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TAMÁS FREY 
1927—1978 

To our regret we learned that Tamás Frey, member of the editorial board of 
these Acta prematurely died on April 9, 1978. He held the Chair of Matmatics at 
the Budapest Technological University and was a Doctor of Matematical Sciences. 
In him we lost an interesting and many-sided individual. 

He obtained significant results in several branches of mathematics. His first area 
of interest was classical analysis; later he turned to the theoretical problems of 
abstract automata and computer science. 

We cherish his memory. 

1 Acta Cybernetics IV/2 





On some types of incompletely specified automata 

BY M . K . CHIRKOV 

1. Preliminaries 

In this paper the most general definition of an incompletely specified (or par-
tial) finite automaton (generalized, probabilistic and deterministic) is proposed 
and some special classes of such automata are introduced. The conceptions of 
this paper are the further development of the author's ideas, stated in the book 
[1]. The known notions of partial finite automata (for example [1], [2], [3] and [4]) 
are included in the proposed definitions as exeptional cases. For the notations 
and notions that will not be defined here, the author refers to the books [1] and [5]. 

First of all it is useful to recall some definitions of the completely specified 
finite automata theory [1] and [5], and introduce some further notations. 

By an alphabet X we mean a finite non-empty ordered set of elements. A finite 
sequence X(t)=XslXSi... XSt (XS.£X, i&0) is called a word over X, and t=\Xw\ 
is the length of Xw. We use the notations X* and X' for the set of all words over 
X and for the set of all words of length t over X, respectively. Besides the following 
notations are used for the sets of all real numbers, vectors and matrices: 

m = (-~>, =o), Mm = {r\r = (rlt r2, ..., r j , i = T^i), 

0T-" = {R\R = (r0.)m,„, r^m, i = j = 17^}. 
A vector is called stochastic (or probabilistic) if all its entries are non-negative 

and the sum of its entries is equal to 1. A matrix is called stochastic (or probabilistic) 
if all its rows are stochastic vectors. A stochastic vector is called degenerate if one 
of its entries is 1 and the other are equal to 0. A stochastic matrix is degenerate 
if all its rows are degenerate stochastic vectors. The following notations are used for 
the sets of all stochastic (degenerate stochastic) m-dimensional vectors and ( m X n ) -
matrices: 

0>m = {p\p = (p1,p2,...,pm), p ;€[0, 1], i = ZPi = l}, 
i 

= {d\d = (d1,d2,..., dm), o, i}, i = 2 ¿i = I}-
i 

= {p\p = (Pij)mtn, pu£[0, 1], ZPij = 1, i = hm, J = r ^ } , 
j 

®m'n = {D\D = (¿fj.)mi„, dye{o, 1}, 2 d,j = 1 ,i = T^m, j = IT"}. 
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Let X={X1,X2,...,X„}, A = {A1,A2, ...,Am}, Y= {71; V2, ..., Yk) be the 
alphabets of inputs, states and outputs, respectively. Then a finite generalized auto-
maton is a system 

A gen=(X,A,Y,r™,R) (1) 

where r(0>£&m is the initial vector and R (£{%nm-km) is the transition-output matrix, 
which presents a mapping of XxAxYxA into the set of real numbers 0t. The ma-
trix R is usually represented by a combination of its nk square submatrices (Xs, y,)} 
such that 

•• ' TO flCA^n) ... n ) ) 
R 

R(X„,Y1) R(X„,YS) ... R(X„,Yk)) 

In this case it may be said that R presents a mapping of XX Y into Mm,m. The 
domain of this mapping is extended from XX Y to (XX. Y)' ( /=1 ,2 , ...), where 

(XXY)' = YW)\XM£ X', YMeY'} 
and 

R(X{'\YW) = [[ R(XSt,Ylt), 
¡=1 

with 
X^ == XS1XS2 ... XSt, y(() = YtiYh...Ylc. 

The generalized mapping <P induced by a generalized automaton Agen (in notation: 
i11- Agen) is the mapping of 

(XXY)* = { ( Z W , F ( " ) ¡ X ^ e X ' , t = 0, 1, ...}, 

into 3% defined by 

yW) = r(o) f i R(XSi,Yt)e, 
i = 1 

where e is the m-dimensional column vector whose each entry is 1. 
Hereafter we use the term automaton to mean a finite automaton. 
A probabilistic automaton 

A pr = (X,A,Y,p«>\P) (2) 

is a generalized automaton (1) such that r(0) =pi0) €0>m and R = p<o) js c an e c i 
the initial probabilistic distribution on the state set A and P is called the transition-
output probability matrix of the automaton A„r. The elements of P are treated as 

Psuj = PrWAjlXsAJ. 
A probabilistic automaton Apr induces the probabilistic mapping <P of (XX X)* into 
the closed real interval [0, 1] defined by 

- 4>(X{'\ y«>) = Pr(Y{,)\Xw) = /;(0) ¡jP(Yli\Xs)e, 
i = l 

where P(YU\XS) is the proper square submatrix of R. 



