖2 + ‖vt‖2 + ‖Dm1 u‖2 + ‖Dm2 v‖2 is bounded independently
of t. Under the hypotheses in Theorem 3.3, we get from Lemma 3.2 that [u, v] ∈ W on [0, T).
So the formula (3.5) holds on [0, T). Thus, we have from (3.5) that

1
2
(‖ut‖2 + ‖vt‖2) +

(p− 1)α
2p

(‖Dm1 u‖2 + ‖Dm2 v‖2)

≤ 1
2
(‖ut‖2 + ‖vt‖2) + J([u, v]) = E(t) ≤ E(0).

(3.12)
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Therefore, we get

‖ut‖2 + ‖vt‖2 + ‖Dm1 u‖2 + ‖Dm2 v‖2 ≤ max
(

2,
2p

(p− 1)α

)
E(0) < +∞.

The above inequality and the standard continuation principle [9, 29] lead to the global
existence of the solution, that is, T = +∞. Hence, the solution [u, v] is a global solution of the
problem (1.1)–(1.6).

4 Energy decay of global solution

In order to study the decay estimate of global solutions for the problem (1.1)–(1.6), we need
the following lemma.

Lemma 4.1 ([6]). Let Y(t) : R+ → R+ be a nonincreasing function and assume that there are two
constants η ≥ 1 and M > 0 such that∫ +∞

τ
Y(t)

η+1
2 dt ≤ MY(τ), 0 ≤ τ < +∞,

then Y(t) ≤ CY(0)(1 + t)−
2

η−1 , ∀t ≥ 0, if η > 1 and Y(t) ≤ CY(0)e−ωt, ∀t ≥ 0 if η = 1, where C
and ω are positive constants independent of Y(0).

The following result is concerned with the energy decay estimate of global solutions for
the problem (1.1)–(1.6). The theorem reads as follows.

Theorem 4.2. Under the assumptions of Theorem 3.3, we further supposed that q satisfies

2 < q < +∞, n ≤ 2 min(m1, m2),

2 < q ≤ min
(

2n
n− 2m1

,
2n

n− 2m2

)
, n > 2 max(m1, m2).

(4.1)

If [u0, v0] ∈ W and [u1, v1] ∈ L2(Ω) × L2(Ω) satisfy (3.3), then the global solution [u, v] of the
problem (1.1)–(1.6) have the following decay properties:

E(t) ≤ K(1 + t)−
2

q−2 ,

where K > 0 is a constant depending on initial energy E(0).

Proof. Multiplying the equation (1.1) by E(t)
q−2

2 u and integrating over Ω × [S, T], we obtain
that

0 =
∫ T

S
E(t)

q−2
2

∫
Ω

u
[
utt +Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)(−∆)m1 u+ a|ut|q−2ut− f1(u, v)

]
dx dt, (4.2)

where 0 ≤ S < T < +∞.
Since ∫ T

S
E(t)

q−2
2

∫
Ω

uutt dx dt

=

[
E(t)

q−2
2

∫
Ω

uut dx
]T

S
−
∫ T

S

[
q− 2

2
E(t)

q−4
2 E′(t) + E(t)

q−2
2

] ∫
Ω

uut dx dt

−
∫ T

S
E(t)

q−2
2

∫
Ω
|ut|2 dx dt.

(4.3)
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So, substituting the formula (4.3) into the right-hand side of (4.2), we get that

0 =
∫ T

S
E(t)

q−2
2

[
‖ut‖2 + Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)‖Dm1 u‖2

]
dt

−
∫ T

S

∫
Ω

E(t)
q−2

2
[
2|ut|2 − a|ut|q−2utu

]
dx dt

−
∫ T

S

[
q− 2

2
E(t)

q−4
2 E′(t) + E(t)

q−2
2

] ∫
Ω

uut dx dt

+

[
E(t)

q−2
2

∫
Ω

uut dx
]T

S
−
∫ T

S
E(t)

q−2
2

∫
Ω

u f1(u, v) dx dt.

(4.4)

Similarly, multiplying (1.2) by E(t)
q−2

2 v and integrating over Ω× [S, T], we have

0 =
∫ T

S
E(t)

q−2
2

[
‖vt‖2 + Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)‖Dm2 v‖2

]
dt

−
∫ T

S

∫
Ω

E(t)
q−2

2
[
2|vt|2 − a|vt|q−2vtv

]
dx dt

−
∫ T

S

[
q− 2

2
E(t)

q−4
2 E′(t) + E(t)

q−2
2

] ∫
Ω

vvt dx dt

+

[
E(t)

q−2
2

∫
Ω

vvtdx
]T

S
−
∫ T

S
E(t)

q−2
2

∫
Ω

v f2(u, v) dx dt.

(4.5)

Taking the sum of (4.4) and (4.5), we obtain that

∫ T

S
E(t)

q−2
2

[
‖ut‖2 + ‖vt‖2 + Φ(‖Dm1 u‖2 + ‖Dm2 v‖2)(‖Dm1 u‖2 + ‖Dm2 v‖2)

− 2
∫

Ω
F(u, v) dx

]
dt

= −
[

E(t)
q−2

2

∫
Ω
(uut + vvt) dx

]T

S
+
∫ T

S
E(t)

q−2
2

∫
Ω

2(|ut|2 + |vt|2) dx dt

−
∫ T

S
E(t)

q−2
2

∫
Ω

a(|ut|q−2utu + |vt|q−2vtv) dx dt

+
q− 2

2

∫ T

S

∫
Ω

E(t)
q−4

2 E′(t)(uut + vvt) dx dt

+2(p− 1)
∫ T

S

∫
Ω

E(t)
q−2

2 F(u, v) dx dt.

(4.6)

