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Abstract

In speech recognition, feature extraction and acoustical model training are

traditionally done in two separate steps. Here, instead, we use a framework

that combines spectro-temporal feature extraction and the training of neural

network based acoustic models into a single process. We found earlier that

this approach can be successfully applied for the recognition of speech. In this

paper, we propose two further improvements to our method based on recent

advances in neural net technology and extend our evaluation to speech conat-

minated with new types of noise. By repeating our experiments on TIMIT

phone recognition tasks using clean and noise contaminated speech, we can

compare the recognition performance of the original framework with our new,

modified framework. The results indicate that both these modifications sig-

nificantly improve the recognition performance of our framework. Moreover,

we will show that these modifications allow us to achieve a substantially better

performance than what we got earlier.

Keywords: spectro-temporal features, Deep Neural Net, Rectifier Neuron,

TIMIT

1 Introduction

One of the biggest challenges for automatic speech recognition (ASR) is to get an
acceptable performance even in adverse environments, such as in the presence of
background noise. One way of increasing the robustness of ASR systems is to apply
spectro-temporal processing methods to the speech signal [9]. In this approach,
the features used later in the classification step are obtained by processing small,
spectrally and temporally localized patches of the spectrogram. Hence, unlike in
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traditional processing methods, some of the features may be unnaffected by the
noise, making the recognizer more robust. The spectro-temporal processing of the
patches can be performed by using the two-dimensional discrete cosine transform
(2D DCT) or Gabor filters. Good recognition results were reported with both of
these approaches earlier [3, 9, 10].

After the initial step of feature extraction, the features are passed on to a
machine learning algorithm – in most cases a Hidden Markov Model (HMM) or
an Artificial Neural Net (ANN) based recognizer. Traditionally, these two steps
(feature extraction and recognition) are performed separately. In earlier papers [11,
12], we showed that the spectro-temporal feature extraction step and the ANN-
based recognition step could be combined, and the parameters needed for the two
phases could be trained together. Our solution was based on the observation that
the spectro-temporal filters can be treated as special types of neurons, and so
the standard backpropagation training algorithm of ANNs can be extended to the
feature extraction step as well. We experimented with neurons that simulate three
types os spectro-temporal feature extraction methods, namely a set of Gabor filters,
2D DCT, and randomly generated filters. Our results told us that in each case, our
new method enhanced the performance of the filter sets by extending the scope of
the backpropagation algorithm to the neurons simulating them.

In this study, we further improve the performance of our system by incorporating
recent advances in the area of neural networks. In standard ANN implementations
there are three layers, namely an input layer, an output layer (applying the soft-
max nonlinearity), and in between a hidden layer that uses a sigmoid activation
function. Recently, it has been shown that a significantly better performance can
be achieved by increasing the number of hidden layers [6]. Unfortunately, training
these ‘Deep’ Neural Nets (DNNs) with three or more hidden layers using the clas-
sic backpropagation algorithm has certain difficulties. A solution to these problems
was given by Hinton et al., leading to a renaissance of ANN-based technologies in
speech processing [6]. An even simpler solution was later given with the introduc-
tion of rectifier neural networks [14]. Here, we combine this type of DNN with our
framework introduced in an earlier paper [11]. We also modified the way convolu-
tion is handled by our model. By evaluating our system in phone recognition tasks
using the TIMIT speech database, we will show that these techniques improves
the performance of our model in the case of clean speech and noise contaminated
speech.

Below, we will describe the methods and tools we used in our experiments, then
briefly introduce our spectro-temporal filtering methods, and the original frame-
work for the joint optimization of filters and classifiers. This will be followed by a
description of the proposed modifications and demonstration of the effect of these
on the recognition performance. Lastly, we will draw some conclusions and suggest
further ideas for future study.
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2 Experimental setup

Before we describe our experiments and present our results, we will first introduce
the settings and instruments we applied in our study.

2.1 Pre-processing

First, we computed the spectrograms from sound files with 400 samples (25 ms)
per frame, using 160 sample (10 ms) hop size, applying a 1024-point Fast Fourier
Transform (FFT) on the frames. The resulting spectrograms were transformed to
a logarithmic mel-scale of 26 spectral channels, and they were normalized so as
to give a zero mean and unit variance. Afterwards, to avoid the artificial down-
weighting of the lowest frequency bins, the four lowest channels of the spectrogram
were mirrored.

