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Abstract. This paper is concerned with the existence of solutions to a Kirchhoff type
problem involving the fractional p-Laplacian operator. We obtain the existence of solu-
tions by Ekeland’s variational principle.
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1 Introduction

Great attention has been focused on studying fractional Sobolev spaces and corresponding
nonlocal equations, both from a pure mathematical point of view and for concrete applica-
tions, since they naturally arise in many different contexts. For an elementary introduction on
this topic and for a quite extensive list of related references we refer to [9].

In this paper, we are interested in the following problem−M
(
‖u‖p

Z
)
LKu(x) = f (x, u) + |u|p∗−2u in Ω,

u = 0 in RN\Ω,
(1.1)

where p > 1, Ω is an open bounded set in RN , p∗ = Np
N−ps if N > ps, and p∗ = +∞ if N ≤ ps,

is the fractional critical exponent, with s ∈ (0, 1) fixed, ‖ · ‖Z is a norm which is defined in
(2.3), M and f are two functions satisfying some suitable conditions which will be given later,
and LK is a nonlocal operator defined as follows:

LKu(x) = 2
∫

RN
|u(x)− u(y)|p−2 (u(x)− u(y))K(x− y)dy, x ∈ RN .
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Here K : RN\{0} → (0,+∞) is a measurable function which satisfies
γK(x) ∈ L1(RN) with γ(x) = min{|x|p, 1};

there exists θ > 0 such that K(x) ≥ θ|x|−(N+pθ) for any x ∈ RN\{0};

K(x) = K(−x) for any x ∈ RN\{0}.

(1.2)

A typical model for K is given by the singular kernel K(x) = |x|−(N+ps). In this case LKu(x) =
(−4)s

pu(x) is the fractional p-Laplacian operator which (up to normalization factors) can be
defined as

(−∆)s
pu(x) = 2

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+ps dy, for x ∈ RN . (1.3)

In problem (1.1), for p = 2 and the function M ≡ 1, via variational methods, several
existence results were proved in a series of papers of Servadei and Valdinoci [21–28].

Recently, Fiscella and Valdinoci [11] established the existence of a nontrivial solution to
the following fractional Laplacian Kirchoff type problem−M

(∫
R2N |u(x)− u(y)|2K(x− y)dxdy

)
L̃Ku(x) = λ f (x, u) + |u|2∗−2u in Ω,

u = 0 in RN\Ω,
(1.4)

where Ω ⊂ RN is an open bounded set, 2∗ = 2N
N−2s , N > 2s with s ∈ (0, 1). M and f are two

continuous functions under some suitable assumptions, and the operator L̃K is defined as

L̃Ku(x) =
1
2

∫
RN

(u(x + y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN ,

where K : RN\{0} → R+ is a measurable function satisfying properties in (1.2) replaced by
p = 2. In [11], the authors first provided a detailed discussion about the physical meaning
underlying the fractional Kirchhoff problems and their applications. They supposed that
M : R+ → R+ is an increasing and continuous function, and there exists m0 > 0 such that
M(t) ≥ m0 = M(0) for all t ∈ R+. Based on the truncated skill and the Mountain Pass
Theorem, they obtained the existence of a non-negative solution to problem (1.4) for any
λ > λ∗ > 0, where λ∗ is an appropriate threshold.

Moreover, Sun and Teng [29] obtained the existence and multiplicity of solutions for a
Kirchhoff type problem when K(x) = |x|−(N+2s) and p = 2, by the Mountain Pass Theorem
and the symmetric Mountain Pass Theorem together with truncation techniques.

In the very recent paper [3], Autuori, Fiscella and Pucci established the existence and the
asymptotic behavior of non-negative solutions to problem (1.4) under different assumptions
on M, the Kirchhoff function M can be zero at zero, that is, the problem is degenerate case.