On some types of incompletely specified automata 153 

A deterministic automaton 
Adet = (X,A,Y,S°\D) 

is a probabilistic automaton (2) such that p i0) = d(0)£@m and p=D^S)n m-k m . If 
d(0) = (dl, d2, ..., dm), dj = 1, dt = 0, i^j, then Aj is called the initial state of Adet. 
A deterministic automaton Adet with the initial state Aj induces the deterministic 
mapping 

Фу. X* ^Y* 
given by 

ф.(Xм) = У <() о d(0) ]J D(XS., Yh)e = l. 
¡=1-

2. Partial vectors, matrices and automata 

Hereafter we use the term "partial" to mean "incompletely specified". In 
accordance with the classical automata theory an automaton Agen (Apr or Adet) is 
partial if some of the elements of rf°\ R (p(0>, P or dim, D) are undefined and rep-
resented by "—" ([2], [3] and [4]). The conditions under which this occurs are 
usually treated as "don't care conditions" when either some combinations of in-
put and present state never occur or the output (the next state) is of no concern 
for some combinations of input and present state. Such an incomplete specification 
is usually interpreted to mean that the designer may use these incomplete speci-
fications in arbitrary way to his advantage in obtaining a completely specified 
automaton. It is clear that such an interpretation of partial automata is not 
universal and does not embrace many interesting (as theoretical, so practical) 
cases. For example, there are many such problems that an incomplete specification 
of an automaton is the result of our ignorance of its exact structure or is the 
effect of the opportunity to choose its structure from a certain restricted class of 
structures. As a rule in practice there are not free choises of the indeterminate 
elements of r ( 0 \ R (p(0\ P or d(u>, D) and the various ways of their specification are 
closely interdependent. Thus it will be usefull to offer the most general interpre-
tation of partial automata. 

Some more general classes of partial probabilistic vectors, matrices and automata 
were proposed and studied by the author in the book [1]. Now we are going to make 
the furthermost generalization of the concept of partial vectors, matrices and auto-
mata. The main idea of this generalization is that any partial object (vector matrix, 
automaton) may be treated as a set of completely specified objects (vectors, matrices, 
automata) which are the results of various ways of its specification. Thus it is possible 
to describe this partial object by means of a set of objects and to investigate this set. 

We shall now introduce the following general definitions. Any non-empty 
subset r of the set 9tm is called a partial m-dimensional vector. Any non-empty 
subset R of the set " is called a partial (m Xn)-matrix. For instance, the partial 
(mXm) -matrix 

R = {R\R£3tm'm, ]-K[€(0, 2]} 

is the subset of those (mXm)-matrices whose determinants have values lying in 
the interval (0, 2]. 



154 M. K. Chirkov 

A partial generalized automaton is a system 

Agen — ( X , A, Y , r w , R) ( 3 ) 

where X, A, Y are as usual the alphabets of inputs, states and outputs, r(0> (G32m) 
is a partial initial vector and R is a partial transition-output matrix. 
A partial generalized automaton (3) defines the set of completely specified generalized 
automata (1) such that 

Agen€A „ „ O f f o ' e ^ & R£R. 

By the partial generalized mapping $ induced by Agen we mean the following set of 
mappings of (XX10* i n t ° 

§ = {$\$]- Agen, Agent AgenY 

3. Partial /»-vectors, /»-matrices, /»-automata 

In accordance with above definitions any non-empty subset p of the set SPm 

is called a partial probabilistic vector, or shortly, a partial p-vector. Any non-empty 
subset P of the set 0""'" is called a partial probabilistic (mXn)-matrix, or shortly, 
a partial p-matrix. Thus, any partial vector r (matrix R) is a partial p-vector (p-
matrix) if and only if all r f j - (R£R) are stochastic. 

A partial probabilistic automaton (a partial p-automaton) is a system 

A pr = (X,A,Y,pO\P) 

where p{0> Q 0>m, P 0>nm-km and 

Apr€Apr «=>• p(0)£/?(01 & PiP. 

