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Asymptotic Approximation for the Quotient

Complexities of Atoms

Volker Diekert∗ and Tobias Walter∗†

For Ferenc Gécseg, in memoriam

Abstract

In a series of papers, Brzozowski together with Tamm, Davies, and Szyku la
studied the quotient complexities of atoms of regular languages [6, 7, 3, 4].
The authors obtained precise bounds in terms of binomial sums for the most
complex situations in the following five cases: (G): general, (R): right ideals,
(L): left ideals, (T ): two-sided ideals and (S): suffix-free languages. In each
case let κC(n) be the maximal complexity of an atom of a regular language L,
where L has complexity n ≥ 2 and belongs to the class C ∈ {G,R,L, T ,S}.
It is known that κT (n) ≤ κL(n) = κR(n) ≤ κG(n) < 3n and κS(n) =

κL(n − 1). We show that the ratio κC(n)
κC(n−1)

tends exponentially fast to 3 in
all five cases but it remains different from 3. This behaviour was suggested
by experimental results of Brzozowski and Tamm; and the result for G was
shown independently by Luke Schaeffer and the first author soon after the
paper of Brzozowski and Tamm appeared in 2012. However, proofs for the
asymptotic behavior of

κG(n)

κG(n−1)
were never published; and the results here are

valid for all five classes above. Moreover, there is an interesting oscillation
for all C: for almost all n we have κC(n)

κC(n−1)
> 3 if and only if κC(n+1)

κC(n)
< 3.

1 Introduction and Preliminaries

Let Σ denote a finite non-empty alphabet, Σ∗ the set of words over Σ and
1 ∈ Σ∗ the empty word. A language L is a subset of Σ∗. A class of languages
is called a Boolean algebra if it is closed under finite unions and complemen-
tation. By L ⊆ Σ∗ we denote a regular language with ∅ 6= L 6= Σ∗. The set
of regular languages is denoted by G, because it is the “general” case, here.
The set L = Σ∗ \ L is the complement of L. The language L is a left, right
or two-sided ideal if L = Σ∗L, L = LΣ∗ or L = Σ∗LΣ∗. A language L is
suffix-free if w ∈ L and xw ∈ L implies x = 1. We denote by L,R, T and
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S the classes of Left ideals, Right ideals, T wo-sided ideals and Suffix-free
languages, respectively.

For x ∈ Σ∗ denote by L(x) = {y ∈ Σ∗ | xy ∈ L} the (left) quotient of L
by x. Frequently, a left quotient L(x) is also denoted by x−1L. We prefer the
notation L(x) because Σ∗ acts naturally on the right; and then the formula
for the action becomes L(x) · y = L(xy). Indeed, the classical Myhill-Nerode
Theorem asserts that this action leads to the minimal deterministic finite au-
tomaton accepting L. The set of states for this DFA is QL = {L(x) | x ∈ Σ∗},
the initial state is L = L(1) and the final states are those L(x) with 1 ∈ L(x).
The transitions are given by L(x) · a = L(xa) for x ∈ Σ∗ and a ∈ Σ. The size
|QL| is therefore the number of quotients of L. It is also called the quotient
complexity, or simply the complexity, of L; and the complexity of L is denoted
by κ(L).

Given a regular language L it is natural to consider the smallest Boolean
algebra BQ(L) which contains L and is closed under quotients. A priori, it is
not obvious that BQ(L) is finite; but it is: every set in BQ(L) can be written
as a union of atoms AS where S ⊆ QL and

AS =
⋂

L(x)∈S

L(x) ∩
⋂

L(y)/∈S

L(y).

Atoms have been introduced by Brzozowski and Tamm in [5, 2]. The com-
plexity of atoms was studied in [6, 7].

More generally, for X,Y ⊆ QL define

L(X,Y ) =
⋂

L(x)∈X

L(x) ∩
⋂

L(y)∈Y

L(y).

In particular, AS = L(S,QL \ S).
The observation L(X,Y )(w) = L(X(w), Y (w)) = L(X ′, Y ′) with X ′ =

{L(xw) | L(x) ∈ X} and Y ′ = {L(xw) | L(x) ∈ Y } leads to the following
remark.

Remark 1.1. Let L be regular, n its complexity and X,Y ⊆ QL. Then the
following assertions hold.

