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Abstract. Sufficient conditions for uniform equi-asymptotic stability and uniform
asymptotic stability of the zero solution of the retarded equation

x′(t) = f (t, xt), (xt(s) := x(t + s), −h ≤ s ≤ 0)

are given. In the stability theory of non-autonomous differential equations a result is
of Marachkov type if it contains some kind of boundedness or growth condition on the
right-hand side of the equation with respect to t. Using Lyapunov’s direct method and
the annulus argument we prove theorems for equations whose right-hand sides may be
unbounded with respect to t. The derivative of the Lyapunov function is not supposed
to be negative definite, it may be negative semi-definite. The results are applied to the
retarded scalar differential equation with distributed delay

x′(t) = −a(t)x(t) + b(t)
∫ t

t−h
x(s)ds, (a(t) > 0),

where a and b may be unbounded on [0, ∞). The growth conditions do not con-
cern function a, they contain only function b. In addition, the function t 7→ a(t) −∫ t+h

t |b(u)|du, measuring the dominance of the negative instantaneous feedback over
the delayed feedback, is not supposed to remain above a positive constant, even it may
vanish on long intervals.
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1 Introduction

We consider the system

x′(t) = f (t, xt), (·)′ = d
dt

(·), (1.1)

where f : R+ × CH → Rm is continuous and takes bounded sets into bounded sets and
f (t, 0) ≡ 0; R+ := [0, ∞), C is the Banach space of continuous functions ϕ : [−h, 0] → Rm

with the maximum norm ‖ϕ‖ := max−h≤s≤0 |ϕ(s)|, | · | denotes an arbitrary norm in Rm,
h is a nonnegative constant, CH is the open ball of radius H in C around ϕ = 0. As is
usual, if x : [−h, β) → Rm (β > 0), then xt(s) := x(t + s) for −h ≤ s ≤ 0, 0 ≤ t < β.
Let x(·; t0, ϕ) : [t0 − h, t0 + α) → Rm denote a solution of (1.1) satisfying the initial condition
xt0(·; t0, ϕ) = ϕ. It is known [5] that for each t0 ∈ R+ and each ϕ ∈ C there is at least one so-
lution x(·; t0, ϕ) : [t0 − h, t0 + α)→ Rm with some α > 0, and if this solution remains bounded
on every bounded subinterval of [t0, t0 + α), then α = ∞.

We will use Lyapunov’s direct method [2, 5]. A continuous functional V : R+ × C → R+

which is locally Lipschitz in ϕ is called a Lyapunov functional if its right-hand side derivative
with respect to system (1.1) is non-positive:

V ′(1.1)(t, ϕ) = V ′(t, ϕ) := lim sup
δ→0+0

(
1
δ
(V(t + δ, xt+δ(·, t, ϕ))−V(t, ϕ))

)
≤ 0.

A Lyapunov functional is called positive definite if there exists a wedge (i.e., a continuous, strictly
increasing function W : R+ → R+ with W(0) = 0) such that

V(t, ϕ) ≥W(|ϕ(0)|) (V(t, 0) ≡ 0).

The following stability concepts are standard [2, 5].

Definition 1.1. The zero solution of (1.1) is:

(a) stable if for every ε > 0 and t0 ≥ 0 there is a δ(ε, t0) > 0 such that ‖ϕ‖ < δ, t ≥ t0 imply
that |x(t; t0, ϕ)| < ε;

(b) uniformly stable if for every ε > 0 there is a δ(ε) > 0 such that ‖ϕ‖ < δ, t0 ≥ 0, t ≥ t0

imply that |x(t; t0, ϕ)| < ε;

(c) asymptotically stable if it is stable and for every t0 ≥ 0 there is a σ(t0) > 0 such that
‖ϕ‖ < σ implies limt→∞ x(t; t0, ϕ) = 0;

(d) uniformly equi-asymptotically stable (UEAS) if it is uniformly stable and there is a D > 0
and for each µ > 0, t0 ≥ 0 there is a T(µ, t0) such that ‖ϕ‖ < D, t ≥ t0 + T imply that
|x(t; t0, ϕ| < µ;

(e) uniformly asymptotically stable (UAS) if it is uniformly stable and there is a D > 0 and
for each µ > 0 there is a T(µ) such that t0 ∈ R+, ‖ϕ‖ < D, t ≥ t0 + T imply that
|x(t; t0, ϕ)| < µ.