For the quasi-linear problem, if the Kirchhoff function M ≡ 1 and for any p > 1, consider
the following problem (−∆)s

pu(x) = f (x, u) in Ω,

u = 0 in RN\Ω.
(1.5)

Some results have been obtained for problem (1.5). In the works of Franzina–Palatucci [8] and
Lindgren–Linqvist [15], the eigenvalue problem associated with (−∆)s

p is studied, and partic-
ularly some properties of the first eigenvalue and of the higher order (variational) eigenvalues
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are obtained. Then, Iannizzotto–Squassina [16] obtained some Weyl-type estimates for the
asymptotic behaviour of variational eigenvalues λj defined by a suitable cohomological index.
From the point of view of regularity theory, some results can be found in [15] even though
that work is mostly focused on the case when p is large and the solutions inherit some reg-
ularity directly from the functional embeddings themselves. Moreover, Goyal and Sreenadh
[13] studied the existence and multiplicity of non-negative solutions to problem (1.5) when
the nonlinearity is subcritical growth with concave-convex nonlinearities and sign changing
weight. Furthermore, the existence of solutions has been also considered in [4,5,7,12,14–20,30]
and references therein.

When s = 1, problem (1.1) reduces to a p-Kirchhoff type problem. It has been studied
often in the literature, where different methods were proposed to analyze the question of the
existence and the multiplicity of solutions and related qualitative properties, see [2, 6, 10, 18]
and references therein. In particular, the existence of solutions for p-Kirchhoff problem with
a critical nonlinearity has been obtained in [18].

Inspired by the above mentioned works, we will use Ekeland’s variational principle to
investigate the existence of solutions for problem (1.1). We suppose that the function M :
(0,+∞)→ (0,+∞) is continuous and satisfies the following conditions:

(M1) M ∈ L1(0, σ) with σ > 0;

(M2) there exist 0 < β ≤ 1
p and a positive constant c1 such that M̃(t) ≥ c1tβ for t > 0, where

M̃(t) =
∫ t

0 M(τ)dτ;

(M3) there exists α > p∗
p such that lim supt→0+ t−α M̃(t) < ∞.

Moreover, the nonlinearity f : Ω×R→ R is a Carathéodory function satisfying:

(F1) there is a positive constant c2 such that | f (x, t)| ≤ c2(1 + |t|q−1), where p < q < p∗;

(F2) there exist positive constant c3 and 0 < δ < pα such that F(x, t) ≥ c3|t|δ as t→ 0, where
F(x, t) =

∫ t
0 f (x, τ)dτ.

Our result can be stated as follows.

Theorem 1.1. Let s ∈ (0, 1) be fixed, N > ps and Ω be an open bounded set of RN with Lipschitz
boundary. Let K be a function satisfying condition (1.2), functions M and f satisfy (M1)–(M3) and
(F1)–(F2), then problem (1.1) has a nontrivial solution.

Remark 1.2. (i) In some works, it is assumed that M(t) ≥ M(0) > 0 for t ≥ 0, which is not
necessary for our result.
(ii) To the best of our knowledge, it seems that this is the first result about the existence of
solutions for the fractional p-Laplacian Kirchhoff type problem.

2 Proof of the main result

Before we prove our main result, let us introduce some notations and the functional space
which we will use in the following.

We define Ws,p(Ω), the usual fractional Sobolev space endowed with the norm

‖u‖Ws,p(Ω) = ‖u‖Lp(Ω) +

(∫
Ω×Ω

|u(x)− u(y)|p
|x− y|N+ps dx dy

)1/p

. (2.1)
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Define the functional space

X =
{

u | u : RN → R is measurable, u|Ω ∈ Lp(Ω),

and (u(x)− u(y)) p
√

K(x− y) is in Lp(Q, dxdy)
}

,

where Q = R2N\(CΩ× CΩ) with CΩ = RN\Ω. The space X is endowed with the norm

‖u‖X = ‖u‖Lp(Ω) +

(∫
Q
|u(x)− u(y)|pK(x− y)dx dy

)1/p

. (2.2)

Set
Z = {u ∈ X : u = 0 a.e. in RN\Ω},

and the norm

‖u‖Z =

(∫
Q
|u(x)− u(y)|pK(x− y)dx dy

)1/p

. (2.3)

By [13, Lemma 2.5], the space (Z, ‖ · ‖Z) is a reflexive Banach space.