So far we have said nothing about methods of specification of r(0), p(0\ R, P. 
As it was shown in [1] some problems of abstract theory of partial automata may be 
investigated without indication of such a concrete specification method. But there 
are many problems which may be solved only if this method is given. Many different 
types of partial vectors, matrices and automata may be constructed by various methods 
of specification of r t0), /¡(0), R and P. Some of them will be introduced hereinafter.. 

4. Partial /-vectors,/-matrices,/-automata 

Let £1, •••> be q independent parameters and d1, a2, ..., aq be their 
' domains. Let /¡(£ l 5 £,2, £«) 0"=L tri) be real single-valued functions. Then a 

partial vector 

f={r\r = (r1,r2,...,rm), rt =/;((?!, ..., Q, i = 1, m, v = l , q} (4) 

is called a partial f -vector and is presented as 

f - i m Q I M i Q ) , - M Q ) ) v = ¡77) 
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where 

Accordingly, a partial matrix 

W R = {R\R = ixij)m,n5 ru =fij({Q), i = Um, j = U v - I~q), 

where/Jj is a real single-valued function ( i = l , m, j= 1, n), is called a partial f-ma-
trix and is presented as 

R = (/y (&}))«. . v = U ) . (5) 
For example, 

* - Mt4 
is a partial square /-matrix of order 2. 

By substituting the different values of the parameters into / or f t j , the various 
completely specified vectors or matrices of r or R may be found. 

We say that a function /({cv}) essentially depends on the parameter £v if there 
exist b1} b2 £ <?v such that 

f ( J i 1 , ••• > £ v - l > b l , ^v + 15 ••• > ^Ij) ^ / 0 ^ 1 > ••• > 4 v - l > 5 + •••5 i g ) 
holds. 

A partial /-vector (4) essentially depends on if some of its elements essentially 
depends on £v. Two partial /-vectors are called indepedent if there is no such parame-
ter on which both /-vectors essentially depend. 

If every two rows of a partial /-matrix are independent partial /-vectors then 
this matrix is called a partial f-matrix with independent rows and it may be represen-
ted in the form 

R = ( f i M ^ j U n C ^ ' W , i = h m , V = h q d , 

where all parameters are independent. 
If every two columns of a partial /-matrix are independent partial /-vectors then 

this matrix is called a partial f-matrix with independent columns. Such a matrix 
may be represented in the form 

R = (fiMW}))^ v = 1, qj, j = 1, m). 
For example, 

where 
Ul2 )+cosf<2 ) 3 <?i2) cf,?) Y 

^ [ y . l ) , {0,1,2}, 

71 Tl 
LT' ~4f 

is a partial square /-matrix of order 2 with independent rows. 
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In accordance with above definitions a partial generalized f -automaton is a system 

Agen = (X, A, Y, r<0\ R), (6) 

' < 0 ) = ( / i ({cv}) . /2({cv})=. . . , / * ( { £ , » ) . 

R = (U lj ( {Q))nm, km , f v 6 <?v , V = 1 ,q 

where / ¡ , / s i j ( j are real single-valued functions defined on all <!;v(£<jv, v= 1, q) and 
<7W ( v= l , q) are specified. 

Let R(XS, Yt) be a partial square /-submatrix of R defined by 

Yd = {fsi.iMQ)) 

i = 1, m, j = 1, m. 

Then the partial generalized mapping $ (the set of mappings of (XX Y)* into Sk 
induced by the partial generalized /-automaton (6) may be defined by 

$(X<'\ 7 « ) = ¿R(XSi, Y,t)e (cv6av , v = 17q). 

5. Partial //-vectors, //-matrices, //-automata 

A partial /-vector (4) is probabilistic if and only if 

O s / , ( { i v } ) s l a n d ^ / , ( { { V } ) = 1 v = l 7 ? ) . (7) 
i 

Such a partial /-vector is called a partial pf-vector. A partial /-matrix (5) is a partial 
pf-matrix if 

. and 2/u({Cv}) = 1 v = Uq, i = (8) 
j 

For example, 
'sin2 £ cos2 £' 

i ! 
71 71 

Hm)) 
is a partial square pf-matrix of order 2. 

It is clear that there are no partial //-matrices with independent columns, but 
we shall say that a partial / /-matrix P is a partial pf-matrix with minimal dependent 
columns if there is a partial /-matrix R with independent columns such that for 
every completely specified stochastic (mXn)-matrix P, 

PeP*>P£R 
holds. 

