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Two-Step Simulations of Reaction Systems

by Minimal Ones

Arto Salomaa∗

Abstract

Reaction systems were introduced by Ehrenfeucht and Rozenberg with
biochemical applications in mind. The model is suitable for the study of
subset functions, that is, functions from the set of all subsets of a finite set
into itself. In this study the number of resources of a reaction system is
essential for questions concerning generative capacity. While all functions
(with a couple of trivial exceptions) from the set of subsets of a finite set
S into itself can be defined if the number of resources is unrestricted, only a
specific subclass of such functions is defined by minimal reaction systems, that
is, the number of resources is smallest possible. On the other hand, minimal
reaction systems constitute a very elegant model. In this paper we simulate
arbitrary reaction systems by minimal ones in two derivation steps. Various
techniques for doing this consist of taking names of reactions or names of
subsets as elements of the background set. In this way also subset functions
not at all definable by reaction systems can be generated. We follow the
original definition of reaction systems, where both reactant and inhibitor sets
are assumed to be nonempty

Keywords: reaction system, reactant, inhibitor, minimal resources, subset
function, sequence

1 Introduction

A formal model of reaction systems was introduced by Ehrenfeucht and Rozenberg
in [3]. Everything is defined within a fixed finite background set S. The original
purpose was to model interactions between biochemical reactions. The reference
[3] contains some of the original motivation and initial setup. Each reaction is
characterized by its set of reactants, each of which has to be present for the reaction
to take place, by its set of inhibitors, none of which is allowed to be present, and by
its set of products, each of which will be present after a successful reaction. Thus,
a single reaction is based on facilitation and inhibition.
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Reaction systems provide a new kind of mechanism for generating functions
and sequences over a finite set. A reaction system produces (in a way explained
below) another subset Y of S and, thus, we have a subset function from subsets of
S to subsets of S. Iterating the function we get a sequence of subsets of S. The
theory of subset functions has been studied from many points of view, [15], and is
particularly important in many-valued logic,[8].

Many variants of reaction systems have been introduced. The reference [1]
constitutes a survey. However, the very active research in this area opens frequently
new vistas. We refer to [4] for quite new developments.

Apart from various applications, reaction systems as such have been objected
to many theoretical studies, [2, 5, 9, 10, 11, 12, 13]. The arising problems are
mathematically very interesting, since the model is simple and clean.

However, in this paper we are concerned with the basic variant only and follow
the original definition.

The elements of the sets of reactants and inhibitors are also referred to as
resources of the reaction. Since both sets are by definition nonempty and disjoint,
the smallest possible cardinality of the resource set equals 2. Such minimal reaction
systems constitute a very simple and interesting model of computation. The class
of subset functions defined by minimal reaction systems was characterized in [2].
As to be expected, the class is much smaller than the one defined by arbitrary
reaction systems.

In this paper we try to narrow the gap between the generative capacities of
arbitrary and minimal reaction systems. The method used below is a two-step
simulation. Starting with an arbitrary reaction system, we construct a minimal
one such that an arbitrary sequence of the former can be read from a sequence of
the latter by taking every second subset: first, third, fifth,. . . The remaining subsets
(second, fourth,. . . ) contain only ”junk” elements outside the background set of
the original reaction system.

The exposition in this paper is largely self-contained. In particular, the basic
definitions concerning reaction systems are given in Section 2. We define only the
core apparatus, and do not enter additions such as a sequence of inputs from the
environment, [3, 1].

2 Definitions and earlier results

We begin by defining the basic notions.

Definition 1. A reaction over the finite nonempty background set S is a triple

ρ = (R, I, P ),

where R, I and P are nonempty subsets of S such that R and I do not intersect.
The three sets are referred as reactants, inhibitors and products, respectively. A
reaction system AS over the background set S is a finite nonempty set

AS = {ρj | 1 ≤ j ≤ k},



Two-Step Simulations of Reaction Systems by Minimal Ones 249

of reactions over S.

In this paper S will always denote the background set. It is nonempty and
finite. By subset functions we mean functions mapping the set 2S into itself.