In stability theory of non-autonomous differential equations a result is of Marachkov’s type
if it contains some kind of boundedness or growth condition on the right-hand side of the
equation with respect of t [9]. One of the most classical results in stability theory of functional
differential equations is the following theorem.
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Theorem A ([2, 5]). Suppose that there are a Lyapunov functional V, wedges W1, W2, and constants
M, H > 0 such that the following conditions are satisfied:

(i) W1(|ϕ(0)|) ≤ V(t, ϕ),

(ii) V ′(t, ϕ) ≤ −W2(|ϕ(0)|),

(iii) | f (t, ϕ)| ≤ M, provided ‖ϕ‖ ≤ H.

Then the zero solution of (1.1) is asymptotically stable.

Condition (iii) is very restrictive, it often raises difficulties in applications of the theorem.
T. A. Burton and G. Makay [4] have taken an important step to overcome these difficulties.

Theorem B (T. A. Burton and G. Makay). Suppose there are H > 0, V : R+ × CH → R+, wedges
W1, W2, W3, and a continuous increasing function F : R+ → [1, ∞) such that

(i) W1(|ϕ(0)|) ≤ V(t, ϕ) ≤W2(‖ϕ‖),

(ii) V ′(t, ϕ) ≤ −W3(|ϕ(0)|),

(iii) | f (t, ϕ)| ≤ F(t) on R+ × CH,

(iv)
∫ ∞

1 (1/F(t))dt = ∞.

Then the zero solution of (1.1) is uniformly equi-asymptotically stable.

Throughout this paper we will illustrate abstract results with applications to the retarded
scalar differential equation with distributed delay

x′(t) = −a(t)x(t) + b(t)
∫ t

t−h
x(s)ds, (1.2)

where a, b : R+ → R are continuous and a(t) ≥ 0 (t ∈ R+). This is an important model
equation: it describes a process in which there are an instantaneous and a delayed feedback.
Define the Lyapunov functional

V(t, ϕ) := |ϕ(0)|+
∫ 0

−h

∫ 0

s
|b(t + τ − s)||ϕ(τ)|dτ ds

= |ϕ(0)|+
∫ 0

−h
|ϕ(τ)|

(∫ τ

−h
|b(t + τ − s)|ds

)
dτ

≤ |ϕ(0)|+
(∫ t+h

t
|b(u)|du

) ∫ 0

−h
|ϕ(s)|ds.

(1.3)

If x is a solution of (1.2), then

V ′(t, xt) =
d
dt

V(t, xt) =
d
dt

(
|x(t)|+

∫ 0

−h

∫ t

t+s
|b(u− s)||x(u)|du ds

)
.

It can be seen that

V ′(t, xt) ≤ −
(

a(t)−
∫ t+h

t
|b(u)|du

)
|x(t)|,

therefore

V ′(t, ϕ) ≤ −η(t)W3(|ϕ(0)|);

η(t) := a(t)−
∫ t+h

t
|b(u)|du, W3(r) := r,

(1.4)

so we can apply the Burton–Makay Theorem B to equation (1.2).
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Corollary C. Suppose that there are constants c1, c2 > 0 such that

(i)
∫ t+h

t |b(s)|ds ≤ c1,

(ii) a(t)−
∫ t+h

t |b(s)|ds ≥ c2 > 0 for all t ∈ R+,

and

(iii)
∫ ∞

1

ds
max0≤s≤t{a(s) + h|b(s)|} = ∞.