A partial probabilistic f-automaton (i. e., a partial pf-automaton) is a system 

kpt = (X,A,Y,p*\P), 
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and 

where 
P(a) = (/i({U)> -./«(&})). 

2fi({Q) = i (9) 
i 

P = C/si, I j ( v}))nm, km ' 

0 ^ f s u A Q ) = 1, ZfsuMQ) = U (10) 
u 

çv€<rv, v = \ , q, s=l,n, i,j=\,m, l=l,k. 

6. Partial /-vectors, /-matrices, /-automata 

A partial /-vector defined as 

f = C f I , / , , - , / J , = 
V 

i = \,m, £ v €i v , v = 1, q 

where ajv> (v = 1, q, i= 1, m) are real coefficients, is called a partial l-vector. A partial 
/-matrix defined as 

R = (fu)m,n, fu = 2 <V>Cv, 
V 

i = l , m , 7 = 1, n, £v€<xv, v = l ,q, 

is called à partial l-matrix. For example, 

I 4 2 ^ + 1 &J* 

M l « 4 ] ' M 2 ' 4 ) -
A partial generalized l-automaton is a system 

Agen = (X,A,Y,r(°\R), 
where 

r«» = (Z a i v ) £v, 2 4 v ) i v , 2 
V V V 

^v)nm, km > 
v 

Accordingly, a partial /-vector (/-matrix, generalized /-automaton) is a partial 
/»/-vector (/^/-matrix, ^/-automaton) if for all its entries / ( / j , / , / , - , ^ ) the conditions 
(7) ((8), (9), (10)) hold. Some examples of partial pi-automata may be found in [1]. 
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7. Partial ¿-vectors, ¿-matrices, ¿-automata 

A partial /-vector in form 

r = ( £ ( i v € < 5 v , v = l , q ) 

where dv (v = l, q) are defined subsets of is called a partial vector with independent 
elements, or more briefly, a partial a-vector and is specified as 

(11) 

A partial /-matrix in form 

R = (£ij)m,n i = 1, m, j = \,n), 

where a^ (i—\,m, j=\,ri) are defined subsets of 1%, is called a partial a-matrix 
and is specified as 

& = (?tj)«.», (12) 

i.e., in form of matrix whose elements are defined subsets of 0t. For example, 

H1] M {T.tMT1] 
2 i _ i 11 j i 1 1 } 
4 I 2 ' 2) 18 ' 4 ' 2 J 

1 0 {t\Z = Y' < = l > 2 > - } 

It is useful to notice that each partial /-matrix with independent rows and 
columns may be represented in form of a partial 5 -matrix. 

Accordingly with these definitions a partial generalized 5-automaton is a system 

R = 

Agen = (X, A, Y, ?<»>, R), 

z(o) r»> = (<?!, <?2, ..., &m), R = {dsUj)nmikm 

where 5sUj are defined subsets of St. If 

„(0) 

Age„ = (X, A, Y, r«»f R) 

(r1,r2, ..., rm), R = (rsi<lj)nm k 

(13) 

is a completely specified generalized automaton then 

Agen€Agen r^Si & rsUJ€dsUJ for all s,i,l,j. 
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8. Partial pa-\ectors, /^-matrices, /»a-automata 

A partial p-vector with minimal dependent elements is a subset of 0"" defined as 

P = {P\P = (Pl> P2, PmlPi^i^l0, 112 Pi = lY 

Such a partial /»-vector is called a partial pa-vector and is specified in form 

p = (a1,a2, ...,am) (14) 

where a t ( /=1, rri) are defined subsets of [0, 1] and the condition £ Pi = 1 is omitted 
as obvious. ' 

A partial /»-matrix defined as 

P -- {p\p - ouj)m.n, Pu^ij i [o, i], 2Pij = 1, i = j = 
J 

may be specified in form 
P = (?ij)m.n (15) 

where a^ ( /=1, m, j= 1, n) are defined subsets of [0, 1] and the conditions 2 Pij= ' j 
(i= 1, m) are omitted as obvious. Such a partial p -matrix is called a. partial pa -matrix. 
It is clear that each partial /»/-matrix with independent rows and minimal dependent 
columns may be specified in form of a partial pa-matrix. 

