
Acta Cybernetica 22 (2015) 293–311.

Quotient Complexities of Atoms in

Regular Ideal Languages∗
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Abstract

A (left) quotient of a language L by a word w is the language w−1L = {x |
wx ∈ L}. The quotient complexity of a regular language L is the number of
quotients of L; it is equal to the state complexity of L, which is the number
of states in a minimal deterministic finite automaton accepting L. An atom
of L is an equivalence class of the relation in which two words are equivalent
if for each quotient, they either are both in the quotient or both not in it;
hence it is a non-empty intersection of complemented and uncomplemented
quotients of L. A right (respectively, left and two-sided) ideal is a language
L over an alphabet Σ that satisfies L = LΣ∗ (respectively, L = Σ∗L and
L = Σ∗LΣ∗). We compute the maximal number of atoms and the maximal
quotient complexities of atoms of right, left and two-sided regular ideals.
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Janusz Brzozowski

1 Introduction

We assume that the reader is familiar with basic concepts of regular languages
and finite automata; more background is given in the next section. Consider a
regular language L over a finite non-empty alphabet Σ. Let D = (Q,Σ, δ, q1, F ) be
a minimal deterministic finite automaton (DFA) recognizing L, where Q is the set
of states, δ : Q×Σ→ Q is the transition function, q1 is the initial state, and F ⊆ Q
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is the set of final states. There are three natural equivalence relations associated
with L and D.

The Nerode right congruence [14] is defined as follows: Two words x and y are
equivalent if for every v ∈ Σ∗, xv is in L if and only if yv is in L. The set of all
words that “can follow” a given word x in L is the left quotient of L by x, defined by
x−1L = {v | xv ∈ L}. In automaton-theoretic terms x−1L is the set of all words v
that are accepted from the state q = δ(q1, x) reached when x is applied to the initial
state of D; this is known as the right language of state q, the language accepted by
DFA Dq = (Q,Σ, δ, q, F ). The Nerode equivalence class containing x is known as
the left language of state q, the language accepted by DFA qD = (Q,Σ, δ, q1, {q}).
The number n of Nerode equivalence classes is the number of distinct left quotients
of L, known as its quotient complexity [1]. This is the same number as the number
of states in D, and is therefore known as L’s state complexity [16]. Quotient/state
complexity is now a commonly used measure of complexity of a regular language,
and constitutes a basic reference for other measures of complexity. One can also
define the quotient complexity of a Nerode equivalence class, that is, of the language
accepted by DFA qD. In the worst case – for example, if D is strongly connected
– this is n for every q.

The Myhill congruence [13] refines the Nerode right congruence and is a (two-
sided) congruence. Here a word x is equivalent to a word y if for all u and v in Σ∗,
uxv is in L if and only if uyv is in L. This is also known as the syntactic congru-
ence [15] of L. The quotient of the free semigroup Σ+ by this congruence is the
syntactic semigroup of L. In automaton-theoretic terms two words are equivalent
if they induce the same transformation of the set of states of a minimal DFA of L.
The quotient complexity of Myhill classes has not been studied.

The third equivalence, which we call the atom congruence is a left congruence
refined by the Myhill congruence. Here two words x and y are equivalent if ux ∈ L
if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are equivalent if x ∈ u−1L if
and only if y ∈ u−1L. An equivalence class of this relation is called an atom of
L [9]. It follows that an atom is a non-empty intersection of complemented and
uncomplemented quotients of L.

The atom congruence is related to the Myhill and Nerode congruences in a nat-
ural way. Say a congruence on Σ∗ recognizes L if L can be written as a union of
the congruence’s classes. The Myhill congruence is the unique coarsest congruence
(that is, the one with the fewest equivalence classes) that recognizes L [15]. The
Nerode and atom congruences are respectively the coarsest right and left congru-
ences that recognize L.

The quotient complexity of atoms of regular languages has been studied in [4,
8, 12]. In this paper we study the quotient complexity of atoms in three subclasses
of regular languages, namely, right, left, and two-sided ideals.

Ideals are fundamental concepts in semigroup theory. A language L over an al-
phabet Σ is a right (respectively, left and two-sided) ideal if L = LΣ∗ (respectively,
L = Σ∗L and L = Σ∗LΣ∗). The quotient complexity of operations on regular ideal
languages has been studied in [6], and the reader should refer to that paper for
more information about ideals. Ideals appear in pattern matching. A right (left)
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ideal LΣ∗ (Σ∗L) represents the set of all words beginning (ending) with some word
of a given set L, and Σ∗LΣ∗ is the set of all words containing a factor from L.

2 Preliminaries

It is well known that a language L ⊆ Σ∗ is regular if and only if it has a finite number
of quotients. We denote the number of quotients of L (the quotient complexity) by
κ(L). This is the same as the state complexity, the number of states in a minimal
DFA of L. Since we will not be discussing other measures of complexity, we refer
to both quotient and state complexity as just complexity.

Let the set of quotients of a regular language L be K = {K1, . . . ,Kn}. The
quotient automaton of L is the DFA D = (K,Σ, δ, L, F ), where δ(Ki, a) = Kj if
a−1Ki = Kj , L = K1 = ε−1L by convention, and F = {Ki | ε ∈ Ki}. This DFA is
uniquely defined by L and is isomorphic to every minimal DFA of L.

