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The elliptical model of multicollinearity and the Petres’ 
Red indicator  

Péter Kovács 
 
One possible method for modelling multicollinearity is to examine the orthogonality of 
explanatory variables, which is the “stretching” of the space of explanatory variables. The 
question rightly arises whether multicollinearity can be modelled in a different way.  

As a new approach, the elliptical model of multicollinearity can be formulated on the 
basis of Petres’ Red indicator. Parallel with the increase in the extent of the mean 
correlation of the variables, the “possible eigenvalues” are situated on an m-dimensional 
sphere with a greater radius. The “possible eigenvalues” are situated on a segment of the m-
dimensional sphere in such a way that with a fixed Red value they are located on an (m–1)-
dimensional ellipsoid.  

Unfortunately, the higher the dimension number of the model, the more conditions 
have to be given for determining and studying the range of “possible eigenvalues”. 
Therefore, the detailed examination of this range and of the elliptical curves was carried out 
only for three explanatory variables. 
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1. Introduction 

In the current globalizing world, decision makers have an increased need for 
information. However, the great increase in the quantity of data is not automatically 
accompanied by an appropriate increase in information. Contrarily, the problem that 
decision makers have to face today is not the lack, but the abundance of information. 
This massive amount of present data frequently has little informational content, 
which means that redundancy is high. Redundancy means “superfluous” data which 
does not convey new or noteworthy information in terms of the examination. For 
this reason, the information content of metric data is an essential issue in empirical 
analyses. This is particularly true for the application of linear regression models. In 
the case of linear regression models, multicollinearity can be interpreted as a type of 
redundancy. With matrix algebraic notation this can be written in the form of 

εβXy ~~~~ += , where y~  is the n component column vector of the dependent variable; 
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X
~

 is the matrix of explanatory variables consisting of row n and column (m+1), 

where the first column is always an 0
~x  sum vector; β

~
is the (m+1) component 

column vector of the model parameters unknown to us; m is the number of 
explanatory variables (explanatory variables); ε~  is the n component column vector 
of the error term (Hajdu 2003). 

The problems of multicollinearity are almost always encountered in the 
course of economic analyses. The concept of multicollinearity is apparently uniform 
in literature. Definitions usually differ from each other in one word, but this entails 
significant changes in content. 

1.1. Multicollinearity 

Multicollinearity as an expression was first used by Ragnar Frisch. He used it for the 
description of cases in which one variable was present in several relations. In his 
examinations he did not distinguish dependent variables from explanatory variables. 
He assumed that the measurement of all variables was erroneous; the correlation 
between the actual values of the variables had to be estimated on this basis (Kovács 
2008). 

It is considered superficial when multicollinearity is defined as the absence of 
the independence of explanatory variables. This definition is problematic because it 
is defined ambiguously without the independent meaning of the explanatory 
variables clarified. Does it mean their linear independence or possibly their 
independence in the statistical sense? 

One of the primary conditions of the standard linear regression model is the 
linear independence of the explanatory variables (Kennedy 2003). Therefore in 
certain sources, multicollinearity is interpreted as the absence of the linear 
independence of explanatory variables. This approach can be regarded as a special 
case of multicollinearity, which is called extreme multicollinearity. This case does 
not pose special problems in practice as it is easily manageable.  

In the course of empirical analyses, cases close to extreme multicollinearity 
are frequently encountered; when the variances of individual estimated parameters 
are considerably increased as compared to the variance of the error term. The great 
majority of literature on multicollinearity deals with this case. However, it is best to 
note that multicollinearity could mean a much more general phenomenon, namely 
the correlation of explanatory variables. Naturally, the special cases of this 
definition would convey the content meant by multicollinearity to everybody. 
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1.2. Red indicator 

Petres’ Red is one possibility for measuring the proportion of data with a useful 

content in respect of the estimator yXXXβ ~~
)

~~
(

~̂ 1 ′′= − . Petres’ Red is a new possible 
indicator of redundancy and thus of multicollinearity. The Red indicator is defined 
by using the eigenvalues λj (j=1,2,…,m) of the correlation matrix R of the 
explanatory variables. The Red indicator is based on the following train of thought. 
If the database serving as the source of the explanatory variables is redundant in 

respect of estimatorβ
~

, that is if the correlation of the data is considerable, not all the 
data will have a useful content. The smaller the proportion of the data with a useful 
content is, the greater the extent of redundancy will be. The greater the dispersion of 
the eigenvalues is, the greater the correlation of the explanatory variables in the 
database will be. There are two extreme cases, either all the eigenvalues are equal to 
each other (that is their value is one) or all the eigenvalues with the exception of one 
equal zero. The extent of dispersion can be quantified with the relative dispersion of 
the eigenvalues or with their dispersion (being equal in this case). 
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In order to make the redundancy of various databases comparable, the above 
indicator has to be normalized. As the eigenvalues are nonnegative, normalization is 

carried out with value 1−m  because of the relationship 1v0 −≤≤ mλ  

concerning relative dispersion. 
The indicator obtained in this way can be used to quantify the extent of 

redundancy, and the Red indicator can be defined with its help as follows.  
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In the case of the absence of redundancy, the value of the above indicator is 
zero or zero percent, while in the case of maximum redundancy, it is one or one 
hundred percent. 