Then the zero solution of (1.2) is uniformly equi-asymptotically stable.

If a, b are constants, i.e., a(t) ≡ a0 > 0, b(t) ≡ b0, then Corollary C says that the zero
solution of (1.2) is UEAS, provided that a0 > h|b0|. In other words, the dominance of the
negative instantaneous feedback over the delayed one suffices UEAS. Conditions (i) and (ii) are
in accordance with this experience in the case of the more general nonautonomous equation
(1.2), but condition (iii) contradicts “the larger a(t) is the better” principle. The following
problem arises: is the zero solution UEAS if a(t) is large enough and |b(t)| is bounded (e.g.,
a(t) = t2, b(t) ≡ sin t), which is excluded by the growth condition (iii)? We can also ask a
question regarding condition (ii) in Theorem B (and in Corollary C). One can expect that the
dominance of a over b is not necessarily as uniform as condition (ii) requires. For example,
can the zero solution of (1.2) be UEAS if η vanishes on intervals of the same length infinitely
many times in R+?

In this paper we develop further Theorem B essentially weakening both conditions (ii)
and (iii). For example, the corollary of the main result for equation (1.2) will imply that the
answers to both of the questions above are affirmative.

The paper is organized as follows. Section 2 contains the main theorem and its corollaries.
Section 3 is the proof of the main Theorem 3.1 based upon an annulus argument [6]. In Section
4 we formulate some applications to equation (1.2).

2 Main results

To weaken the uniformity of conditions (ii) in Theorem B and Corollary C we need the follow-
ing concepts, which have played an important role in the stability theory of non-autonomous
systems [7, 3, 8] for a long time.

Definition 2.1. A locally integrable function η : R+ → R+ is called

(a) integrally positive (IP) if for every δ > 0 the inequality

lim inf
t→∞

∫ t+δ

t
η(u)du > 0 (2.1)

holds.

(b) weakly integrally positive (WIP) if for any sequences {t′i}∞
i=1, {t′′i }∞

i=1 satisfying conditions

t′i + δ ≤ t′′i < t′i+1 ≤ t′′i + ∆ (i = 1, 2, . . .) (2.2)

with some δ > 0, ∆ > 0, we have

∞

∑
i=1

∫ t′′i

t′i
η(t)dt = ∞. (2.3)
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For example, t 7→ | cos t| − cos2 t is IP; t 7→ | cos t| − cos t is WIP but it is not IP.
To control the growth of an integral function we introduce a notation. For a locally inte-

grable function M : R+ → R+ and numbers t ∈ R+, ε > 0 define

ΓM(t, ε) := sup
{

τ > 0 :
∫ t

t−τ
M(u)du ≤ ε

}
(2.4)

(see [6]).

Theorem 2.2. Suppose that for system (1.1) there are a Lyapunov function V : R+ × C → R+ and
wedges W1, W2, W3 such that the following conditions are satisfied:

(i) W1(|ϕ(0)|) ≤ V(t, ϕ) ≤W2(‖ϕ‖);

(ii) there is a locally integrable function η : R+ → R+ such that

V ′(t, ϕ) ≤ −η(t)W3(|ϕ(0)|);

(iii) limT→∞
∫ t+T

t η(u)du = ∞ uniformly with respect to t ∈ R+;

(iv) there are H ∈ R+ and a locally integrable function G : R+ → R+ such that if a solution is
bounded by H, then |x(t)|′ ≤ G(t) (t ∈ R+); in addition, for every ε > 0 there is L such that
for every {ti}∞

i=1 satisfying the inequalities

ti > ih, ti+1 < ti + L (2.5)

we have
∞

∑
i=1

∫ ti

ti−ΓG(ti ,ε)
η(t)dt = ∞. (2.6)

Then the zero solution of (1.1) is uniformly equi-asymptotically stable.