2.2 HTK Toolkit

After the sound files were pre-processed, our neural net framework was trained
to supply posterior probability values for each frame coming from one of the 39
phonetic classes. To create a phone recognizer from this data, we used Hidden
Markov Models (HMM) implemented in the HTK toolkit [17], which was modified
so as to be able to work with the neural net posteriors. In the literature this
construct is known as a HMM/ANN hybrid model [2]. To get our phone recognition
results, we also applied a simple bigram language model and used the train set of
the speech database to tune our phone insertion penalties.

2.3 Speech database and noises

The database we worked with was the TIMIT speech corpus. In our experiments
we followed the standard partitioning of having a train set of 3696 sentences, and
a test set of 192 sentences. We used 90% of the train set to train the weights
of our neural nets, while the remaining 10% was used as an evaluation set and
the stopping criteria. The training of neural nets was performed on clean speech.
Testing was performed on both clean and noise contaminated speech.

We employed the FaNT [7] tool to add different types of noises with different
signal to noise ratios to the clean speech of the test set. These noise samples
mainly came from the NOISEX-92 database [15]. Some of them were artificial, and
some came from real-life applications. The two types of artificial noises used were
band limited noise, which we created by filtering white noise with a bandpass filter
active between 3000 Hz and 5000 Hz, and pink noise coming from the NOISEX-92
database, which has the highest energy at 0Hz and tails off at higher frequencies.
Among the noise types coming from real-life applications there was babble noise
(simulating the effect of people talking in the background), Volvo noise (recorded
in a running car), and also factory noise (which simulates the effect of a nearby
production line).
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3 Spectro-temporal filters

In spectro-temporal analysis we extract spectro-temporally localized patches from
the spectrogram of the speech signal, and create features for ASR purposes by pro-
cessing them using standard filtering methods. Mathematically, a spectro-temporal
feature can be described by the formula

o =

N
∑

f=0

M
∑

t=0

P (f, t)F (f, t), (1)

where N and M are the height and width of patch P and filter F , respectively, and
they both have to be the same size. There are many different methods available
for getting the proper coefficients for the filter F (f, t). Below, we describe two
well-known methods, then in Section 4 we present a new method for doing so.

3.1 2D DCT

A common approach is to process the patches using a 2D DCT, which works with
the following filter coefficients:

Fpq(f, t) = cos
π · (f + 0.5) · p

N
cos

π · (t+ 0.5) · q

M
,

0 ≤ q ≤ N − 1

0 ≤ p ≤ M − 1
(2)

where N and M are the respective height and width of the filters for f and t, while
p and q specify the modulation frequencies of the filter along the frequency and
time axis. Using all possible values of p and q would result in as many features
as the number of inputs. However, it is common practice [3] to retain just the
output of the filters corresponding to the lowest-order coefficients. And while it
is not necessarily the optimal choice, by keeping only 9 coefficients we achieved a
performance competitive with the widely used MFCC features [10].

3.2 Gabor filters

Another family of filters that has been applied for feature extraction in speech
recognition is Gabor filters [8]. These filters are defined [4] as a product of a two-
dimensional Gaussian
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e
−

1
2

(

(f−f0)2

σ2
f

+
(t−t0)2

σ2
t

)

, (3)

and an oriented sinusoid

Sp,q(f, t) = ej(
π·f·p

N
+

π·t·q
M ), (4)

where we iterate f and t over the frequency and time intervals of the patch, and
σf and σt specify the respective bandwiths of the filters. Again, N and M specify



Joint optimization of Spectro-Temporal Features and DNNs for Robust ASR 121

Figure 1: Structure of the ANN for joint feature extraction and classification. The
boxes in light grey correspond to additional input blocks or neural units used by
the convolutional version of the network.

the transform size, while p and q specify the slanting of the sinusoid as well as its
periodicity. These parameters allow many different filters, and unlike in the case
of 2D DCT (where there is an assumption about which filters should be kept), the
choice of the right Gabor filters for ASR remains an open question [4, 13].

