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Abstract. In the present paper we consider local center-unstable manifolds at a sta-
tionary point for a class of functional differential equations of the form ẋ(t) = f (xt)
under assumptions that are designed for application to differential equations with
state-dependent delay. Here, we show an attraction property of these manifolds.
More precisely, we prove that, after fixing some local center-unstable manifold Wcu
of ẋ(t) = f (xt) at some stationary point ϕ, each solution of ẋ(t) = f (xt) which exists
and remains sufficiently close to ϕ for all t ≥ 0 and which does not belong to Wcu
converges exponentially for t→ ∞ to a solution on Wcu.
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1 Introduction

In the last decade the theory of differential equations with state-dependent delay made sig-
nificant progress. Apart from other results, the framework developed by Walther in [7, 8, 9]
had a remarkable impact. This series of works is concerned with a class of abstract functional
differential equations and contains a proof that under certain mild conditions the solutions
of the associated Cauchy problems define a continuous semiflow on a smooth submanifold
of a function space. In particular, the resulting semiflow has continuously differentiable so-
lution operators and the linearization of the semiflow along a solution is described by linear
variational equations. The vital point of that framework with respect to delay differential
equations is the fact that it seems to be typically applicable in cases where the functional dif-
ferential equation represents an autonomous differential equation with state-dependent delay.
Consequently, under the assumption of applicability, one obtains a general setting of smooth
dynamical systems for the study of differential equations with state-dependent delay.
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Nowadays, the semiflow mentioned above is analyzed in various articles and many of
its dynamical aspects are well-understood. For instance, a general survey of basic properties
together with the linearization process at stationary points as well as the principle of linearized
stability is presented in [1]. In addition, [1] contains a proof of the existence of local stable
and local center manifolds at stationary points. The counterpart of the principle of linearized
stability, that is, the principle of linearized instability is discussed in [4]. For the existence of
continuously differentiable local unstable manifolds at stationary points we refer the reader
to [2]. The construction of C1-smooth local center-unstable manifolds is carried out in [5],
whereas the authors of [3] show the existence and smoothness of local center-stable manifolds.

In the present article we address another feature from the dynamical systems theory of
semiflows as laid out in the framework [7, 8, 9]; namely, an attraction property of local center-
unstable manifolds obtained in [5]. We show that each solution which starts and stays close
enough to a stationary point converges exponentially for t → ∞ to a solution on a local
center-unstable manifold of the semiflow. In particular, this property provides an asymptotic
description of the dynamics of such solutions: for all sufficiently large t they behave like
solutions on the considered local center-unstable manifold. However, in order to formulate
our main result in detail we have to recall some relevant material. This is done below without
presenting proofs. For a deeper discussion of the theory and for the absent proofs we refer
the reader to [1, 7, 8, 9].

Throughout this paper, let h > 0, n ∈ N and let ‖ · ‖Rn denote a norm in Rn. Further,
we write C for the Banach space of all continuous functions from the interval [−h, 0] into Rn,
provided with the usual norm ‖ϕ‖C := sups∈[−h,0] ‖ϕ(s)‖Rn of uniform convergence. Similarly,
let C1 denote the Banach space of all continuously differentiable functions ϕ : [−h, 0] → Rn

with the norm ‖ϕ‖C1 := ‖ϕ‖C + ‖ϕ′‖C. Given some function x : I → Rn defined on some
interval I ⊂ R, and some real t ∈ R with [t− h, t] ⊂ I, the segment xt of x at t is defined by
xt(s) := x(t + s), −h ≤ s ≤ 0.

From now on, we consider the functional differential equation

ẋ(t) = f (xt) (1.1)

given by some function f : U → Rn defined on some open neighborhood U ⊂ C1 of the origin
0 ∈ C1 and satisfying f (0) = 0. A solution of Eq. (1.1) is either a continuously differentiable
function x : [t0 − h, te)→ Rn with t0 < te ≤ ∞ such that xt ∈ U for all t0 ≤ t < te and Eq. (1.1)
holds for all t0 < t < te, or a continuously differentiable function x : R→ Rn satisfying xt ∈ U
and Eq. (1.1) for all t ∈ R, or a continuously differentiable function x : (−∞, tr]→ Rn, tr ∈ R,
such that xt ∈ U for all t ≤ tr and Eq. (1.1) holds as t < tr.

As f (0) = 0 by assumption, it is clear that x(t) = 0, t ∈ R, is a solution of Eq. (1.1) in the
sense above. In particular, the subset

X f := {ϕ ∈ U | ϕ′(0) = f (ϕ)}

of C1 is not empty. We impose that the function f additionally satisfies the following condi-
tions:

(S1) f is continuously differentiable, and

(S2) for each ϕ ∈ U the derivative D f (ϕ) : C1 → Rn extends to a linear map De f (ϕ) : C → Rn

such that the map U × C 3 (ϕ, χ) 7→ De f (ϕ)χ ∈ Rn is continuous.
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Then the results of the framework [7, 8, 9] show that the subset X f of U is a C1-smooth
submanifold of codimension n. Moreover, for each ϕ ∈ X f there is a unique real t+(ϕ) > 0
and a unique solution xϕ : [−h, t+(ϕ)) → Rn of Eq. (1.1) such that xϕ

0 = ϕ and xϕ is not
continuable in the forward time direction. For all ϕ ∈ X f and all 0 ≤ t < t+(ϕ) the segments
xϕ

t belong to X f , which is therefore called the solution manifold of Eq. (1.1). By assigning

F(t, ϕ) := xϕ
t

for all (t, ϕ) ∈ Ω where

Ω := {(s, ψ) ∈ [0, ∞)× X f | 0 ≤ s < t+(ψ)},

we obtain a continuous semiflow F : Ω→ X f with continuously differentiable time-t-maps.
Since x(t) = 0, t ∈ R, is a solution of Eq. (1.1), it is clear that ϕ0 := 0 ∈ U is a stationary

point of the semiflow F such that F(t, 0) = 0 for all t ≥ 0. The linearization of F at ϕ0 = 0 is the
strongly continuous semigroup T = {T(t)}t≥0 of bounded linear operators T(t) := D2F(t, 0)
on the Banach space

T0X f := {χ ∈ C1 | χ′(0) = D f (0)χ}

with the norm ‖ · ‖C1 of C1. The action of an operator T(t), t ≥ 0, on χ ∈ T0X f is given by
T(t)χ = vχ

t , where vχ : [−h, ∞) → Rn is the uniquely determined solution of the variational
equation

v̇(t) = D f (0)vt

with initial value v0 = χ. The infinitesimal generator G of the strongly continuous semigroup
T is given by the linear operator

G : D(G) 3 χ 7→ χ′ ∈ T0X f

defined on the subset

D(G) := {χ ∈ C2 | χ′(0) = D f (0)χ, χ′′(0) = D f (0)χ′}

of the space C2 of all twice continuously differentiable functions from [−h, 0] into Rn.
The semigroup T is closely related to another strongly continuous semigroup. In order to

clarify this point, recall that, due to assumption (S2) on f , the operator D f (0) may be extended
to a bounded linear operator De f (0) : C → Rn on C. In particular, the operator Le := D fe(0)
defines the linear retarded functional differential equation

v′(t) = Levt.

The solutions of the associated initial value problems{
v′(t) = Levt

v0 = χ ∈ C
(1.2)

induce a strongly continuous semigroup Te = {Te(t)}t≥0 on C. The generator of Te is defined
by

Ge : D(Ge) 3 χ 7→ χ′ ∈ C

on the domain
D(Ge) := {χ ∈ C1 | χ′(0) = Leχ}.
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We have D(Ge) = T0X f and T(t)ϕ = Te(t)ϕ for all t ≥ 0 and all ϕ ∈ D(Ge).
The relation between the semigroups T, Te notably has an effect on the spectra σ(G), σ(Ge)

of the two generators G, Ge: they coincide as shown in [1]. The spectrum σ(Ge) ⊂ C of the
generator Ge of Te is given by the zeros of a familiar characteristic equation. In particular, it is
discrete and contains only eigenvalues of finite rank, that is, all generalized eigenspaces are
finite-dimensional. Moreover, for each β ∈ R the intersection σ(Ge) ∩ {λ ∈ C | Re λ > β} is
finite. Therefore, the spectral parts

σc(Ge) := {λ ∈ σ(Ge) | Re λ = 0}

and
σu(Ge) := {λ ∈ σ(Ge) | Re λ > 0}

of σ(Ge) are empty or finite. The associated realified generalized eigenspaces Cc and Cu are
called the center and unstable space of Ge, respectively, and each of them is a finite dimensional
subspace of C. In contrast, the stable space Cs of Ge, that is, the realified generalized eigenspace
associated with the spectral part

σs(Ge) := {λ ∈ σ(Ge) | Re λ < 0},

is an infinite-dimensional subspace of C. All the spaces Cu, Cc, and Cs are closed and invariant
under Te(t), t ≥ 0, and provide the decomposition

C = Cu ⊕ Cc ⊕ Cs (1.3)

of the Banach space C. The semigroup Te may be extended to a one-parameter group on
each of the two finite dimensional spaces Cu, Cc, and the decomposition of C also leads to a
decomposition of the smaller Banach space C1:

C1 = Cu ⊕ Cc ⊕ C1
s (1.4)

with the closed subspace C1
s := Cs ∩ C1 of C1. With respect to the semigroup T and its

generator G, it turns out that both Cu and Cs belong to D(Ge) = T0X f and coincide with the
unstable and center space of G, respectively. The stable space of G is given by the intersection
Cs ∩ T0X f and we get the decomposition

T0X f = Cu ⊕ Cc ⊕ (Cs ∩ T0X f )

of the Banach space T0X f . All the spaces Cu, Cc, and Cs ∩ T0X f are closed in T0X f and invariant
under the action of the semigroup T. In addition, T is extendable to a one-parameter group
on both Cu and Cc.

After the preparatory steps, we are now in the position to recall the main result from [5]
about the existence of local center-unstable manifolds for the semiflow F at the stationary
point ϕ0 = 0. In doing so, we write Ccu for the so-called center-unstable space Cc ⊕ Cu of G.

Theorem 1.1 (Theorems 1 & 2 in [5]). Given f : U → Rn, U ⊂ C1 open, with f (0) = 0 and
satisfying assumptions (S1) and (S2), suppose that {λ ∈ σ(Ge) | Re λ ≥ 0} 6= ∅ or, equivalently,
Ccu 6= {0}.

Then there exist open neighborhoods Ccu,0 of 0 in Ccu and C1
s,0 of 0 in C1

s with Ncu := Ccu,0 + C1
s,0

contained in U, and a continuously differentiable map wcu : Ccu,0 → C1
s,0 with wcu(0) = 0 and

Dwcu(0) = 0 such that
Wcu := {ϕ + wcu(ϕ) | ϕ ∈ Ccu,0}

has the following properties.
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(i) Wcu is a continuously differentiable submanifold of the solution manifold X f of Eq. (1.1) and
dim Wcu = dim Ccu.

(ii) If x : (−∞, 0]→ Rn is a solution Eq. (1.1) and if xt ∈ Ncu for all t ≤ 0, then xt ∈Wcu as t ≤ 0.

(iii) Wcu is positively invariant with respect to F relative to Ncu; that is, for all ϕ ∈Wcu and all t > 0
with {F(s, ϕ) | 0 ≤ s ≤ t} ⊂ Ncu we have {F(s, ϕ) | 0 ≤ s ≤ t} ⊂Wcu.

The goal of this paper is to prove the following additional attraction property of local
center-unstable manifolds.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists an open neighborhood UA of 0 in
U, and reals KA > 0 and ηA > 0 with the following property: If ϕ ∈ UA and if the solution xϕ of
Eq. (1.1) does exist for all t ≥ 0 and its segments xϕ

t belongs to UA as long as t ≥ 0, then there is some
ψ ∈ X f with xψ

t ∈Wcu for all t ≥ 0 such that

‖xϕ
t − xψ

t ‖C1 = ‖F(t, ϕ)− F(t, ψ)‖C1 ≤ KAe−ηAt,

as t ≥ 0.

In the next sections, we establish this statement. The main idea of the proof is to con-
sider the global center-unstable manifolds of some smooth modifications of Eq. (1.1) and to
show an attraction property for these manifolds – compare Theorem 4.1 – first. This is done
constructively by adopting the ideas contained in Vanderbauwhede [6], where a similar re-
sult for ordinary differential equations is given. An essential ingredient of the method is to
deduce certain integral equations and then to solve these equations by the contraction prin-
ciple on suitable Banach spaces. Having the attraction property of the global center-unstable
manifolds, the main result easily follows by a cut-off technique.

This paper is organized in detail as follows. The next section contains some prelimi-
naries. There, we recall the variation-of-constants formula and some integral operators for
inhomogeneous linear functional differential equations. Further, we introduce some smooth
modifications of Eq. (1.1) and describe the construction of global center-unstable manifolds.

The third section is devoted to the study of some global semiflows of the modified equa-
tions. Apart from the modifications introduced in the second section, in this section we con-
sider further auxiliary modifications of (1.1).

Section 4 begins with a statement about an attraction property of global center-unstable
manifolds. Thereafter, we develop step by step a strategy for a proof of this statement. It
turns out that the claimed attraction property may be characterized in an alternative way,
which notably involves global solutions of certain parameter-dependent integral equations.

In Section 5 we prepare the last arguments for a proof of the attraction of global center-
unstable manifolds: we construct parameter-dependent contractions on Banach spaces to solve
the parameter-dependent integral equations obtained in Section 4. In addition, we show that
the resulting fixed points depend continuously on the parameter. At the end of Section 5, we
finally give a proof of the statement claimed at the beginning of Section 4.

The last section contains the proof of our main result.

2 Preliminaries

In this section we recapitulate some standard facts on delay differential equations and discuss
some basics results needed for a proof of the main statement.
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2.1 Sun-reflexifity

For each t ≥ 0, let T∗e (t) denote the adjoint operator of the bounded linear operator Te(t)
induced by the solutions of the initial value problems (1.2). The family T∗e = {T∗e (t)}t≥0 forms
a semigroup of bounded linear operators on the dual space C∗ of C. But in general T∗e does
not constitute a strongly continuous semigroup on C∗ with respect to the topology induced
by the norm ‖ϕ∗‖C∗ := sup‖ϕ‖C≤1 |ϕ∗(ϕ)|. However, let C� denote the set of all ϕ� ∈ C∗

with the property that the curve [0, ∞) 3 t 7→ T∗e (t)ϕ� ∈ C∗ is continuous. Then C� is a
closed subspace of C∗ and for all t ≥ 0 we have T∗e (t)(C�) ⊂ C�. As a consequence, the
family T�e = {T�e (t)}t≥0 of operators T�e (t) : C� 3 ϕ� 7→ T∗e (t)ϕ� ∈ C� becomes a strongly
continuous semigroup on the Banach space C�.

Similarly, carrying out the process above with the semigroup T�e on C� instead of Te on
C, we first obtain the family T�∗e = {T�∗e (t)}t≥0 of adjoint operators of T�e on the dual space
C�∗ of C� and then the Banach space C�� ⊂ C�∗, on which the restriction of T�∗ is strongly
continuous. The original Banach space C and semigroup Te are sun-reflexive: There is an
isometric linear map j : C → C�∗ such that j(C) = C�� and T�∗e (t)(jϕ) = j(Te(t)ϕ) for all
t ≥ 0 and all ϕ ∈ C. For simplicity, we identify C with C�� and omit the embedding operator
j in the following.

For the spectrum σ(G�∗e ) of the infinitesimal generator G�∗e of the semigroup T�∗e we have
σ(G�∗e ) = σ(Ge). By analogy to the decomposition (1.3) of C, C�∗ can be decomposed as

C�∗ = Cu ⊕ Cc ⊕ C�∗s (2.1)

and the subspaces Cu, Cu, and C�∗s are closed and invariant under T�∗e . We have continuous
projection operators P�∗u , P�∗c , and P�∗s of C�∗ onto Cu, Cc, and C�∗s , respectively. Further,
there exist real constants K ≥ 1, cs < 0 < cu, and 0 < cc < min{−cs, cu} such that

‖Te(t)ϕ‖C ≤ Kecut‖ϕ‖C, t ≤ 0, ϕ ∈ Cu,

‖Te(t)ϕ‖C ≤ Kecc|t|‖ϕ‖C, t ∈ R, ϕ ∈ Cc,

‖T�∗e (t)ϕ‖C�∗ ≤ Kecst‖ϕ�∗‖C�∗ , t ≥ 0, ϕ�∗ ∈ C�∗s .

