
Acta Cybernetica 22 (2015) 135–150.

Business Process Quality Measurement using

Advances in Static Code Analysis

Gergely Ladányi∗

Abstract

Business process models play an important role in the life of a company.
Resemblances between software programs and business processes inspired sev-
eral researchers to adapt software metrics from the field of static code analysis
to help designers to build more effective and understandable processes. This
paper aims to add recent advances in software quality measurement such as
benchmarking and ISO/IEC 25010 standard based quality models to busi-
ness process quality measurement. These techniques were proved to be very
useful in software engineering both for managers and developers; moreover,
they can be easily adopted to business process workflows. We focused on a
specific type of flowchart called event-driven process chain (EPC), because in
an EPC the activities are very often managed by software systems and our
assumption is that the quality of these software systems affects the quality of
the EPC itself. The presented business process quality model also uses the
quality and test coverage metrics of these software systems besides business
process metrics.

Keywords: business process, static code analysis, quality measurement

1 Introduction

A business process is a collection of activities that takes one or more kinds of input
and creates an output that has value to the customer [17]. Since it has direct effect
on the customer, it is really important to have an up-to-date knowledge about its
weak and strong points. Using flowcharts like Event-driven process chain (EPC) is
a widespread solution for modelling, analyzing, and redesigning business processes.
EPC is commonly used because models described with it are flexible, easy to man-
age and understand. In this paper we focus on the quality of an EPC and then on
the extension of this property to the entire process group hierarchy. The important
parts of this approach are based on our earlier probabilistic software quality model,
called Columbus QM [6]. It has been developed to evaluate maintainability of Java
software systems; although, because of its generality it can be adopted to other
languages [11] or business processes.

∗University of Szeged, E-mail: lgergely@inf.u-szeged.hu

DOI: 10.14232/actacyb.22.1.2015.9



136 Gergely Ladányi

Earlier work [23] showed that the results of software quality measurement can
be adopted to the problem of measuring the quality of business processes because
an EPC is actually a simple program, which can be characterized with static code
metrics like McCabe’s cyclomatic complexity [15]. In this study the quality mea-
surement of business processes is also based on the quality measurement of software
systems. Our main contributions are listed in the following:

• If a task behind a function is managed by a software system, it is a reasonable
assumption that the quality or test coverage of this software has a serious
effect on the function and the EPC itself. First we approximated the weight
of each function and then we used these values for aggregating the quality
values of the employed software systems to the EPC level.

• In software quality measurement a quality model often uses code metrics as
predictors and then aggregates these predictors to higher level characteristics
by comparing them with a benchmark. We also created a quality model
for business processes based on the ISO/IEC 25010 quality standard. As
predictors we used simple metrics calculated from the EPC and the previously
aggregated quality metrics of the functions.

• We explain our approach in more detail in a case study with the contribution
of a middle-size software company. They were strongly involved in the design
phase of the EPC quality model, they helped us to decide which metrics are
important, and to what extent.

In this way we can support a company in many ways. Information about higher
levels of the quality hierarchy provides a brief overview about the current state of
the business configuration, which can support the decision-making of the managers.
Quality of an EPC is valuable for designers; it helps them to choose from alternative
configuration of systems and workflows. Finally the quality and test coverage of
the applications have proved to be very useful for developers and quality assurance
technicians. With this approach they can improve the maintainability of those
software systems which have the most critical role in business processes.

The paper is organized as follows. In the next section we summarize some related
studies. After a brief overview about the structure of the business hierarchies in
Section 3 we describe our approach in details in Section 4. Next, in Section 5 we
present a case study, which shows how our approach works in a real life situation.
In Section 6 we collect some limitations and threats to validity. Finally, in Section
7 we close the study with conclusions.

2 Related work

A business process model which is represented by an EPC shows several similarities
with a software product. In fact, business processes and software products have
a similar structure: a program is composed of modules or classes, each module
consists of statements and statements may contain variables and constants. In the



Business Process Quality Measurement . . . 137

same way, a business process has activities, each of which is composed of elemen-
tary operations, and each operation uses one or more information to produce new
information [14].