We will follow the original definition in [3] (motivated by biochemical consid-
erations) and assume that both of the sets R and I are nonempty. It is also of
definite interest to develop the theory without this assumption. This gives rise to
many interesting constructions, also concerning stepwise simulation, see [6].

We will omit the index S from AS whenever S is understood. The cardinality
of a finite set X is denoted by ]X. The empty set is denoted by ∅. We now indicate
how reactions and reaction systems are used to define subset functions.

Definition 2. Consider a reaction ρ = (R, I, P ) over S and a subset T of S. The
reaction ρ is enabled with respect to T (or for T ), in symbols enρ(T ), if R ⊆ T and
I ∩ T = ∅. If ρ is (resp. is not) enabled, then we define the result by

resρ(T ) = P (resp. = ∅).

For a reaction system A = {ρj | 1 ≤ j ≤ k}, we define the result by

resA(T ) =

k⋃
j=1

resρj (T ).

An important fact to notice is that, according to Definition 2, an element in the
set T is not “consumed” in the application of a reaction but is also available for
other reactions when resA(T ) is computed. In the sequel we often refer to resA
as the function defined by the reaction system A.

Elements in the set R ∪ I are also referred to as resources. Reaction systems
are classified according to the maximal cardinality of the set of resources. We have
](R ∪ I) ≥ 2, since the sets R and I are nonempty and disjoint. A reaction system
is minimal if ](R ∪ I) = 2 holds for every reaction in the system. There is much
research concerning minimal reaction systems, for instance, see [2, 7, 9, 10, 12,
13, 14]. The capacity of minimal reaction systems for defining subset functions
is limited. We now quote the following fundamental result from [2], where the
capacity is characterized.

Definition 3. A subset function f is

• union-subadditive if f(X ∪ Y ) ⊆ f(X) ∪ f(Y ),

• intersection-subadditive if f(X ∩ Y ) ⊆ f(X) ∪ f(Y ),

for all subsets X and Y of S.

The characterization result in [2] is now given

Theorem 1. A function defined by a reaction system is definable by a minimal re-
action system if and only if it is both union-subadditive and intersection-subadditive.
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Sequences generated by reaction systems can be viewed as iterations of functions
resA. If resA(T ) = T ′, we use the simple notation

T ⇒A T ′,

or simply T ⇒ T ′ if A is understood. If

resA(Ti) = Ti+1, 0 ≤ i ≤ m− 1,

we write briefly
T0 ⇒ T1 ⇒ . . .⇒ Tm

and call m the length of the sequence. Since there are only 2]S subsets of S, there
is always an m such that, for some m1 < m, Tm = Tm1 , or else resA(Tm−1) is
undefined, in which case we write Tm = ∅. We say that the sequence ends with a
cycle or terminates, respectively. The sets Ti are usually referred to as states of the
sequence.

Maximally inhibited reaction systems, [9, 14], offer possibilities of constructing
arbitrary sequences or cycles.

Definition 4. A reaction system with the background set S is maximally inhibited
if every one of its reactions is of the form (R,S −R,P ).

Clearly, for every reaction system A, a maximally inhibited reaction system A′
can be constructed such that, for any T ,

resA(T ) = resA′(T ).

If resA(T ) = ∅, then there is no reaction in A′, where T is the set of reactants.

3 Names of reactions as elements of the back-
ground set

We now present our main result concerning the two-step simulation of arbitrary
reaction systems by minimal ones. We have earlier, [14], presented another form
of a similar construction. Names of reactions have been used as elements of the
background set also in [5]. Our result shows that if one starts with a sequence (or
cycle)

T0 ⇒ T1 ⇒ . . .⇒ Tm . . .

according to an arbitrary reaction system AS , then a minimal reaction system AM
with the sequence

T0 ⇒ U0 ⇒ . . . T1 ⇒ U1 ⇒ T2 . . .

can be constructed. The background set SM of AM includes S. Moreover, the
intermediate states Ui contain only elements of SM − S and, thus, are analogous
to nonterminals in grammars.
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Theorem 2. For every reaction system A, a minimal reaction system AM can be
effectively constructed such that, whenever T0 ⇒A T1, then T0 ⇒AM U0 ⇒AM T1.
Moreover, the set U0 does not contain elements of the background set of A.