(2.2)

From the decomposition (1.4) of C1, we also get continuous projection operators Pu, Pc,
and Ps of C1 onto subspaces Cu, Cc, and C1

s , respectively. By the identification of C and C�� it
easily follows that C1

s = C1 ∩ C�∗s . Finally, in analogy to (2.2), for the action of T on subspaces
of T0X f we also have

‖T(t)ϕ‖C1 ≤ Kecut‖ϕ‖C1 , t ≤ 0, ϕ ∈ Cu,

‖T(t)ϕ‖C1 ≤ Kecc|t|‖ϕ‖C1 , t ∈ R, ϕ ∈ Cc,

‖T(t)ϕ‖C1 ≤ Kecst‖ϕ‖C1 , t ≥ 0, ϕ ∈ Cs ∩D(Ge).

(2.3)

2.2 Variation-of-constants formula

Next, we are going to recall the variation-of-constants formula for solutions of the inhomoge-
neous linear differential equation

ẋ(t) = Lext + q(t) (2.4)

with a function q : I → Rn defined on some interval I ⊂ R. Here, a solution is a continuous
function x : I + [−h, 0] → Rn satisfying (2.4) for all t ∈ I. In order to state the variation-
of-constants formula and its properties, we need some preparations and notation. To begin
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with, let L∞([−h, 0], Rn) denote the Banach space of all measurable and essentially bounded
functions from [−h, 0] into Rn, equipped with the usual norm ‖ · ‖L∞ of essential least upper
bound. Then the product space Rn × L∞([−h, 0], Rn) equipped with the norm

‖(α, ϕ)‖Rn×L∞ := max{‖α‖Rn , ‖ϕ‖L∞}

is isometrically isomorphic to the Banach space C�∗. After fixing a norm-preserving iso-
morphism k : C�∗ → Rn × L∞([−h, 0], Rn), let for each i = 1, . . . , n the element r�∗i ∈ C�∗

be defined by r�∗i := k−1(ei, 0), where ei is the i-th canonical basis vector of Rn. The family
{r�∗1 , . . . , r�∗n } clearly forms a basis of the subspace Y�∗ := k−1(Rn×{0}) of C�∗ and by claim-
ing l(ei) = r�∗i we find a unique linear bijective mapping l : Rn → Y�∗ with ‖l‖ = ‖l−1‖ = 1.

Given reals a ≤ b ≤ c and a continuous function w : [a, b] → C�∗, define the weak-star-
integral ∫ b

a
T�∗e (c− τ)w(τ) dτ ∈ C�∗

by (∫ b

a
T�∗(c− τ)w(τ) dτ

)
(ϕ�) :=

∫ b

a

(
T�∗(c− τ)w(τ)

)
(ϕ�) dτ

for all ϕ� ∈ C�. In addition, set

∫ a

b
T�∗(c− τ)w(τ) dτ := −

∫ b

a
T�∗(c− τ)w(τ) dτ.

Then it follows that the weak-star-integral lies in C. We have

T�∗e (t)
∫ b

a
T�∗e (c− τ)w(τ) dτ =

∫ b

a
T�∗e (t + c− τ)w(τ) dτ

as t ≥ 0, and for any of the continuous projections P�∗λ with λ ∈ {s, c, u} the identity

P�∗λ

∫ b

a
T�∗e (c− τ)w(τ) dτ =

∫ b

a
T�∗e (c− τ)P�∗λ w(τ) dτ

holds. In addition, as usual the norm of the weak-star-integral is bounded by the integral of
the norm: ∥∥∥∥∫ b

a
T�∗e (c− τ)w(τ) dτ

∥∥∥∥
C�∗
≤
∫ b

a

∥∥T�∗e (c− τ)w(τ)
∥∥

C�∗ dτ.

We return to Eq. (2.4). If q : I → Rn is continuous and if x : I + [−h, 0] → Rn is a solution
of Eq. (2.4) then the curve u : I 3 τ 7→ xτ ∈ C satisfies the abstract integral equation

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)Q(τ) dτ (2.5)

with Q : I 3 τ 7→ l(q(τ)) ∈ Y�∗ for all s, t ∈ I, s ≤ t. Conversely, if Q : I → Y�∗ is continuous
and if u : I → C is a solution of Eq. (2.5) then there exists a continuous x : I + [−h, 0] → Rn

such that xt = u(t) for all t ∈ I and that x is a solution of Eq. (2.4) on I for q : I 3 τ 7→
l−1(Q(τ)) ∈ Rn. In this way we have a one-to-one correspondence between solutions of
Eq. (2.4) and Eq. (2.5).
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2.3 Preparatory results on inhomogeneous linear equations

Let X denote a Banach space and ‖ · ‖X its norm. Then for each η ≥ 0 the linear spaces

Cη((−∞, 0], X) :=

{
g ∈ C((−∞, 0], X) | sup

s∈(−∞,0]
eηs‖g(s)‖X < ∞

}

and

Cη,R(R, X) :=

{
g ∈ C(R, X) | sup

s∈R

eηs‖g(s)‖X < ∞

}
provided with the weighted supremum norms

‖g‖Cη
= sup

s≤0
eηs‖g(s)‖X and ‖g‖Cη,R = sup

s∈R

eηs‖g(s)‖X,

respectively, become Banach spaces as well. Some of these spaces we will consider repeatedly
in the sequel. In order to simplify notation, we shall use the following abbreviations through-
out the paper:

C0
η := Cη((−∞, 0], C), C1

η := Cη((−∞, 0], C1), Yη := Cη((−∞, 0], Y�∗),

C0
η,R := Cη,R(R, C), C1

η,R := Cη,R(R, C1), and Yη,R := Cη,R(R, Y�∗).

Moreover, we write Pcu := Pc + Pu for the projection of C1 along C1
s and P�∗cu := P�∗u + P�∗c for

the projection of C�∗ along C�∗s .

Definition 2.1. Given Q : (−∞, 0]→ Y�∗ and QR : R→ Y�∗, set

(KcuQ)(t) :=
∫ t

0
T�∗e (t− τ)P�∗cu Q(τ) dτ +

∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ (2.6)

for all t ≤ 0, and

(K1QR)(t) :=
∫ t

∞
T�∗e (t− τ)P�∗s QR(τ) dτ (2.7)

and

(K2QR)(t) :=
∫ t

∞
T�∗e (t− τ)P�∗cu QR(τ) dτ (2.8)

for all t ∈ R.

Proposition 2.2 (compare Proposition 3.2 in [5]). Let η ∈ R with cc < η < min{−cs, cu} be
given.

(i) Eq. (2.6) defines a bounded linear map K̂ : Yη 3 Q→ KcuQ ∈ C0
η with

‖K̂‖ ≤ K
(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

− ‖P
�∗
s ‖

cs + η

)
.

Moreover, u := (K̂Q), Q ∈ Yη , is a solution of the integral equation

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)Q(τ) dτ (2.9)

as −∞ < s ≤ t < 0, and it is the only one in C0
η with the property P�∗cu u(0) = 0.
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(ii) Eq. (2.7) defines a bounded linear map K̂1 : Yη,R 3 Q 7→ (K1Q) ∈ C0
η,R with

‖K̂1‖ ≤ −K‖P�∗s ‖
cs + η

.

Moreover, (K̂1Q), Q ∈ Yη,R, is a solution of the integral equation

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)P�∗s Q(τ) dτ (2.10)

as −∞ < s ≤ t < ∞, and (K̂1Q)(t) ∈ Cs for all t ∈ R.

(iii) Eq. (2.8) defines a bounded linear map K̂2 : Yη,R 3 Q 7→ (K2Q) ∈ C0
η,R with

‖K̂2‖ ≤ K
(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

)
.

Moreover, (K̂2Q), Q ∈ Yη,R, is a solution of the integral

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)P�∗cu Q(τ) dτ (2.11)

as −∞ < s ≤ t < ∞, and (K̂2Q)(t) ∈ Ccu for all t ∈ R.

Proof. For the first part of the statement we refer the reader to Proposition 3.2 in [5] where the
proof is carried out in full detail. Following these lines, one easily concludes parts (ii) and (iii)
of the statement.

Remark 2.3. Under the assumption on η from the last proposition, it is not difficult to see that
(K1Q) is actually well-defined for all Q ∈ C(R, Y�∗) satisfying Q |(−∞,0]∈ Yη . Furthermore,
for such Q ∈ C(R, Y�∗) the image u := (K1Q) is a continuous map from R into C with
u |(−∞,0]∈ C0

η , solves Eq. (2.10) for all −∞ < s ≤ t < ∞, and satisfies u(t) ∈ Cs as t ∈ R.

All the functions K̂Q, K̂1Q and K̂2Q are not only continuous but continuously differen-
tiable, as established in our next result.

Proposition 2.4 (compare Corollary 3.4 in [5]). Consider η ∈ R as in the last result. Then the
following holds.

(i) Eq. (2.6) induces a bounded linear map

Kη : Yη 3 Q 7→ KcuQ ∈ C1
η

with

‖Kη‖ ≤ K(1 + eηh‖Le‖)
(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

− ‖P
�∗
s ‖

cs + η

)
+ eηh.

Moreover, given Q ∈ Yη , u := KηQ is the only solution of Eq. (2.9) in C1
η with the property

P�∗cu u(0) = 0.
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(ii) Eq. (2.7) induces a bounded linear mapping

K1
η : Yη,R 3 Q 7→ K1Q ∈ C1

η,R

with

‖K1
η‖ ≤ −K(1 + eηh‖Le‖)

‖P�∗s ‖
cs + η

+ eηh‖P�∗s ‖.

Moreover, given Q ∈ Yη , all segments of the solution K1
ηQ of Eq. (2.10) belong to C1

s .

(iii) Eq. (2.8) induces a bounded linear mapping

K2
η : Yη,R 3 Q 7→ K2Q ∈ C1

η,R

with

‖K2
η‖ ≤ K(1 + eηh‖Le‖)

(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

)
+ eηh‖P�∗cu ‖.

Moreover, given Q ∈ Yη , all segments of the solution K2
ηQ of Eq. (2.11) belong to Ccu.

Proof. For the proof of the first assertion compare Corollary 3.4 and its proof in [5], whereas
the proofs of assertions (ii) and (iii) immediately follows from Proposition 2.2 in combination
with Proposition 4.2.1 in Hartung et al. [1].

Remark 2.5. An important ingredient of the proof of the last statement is a smoothing prop-
erty of the integral equation (2.5). For example, if Q ∈ C(R, Y�∗) and if u ∈ C(R, C) satisfies
the integral equation (2.5) for all −∞ < s ≤ t < ∞, then u ∈ C(R, C1). For a proof, compare
for instance the proof of Proposition 4.2.1 in Hartung et al. [1].

Corollary 2.6. For given η ∈ R with cc < η < min{−cs, cu}, let

K+
η : Yη,R → C1

η,R

denote the map Q 7→ (K1
η + K2

η)(Q), where the operators K1
η and K2

η are defined as in the last
proposition. Then K+

η forms a bounded linear operator with

‖K+
η ‖ ≤ K(1 + eηh‖Le‖)

(
‖P�∗u ‖
cu + η

+
‖P�∗c ‖
η − cc

− ‖P
�∗
s ‖

cs + η

)
+ eηh(‖P�∗s ‖+ ‖P�∗cu ‖),

and for each Q ∈ Yη,R the function u = (K1
η +K2

η)(Q) satisfies

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)Q(τ) dτ

for all −∞ < s ≤ t < ∞.

Proof. In view of Proposition 2.4, it is clear that the sum K+
η of the two bounded linear oper-

ators K1
η and K2

η from Yη,R into C1
η,R is a bounded linear operator from Yη,R into C1

η,R as well.
Furthermore, from the estimates for ‖K1

η‖ and for ‖K2
η‖ we get

‖K+
η ‖ ≤ ‖K1

η‖+ ‖K2
η‖

≤ K(1 + eηh‖Le‖)
(
‖P�∗u ‖
cu + η

+
‖P�∗c ‖
η − cc

− ‖P
�∗
s ‖

cs + η

)
+ eηh(‖P�∗s ‖+ ‖P�∗cu ‖).
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For the remaining part of the assertion, consider u = K+
η Q for some fixed Q ∈ Yη,R. Using

Proposition 2.4 again, it follows that

u(t) = (K+
η Q)(t)

= (K1
ηQ)(t) + (K2

ηQ)(t)

= (K1Q)(t) + (K2Q)(t)

= Te(t− s)(K1Q)(s) +
∫ t

s
T�∗e (t− τ)P�∗s Q(τ) dτ + Te(t− s)(K2Q)(s)

+
∫ t

s
T�∗e (t− τ)P�∗cu Q(τ) dτ

= Te(t− s)
[
(K1Q)(s) + (K2Q)(s)

]
+
∫ t

s
T�∗e (t− τ)

[
P�∗s Q(τ) + P�∗cu Q(τ)

]
dτ

= Te(t− s)(K+
η Q)(s) +

∫ t

s
T�∗e (t− τ)Q(τ) dτ

= Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)Q(τ) dτ

for all −∞ < s ≤ t < ∞, which proves the corollary.

2.4 Smooth modifications of the nonlinearity and the global center-unstable
manifolds of the modified equations

Below we recapitulate some essential ingredients of the proof of Theorem 1.1. In particular,
we describe the construction of global center-unstable manifolds for smooth modifications of
Eq. (1.1). For the details we refer the reader to [5]. Compare also the construction of local
center manifolds contained in Hartung et al. [1].

Introducing the maps

L := D f (0) and r : U 3 ϕ 7→ f (ϕ)− Lϕ ∈ Rn,

we may rewrite Eq. (1.1) as
ẋ(t) = Lxt + r(xt)

where the right-hand side is separated into a linear and a nonlinear term. It is easily seen that
r inherits conditions (S1) and (S2) from f . In particular, we have r(0) = 0 and Dr(0) = 0.

In view of dim Ccu < ∞, there exists a norm ‖ · ‖cu on Ccu such that its restriction to
Ccu \ {0} is C∞-smooth. Using this norm, define

‖ϕ‖1 := max{‖Pcu ϕ‖cu, ‖Ps ϕ‖C1}

for all ϕ ∈ C1. In this way we obtain another norm ‖ · ‖1 on C1, which is equivalent to ‖ · ‖C1 .
Choose next a C∞-smooth map ρ : [0, ∞) → R satisfying ρ(t) = 1 as 0 ≤ t ≤ 1, 0 < ρ(t) < 1
as 1 < t < 2, and ρ(t) = 0 for all t ≥ 2, and set

r̂(ϕ) =

{
r(ϕ), for ϕ ∈ U,

0, for ϕ 6∈ U.

For each δ > 0 we introduce by

rδ : C1 3 ϕ 7→ ρ

(
‖ϕcu‖cu

δ

)
ρ

(
‖ϕs‖C1

δ

)
r̂(ϕ)
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a modification of r that is defined on all of C1. Here, ϕcu denotes the component Pcu ϕ of
ϕ ∈ C1, and analogously ϕs the component Ps ϕ of ϕ ∈ C1.

For all sufficiently small δ > 0 the restriction of rδ to a small neighborhood of 0 ∈ C1 is
continuously differentiable, bounded, and has a bounded derivative. More precisely, there
exists some δ0 > 0 with {ψ ∈ C1 | ‖ψs‖1 < δ0} ⊂ U such that for each 0 < δ < δ0 the restric-
tion rδ |{ψ∈C1|‖ψs‖1<δ} is a bounded and continuously differentiable function with a bounded
derivative. Furthermore, for all ϕ ∈ {ψ ∈ C1 | ‖ψs‖1 < δ} we have

rδ|{ψ∈C1|‖ψs‖1<δ}(ϕ) = r̂(ϕ) ρ

(
‖ϕcu‖cu

δ

)
.