In the last decade a wide variety of business process metrics have been de-
veloped [13] to extend our knowledge about business processes. Vanderfeesten
et. al [23] suggested to use the same five categories of software metrics: cou-
pling [25, 24, 14], cohesion [20], complexity [7, 12], modularity [19, 10] and size [7].
We also used size and complexity metrics; however, our future plan is to extend
our quality model with more powerful coupling and cohesion metrics as well.

Studies about the usefulness of these metrics showed that they can be used as in-
dicators for various problems in connection with business processes. Vanderfeesten
et. al [24] found that strongly cohesive and weakly coupled processes will result
in fewer errors during information exchanges and in more understandable activity
descriptions. Mendling et. al [16] calculated several EPC metrics and checked them
for structural correctness. They found that several metrics have a strong statistical
connection with the occurrence of errors, and that most of the metrics increase or
decrease error probability as expected.

Only a few studies deal with measuring maintainability of a business pro-
cesses [9, 22]. The closest research to ours is the adoption of the Software Improve-
ment Group (SIG) [2] quality model to business processes by Oktay Turetken [22].
They also created an ISO standard based quality model for business processes,
which contains several nodes and metrics. The model and used metrics are promis-
ing, but in its current form it is just a suggestion, not an implementation yet. Our
intention is also to extend our model with more metrics to achieve more precise
results.

Benchmarking in software engineering is proved to be an effective technique
to determine how good a metric value is. Alves et al. [3] presented a method to
determine the threshold values more precisely based on a benchmark repository [8]
holding the analysis results of other systems. The model has a calibration phase [4]
for tuning the threshold values of the quality model in such a way that for each
lowest level quality attribute they get a desired symmetrical distribution. They
used the 〈5, 30, 30, 30, 5〉 percentage-wise distributions over 5 levels of quality. To
convert the EPC metrics into quality indices we also used a benchmark with a
large amount of EPC evaluations, but we applied it in a different way. During
the calibration, instead of calculating threshold values we approximate a normal
distribution function called benchmark characteristic (see Section 4), which is used
to determine the goodness of the EPC with respect to a certain metric.

3 Overview

To determine the quality of a business configuration first we need to examine its
structure. Each level of a business configuration will require a different kind of
calculation.

• Business process: a collection of activities that takes one or more kinds of



138 Gergely Ladányi

input and creates an output that has value to the customer. They can not
contain further processes.

• Business process group: container of business processes or other business
process groups. Every group is contained by exactly one other group, except
the root.

• Business configuration: a process group which is not contained by any other
process group. This is the root of the process group hierarchy tree.

• Event-driven process chain (EPC): a flowchart used for modelling business
processes. More precisely it is an ordered graph of events and functions with
various connectors (AND, OR, XOR) that allows alternative and parallel
execution of processes. It is very often used for modelling user interactions
of an enterprise resource planning (ERP) application. In this way an EPC
is in very close connection with the applications. A widespread solution for
designing EPC is a framework called Architecture of Integrated Information
Systems (ARIS) [21].

• Function: element of an EPC, it represents usually a user activity.

• Event: element of an EPC, it is just a state which serves as input and the
output of a function.

• Connectors: these nodes represent the complex routing rules.

– OR connector: triggers one, two or up to all of multiple branches.

– AND connector: activates all subsequent branches in concurrency.

– XOR connector: represents a choice between the alternative branches.

An example EPC can be seen in Section 5 in Figure 4.

4 Approach

The structure of the evaluation approach follows the previously introduced hierar-
chical construction of the business processes. The evaluation starts with the most
atomic part of the hierarchy, the functions and its applications and continues with
the aggregation of their quality upwards to the business configuration (Figure 1).
Calculation of the application and EPC quality uses the Columbus QM [6] ap-
proach. The aggregation between the hierarchical levels is done by average, but
between the functions and the EPC we used a simulation technique to provide
more realistic results. In the next sections we will explain in detail these levels of
aggregation and calculation one by one.



Business Process Quality Measurement . . . 139

Figure 1: Hierarchical construction of the approach.

4.1 Function quality

The first level of the evaluation process is measuring the quality of the functions.
The quality of the each function is calculated directly by the average quality of the
applications which manage the function.