• X ∩ Y 6= ∅ implies L(X,Y ) = ∅.
• The non-empty quotients of AS have the form L(X,Y ) with |X| ≤ |S|

and X ∩ Y = ∅.
• S 6= T implies AS ∩AT = ∅.
• Since |{AS | S ⊆ QL}| ≤ 2n and since every element in BQ(L) is a union

of atoms, we have |BQ(L)| ≤ 22n . The upper bound 22n is optimal: It is
proved in [6] that for every n ≥ 2 there exists a language L of complexity
n with 2n atoms. As AS∩AT = ∅ for S 6= T , the atoms form a partition
of Σ∗. Hence, there are 22n distinct unions of atoms.

A 3-coloring of Q is a disjoint union Q = X ∪ Y ∪ W where X,Y,W
are called colors. Thus, there are 3n different 3-colorings. A combinatorial
interpretation leads to the well-known formula

3n =

n∑
x=0

n−x∑
y=0

(
n

x

)(
n− x
y

)
.
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Indeed, each 3-coloring is uniquely described by first choosing the elements
with color X out of n elements and then choosing the elements with color
Y out of the remaining n − |X| elements. As X ∩ Y = ∅ induces a unique
3-coloring with W = Q \ (X ∪ Y ), there are at most 3n non-empty sets of
the form L(X,Y ). We will use the concept of 3-colorings in order to give a
combinatorial interpretation for the bounds of [3].

2 Upper bounds

In this section we will deduce simple upper bounds for the complexity of atoms
in each case by making observations on the structure of the quotients. These
upper bounds are not optimal, but straightforward and still good enough to
show the asymptotic behaviour.

Lemma 2.1. Let L be a regular language of complexity n ≥ 2 and AS be an
atom of L. Then AS has complexity of at most 3n + 1.

Proof. There are at most 3n quotients of the form L(X,Y ) and the empty
set.

Lemma 2.2. Let L be a right ideal of complexity n ≥ 2 and AS be an atom
of L. Then AS has complexity of at most 3n−1.

Proof. For all x with 1 ∈ L(x) we have 1 · w ∈ LΣ∗(x) = L(x) for all
w ∈ Σ∗ and, thus, L(x) = Σ∗. Therefore, Σ∗ is the unique final state in
QL. Additionally, we must have Σ∗ ∈ S, as Σ∗ 6∈ S implies AS = ∅. By
Σ∗(x) = Σ∗ for all x ∈ Σ∗, we see that every quotient AS(x) = L(X,Y ) must
contain Σ∗ in X. Thus, there are at most 3n−1 quotients AS(x), which shows
that AS has complexity of at most 3n−1.

Lemma 2.3. Let L be a left ideal of complexity n ≥ 2 and AS be an atom of
L. Then AS has complexity of at most 3n−1 + 2.

Proof. As L = Σ∗L, we have

L ⊆ L(x) = {y ∈ Σ∗ | xy ∈ L} = {y ∈ Σ∗ | xy ∈ Σ∗L}

for all x ∈ Σ∗. Hence, for any X with L ∈ X we have

L(X,Y ) = L ∩
⋂

L(y)∈Y

L(y).

Thus, if Y 6= ∅ then L(X,Y ) = ∅. Also, L ⊆ L(x) implies L(x) ⊆ L which
yields L(X,Y ) = L(X,Y ∪ {L}) for L 6∈ X. It follows that there are at most
3n−1 + 2 quotients.

The first term counts the L(X,Y ) with X = {L} which is not smaller than
to count the L(X,Y ) with L ∈ X. By the argument above, only L({L}, ∅)
and ∅ are of this type.

The second term counts those (X,Y,W ) with L /∈ X (in which case we
can assume L ∈ Y by the argumentation above).
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Lemma 2.4. Let L be a two-sided ideal of complexity n ≥ 2 and AS be an
atom of L. Then AS has complexity of at most 3n−2 + 2.

Proof. This is similar to the analysis in the case of left ideals, since there
are only two cases with L ∈ X. Again, for L 6∈ X we have L(X,Y ) =
L(X,Y ∪ {L})), i.e., we may assume L ∈ Y . As every two-sided ideal is
in particular a right ideal, we have that Σ∗ is the unique final state in QL.
Again, only those L(X,Y ) with Σ∗ ∈ X are reachable as quotients of an
atom. Thus, we can deduce that AS has at most 3n−2 + 2 quotients.

3 Lower bounds

In this section we revisit the complexity bounds of atoms for left, right and
two-sided ideals obtained by Brzozowski, Tamm and Davies. The bounds are
optimal. We use them to derive (weaker) lower bounds in explicit form. For
|S| ∈ O(1) or n − |S| ∈ O(1) it holds κ(AS) ∈ O(2n) where AS is an atom
of a language L of complexity n. As we are only interested in the maximal
complexity of atoms of some language L, we will restrict the proposition below
to 0 < |S| < n− 1. This excludes special cases not needed in our analysis.