The Burton–Makay theorem is a special case of Theorem 2.2.

Proposition 2.3. Theorem B is a corollary of Theorem 2.2.

Proof. Suppose that conditions (i)–(iv) in Theorem B are fulfilled, and set η(t) ≡ 1. Then
conditions (ii) and (iii) in Theorem 2.2 are satisfied. We show that condition (iv) is also
satisfied.

Since |x(t)|′ ≤ |x′(t)| ≤ | f (t, xt)| ≤ F(t), we can choose G(t) := F(t). This function is
increasing, therefore ΓG(t, ε) > ε/G(t) (t ∈ R+, ε > 0), and for every ε > 0, {ti}∞

i=1 with
property (2.5) we have

∞

∑
i=1

∫ ti

ti−ΓG(ti ,ε)
1 dt ≥ ε

∞

∑
i=1

1
G(ti)

≥ ε

L

∞

∑
i=1

∫ ti+1

ti

dt
G(t)

= ∞,

i.e., (2.6) is satisfied.

Condition (iv) in Theorem 2.2 has a simple form also in the case, when the integral function
of G is uniformly continuous.

Corollary 2.4. Assume that conditions (i)–(iii) in Theorem 2.2 are satisfied. Suppose, in addition, that

(iv ′) function G in condition (iv) of Theorem 2.2 has the additional property that t 7→
∫ t

0 G(u)du is
uniformly continuous and, instead of (2.5)–(2.6), function η is weakly integrally positive.

Then the zero solution of (1.1) is uniformly equi-asymptotically stable.
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Proof. We have to prove that (iv) in Theorem 2.2 is satisfied.
∫ t

0 G is uniformly continuous,
so for every ε > 0 there is a δ(ε) > 0 such that t− δ(ε) < r < t implies

∫ t
r G < ε. Therefore

ΓG(t, ε) ≥ δ(ε). If ε > 0, {ti}∞
i=1 are arbitrary with

ti + δ(ε) < ti+1 < ti + L (i = 1, 2, . . .),

then
∞

∑
i=1

∫ ti

ti−ΓG(ti ,ε)
η(t)dt ≥

∞

∑
i=1

∫ ti

ti−δ(ε)
η(t)dt = ∞

because η is weakly integrally positive.

Burton and Makay gave a sophisticated counterexample showing that it is impossible
to strengthen the conclusion of Theorem B to uniform asymptotic stability. The following
theorem says that if we strengthen condition (iv ′) in Corollary 2.4 to “integral positivity”, then
we get UAS. Therefore, if F is bounded in Theorem B, then the conclusion of the theorem can
already be strengthened to UAS, and we get Theorem 5.2.1 in [5]. So the following theorem
can be considered as a generalization of this theorem.

Theorem 2.5. Assume that conditions (i)–(ii) in Corollary 2.4 (i.e., conditions (i)–(ii) in Theorem 2.2)
are satisfied. Suppose, in addition, that

(iv ′′) function η in condition (iv ′) is not only weakly integrally positive but integrally positive.

Then the zero solution of (1.1) is uniformly asymptotically stable.

3 Proofs of the theorems

The proof of Theorem 2.2 is based upon the annulus argument [1, 6]. This is a method of the
proof for the existence of a limit, which can detect that a trajectory x : R+ → Rm crosses the
annulus ε1 ≤ |x| ≤ ε2 infinitely many times.

3.1. Proof of Theorem 2.2
Suppose that conditions (i)–(iv) in Theorem 2.2 are satisfied. (i) and (ii) guarantee uniform
stability for the zero solution of (1.1) [2, 5]; take δ(ε) from the definition of this property.
Define D := δ(H), where H is from condition (iv). We always suppose throughout this proof
that initial functions ϕ satisfy ‖ϕ‖ < D, i.e., we have |x(t)| < H for all solutions x and for all
t0, t with t0 ≤ t. Since t 7→ v(t) := V(t, xt) is nonincreasing, we also have

v(t) ≤ v(t0) ≤ V(t0, xt0) ≤W2(D) (t ≥ t0).