The evaluation of these applications was done by our earlier result called the
Columbus QM [6]. The quality model in the Columbus QM approach describes
the aspects and their weights which should be considered in the calculation. Fig-
ure 2 shows the applied quality model which is based on the quality characteristics
defined by the ISO/IEC 25010 [1] standard. The white nodes in our approach rep-
resent source code metrics that can be readily obtained from the source code. The
description of the metrics can be found in Table 1. The black nodes are defined
by ISO/IEC 25010 [1] standard. The grey nodes are the inner nodes, they help
us revealing the dependencies between the metrics and the nodes defined by the
standard. The Columbus QM by comparing the current system with other systems
from the benchmark at the end provides a goodness value for each node in the
model. This goodness value is scaled into the [0,10] interval and basically means
the proportion of all the systems within the benchmark whose goodness values are
smaller.

Test coverage also has a key role in the approach. We used a test coverage tool
called TestNavigator which instruments the given web application, and then it is
capable to monitor the test coverage values in real time. We extended the concept
of test coverage to a function. We calculated the overall number of Java methods
and the overall number of covered Java methods of the systems together. The test
coverage of an EPC function is the ratio of the covered Java methods.



140 Gergely Ladányi

NLE NUMPAR

NOA

McCC

CBO NII

LLOCCritical rule violationsMajor rule violations Minor rule violations

CC

CLOC CD AD

Reusability

DocumentationComplexity

Fault proneness Comprehensibility

Analyzability ChangeabilityStabilityTestability

Modifiability

Maintainability

Figure 2: Java quality model

Table 1: The low-level quality properties of our Java model

Metric Description

CC Clone coverage. The percentage of copied and pasted source code parts, computed
for the Java methods of the system.

NOA Number of Ancestors. Number of classes, interfaces, enums and annotations from
which the class is directly or indirectly inherited.

Critical rule
violations

The number of critical rule violations in the Java method.

Major rule
violations

The number of major rule violations in the Java method.

Minor rule
violations

The number of minor rule violations in the Java method.

AD Api Documentation. Ratio of the number of documented public Java methods in
the class.

CLOC Comment Lines of Code. Number of comment and documentation code lines of
the Java method.

CD Comment Density. The ratio of comment lines compared to the sum of its comment
and logical lines of code.

LLOC Logical Lines of Code. Number of code lines of the method, excluding empty and
comment lines.

NUMPAR Number of parameters in the Java method.
McCC McCabe’s Cyclomatic Complexity of the Java method. The number of decisions

within the specified Java method plus 1, where each if, for, while, do...while and
?: (conditional operator) counts once, each N-way (switch) counts N+1 and each
try block with N catch counts N+1.

NLE Nesting Level Else-If. Complexity of the Java method expressed as the depth of
the maximum embeddedness of its conditional and iteration block scopes, where
in the if-else-if construct only the first if instruction is considered.

NII Number of Incoming Invocations. Number of other Java methods and attribute
initializations, which directly call the method.

CBO Coupling Between Object classes. Number of directly used other classes (e.g. by
inheritance, function call, type reference, attribute reference).

4.1.1 Simulation

Instead of simple average we used a more realistic weighted sum model to aggregate
the function quality values to the EPC level. To do this we need to estimate the



Business Process Quality Measurement . . . 141

weights of each function, we need to provide a rank for them. Bakota et. al [5] to
determine analytically the test cases for business processes generated every possible
path from the model, which for a large, complex model can be too much. They used
filter parameters specified by the model designer to reduce the number of possible
paths. To avoid filter parameters and computational issues, we chose a heuristic
algorithm because parallel threads and possible cycles in the EPC graph makes it
hard to calculate these weights analytically in practice. Our algorithm is a special
version of the random surfer algorithm, which is the basic idea behind the page
rank algorithm as well [18]. Since each random surf starts from the starting point
of the EPC, we will call each random surf as an execution of the EPC workflow.
During the simulation we traversed the EPC one million times and counted how
many times each function was called. This can be done relatively easily since an
EPC is a simple directed graph only with special connectors. The traversing is
different with each connector.

• OR: each branch is called with 0.5 probability, but at least one is called.

• XOR: exactly one random branch is called.

• AND: each branch has to be called.