We obtain from (3.3), (3.6) and (3.9) that

2(p− 1)
∫

Ω
F(u, v) dx ≤ 2ηE(t). (4.7)

We derive from (A1) that

∫ ‖Dm1 u‖2+‖Dm2 v‖2

0
Φ(s) ds ≤ (‖Dm1 u‖2 + ‖Dm2 v‖2)Φ(‖Dm1 u‖2 + ‖Dm2 v‖2). (4.8)
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It follows from (4.6)–(4.8) that

2(1− η)
∫ T

S
E(t)

q
2 dt ≤ −

[
E(t)

q−2
2

∫
Ω
(uut + vvt) dx

]T

S

+
∫ T

S
E(t)

q−2
2

∫
Ω

2(|ut|2 + |vt|2) dx dt

−
∫ T

S
E(t)

q−2
2

∫
Ω

a(|ut|q−2utu + |vt|q−2vtv) dx dt

+
q− 2

2

∫ T

S
E(t)

q−4
2 E′(t)

∫
Ω
(uut + vvt) dx dt

= I1 + I2 + I3 + I4.

(4.9)

In the following, we estimate these terms Ii (i = 1, 2, 3, 4) respectively.
Since E(t) is non-increasing, we find from the Cauchy–Schwarz inequality and Lemma 2.1

that

I1 = E(S)
q−2

2

∫
Ω
[u(S)ut(S) + v(S)vt(S)] dx

− E(T)
q−2

2

∫
Ω
[u(T)ut(T) + v(T)vt(T)] dx ≤ C3E(S)

q
2 .

(4.10)

We get from Lemma 2.2 and Lemma 2.3 that

I2 ≤
∫ T

S

∫
Ω

[
(ε1 + ε2)E(t)

q
2 + (Cε1 + Cε2)(|ut|q + |vt|q)

]
dx dt

≤ C4(ε1 + ε2)
∫ T

S
E(t)

q
2 dt + (Cε1 + Cε2)

∫ T

S
(‖ut‖q

q + ‖vt‖q
q) dt

≤ C4(ε1 + ε2)
∫ T

S
E(t)

q
2 dt +

(Cε1 + Cε2)

a

∫ T

S
(−E′(t)) dt

= C4(ε1 + ε2)
∫ T

S
E(t)

q
2 dt− (Cε1 + Cε2)

a
(E(T)− E(S))

≤ C4(ε1 + ε2)
∫ T

S
E(t)

q
2 dt + C5E(S).

(4.11)

It follows from the Cauchy–Schwarz inequality, Lemma 2.1 and (3.12) that

I4 ≤
∫ T

S

q− 2
2

E(t)
q−4

2 E′(t)
∣∣∣∣ ∫Ω

(uut + vvt) dx
∣∣∣∣ dt

≤ q− 2
2

C6

∫ T

S
E(t)

q−4
2 (−E′(t))[‖Dm1 u‖ · ‖ut‖+ ‖Dm2 v‖ · ‖vt‖] dt

≤ q− 2
2

C6

∫ T

S
E(t)

q−2
2 (−E′(t)) dt ≤ C7E(S)

q
2 .

(4.12)

Now, we estimate the term I3 in order to apply the results of Lemma 4.1. From Hölder’s
inequality, Lemma 2.1 and Lemma 2.2, we obtain that

I3 ≤ a
∫ T

S
E(t)

q−2
2

[
(ε5 + ε6)(‖u‖q

q + ‖v‖
q
q) + (Cε5 + Cε6)(‖ut‖q

q + ‖vt‖q
q)
]

dt

≤ aCq(ε5 + ε6)
∫ T

S
E(t)

q−2
2 (‖Dm1 u‖q + ‖Dm2 v‖q) dt

+ a(Cε5 + Cε6)
∫ T

S
E(t)

q−2
2 (‖ut‖q

q + ‖vt‖q
q) dt

= L1 + L2.

(4.13)
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We have from (3.6) and Lemma 2.3 that

L1 ≤ aCq
[

2pE(0)
(p− 1)α

] q−2
2

(ε5 + ε6)
∫ T

S
E(t)

q
2 dt

≤ C8(ε5 + ε6)
∫ T

S
E(t)

q
2 dt.

(4.14)

and

L2 ≤ a(Cε5 + Cε6)
∫ T

S
E(t)

q−2
2 (−E′(t)) dt

≤ 2a(Cε5 + Cε6)

q

[
E(S)

q
2 − E(T)

q
2

]
≤ C9E(S)

q
2 .

(4.15)

By combining (4.13)–(4.15), we get

I3 ≤ C8(ε5 + ε6)
∫ T

S
E(t)

q
2 dt + C9E(S)

q
2 . (4.16)

Therefore, it follows from (4.9)–(4.12) and (4.16) that

2(1− η)
∫ T

S
E(t)

q
2 dt ≤ C10E(S) + C11E(S)

q
2 + C12

6

∑
i=1

ε i

∫ T

S
E(t)

q
2 dt. (4.17)

Choosing ε i (i = 1, 2, . . . , 6) small enough such that 1
2 C12 ∑6

i=1 ε i + η < 1. Then we deduce
from (4.17) that ∫ T

S
E(t)

q
2 dt ≤ C13E(S) + C14E(S)

q
2 ≤ C15

[
1 + E(0)

q−2
2

]
E(S),

Consequently, we have from Lemma 4.1 that

E(t) ≤ C16(1 + t)−
2

q−2 , t ∈ [0,+∞).

where C16 is a positive constants dependent of E(0). Thus, we finish the proof of Theorem 4.2.
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