Definition 2.1. We say that u is a weak solution of problem (1.1), if u satisfies

M
(
‖u‖p

Z
) ∫

Q
|u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y))K(x− y)dxdy

=
∫

Ω
f (x, u)φdx +

∫
Ω
|u|p∗−2uφdx

(2.4)

for all φ ∈ Z.

In the sequel we will omit the term weak when referring to solutions that satisfy the con-
ditions of Definition 2.1. In fact, every weak solution of (1.1) is in L∞(Ω) by the result of
[17, Theorem 3.1].

Looking for a solution of problem (1.1) is equivalent to finding a critical point of the
associated Euler–Lagrange functional J : Z → R defined by

J(u) =
1
p

M̃
(
‖u‖p

Z
)
−
∫

Ω
F(x, u(x))dx− 1

p∗

∫
Ω
|u(x)|p∗dx, (2.5)

for all u ∈ Z. Note that J is a C1(Z) function for any u ∈ Z, and

J′(u)φ = M
(
‖u‖p

Z
) ∫

Q
|u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y))K(x− y)dxdy

−
∫

Ω
f (x, u(x))φ(x)dx−

∫
Ω
|u(x)|p∗−2u(x)φ(x)dx

for any φ ∈ Z.

Lemma 2.2 ([13]). Let K : RN\{0} → (0, ∞) be a function satisfying (1.2).

(i) If {un} is a bounded sequence in Z, then there exists u ∈ Lm(RN) such that, up to a subsequence,
un → u in Lm(RN) as n→ ∞ for any m ∈ [1, p∗);

(ii) There exists a positive constant S depending on N and s, such that for every u ∈ Z, we have

‖u‖p
Lp∗ (Ω)

= ‖u‖p
Lp∗ (RN)

≤ S−1‖u‖p
Z, (2.6)

where p∗ = Np
N−ps is the fractional critical exponent.
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Lemma 2.3. There exist κ, ρ > 0 such that J(u) ≥ κ for ‖u‖Z = ρ.

Proof. From assumptions (M2) and (F1), Hölder’s inequality and (2.6), we get

J(u) =
1
p

M̃
(
‖u‖p

Z
)
−
∫

Ω
F(x, u(x))dx− 1

p∗

∫
Ω
|u(x)|p∗dx

≥ 1
p

c0‖u‖pβ
Z − C

∫
Ω
|u(x)|dx− C

∫
Ω
|u(x)|qdx− 1

p∗

∫
Ω
|u(x)|p∗dx

≥ 1
p

c0‖u‖pβ
Z − C|Ω|

p∗−1
p∗

(∫
Ω
|u(x)|p∗dx

) 1
p∗

− C|Ω|
p∗−q

p∗

(∫
Ω
|u(x)|p∗dx

) q
p∗

− 1
p∗

∫
Ω
|u(x)|p∗dx

≥ 1
p

c0‖u‖pβ
Z − C|Ω|

p∗−1
p∗ S−

1
p ‖u(x)‖Z − C|Ω|

p∗−q
p∗ S−

q
p ‖u(x)‖q

Z −
1
p∗

S−
p∗
p ‖u(x)‖p∗

Z .

Since 0 < pβ ≤ 1 < p < q < p∗, then there exist κ, ρ > 0 such that J(u) ≥ κ for ‖u‖Z = ρ.

Lemma 2.4. The functional J(u) is bounded from below in B̄r(0), where B̄r(0) = {u ∈ Z : ‖u‖Z ≤ r}.
Moreover, c̃ := infu∈B̄r(0) J(u) < 0.

Proof. By the definition of J, we can get that J(u) is bounded from below in B̄r(0). Now, we
show that c̃ := infu∈B̄r(0) J(u) < 0. In fact, by conditions (M3) and (F2), for v ∈ C∞

0 (Ω)\{0}
with ‖v‖Z = 1 and t > 0, we have

J(tv) =
1
p

M̃
(
‖tv‖p

Z
)
−
∫

Ω
F(x, tv(x))dx− 1

p∗

∫
Ω
|tv(x)|p∗dx

≤ C1tpα‖v‖pα
Z − C2tδ

∫
Ω
|v|δdx− C3tp∗

∫
Ω
|v|p∗dx < 0

for t sufficiently small, where Ci, i = 1, 2, 3 are some positive constants. Then we get c̃ < 0.