At the OR and AND connectors a traversing thread can start numerous other
threads. Possible cycles in the graph and parallel threads in the execution make us
to use threshold values to the maximum traversing depth. This can guarantee that
our algorithm will finished in a few seconds even for large complex EPC workflows.
In the next step we normalize these counted values. Since after the normalization
the values are in the [0, 1] interval and their sum is one, they can be used as weights.

4.2 EPC quality

For qualifying an EPC we created a quality model (Figure 3) for EPC workflows.
This quality model has three kinds of input, these are the following:

• business process metrics for EPC (Table 2).

• meta-information provided by the EPC designer about how important the
EPC is and how frequently it is used.

• quality characteristics of the EPC calculated by the weighted sum of the
function quality characteristics (function changeability, function testability,
function stability, function test coverage).

Although these are important aspects about the criticality of an EPC, it is needs
to be clarified the role of each input node in model. An EPC with many connections
and functions makes it hard to change. Also an EPC with high McCabe’s Cyclo-
matic Complexity and Control Flow Complexity makes it hard to change and test.
Functional changeability represents the overall changeability of the functions which
manage the EPC. The EPC is originally designed and often used for describing user



142 Gergely Ladányi

interactions of ERP systems. By changing the EPC very often we need to change
the ERP systems as well. This is the reason why the functional changeability and
every other functional quality characteristics affect its corresponding EPC quality
characteristic. If an EPC is badly maintainable it not necessary critical, it is also
needs to be considered how important the EPC is and how frequently it is used.

Figure 3: EPC quality model

Table 2: The EPC metrics in the model

EPC metric Description

McCabe[15] McCabe’s Cyclomatic Complexity.
Number of Functions[7] Number of functions in the EPC.
Number of Joins[7] Number of joins in the EPC.
Control-Flow Complexity
(CFC) [12]

Sum of the CFC of each join. CFC of
the AND join is 1, for XOR it is the
fanout, and for OR it is 2fanout − 1.

Except business process metrics every other characteristics are in the [0, 10]
interval, so they can be used as goodness values in the aggregation process of the
quality model. To convert these four EPC metrics to goodness values we used the
approach introduced in Section 4 again, but this time for EPC workflows instead
of software systems. The Columbus QM compares the current EPC with several
other EPC from a benchmark and at the end it provides a goodness value for each
EPC metric in EPC quality model (Figure 3). To get quality of the higher level
nodes along the edges we used linear combination of the lower level nodes weighted
by expert votes provided by the software company.



Business Process Quality Measurement . . . 143

4.3 Dealing with missing data

The approach needs to be prepared if some kind of data is missing from the EPC
quality model. Very often it is not possible to measure the test coverage of the
used application, for example if the application is open-source and we have no in-
formation about how we could test it properly. Another scenario when the business
process is not managed by any software system. When a node is not available in
the EPC quality model we redistribute its weights. For example if the Function
Changeability node is not available, its weight will be 0 and the weight of the
Size and the Complexity node will rise with the half of the weight of Function
Changeability node.

4.4 Process group and business configuration quality

Since the business configuration is just a special business group, their evaluation
process can be defined with the same recursive expression: quality of a process
group is the average of the process groups and EPC workflows in the current process
group. Weighted sum is not necessary here, because their importance and frequency
have been already taken into consideration in the EPC quality model.

5 Case Study

We tested our approach by modelling and measuring business processes of a
medium-sized software company. These processes describe how a software product
is being developed, tested and managed in this company. In the business configu-
ration there are four business groups.

• Software development: the business processes in this group describe how to
define, start and close a software development project (e.g. Closing software
development project).

• Specification: it is dealing with collecting and accepting software development
requirements (e.g. Accepting and closing the specification).

• Implementation: it controls the agile software development
(e.g. Daily scrum).

• Release test: it handles the testing and releasing of the release candidate
version of the system (e.g. Release).

The business processes in this business configuration are not large or too complex.
The largest business process is Reporting and fixing code faults, it contains 14 events
and 12 functions, it also contains a circle if a fault was not fixed properly the process
starts from the beginning. In the next section we will present the results of the
evaluation process.