Proof. Let A have the background set S and the set of reactions

ρi = (Ri, Ii, Pi), 1 ≤ i ≤ k.

We now define the minimal reaction system AM . Its background set is

SM = S ∪ {ρ1, . . . ρk, E}.

It will be convenient to divide its reactions into three groups.
The first group consists of taking, for every a ∈ S, the reaction

({a}, {E}, {ρi1 , . . . , ρim , E}, a ∈ Iij , 1 ≤ j ≤ m.

No reaction results if a does not belong to any inhibitor set.
The second group consists of taking, for every a ∈ S, the reactions

({b}, {a}, {ρj1 , . . . , ρjn , E}, a ∈ Rjν , 1 ≤ ν ≤ n, b ∈ S, b 6= a.

No reaction results if a does not belong to any reactant set.
The third group consists of reactions

({E}, {ρi}, Pi), 1 ≤ i ≤ k.

If a sequence of AM begins with ∅, there is nothing to prove. Thus, consider
a nonempty T ⊆ S. We claim that the second state in the sequence beginning
with T consists of E and the names of those reactions ρi for which enρi(T ) does
NOT hold. Then only some reactions ({E}, {ρi}, Pi) of the third group are enabled,
namely, exactly those for which enρi(T ) holds. Consequently, the third state in the
sequence equals resAM (T ), and Theorem 2 follows.

To prove our claim, note first that E is always present in the second state,
whereas no elements of S are present. We have to show that, whenever enρi(T )
does not hold, then ρi is present in the second state. By Definition 2, the relation
enρi(T ) does not hold if and only if either

1. a1 ∈ T ∩ Ii, for some a1, or else,

2. a2 ∈ Ri − T , for some a2.

Reactions in (1) (resp. in (2)) appear in the product set of the first (resp. the
second) group of reactions of AM . Consequently, exactly those reactions ρi from
the set {ρ1, . . . , ρk} are missing from the second state of the sequence for which
enρi(T ) holds. 2

As an example consider the reaction system A with the background set S =
{a, b, c} and reactions

ρ1 = ({a, c}, {b}, {b}), ρ2 = ({b, c}, {a}, {a, b}),
ρ3 = ({b}, {a, c}, {a, b, c}), ρ4 = ({c}, {a, b}, {a, c}).
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Now the minimal reaction system AM has the background set

{a, b, c, ρ1, ρ2, ρ3, ρ4, E}

and reactions

({a}, {E}, {ρ2, ρ3, ρ4, E}), ({b}, {E}, {ρ1, ρ4, E}), ({c}, {E}, {ρ3, E}),
({b}, {a}, {ρ1, E}), ({c}, {a}, {ρ1, E}), ({a}, {b}, {ρ2, ρ3, E}),

({c}, {b}, {ρ2, ρ3, E}), ({a}, {c}, {ρ1, ρ2, ρ4, E}), ({b}, {c}, {ρ1, ρ2, ρ4, E}),
({E}, {ρ1}, {b}), ({E}, {ρ2}, {a, b}), ({E}, {ρ3}, {a, b, c}), ({E}, {ρ4}, {a, c}).

The first two steps in the sequence of AM are listed below, beginning with the
6 possible nonempty proper subsets of S.

{a, b} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ ∅
{a, c} ⇒ {ρ2, ρ3, ρ4, E} ⇒ {b}
{b, c} ⇒ {ρ1, ρ3, ρ4, E} ⇒ {a, b}
{a} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ ∅

{b} ⇒ {ρ1, ρ2, ρ4, E} ⇒ {a, b, c}
{c} ⇒ {ρ1, ρ2, ρ3, E} ⇒ {a, c}

Our reaction system A is maximally inhibited and, consequently, each of the values
resA(T ) can be seen directly from the reaction, where T is the set of reactants.
This is not the case with our second example, where the reaction system is not
maximally inhibited.

Thus, consider now consider the reaction system A with the background set
S = {a, b, c, d} and reactions

ρ1 = ({a, b}, {c}, {b, d}), ρ2 = ({a}, {b, c}, {a}),
ρ3 = ({a}, {c, d}, {c}), ρ4 = ({b, c}, {a, d}, {a, c}),

ρ5 = ({c}, {a, b}, {a, b, c, d}), ρ6 = ({a, d}, {c}, {a, b, c}).