In the first step we prove that (ii) and (iii) imply the following property: for every ε > 0
there exists a ∆(ε) > 0 such that if a solution x satisfies |x(u)| ≥ ε on [t, t + T], then T ≤ ∆(ε).
In fact, define ∆(ε) > 0 so large that∫ t+∆(ε)

t
η(u)du >

W2(D)

W3(ε)
(t ∈ R+)

(the existence of such ∆(ε) is a consequence of (iii)). If |x(u)| ≥ ε on [t, t + T], then

0 ≤ v(t + T) ≤ v(t)−W3(ε)
∫ t+T

t
η(u)du

≤W2(D)−W3(ε)
∫ t+T

t
η(u)du,

(3.1)
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i.e., ∫ t+T

t
η(u)du ≤ W2(D)

W3(ε)
.

If T > ∆(ε) were possible, then by the choice of ∆(ε) the reversed strict inequality would also
hold, what is impossible.

To prove UEAS we have to show the existence of T(µ, t0) in the definition of the property.
Thanks to the US, it is enough to guarantee the existence of T̃(µ, t0) such that for every ϕ with
‖ϕ‖ < D there is a t ∈ [t0, t0 + T̃(µ, t0)] such that ‖xt(·; t0, ϕ)‖ < δ(µ). Suppose the contrary,
i.e., there are µ, t0 such that for each T > 0 there exists ϕ = ϕ(·; T) with ‖ϕ‖ < D such that

‖xt(·; t0, ϕ)‖ ≥ δ(µ) =: 3ε (t0 ≤ t ≤ t0 + T).

Let us fix T arbitrarily, take a corresponding ϕ and denote x(t) = x(t; t0, ϕ). Then there are
sequences {t′i}

N0+N(T)
i=N0

, {t′′i }
N0+N(T)
i=N0

such that

i (∆ (ε) + h) ≤ t′i < t′′i ≤ (i + 1) (∆ (ε) + h) ,

|x(t′i)| = ε, |x(t′′i )| = 3ε; ε ≤ |x(t)| ≤ 3ε for t ∈ [t′i, t′′i ].
(3.2)

Here N0 and N(T) are defined by

N0 :=
[

t0

∆ (ε) + h

]
+ 1, N(T) :=

[
T

∆ (ε) + h

]
− 2, (3.3)

where [α] denotes the integer part of a real number α. That is, N0 is independent of T, but
N(T) does depend on T and limT→∞ N(T) = ∞.

Let us observe that

ε < 2ε =
∫ t′′i

t′i
|x(t)|′ dt ≤

∫ t′′i

t′i
G(t)dt,

consequently, t′i < t′′i − ΓG(t′′i , ε).
For the function t 7→ v(t) := V(t, xt(·; t0, ϕ)) we have

0 ≤ v(t′′N0+N(T)) ≤ v(t0)−W3(ε)
N0+N(T)

∑
i=N0

∫ t′′i

t′i
η(t)dt

≤W2(D)−W3(ε)
N0+N(T)

∑
i=N0

∫ t′′i

t′′i −ΓG(t′′i ,ε)
η(t)dt.