144 Gergely Ladányi

5.1 System quality

Altogether 19 EPC workflow were designed and 10 were connected to at least one
software system. Actually all of them are somehow related to at least one software
system but not all of them were written in Java; for example, the most frequently
used software system, Redmine (issue tracking system) was written in Ruby. In
Table 3 we collected the basic metrics for the Java systems. There are several
well-known open-source Java systems from 69,416 to 1,318,626 total logical lines
of code (TLLOC). The proprietary software systems were created by the software
company. This is the reason why we could ask them to execute their test cases and
measure the test coverage of their application; these values can be seen in Table 4.
Since the used tool is only capable of measuring test coverage of web applications,
and we did not have any information about the test coverage of the open source
system like Eclipse we could not measure their test coverage.

The quality of these systems was measured by the Columbus QM, these values
are presented in Table 4 as well.

Table 3: Descriptive statistics of the analyzed systems

System TLLOC Number of classes Type

EclipseJDT 1,318.626 7,828 Open-source
Jenkins 106,561 2,609 Open-source
PMD 69,416 1328 Open-source
Selenium 132,532 2,087 Open-source
BusinessProcessManager 14,014 222 Proprietary
CloneManager 7,333 120 Proprietary
MagicTestManager 35,972 581 Proprietary
ProductDashboard 1,180 19 Proprietary
SourceAudit 9,639 152 Proprietary
TestNavigator 40,951 708 Proprietary

5.2 Business process quality

To evaluate an EPC, first of all we need to run the simulation to approximate the
weight of each function. In Figure 4 there is a simple EPC from the case study for
analyzing a software and do some refactoring to raise its quality above a threshold
value and eliminate blocker rule violations and clone smells.

Function quality After one million random executions the weights converged in
the case study for every EPC. The weights of the EPC presented in Figure 4 were
0.250 for every function, except the functions in the XOR connector, their weights
were 0.125. This is what we expected, because every function will be executed
in each simulation except the functions in connectors, only one of them will be
traversed because of the XOR connector.



Business Process Quality Measurement . . . 145

Table 4: Quality statistics of the analyzed systems

System Maintainab. Changeab. Testab. Stability Test coverage

EclipseJDT 3,34 2,91 3,16 2,71 -
Jenkins 6,03 6,24 6,32 6,53 -
PMD 5,84 5,71 6,23 6,24 -
Selenium 5,5 5,78 5,69 5,46 -
CloneManager 7,8 6,79 7,47 6,95 55%
BPM 6,26 5,89 6,91 6,34 42%
MTM 7,48 7,09 7,75 6,94 23%
ProductDashboard 6,94 6,94 6,26 8,46 59%
SourceAudit 6,26 5,99 6,14 6,49 69%
TestNavigator 6,08 5,8 6,56 5,97 37%

Analyze
Source code

Refactoring

Optional
refactoring

Eliminate blocker
rule violations

No blocker rule
violation

Eliminate critical
clone smells

No critical 
clone smell

Quality is
above 6

Quality is
above 6

Quality is
under 6

Figure 4: Quality EPC

To go further, first we need to know which system was attached to which func-
tion. We collected this information in Table 5. Based on this table we calculated
the function quality of each function in the EPC. For example the function main-
tainability of function Analyze is: AVG(6.03 + 5.84 + 7.8 + 6.94 + 6.26)=6.574.
By a weighted sum we calculated the function quality characteristics on EPC level
using the weights and quality of the functions.

Metrics The EPC metrics were also calculated for every EPC in the business
configuration. Since we can only aggregate goodness values in the [0, 10] interval,
we used the Columbus QM to compare the current EPC metrics with other EPC
metrics from a benchmark. The metric values and the calculated goodness values
for the sample EPC can be seen in Table 6.



146 Gergely Ladányi

Table 5: Attached software systems

System

A
n
a
ly
z
e

R
e
fa
c
to

r
in
g

O
p
t.

r
e
fa
c
to

r
in
g

E
li
m
.
r
u
le

v
io
l.

E
li
m
.
c
lo
n
e
s
m
e
ll
s

EclipseJDT X X X X
Jenkins X X
PMD X
Selenium
CloneManager X X
BPM
MTM
ProductDashboard X
SourceAudit X
TestNavigator

Table 6: The metric values for the EPC presented in 4.