A transformation of a set Qn of n elements is a mapping of Qn into itself,
whereas a permutation of Qn is a mapping of Qn onto itself. In this paper we
consider only transformations of finite sets, and we assume without loss of generality
that Qn = {1, . . . , n}. An arbitrary transformation has the form

t =

(
1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
,

where ik ∈ Qn for 1 6 k 6 n. The image ij of element j under transformation t is
denoted by jt. The image of S ⊆ Qn is St =

⋃
j∈S{jt}. The identity transformation

1 maps each element to itself. For k > 2, a transformation (permutation) t is a
k-cycle if there is a set P = {q1, q2, . . . , qk} ⊆ Qn such that if q1t = q2, q2t =
q3, . . . , qk−1t = qk, qkt = q1, and qt = q for all q 6∈ P . A k-cycle is denoted
by (q1, q2, . . . , qk). A 2-cycle (q1, q2) is called a transposition. A transformation
is constant if it maps all states to a single state q; we denote it by (Qn → q).
A transformation t that maps p to q, q 6= p and does not afffect any r 6= p is
denoted by (p → q). The set of all transformations of Qn is a monoid under
composition, called the complete transformation monoid and denoted by Tn. The
following is well-known:

Proposition 1. The complete transformation monoid Tn has size nn and can be
generated by {(1, . . . , n), (1, 2), (n→ 1)}, and by {(1, . . . , n), (2, . . . , n), (n→ 1)}.

For a DFA D = (Q,Σ, δ, q1, F ) we define the transformations {δw | w ∈ Σ+}
by qδa = δ(q, a) for a ∈ Σ, and qδw = qδxδa for w = xa, x ∈ Σ∗. This set is a
semigroup under composition and it is called the transition semigroup of D. We
also define δε = 1. The transformation δw is called the transformation induced by
w. To simplify notation, we usually make no distinction between the word w ∈ Σ∗

and the transformation δw. If D is the quotient automaton of L, then the transition
semigroup of D is isomorphic to the syntactic semigroup of L [15]. A state q ∈ Q
is reachable from p ∈ Q if pw = q for some w ∈ Σ∗, and reachable if it is reachable
from q1. Two states p, q are indistinguishable if pw ∈ F ⇔ qw ∈ F for all w ∈ Σ∗,
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and distinguishable otherwise. Indistinguishability is an equivalence relation on Q;
furthermore, if D recognizes a language L, we can compute κ(L) by counting the
number of equivalence classes under indistinguishability of the reachable states of
D. A state is empty if its right language (defined in the introduction) is ∅.

3 Atoms

Atoms of regular languages were studied in [9], and their complexities in [3, 8, 12].
As discussed earlier, atoms are the classes of the atom congruence, a left congruence
which is the natural counterpart of the Myhill two-sided congruence and Nerode
right congruence. The Myhill and Nerode congruences are fundamental in regular
language theory, but it seems comparatively little attention has been paid to the
atom congruence and its classes. In [2] it was argued that it is useful to consider the
complexity of a language’s atoms when searching for complex regular languages,
since one would expect such languages to have complex atoms.

Below we present an alternative characterization of atoms, which we use in our
proofs. Earlier papers on atoms such as [3, 8, 9] take this as the definition of atoms,
for it was not known until recently that atoms may be viewed as congruence classes
(this fact was first noticed by Iván in [12]).

From now on assume all languages are non-empty. Denote the complement of a
language L by L = Σ∗\L. Let Qn = {1, . . . , n} and let L be a regular language with
quotients K = {K1, . . . ,Kn}. Each subset S of Qn defines an atomic intersection
AS =

⋂
i∈S Ki ∩

⋂
i∈S Ki, where S = Qn \ S. An atom of L is a non-empty atomic

intersection. Since atoms are pairwise disjoint, every atom A has a unique atomic
intersection associated with it, and this atomic intersection has a unique subset S
of K associated with it. This set S is called the basis of A.

Throughout the paper, L is a regular language of complexity n with quotients
K1, . . . ,Kn and minimal DFA D = (Qn,Σ, δ, 1, F ) such that the language of state
i is Ki. Let AS =

⋂
i∈S Ki ∩

⋂
i∈S Ki be an atom. For any w ∈ Σ∗ we have

w−1AS =
⋂
i∈S

w−1Ki ∩
⋂
i∈S

w−1Ki.

Since a quotient of a quotient of L is also a quotient of L, w−1AS has the form;

w−1AS =
⋂
i∈X

Ki ∩
⋂
i∈Y

Ki,

where |X| 6 |S| and |Y | 6 n− |S|, X,Y ⊆ Qn.
The complexity of atoms of a regular language was computed in [8] using a

unique NFA defined by Ln, called the átomaton. In that NFA the language of each
state qS is an atom AS of Ln. To find the complexity of that atom, the átomaton
started in state qS was converted to an equivalent DFA. A more direct and simpler
method was used by Szabolcs Iván [12] who constructed the DFA for the atom
directly from the DFA Dn. We follow that approach here and outline it briefly for
completeness.
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For any regular language L an atom AS corresponds to the ordered pair (S, S),
where S (S) is the set of subscripts of uncomplemented (complemented) quotients.
If L is represented by a DFA D = (Q,Σ, δ, q1, F ), it is more convenient to think of
S and S as subsets of Q. Similarly, any quotient of AS corresponds to a pair (X,Y )
of subsets of Q. For the quotient of AS reached when a letter a ∈ Σ is applied to
the quotient corresponding to (X,Y ) we get

a−1

(⋂
i∈X

Ki ∩
⋂
i∈Y

Ki

)
=
⋂
i∈X

a−1Ki ∩
⋂
i∈Y

a−1Ki =
⋂
i∈X

Kia ∩
⋂
i∈Y

Kia.

In terms of pairs of subsets of Q, from (X,Y ) we reach (Xa, Y a). Note that if
X ∩ Y 6= ∅ in (X,Y ) then the corresponding quotient is empty. Note also that the
quotient of atom AS corresponding to (X,Y ) is final if and only if each quotient
Ki with i ∈ X contains ε, and each Kj with j ∈ Y does not contain ε.