(3.4)

To get a contradiction we want to apply condition (iv) taking T → ∞. However, the problem is
that the initial function ϕ and, consequently, sequences {t′i}, {t′′i } depend on T. We overcome
this difficulty by the use of a universal sequence {ti}∞

i=N0
. Since G is locally integrable, the

integral of G is absolute continuous [10] and ΓG(u, ε) is continuous in u, so we can define {ti}
by ∫ ti

ti−ΓG(ti ,ε)
η(t)dt = min

{∫ u

u−ΓG(u,ε)
η(t)dt : i(∆ + h) ≤ u ≤ (i + 1)(∆ + h)

}
. (3.5)

Then ti > ih and ti+1 < ti + 2(∆ + h) for all i ∈ N, so (2.5) is satisfied with L := 2(∆ + h),
consequently condition (iv) implies

∞

∑
i=1

∫ ti

ti−ΓG(ti ,ε)
η(t)dt = ∞. (3.6)
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On the other hand, by the definition (3.5) of {ti}, from (3.4) we obtain

0 ≤ v(t′′N0+N(T)) ≤ v(t0)−W3(ε)
N0+N(T)

∑
i=N0

∫ ti

ti−ΓG(ti ,ε)
η(t)dt

for all T > 0. Now we can already take the limit T → ∞ and write

∞

∑
i=N0

∫ ti

ti−ΓG(ti ,ε)
η(t)dt <

v(t0)

W3(ε)
< ∞,

which contradicts (3.6).

3.2. Proof of Theorem 2.5
We will construct an upper bound for T of properties (3.2)–(3.3) independent of ϕ and also
of t0.

Step 1. At first we prove: the integral positivity of η implies that condition (iii) in Theo-
rem 2.2 is satisfied. In fact, for α > 0 introduce the notation

β(α) :=
1
2

lim inf
t→∞

∫ t+α

t
η(u)du > 0.

Then for every α > 0 there exists an L1(α) such that t > L1(α) implies∫ t+α

t
η(u)du > β(α).

Given K > 0 arbitrarily, define L(K) := L1(1) + K/β(1). If t ∈ R+ and T > L(K), then∫ t+T

t
η(u)du ≥

∫ t+L1(1)

t
η(u)du +

∫ t+L1(1)+K/β(1)

t+L1(1)
η(u)du ≥ K

β(1)
β(1) = K,

which means that condition (iii) in Theorem 2.2 is satisfied.

Step 2. Let us estimate ΓG(t, ε). Since
∫ t

0 G is uniformly continuous in R+, for every ε > 0
there is a κ(ε) such that 0 ≤ t− s < κ(ε) implies

∫ t
s G < ε. By the definition of ΓG(t, ε) this

means that ΓG(t, ε) ≥ κ(ε).
For arbitrary ε > 0 define the number

N1 = N1(ε) :=
[

L1(κ(ε))

∆(ε) + h

]
+ 1,

where L1(·) was defined in Step 1. Then t ≥ (∆(ε) + h)N1(ε) implies∫ t

t−κ(ε)
η(s)ds ≥ β(κ(ε)). (3.7)

Step 3. We prove the existence of T = T(µ) in the definition of UAS. Similarly to the
proof of UEAS, it is enough to prove the existence of T̃(µ) such that for every t0, ϕ (t0 ∈ R+,
‖ϕ‖ < D) there is a t ∈ [t0, t0 + T̃(µ)] such that ‖xt(·; t0, ϕ)‖ < δ(µ). (We use the notation
system introduced in the proof of Theorem 2.2.) Suppose the contrary, i.e., there is µ > 0 such
that for each T > 0 there exist t0, ϕ such that

‖xt(·; t0, ϕ)‖ ≥ δ(µ) =: 3ε (t0 ≤ t ≤ t0 + T).
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Let us fix T > (∆(ε) + h)N1(ε) arbitrarily large and take the corresponding t0, ϕ with this
property. We will show that T cannot be arbitrarily large, which will be a contradiction.

Now, instead of (3.3), we define

N0 := max
{

N1(ε);
[

t0

∆(ε) + h

]
+ 1
}
≥ N1(ε), N(T) :=

[
T

∆ (ε) + h

]
− 2, (3.8)

and consider the sequences {t′i}
N0+N(T)
i=N0

, {t′′i }
N0+N(T)
i=N0

with properties (3.2). Estimating the sum
in (3.4), using also (3.7), we obtain

N0+N(T)

∑
i=N0

∫ t′′i

t′′i −ΓG(t′′i ,ε)
η(t)dt ≥

N0+N(T)

∑
i=N0

∫ t′′i

t′′i −κ(ε)
η(t)dt ≥ N(T)β(κ(ε)).