The Red indicator measures the redundancy of the examined database of the 
given size. When the redundancies of two or more databases of different sizes are 
compared, the Red indicators can only be used to determine how redundant 
individual databases are, but one cannot make a direct statement as to which of these 
has more useful data. 

The Red indicator can be expressed without knowing the eigenvalues of the 
correlation matrix of the explanatory variables, merely as the quadratic mean of the 
correlation coefficients (Kovács et al 2005). 
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This means that this indicator shows not only the proportion of the data with a 

useful content in respect of the estimatorβ
~

, but also the mean correlation of the 
explanatory variables. It ensues from the definition of the indicator and from 
formula (3) that, as compared to other indicators based on eigenvalues, the 
advantage of this indicator is that it considers all the eigenvalues in such a way that 
its value is influenced by all the eigenvalues with the same weight. It also considers 
all the pair correlation of the explanatory variables, thus the Red indicator definitely 
represents an advance compared to the research of multicollinearity to date. Various 
cases of extreme multicollinearity can also be distinguished with the help of the 
indicator, as it can also be used when one of the eigenvalues is zero. 

The correlation of the variable pairs and the correlation of the variable groups 
may pose a problem during the examination of multicollinearity. However, no 
detailed methodology has been worked out for this yet.  A possible solution to the 
problem could be the use of canonical correlation analysis in conjunction with the 
redundancy index. It has been established that one special case of this can be 
measured with the Red indicator, while another special case with the help of the 
harmonic mean of the VIFj values. 
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2. New modelling possibilities of multicollinearity 

The question may arise how multicollinearity can be modelled. By plotting the 
explanatory variables as vectors, conjectures can be drawn up concerning the 
presence of multicollinearity. 

2.1. Orthogonality of variables 

One of the most frequently mentioned possibilities for modelling is to examine the 
orthogonality of explanatory variables. If the vectors plotted are orthogonal, 
meaning that the space of explanatory variables is stretched maximally, there is no 
multicollinearity in the model. The smaller the stretching of the space, the greater 
the extent of multicollinearity there will be. The question rightly arises whether 
multicollinearity can be modelled in a different way. 

2.2. Projection 

Another possibility is to examine the projections of the regression plane, hyper 
plane, in each xi-xj plane projection. For instance, with two explanatory variables 
Figure 1 shows that – in the case of the statistically insignificant correlation of 
explanatory variables – the variance of the estimated parameters is considerably 
smaller compared to the variance calculated in the case of significant correlation. 
This is because, in the first case, the “cloud of points” of the data base is dispersed 
in the x1-x2 plane projection in every dimension, and thus the fitted regression plane 
is stable (Tričković 1976). 

Figure 1. Stable regression plane in the case of the non-significant correlation of 
explanatory variables (m=2) 

 
Source: Tričković (1976) 
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At any rate, the “cloud of points” in Figure 2 is not dispersed in the x1-x2 
plane projection in every dimension, thus the fitted plane is tilted easily and fitting 
becomes instable. This way of plotting is very work-intensive and only the pair 
correlation of the explanatory variables can be illustrated. 

Figure 2. Instable regression plane in the case of significant multicollinearity (m=2) 

 
Source: Tričković (1976) 

2.3. The elliptical model of multicollinearity 

Starting from the definition of the Red indicator, a different type of model for 
multicollinearity can also be given. The following relationship is obtained by 
rearranging formula (2) of the Red indicator. 

(4) 22
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Equation (4) is the equation of a sphere the radius of which is 

dmm Re)1( − , and every coordinate of its centre point is one. If the mean 

correlation of the variables is zero, that is there is no correlation between the 
explanatory variables, then the sphere is reduced to the single point each coordinate 
of which is one. The greater the extent of the mean correlation of the variables is, the 
greater the radius of the sphere will be, and specifically the greater the “inflation” of 
the sphere will be. 
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If the mean correlation of the variables is one, that is the absolute value of the 
correlation coefficient between each explanatory variable pair is one, the radius of 

the sphere is )1( −mm .  