Metric Value Goodness value

McCabe 2 4.93
Number of Functions 5 3.58
Number of Joins 1 5,71
Control-Flow Complexity (CFC) 2 3.58

Meta-information When an EPC was created we asked the designer to esti-
mate the Frequency and Importance meta-information of the business process. For
example the EPC presented in Figure 4 has an Importance of 7 and Frequency of
10, since it is executed every time when a developer commits a new version of their
software, and it could reveal potential errors in the code.

After every lower level node is calculated, we can aggregate their goodness values
to the higher level nodes. We used the described weighted linear combination to
this, the edges of the model was weighted by the company. As the result of the
aggregation process we evaluated every EPC in the business configuration. The
criticality of the EPC in the example is 3.41, it means this EPC is more critical than
the average. The distribution of the 19 EPC criticality can be found in Figure 5.
13 from 19 EPC has greater criticality than 4, so most of them are close to the



Business Process Quality Measurement . . . 147

average in the criticality point of view. The rest six EPC, which has a criticality
below 4 needs to be investigated. It is recommended to reorganize these business
processes in a less critical way.

Final aggregation of process groups was done by simple average and we got
4.95 for the criticality of the business configuration. This means that the overall
criticality of this business configuration is a slightly worse than the average.

Figure 5: Quality distribution of the evaluated 19 EPC in the case study.

6 Threats to validity, limitations

Altogether the results are promising, but we have to highlight the limitations of
our approach as well. A serious limitation is that our approach is not general in
every aspect.

• The implementation is working only with EPC workflows, other business
process formats are not supported yet. Currently it is possible to import
ARIS EPC workflows to our model, but they are not compatible with our
approach perfectly. Although the method itself is general, it could be used
for other formats, but our tool was designed specially for EPC workflows.

• If the EPC is not using any Java software system, we can not calculate and use
quality values extracted from the software systems. In this case the approach
will calculate only with frequency, importance and the EPCmetrics. However,
our C++, RPG and Python analyzer tools are near completion, after they
are ready we can extend our approach with these languages as well.

• The benchmark which was used in the case study is based on a middle-sized
software company. It can not be used to evaluate the processes of a bank
system for example. We need to create domain specific benchmarks with
large number of EPC workflows.



148 Gergely Ladányi

During the evaluation process we had to approximate different kinds of values
because we could not calculate or collect them in an exact way.

• When we calculated the weights of each function we used a simulation tech-
nique which is based on random choices. To approximate the real values we
would had to collect long term statistical information about the usage of the
given business process when it is created or every time it has been changed.
This would make us impossible to help designers right at the design phase,
because they would need to use the business processes for months before we
could provide them useful information.

7 Conclusions and future work

Our intent was to bring static code analysis and business process quality mea-
surement closer. We used metrics, benchmarking, ISO/IEC 25010 standard based
quality models in our bottom-up approach. In a case study we used our approach in
a middle-size software company and the results showed that there is a potential in
our method. Managers and decision makers can easily access information about the
criticality of their business processes. Moreover, the approach provides technical
details why a business process is critical or hard-to-maintain. It also helps design-
ers to decide which EPC workflow is too complex and which application should be
replaced or updated.

In the future, we would like to implement more powerful metrics. We would also
like to create more domain specific benchmarks, which would extend the usability
of the approach. Finally, the main future work is to generalize our tool to support
several other business process workflow formats.

Acknowledgements

This research was supported by the Hungarian national grant GOP-111-11-2011-
0038.

References

[1] ISO/IEC 25000:2005. Software Engineering – Software product Quality Re-
quirements and Evaluation (SQuaRE) – Guide to SQuaRE.

[2] Software Improvement Group.
http://www.sig.eu/en/.

[3] Alves, Tiago L., Ypma, Christiaan, and Visser, Joost. Deriving Metric Thresh-
olds from Benchmark Data. In Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM 2010), 2010.



Business Process Quality Measurement . . . 149

[4] Baggen, Robert, Schill, Katrin, and Visser, Joost. Standardized Code Quality
Benchmarking for Improving Software Maintainability. In Proceedings of the
Fourth International Workshop on Software Quality and Maintainability (SQM
2010), 2010.

[5] Bakota, Tibor, Beszédes, Arpád, Gergely, Tamás, Gyalai, Milán Imre,
Gyimóthy, Tibor, and Füleki, Dániel. Semi-automatic test case generation
from business process models. In 11th Symposium on Programming Languages
and Software Tools and 7th Nordic Workshop on Model Driven Software En-
gineering (SPLST09 & NW-MODE09), pages 5–18. Citeseer, 2009.