Inequality (3.4) with this estimate has the form

0 ≤W2(D)−W3(ε)N(T)β(κ(ε)),

whence we get

N(T) <
W2(D)

W3(ε)β(κ(ε))

(
ε =

δ(µ)

3

)
.

According to the definition (3.8) of N(T) this makes it possible to obtain an upper bound for
T independent of t0 and ϕ, which is a contradiction.

4 Application to equation (1.2)

Consider equation (1.2) and Lyapunov functional (1.3), whose derivative admits estimate (1.4).
We always suppose that

η(t) := a(t)−
∫ t+h

t
|b(u)|du ≥ 0. (4.1)

To apply Theorem 2.2 let us observe that if x is a solution of (1.2), then

|x(t)|′ ≤ |b(t)|
∣∣∣∣∫ t

t−h
x(s)ds

∣∣∣∣ ≤ |b(t)|h‖xt‖ ≤ |b(t)|hH =: G(t).

Corollary 4.1. Suppose that

(i) function t 7→
∫ t+h

t |b(u)|du is bounded in R+;

(ii) limT→∞
∫ t+T

t η(u)du = ∞ uniformly with respect to t ∈ R+;

(iii) for every ε > 0 there is L = L(ε) such that for every sequence {ti}∞
i=1 with ti > ih, ti+1 < ti + L

we have
∞

∑
i=1

∫ ti

ti−Γ|b|(ti ,ε)
η(t)dt = ∞.

Then the zero solution of (1.2) is UEAS.

If we want to apply Corollary 2.4, then we have to assume that

(iv) t 7→
∫ t

0 |b(u)|du is uniformly continuous in R+ (especially, |b| is bounded in R+).
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It is easy to see that (iv) implies (i), so we obtain the following result.

Corollary 4.2. Suppose that (ii) in Corollary 4.1 and (iv) are satisfied and, in addition,

(v) η is weakly integrally positive.

Then the zero solution is UEAS.

If η is integrally positive in Corollary 4.2, then, by Theorem 2.5, we can state UAS.

Corollary 4.3. Suppose that (iv) is satisfied and

(vi) η is integrally positive.

Then the zero solution is UAS.

Remark 4.4. Considering equation (1.2), Tingxiu Wang [11, 12] gave sufficient conditions for
UAS of the zero solution. He assumed that η was integrally positive in measure [3]. This
property means that for every ε > 0 there are T ∈ R+, δ > 0 such that [t ≥ T, Q ⊂ [t− h, t] is
open, Lebesgue measure of Q is greater or equal to ε] imply that

∫
Q η(t)dt ≥ δ. Wang proved

that if (i) is satisfied and η is integrally positive in measure, then the zero solution is UAS.
It can be seen [3] that if η is integrally positive in measure, then it is integrally positive, but
the converse is false. So we can say that Corollary 4.3 sharpens Wang’s result, provided that
condition (iv) is satisfied.

Example 4.5. If |b| is bounded, then t 7→
∫ t

0 |b(u)|du is uniformly continuous in R+. The
following example shows that the converse statement is not true.

For k ∈N define a function bk : R+ → R+ so that bk(k) = k,

bk(t) = 0 if |t− k| ≥ 1
k

, bk(t) ≤ k if |t− k| ≤ 1
k

and ∫ k+ 1
k

k− 1
k

bk(u)du ≤ 1
k

.

Such a function exists, and we can suppose that bk is continuous. Obviously,

b(t) :=
∞

∑
k=1

bk(t)

is unbounded. Now we prove, that t 7→
∫ t

0 b(u)du is uniformly continuous in R+.
In fact, let ε > 0 be fixed arbitrarily and find a k0 such that 1/k0 < ε. If s > k0 and

0 < t− s < 1/2, then ∫ t

s
b(u)du ≤ 1

k0
< ε.