These considerations lead to the following definition of a DFA for AS [12]:

Definition 1. Suppose D = (Q,Σ, δ, q1, F ) is a DFA and let S ⊆ Q. Define the
DFA DS = (QS ,Σ,∆, (S, S), FS), where

• QS = {(X,Y ) | X,Y ⊆ Q,X ∩ Y = ∅} ∪ {⊥}.

• For all a ∈ Σ, ∆((X,Y ), a) = (δ(X, a), δ(Y, a)) if δ(X, a) ∩ δ(Y, a) 6= ∅, and
∆((X,Y ), a) = ⊥ otherwise; and ∆(⊥, a) = ⊥.

• FS = {(X,Y ) | X ⊆ F, Y ⊆ F}.

DFA DS recognizes the atomic intersection AS of L. If DS recognizes a non-
empty language, then AS is an atom.

4 Complexity of Atoms in Regular Languages

Upper bounds on the maximal complexity of atoms of regular languages were de-
rived in [8]; for completeness we include these results. For n = 1 there is only one
non-empty language L = Σ∗; it has one atom, L, which is of complexity 1. From
now on assume that n > 2.

Proposition 2. Let L be a regular language with n > 2 quotients. Then L has at
most 2n atoms. If S ∈ {Qn, ∅}, then κ(AS) 6 2n − 1. Otherwise,

κ(AS) 6 1 +

|S|∑
x=1

n−|S|∑
y=1

(
n

x

)(
n− x
y

)
.

Proof. Since the number of subsets S of Qn is 2n, there are at most that many
atoms. For atom complexity consider the following three cases:

1. S = Qn. Then AQn =
⋂

i∈Qn
Ki is the intersection of all quotients of L. For

w ∈ Σ∗, we have w−1AQn =
⋂

i∈X Ki, where 1 6 |X| 6 |Qn|. Hence there
are at most 2n − 1 quotients of this atom.
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2. S = ∅. Now A∅ =
⋂

i∈Qn
Ki, and w−1A∅ =

⋂
i∈Y Ki, where 1 6 |Y | 6 |Qn|.

As in the first case, there are at most 2n − 1 quotients of this atom.

3. ∅ ( S ( Qn. Then AS =
⋂

i∈S Ki ∩
⋂

i∈S Ki. Every quotient of AS has

the form w−1AS =
⋂

i∈X Ki ∩
⋂

i∈Y Ki, where 1 6 |X| 6 |S| and 1 6 |Y | 6
n− |S|. There are two subcases:

a) If X ∩ Y 6= ∅, then w−1AS = ∅.

b) If X ∩ Y = ∅, there are at most
∑|S|

x=1

∑n−|S|
y=1

(
n
x

)(
n−x
y

)
quotients of AS

of this form. This follows since
(
n
x

)
is the number of ways to choose a

set X ⊆ Qn of size x, and once X is fixed,
(
n−x
y

)
is the number of ways

to choose a set Y ⊆ Qn of size y that is disjoint from X. Taking the
sum over the permissible values of x and y gives the formula above.

Adding the results of (a) and (b) we have the required bound.

It was shown in [2] that the language Ln accepted by the minimal DFA Dn

of Definition 2, also illustrated in Figure 1, meets all the complexity bounds for
common operations on regular languages.

Definition 2. For n > 2, let Dn = (Qn,Σ, δn, 1, {n}), where Qn = {1, . . . , n} is
the set of states, Σ = {a, b, c} is the alphabet, the transition function δn is defined
by a = (1, . . . , n), b = (1, 2), and c = (n → 1), state 1 is the initial state, and {n}
is the set of final states. Let Ln be the language accepted by Dn. (If n = 2, a and
b induce the same transformation; hence Σ = {a, c} suffices.)

1 2 3 . . . n− 1 n

c
a, b

b

c

a

b, c

a a

b, c

a

a, c

b

Figure 1: DFA of a regular language whose atoms meet the bounds.

It was proved in [8] that Ln has 2n atoms, all of which are as complex as possible.
We include the proof of this theorem following [12]. We first prove a general result
about distinguishability of states in DS , which we will use throughout the paper.

Lemma 1 (Distinguishability). Let D = (Q,Σ, δ, q1, F ) be a minimal DFA and for
S ⊆ Q, let DS = (QS ,Σ,∆, (S, S), FS) be the DFA of the atom AS. Then:
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1. States (X,Y ) and (X ′, Y ′) of DS are distinguishable if X 6= X ′ and AX , AX′

are both atoms, or if Y 6= Y ′ and AY , AY ′ are both atoms.

2. If one of AX or AY is an atom, then (X,Y ) is distinguishable from ⊥.

Proof. First note that if AZ is an atom, then the initial state of DZ must be non-
empty, so there is a word wZ in the transition semigroup of D such that (Z,Z)wZ =
(U, V ) with U ⊆ F , V ⊆ F , i.e., (U, V ) ∈ FS . In particular, (X,Y )wX ∈ FS , since
Y ⊆ X. We also have (X,Y )wY ∈ FS , since Y is sent to a subset of F , and X ⊆ Y
is sent to a subset of F . This proves (2): if one of AX or AY is an atom, then one
of wX or wY is in the transition semigroup of D, and hence (X,Y ) can be mapped
to a final state but ⊥ cannot. Now, we consider the two cases from (1):

1. X 6= X ′. Suppose X ′ 6⊆ X. Then (X,Y )wX ∈ FS , but (X ′, Y ′)wX 6∈ FS ,
since X ′ \X is a non-empty subset of X and hence gets mapped outside of
F . Thus wX distinguishes these states. If instead we have X 6⊆ X ′, then wX′

distinguishes the states. Hence if AX , AX′ are atoms, wX and wX′ are in the
transition semigroup of D, and the states are distinguishable.

2. Y 6= Y ′. If Y ′ 6⊆ Y , then wY distinguishes (X,Y ) from (X ′, Y ′); otherwise,
wY ′ distinguishes the states. As before, if AY , AY ′ are atoms then the states
are distinguishable.