Proof of Theorem 1.1. We apply Ekeland’s variational principle [1] to functional J on B̄r(0)
endowed with distance τ(u, w) = ‖u− w‖Z, then there is a sequence {un} ⊂ B̄r(0) such that

J(un)→ inf
u∈B̄r(0)

J(u) = c̃.

We infer that

J(un)− J(w) ≤ ‖un − w‖Z

n
for all w 6= un.

Since J ∈ C1(Z, R), and J(0) = 0, we have J′(un)→ 0 as n→ ∞. Thus

J(un)→ c̃ and J′(un)→ 0 as n→ ∞.

{un} ⊂ B̄r(0), so {un} is bounded in Z, then {un} is a bounded (PS)c̃ sequence for J. Up to
a subsequence, still denoted by {un}, such that un converges to some function u weakly in Z.
From Lemma 2.2, un → u strongly in Lp(RN), and un → u a.e. in RN as n → ∞. Therefore,

the sequence |un(x)− un(y)|p−2 (un(x)− un(y))K(x − y)
p−1

p is bounded in L
p

p−1 (R2N) and it

converges to |u(x)− u(y)|p−2 (u(x)− u(y))K(x− y)
p−1

p almost everywhere in R2N . Moreover,
(φ(x)− φ(y))K(x− y)1/p ∈ Lp(R2N), thus∫

Q
|un(x)− un(y)|p−2 (un(x)− un(y)) (φ(x)− φ(y))K(x− y)dxdy
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converges to ∫
Q
|u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y))K(x− y)dxdy

as n→ ∞.
On the other hand, from Lemma 2.2, we have that un → u in Lm(RN) as n → ∞ for any

m ∈ [1, p∗). By the conditions on the nonlinearity f , we get∫
Ω

f (x, un(x))φ(x)dx →
∫

Ω
f (x, u(x))φ(x)dx, as n→ ∞.

Next we claim that for every φ ∈ Z, as n→ ∞,∫
Ω
|un|p

∗−2unφdx →
∫

Ω
|u|p∗−2uφdx. (2.7)

Indeed, un → u a.e. in Ω as n → ∞, since un → u weakly in Z. By the Egoroff theorem,
for every δ > 0, there exists Ωδ such that un → u uniformly in Ω\Ωδ and |Ωδ| < δ, where
|Ωδ| is the Lebesgue measure of Ωδ. This together with the Lebesgue dominated convergence
theorem implies

lim
n→∞

∫
Ω\Ωδ

|un|p
∗−2unφdx =

∫
Ω\Ωδ

|u|p∗−2uφdx for every φ ∈ Z. (2.8)

Furthermore, for every φ ∈ Z, and for every ε > 0, by the absolute continuity of the integral,
we can take δ small enough, such that∫

Ωδ

∣∣∣|un|p
∗−2un − |u|p

∗−2u
∣∣∣ |φ|dx ≤ ε

2
.

For this δ, by (2.8), we obtain∫
Ω\Ωδ

∣∣∣|un|p
∗−2un − |u|p

∗−2u
∣∣∣ |φ|dx ≤ ε

2
,

for n large enough. So (2.7) holds. Thus we get

〈J′(u), φ〉Z = lim
n→∞
〈J′(un), φ〉Z ∀ φ ∈ Z.

Then u is a solution of problem (1.1).
Finally, we prove that u 6= 0. Since J(un)→ c̃ as n→ ∞, we find

c̃ + o(1) = J(un) ≥ C1‖un‖pβ
Z − C2‖un‖Z − C3‖un‖q

Z − C4‖un‖p∗
Z

≥ −C2‖un‖Z − C3‖un‖q
Z − C4‖un‖p∗

Z ,

where Ci, i = 1, . . . , 4, are some positive constants. The last inequality yields that

C2‖un‖Z + C3‖un‖q
Z + C4‖un‖p∗

Z ≥ −c̃ > 0.

Since un → u in Z as n→ ∞, we then get u 6= 0.
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