Proposition 3.1 ([7, 1, 3]). Let k, n ∈ N with 0 < k < n − 1 and C ∈
{G,R,L, T }. Then there there exists a language L ∈ C of complexity n and
an atom AS of L with |S| = k such that the complexity of AS is given by:

κ(AS) =


1 +

∑|S|
x=1

∑n−|S|
y=1

(
n
x

)(
n−x
y

)
, for C = G

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−1
x−1

)(
n−x
y

)
, for C = R

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
, for C = L

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
, for C = T .

Moreover, for every L of complexity n in the corresponding class C and every
S, the right hand sides are upper bounds.

Remark 3.1. The maximal complexity of atoms of left ideals and right
ideals turns out to be same. This was also observed in [3]. Indeed, using the
trinomial revision (see for example [8]) for the last equality below, we can do
the following calculation:

|S|∑
x=1

n−|S|∑
y=1

(
n− 1

x− 1

)(
n− x
y

)
=

n−|S|∑
y=1

|S|∑
x=1

(
n− 1

x− 1

)(
n− x
y

)

=

n−|S|∑
x=1

|S|∑
y=1

(
n− 1

y − 1

)(
n− y
x

)

=

n−|S|∑
x=1

|S|∑
y=1

(
n− 1

x

)(
n− x− 1

y − 1

)
.

In the following we give a combinatorial interpretation of the sums in
Proposition 3.1.
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Lemma 3.1. For every n ≥ 3 there exists a regular language L of complexity
n such that L has an atom AS of complexity in 3n −Θ(8n/2).

Proof. Let S be such that |S| = n/2 (if n is even; the proof is similar if n is
odd). By Proposition 3.1 there exists a regular language L of complexity n

such that the atom AS of L has complexity 1+
∑n/2
x=1

∑n/2
y=1

(
n
x

)(
n−x
y

)
for some

S ⊆ QL. Observe that
∑n
x=0

∑n−x
y=0

(
n
x

)(
n−x
y

)
= 3n has the combinatorial

interpretation of counting all 3-colorings of Q = X∪Y ∪W . We will count the
3-colorings which are missing in

∑n/2
x=1

∑n/2
y=1

(
n
x

)(
n−x
y

)
. As the indices start

with 1 instead of 0 and end with n/2 instead of n, the cases for X = ∅ or
Y = ∅ and for |X| > n/2 or |Y | > n/2 are missing. There are 2n possibilities
with |X| = 0 and 2n many with |Y | = 0. There are at most 2n possibilities
for X with |X| > n/2. Since |X| > n/2, we must have |Y | < n/2 and,
thus, there are at most 2n/2 choices remaining for Y . This leaves at most
2n · 2n/2 = 8n/2 missing 3-colorings with |X| > n/2. The case |Y | > n/2 is
symmetrical. Combining all those cases shows that the number of missing
3-colorings is in Θ(8n/2).

Lemma 3.2. For every n ≥ 3 there exists a right ideal L of complexity n
such that L has an atom AS of L with complexity in 3n−1 −Θ(8n/2).

Proof. By Proposition 3.1 we obtain a right ideal L of complexity n such
that L has an atom AS of complexity 1 +

∑n/2
x=1

∑n/2
y=1

(
n−1
x−1

)(
n−x
y

)
. Observe

that
∑n
x=1

∑n−x
y=0

(
n−1
x−1

)(
n−x
y

)
= 3n−1 has the combinatorial interpretation of

counting 3-colorings of Q = X ∪ Y ∪W with a precolored element Σ∗ ∈ X
(see Section 2 on why Σ∗ is in X). Again, we count the 3-colorings which

are missing in
∑n/2
x=1

∑n/2
y=1

(
n−1
x−1

)(
n−x
y

)
; namely, those with Y = ∅, |X| > n/2

or |Y | > n/2. The analysis in the proof of Lemma 3.1 shows that this is in
Θ(8n/2).

Lemma 3.3. For every n ≥ 3 there exists a two-sided ideal L of complexity
n such that there is an atom AS of L with complexity in 3n−2 −Θ(8n/2).