Theorem 1. For n > 2, the language Ln of Definition 2 has 2n atoms and each
atom meets the bounds of Proposition 2.

Proof. The DFA for the atomic intersection AS is DS = (QS ,Σ,∆, (S, S), FS),
where FS = {(X,Y ) | X ⊆ {n}, Y ⊆ Qn \ {n}}. By Proposition 1, the transition
semigroup of Dn consists of all nn transformations of the state set Qn. Hence (S, S)
can be mapped to a final state in FS by a transformation that sends S to {n} and
S to {1}. It follows that all 2n atomic intersections AS , S ⊆ Qn are atoms. By the
Distinguishability Lemma, all distinct states in DS are distinguishable. It suffices
to prove the number of reachable states in each DS meets the bounds.

If S = Qn, then the DFA DS of AS has initial state (Qn, ∅). The reachable states
of DS are of the form (X, ∅), where X is the image of Qn under some transformation
in the transition semigroup. Since we have all transformations, we can reach all
2n − 1 states (X, ∅), ∅ ( X ⊆ Qn. For S = ∅ a similar argument works.

If ∅ ( S ( Qn, then for any state (X,Y ) with 1 6 X 6 |S|, 1 6 Y 6 n − |S|
and X ∩ Y = ∅, we can find a transformation mapping S onto X and S onto Y .

So all these states are reachable, and there are
∑|S|

x=1

∑n−|S|
y=1

(
n
x

)(
n−x
y

)
of them. In

addition, ⊥ is reachable from (S, S) by the constant transformation (Qn → 1) and
so the bound is met.
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5 Complexity of Atoms in Right Ideals

If L is a right ideal, one of its quotients is Σ∗; by convention we assume that
Kn = Σ∗. In any atom AS the quotient Kn must be uncomplemented, that is, we
must have n ∈ S. Thus A∅ is not an atom. The results of this section were stated
in [4] without proof; for completeness we include the proofs.

Proposition 3. Suppose L is a right ideal with n > 1 quotients. Then L has at
most 2n−1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS) 6

{
2n−1, if S = Qn;

1 +
∑|S|

x=1

∑n−|S|
y=1

(
n−1
x−1
)(

n−x
y

)
, if ∅ ( S ( Qn.

(1)

Proof. Let AS be an atom. Since w−1Σ∗ = Σ∗ for all w ∈ Σ∗, w−1AS always
has Kn uncomplemented; so if (X,Y ) corresponds to w−1AS , then n ∈ X. Since
the number of subsets S of Qn containing n is 2n−1, there are at most that many
atoms. Consider two cases:

1. S = Qn. Then w−1L =
⋂

i∈X Ki, and each such quotient of AS is represented
by (X, ∅), where 1 6 |X| 6 n. Since n is always in X, there are at most 2n−1

quotients of this atom.

2. ∅ ( S ( Qn. Then w−1AS =
⋂

i∈X Ki ∩
⋂

i∈Y Ki, where 1 6 |X| 6 |S| and
1 6 |Y | 6 n−|S|. We know that if X∩Y 6= ∅, then w−1AS = ∅. Thus we are
looking for pairs (X,Y ) such that n ∈ X and X ∩ Y = ∅. To get X we take
n and choose |X| − 1 elements from Qn \ {n}, and then to get Y we take |Y |
elements from Qn\X. The number of such pairs is

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x−1
)(

n−x
y

)
.

Adding the empty quotient we have our bound.

For n = 1, L = Σ∗ is a right ideal with one atom of complexity 1. For n = 2,
L = aa∗ is a right ideal with two atoms L and L of complexity 2. It was shown
in [4] that the languages of the DFAs of Definition 3 are “most complex” amongst
right ideals, in the sense that they meet all the complexity bounds for common
operations, but no proof of atom complexity was given. We include this proof here.

Definition 3. For n > 3, let Dn = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d}, and
δn is defined by a = (1, . . . , n − 1), b = (2, . . . , n − 1), c = (n − 1 → 1) and
d = (n− 1→ n). Let Ln be the language accepted by Dn. If n = 3, b is not needed;
hence Σ = {a, c, d} suffices. Also, let L2 = aa∗ and L1 = a∗.

Theorem 2. For n > 1, the language Ln of Definition 3 is a right ideal that has
2n−1 atoms and each atom meets the bounds of Proposition 3.
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1 2 3 . . . n− 2 n− 1 n

b, c, d

a

c, d

a, b

c, d

a, b a, b a, b d

b

a, c

c, d a, b, c, d

Figure 2: DFA of a right ideal whose atoms meet the bounds.

Proof. The cases n < 3 are easily verified; hence assume n > 3. By Proposition
1, the transformations {a, b, c} restricted to Qn−1 generate all transformations of
Qn−1. When d is included, we get all transformations of Qn that fix n. For
S ⊆ Qn, n ∈ S, consider the DFA DS , which has initial state (S, S). There is a
transformation of Qn fixing n that sends (S, S) to the final state ({n}, {1}). Hence
AS is an atom if n ∈ S, and so Ln has 2n−1 atoms.

We now count reachable and distinguishable states in the DFA of each atom.
Suppose S = Qn. The initial state of DS is (Qn, ∅); by transformations that fix
n, we can reach any state (X, ∅) with {n} ⊆ X ⊆ Qn. There are 2n−1 such
states, and since AX is an atom if n ∈ X, all of them are distinguishable by the
Distinguishability Lemma.