We say [1] that a partial pa-vector (14) is correctly specified if <?,• ^ 0 
m 

(aiQ[0, 1], /=1 , m) and for each P j ^ S j there exists p t 6 ( i ^ j ) such that 2 Ps= 1 
S = 1 

(j= 1, m). A partial pa -matrix is correctly specified if each of its rows is a correctly 
specified partial pa-vector. For example, 

P = 
H) M 

is a correctly specified partial pa -matrix. 
A partial pa-automaton is a system 

A pr = {X,A,Y,p^\P) 

where p(-°'> = (S1,di,..., am) is a correctly specified partial pa-vector (a partial prob-
abilistic distribution on the state set) and P=(asijj)nm,km is a correctly specified 
partial transition-output pa -matrix. 
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9. Partial /-vectors, /-matrices, /-automata 

Let us propose the following notations, where oc, /?£{0, 1}: 

H ( i f « = 0, 0 ( ) if 0 = 0, 
[ if a = 1 I _ I ] if fi = 1. 

A partial <7-vector (11) is called a partial vector with interval elements (a partial 
i-vector) if in (11) 

fi, 
= I I ( ' =hm) 

<xi 

where a , - , { 0 , 1}, a h ¿,6 <b i if «¡/^ = 0, if a , /? ;=l . Thus a partial 
/-vector is a partial ¿-vector such that each of its elements is an interval (closed or 
unclosed) . 

Accordingly, a partial i-matrix is a partial ¿-matrix (12) such that 

du= | au,bu | (/ = 1, m, j = 1, n) 

where (iu£ {0, 1}, au, fi^M, a^b^ if ccupij=0, if = For 
example, 

R 

A partial generalized i-automaton is a system 

Agen - (X, A, Y, r«», R), 

( Pi h ^ 
= | «i. »1 | » | a2,b2 \ , am, bm | I, 

«2 • / « ' 

^ = (l asUJ, bsiJJ f ' ' J ) Va . /nm, 

(16) 

fcm 

A partial generalized /-automaton (16) defines a set of completely specified gen-
eralized automata such that 

Agen £ Agen a,,^] & /-s/i tj e I £>si, ¡j | for all s, /, l,j 

where Agen is defined by (13). 
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10. Partial /»/-vectors, /»/-matrices, /»/-automata 

A partial pi-vector (a partial probabilistic vector with interval elements) is 
a partial pa-vector (14) such that 

' s, = \ a,-, b £ i ' g [0 ,1 ] 0 = 1 7 ^ ) . 

A partial pi-matrix is a partial pa-matrix (15) such that 

f„ 
au = | au, bu | i [0 ,1 ] (i = 1, w , j = 1, n). 

For example, 

P = 
[0; 0,3) [0,2; 0,4] (0,3; 0,8] 

(0,1; 0,2] (0,3; 0,5] [0,3; 0,6) 
[0,2; 0,3] [0,5; 0,6] 0,2 

is a correctly specified partial square /»/-matrix of order 3. 
A partial pi-automaton is a system 

kpr = (X,A,Y,p^,P) 

where p<0) is a correctly specified partial m-dimensional /»/-vector and P is a correctly 
specified partial /»/-matrix of size nmXkm. In the case of closed intervals the problem 
of partial /»/-automata minimization was studied in [1]. 

11. The conditions of correct specification 

Now we are going to find the conditions which must be satisfied for correct 
specification of a partial /»/-vector (/»/-matrix, /»/-automaton). Such conditions in 
case of at = pi=l ( /= 1, m) were found in [1]. 

Theorem. Let p be a partial pi-vector defined as 

Vhere 
P = I a i , i > i \ , \ «2, b2 V«1 «2 

> bm (17) 

ah ¿»¡f' ^ 0, I a „ b,'\' g [0,1], i =1, m. 

ahen p is correctly specified if and only if the following conditions hold for j=\, m: 

(a) l - 2 b , (18) 

and 
«j = 1 ~ 2 b, & 3 i: i # j, p.= 0 =y a j = 0, (19) 

(b) bj* 1 - 2 a, (20) 
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and 
bj = l - 2 a, = 0 =• fij = 0. (21) 

Proof. For the proof of the necessity let p be a correctly specified partial pi-
vector. Since p^Q thus 2 — 2 1> and for every j, 

i i 

bj s 1 - 2" b„ a j ^ l - 2 * i - (22) 

Assume now that the condition (18) does not hold for any j and bj—aj>0, 

a j ^ l - 2 b t . (23) 
Then we take 

aj + l - 2 h 
Pj = . ( 2 4 > 

f j 
Since (22) and (23) hold thus a^p^bj and pj£\ aj, bj |. Since p is correctly 

*j 
specified thus there must be a probabilistic vector p=(j>1,p2, ...,pm)£p such that 
Pj has a value (24). Then for p, 

aj+l-2bi aj+l-2bi 
2 v i = 1 = ~ J — + 2 v i ^ 2 b t 
i ' Z i j t j A iyij 

holds. This implies that 

which contradicts our assumption (23). Therefore in the case bj — a j > 0 the condition 
(18) holds. 