Next, there is some 0 < δ1 < δ0 and a monotone increasing λ : [0, δ1] → [0, 1] satisfying
λ(0) = 0 and limδ↘0 λ(δ) = 0 such that

‖rδ(ϕ)‖Rn ≤ δ λ(δ) (2.12)

and
‖rδ(ϕ)− rδ(ψ)‖Rn ≤ λ(δ)‖ϕ− ψ‖C1 (2.13)

for all 0 < δ ≤ δ1 and all ϕ, ψ ∈ C1.
The proof for the existence part of Theorem 1.1 begins with the construction of global

center-unstable manifolds for the modified equations

ẋ(t) = Lxt + rδ(xt) (2.14)

where 0 < δ ≤ δ1. Recall that these equations are closely related with the integral equations

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)l(rδ(u(τ))) dτ. (2.15)

For instance, if x : (−∞, 0]→ Rn is a continuously differentiable solution of Eq. (2.14), then we
obtain a solution of Eq. (2.15) by u : (∞, 0] 3 t 7→ xt ∈ C1. On the other hand, if u : (−∞, 0]→
C1 satisfies (2.15), then x : (−∞, 0] → Rn given by x(t) := u(t)(0) as −∞ < t ≤ 0 is a C1-
smooth solution of Eq. (2.14).

Consider now some fixed η ∈ R satisfying

cc < η < min{−cs, cu}.

There clearly exists some 0 < δ < δ1 ensuring

λ(δ) · ‖Kη‖ <
1
2

.

With this choice of δ, let us temporarily denote by R : C((−∞, 0], C1) → C((−∞, 0], Y�∗) the
substitution operator of the map C1 3 ϕ 7→ l(rδ(ϕ)) ∈ Y�∗, that is, R(u)(t) = l(rδ(u(t))) for
all u ∈ C((−∞, 0], C1) and all t ≤ 0. Then R maps C1

η into Yη and thus induces a mapping

Rδη : C1
η 3 u 7→ R(u) ∈ Yη ,

which particularly satisfies

‖Rδη(u)‖Yη
≤ δλ(δ) and ‖Rδη(u)− Rδη(v)‖Yη

≤ λ(δ)‖u− v‖C1
η

(2.16)
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for all u, v ∈ C1
η .

Given some ϕ ∈ Ccu, the curve (−∞, 0] 3 t 7→ Te(t)ϕ ∈ C1 belongs to C1
η . Therefore, we

may define a map Sη : C1 ⊃ Ccu → C1
η by (Sη ϕ)(t) := Te(t)ϕ as ϕ ∈ Ccu and t ≤ 0. It easily

follows that Sη forms a bounded linear operator with

‖Sη‖ ≤ K(‖P�∗c ‖+ ‖P�∗u ‖). (2.17)

Using the mappings Kη from Proposition 2.4, Rδη and Sη , we introduce another map
Gη : C1

η × Ccu → C1
η given by

Gη(u, ϕ) := Sη ϕ +Kη ◦ Rδη(u).

Under the given assumptions, for each ϕ ∈ Ccu the induced map Gη(·, ϕ) : C1
η → C1

η has an
uniquely determined fixed point u(ϕ) since it forms a contraction of a sufficiently large ball
about the origin into itself. The associated solution operator

ũη : Ccu 3 ϕ 7→ u(ϕ) ∈ C1
η

is globally Lipschitz-continuous, and for each ϕ ∈ Ccu the function ũη(ϕ) is a solution of
Eq. (2.15) on (−∞, 0] with vanishing Ccu component at t = 0. Thus, in view of the one-to-one
correspondence of solutions of Eq. (2.14) and Eq. (2.15), we see that for each ϕ ∈ Ccu there
exists a continuously differentiable function x : (−∞, 0]→ Rn with xt = ũ(ϕ)(t) as t ≤ 0 such
that x solves Eq. (2.14) for all t ≤ 0. The global center-unstable manifold of Eq. (2.14) at the
stationary point 0 ∈ C1 is now the set

Wη := {ũη(ϕ)(0) | ϕ ∈ Ccu}.
We have

Wη = {ϕ + wη(ϕ) | ϕ ∈ Ccu}

with the map
wη : Ccu 3 ϕ 7→ Ps(ũη(ϕ)(0)) ∈ C1

s (2.18)

and for each solution v ∈ C1
η of Eq. (2.15) we have v(t) ∈Wη as t ≤ 0.

3 Global semiflows of modified equations

The first step towards a proof of our main result Theorem 1.2 will be a similar statement for
the modified equations (2.14) and the associated global center-unstable manifolds. As this
statement will assert an asymptotic behaviour for t → ∞ of certain solutions of Eq. (2.14), we
need some preparations containing, among other things, a discussion about the existence of
continuously differentiable solutions for t ≥ 0. This is done below.

To begin with, observe that Eq. (2.14) may be written as

ẋ(t) = fδ(xt) (3.1)

with the function fδ : C1 3 ϕ 7→ Lϕ + rδ(ϕ). By construction, the set

Xδ := {ϕ ∈ C1 | ϕ′(0) = fδ(ϕ)}
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is clearly not empty since we have fδ(0) = f (0) = 0. Nevertheless, fδ does not need to have
the properties (S1) and (S2). For this reason, we can not use the results in Walther [7, 8, 9] in
order to conclude the existence of solutions of the initial values problems

ẋ(t) = fδ(xt) (= Lxt + rδ(xt)), x0 = ϕ ∈ Xδ, (3.2)

for t ≥ 0. However, this issue was already addressed by Qesmi and Walther in [3] where the
authors prove that for all sufficiently small δ > 0 the initial value problems have uniquely
determined solutions. More precisely, the following holds:

Proposition 3.1. Let 0 < δ < δ1 with λ(δ) < 1/5 be given. Then for each ϕ ∈ Xδ there exists a
unique continuously differentiable solution x : [−h, ∞) → Rn of the initial value problem (3.2), and
xt ∈ Xδ for all t ≥ 0.

Moreover, the equations
Fδ(t, ϕ) = xϕ

t , ϕ ∈ Xδ, t ≥ 0,

define a continuous semiflow Fδ : [0, ∞)× Xδ → Xδ, and for each s ≥ 0

Lip0≤t≤s Fδ(t, · ) < ∞.

Proof. Compare Corollary 6.2 and Proposition 6.3 in [3].

Now, recall once more the one-to-one correspondence between solutions of the differential
equation defining the initial value problem (3.2) and solutions of the integral equation (2.15).
Fixing some appropriate δ > 0 and any ϕ ∈ Xδ and setting u(t) := Fδ(t, ϕ) for all t ≥ 0, we
first see

Fδ(t, ϕ) = Te(t− s)Fδ(s, ϕ) +
∫ t

s
T�∗e (t− τ)l(rδ(Fδ(τ, ϕ))) dτ (3.3)

and then after application of Pcu

PcuFδ(t, ϕ) = P�∗cu Fδ(t, ϕ)

= P�∗cu Te(t− s)Fδ(s, ϕ) + P�∗cu

∫ t

s
T�∗e (t− τ)l(rδ(Fδ(τ, ϕ))) dτ

= Te(t− s)P�∗cu Fδ(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(Fδ(τ, ϕ))) dτ

= Te(t− s)PcuFδ(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(Fδ(τ, ϕ))) dτ,

that is,

PcuFδ(t, ϕ) = Te(t− s)PcuFδ(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(Fδ(τ, ϕ))) dτ, (3.4)

for all 0 ≤ s ≤ t < ∞.

Apart from the global semiflows Fδ generated by solutions of (3.2), we will need other
auxiliary semiflows. In order to define these semiflows, we first have to study solutions of the
modification

ẋ(t) = LPcuxt + (l−1 ◦ P�∗cu ◦ l)(rδ(xt + Ps ϕ)) (3.5)

of Eq. (3.1) for t ≤ 0 where ϕ ∈ Xδ. We show that, for each η ∈ R with cc < η < min{−cs, cu}
and all sufficiently small δ > 0, every ϕ ∈ Xδ uniquely determines a continuously differen-
tiable solution x : (−∞, 0]→ Rn of Eq. (3.5) with x0 = Pcu ϕ and [(−∞, 0] 3 t 7→ xt ∈ C1] ∈ C1

η .
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The proof of this statement is based on a fixed-point argument completely similar to the one
used for the construction of the global center-unstable manifolds Wη . However, for the con-
venience of the reader, we carry out the details below.

For the remaining part of this section fix some η ∈ R with

cc < η < min{−cs, cu}

and choose 0 < δ < δ1 such that

λ(δ)‖Kη‖ ≤ λ(δ)‖Kη‖ ‖P�∗cu ‖ <
1
2

. (3.6)

We begin with a minor modification of Corollary 4.3 in [5].

Corollary 3.2. Let R denote the operator which assigns to u ∈ C((−∞, 0], C1) the mapping

(−∞, 0] 3 s 7→ P�∗cu l(rδ(u(s))) ∈ Y�∗

in C((−∞, 0], Y�∗).
Then R(C1

η) ⊂ Yη , and the induced mapping Rδη : C1
η 3 u 7→ R(u) ∈ Yη satisfies

‖Rδη(u)‖Yη
≤ ‖P�∗cu ‖δλ(δ)

and
‖Rδη(u)− Rδη(v)‖Yη

≤ λ(δ)‖P�∗cu ‖‖u− v‖C1
η

for all u, v ∈ C1
η .

Proof. Observe that for each u ∈ C((−∞, 0], C1) and all s ≤ 0 we have

R(u)(s) = P�∗cu l(rδ(u(s))) = P�∗cu R(u)(s)

where R : C((−∞, 0], C1) → C((−∞, 0], Y�∗) denotes the substitution operator of the map
C1 3 ϕ 7→ l(rδ(ϕ)) ∈ Y�∗. As P�∗cu : C�∗ → Ccu is continuous and R(u) ∈ C((−∞, 0], Y�∗), it
becomes clear that R maps C((−∞, 0], C1) into C((−∞, 0], Y�∗).

Next, consider some u ∈ C1
η . Using the first inequality of (2.16) we infer

sup
t≤0

eηt‖R(u)(t)‖Y�∗ = sup
t≤0

eηt‖P�∗cu R(u)(t)‖Y�∗

≤ ‖P�∗cu ‖ · sup
t≤0

eηt‖R(u)(t)‖Y�∗

≤ ‖P�∗cu ‖ · ‖Rδη(u)‖Yη

≤ ‖P�∗cu ‖ · δλ(δ).

Hence, it follows that R(C1
η) ⊂ Yη and that Rδη is bounded by ‖P�∗cu ‖ δλ(δ).

Similarly, from the second inequality of (2.16) we get for all u, v ∈ C1
η :

‖Rδη(u)− Rδη(v)‖Yη
= ‖R(u)− R(v)‖Yη

= sup
t≤0

eηt‖P�∗cu R(u)(t)− P�∗cu R(v)(t)‖Y�∗

≤ ‖P�∗cu ‖ sup
t≤0

eηt‖R(u)(t)− R(v)(t)‖Y�∗

= ‖P�∗cu ‖ ‖Rδη(u)− Rδη(v)‖Yη

≤ λ(δ)‖P�∗cu ‖ ‖u− v‖C1
η
.

This proves the assertion.



16 E. Stumpf

Next, we consider a slight modification of the bounded linear operator Sη used for the
construction of Wη .

Corollary 3.3. For each ϕ ∈ C1 the curve (−∞, 0] 3 t 7→ Te(t)Pcu ϕ ∈ C1 belongs to C1
η , and the

mapping Sη : C1 → C1
η defined by (Sη ϕ)(t) = Te(t)Pcu ϕ for all ϕ ∈ C1 and all t ≤ 0 is a bounded

linear operator with
‖Sη‖ ≤ K ‖Pcu‖ (‖P�∗c ‖+ ‖P�∗u ‖).

Proof. First, by Corollary 4.5 in [5] it follows that for every ϕ ∈ C1 the continuous curve
(−∞, 0] 3 t 7→ Te(t)Pcu ϕ ∈ C1 is an element of the Banach space C1

η . Moreover, we have
Sη = Sη ◦ Pcu. Hence, as a composition of two bounded linear operators, Sη is a bounded
linear operator as well, and the estimate (2.17) finally leads to

‖Sη‖ = ‖Sη ◦ Pcu‖ ≤ ‖Sη‖ ‖Pcu‖ ≤ K ‖Pcu‖(‖P�∗c ‖+ ‖P�∗u ‖).

For given ϕ ∈ C1 consider the constant map

C(ϕ) : (−∞, 0]→ C1

defined by
C(ϕ)(t) := Ps ϕ. (3.7)

Clearly, we have C(ϕ) ∈ C1
η . Using Corollary 3.4 in [5] and the last two corollaries, we obtain

a well-defined map
Gη : C1

η × C1 → C1
η

where
Gη(u, ϕ) := Sη ϕ +Kη ◦ Rδη(u + C(ϕ))

with the bounded linear operator Kη : Yη → C1
η from Proposition 2.4. Next, we show that for

each fixed ϕ ∈ C1 the induced map Gη( · , ϕ) : C1
η → C1

η is a contraction such that the equation
u = Gη(u, ϕ) has exactly one solution in the Banach space C1

η .

Proposition 3.4. For any ϕ ∈ C1 the mapping Gη(·, ϕ) : C1
η → C1

η has exactly one fixed point
u = u(ϕ) and the associated solution operator

ûη : C1 3 ϕ→ u(ϕ) ∈ C1
η

of u = Gη(u, ϕ) is Lipschitz continuous.

Proof. We mimic the proof of Proposition 4.6 in [5].
1. Let ϕ ∈ C1 be given. Choose γ = γ(ϕ) > 0 such that 2‖Sη‖ ‖ϕ‖C1 < γ. Then from

Corollaries 3.2 and 3.3 we infer

‖Gη(u, ϕ)‖C1
η
= ‖Sη ϕ +Kη ◦ Rδη(u + C(ϕ))‖C1

η

≤ ‖Sη ϕ‖C1
η
+ ‖(Kη ◦ Rδη)(u + Ps ϕ)‖C1

η

≤ ‖Sη‖‖ϕ‖C1 + ‖Kη‖ ‖Rδη(u)‖Yη

≤ ‖Sη‖‖ϕ‖C1 + λ(δ)‖Kη‖ ‖P�∗cu ‖ ‖u‖C1
η

≤ γ

2
+

γ

2
(see (3.6))

= γ
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for all u ∈ C1
η with ‖u‖C1

η
≤ γ. Consequently, the restriction of Gη( · , ϕ) to the closed ball

{u ∈ C1
η |‖u‖C1

η
≤ γ} in C1

η is a self-map. Moreover, Gη( · , ϕ) is a contraction. Indeed, Corollary
3.2 in combination with condition (3.6) implies

‖Gη(u, ϕ)− Gη(v, ϕ)‖C1
η
= ‖Kη ◦ Rδη(u + C(ϕ))−Kη ◦ Rδη(v + C(ϕ))‖C1

η

≤ ‖Kη‖ ‖Rδη(u + C(ϕ))− Rδη(v + C(ϕ))‖Yη

≤ λ(δ)‖Kη‖ ‖P�∗cu ‖ ‖u− v‖C1
η

≤ 1
2
‖u− v‖C1

η

for all u, v ∈ C1
η . We conclude that there is a unique

u(ϕ) ∈ {u ∈ C1
η | ‖u‖C1

η
≤ γ} ⊂ Cη

1

satisfying u = Gη(u, ϕ).
2. It remains to show the global Lipschitz continuity of the map ûη : C1 3 ϕ 7→ u(ϕ) ∈ C1

η .
For this purpose, consider ϕ, ψ ∈ C1. Using Corollaries 3.2 and 3.3 and the estimate (3.6) once
more, we infer

‖ûη(ϕ)− ûη(ψ)‖C1
η
= ‖u(ϕ)− u(ψ)‖C1

η

= ‖Gη(u(ϕ), ϕ)− Gη(u(ψ), ψ)‖C1
η

= ‖Sη(ϕ− ψ) + (Kη ◦ Rδη)(u(ϕ))− (Kη ◦ Rδη)(u(ψ))‖C1
η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 + ‖Kη‖‖Rδη(u(ϕ))− Rδη(u(ψ))‖Yη

≤ ‖Sη‖ ‖ϕ− ψ‖C1 + λ(δ)‖P�∗cu ‖ ‖Kη‖ ‖u(ϕ)− u(ψ)‖C1
η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 +
1
2
‖u(ϕ)− u(ψ)‖C1

η

= ‖Sη‖ ‖ϕ− ψ‖C1 +
1
2
‖ûη(ϕ)− ûη(ψ)‖C1

η
,

that is,
‖ûη(ϕ)− ûη(ψ)‖C1

η
≤ 2 ‖Sη‖‖ϕ− ψ‖C1 .