Suppose ∅ ( S ( Qn. From the initial state (S, S), by transformations that
fix n we can reach any (X,Y ) with 1 6 |X| 6 |S|, 1 6 |Y | 6 n − |S|, n ∈ X

and X ∩ Y = ∅. There are
∑|S|

x=1

∑n−|S|
y=1

(
n−1
x−1
)(

n−x
y

)
such states. For all such

states (X,Y ), we have n ∈ X and n ∈ Y , so AX and AY are both atoms; hence
by the Distinguishability Lemma, all of these states are distinguishable from each
other and from ⊥. The state ⊥ is also reachable by the constant transformation
(Qn → n), and so the bound is met.

6 Complexity of Atoms in Left Ideals

If L is a left ideal, then L = Σ∗L, and w−1L contains L for every w ∈ Σ∗. By
convention we let L = K1.

Proposition 4. Suppose L is a left ideal with n > 2 quotients. Then L has at
most 2n−1 + 1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS)


= n, if S = Qn;

6 2n−1, if S = ∅;
6 1 +

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
, otherwise.

(2)

Proof. Consider the atomic intersections AS such that 1 ∈ S; then
⋂

i∈S Ki = L
(since every quotient contains L), and there are two possibilities: Either S = Qn,
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in which case AS = AQn =
⋂

i∈Qn
Ki = L, or there is at least one quotient, say Ki

which is complemented. Since Ki contains L, it can be expressed as Ki = L ∪Mi,
where L ∩Mi = ∅. Then the intersection has the term L ∩ (L ∪Mi) = ∅, and AS

is not an atom. Thus for AS to be an atom, either 1 6∈ S or S = Qn. Hence there
are at most 2n−1 + 1 atoms.

For atom complexity, consider the following cases:

1. S = Qn. Then AQn
= L, and the complexity of AQn

is precisely n.

2. S = ∅. Now A∅ =
⋂

i∈Qn
Ki, and every quotient of A∅ is an intersection⋂

i∈Y Ki, where 1 6 |Y | 6 |Qn|. There are 2n − 1 such intersections, but
consider any quotient Ki 6= L of a left ideal; it can be expressed as Ki =
L ∪Mi, where L ∩Mi = ∅. We have

K1 ∩Ki = L ∩ L ∪Mi = L ∩ L ∩Mi = L ∩Mi = Ki.

Thus every intersection
⋂

i∈Y Ki which has Y 6= ∅ and does not have K1 as

a term defines the same language as K1 ∩
⋂

i∈Y Ki. There are 2n−1 − 1 such
intersections. Adding 1 for the intersection which just has the single term
K1, we get our bound 2n−1.

3. ∅ ( S ( Qn. Then AS =
⋂

i∈S Ki ∩
⋂

i∈S Ki, where neither S nor S is
empty. If 1 ∈ S then AS is not an atom, so assume 1 6∈ S. Every quotient
of AS has the form w−1AS =

⋂
i∈X Ki ∩

⋂
i∈Y Ki, where 1 6 |X| 6 |S| and

1 6 |Y | 6 n− |S|.

a) 1 ∈ X. We claim that w−1AS = ∅ for all w ∈ Σ∗. For suppose that
there is a term Ki, i ∈ S, and a word w ∈ Σ∗ such that w−1Ki = K1.
Since K1 ⊆ Ki, we have w−1K1 ⊆ w−1Ki = K1. Since also K1 ⊆
w−1K1 because L is a left ideal, we have w−1K1 = K1. But 1 ∈ S, so
w−1

(⋂
i∈S Ki

)
=
⋂

i∈Y Ki has w−1K1 = K1 as a term. Thus 1 ∈ Y ,
which means X ∩ Y 6= ∅. Hence w−1AS = ∅.

b) 1 6∈ X. We are looking for pairs (X,Y ) such that X ∩ Y = ∅. As we
argued in (2), K1∩Ki = Ki for each i, so we can assume without loss of
generality that 1 ∈ Y . To get X we choose |X| elements from Qn \ {1}
and to get Y we take {1} and choose |Y |−1 elements from (Qn\X)\{1}.
The number of such pairs is

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
.

Adding 1 for the empty quotient we have our bound.

Next we compare the bounds for left ideals with those for right ideals. To
calculate the number of pairs (X,Y ) such that n ∈ X and X ∩ Y = ∅ for right
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ideals, we can first choose Y from Qn \ {n}, and then choose X by taking n and
choosing |X| − 1 elements from (Qn \ Y ) \ {n}. The number of such pairs is

1 +

n−|S|∑
y=1

|S|∑
x=1

(
n− 1

y

)(
n− y − 1

x− 1

)
.

If we interchange x and y we note that this is precisely the number of pairs (X,Y )
such that 1 ∈ Y and X ∩ Y = ∅ for an atom of a left ideal with a basis of size
n− |S|. Thus we have

Remark 1. Let R be a right ideal of complexity n and let AS be an atom of R,
where ∅ ( S ( Qn. Let L be a left ideal of complexity n and let A′

S
be an atom of

L. The upper bounds on the complexities of AS and A′
S

are equal.

Now we consider the question of tightness of the bounds in Proposition 4. For
n = 1, L = Σ∗ is a left ideal with one atom of complexity 1; so the bound of
Proposition 4 does not hold.

The DFAs of Definition 4 and Figure 3 were introduced in [10]. It was shown
in [7] that the languages of these DFAs have the largest syntactic semigroups
amongst left ideals of complexity n. Moreover, it was shown in [5] that these
languages also meet the bounds on the quotient complexity of boolean operations,
concatenation and star. Together with our result about the number of atoms and
their complexity, this shows that these languages are “most complex” left ideals.

Definition 4. For n > 3, let Dn = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d, e},
and δn is defined by a = (2, . . . , n), b = (2, 3), c = (n → 2), d = (n → 1), and
e = (Qn → 2). If n = 3, inputs a and b coincide; hence Σ = {a, c, d, e} suffices.
Also, let D2 = (Q2, {a, b, c}, δ2, 1, {2}), where a = 1, b = (Q2 → 2), c = (Q2 → 1).
Let Ln be the language accepted by Dn; we have L2 = Σ∗b(a ∪ b)∗.