[6] Bakota, Tibor, Hegedűs, Péter, Körtvélyesi, Péter, Ferenc, Rudolf, and
Gyimóthy, Tibor. A Probabilistic Software Quality Model. In Proceedings
of the 27th IEEE International Conference on Software Maintenance (ICSM
2011), pages 368–377, Williamsburg, VA, USA, 2011. IEEE Computer Society.

[7] Cardoso, Jorge, Mendling, Jan, Neumann, Gustaf, and Reijers, Hajo A. A
discourse on complexity of process models. In Business process management
workshops, pages 117–128. Springer, 2006.

[8] Correia, José Pedro and Visser, Joost. Benchmarking Technical Quality of
Software Products. In Proceedings of the 15th Working Conference on Re-
verse Engineering (WCRE 2008), pages 297–300, Washington, DC, USA, 2008.
IEEE Computer Society.

[9] Ghani, Abd, Azim, Abdul, Koh, Tieng Wei, Muketha, Geoffrey Muchiri, and
Wong, Pei Wen. Complexity metrics for measuring the understandability and
maintainability of business process models using goal-question-metric (gqm).
International Journal of Computer Science and Network Security, 8(5):219–
225, 2008.

[10] Gruhn, Volker and Laue, Ralf. Complexity metrics for business process models.
In 9th international conference on business information systems (BIS 2006),
volume 85, pages 1–12, 2006.

[11] Hegedűs, Péter. A probabilistic quality model for c# – an industrial case
study. Acta Cybernetica, 21(1):135–147, 2013.

[12] J., Cardoso. Business process control-flow complexity: Metric, evaluation,
and validation. In International Journal of Web Services Research (IJWSR),
volume 5(2), pages 49–76, 2008.

[13] Khlif, Wiem, Makni, Lobna, Zaaboub, Nahla, and Ben-Abdallah, Hanene.
Quality metrics for business process modeling. In WSEAS International Con-
ference on APPLIED COMPUTER SCIENCE (ACS 09). Genova: WSEAS
Press, pages 195–200, 2009.

[14] Khlif, Wiem, Zaaboub, Nahla, and Ben-Abdallah, Hanene. Coupling metrics
for business process modeling. International Journal of Computers, 4(4), 2010.



150 Gergely Ladányi

[15] McCabe, Thomas J. A complexity measure. Software Engineering, IEEE
Transactions on, (4):308–320, 1976.

[16] Mendling, Jan, Neumann, Gustaf, and Van Der Aalst, Wil. Understanding
the occurrence of errors in process models based on metrics. In On the Move
to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and
IS, pages 113–130. Springer, 2007.

[17] Michael Hammer, James Champy. Reengineering the Corporation: A Mani-
festo for Business Revolution. Harper Business, 1993.

[18] Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Winograd, Terry. The
pagerank citation ranking: Bringing order to the web, 1999.

[19] Reijers, Hajo and Mendling, Jan. Modularity in process models: Review and
effects. In Business Process Management, pages 20–35. Springer, 2008.

[20] Reijers, Hajo A and Vanderfeesten, Irene TP. Cohesion and coupling metrics
for workflow process design. In Business Process Management, pages 290–305.
Springer, 2004.

[21] Scheer, August-Wilhelm. Architecture of Integrated Information Systems:
Foundations of Enterprise Modelling. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1992.

[22] Turetken, Oktay. Towards a maintainability model for business processes.

[23] Vanderfeesten, Irene, Cardoso, Jorge, Mendling, Jan, Reijers, Hajo A, and
van der Aalst, Wil. Quality metrics for business process models. BPM and
Workflow handbook, 144, 2007.

[24] Vanderfeesten, Irene, Reijers, Hajo A, and Van der Aalst, Wil MP. Evaluating
workflow process designs using cohesion and coupling metrics. Computers in
Industry, 59(5):420–437, 2008.

[25] Vanderfeesten, Irene TP, Cardoso, Jorge, and Reijers, Hajo A. A weighted
coupling metric for business process models. In CAiSE Forum, 2007.