Consequently, û has a global Lipschitz constant as claimed.

For every ϕ ∈ C1 the fixed point ûη(ϕ) ∈ C1
η of u = Gη(u, ϕ) from the last result is a special

solution of the abstract integral equation associated with Eq. (3.5) by the variation-of-constants
formula. More precisely, the following holds.

Corollary 3.5. For all ϕ ∈ C1 the mapping ûη(ϕ) from the last proposition is a solution of the abstract
integral equation

u(t) = Te(t− s)Pcuu(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(u(τ) + Ps ϕ))dτ (3.8)

for −∞ < s ≤ t ≤ 0.
In particular, ûη(ϕ)(0) = Pcu ϕ and ûη(ϕ)(t) ∈ Ccu for all t ≤ 0.
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Proof. Following the proof of Corollary 4.7 in [5], consider for given ϕ ∈ C1 the map

z := ûη(ϕ)− Sη ϕ = Gη(ûη(ϕ), ϕ) ∈ C1
η .

By Corollary 3.4 in [5], we conclude that

z(t) = Te(t− s)z(s) +
∫ t

s
T�∗e (t− τ)Rδη(ûη(ϕ) + C(ϕ))(τ)dτ

as −∞ < s ≤ t ≤ 0 and that Pcuz(0) = P�∗cu z(0) = 0. Hence, it follows that

ûη(ϕ)(t)− Te(t)Pcu ϕ = ûη(ϕ)(t)− (Sη ϕ)(t)

= z(t)

= Te(t− s)z(s) +
∫ t

s
T�∗e (t− τ)Rδη(ûη(ϕ) + C(ϕ))(τ)dτ

= Te(t− s)ûη(ϕ)(s)− Te(t− s)(Sη ϕ)(s)

+
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(ûη(ϕ)(τ) + C(ϕ)) dτ

= Te(t− s)ûη(ϕ)(s)− Te(t− s)Te(s)Pcu ϕ

+
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(ûη(ϕ)(τ) + C(ϕ))) dτ,

that is,

ûη(ϕ)(t) = Te(t− s)ûη(ϕ)(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(ûη(ϕ)(τ) + C(ϕ)) dτ, (3.9)

for all −∞ < s ≤ t ≤ 0. In addition, we get

Pcu(ûη(ϕ)(0)) = Pcuz(0) + Pcu((Sη ϕ)(0)) = 0 + PcuTe(0)ϕ = Pcu ϕ. (3.10)

Next, recall that P�∗cu P�∗cu = P�∗cu , P�∗cu P�∗s = 0, and that Ccu is invariant under the action of
the semigroup T�∗e . Combining this facts with the definition of Kη from Proposition 2.4, we
get

z(t) = Gη(û(ϕ), ϕ)(t)

= [(Kη ◦ Rδη)(ûη(ϕ) + C(ϕ))](t)

=
∫ t

0
T�∗e (t− τ)P�∗cu R(ûη(ϕ) + C(ϕ))(τ) dτ +

∫ t

−∞
T�∗e (t− τ)P�∗s R(ûη(ϕ) + C(ϕ))(τ) dτ

=
∫ t

0
T�∗e (t− τ)P�∗cu P�∗cu l(rδ(ûη(ϕ)(τ) + Ps ϕ)) dτ

+
∫ t

−∞
T�∗e (t− τ)P�∗s P�∗cu l(rδ(ûη(ϕ)(τ) + Ps ϕ)) dτ

=
∫ t

0
T�∗e (t− τ)P�∗cu l(rδ(ûη(ϕ)(τ) + Ps ϕ)) dτ

= P�∗cu

∫ t

0
T�∗e (t− τ)l(rδ(ûη(ϕ)(τ) + C(ϕ)) dτ ∈ Ccu

for all t ≤ 0. Hence,

ûη(ϕ)(t) = z(t) + (Sη ϕ)(t) = z(t) + Te(t)Pcu ϕ ∈ Ccu
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as t ≤ 0 and thus
ûη(ϕ)(0) = Pcuûη(ϕ)(0) = Pcu ϕ

due to Eq. (3.10). Moreover, we see

Te(t− s)ûη(ϕ)(s) = Te(t− s)Pcuûη(ϕ)(s)

for all −∞ < s ≤ t ≤ 0 such that Eq. (3.9) takes the form

ûη(ϕ)(t) = Te(t− s)Pcuûη(ϕ)(s) +
∫ t

s
T�∗e (t− s)P�∗cu l(rδ(ûη(ϕ)(τ) + C(ϕ))) dτ

as −∞ < s ≤ t ≤ 0. This shows the assertion.

From the one-to-one correspondence between solutions of the abstract integral equation
(3.8) and solutions of the differential equation (3.5) we conclude that for each ϕ ∈ C1 there
is a continuously differentiable function x : (−∞, 0] → Rn satisfying Eq. (3.5) for all t ≤ 0
and having the properties x0 = Pcu ϕ and [(−∞, 0] 3 t 7→ xt ∈ C1] ∈ C1

η . Moreover, all the
segments of x are contained in the center-unstable space Ccu, and in view of the uniqueness
result from Proposition 3.4 there is no other solution y : (−∞, 0] → Rn of Eq. (3.5) having the
two properties y0 = Pcu ϕ and [(−∞, 0] 3 t 7→ yt ∈ C1] ∈ C1

η (compare also the details in the
proof of the next proposition).

Using the solution operator ûη , we define a map

Fcu
η : (−∞, 0]× C1 → C1

by
Fcu

η (t, ϕ) := ûη(ϕ)(t) + C(ϕ)(t).

Below we prove that Fcu
η defines a continuous dynamical system on C1.

Proposition 3.6. The map Fcu
η : (−∞, 0]× C1 → C1 forms a continuous semiflow.

More precisely, Fcu
η is continuous and satisfies

Fcu
η (0, ϕ) = ϕ and Fcu

η (s + t, ϕ) = Fcu
η (s, Fcu

η (t, ϕ))

for all s, t ∈ (−∞, 0] and all ϕ ∈ C1.

Proof. 1. (Proof of the continuity of Fcu
η .) Let t ∈ (−∞, 0], ϕ ∈ C1 and ε > 0 be given. As

ûη(ϕ) ∈ C1
η is continuous, there is some δ̃1 > 0 such that for all s ∈ (−∞, 0] with |t− s| < δ̃1

‖ûη(ϕ)(t)− ûη(ϕ)(s)‖C1 <
ε

3

holds. In addition, we find δ̃2 > 0 such that for each ψ ∈ C1 with ‖ϕ− ψ‖C1 < δ̃2 we have

‖Ps‖‖ϕ− ψ‖C1 <
ε

3
and e−η(t−δ̃1) Lip(ûη)‖ϕ− ψ‖C1 <

ε

3

where Lip(ûη) is a global Lipschitz constant of ûη due to Proposition 3.4. Set δ̃ := min{δ̃1, δ̃2}
and consider arbitrary (s, ψ) ∈ (−∞, 0] × C1 with |t − s| < δ̃ and ‖ϕ − ψ‖C1 < δ̃. Then we
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infer

‖Fcu
η (t, ϕ)− Fcu

η (s, ψ)‖C1 = ‖ûη(ϕ)(t) + C(ϕ)(t)− ûη(ψ)(s)− C(ψ)(s)‖C1

≤ ‖ûη(ϕ)(t)− ûη(ψ)(s)‖C1 + ‖C(ϕ)(t)− C(ψ)(s)‖C1

≤ ‖ûη(ϕ)(t)− ûη(ϕ)(s)‖C1 + ‖ûη(ϕ)(s)− ûη(ψ)(s)‖C1

+ ‖Ps ϕ− Psψ‖C1

≤ ε

3
+ e−ηseηs‖ûη(ϕ)(s)− ûη(ψ)(s)‖C1 + ‖Ps‖‖ϕ− ψ‖C1

≤ ε

3
+ e−η(t−δ̃)‖ûη(ϕ)− ûη(ψ)‖C1

η
+

ε

3

≤ ε

3
+ e−η(t−δ̃) Lip(ûη)‖ϕ− ψ‖C1 +

ε

3
< ε.

This proves the continuity of Fcu
η at (t, ϕ).

2. (Proof of the algebraic properties of a semiflow.) To begin with, observe that from the
definition of Fcu

η and the last result it immediately follows that

Fcu
η (0, ϕ) = ûη(ϕ)(0) + C(ϕ)(0) = Pcu ϕ + Ps ϕ = ϕ

for all ϕ ∈ C1. Therefore, the only thing remaining to prove is the additive property of Fcu
η .

For this purpose, let t̂, ŝ ∈ (−∞, 0] and ϕ ∈ C1 be given. We have

Fcu
η (ŝ + t̂, ϕ) = ûη(ϕ)(ŝ + t̂) + C(ϕ)(ŝ + t̂) = ûη(ϕ)(ŝ + t̂) + Ps ϕ

and
Fcu

η (t̂, Fcu
η (ŝ, ϕ)) = ûη(Fcu

η (ŝ, ϕ))(t̂) + C(Fcu
η (ŝ, ϕ))(t̂)

= ûη(Fcu
η (ŝ, ϕ))(t̂) + PsFcu

η (ŝ, ϕ)

= ûη(Fcu
η (ŝ, ϕ))(t̂) + Ps[ûη(ϕ)(ŝ) + C(ϕ)(ŝ)]

= ûη(Fcu
η (ŝ, ϕ))(t̂) + Ps[C(ϕ)(ŝ)] (due to Corollary 3.5)

= ûη(Fcu
η (ŝ, ϕ))(t̂) + Ps ϕ.

Thus, it suffices to prove
ûη(ϕ)(ŝ + t̂) = ûη(Fcu

η (ŝ, ϕ))(t̂)

in order to see Fcu
η (ŝ + t̂, ϕ) = Fcu

η (t̂, Fcu
η (ŝ, ϕ)). To this end, define

v(t) := ûη(ϕ)(t + ŝ) and w(t) := ûη(Fcu
η (ŝ, ϕ))(t)

for all t ≤ 0. Accordingly to the last two results, v, w ∈ C1
η and v(t), w(t) ∈ Ccu as t ≤ 0.

Moreover, in view of

ûη(ϕ)(ŝ) = Pcu[ûη(ϕ)(ŝ) + Ps ϕ] = Pcu[ûη(ϕ)(ŝ) + C(ϕ)(ŝ)] = PcuFcu
η (ŝ, ϕ) = û(Fcu

η (ŝ, ϕ))(0),

we have v(0) = w(0) and both v and w satisfy

u(t) = Te(t− s)Pcuu(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(u(τ) + Ps ϕ)) dτ

for all −∞ < s ≤ t ≤ 0 as PsFcu
η (ŝ, ϕ) = Ps ϕ.
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Consider now the mapping z : (−∞, 0]→ C1 given by

z(t) := v(t)− Te(t)Pcuw(0) = v(t)− Te(t)w(0).

Using estimates (2.2), we see

sup
t≤0

eηt‖Te(t)w(0)‖C1 = sup
t≤0

eηt‖Te(t)Pcuw(0)‖C1

≤ sup
t≤0

eηt‖Te(t)Pcw(0)‖C1 + sup
t≤0

eηt‖Te(t)Puw(0)‖C1

≤ K sup
t≤0

e−(cc−η)t‖Pcw(0)‖C1 + K sup
t≤0

e(cu+η)t‖Puw(0)‖C1

≤ K‖Pc‖‖w(0)‖C1 + K‖Pu‖‖w(0)‖C1

< ∞.

Thus, z ∈ C1
η . In addition, for all s ≤ t ≤ 0

z(t) = v(t)− Te(t)w(0)

= Te(t− s)v(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(v(τ) + Ps ϕ))dτ − Te(t− s)Te(s)w(0)

= Te(t− s)z(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(v(τ) + C(ϕ)(τ))) dτ.

Combining this fact together with Rδη(v + C(ϕ)) ∈ Yη due to Corollary 3.2 and

P�∗cu z(0) = Pcuz(0) = Pcuv(0)− Te(0)Pcuw(0) = v(0)− w(0) = 0,

we obtain z = Kη ◦ Rδη(v + C(ϕ)) from Corollary 3.4 in [5]. Hence, it follows that

v(t) = z(t) + Te(t)w(0)

= (Kη ◦ Rδη(v + C(ϕ)))(t) + Te(t)Pcuw(0)

= (Kη ◦ Rδη)(v + C(Fcu
η (ŝ, ϕ)))(t) + Te(t)Pcuûη(Fcu

η (ŝ, ϕ))(0)

= (Kη ◦ Rδη)(v + C(Fcu
η (ŝ, ϕ)))(t) + Te(t)PcuFcu

η (ŝ, ϕ)

for all t ≤ 0. In the Banach space C1
η the last equation reads

v = Kη ◦ Rδη(v + C(Fcu
η (ŝ, ϕ))) + Sη(Fcu

η (ŝ, ϕ)) = Gη(v, Fcu
η (ŝ, ϕ)).

Therefore, Proposition 3.4 implies

v = ûη(Fcu
η (ŝ, ϕ)) = w.

In particular, it follows that

ûη(ϕ)(t̂ + ŝ) = v(t̂) = w(t̂) = ûη(Fcu
η (ŝ, ϕ))(t̂),

which completes the proof.
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4 An attraction property of the global center-unstable manifolds of
the modified equations: the statement and the main idea of the
proof

After the preparations in the last sections, we are now in the position to state an attraction
property of the global center-unstable manifolds Wη of the modified equations (2.14).

Theorem 4.1 (Attraction property of the global center-unstable manifolds). Let f : U → Rn,
U ⊂ C1 open, with f (0) = 0, satisfying the properties (S1) and (S2), and with Ccu 6= {0} be given.
Further, for fixed η ∈ R with cc < η < min{−cs, cu}, let 0 < δ < δ1 satisfy

λ(δ) <
1
5

, (4.1)

λ(δ) · ‖K+
η ‖ <

1
2

, (4.2)

and

λ(δ) · ‖Kη‖ ≤ λ(δ) · ‖Kη‖ · ‖P�∗cu ‖ <
1
2

. (4.3)

Then there exist a continuous map Hη
cu : Xδ → Wη such that for all (ψ, ϕ) ∈ Wη × Xδ the

following holds:
sup
t≥0

eηt‖Fδ(t, ϕ)− Fδ(t, ψ)‖C1 < ∞ (4.4)

if and only if ψ = Hη
cu(ϕ).

From now on and until the end of the next section, we suppose that the assumptions of
this theorem are satisfied. For a proof we adopt the ideas of Vanderbauwhede [6], where the
assertion for the case of ordinary differential equations is discussed. The initial point of this
strategy is an alternative characterization of property (4.4).

Lemma 4.2. Suppose that F : R× Xδ → C1 is continuous and satisfies

(a) F(t, ϕ) = Fδ(t, ϕ) for all t ≥ 0 and all ϕ ∈ Xδ, and

(b) F( · , ϕ) |(−∞,0]∈ C1
η for each ϕ ∈ Xδ.

Let ϕ, ψ ∈ Xδ be given. Then the following statements are equivalent:

(i) ψ ∈Wη and
sup
t≥0

eηt‖Fδ(t, ψ)− Fδ(t, ϕ)‖C1 < ∞.