4 Joint optimization of neural net classifiers and

spectro-temporal filters

The spectro-temporal features extracted by the filters form the input of a machine
learning algorithm. Traditionally, classification or modelling is executed in a sep-
arate step before feature extraction. Our proposal was to combine these steps by
treating the feature extraction filters as the lowest layer of a neural net, and letting
the training algorithm tune the filter coefficients as well. To explain how it was
done, let us examine the operation of a simple perceptron model. In general, its
output can be obtained using the formula:

o = a

(

L
∑

i=1

xi · wi + b

)

, (5)

where x is the input of the neuron, L is the length of the input, w is the weight
vector, and b is a bias corresponding to that neuron. Note that if L = N · M ,
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and we set a to be the identity function and b = 0, and we represent filter F and
patch P in (1) in vector form, it becomes apparent that (1) is just a special case of
(5). This means that the spectro-temporal filters can be integrated into an ANN
classifier system as special neurons, with the filter coefficients corresponding to the
weights of the given neuron.

4.1 Structure of the ANN for combined feature extraction

and posterior estimation

Fig. 1 shows the proposed structure of the ANN that can perform spectro-temporal
feature extraction and classification (phone posterior estimation) in one step. The
neural net consists of 4 layers. The first one is the input layer, which extracts 9 by
9 patches (patches with a width of 9 frames, and height of 9 mel channels) from six
frequency bands of the spectrogram (with an overlap of 5 channels), and forwards
them to the feature extraction layer. In Fig. 1, this is represented by the dark
grey areas. The feature extraction layer then takes these patches, and extracts
9 features from each of them (meaning that this layer consists of altogether 54
linear neurons - 6 times 9), and sends the output to the hidden layer (which in our
experiments had 4000 neurons [12], using the sigmoid activation function). From
this point on, the system behaves just like any other conventional neural net; the
hidden layer processes the information and passes it on the the output layer (which
in our experiments had 39 neurons, corresponding to the 39 phone classes) that
provides the output. Hence, if the weights of the feature extraction layer were
initialized with 2D DCT or Gabor filter coefficients, and only the weights of the
hidden and output layers were tuned during training, the model would be equivalent
to a more traditional system. This means that the structure in Fig. 1 allows our
algorithm to evaluate the spectro-temporal features and the ANN in one step, but
more importantly, it also allows us to fine-tune the initial coefficients, and so fine-
tune the above-mentioned features. If we initialize the coefficients randomly (as is
usual in neural networks), it also allows us to fine-tune or evaluate a set of random
filters. We showed earlier that the joint optimization of this model outperforms the
standard two-step training procedure [11].

4.2 Convolutional neural nets

It is well known that integrating a longer temporal context into the acoustic features
can significantly improve the recognition performance. In HMM-based recognition
the ∆ and ∆∆ features are used for this purpose, while in HMM/ANN hybrids
it is common to use several neighbouring acoustic vectors [2]. Although spectro-
temporal features process longer time intervals than traditional techniques (such as
MFCC), we observed that adding the delta features to the feature set improved the
results [10]. Although incorporating the delta features into the joint model would
be technically challenging, training the network on several neighbouring feature
vectors instead of just one is possible by modifying the proposed structure and
creating a convolutional neural net [1, 16]. This modification is shown in Fig. 1
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Figure 2: Plot of the sigmoid activation function (solid line), and the rectifier
activation function (dashed line).

by the boxes drawn in light grey. As can be seen, in the convolutional networks
the feature extraction layer operates on several input patches instead of just one.
We should add that the same weights were applied on each input block, so the
number of weights did not change in this layer. Evidently, the number of feature
vectors processed by the hidden layer increases, but in other respects the hidden
and output layers work just as before. Note also that although the patches used
do not necessarily have to be immediate neighbours, for simplicity we used only
neighbouring patches in an earlier study [11]. Here, we will examine the effect of
decreasing the overlap of the processed patches.

5 Deep Rectifier Neural Nets

In contrast to our previous study, one of the two modifications we propose here is
to turn the ANN of our joint optimisation model into a deep rectifier neural net.
This modification entails altering the activation function, and the structure of the
neural net as well. Below, we will elaborate on the modifications made.

5.1 Rectifier neural net

Rectifier neural nets differ from their conventional counterparts only in the activa-
tion function used by the neurons in the hidden layer(s). While standard methods
use the sigmoid activation function, rectifier nets apply the rectifier function. The
difference between these functions can be seen in Fig. 2. The rectifier function
(rectifier(x) = max(0, x)) has two interesting properties. The first one is its lin-
earity for positive input. Because of this, neurons using this activation function do
not saturate as their activity increases. This means that even with multiple hidden
layers, the problem of vanishing gradients can be reduced or avoided altogether [14].
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Another interesting property is that for all negative values the function returns a
constant value of zero. This means that the resulting neural net is usually more
sparse, which has computational advantages. Also, sparsitiy is biologically more
plausible [5].