Proof. By Proposition 3.1 we obtain a two-sided ideal L of complexity n such
that L has an atom AS of complexity 1 +

∑n/2
x=1

∑n/2
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
. We

count the number of 3-colorings of Q = X ∪ Y ∪W with precolored elements
L ∈ Y and Σ∗ ∈ X. There are 3n−2 =

∑n
x=1

∑n−x
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
such 3-

colorings. Thus, in
∑n/2
x=1

∑n/2
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
the 3-colorings with |X| > n/2

or |Y | > n/2 are not counted. The analysis in the proof of Lemma 3.1 shows
that this is in Θ(8n/2).

4 Asymptotic behaviour

As above, let C be one of the classes: (G) general regular languages, (R) right
ideals, (L) left ideals, (T ) two-sided ideals or (S) suffix-free languages. Define

κC(n) = max {κ(AS) | AS is an atom of L ∈ C of complexity n} .

This section studies the behaviour of κC(n)/κC(n− 1) as a function in n.
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n 8 9 10 11 12 13 14 15

κG(n) 5083 15361 48733 146169 455797 1364091 4212001 12601332

ratio 3.284 3.022 3.173 2.999 3.118 2.992 3.088 2.992

Table 1: κG(n) and the ratio κG(n)/κG(n− 1) for some small n

4.1 Asymptotic Approximation

Combining the explicit lower and upper bounds we obtain the following result
which was announced in [3].

Theorem 4.1. Let C ∈ {G,L,R, T ,S}. Then the ratio κC(n)/κC(n − 1)
converges exponentially fast to 3.

Proof. First, we will prove this for the class of right ideals. By Lemma 3.2
and Lemma 2.2 we have

3n−1 − f(n) ≤ κR(n) ≤ 3n−1

for some f ∈ Θ(8n/2). We conclude

3n−1 − f(n)

3n−2
≤ κR(n)

κR(n− 1)
≤ 3n−1

3n−2 − f(n− 1)
,

which implies the assertion. The cases of general regular languages and two-
sided ideals are analogous using the respective lemmas. The case of left ideals
follows as κL(n) = κR(n) for n ≥ 3 by Remark 3.1. The case of suffix-free
languages is clear because κS(n) = κL(n− 1) as is shown in [4].

4.2 Oscillation

In [6] it is shown that

κG(n) = 1 +

bn/2c∑
x=1

n−bn/2c∑
y=1

(
n

x

)(
n− x
y

)
. (1)

This means that κ(AS) is maximal for |S| = bn/2c. In this section we will
prove that the quotient κC(n)/κC(n − 1) does not only converge to 3, but
also does so oscillating. Oscillation was observed first by calculating κG(n)
in the range 1 ≤ n ≤ 20. It came as a little surprise as the first ten values
do not reveal this, [6]. In Table 1 we display the values κG(n) and the ratios
κG(n)/κG(n− 1) for 8 ≤ n ≤ 15.

Theorem 4.2. For every C ∈ {G,R,L, T ,S} there exists some n0 ∈ N such
that

κC(n)/κC(n− 1) > 3 ⇐⇒ κC(n+ 1)/κC(n) < 3

for all n ≥ n0. Moreover, for almost all n we have κC(n)/κC(n− 1) 6= 3.

Proof. We give the proof for the general class C = G, only. Similar calculations
show the result in the other cases. This is not done here and left to the reader.

We apply the interpretation of the sums as the number of 3-colorings
from above. Let HCn be the set of all 3-colorings of {1, . . . , n} in which
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the color X appears at most bn/2c times and the color Y appears at most
n− bn/2c = dn/2e times. We also let hc(n) = |HCn|.

Besides the term +1 and starting at x = 1 and y = 1, instead of x = 0
and y = 0 for hc(n), the right-hand side in Equation (1) is identical to hc(n).
More precisely, we have the following estimation.

κG(n) < hc(n) =

bn/2c∑
x=0

n−bn/2c∑
y=0

(
n

x

)(
n− x
y

)
≤ κG(n) + 2n+1. (2)

Thus, apart from an error term bounded by 2n+1 ∈ O(2n) the numbers
κG(n) and hc(n) are equal. We show two statements.