(ii) There exists some z ∈ C1
η,R such that F( · , ϕ) + z is a solution of

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)l(rδ(u(τ))) dτ (4.5)

as −∞ < s ≤ t < ∞ and ψ = ϕ + z(0).
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Proof. We follow the proof of Lemma 5.6 in [6].
1. To begin with, assume that under given assumptions, property (i) holds. Then Corollary

4.7 in [5] in combination with the definition of Wη shows that ψ = ũη(Pcuψ)(0). Moreover,
ũη(Pcuψ) ∈ C1

η and ũη(Pcuψ) is a solution of Eq. (4.5) as −∞ < s ≤ t ≤ 0. Setting

v(t) :=

{
ũη(Pcuψ)(t), for t ≤ 0,

Fδ(t, ψ), for t ≥ 0,

we obtain a continuous function v : R→ C1, which satisfies Eq. (4.5) for all −∞ < s ≤ t < ∞.
While the last point is clear for the cases −∞ < s ≤ t ≤ 0 and 0 ≤ s ≤ t < ∞, in the situation
−∞ < s < 0 < t < ∞ this results from the following straightforward calculation:

v(t) = Fδ(t, ψ)

= Te(t)Fδ(0, ψ) +
∫ t

0
T�∗e (t− τ)l(rδ(Fδ(τ, ϕ))) dτ

= Te(t)ũη(Pcuψ)(0) +
∫ t

0
T�∗e (t− τ)l(rδ(v(τ))) dτ

= Te(t)Te(−s)ũη(Pcuψ)(s) + Te(t)
∫ 0

s
T�∗e (−τ)l(rδ(ũη(Pcuψ)(τ))) dτ

+
∫ t

0
T�∗e (t− τ)l(rδ(v(τ))) dτ

= Te(t− s)ũη(Pcuψ)(s) +
∫ 0

s
T�∗e (t− τ)l(rδ(ũη(Pcuψ)(τ))) dτ

+
∫ t

0
T�∗e (t− τ)l(rδ(v(τ))) dτ

= Te(t− s)v(s) +
∫ 0

s
T�∗e (t− τ)l(rδ(v(τ))) dτ +

∫ t

0
T�∗e (t− τ)l(rδ(v(τ))) dτ

= Te(t− s)v(s) +
∫ t

s
T�∗e (t− τ)l(rδ(v(τ))) dτ.

Consider now z : R → C1 given by z(t) := v(t)− F(t, ϕ). In view of property (b) and the
above, it follows that

sup
t≤0

eηt‖z(t)‖C1 = sup
t≤0

eηt‖v(t)− F(t, ϕ)‖C1

= sup
t≤0

eηt‖ũη(Pcuψ)(t)− F(t, ϕ)‖C1

≤ sup
t≤0

eηt‖ũη(Pcuψ)(t)‖C1 + sup
t≤0
‖F(t, ϕ)‖C1

< ∞,

that is, z ∈ C1
η . Moreover, combining (a) and (i) we see

sup
t≥0

eηt‖z(t)‖C1 = sup
t≥0

eηt‖v(t)− F(t, ϕ)‖C1

= sup
t≥0

eηt‖Fδ(t, ψ)− F(t, ϕ)‖C1

= sup
t≥0

eηt‖Fδ(t, ψ)− Fδ(t, ϕ)‖C1

< ∞.
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Therefore, z ∈ C1
η,R. As, in addition,

ψ = v(0) = F(0, ϕ) + z(0) = ϕ + z

we conclude that property (i) indeed implies (ii).
2. Suppose now that (ii) holds. Then, in consideration of the one-to-one correspondence

between solutions of Eq. (2.14) and of Eq. (2.15) and in consideration of the uniqueness result
contained in Proposition 3.1, we have Fδ(t, ψ) = F(t, ϕ) + z(t) as t ≥ 0. Using property (a)
and the fact z ∈ C1

η,R, we also infer

sup
t≥0

eηt‖Fδ(t, ψ)−Fδ(t, ϕ)‖C1 = sup
t≥0

eηt‖Fδ(t, ψ)−F(t, ϕ)‖C1 = sup
t≥0

eηt‖z(t)‖C1< ∞.

Hence, it remains to prove ψ ∈ Wη . For this purpose, observe that z |(−∞,0]∈ C1
η and

F( · , ϕ)|(−∞,0] ∈ C1
η . Thus, for v : (−∞, 0] → C1 given by v(t) := F(t, ϕ) + z(t) as t ≤ 0,

we also have v ∈ C1
η . As, in addition, v is a solution of Eq. (4.5) for all −∞ < s ≤ t ≤ 0,

Proposition 4.8 in [5] shows v(0) = ψ ∈Wη and the assertion follows.

In view of the assumptions of the last result, it becomes clear that we need some continu-
ous map F : R× Xδ → C1 with properties (a) and (b) in order to be able to use property (ii)
for a proof of Theorem 4.1. Below we construct such a map. The key ingredients here are the
global semiflows Fδ and Fcu

η discussed in the last section. Indeed, defining

F : R× Xδ → C1

by

F(t, ϕ) :=

{
Fδ(t, ϕ), as t ≥ 0,

Fcu
η (t, ϕ), otherwise,

(4.6)

the map F has the desired properties as shown next.

Proposition 4.3. The mapping F : R× Xδ → C1 defined by Eq. (4.6) is continuous, possesses proper-
ties (a) and (b) from Lemma 4.2, and satisfies

PcuF(t, ϕ) = Te(t− s)PcuF(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ)) dτ (4.7)

for all ϕ ∈ Xδ and all −∞ < s ≤ t < ∞.

Proof. 1. Recall that, by Proposition 3.1, Fδ is continuous on [0, ∞)× Xδ, and that, by Proposi-
tion 3.6, Fcu

η is continuous on (−∞, 0]× Xδ. As for all ϕ ∈ Xδ we have

Fδ(0, ϕ) = ϕ = Fcu
η (0, ϕ),

it is obvious that F is continuous on all of R×Xδ. Moreover, in consideration of the definition,
it is also clear that F has property (a) from Lemma 4.2. Next, observe that for each ϕ ∈ Xδ we
have

F( · , ϕ)|(−∞,0] = Fcu
η ( · , ϕ) = û(ϕ)( · ) + C(ϕ)( · )

and both û(ϕ)( · ) and C(ϕ)( · ) belong to C1
η due to Proposition 3.4 and the introduction in

front of it. For this reason, F( · , ϕ) ∈ C1
η , which shows that F also has property (b) from

Lemma 4.2.
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2. It remains to prove that Eq. (4.7) holds. In order to show this, consider ϕ ∈ Xδ and
−∞ < s ≤ t < ∞. If s ≤ t ≤ 0 then Eq. (4.7) follows from Corollary 3.5:

PcuF(t, ϕ) = PcuFcu
η (t, ϕ)

= Pcu
[
ûη(ϕ)(t) + C(ϕ)(t)

]
= Pcuûη(ϕ)(t) + PcuPs ϕ

= Pcuûη(ϕ)(t)

= Te(t− s)Pcuûη(ϕ)(s) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(ûη(ϕ)(τ) + Ps ϕ)) dτ

= Te(t− s)Pcu
[
ûη(ϕ)(s) + Ps ϕ

]
+
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(Fcu

η (τ, ϕ)) dτ

= Te(t− s)PcuFcu
η (s, ϕ) +

∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

= Te(t− s)PcuF(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ.

In case 0 ≤ s ≤ t < ∞, Eq. (3.4) implies

PcuF(t, ϕ) = PcuFδ(t, ϕ)

= Te(t− s)PcuFδ(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(Fδ(τ, ϕ))) dτ

= Te(t− s)PcuF(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ,

so formula (4.7) holds again. Finally, for s < 0 < t we get

PcuF(t, ϕ) = Te(t)PcuF(0, ϕ) +
∫ t

0
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

= Te(t)Te(−s)PcuF(s, ϕ) + Te(t)
∫ 0

s
T�∗e (−τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

+
∫ t

0
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

= Te(t− s)PcuF(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

by combining the two preceding cases. This establishes the formula.

Given ϕ ∈ Xδ, we would like to find some z ∈ C1
η,R such that F( · , ϕ) + z is a solution of

Eq. (4.5). For this purpose, we deduce a necessary and sufficient condition for z ∈ C1
η,R to turn

F( · , ϕ) + z into a solution of Eq. (4.5).

Lemma 4.4. Let ϕ ∈ Xδ and z ∈ C1
η,R be given. Then F( · , ϕ) + z satisfies

u(t) = Te(t− s)u(s) +
∫ t

s
T�∗e (t− τ)l(rδ(u(τ))) dτ (4.8)

for all −∞ < s ≤ t < ∞ if and only if

z(t) = −PsF(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu

[
l(rδ(F(τ, ϕ) + z(τ)))−l(rδ(F(τ, ϕ)))

]
dτ

(4.9)

for all t ∈ R.
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This result is motivated by Vanderbauwhede [6, Lemma 5.7]. For its proof we need
two corollaries, which both are easy consequences of the exponential trichotomy (2.2) of the
strongly continuous semigroup Te.

Corollary 4.5. Let z ∈ C1
η,R and t ∈ R be given. Then

lim
s→∞

Te(t− s)P�∗cu z(s) = 0

in C.

Proof. Recall that Te defines a group on the center-unstable space Ccu ⊂ C. In particular,
R 3 s 7→ Te(t − s)P�∗cu z(s) ∈ Ccu is a continuous mapping from R into C. Furthermore,
combining the estimates ‖z(s)‖C ≤ e−ηs‖z‖C0

η,R
and ‖z‖C0

η,R
≤ ‖z‖C1

η,R
together with (2.2), we

conclude

‖Te(t− s)P�∗cu z(s)‖C ≤ ‖Te(t− s)P�∗c z(s)‖C + ‖Te(t− s)P�∗u z(s)‖C

≤ Kecc|t−s|‖P�∗c z(s)‖C + Kecu(t−s)‖P�∗u z(s)‖C

≤ Kecc(s−t)‖P�∗c ‖‖z(s)‖C + Kecu(t−s)‖P�∗u ‖‖z(s)‖C

≤ Kecc(s−t)e−ηs‖P�∗c ‖‖z‖C0
η,R

+ Kecu(t−s)e−ηs‖P�∗u ‖‖z‖C0
η,R

≤ e(cc−η)sKe−cct‖P�∗c ‖‖z‖C0
η,R

+ e−(cu+η)sKecut‖P�∗u ‖‖z‖C0
η,R

≤ e(cc−η)s Ke−cct‖P�∗c ‖‖z‖C1
η,R︸ ︷︷ ︸

<∞

+e−(cu+η)s Kecut‖P�∗u ‖‖z‖C1
η,R︸ ︷︷ ︸

<∞

for all s, t ∈ R with t− s ≤ 0. As 0 < cc < η < cu, taking the limit for s → ∞ indeed shows
lims→∞ Te(t− s)P�∗cu z(s) = 0 as claimed.

Corollary 4.6. Let ϕ ∈ X f , z ∈ C1
η,R, and t ∈ R be given. Then

lim
s→−∞

Te(t− s)
[
P�∗s F(s, ϕ)− P�∗s z(s)

]
= 0

in C.

Proof. Recall that we have F( · , ϕ)|(−∞,0] ∈ C1
η . Consequently, using the estimates (2.2) we infer

‖Te(t−s)P�∗s (F(s, ϕ)−z(s))‖C ≤ Kecs(t−s)‖P�∗s F(s, ϕ) + P�∗s z(s)‖C

≤ Kecs(t−s)‖P�∗s ‖
(
‖F(s, ϕ)‖C + ‖z(s)‖C

)
≤ Kecs(t−s)‖P�∗s ‖e−ηs

(
eηs‖F(s, ϕ)‖C + eηs‖z(s)‖C

)
≤ e−(cs+η)sKecst‖P�∗s ‖

(
‖F(·, ϕ)|(−∞,0]‖C0

η
+ ‖z|(−∞,0]‖C0

η

)
≤ e−(cs+η)sKecst‖P�∗s ‖

(
‖F(·, ϕ)|(−∞,0]‖C0

η
+‖z‖C1

η,R

)
for all s ≤ min{0, t}. Since cs < 0 < η < −cs it becomes clear that

‖Te(t− s)(P�∗s F(s, ϕ)− P�∗s z(s))‖C → 0

as s→ −∞.
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Having established the auxiliary results, we are now in position to prove Lemma 4.4.

Proof of Lemma 4.4. We adopt the proof of Lemma 5.7 in Vanderbauwhede [6].
1. Assume that, given ϕ ∈ Xδ and z ∈ C1

η,R, F( · , ϕ) + z is a globally defined solution of
Eq. (4.8) for all −∞ < s ≤ t < ∞. Then, in view of Proposition 4.3 and Eq. (4.7), we get

z(t) = Te(t− s)[F(s, ϕ) + z(s)] +
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ))) dτ − F(t, ϕ)

= −PsF(t, ϕ)− PcuF(t, ϕ) + Te(t− s)[F(s, ϕ) + z(s)]

+
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ)))dτ

= −PsF(t, ϕ) + Te(t− s)[PsF(s, ϕ) + z(s)]− PcuF(t, ϕ) + Te(t− s)PcuF(s, ϕ)

+
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ)))dτ

+
∫ t

s
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

= −PsF(t, ϕ) + Te(t− s)[PsF(s, ϕ) + z(s)]−
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

+
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ))) dτ

+
∫ t

s
T�∗e (t− τ)P�∗s l(rδ(F(s, ϕ) + z(τ))) dτ,

that is,
z(t) = −PsF(t, ϕ) + Te(t− s)[PsF(s, ϕ) + z(s)]

+
∫ t

s
T�∗e (t− τ)P�∗cu

[
l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))

]
dτ

+
∫ t

s
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

as −∞ < s ≤ t < ∞. Hence, the application of the projections P�∗cu and P�∗s shows that

P�∗cu z(t) = Te(t− s)P�∗cu z(s)

+
∫ t

s
T�∗e (t− τ)P�∗cu [l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))] dτ

(4.10)

and that
P�∗s z(t) = −P�∗s F(t, ϕ) + Te(t− s)[P�∗s F(s, ϕ)− P�∗s z(s)]

+
∫ t

s
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

(4.11)

as −∞ < s ≤ t < ∞. Moreover, we claim that Eq. (4.10) holds for all s, t ∈ R. Indeed, as Te

defines a group on the center-unstable space Ccu we may apply the operator Te(s− t) to both
sides of Eq. (4.10) in order to see that

Te(s− t)P�∗cu z(t) = Te(s− t)Te(t− s)P�∗cu z(s)

+Te(s− t)
∫ t

s
T�∗e (t− τ)P�∗cu [l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))] dτ

= P�∗cu z(s) +
∫ t

s
T�∗e (s− τ)P�∗cu [l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))] dτ,
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that is,

P�∗cu z(s) = Te(s− t)P�∗cu z(t)−
∫ t

s
T�∗e (s− τ)P�∗cu [l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))] dτ,

for all −∞ < s ≤ t < ∞. Thus, formula (4.10) holds for all s, t ∈ R as claimed. In particular,
this proves that for fixed t ∈ R, we may take the limit for s → ∞ in Eq. (4.10). Then, in
consideration of Corollary 4.5, we get

P�∗cu z(t) = −
∫ ∞

t
T�∗e (t− τ)P�∗cu [l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))] dτ.

Similarly, carrying out the limit process s → −∞ in Eq. (4.11) in combination with Corollary
4.6 leads to

P�∗s z(t) = −P�∗s F(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ.

Hence, it follows that

z(t) = P�∗s z(t) + P�∗cu z(t)

= −P�∗s F(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu

[
l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))

]
= −PsF(t, ϕ) +

∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu

[
l(rδ(F(τ, ϕ) + z(τ)))− l(rδ(F(τ, ϕ)))

]
for each t ∈ R. This proves one direction of the assertion.

2. Suppose, conversely, that for given ϕ ∈ Xδ and z ∈ C1
η,R Eq. (4.9) holds, and let s ≤ t be

given. Obviously,

PsF(t, ϕ) + z(t) =
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ))) dτ

+
∫ ∞

t
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

(4.12)

and
z(s) = −PsF(s, ϕ) +

∫ s

−∞
T�∗e (s− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

s
T�∗e (s− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ))) dτ

+
∫ ∞

s
T�∗e (s− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ.

Applying Te(t− s) on both sides of the last equation gives

Te(t− s)z(s) = −Te(t− s)PsF(s, ϕ) +
∫ s

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ ∞

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ))) dτ

+
∫ ∞

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ,
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that is,

0 = −
∫ ∞

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ + Te(t− s)z(s) + Te(t− s)PsF(s, ϕ)

−
∫ s

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ) + z(τ))) dτ

+
∫ ∞

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ) + z(τ))) dτ.