5.2 Structure of the DNN for combined feature extraction

and posterior estimation

With the replacement of sigmoid neurons with rectifying ones, we can if we wish
have more hidden layers in our neural net without having to apply a pre-training
algorithm. Here in our experiments, we chose to replace the hidden layer with 4000
sigmoid neurons by three hidden layers, each one consisting of a 1000 rectifying
neurons. There were two main reasons for doing this. One was that with this
choice, we managed to keep the parameter number of the new framework (∼2.5
million) close to the parameter number of the original one (∼2.1 million). The
other was that in our preliminary experiments the progression from two rectifier
layers with 1000 neurons to three rectifier layers with the same size was the last
modification to provide a significant improvement in the frame level error rates of
the validation set. When we went from three rectifier layers with 1000 neurons to
four rectifier layers with the same size, this sometimes harmed the error rates, and
even when it led to an improvement, the difference was not always significant.

5.3 Results

To evaluate the effect of the new neural net structure on the phone recognition
accuracy scores, we carried out several experiments on the TIMIT speech database.
First, we will describe the phone recognition results got on clean speech, then
present the results got on speech contaminated with artificial noises, and after we
will present the results got for speech contaminated with noise samples coming
from real-life applications. As in a previous paper using this framework [11], we
again used two settings: first the filter coefficients were left unaltered, and in the
second setting we trained them. This way, we could learn whether the change in
the training method influenced the performance of the two settings. It should be
mentioned that all our results came from taking the average of ten independent
neural net training results, and we decided that a difference between two averages
was significant when the p-value resulting from the two-tailed student’s t-test with
unequal variance was below 0.05.

5.3.1 Experiments on Clean Speech

As can be seen in Table 1, for the DNN framework, just like in the original frame-
work, the results we got by training the filter coefficients are better than the results
we got when the filter coefficients were unaltered. We also see that regardless of the
number of layers acted on by the backpropagation algorithm, the DNN framework
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Table 1: Phone recognition accuracy scores got on the clean test set of TIMIT.

Initial Original framework DNN framework
Filter weights unaltered trained unaltered trained

Gabor 73.49% 74.31% 75.58% 76.63%
2D DCT 72.69% 73.88% 75.00% 75.85%
Random 72.99% 73.72% 74.65% 76.42%

always gives better recognition scores than those for the corresponding shallow ver-
sion. The average relative error rate reduction in the unaltered settings is 7.50%,
while in the trained version it is 8.96%.

5.3.2 Experiments on Speech Contaminated with Artificial Noise

We repeated the experiments of clean speech on noise contaminated versions of the
TIMIT test set. Here, the models we evaluated were trained on the clean version
of the train set, and only the test set was contaminated with noise. First, we
used two artificial noise types for this, namely Band-limited noise and pink noise.
The numerical results of these experiments are listed in Table 2. Because we have
much more data here, a detailed analysis becomes more complex as well. So let us
examine the questions raised in the last section separately.

The first question is about how the recognition performance varies in the case
where the filter coefficients are unaltered compared to the case where the filter coef-
ficients were also trained. To make the comparison easier, in each unaltered/trained
pair of Table 2, when there was a significant difference, the better recognition score

Table 2: Phone recognition accuracy scores got on the test set of TIMIT con-
taminated with Band-limited and Pink noise with different Signal to Noise (S/N)
ratios.

Noise S/N Initial Original framework DNN framework
type ratio Filter weights unaltered trained unaltered trained

10db
Gabor 45.76% 47.47% 46.36% 47.21%

2D DCT 47.74% 47.57% 48.52% 46.52%
Band- Random 44.46% 46.35% 45.99% 46.14%
limited

20db
Gabor 60.58% 60.13%* 58.03% 58.11%

2D DCT 60.01% 60.71%* 58.92% 57.89%
Random 54.89% 59.32% 58.58% 57.80%

Pink

10db
Gabor 32.16% 35.97% 37.34% 38.39%*

2D DCT 32.23% 35.24% 35.73% 37.19%*
Random 29.29% 34.60% 35.70% 37.04%*

20db
Gabor 53.40% 56.87% 59.32% 60.05%*

2D DCT 51.84% 55.70% 57.99% 59.28%*
Random 47.75% 54.98% 56.73% 59.66%*
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is emphasized in bold. As can be seen, the two types of artificial noise behave quite
differently. With pink noise we see the same thing that we saw in the Clean settings
case, namely that the trained version always yielded significantly better recogni-
tion rates. With band-limited noise, however, in most cases there is no significant
difference between the trained and unaltered version. And when there is, usually
the trained version is better for just the original framework.