1. If n is large enough and even, then κG(n+ 1) < 3 · κG(n).

2. If n is large enough and odd, then κG(n+ 1) > 3 · κG(n).

1.) Let n be even, i.e., n/2 = dn/2e = bn/2c = b(n+ 1)/2c and dn/2e+
1 = d(n+1)/2e. We calculate hc(n+1) by considering 3-colorings of {1, . . . , n}
and extending them by choosing a color for n+1. Consider first any 3-coloring
of {1, . . . , n} in HCn. There are 3 possible extensions of this 3-coloring by
choosing the color of n+ 1, i.e., there are at most 3hc(n) possible extensions
of HCn. Not all of those extensions are in HCn+1. We cannot extend those
3-colorings of {1, . . . , n}, which already had n/2 elements in X by choosing
n + 1 ∈ X. Let us count how many such 3-colorings in HC(n) exist: there

are
(
n
n/2

)
choices for X and, for each fixed X, there are

∑n/2
y=0

(
n/2
y

)
= 2n/2

choices for Y . In total, we see that there are 3hc(n) −
(
n
n/2

)
2n/2 extensions

of HCn in HCn+1.

It remains to count the number of 3-colorings in HCn+1 which are not
extensions of any 3-coloring in HCn. These are exactly the extensions of
those 3-colorings of {1, . . . , n} in which we have |Y | = n/2 + 1. As n −
(n/2 + 1) = n/2 − 1, X may contain at most n/2 − 1 elements, i.e., |X| ≤
n/2 − 1. Consequently, n + 1 may be either colored X or W . Thus, there
are 2 ·

(
n

n/2+1

)
2n/2−1 =

(
n

n/2+1

)
2n/2 extensions of this type. The binomial

coefficient
(
n
n/2

)
is the largest one among all

(
n
k

)
where k ∈ Z. In particular,(

n
n/2

)
≥ 2n

n+1
for all n ∈ N and

(
n
n/2

)
≥ 2n

n
for n ≥ 2. We conclude

3hc(n)− hc(n+ 1) = 2n/2
((

n

n/2

)
−

(
n

n/2 + 1

))

= 2n/2
(
n

n/2

)
· 1

n/2 + 1

≥ 2n/2 · 2n · 1

n · (n/2 + 1)
=

√
8
n

n · (n/2 + 1)
.

Note that the term
(
n
n/2

)
−
(

n
n/2+1

)
=
(
n
n/2

)
· 1
n/2+1

is equal to the Catalan

number Cn/2; and better estimations for the difference 3hc(n)−hc(n+ 1) are

possible. The fraction
√
8
n

n·(n/2+1)
is greater than three times the error term

2n+1 for almost all n.



356 Volker Diekert and Tobias Walter

Class C n0
regular languages (G) 10

left ideals (L) 11
right ideals (R) 11

two-sided ideals (T ) 5
suffix-free languages (S) 12

Table 2: Smallest n0 where oscillation starts.

Thus, there exists a (small) number n0 such that for all even n ≥ n0 we
obtain κG(n+ 1) < 3κG(n). According to Table 1 we have n0 = 10.

2.) Let n be odd and n ≥ 3. We have (n + 1)/2 = bn/2c + 1 = dn/2e.
Again, consider the extensions of 3-colorings of {1, . . . , n}. First, consider the
extensions of HCn. They are not in HCn+1 if and only if |Y | = dn/2e and the
color of n+ 1 is the color Y . For fixed Y , there are 2bn/2c choices for X. In
total, there are 3hc(n) −

(
n
dn/2e

)
2bn/2c extensions of colorings in HCn which

are in HCn+1.
It remains to count the number of colorings in HCn+1 which are not ex-

tensions of colorings in HCn.
These are exactly the extensions of those 3-colorings of {1, . . . , n} in which

we have |X| = bn/2c+ 1. As n− (bn/2c+ 1) = dn/2e − 1, the color Y may
contain at most dn/2e − 1 elements, i.e., |Y | ≤ dn/2e − 1. Consequently,
n+ 1 may be either colored Y or W . Thus, there are 2 ·

(
n

bn/2c+1

)
2dn/2e−1 =

2 ·
(

n
bn/2c+1

)
2bn/2c extensions of this type. Consequently, we obtain

hc(n+ 1)− 3hc(n) = 2bn/2c
(

2

(
n

bn/2c+ 1

)
−

(
n

dn/2e

))

= 2bn/2c
(

n

dn/2e

)
≥ 2bn/2c2n/n.

This number is asymptotically larger than any error in O(2n) and, thus, we
obtain κG(n+1) > 3κG(n) for all odd n greater than some n0. This concludes
the proof of the oscillation property in the case of C = G. The other cases
can be handled with very similar methods. Therefore, as mentioned above,
this is left to the reader.

We calculated the exact values for n0 in every case, see Table 2. Note that
in the cases (G), (L), (R) and (S) κ(n)/κ(n− 1) > 3 holds for 4 ≤ n < n0.
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