Next, after adding zero in the way represented above to the right-hand side of Eq. (4.12), a
simple calculation leads to

PsF(t, ϕ) + z(t) = Te(t− s)z(s) + Te(t− s)PsF(s, ϕ) +
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ.

Hence, by combining the last equation with Eq. (4.7), we finally obtain

F(t, ϕ) + z(t) = PcuF(t, ϕ) + PsF(t, ϕ) + z(t)

= Te(t− s)PcuF(s, ϕ) +
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

+ Te(t− s)z(s) + Te(t− s)PsF(s, ϕ) +
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ))) dτ

−
∫ t

s
T�∗e (t− τ)P�∗cu l(rδ(F(τ, ϕ))) dτ

= Te(t− s)F(s, ϕ) + Te(t− s)z(s) +
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ))) dτ

= Te(t− s)(F(s, ϕ) + z(s)) +
∫ t

s
T�∗e (t− τ)l(rδ(F(τ, ϕ) + z(τ))) dτ.

As s ≤ t were arbitrary given, we conclude that F( · , ϕ) + z is a solution of Eq. (4.8). This
completes the proof.

Now, consider some fixed ϕ ∈ Xδ. If we find some z ∈ C1
η,R satisfying Eq. (4.9) then Lemma

4.4 implies that F( · , ϕ)+ z is a global solution of the abstract integral equation (4.8). Hence, in
turn, by application of Lemma 4.2 it follows that ψ := F(0, ϕ) + z(0) = ϕ + z(0) belongs to Wη

and that ϕ and ψ satisfy (4.4). Therefore, in the next step towards a proof of Theorem 4.1 we
would like to solve Eq. (4.9) in C1

η,R for each given ϕ ∈ Xδ. Moreover, under the assumption
that these solutions are uniquely determined, in this way we also would obtain a possible
choice for the map Hη

cu from Theorem 4.1, namely, Xδ 3 ϕ 7→ ϕ + z(0) = ψ ∈Wη .

5 The remaining part of the proof for the attraction property of the
global center-unstable manifolds

Our next goal is to show that for each fixed ϕ ∈ Xδ Eq. (4.9) has a uniquely determined
solution in C1

η,R. This will be done by construction of a parameter-dependent contraction on
the Banach space C1

η,R below.
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To begin with, observe that Eq. (4.9) may be formally written as

z(t) = −PsF(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

+
∫ t

−∞
T�∗e (t− τ)P�∗s l

(
rδ(F(τ, ϕ) + z(τ))− rδ(F(τ, ϕ))

)
dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu l

(
rδ(F(τ, ϕ) + z(τ))− rδ(F(τ, ϕ))

)
dτ.

Thus, after introducing the mapping rδ : R× Xδ × C1 → Rn given by

rδ(t, ϕ, z) := rδ(F(t, ϕ) + z)− rδ(F(t, ϕ)),

we get the representation

z(t) = −PsF(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

+
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(τ, ϕ, z(τ))) dτ

−
∫ ∞

t
T�∗e (t− τ)P�∗cu l(rδ(τ, ϕ, z(τ))) dτ

(5.1)

of Eq. (4.9). Note that the involved map rδ is continuous. Moreover, using (2.12) and (2.13), it
easily follows that

‖rδ(t, ϕ, z)‖Rn ≤ λ(δ)‖z‖C1 (5.2)

and
‖rδ(t, ϕ, z1)− rδ(t, ϕ, z2)‖Rn ≤ λ(δ)‖z1 − z2‖C1 (5.3)

for all (t, ϕ) ∈ R× Xδ and all z, z1, z2 ∈ C1.
In the first instance, representation (5.1) of Eq. (4.9) is purely formal. But next we are going

to prove that all the improper integrals on the right-hand side of (5.1) indeed exist. We begin
with consideration of the first integral.

Corollary 5.1. Consider η̃ ∈ R with cc < η ≤ η̃ < min{−cs, cu}. Then for each ϕ ∈ Xδ

t 7→
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

defines a continuous map v(ϕ) from R into C1, and its restriction to (−∞, 0] belongs to C1
η̃ .

Proof. Set Q(t) := l(rδ(F(t, ϕ)) ∈ Y�∗ as t ∈ R. Then, in view of the continuity of the maps l,
rδ and F( · , ϕ), Q defines a continuous map from R into Y�∗ as well. Furthermore, we claim
that Q|(−∞,0] ∈ Yη̃ . Indeed, by Proposition 4.3 we have

F( · , ϕ)|(−∞,0] ∈ C1
η ⊆ C1

η̃

and thus, by (2.13),

sup
t≤0

eη̃t‖Q(t)‖C�∗ = sup
t≤0

eη̃t‖l(rδ(F(t, ϕ)))‖C�∗ ≤ sup
t≤0

eη̃tλ(δ)‖F(t, ϕ)‖C1 < ∞.

For this reason, from Remark 2.3 it follows that u := (K1Q), that is,

t 7→
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ,
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defines a continuous map from R into C, that its restriction to the interval (−∞, 0] belongs to
C0

η̃ , and that it additionally satisfies Eq. (2.10) for all −∞ < s ≤ t < ∞. Hence, using Remark
2.5 from the second section and Proposition 3.3 in [5], we see that u = (K1Q) ∈ C(R, C1) and
(K1Q)|(−∞,0] ∈ C1

η̃ . This proves the assertion.

Proposition 5.2. Let η̃ > 0 be as in Corollary 5.1, and let Zη̃ denote the map, which assigns to ϕ ∈ Xδ

the mapping

R 3 t 7→ −PsF(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ ∈ C1.

Then Zη̃(Xδ) ⊂ C1
η̃,R.

Proof. 1. At first, note that by Proposition 4.3 and Corollary 5.1, for each ϕ ∈ Xδ, Zη̃(ϕ) forms
a well-defined continuous map from R into C1. Consequently, it remains to prove that for
given ϕ ∈ Xδ we have

sup
t∈R

eη̃t‖Zη̃(ϕ)(t)‖C1 < ∞.

For this purpose, let ϕ ∈ Xδ be given. Then

sup
t∈R

eη̃t‖Zη̃(ϕ)(t)‖C1 ≤ sup
t≤0

eη̃t‖Zη̃(ϕ)(t)‖C1 + sup
t≥0

eη̃t‖Zη̃(ϕ)(t)‖C1 .

and next we estimate the two terms on the right-hand side separately.
2. (Estimate of supt≤0 eη̃t‖Zη̃(ϕ)(t)‖C1 .) Using the triangle inequality together with the

definition of F and Corollary 5.1, one obtains

sup
t≤0

eη̃t‖Zη̃(ϕ)(t)‖C1 = sup
t≤0

eη̃t‖ − PsF(t, ϕ) + v(ϕ)(t)‖C1

≤ sup
t≤0

eη̃t‖PsF(t, ϕ)‖C1 + sup
t≤0

eη̃t‖v(ϕ)(t)‖C1

≤ sup
t≤0

eη̃t‖PsFcu
η (t, ϕ)‖C1 +

∥∥∥v(ϕ)( · )|(−∞,0]

∥∥∥
C1

η̃

= sup
t≤0

eη̃t‖Psûη(ϕ)(t) + Ps C(ϕ)(t)‖C1 +
∥∥∥v(ϕ)( · )|(−∞,0]

∥∥∥
C1

η̃

= sup
t≤0

eη̃t‖Ps ϕ‖C1 +
∥∥∥v(ϕ)( · )|(−∞,0]

∥∥∥
C1

η̃

= ‖Ps ϕ‖C1 +
∥∥∥v(ϕ)( · )|(−∞,0]

∥∥∥
C1

η̃

< ∞.

3. (Estimate of supt≥0 eη̃t‖Zη̃(ϕ)(t)‖C1 .) We begin with the observation that, in view of the
definition of F and Eq. (3.3), we have

Zη̃(ϕ)(t) = −PsF(t, ϕ) +
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

= −PsF(t, ϕ) +
∫ t

0
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

+
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ
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= −PsFδ(t, ϕ) +
∫ t

0
T�∗e (t− τ)P�∗s l(rδ(Fδ(τ, ϕ)) dτ

+
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

= −Te(t)PsFδ(0, ϕ) +
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

= −Te(t)Ps ϕ +
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

as t ≥ 0. Set u(t) := Zη̃(ϕ)(t), t ≥ 0. We claim that

u(t) = Te(t− s)u(s)

for all 0 ≤ s ≤ t < ∞. Indeed, from the representation of Zη̃(ϕ) derived above it follows that

u(t)− Te(t− s)u(s) = Zη̃(ϕ)(t)− Te(t− s)Zη̃(ϕ)(s)

= −Te(t)Ps ϕ +
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

+Te(t− s)Te(s)Ps ϕ− Te(t− s)
∫ 0

−∞
T�∗e (s− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

= −Te(t)Ps ϕ +
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(t, ϕ)) dτ

+Te(t)Ps ϕ−
∫ 0

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ))) dτ

= 0

as 0 ≤ s ≤ t < ∞. In particular, u(t) = Te(t)u(0) for all t ≥ 0.
Next, we claim that, for each t ≥ 0, u(t) lies in the domain D(Ge) of the generator of the

semigroup Te. In order to see this, recall once more the one-to-one correspondence between
solutions of Eq. (2.4) and Eq. (2.5). The map x : [−h, ∞)→ Rn given by

x(t) :=

{
u(0)(t), as − h ≤ t ≤ 0,

u(t)(0), as t ≥ 0

is continuously differentiable, its segments xt coincide with u(t) for all t ≥ 0, the mapping
[0, ∞) 3 t 7→ xt ∈ C1 is continuous, and additionally x satisfies the differential equation
x′(t) = Lext as t ≥ 0. In particular, the last point implies u(t) = xt ∈ D(Ge) = T0X f as
claimed.

In addition, note that we also have

u(0) = Zη̃(ϕ)(0) = −Ps ϕ +
∫ 0

−∞
T�∗e (−τ)P�∗s l(rδ(F(τ, ϕ))) dτ ∈ C�∗s .

As a consequence,

u(t) = Te(t)u(0) = T(t)u(0) ∈ (C�∗s ∩ T0X f ) = Cs ∩ T0X f
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for all t ≥ 0, such that the last estimate of (2.3) in combination with η̃ + cs ≤ 0 finally implies

sup
t≥0

eη̃t‖Zη̃(ϕ)(t)‖C1 = sup
t≥0

eη̃t‖u(t)‖C1

= sup
t≥0

eη̃t‖T(t)u(0)‖C1

≤ sup
t≥0

eη̃tecst‖u(0)‖C1

= ‖u(0)‖C1

< ∞.

This is the desired conclusion.

After analyzing the first improper integral on the right-hand side of Eq. (5.1), we now
address the existence of the last two.

Corollary 5.3. Suppose that η̃ > 0 satisfies cc < η ≤ η̃ < min{−cs, cu} and let G denote the map
which assigns to each point (ϕ, z) ∈ Xδ × C1

η̃,R the curve R 3 t 7→ l(rδ(t, ϕ, z(t))) ∈ C�∗. Then G
maps Xδ × C1

η̃,R into Yη̃,R.
Moreover, the induced map

Gδη̃ : Xδ × C1
η̃,R 3 (ϕ, z) 7→ G(ϕ, z) ∈ Yη̃,R

satisfies
‖Gδη̃(ϕ, z)− Gδη̃(ϕ, ẑ)‖Yη̃,R ≤ λ(δ)‖z− ẑ‖C1

η̃,R

for all ϕ ∈ Xδ and all z, ẑ ∈ C1
η̃,R.

Proof. 1. As the maps l and rδ are both continuous it is clear that G indeed defines a map from
Xδ × C1

η̃,R into C(R, Y�∗). Furthermore, in view of (5.2), we have

sup
t∈R

eη̃t‖G(ϕ, z)(t)‖C�∗ = sup
t∈R

eη̃t‖l(rδ(t, ϕ, z(t)))‖C�∗ ≤ λ(δ) sup
t∈R

eη̃t‖z(t)‖C1 = λ(δ)‖z‖C1
η̃,R

for all (ϕ, z) ∈ Xδ × C1
η̃,R. Therefore, it follows that G(Xδ × C1

η̃,R) ⊂ Yη̃,R.
2. Given ϕ ∈ Xδ and z, ẑ ∈ C1

η̃,R, estimate (5.3) implies

‖Gδη̃(ϕ, z)− Gδη̃(ϕ, ẑ)‖Yη̃,R = sup
t∈R

eη̃t‖l(rδ(t, ϕ, z(t)))− l(rδ(t, ϕ, ẑ(t)))‖C�∗

≤ λ(δ) sup
t∈R

eη̃t‖z(t)− ẑ(t)‖C1

= λ(δ)‖z− ẑ‖C1
η̃,R

.

Hence, Gδη̃ is Lipschitz continuous with Lipschitz constant λ(δ), and the claim follows.

Given (ϕ, z) ∈ Xδ × C1
η,R, the existence of the last two integrals on the right-hand side of

Eq. (5.1) now follows from Proposition 2.4 and the corollary after it. Indeed, for those (ϕ, z)
the sum of the two integrals coincides with the value (K+

η ◦ Gδ,η)(ϕ, z)(t) as t ∈ R. Moreover,
introducing the map

Rη : C1
η,R × Xδ → C1

η,R

where
Rη(z, ϕ) := Zη(ϕ) + (K+

η ◦ Gδ,η)(ϕ, z),
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we obtain a representation of the right-hand side of Eq. (5.1) in the Banach space C1
η,R. Con-

sequently, given ϕ ∈ Xδ, a solution z of Eq. (5.1) in C1
η,R is a fixed point of the map Rη( · , ϕ).

Below we prove that each ϕ ∈ Xδ leads to a uniquely determined solution z of z = Rη(z, ϕ)

in C1
η,R.

Proposition 5.4. For each ϕ ∈ Xδ, the induced map Rη( · , ϕ) : C1
η,R → C1

η,R has a uniquely deter-
mined fixed point z = z(ϕ).

Proof. Let ϕ ∈ Xδ be given. As ‖Zη(ϕ)‖C1
η,R

< ∞ due to Proposition 5.2 there clearly is some

real γ > 0 with 2γ > ‖Zη(ϕ)‖C1
η,R

. Combining this with Corollary 5.3 and assumption (4.2),
we conclude that

‖Rη(z, ϕ)‖C1
η,R
≤ ‖Zη(ϕ)‖C1

η,R
+ ‖(K+

η ◦ Gδ,η)(ϕ, z)‖C1
η,R

≤ γ

2
+ ‖K+

η ‖‖Gδ,η(ϕ, z)‖Yη,R

≤ γ

2
+ λ(δ)‖K+

η ‖‖z‖C1
η,R

≤ γ

2
+

γ

2
= γ

as long as z ∈ C1
η,R satisfies ‖z‖C1

η,R
≤ γ. Hence, the map Rη( · , ϕ) maps the closed ball

{z ∈ C1
η,R | ‖z‖C1

η,R
≤ γ} of radius γ about 0 ∈ C1

η,R into itself. Similarly, we see

‖Rη(z, ϕ)−Rη(z̃, ϕ)‖C1
η,R

= ‖(K+
η ◦ Gδ,η)(ϕ, z)− (K+

η ◦ Gδ,η)(ϕ, z̃)‖C1
η,R

≤ ‖K+
η ‖‖Gδ,η(ϕ, z)− Gδ,η(ϕ, z̃)‖Yη,R

≤ λ(δ)‖K+
η ‖‖z− z̃‖C1

η,R

≤ 1
2
‖z− z̃‖C1

η,R

for all z, z̃ ∈ C1
η,R. Consequently, Rη( · , ϕ) is a contractive self-mapping of the closed subset

{z ∈ C1
η,R | ‖z‖C1

η,R
≤ γ} of the Banach space C1

η,R. Thus, the Banach contraction principle

shows the existence of a unique z = z(ϕ) ∈ C1
η,R with z = Rη(z, ϕ).