The second question is about how the recognitition performance changes when
moving from the original framework to the DNN framework. In this case, to make
the comparison easier, in each row of Table 2 where there is a significant difference
between the best result got with the original framework, and the best result got
with a DNN framework, the framework with a better performance is denoted by an
asterisk. As before, we also observe a big difference between the two artificial noise
types. In the case of Pink noise, the recognition scores got by the DNN framework
are significantly better than those got by the original framework; but this is not so
in the case of Band-limited noise. With the latter type there is usually no significant
difference in the performance, and in both cases where the difference is significant,
the original framework tends to produce better results.

From our findings (see Table 2), we can say that with Pink noise the results
are what we expected them to be: the DNN framework not only outperforms the
original one, but it also consistently gives significantly better scores with trained
filter coefficients. This is not the case with Band-limited noise, where the DNN
framework does not provide significantly better results than those got with the
original one, and it also tends to produce better scores with unaltered filter coef-
ficients than with trained ones. Lastly, we should mention that with Band-limited
noise we got the best result with 2D DCT, while with Pink noise it was Gabor
filters that provided the best recognition score.

5.3.3 Experiments on Speech Contaminated with Real-Life Noise

We also conducted experiments with noise types got from real-life applications, the
results of which are summarized in Table 3. As we have too much data to overview
at once, let us once again examine each of the above questions in turn.

As in Section 5.3.2, we first compare the recognition scores got when the filter
coefficients were unaltered compared to the case where the filter coefficients were
also trained. And as we did previously, in each unaltered/trained pair of Table 3,
where there was a significant difference, the better recognition score is shown in
bold, for easier visualization. We see in Table 3 that for Factory and Volvo noise,
the DNN framework with trained filter coefficients provides better recognition rates
than with filter coefficients left unaltered. The picture is a slightly less clear with
Babble noise, but even with this noise type we can say that usually with this
framework we got better recognition scores by the training of filter coefficients
than without it. When we compare the two frameworks, we see a clear tendency.
In each of the eighteen cases, without exception, the best result was got with the
DNN framework.

To summarize our findings presented in tables 1,2 and 3, we can say that with
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Table 3: Phone recognition accuracy scores got on the test set of TIMIT contami-
nated with Babble, Factory and Volvo noise, with different Signal to Noise (S/N)
ratios.

Noise S/N Initial Original framework DNN framework
type ratio Filter weights unaltered trained unaltered trained

Babble

10db
Gabor 45.64% 45.84% 49.39% 49.27%*

2D DCT 44.10% 44.96% 48.67% 47.25%*
Random 43.26% 43.75% 49.56% 46.62%*

20db
Gabor 62.58% 63.05% 66.59% 66.91%*

2D DCT 61.12% 62.39% 65.41% 65.83%*
Random 61.70% 62.36% 65.45% 66.58%*

Factory

10db
Gabor 37.63% 41.94% 43.93% 45.27%*

2D DCT 38.27% 41.32% 43.34% 44.42%*
Random 41.15% 41.05% 43.70% 45.40%*

20db
Gabor 58.11% 61.14% 64.07% 64.66%*

2D DCT 57.84% 60.53% 62.83% 63.68%*
Random 59.89% 60.06% 62.57% 64.48%*

Volvo

10db
Gabor 66.95% 67.39% 71.11% 71.74%*

2D DCT 67.03% 67.21% 70.47% 70.81%*
Random 67.69% 66.14% 70.63% 71.41%*

20db
Gabor 70.41% 71.52% 73.68% 74.47%*

2D DCT 70.29% 71.30% 73.33% 74.00%*
Random 70.93% 70.78% 73.15% 74.46%*

the exception of Band-limited noise, the DNN framework not only provides better
results than the original framework, but in most cases it also yields better recog-
nition scores when the filter coefficients are trained. We also see that usually the
best performance was achieved when we employed Gabor filters.