1 2 3 4 . . . n− 1 n
e

a, b, c, d c, d, e

a, b

b, e c, d

a

e

a a

b, c, d b, c, d

a

e

a, c, e

d

b

Figure 3: DFA of a left ideal whose atoms meet the bounds.
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Theorem 3. For n > 2, the language Ln of Definition 4 is a left ideal that has
2n−1 + 1 atoms and each atom meets the bounds of Proposition 4.

Proof. It was proved in [10] that Ln is a left ideal of complexity n. The case n = 2
is easily verified; hence assume n > 3. It was proved in [7] that the transition
semigroup of Dn contains all transformations of Qn that fix 1 and all constant
transformations. Recall that if AS is an atom of a left ideal, then either S = Qn

or 1 6∈ S. For all S with 1 6∈ S, from (S, S) we can reach the final state ({n}, {1})
of DS (or (∅, {1}) for S = ∅) by transformations that fix 1. For S = Qn, let
w = (Qn → n); then (Qn, ∅)w = ({n}, ∅) is final in DS . Hence if S = Qn or 1 6∈ S,
then AS is an atom of Ln, and so L has 2n−1 + 1 atoms.

We now count reachable and distinguishable states in the DFA of each atom. We
know that AQn

has complexity n for all left ideals, so assume 1 6∈ S. If S = ∅, the
initial state of DS is (∅, Qn). By transformations that fix 1 we can reach (∅, Y ) for
all Y with {1} ⊆ Y ⊆ Qn. There are 2n−1 of these states. Since Y does not contain
1, AY is an atom, so all of these states are distinguishable by the Distinguishability
Lemma.

If ∅ ( S ( Qn, the initial state of DS is (S, S). Since 1 6∈ S, by transformations
that fix 1, we can reach any state (X,Y ) with 1 6 |X| 6 |S|, 1 6 |Y | 6 n − |S|,
1 6∈ X, 1 ∈ Y , and X ∩ Y = ∅. There are

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
such states.

They are all distinguishable from each other and from ⊥ by the Distinguishability
Lemma, since 1 6∈ X, 1 ∈ Y imply that AX and AY are both atoms. We can also
reach ⊥ from (S, S) by any constant transformation, and so the bound is met.

7 Complexity of Atoms in Two-Sided Ideals

7.1 Upper Bounds

A language is a two-sided ideal if it is both a right ideal and a left ideal.

Proposition 5. Suppose L is a two-sided ideal with n > 2 quotients. Then L has
at most 2n−2 + 1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS)


= n, if S = Qn;

6 2n−2 + n− 1, if S = Qn \ {1};
6 1 +

∑|S|
x=1

∑n−|S|
y=1

(
n−2
x−1
)(

n−x−1
y−1

)
, otherwise.

(3)

Proof. Since L is a left ideal, AS is an atom only if S = Qn or S ⊆ Qn \ {1}; since
L is a right ideal we must also have n ∈ S. This gives our upper bound of 2n−2 + 1
atoms.

We know that AQn
has complexity n since this is true for left ideals. Since L is

a right ideal, A∅ is not an atom, so we can assume S 6= ∅.
Suppose AS is an atom of L, with S 6= Qn and S 6= Qn \{1}. We proved for left

ideals that the number of distinct non-empty quotients of AS is bounded by the
number of pairs (X,Y ), 1 6 |X| 6 |S|, 1 6 |Y | 6 n−|S|, 1 6∈ X, 1 ∈ Y , X ∩Y = ∅.
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Since L is a right ideal, we must also have n ∈ X and n 6∈ Y . There are
(

n−2
|X|−1

)
possibilities for X, since X must contain n and the remaining |X| − 1 elements are

taken from Qn \ {1, n}. If X is fixed, there are
(
n−|X|−1
|Y |−1

)
possibilities for Y , since

Y must contain 1 and the remaining |Y |−1 elements are taken from (Qn \X)\{1}.
Since Qn \X always contains 1, the size of (Qn \X) \ {1} is always n − |X| − 1.
Summing over the possible sizes of X and Y and adding 1 for the empty quotient,
we get the required bound.

This leaves the case of S = Qn \ {1}. Each quotient of AS has the form

w−1AS =

(⋂
i∈X

Ki

)
∩Kj ,

where Kj = w−1K1 = w−1L, and n ∈ X. We can view the non-empty quotients as
states (X, {j}) of the DFA DS for AS , where D is a minimal DFA for L. We must
have n ∈ X and X ∩ {j} = ∅, and so j 6∈ X.

For each p in Qn, define the set S(p) = {q ∈ Qn | Kp ( Kq}. The elements
of S(p) are called the successors of p. Note that p is not a successor of itself. We
claim that if the quotient w−1AS is non-empty and the corresponding state of DS

is (X, {j}), then X ⊆ S(j).

To see this, note that since L is a left ideal, we have L ⊆ Ki for all i ∈ Qn. It
follows that w−1L = Kj ⊆ w−1Ki for all i ∈ Qn. Thus in the formula for w−1AS

above, we have Kj ⊆ Ki for all i ∈ X. But if Kj = Ki for any i ∈ X, then w−1AS

is empty. Thus Kj ( Ki for all i ∈ X, which implies that X ⊆ S(j).

X must contain n, since L is a right ideal. Thus for each j, there are at most
2|S(j)|−1 states (X, {j}). The index j can range from 1 to n − 1; we cannot have

j = n since n ∈ X but j 6∈ X. This gives an upper bound of
∑n−1

j=1 2|S(j)|−1 for the
number of non-empty quotients.