Naturally, not each point of the spheres represents an existing correlation 
structure. By definition, combinations of eigenvalues can also be found on the 
spheres which are not possible in the case of correlation matrixes. The question is 
which points of the spheres represent an existing correlation structure. In the 
following example, these eigenvalue combinations are going to be called “possible 
eigenvalues” for clarity purposes. In order to examine “possible eigenvalues”, the 
properties of the eigenvalues of the correlation matrix need to be considered. As the 
sum of eigenvalues equals the number of explanatory variables, or the dimension of 
the sphere, it is certain that “possible eigenvalues” are located on the intersections of 
equation (4) and of (5). 

(5) m
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In the following, without restriction of generality, it can be assumed that: 

min21max λλλλλ =≥≥≥= mK . 
By calculating the smallest eigenvalue from formula (5) and by substituting it into 
equation (4), the following equation is obtained: 

 
By rearranging the equation the following equation is obtained: 
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Equation (6) means that the “possible eigenvalues” – with a given Red 
indicator – are contained in an (m–1)-dimensional ellipsoid. In the special case of 
three explanatory variables, some points of the ellipses mean the “possible 
eigenvalues”. The elliptical name of the model ensues from the nature of the curves. 
It can be seen that on the basis of equation (6) the representation of the eigenvalues 
is obtained in a dimension lower by one compared to the number of the eigenvalues. 
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If the number of explanatory variables is three, equation (6) can be written in the 
following form: 

(7) 
2

2121
2
2

2
1 Re3333 d=++−−+ λλλλλλ  

In the case of three explanatory variables, the range of “possible eigenvalues” 
can be delimited – in addition to formula (5) – by giving three more conditions. 

- With the consideration of the relation between the eigenvalues: . 
- With the consideration of the relation between the eigenvalues: 

2132 3 λλλλ −−=≥ , therefore 
2

3 1
2

λλ −≥ . 

- Moreover: 321 ≤+ λλ . This condition already includes conditions 

331 ≤+ λλ  and 332 ≤+ λλ . 

 

Some of the level lines with different Red values are illustrated in Figure 3. 
Plotting is made as the function of the two largest eigenvalues. 

Thus, in the case of three dimensions, “possible eigenvalues” can be found in 
the triangle of Figure 3. The cases of extreme multicollinearity are given by the 
interceptions of the ellipses and line 12 3 λλ −= . This also shows that various cases 
of multicollinearity can also be distinguished with the help of the Red indicator.  

In the case of higher dimensions – in line with the above train of thought – the 
great number of conditions makes it difficult to plot the “possible eigenvalues”. 
Therefore, in higher dimensions, all we can state for certain is that the radius of the 
examined m-dimensional sphere will increase with the increase of the mean 
correlation of the variables. Furthermore, with a fixed value of the Red indicator, the 
“possible eigenvalues” are located on the surface part of a (m–1)-dimensional 
ellipsoid. 

A similar plotting exists in literature for linear correlation coefficients. These 
form an elliptope (Bolla–Krámli 2005). In higher dimensions such an approach to 
plotting is unhandy.  
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Figure 3. The elliptic model of multicollinearity in the case of three explanatory va-
riables 

 
Source: own construction 
 

In the following I am going to present some characteristics of the ellipses in 
the case of three explanatory variables. 

1. If the extent of the correlation of the explanatory variables is greater, the 
section of the ellipses falling into the “possible range” is shifted to the 
right. 

2. Empirical experience shows that, with a given Red value, the increase of 

eigenvalue 1λ  is accompanied by a greater decrease of eigenvalue2λ , 
therefore the smallest eigenvalue will also increase as the sum of 
eigenvalues is three.  

3. The correlation matrixes in which all the elements outside the diagonal are 
the same – in this case )(Re jiijrd ≠== R – are located on the lower 

boundary of the possible range. Then the determinant of the correlation 

matrix equals the value of the 32 Re2Re31 dd +− . 
4. Empirical experience shows that the product of eigenvalues decreases 

when moving upwards on a given ellipse, that is the determinant of the 
correlation matrix is becoming smaller and smaller. Thus, with a given 
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Red value, the determinant of the correlation matrix falls into the range of 

[ )0;Re2Re31max( 32 dd −− ; 32 Re2Re31 dd +− ] on a fixed 
ellipse. 

3. Conclusions 

As a new approach, the elliptical model of multicollinearity has been formulated. 
Parallel with the increase in the extent of the mean correlation of the variables, the 
“possible eigenvalues” are situated on an m-dimensional sphere with a greater 
radius. The “possible eigenvalues” are situated on a segment of the m-dimensional 
sphere in such a way that with a fixed Red value they are located on an (m–1)-
dimensional ellipsoid. Unfortunately, the higher the dimension number of the model 
is, the more conditions have to be given for determining and studying the range of 
“possible eigenvalues”. Therefore, the detailed examination of this range and of the 
elliptical curves was carried out only for three explanatory variables. 
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