6 Fine-Tuning Convolution

In both the original framework and the DNN framework, we utilized the simplest
version of convolution where the patches used were direct neighbours of each other.
Furthermore we combined the convoluted layers immediately after the feature ex-
traction layer. This, however, is not necessarily the optimal solution. Hence, below
we will describe experiments where we sought to fine-tune the convolutional pa-
rameters and the structure of our model.

6.1 Adjusting the Convolutional Structure of the Model

So far, we have been combining the results got from the convolutional feature
extraction layer in the first rectifier layer. It is possible though, and it may be ben-
eficial, to perform convolution in one of the rectifier layers as well, and combine the
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Figure 3: Structure of the deep neural net with modified convolution (DNN-Conv)
for joint feature extraction and classification. Here, the new elements in the figure
are the three hidden (rectifier) layers, one of which applies convolution.

outputs later. This, however, would lead to a massive increase in the parameters of
the model, since the number of outputs in the hidden layer would then be the same
as the number of neurons in that layer times the number of neighbouring patches
used, which in our case is 9000 (1000 times 9). This (in combination with the 1000
neurons in the next layer) would increase the number of parameters by ∼7.5 million
(an increase of approximately 200%). To avoid this, here we propose two further
modifications. First, instead of using all four neighbours on both sides, we will use
only two in such a way that we skip every second patch, which means that the
neural net takes its input from the same time-span as before. This modification
will reduce the number of extra parameters to ∼3.5 million (an increase of approx-
imately 40%). If we also reduce the size of the convolutional rectifier layer from
1000 neurons to 200, we can further reduce this number, eventually making the pa-
rameter count of the DNN framework quite similar to the parameter count of the
original framework (∼2.1 million). The structure of the new neural net framework
with the proposed modifications (DNN-Conv framework) can be seen in Fig. 3.

6.2 Number of Neighbours Used

Earlier, we limited the number of neighbouring patches used in convolution by just
applying every second patch. As our preliminary results seemed quite promising,
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Figure 4: The frame level error rates of the validation set as a function of skipped
patches in neural nets using Gabor (solid line), 2D DCT (dashed line) and Random
(dotted line) filters.

this raised the question of how many patches should be skipped for an optimal
performance. To answer this question, we decided to independently train ten neural
nets, each with patch omissions from 1 to 10, using Gabor, 2D DCT and Random
spectro-temporal filters (300 neural nets altogether). The average frame level error
rates of these experiments are shown in Fig. 4. As can be seen, the best results were
achieved with 2D DCT and Random filters (with a 18.78% and 18.87% error rate,
respectively) when skipping three patches between the patches used. With Gabor
filters some additional improvement could be achieved by skipping 4 patches instead
of three (18.63% instead of 18.71%), but as this difference was not significant, we
chose to leave out 3 patches for each model version investigated in all our subsequent
experiments.

6.3 Results

To evaluate the effect of the proposed changes on the phone recognition accu-
racy scores of the framework, we repeated our experiments on the TIMIT speech
database. As in Section 5.3, first we will describe the phone recognition results got
on clean speech, then we will discuss the results got on speech contaminated with
artificial noise; and after we will present the results got on speech signal contam-
inated with noise types arising in real-life applications. Because in the previous
experiments the configuration where the filter coefficients were also trained by the
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Table 4: Phone recognition accuracy scores got on the clean test set of TIMIT.

Initial Original DNN DNN-Conv
Filter weights framework framework framework

Gabor 73.76% 76.63% 77.02%

2D DCT 73.46% 75.85% 76.78%
Random 73.47% 76.42% 76.75%

backpropagation algorithm yielded a significantly better performance in most cases,
here we only experimented with this setting. We will compare the results got with
the best results got with the DNN and the original framework (regardless of whether
the result was got using unaltered filter coefficients or trained ones).

6.3.1 Experiments on Clean Speech

The results we got from applying our procedure on the uncontaminated version of
TIMIT test set are summarized in Table 4. As can be seen, the proposed modifi-
cations in the framework produced phone recognition accuracy scores that are not
just better than those got using the original framework, but also better than those
got using to the DNN framework. Also, the improvement in the recognition scores
is significant in each case.

Table 5: Phone recognition accuracy scores got on the test set of TIMIT con-
taminated with Band-limited and Pink noise, with different Signal to Noise (S/N)
ratios.