If s ≤ k0, and 0 < t− s < ε/k0, then∫ t

s
b(u)du ≤ k0(t− s) < ε.

For ε > 0 we can choose k0 = [1/ε] + 1. Then

ε

k0
≥ ε

1
ε
+ 1

=
ε2

ε + 1
.
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If we define

κ(ε) := min
{

1
2

;
ε2

ε + 1

}
,

then |t− s| < κ(ε) implies
∣∣∣∫ t

s b(u)du
∣∣∣ < ε, i.e., t 7→

∫ t
0 b(u)du is uniformly continuous in R+.

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund, Grant No. K 109782
and Analysis and Stochastics Research Group of the Hungarian Academy of Sciences.

References

[1] T. A. Burton, Volterra integral and differential equations, Mathematics in Science and Engi-
neering, Vol. 167, Academic Press, Inc., Orlando, FL, 1983. MR715428

[2] T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations,
Mathematics in Science and Engineering, Vol. 178, Academic Press, Inc., Orlando, FL,
1985. MR837654

[3] T. A. Burton, L. Hatvani, Stability theorems for nonautonomous functional-differential
equations by Liapunov functionals, Tohoku Math. J. (2) 41(1989), 65–104. MR985304; url

[4] T. A. Burton, G. Makay, Marachkov type stability results for functional-differential
equations, Electron. J. Qual. Theory Differ. Equ. 1998, No. 1, 1–17. MR1615102; url

[5] J. Hale, Theory of functional differential equations, Applied Mathematical Sciences, Vol. 3,
Springer-Verlag, New York–Heidelberg, 1977. MR0508721

[6] L. Hatvani, Annulus arguments in the stability theory for functional differential equa-
tions, Differential Integral Equations 10(1997), 975–1002. MR1741762

[7] V. M. Matrosov, On the stability of motion, J. Appl. Math. Mech. 26(1963), 1337–1353.
MR0153934

[8] J. Sugie, Smith-type criterion for the asymptotic stability of a pendulum with time-
dependent damping, Proc. Amer. Math. Soc. 141(2013), 241–2427. MR3043023; url

[9] M. Marachkov, On a theorem on stability (in Russian), Bull. Soc. Phys. Math. Kazan
12(1945), 171–174.

[10] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, 1987. MR924157

[11] T. X. Wang, Stability in abstract functional-differential equations. I. General theorems, J.
Math. Anal. Appl. 186(1994), 534–558. MR1293010; url

[12] T. X. Wang, Stability in abstract functional-differential equations. II. Applications, J. Math.
Anal. Appl. 186(1994), 835–861. MR1293858; url

http://www.ams.org/mathscinet-getitem?mr=715428
http://www.ams.org/mathscinet-getitem?mr=837654
http://www.ams.org/mathscinet-getitem?mr=985304
http://dx.doi.org/10.2748/tmj/1178227868
http://www.ams.org/mathscinet-getitem?mr=1615102
http://dx.doi.org/10.14232/ejqtde.1998.1.1
http://www.ams.org/mathscinet-getitem?mr=0508721
http://www.ams.org/mathscinet-getitem?mr=1741762
http://www.ams.org/mathscinet-getitem?mr=0153934
http://www.ams.org/mathscinet-getitem?mr=3043023
http://dx.doi.org/10.1090/S0002-9939-2013-11615-1
http://www.ams.org/mathscinet-getitem?mr=924157
http://www.ams.org/mathscinet-getitem?mr=1293010
http://dx.doi.org/10.1006/jmaa.1994.1316
http://www.ams.org/mathscinet-getitem?mr=1293858
http://dx.doi.org/10.1006/jmaa.1994.1336