Remark 5.5. Observe that the choice of the reals cc < η < min{−cs, cu} and 0 < δ < δ1

satisfying condition (4.2), that is, λ(δ)‖K+
η ‖ < 1/2, is the essential hypothesis for the proof of

the last proposition. Now recall that by Corollary 2.6 we have

‖K+
η ‖ ≤ c̃(η)

where c̃ : (cc, min{−cs, cu})→ [0, ∞) is given by

c̃(η̃) := K(1 + eηh‖Le‖)
(
‖P�∗u ‖
cu + η

+
P�∗c

η − cc
− P�∗s

cs + η

)
+ eηh(‖P�∗s ‖+ ‖P�∗cu ‖).

The function c̃ is clearly continuous. For this reason, under condition (4.2) we have

λ(δ)‖K+
η̃ ‖ <

1
2
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for all η ≤ η̃ < min{−cs, cu} with η̃ − η ≥ 0 small enough. Hence, after fixing some real
η ≤ η̃ < min{−cs, cu} with η̃ − η ≥ 0 sufficiently small, one can draw exactly the same
conclusion as in Proposition 5.4; that is, for each ϕ ∈ Xδ the map Rη̃( · , ϕ) : C1

η̃,R → C1
η̃,R given

by
Rη̃(z, ϕ) := Zη̃(ϕ) + (K+

η̃ ◦ Gδ,η̃)(ϕ, z),

as z ∈ C1
η̃,R has a uniquely determined fixed point in C1

η̃,R.

Our next goal is to show that the fixed point z(ϕ) ∈ C1
η,R from the last statement depends

continuously on ϕ ∈ Xδ. For this purpose, we need some auxiliary results. We begin with the
proof that the map Zη̃ : Xδ → C1

η̃,R is continuous.

Proposition 5.6. The map Zη̃ : Xδ → C1
η̃,R from Proposition 5.2 is continuous.

Proof. 1. Given ϕ, ψ ∈ Xδ, we trivially have

‖Zη̃(ϕ)−Zη̃(ψ)‖C1
η̃,R
≤ sup

t≤0
eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 + sup

t≥0
eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 .

Hence, it suffices to show

sup
t≤0

eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 → 0

and

sup
t≥0

eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 → 0

as ϕ→ ψ. We consider the two expressions separately below.
2. (Estimate of supt≤0 eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 .) Let Q1, Q2 : R→ Y�∗ be given by

Q1(t) :=

{
l(rδ(F(t, ϕ)), t ≤ 0,

e−η̃tl(rδ(F(0, ϕ)), t ≥ 0,

and

Q2(t) :=

{
l(rδ(F(t, ψ)), t ≤ 0,

e−η̃tl(rδ(F(0, ψ)), t ≥ 0,

respectively. Clearly, both Q1 and Q2 are continuous. Moreover, we claim that Q1, Q2 ∈ Yη̃,R.
For a proof, consider Q1 first. As shown in the proof of Corollary 5.1, we have

sup
t≤0

eη̃t‖Q1(t)‖C�∗ < ∞.

Next,

sup
t≥0

eη̃t‖Q1(t)‖C�∗ = sup
t≥0

eη̃t‖e−η̃tl(rδ(F(0, ϕ)))‖C�∗ = ‖l(rδ(ϕ))‖C�∗ < ∞.

Thus
sup
t∈R

eη̃t‖Q1(t)‖C�∗ ≤ sup
t≤0

eη̃t‖Q1(t)‖C�∗ + sup
t≥0

eη̃t‖Q2(t)‖C�∗ < ∞,

which implies Q1 ∈ Yη̃,R. Similarly, we see Q2 ∈ Yη̃,R. In particular, Q1 − Q2 ∈ Yη̃,R and, by
combining estimate (2.13) with the fact η̃ ≥ η > 0 and Proposition 3.4, we infer
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‖Q1 −Q2‖Yη̃,R ≤ sup
t≤0

eη̃t‖Q1(t)−Q2(t)‖C�∗ + sup
t≥0

eη̃t‖Q1(t)−Q2(t)‖C�∗

= sup
t≤0

eη̃t‖l(rδ(F(t, ϕ)))− l(rδ(F(t, ψ)))‖C�∗

+ sup
t≥0

eη̃te−η̃t‖l(rδ(F(0, ϕ)))− l(rδ(F(0, ψ)))‖C�∗

≤ sup
t≤0

eη̃t‖rδ(F(t, ϕ))− rδ(F(t, ψ))‖Rn + ‖rδ(ϕ)− rδ(ψ)‖Rn

≤ sup
t≤0

λ(δ)eη̃t‖Fcu
η (t, ϕ)− Fcu

η (t, ψ)‖C1 + λ(δ)‖ϕ− ψ‖C1

= sup
t≤0

λ(δ)eη̃t‖ûη(ϕ)(t) + C(ϕ)(t)− ûη(ψ)(t) + C(ψ)(t)‖C1 + λ(δ)‖ϕ− ψ‖C1

≤ λ(δ) sup
t≤0

eηt‖ûη(ϕ)(t)− ûη(ψ)(t)‖C1

+ sup
t≤0

λ(δ)eη̃t‖C(ϕ)(t)− C(ψ)(t)‖C1 + λ(δ)‖ϕ− ψ‖C1

= λ(δ)

(
‖ûη(ϕ)− ûη(ψ)‖C1

η
+ sup

t≤0
eη̃t‖Ps ϕ− Psψ‖C1 + ‖ϕ− ψ‖C1

)

≤ λ(δ)

(
Lip(ûη)‖ϕ− ψ‖C1 + ‖Ps‖‖ϕ− ψ‖C1 + ‖ϕ− ψ‖C1

)
,

that is,

‖Q1 −Q2‖Yη̃,R ≤ λ(δ)

(
Lip(ûη) + ‖Ps‖+ 1

)
‖ϕ− ψ‖C1 .

Now, observe that from Proposition 2.4 it follows that both K1
η̃Q1 and K1

η̃Q2 are well-defined
and belong to C1

η̃,R. Further, in view of the last estimate

‖K1
η̃Q1−K1

η̃Q2‖C1
η̃,R
≤ ‖K1

η̃‖‖Q1 −Q2‖Yη̃,R ≤ λ(δ)‖K1
η̃‖(Lip(ûη) + ‖Ps‖+ 1)‖ϕ− ψ‖C1 .

Therefore,

sup
t≤0

eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1

≤ sup
t≤0

eη̃t‖PsF(t, ϕ)− PsF(t, ψ)‖C1

+ sup
t≤0

eη̃t
∥∥∥∥∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(F(τ, ϕ)) dτ −

∫ t

−∞
T�∗e (t− τ)P�∗s rδ(F(τ, ψ)) dτ

∥∥∥∥
C1

= sup
t≤0

eη̃t‖PsFcu
η (t, ϕ)− PsFcu

η (t, ψ)‖C1 + sup
t≤0

eη̃t
∥∥∥(K1Q1)(t)− (K1Q2)(t)

∥∥∥
C1

≤ sup
t≤0

eη̃t‖Ps C(ϕ)(t)− Ps C(ψ)(t)‖C1 + sup
t∈R

eη̃t‖(K1Q1)(t)− (K1Q2)(t)‖C1

= sup
t≤0

eη̃t‖Ps ϕ− Psψ‖C1 + ‖K1
η̃Q1 −K1

η̃Q2‖C1
η̃,R

≤ ‖Ps‖‖ϕ− ψ‖C1 + λ(δ)‖K1
η̃‖
(

Lip(ûη) + ‖Ps‖+ 1
)
‖ϕ− ψ‖C1

=
(
‖Ps‖+ λ(δ)‖K1

η̃‖(Lip(ûη) + ‖Ps‖+ 1)
)
‖ϕ− ψ‖C1 .

3. (Estimate of supt≥0 eη̃t‖Zη̃(ϕ)(t) − Zη̃(ψ)(t)‖C1 .) Define the maps u1, u2 : [0, ∞) → C1

by u1(t) := Zη̃(ϕ)(t) and u2(t) := Zη̃(ψ)(t), respectively. As shown in part 3 of the proof of
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Proposition 5.2 both u1 and u2 are solutions of u(t) = Te(t − s)u(s) for all 0 ≤ s ≤ t < ∞.
Moreover, u(t) := u1(t)− u2(t) satisfies u(t) = Te(t− s)u(s) for all 0 ≤ s ≤ t < ∞ as well.
Following the proof of Proposition 5.2 further, we first see

sup
t≥0
‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 ≤ ‖u(0)‖C1 = ‖Zη̃(ϕ)(0)−Zη̃(ψ)(0)‖C1

and then, in view of the estimate derived in the last step,

sup
t≥0

eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1 ≤ ‖Zη̃(ϕ)(0)−Zη̃(ψ)(0)‖C1

≤ sup
t≤0

eη̃t‖Zη̃(ϕ)(t)−Zη̃(ψ)(t)‖C1

≤ c‖ϕ− ψ‖C1

with some c > 0.
4. By part 2 and part 3 it follows that

sup
t≤0

eη̃t‖Zη̃(ϕ)−Zη̃(ψ)‖C1 → 0 and sup
t≥0

eη̃t‖Zη̃(ϕ)−Zη̃(ψ)‖C1 → 0

as ϕ → ψ. Hence, the first part of the proof implies Zη̃(ϕ) → Zη̃(ψ) in C1
η̃,R for ϕ → ψ. This

shows the continuity of Zη̃ .

Remark 5.7. Observe that in view of the proof the map Xδ 3 ϕ 7→ Zη̃(ϕ) ∈ C1
η̃,R is not only

continuous but Lipschitz continuous with a global Lipschitz constant.

Next, we show that, given ϕ ∈ Xδ, the uniquely determined fixed point of Rη( · , ϕ) is also
a fixed point of Rη̃( · , ϕ) for η̃ > 0 with η̃ − η > 0 sufficiently small.

Proposition 5.8. Let 0 < η ≤ η̃ < min{−cs, cu} with λ(δ)‖K+
η̃ ‖ < 1/2 and ϕ ∈ Xδ be given.

Further, suppose that z1 ∈ C1
η,R is the uniquely determined fixed point of Rη( · , ϕ) : C1

η,R → C1
η,R,

and that z2 ∈ C1
η̃,R is the uniquely determined fixed point of Rη̃ : ( · , ϕ) : C1

η̃,R → C1
η̃,R, which both

exist due to Proposition 5.4 and the remark after it. Then z1(t) = z2(t) for all t ∈ R.

Proof. Under the given assumptions, a straightforward calculation results in

z1(t)− z2(t) =
∫ t

−∞
T�∗e (t− τ)P�∗s l(rδ(τ, ϕ, z1(τ))− rδ(τ, ϕ, z2(τ))) dτ

+
∫ t

∞
T�∗e (t− τ)P�∗cu l(rδ(τ, ϕ, z1(τ))− rδ(τ, ϕ, z2(τ))) dτ

for all t ∈ R. Thus, after defining Q̃ : R→ C�∗ by

Q̃(t) := l(rδ(t, ϕ, z1(t))− rδ(t, ϕ, z2(t))),

we formally obtain
z1(t)− z2(t) = (K1Q̃)(t) + (K2Q̃)(t) (5.4)

as t ∈ R.
Next, define u : R→ C1 and Q : R→ C�∗ by

u(t) :=

{
z1(t)− z2(t), for t ≤ 0,

e−η̃t [z1(t)− z2(t)] , for t ≥ 0,



38 E. Stumpf

and

Q(t) :=

{
Q̃(t), for t ≤ 0,

e−η̃tQ̃(t), for t ≥ 0,

respectively. We claim that u ∈ C1
η̃,R and Q ∈ Yη̃,R. Indeed, as η̃ ≥ η we clearly have

z1|(−∞,0], z2|(∞,0] ∈ C1
η̃ and so

sup
t∈R

eη̃t‖u(t)‖C1 ≤ sup
t≤0

eη̃t‖z1(t)− z2(t)‖C1 + sup
t≥0

eη̃t‖e−η̃t(z1(t)− z2(t))‖C1

≤ ‖(z1 − z2)|(−∞,0](t)‖C1
η̃
+ sup

t≥0
eηt‖z1(t)‖C1 + sup

t≥0
eη̃t‖z2(t)‖C1

< ∞,

that is, u ∈ C1
η̃,R. Combining this with estimate (5.3) leads to

sup
t≤0

eη̃t‖Q(t)‖C�∗ = sup
t≤0

eη̃t‖l
(
rδ(t, ϕ, z1(t))− rδ(t, ϕ, z2(t))

)
‖C�∗

≤ sup
t≤0

eη̃t‖rδ(t, ϕ, z1(t))− rδ(t, ϕ, z2(t))‖Rn

≤ sup
t≤0

eη̃tλ(δ)‖z1(t)− z2(t)‖C1

≤ λ(δ) sup
t≤0

eη̃t‖u(t)‖C1

≤ λ(δ) sup
t∈R

eη̃t‖u(t)‖C1

= λ(δ)‖u‖C1
η̃,R

and similarly to
sup
t≥0

eη̃t‖Q(t)‖C�∗ ≤ λ(δ)‖u‖C1
η̃,R

.

Hence,

sup
t∈R

eη̃t‖Q(t)‖C�∗ ≤ max{sup
t≤0

eη̃t‖Q(t)‖C�∗ , sup
t≥0

eη̃t‖Q(t)‖C�∗} ≤ λ(δ)‖u‖C1
η̃,R

and therefore Q ∈ Yη̃,R as claimed.
Using the arguments above, especially Eq. (5.4), together with the linearity of the integral

operators Ki one easily finds u = K+
η̃ Q in C1

η̃,R. It follows that

‖u‖C1
η̃,R

= ‖K+
η̃ Q‖C1

η̃,R
≤ ‖K+

η̃ ‖‖Q‖Yη̃,R ≤ λ(δ)‖K+
η̃ ‖‖u‖C1

η̃,R
≤ 1

2
‖u‖C1

η̃,R
,

and so u = 0 ∈ C1
η̃,R. For this reason, we conclude that z1(t) = z2(t) for all t ∈ R, and this

finishes the proof.

The following corollary is the last auxiliary result for the proof that the uniquely deter-
mined fixed point of Rη( · , ϕ) depends continuously on ϕ ∈ Xδ.

Corollary 5.9. Suppose that η̃ > η and z ∈ C1
η,R ∩ C1

η̃,R. Then the map Xδ 3 ϕ 7→ Gδη(ϕ, z) ∈ Yη,R

with Gδη defined in Corollary 5.3 is continuous.
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Proof. 1. Let ϕ ∈ Xδ and ε > 0 be given. Then, in view of η − η̃ < 0 and ‖z‖C1
η̃,R

< ∞ by
assumption, we clearly find some R > 0 with

c1 := 2λ(δ)e(η−η̃)R‖z‖C1
η̃,R

< ε.

Next, recall from Proposition 3.1 that we have

sup
0≤t≤R

Lip(Fδ(t, · )) < ∞.

Therefore, there is some sufficiently small δ(R, ε) > 0 with the property that both

c2 := 2λ(δ) · δ(R, ε) · (‖Ps‖+ Lip(ûη)) < ε

and
c3 := 2λ(δ) · δ(R, ε) · sup

0≤t≤R
Lip(Fδ(t, · )) < ε

are satisfied. Now, we claim that

‖Gδη(ϕ, z)− Gδ,η(ψ, z)‖Yη,R < ε

for all ψ ∈ Xδ with ‖ϕ− ψ‖C1 < δ(R, ε). In order to see this claim and so the assertion of the
corollary, we show that under given assumptions

t 7→ eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗

is bounded by c1 on (R, ∞), is bounded by c2 on (−∞, 0], and bounded by c3 on [0, R].
2. (Estimate of supt>R eηt‖Gδη(ϕ, z)(t)−Gδη(ψ, z)‖C�∗ .) From the assumptions and estimate

(5.2) it follows that

sup
t>R

eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗ ≤ sup
t>R

eηt‖rδ(t, ϕ, z(t))− rδ(t, ψ, z(t))‖Rn

≤ 2λ(δ) sup
t>R

eηt‖z(t)‖C1

= 2λ(δ) sup
t>R

e(η−η̃)teη̃t‖z(t)‖C1

≤ 2λ(δ) sup
t>R

e(η−η̃)t‖z‖C1
η̃,R

= 2λ(δ)e(η−η̃)R‖z‖C1
η̃,R

= c1

for all ψ ∈ Xδ.
3. (Estimate of supt≤0 eηt‖Gδη(ϕ, z)− Gδη(ψ, z)‖C�∗ .) Let ψ ∈ Xδ with ‖ϕ− ψ‖C1 < δ(R, ε)

be given. Using the Lipschitz continuity of rδ given by (2.13), we first deduce that

sup
t≤0

eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗

≤ sup
t≤0

eηt‖rδ(t, ϕ, z(t))− rδ(t, ψ, z(t))‖Rn

= sup
t≤0

eηt‖rδ(F(t, ϕ) + z(t))− rδ(F(t, ϕ))− rδ(F(t, ψ) + z(t)) + rδ(F(t, ψ))‖Rn

≤ sup
t≤0

eηt‖rδ(F(t, ϕ) + z(t))− rδ(F(t, ψ) + z(t))‖Rn + sup
t≤0

eηt‖rδ(F(t, ϕ))− rδ(F(t, ψ))‖Rn

≤ 2λ(δ) sup
t≤0

eηt‖F(t, ϕ)− F(t, ψ)‖Rn

= 2λ(δ) sup
t≤0

eηt‖Fcu
η (t, ϕ)− Fcu

η (t, ψ)‖Rn .
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Now we may proceed similarly as in part 4 of the proof of Proposition 5.6 to conclude that

sup
t≤0

eηt‖Fcu
η (t, ϕ)− Fcu

η (t, ψ)‖Rn ≤ (Lip(ûη) + ‖Ps‖)‖ϕ− ψ‖C1 .