This bound is not tight, so we refine it by considering the distinguishability
relations between states of DS . Choose i 6= n ∈ S(j) and a non-empty set Y ⊆
S(i) \ {n}. Then Ki ( Kq for all q ∈ Y , so we have Ki ∩

(⋂
q∈Y Ki

)
= Ki. This

means ({i, n}, {j}) is indistinguishable from (Y ∪{i, n}, {j}). Since Y is non-empty
and does not contain n, there are at most 2|S(i)|−1 − 1 possibilities for Y .

From this we get a new upper bound for the number of distinguishable states
(X, {j}) for a fixed j, as follows: first take our previous bound of 2|S(j)|−1. Then for
each i 6= n ∈ S(j), subtract 2|S(i)|−1 − 1 to account for the states (Y ∪ {i, n}, {j})
that are equivalent to ({i, n}, {j}). Our new bound is

2|S(j)|−1 −
∑

i∈S(j)
i6=n

(2|S(i)|−1 − 1) = (|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i6=n

2|S(i)|−1.

Summing over all possible values of j, and adding 1 for the empty quotient, we get
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the following bound on the complexity of AS :

1 +

n−1∑
j=1

(|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i6=n

2|S(i)|−1

 .

Noting that S(1) = {2, . . . , n} and |S(1)| = n− 1, we pull out the j = 1 case from
the outermost summation:

1 + (n− 2) + 2n−2 −
∑

i∈S(1)
i6=n

2|S(i)|−1 +

n−1∑
j=2

(|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i 6=n

2|S(i)|−1

 .

Observe that 1 + (n− 2) + 2n−2 is equal to 2n−2 + n− 1, the bound we are trying
to prove. We will show that the value of the rest of this formula is always less than
or equal to zero. We pull

∑n−1
j=2 2|S(j)|−1 out to the front:

2n−2 + n− 1 +

n−1∑
j=2

2|S(j)|−1 −
∑

i∈S(1)
i6=n

2|S(i)|−1 +

n−1∑
j=2

(|S(j)| − 1)−
∑

i∈S(j)
i6=n

2|S(i)|−1

 .

Note that
∑n−1

j=2 2|S(j)|−1 =
∑

i∈S(1)
i 6=n

2|S(i)|−1, so cancellation occurs:

2n−2 + n− 1 +

n−1∑
j=2

(|S(j)| − 1)−
∑

i∈S(j)
i 6=n

2|S(i)|−1

 .

Now, the value of the innermost summation is always greater than or equal to
|S(j)| − 1: for each i ∈ S(j), i 6= n, we know that n is a successor of i, and hence
S(i) > 1 and 2|S(i)|−1 > 1. Thus the value of the outermost summation is always
less than or equal to zero. It follows that the number of quotients of AS is at most
2n−2 + n− 1.

Next we address the question of tightness of the bounds for two-sided ideals.
For n = 1, L = Σ∗ is a two-sided ideal with one atom of complexity 1; so the bound
of Proposition 5 does not hold.

The DFAs of Definition 5 and Figure 4 were introduced in [10]. It was shown
in [7] that these languages have the largest syntactic semigroups amongst two-sided
ideals of complexity n. Moreover, it was shown in [5] that they also meet the bounds
on the quotient complexity of boolean operations, concatenation and star. Together
with our result about the number of atoms and their complexity, this shows that
these languages are “most complex” two-sided ideals.
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Definition 5. Let n > 4, and let Dn = (Qn,Σ, δn, 1, {n}) be the DFA with Σ =
{a, b, c, d, e, f}, a = (2, 3, . . . , n− 1), b = (2, 3), c = (n− 1→ 2), d = (n− 1→ 1),
e = (Qn−1 → 2), and f = (2 → n). For n = 4, inputs a and b coincide. Also, let
D3 = (Q3, {a, b, c}, δ3, 1, {3}), where a = 1, b = (Q2 → 2), c = (2 → 3), and let
D2 = (Q2, {a, b, c}, δ2, 1, {2}), where a = 1, b = (Q2 → 2), c = (Q2 → 1). Let Ln

be the language accepted by Dn.

n

a, b, c, d, e, f

f

1 2 3 4 . . . n− 2 n− 1
e

a, b, c, d, f

c, d, e

a, b

b, e

c, d, f

a

e

a a

b, c, d, f b, c, d, f

a

e

a, c, e

d

b, f

Figure 4: DFA of a two-sided ideal whose atoms meet the bounds.

Theorem 4. For n > 2, the language Ln of Definition 5 is a two-sided ideal that
has 2n−2 + 1 atoms and each atom meets the bounds of Proposition 5.

Proof. It was proved in [10] that Ln is a two-sided ideal of complexity n. The cases
with n < 4 are easily verified; hence assume n > 4.

The following observations were made in [7]: Transformations {a, b, c} restricted
to Qn \ {1, n} generate all the transformations of {2, . . . , n − 1}. Together with d
and f , they generate all transformations of Qn that fix 1 and n. Also, we have
ef = (Qn → n).

Recall that if AS is an atom of a two-sided ideal, then n ∈ S, and either S = Qn

or 1 6∈ S. We know AQn is an atom of complexity n for all left ideals (and hence
all two-sided ideals), so assume n ∈ S, 1 6∈ S. Then 1 ∈ S, and so from state (S, S)
in DS we can reach the final state ({n}, {1}) by transformations that fix 1 and n.
Hence AS is an atom for every S with n ∈ S, 1 6∈ S. There are 2n−2 of these atoms,
as well as the atom AQn , for a total of 2n−2 + 1.