By the construction of Theorem 2, the minimal reaction system AM has the
background set

{a, b, c, d, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E}
and reactions

({a}, {E}, {ρ4, ρ5, E}), ({b}, {E}, {ρ2, ρ5, E}), ({c}, {E}, {ρ1, ρ2, ρ3, ρ6, E}),
({d}, {E}, {ρ3, ρ4, E}), ({b}, {a}, {ρ1, ρ2, ρ3, ρ6, E}), ({c}, {a}, {ρ1, ρ2, ρ3, ρ6, E}),

({d}, {a}, {ρ1, ρ2, ρ3, ρ6, E}), ({a}, {b}, {ρ1, ρ4, E}), ({c}, {b}, {ρ1, ρ4, E}),
({d}, {b}, {ρ1, ρ4, E}), ({a}, {c}, {ρ4, ρ5, E}), ({b}, {c}, {ρ4, ρ5, E}),

({d}, {c}, {ρ4, ρ5, E}), ({a}, {d}, {ρ6, E}), ({b}, {d}, {ρ6, E}),
({c}, {d}, {ρ6, E}), ({E}, {ρ1}, {b, d}), ({E}, {ρ2}, {a}), ({E}, {ρ3}, {c}),

({E}, {ρ4}, {a, c}, ({E}, {ρ5}, {a, b, c, d}), ({E}, {ρ6}, {a, b, c}).
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The two-step simulation by AM of the original reaction system A is exhibited
in the following exhaustive list.

{a} ⇒ {ρ1, ρ4, ρ5, ρ6, E} ⇒ {a, c},
{b} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ6, E} ⇒ {a, b, c, d},
{d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{a, b} ⇒ {ρ2, ρ4, ρ5, ρ6, E} ⇒ {b, c, d},
{a, c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{a, d} ⇒ {ρ1, ρ3, ρ4, ρ5, E} ⇒ {a, b, c},
{b, c} ⇒ {ρ1, ρ2, ρ3, ρ5, ρ6, E} ⇒ {a, c},
{b, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ6, E} ⇒ {a, b, c, d},
{a, b, c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{a, b, d} ⇒ {ρ2, ρ3, ρ4, ρ5, E} ⇒ {a, b, c, d},
{a, c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{b, c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅.

The following result follows directly from the proof of Theorem 2.

Corollary 1. Assume that the background set and the set of reactions of a arbitrary
reaction system A are of cardinalities s and k, respectively. Then a minimal reac-
tion system AM satisfying Theorem 2 can be effectively constructed such that the
cardinalities of its background and reaction sets are s+k+1 and s2+k, respectively.

Corollary 1 is pleasing because it allows the extension of some results concerning
computational complexity of reaction systems to minimal reaction systems. We
hope to return to these matters in another context.

4 Extension to subset functions

Reaction systems provide a new formal tool of handling subset functions, that is,
functions from 2S into 2S , where S is a finite set. This is an important aspect of
reaction systems.

We begin with the following result.

Corollary 2. Let F (X) be a function mapping the set of all nonempty proper
subsets of a finite set S into the set of all subsets of S. Then there is (effectively)
a minimal reaction system AM such that

F (X) = res2AM (X).
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Proof. The claim follows by Theorem 2 by starting with the maximally inhib-
ited reaction system A with reactions (X,S−X,F (X)), where X runs through all
nonempty proper subsets of the background set. If F (X) is empty, the correspond-
ing triple is not among the reactions of AM . 2

It is not possible to extend Corollary 2 to concern functions F with F (∅) 6= ∅.
No reaction can produce anything nonempty from the empty set. We will now
prove that this is, in fact, the only exception.

Theorem 3. Let F be a subset function over the set S such that F (∅) = ∅. There
is effectively a minimal reaction system AM such that, for all X ⊆ S,

F (X) = res2AM (X).

Proof. We follow the proof of Theorem 2. We have to take care of the case, where
the whole background set S appears as an argument of the function F . Assume
first that F (S) = ∅. Then the proof of Theorem 2 works without any changes. The
second state of the sequence of AM , starting with S, is {E, ρ1, . . . , ρk}. Thus, none
of the reactions of the third group is enabled, yielding ∅.