Combining these finally yields

sup
t≤0

eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗ ≤ 2λ(δ)(‖Ps‖+ Lip(ûη))‖ϕ− ψ‖C1

< 2λ(δ)(‖Ps‖+ Lip(ûη))δ(R, ε)

= c2.

4. (Estimate of sup0≤t≤R eηt‖Gδη(ϕ, z)(t) − Gδη(ψ, t)‖C�∗ .) Using once more the Lipschitz
continuity of the map rδ, we get

sup
0≤t≤R

eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗

≤ sup
0≤t≤R

eηt‖rδ(t, ϕ, z(t))− rδ(t, ψ, z(t))‖Rn

≤ eηR sup
0≤t≤R

‖rδ(F(t, ϕ) + z(t))− rδ(F(t, ϕ))− rδ(F(t, ψ) + z(t)) + rδ(F(t, ψ))‖Rn

≤ eηR sup
0≤t≤R

(
‖rδ(F(t, ϕ) + z(t))− rδ(F(t, ψ) + z(t))‖Rn + ‖rδ(F(t, ϕ))− rδ(F(t, ψ))‖Rn

)
≤ 2λ(δ) sup

0≤t≤R
‖F(t, ϕ)− F(t, ψ)‖C1

≤ 2λ(δ) sup
0≤t≤R

‖Fδ(t, ϕ)− Fδ(t, ψ)‖C1

for all ψ ∈ Xδ. Hence, if ‖ϕ− ψ‖C1 < δ(R, ε) then

sup
0≤t≤R

eηt‖Gδη(ϕ, z)(t)− Gδη(ψ, z)(t)‖C�∗ ≤2λ(δ) sup
0≤t≤R

‖Fδ(t, ϕ)− Fδ(t, ψ)‖C1

≤2λ(δ) sup
0≤t≤R

Lip(Fδ(t, · ))‖ϕ− ψ‖C1

≤2λ(δ) · δ(R, ε) · sup
0≤t≤R

Lip(Fδ(t, · ))

=c3

as claimed.

Now we are in the position to state and prove the continuous dependence of the fixed
point of the map Rη( · , ϕ) on the parameter ϕ ∈ Xδ.

Proposition 5.10. Let zη : Xδ → C1
η,R denote the solution operator of the parameter dependent con-

traction from Proposition 5.4; that is, zη(ϕ) = Rη(zη(ϕ), ϕ) for all ϕ ∈ Xδ. Then zη is continuous.

Proof. Let ϕ ∈ Xδ be given. Then the definition of Rη together with Corollary 5.3 imply that
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for all ψ ∈ Xδ

‖zη(ϕ)− zη(ψ)‖C1
η,R

= ‖Zη(ϕ) + (K+
η ◦ Gδ,η)(ϕ, zη(ϕ))−Zη(ψ)− (K+

η ◦ Gδ,η)(ψ, zη(ψ))‖C1
η,R

≤ ‖(K+
η ◦ Gδ,η)(ϕ, zη(ϕ))− (K+

η ◦ Gδ,η)(ψ, zη(ϕ))‖C1
η,R

+‖Zη(ϕ) + (K+
η ◦ Gδ,η)(ψ, zη(ϕ))−Zη(ψ)− (K+

η ◦ Gδ,η)(ψ, zη(ψ))‖C1
η,R

≤ ‖K+
η ‖‖Gδ,η(ϕ, zη(ϕ))− Gδ,η(ψ, zη(ϕ))‖Yη,R + ‖Zη(ϕ)−Zη(ψ)‖C1

η,R

+‖K+
η ‖‖Gδ,η(ψ, zη(ϕ))− Gδ,η(ψ, zη(ψ))‖C1

η,R

≤ ‖K+
η ‖‖Gδ,η(ϕ, zη(ϕ))− Gδ,η(ψ, zη(ϕ))‖Yη,R + ‖Zη(ϕ)−Zη(ψ)‖C1

η,R

+λ(δ)‖K+
η ‖‖zη(ϕ)− zη(ψ)‖C1

η,R
,

that is,

‖zη(ϕ)− zη(ψ)‖C1
η,R
≤

‖K+
η ‖

1− λ(δ)‖K+
η ‖
‖Gδ,η(ϕ, zη(ϕ))− Gδ,η(ψ, zη(ϕ))‖Yη,R

+
1

1− λ(δ)‖K+
η ‖
‖Zη(ϕ)−Zη(ψ)‖C1

η,R
.

Fix some η < η̃ < min{−cs, cu} with ‖K+
η̃ ‖λ(δ) < 1/2, which is possible due to Remark 5.5.

By Proposition 5.8, we see zη(ϕ) = zη̃(ϕ) ∈ C1
η,R ∩ C1

η̃,R. Hence, Corollary 5.9 yields that the
map

Xδ 3 ψ 7→ Gδ,η(ψ, zη(ϕ)) ∈ Yη,R

is continuous. In addition, due to Proposition 5.6 the map Xδ 3 ψ 7→ Zη(ψ) ∈ C1
η,R is

continuous as well. Therefore, from the estimate above for ‖zη(ϕ)− zη(ψ)‖C1
η,R

it follows that
zη(ψ)→ zη(ϕ) as ψ→ ϕ. This proves that zη is continuous at ϕ.

After having established all the necessary preparations, we are now able to prove Theorem
4.1 about an attraction property of the global center-unstable manifolds.

Proof of Theorem 4.1. 1. For each ϕ ∈ Xδ let

Hη
cu(ϕ) := ϕ + zη(ϕ)(0)

with zη(ϕ) ∈ C1
η,R introduced in the last proposition. Observe that we have Hη

cu(ϕ) ∈ Wη for
all ϕ ∈ Xδ. Indeed, by Proposition 5.4, zη(ϕ) ∈ C1

η is a global solution of Eq. (4.9). Therefore,
Lemma 4.4 yields that F( · , ϕ) + zη(ϕ) with F from Proposition 4.3 satisfies Eq. (4.8), and so
in view of Lemma 4.2 it follows that

Hη
cu(ϕ) = ϕ + zη(ϕ)(0) = Fδ(0, ϕ) + zη(ϕ)(0) = F(0, ϕ) + zη(ϕ)(0) ∈Wη .

Consequently, Hη
cu forms a map from Xδ into the global center-unstable manifold Wη . More-

over, as a sum of the two continuous maps ϕ 7→ ϕ and ϕ 7→ zη(ϕ) it is clearly continuous as
well.

2. Now consider some fixed ϕ ∈ Xδ and assume that ψ ∈ Wη is such that estimate (4.4)
is satisfied. By combining Proposition 4.3 with Lemma 4.2, we find some z ∈ C1

η,R with the
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property that ψ = ϕ + z(0) and that F( · , ϕ) + z is a solution of Eq. (4.5). Hence, by Lemma
4.4, z satisfies Eq. (4.9). But then Proposition 5.4 yields z = zη(ϕ) and so

ψ = ϕ + z(0) = ϕ + zη(ϕ)(0) = Hη
cu(ϕ).

This shows one direction of the statement.
3. On the other hand, suppose that ψ = Hη

cu(ϕ) for (ϕ, ψ) ∈ Xδ ×Wη . Then it follows that
ψ = ϕ + zη(ϕ)(0), where zη(ϕ) ∈ C1

η,R is such that F( · , ϕ) + zη(ϕ) is a solution of Eq. (4.8)
due to Lemma 4.4. In particular, we have (F( · , ϕ) + zη(ϕ))|(−∞,0] ∈ C1

η and, in consideration
of the uniqueness of solutions, F(t, ϕ) + zη(ϕ)(t) = F(t, ψ) for all t ≥ 0 . Consequently,

sup
t≥0

eηt‖Fδ(t, ψ)− Fδ(t, ϕ)‖C1 = sup
t≥0

eηt‖F(t, ψ)− F(t, ϕ)‖C1

= sup
t≥0

eηt‖F(t, ϕ) + zη(ϕ)(t)− F(t, ϕ)‖C1

= sup
t≥0

eηt‖zη(ϕ)(t)‖C1

≤ ‖zη(ϕ)‖C1
η,R

< ∞,

which proves the other direction of the assertion.

We close this section with a consequence of Theorem 4.1.

Corollary 5.11. Under the assumptions of Theorem 4.1 and with the map Hη
cu : Xδ → Wη defined in

its proof, the following holds: For each ψ ∈Wη and for each ε > 0 there exists some δ̃ > 0 such that

‖Fδ(t, ϕ)− Fδ(t, Hη
cu(ϕ))‖C1 ≤ εe−ηt

for all t ≥ 0 and all ϕ ∈ Xδ with ‖ϕ− ψ‖C1 < δ̃.

Proof. To begin with, observe that in consideration of the definition of Hη
cu, of Lemma 4.4, and

of the uniqueness of solutions we have

Fδ(t, Hη
cu(ϕ))− Fδ(t, ϕ) = Fδ(t, ϕ) + zη(ϕ)(t)− Fδ(t, ϕ) = zη(ϕ)(t) (5.5)

for all t ≥ 0 and all ϕ ∈ Xδ. Next, it is easily seen that Hη
cu(ϕ) = ϕ for all ϕ ∈Wη . Hence,

zη(ϕ)(t) = 0 (5.6)

as (t, ϕ) ∈ [0, ∞)×Wη .
Now let ψ ∈ Wη and ε > 0 be given. By the continuity of the map zη due to Proposition

5.10, we clearly find some δ̃ > 0 such that, for all ϕ ∈ Xδ with ‖ϕ− ψ‖C1 < δ̃,

‖zη(ϕ)− zη(ψ)‖C1
η,R

< ε

holds. Hence, in view of Eq. (5.6), it follows that

sup
t≥0

eηt‖zη(ϕ)(t)‖C1 = sup
t≥0

eηt‖zη(ϕ)(t)− zη(ψ)(t)‖C1 ≤ ‖zη(ϕ)− zη(ψ)‖C1
η,R
≤ ε
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for all ϕ ∈ Xδ satisfying ‖ϕ− ψ‖C1 < δ̃. Combining this with Eq. (5.5) finally shows that for
ϕ ∈ Xδ with ‖ϕ− ψ‖C1 < δ̃,

‖Fδ(t, Hη
cu(ϕ))− Fδ(t, ϕ)‖C1 ≤ e−ηt sup

t≥0
eηt‖Fδ(t, Hη

cu(ϕ))− Fδ(t, ϕ)‖C1

= e−ηt sup
t≥0

eηt‖zη(ϕ)(t)‖C1

≤ εe−ηt.

6 Proof of Theorem 1.2

In the following we use the attraction property of the global center-unstable manifolds ob-
tained in the last sections to give a proof for Theorem 1.2 asserting an attraction property of
local center-unstable manifolds.

Given the assumptions of Theorem 1.1, and thus of Theorem 1.2 as well, we clearly find
constants η > 0 with cc < η < min{−cs, cu} and 0 < δ < δ1 such that the conditions of
Theorem 4.1 are satisfied. Now, set

Ccu,0 := {ϕ ∈ Ccu | ‖ϕ‖1 < δ} ,

C1
s,0 :=

{
ϕ ∈ C1

s | ‖ϕ‖1 < δ
}

,

Ncu := Ccu,0 + C1
s,0,

wcu := wη |Ccu,0 ,

and

Wcu := {ϕ + wcu(ϕ) | ϕ ∈ Ccu,0} ,

where the map wη is defined by Eq. (2.18). With these definitions Theorem 1.1 follows as
shown in [5] in detail. In particular, we have ϕ0 = 0 ∈ Wcu ⊂ Wη and rδ(ϕ) = r(ϕ) for all
ϕ ∈ Ncu. The proof of our main result is now straightforward.

Proof of Theorem 1.2. 1. As Ncu ⊂ U is open and both norms ‖ · ‖C1 and ‖ · ‖1 are equivalent,
there clearly exists some ε̃ > 0 with {ϕ ∈ C1 | ‖ϕ‖C1 < 2ε̃} ⊂ Ncu. Next, using Corollary 5.11
with ψ = ϕ0 = 0 ∈ Wη we find some 0 < δ̃ < ε̃ such that for all ϕ ∈ Xδ with ‖ϕ‖C1 < δ̃ we
have

‖Fδ(t, ϕ)− Fδ(t, Hη
cu(ϕ))‖C1 ≤ ε̃e−ηt, (6.1)

and so

‖Fδ(t, Hη
cu(ϕ))‖C1 ≤ ε̃e−ηt + ‖Fδ(t, ϕ)‖C1

as t ≥ 0.
2. Suppose now that x : [−h, ∞) → Rn is a solution of Eq. (1.1) with ‖xt‖C1 ≤ δ̃ for all

t ≥ 0. Set ϕ̃ := x0 and note that rδ(xt) = r(xt) for each t ≥ 0, since the segments of x stay in
Ncu for all t ≥ 0. Hence, we have xt ∈ Xδ ∩ X f as t ≥ 0 and x is a solution of the smoothed
equation (3.1) as well. In particular, Fδ(t, ϕ̃) = F(t, ϕ̃) for all t ≥ 0.
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Next, observe that the last inequality of the first part shows that for t ≥ 0

‖Fδ(t, Hη
cu(ϕ̃ ))‖C1 ≤ ε̃e−ηt + ‖Fδ(t, ϕ̃)‖C1

= ε̃e−ηt + ‖F(t, ϕ̃)‖C1

= ε̃e−ηt + ‖xt‖C1

≤ ε̃ + δ̃

< 2ε̃.

Consequently, all the segments yt = Fδ(t, Hη
cu(ϕ̃)) of the unique solution y : [−h, ∞) → Rn

of Eq. (3.1) with initial value y0 = Hη
cu(ϕ̃) ∈ Wη are contained in the neighborhood Ncu of

ϕ0 = 0 ∈ C1. Therefore, for each t ≥ 0 we have rδ(yt) = r(yt) and thus y is also a solution
of Eq. (1.1) with segments yt ∈ Xδ ∩ X f . In particular, y0 = Hη

cu(ϕ̃) ∈ Wcu and F(t, Hη
cu(ϕ̃)) =

Fδ(t, ϕ̃) as t ≥ 0. Now the positive invariance of Wcu with respect to F relative to Ncu, that is,
property (iii) of Theorem 1.1, shows yt = F(t, Hη

cu(ϕ)) ∈ Wcu as t ≥ 0. Furthermore, estimate
(6.1) implies

‖xt − yt‖C1 = ‖F(t, ϕ̃)− F(t, Hη
cu(ϕ̃))‖C1 = ‖Fδ(t, ϕ̃)− Fδ(t, Hη

cu(ϕ̃))‖C1 ≤ ε̃e−ηt

for all t ≥ 0.
3. Setting KA := ε̃, ηA := η, and

UA :=
{

ψ ∈ C1 | ‖ψ‖C1 < δ̃
}

completes the proof.
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