Noise S/N Initial Original DNN DNN-Conv
type ratio Filter weights framework framework framework

10db
Gabor 47.47% 47.21% 50.25%

2D DCT 47.74% 48.52% 50.54%

Band- Random 46.35% 46.14% 49.68%

limited
20db

Gabor 60.58% 58.11% 61.90%

2D DCT 60.71% 58.92% 62.52%

Random 59.32% 58.58% 62.30%

Pink

10db
Gabor 35.97% 38.39% 38.55%

2D DCT 35.24% 37.19% 38.67%

Random 34.60% 37.04% 38.13%

20db
Gabor 56.87% 60.05% 60.11%

2D DCT 55.70% 59.28% 59.91%

Random 54.98% 59.66% 59.41%
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Table 6: Phone recognition accuracy scores got on the test set of TIMIT contami-
nated with Babble, Factory and Volvo noise, with different Signal to Noise (S/N)
ratios.

Noise S/N Initial Original DNN DNN-Conv
type ratio Filter weights framework framework framework

Babble

10db
Gabor 45.87% 49.39% 50.30%

2D DCT 44.96% 48.67% 49.40%

Random 43.75% 49.56% 48.54%

20db
Gabor 63.05% 66.91% 68.20%

2D DCT 62.39% 65.83% 67.83%

Random 62.36% 66.58% 67.38%

Factory

10db
Gabor 41.94% 45.27% 45.09%

2D DCT 41.32% 44.42% 45.11%

Random 41.15% 45.40% 44.87%

20db
Gabor 61.14% 64.66% 65.18%

2D DCT 60.53% 63.68% 64.68%

Random 60.06% 64.48% 64.42%

Volvo

10db
Gabor 67.39% 71.74% 72.48%

2D DCT 67.21% 70.81% 72.14%

Random 67.69% 71.41% 72.36%

20db
Gabor 71.52% 74.47% 75.25%

2D DCT 71.30% 74.00% 75.08%

Random 70.93% 74.46% 75.11%

6.3.2 Experiments on Speech Contaminated with Artificial Noise

Here, we used the version of the TIMIT test set that was contaminated with artifi-
cial noise types. The results of these experiments are summarized in Table 5. For
better visualization, in each row we highlighted the best phone recognition accuracy
score and the ones that do not significantly differ from it in bold. As can be seen,
with Band-limited noise the framework with our two modifications significantly
outperforms every other framework tested. Pink noise is not much different from
this, as in that environment the recognition scores we got with the new framework
were always significantly better than those got with the original framework. When
these results are compared with those got using the DNN framework, usually they
were better as well, with the exception of three cases where there was no significant
difference.

6.3.3 Experiments on Speech Contaminated with Real-Life Noise

Lastly, we repeated our experiments on speech contaminated with noise types aris-
ing from real-life applications. The results given in Table 6 tell us that with Volvo
noise the results got with the DNN-Conv framework surpass even the best results
got with the Original framework or the DNN framework. The picture is not so
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clear with Babble and Factory noise, but usually with those settings the best re-
sults were got by applying the DNN-Conv framework. We also see that when there
was substantial difference between the best results that were obtained with the
DNN-Conv framework using different filter sets, in most cases the best scores were
got from using the Gabor filter set.

7 Conclusions and Future Work

Here, we presented our framework for the joint optimization of neural nets and
spectro-temporal filters. This framework was described in an earlier paper and
here we proposed two refinements to the framework to improve its performance.
While the first modification brought about an improvement in the recognition scores
compared to the original framework, we got the best performance when we applied
both refinements. As we saw, the scores provided by the framework that applied
both modifications were significantly better than those got using our original frame-
work, regardless of the filter set applied or the noise used to contaminate the speech
signal.

In the future we would like to improve our neural net framework still further.
First, we could improve the ASR performance of the system by simulating the ∆
and ∆∆ features with neurons, as we did when we simulated the filtering with
neurons. Second, we would like to find out whether it is possible to efficiently
combine this framework with multi-band speech recognition. The features obtained
from different bands could then be fed to separate classifiers, and after the resulting
posterior values could be combined and become the input for another neural net.
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[14] Tóth, L. Phone recognition with deep sparse rectifier neural networks. In
Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6985–6969. IEEE, 2013.

[15] Varga, A. and Steeneken, H. Assessment for automatic speech recognition: Ii.
noisex-92: A database and an experiment to study the effect of additive noise
on speech recognition systems. Speech Communication, 12(3):247–251, 1993.
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