Assume, secondly, that F (S) 6= ∅. In this case we make the following additions
to the reaction system AM . The element ρS is added to the background set of AM .
For every element a ∈ S, the element ρS is added to the product set of each reaction
in the second group. The reaction ({E}, {ρS}, F (S)) is added to the third group.
It is now easy to verify that

F (X) = res2AM (X),

holds for all X ⊆ S. 2

As an example we consider the background set S = {a, b, c} and the subset
function F defined by

X ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
F (X) ∅ ∅ {a, b, c} {a, c} ∅ {b} {a, b} {a, b}

This example is a modification of the first example in the preceding section.
We now define the minimal reaction system AM as in Theorem 3. The minimal

reaction system AM has the background set

{a, b, c, ρ1, ρ2, ρ3, ρ4, ρS , E}

and reactions

({a}, {E}, {ρ2, ρ3, ρ4, E}), ({b}, {E}, {ρ1, ρ4, E}), ({c}, {E}, {ρ3, E}),
({b}, {a}, {ρ1, ρS , E}), ({c}, {a}, {ρ1, ρS , E}), ({a}, {b}, {ρ2, ρ3, ρS , E}),

({c}, {b}, {ρ2, ρ3, ρS , E}), ({a}, {c}, {ρ1, ρ2, ρ4, ρS , E}),
({b}, {c}, {ρ1, ρ2, ρ4, ρS , E}), ({E}, {ρ1}, {b}), ({E}, {ρ2}, {a, b}),

({E}, {ρ3}, {a, b, c}), ({E}, {ρ4}, {a, c}), ({E}, {ρS}, {a, b}).
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We obtain now

{a, b, c} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ {a, b}.

It is easy to see that, for any X ⊆ S, the function value F (X) appears as the third
state in the sequence beginning with X.

5 Names of subsets as elements of the background
set

We present for the sake of completeness the following result due to [7]. It uses names
of subsets, rather than names of reactions, as an extension of the background set.
While this approach is mathematically elegant, it leads to huge background sets.
Apparently it can also not be extended to subset functions as Theorem 3.

Theorem 4. For a maximally inhibited reaction system A with the background set
S, there is effectively a minimal reaction system AM such that, for every proper
subset X of S,

resA(X) = res2AM (X).

Proof. Since A is maximally inhibited, to test whether or not enρ(X) for ρ =
(R, I, P ), it suffices to test whether or not X = R. The proof is based on this
observation.

We introduce a new symbol NX (name of X), for every subset X of S. The
background set of AM is now S ∪ {NX |X ⊆ S}. Now we use the fact that, for any
X, at most one reaction in A is enabled with respect to X, namely, the reaction
(X,S − X,PX). As observed, to check whether or not not a reaction is enabled
with respect to the first state X in a sequence, we only have to eliminate reactions
whose reactant set is not X. This can be accomplished using the first group of
reactions in AM

({a}, {b}, {NX}), X ⊆ S, a ∈ S −X, or b ∈ X, a 6= b.

These reactions produce the name NY if and only if Y 6= X. This means that only
the correct NX is missing from the second state of the sequence.

The second group of reactions in AM consists of the following reactions

({NY }, {NX}, PX), X, Y ⊆ S, X 6= Y, X 6= S, ∅.

These reactions yield the set PX as the third state. 2

Considering sequences, every second state consists of ”junk” elements and is of
size 2s − 1, where s is the cardinality of S.
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6 Conclusion

Functions defined by minimal reaction system were characterized in [2]. However,
the conditions of the characterization are very hard to test. Therefore, methods
of transition from arbitrary reaction systems to minimal ones should be investi-
gated. In this paper we have investigated the method of stepwise simulation. It is
conceivable that better results are obtained by a different choice of objects whose
names are used in the construction. It is a general open problem to investigate the
gap between the class of functions defined by minimal and almost minimal reaction
systems ( where the cardinality of the resource set is at most 3 in every reaction).
We conjecture that this gap is bigger than the corresponding gap between almost
minimal and general reaction systems.
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