Consider the atom AS for S 6= Qn and S 6= Qn \ {1}. In the DFA DS , the
initial state is (S, S), and we have n ∈ S, 1 6∈ S. By transformations that fix 1 and
n, we can reach (X,Y ) for all X,Y ⊆ Qn such that n ∈ X, 1 ∈ Y , X ∩ Y = ∅,
1 6 |X| 6 |S|, 1 6 |Y | 6 n − |S|. There are

∑|S|
x=1

∑n−|S|
y=1

(
n−2
x−1
)(

n−x−1
y−1

)
such

states. Since n ∈ X, 1 6∈ X and n ∈ Y , 1 6∈ Y we see that AX and AY are atoms.
Hence by the Distinguishability Lemma, all of these states are distinguishable from
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each other and from ⊥. Since S 6= ∅, we can reach ⊥ from (S, S) by ef = (Qn → n).
Hence the bound is met.

It remains to show that the complexity ofAS , S = Qn\{1} also meets the bound.
The initial state of DS is ({2, . . . , n}, {1}). By transformations that fix 1 and n,
we can reach all 2n−2 states of the form (X, {1}) with {n} ⊆ X ⊆ Qn \ {1}. From
({n}, {1}), we can reach n−2 additional states ({n}, {i}) for 2 6 i 6 n−1 by eai−2.
Finally, we can reach the sink state ⊥ from the initial state by ef = (Qn → n).
This gives a total of 2n−2 +n−1 reachable states, which matches the upper bound.

To see these states are distinguishable, note that AX is an atom if {n} ⊆ X ⊆
Qn \ {1}. Also, A{1} = AQn\{1} is an atom. Hence by the Distinguishability

Lemma, all states of the form (X, {1}) are distinguishable from each other and
from ⊥. Also, ({n}, {i}) is distinguished from ({n}, {j}) by an−if , which sends
the former state to the non-final state ⊥, but sends the latter to some final state
({n}, {k}) with k 6= 2. And each ({n}, {j}), 1 6 j 6 n − 1 is a final state, so it
is distinguishable from all states of the form (X, {1}), X 6= {n} and from ⊥, since
they are not final. Hence all 2n−2 + n− 1 reachable states are distinguishable.

8 Some Numerical Results

The following tables compare the maximal complexities for atoms AS of two-sided
ideals (first entry), left ideals (second entry) and regular languages (third entry)
with complexity n. Right ideals are omitted because their complexities are essen-
tially the same as those of left ideals, by Remark 1. When the maximal complexity
is undefined (e.g., because no languages in a class have atoms AS for a particu-
lar size of S) this is indicated by an asterisk. The maximum values for each n
are in boldface. The nth entry in the ratio row shows the approximate value of
mn/mn−1, where mi is the ith entry in the max row. It has been shown by Diekert
and Walter [11] that the ratio converges exponentially fast to 3 for the class of
regular languages and for all three classes of ideal languages.

n 1 2 3 4 5 · · ·
|S| = 0 ∗/1/1 ∗/2/3 ∗/4/7 ∗/8/15 ∗/16/31 · · ·
|S| = 1 1/1/1 2/2/3 3/5/10 5/13/29 9/33/76 · · ·
|S| = 2 2/2/3 4/4/10 8/16/43 20/53/141 · · ·
|S| = 3 3/3/7 7/8/29 20/43/141 · · ·
|S| = 4 4/4/15 12/16/76 · · ·
|S| = 5 5/5/31 · · ·
max 1/1/1 2/2/3 4/5/10 8/16/43 20/53/141 · · ·
ratio − 2.00/2.00/3.00 2.00/2.50/3.33 2.00/3.20/4.30 2.50/3.31/3.28 · · ·
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n 6 7 8 9

|S| = 0 ∗/32/63 ∗/64/127 ∗/128/255 ∗/256/511
|S| = 1 17/81/187 33/193/442 65/449/1, 017 129/1, 025/2, 296
|S| = 2 48/156/406 112/427/1, 086 256/1, 114/2, 773 576/2, 809/6, 859
|S| = 3 64/166/501 182/542/1,548 484/1, 611/4, 425 1, 234/4, 517/12, 043
|S| = 4 48/106/406 182/462/1,548 584/1,646/5,083 1,710/5,245/15,361
|S| = 5 21/32/187 112/249/1, 086 484/1, 205/4, 425 1,710/4, 643/15,361
|S| = 6 6/6/63 38/64/442 256/568/2, 773 1, 234/3, 019/12, 043
|S| = 7 7/7/127 71/128/1, 017 576/1, 271/6, 859
|S| = 8 8/8/255 136/256/2, 296
|S| = 9 9/9/511
max 64/166/501 182/542/1, 548 584/1, 646/5, 083 1, 710/5, 245/15, 361
ratio 3.20/3.13/3.55 2.84/3.27/3.09 3.21/3.04/3.28 2.93/3.19/3.02

9 Conclusions

We have derived tight upper bounds for the number of atoms and quotient complex-
ity of atoms in right, left and two-sided regular ideal languages. The recently dis-
covered relationship between atoms and the Myhill and Nerode congruence classes
opens up many interesting research questions. The quotient complexity of a lan-
guage is equal to the number of Nerode classes, and the number of Myhill classes
has also been used as a measure of complexity, called syntactic complexity since it
is equal to the size of the syntactic semigroup. We can view the number of atoms
as a third fundamental measure of complexity for regular languages.

It is known [8] that the number of atoms of a regular language L is equal to
the quotient complexity of the reversal of L. The quotient complexity of reversal
has been studied for various classes of languages in the context of determining
the quotient complexity of operations on regular languages. Hence, the maximal
number of atoms is known for many language classes.

However, as far as we know the quotient complexity of atoms has not been
studied outside of regular languages and ideals. For simplicity, let us call the
atom congruence the left congruence, the Nerode congruence the right congruence,
and the Myhill congruence the central congruence. When computing the quotient
complexity of atoms, we are computing the number of right congruence classes of
each left congruence class. We can consider variations of this idea: how many right
classes and left classes do the central classes have? How many central classes do
the left classes have? These questions are outside the scope of this paper, but we
believe they should be investigated.
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