In exeptional case when dj=[aj,aj]=aj, every probabilistic vector pdp has 
P j = a j and, therefore, 

2 Pi = 1 = a j + 2 Pi = <*j+ 2 P i , 
i ¡¡¿j i^j 

i.e., the condition (18) also holds. 
Assume now that aj=l — 2bi (i.e., aj+ 2 bt = \) and there is an s ^ j such 

. i / j iVj 
that Ps=0 but <y.j= I. Since p is correctly specified thus in this case there is a proba-
bilistic vector pdp such that Pj=aj, ps<bs. Then for the vector p, 

2 P i = 1 = a j + 2 Pi< a j + 2 bt 
i i^j 

holds. But this contradicts our assumption. Therefore <^=0 and the condition (19) 
holds. This ends the proof of the necessity of the conditions (a). 

The necessity of condition (b) can be shown similarly. 
Conversely, assume that conditions (a) and (b) hold for p. We prove that p 

i>j 
is correctly specified. Let us take any j and any pj£ | a j , bj | . It follows from (18) 
and (20) that "j 

1 - p j £ 1 -bj s 2 c>i, 1 -Pi ^ 1 -aj ^ 2 bt. (25) 
i^j i^j 
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We take for zVy the following elements of a vector p = (p1,p2, • •••,pm) 

1 - P j ~ 2 "i 

P' = a' + Vft - aJ * J)' (26) 2 (Oi-flj) 

where 2 (¿»¡—a,)>0 (if 2 ( b t~ a i )=® then a i = 0 ' = 1, w) and /» is a completely 

specified probabilistic vector). Then for the vector p, 

i.e., p is a probabilistic vector. Now we shall prove that p£p. 
From (25) and (26) we have that /»;Saf OVy) and for any i ^ j , 

p. = fl. o = a( V 1 - p . = 2 a.-

If ¿¡=0; then <r;=[a;, =a , . If 1 —pj = 2ai then in accordance with (25), P j = b j 

Pj= I, 1 —bj= 2 ai a n d it follows from (21) that a ~ l ( i^ j ) . Thus if pi=al for 

any i ^ j then a ; = l and /»; € =[a,-, ¿»,-1. Moreover, it follows from (25) that 

1 -Pj~ 2 Qi^ 2 
iVj iVj 

Therefore, Pi = b{ (i^j), and for any i^j, 
P i = bi <=• bi = a-, V 1 - P j - £(¡1= 2 (bi~ai)-

If bi = ai then = = If 1 2 (bi~ai) t h e n 1 -Pj= 2 bi and> 

in accordance with (25), p — a^, a,- = 1. In this case the condition (19) implies $¡=1 
(i^j). Thus if Pi = bi for any i ^ j then fl~ 1 and /»;6 <7; = | ¿»¡]. Finally, if for 

any i ^ j , a ^ P i ^ b i then /»¡£ \a i ,b i | . Thus, we proved that the constracted vector 
ai 

p is probabilistic and pip. Therefore, p is correctly specified. This completes the 
proof of the Theorem. 

12. Partial ¿»-vectors, ¿»-matrices, ¿»-automata 

A partial /-vector 

r = (f1({Q),f2({Ql-,fMQ)) (Cv€{0,1}, v = (27) 

where/({¿;v}) (i=l,m) are boolean (logical) functions, is called a partial boolean 
vector (a partial b-vector). A partial /-matrix 

R = C/u({W))m.. (£,€{<>, 1}, v = TTq) (28) 
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where/¡j({cv}) 0 = 1, m , 7=1 , «) are boolean functions, is a partial b-matrix. For b-
vectors and ¿-matrices the domain of every parameter is {0, 1}, therefore it may be 
omitted. For example, 

w e , ti&vzj-
If a partial ¿-vector (¿»-matrix) is a partial ¿-vector (¿-matrix) then its elements 

may be 0,1 or {0,1}. In this case it is convenient to replace {0, 1} by "—". For example, 

R = 
0 - 1 
- 0 -
1 1 -

A partial generalized b-automaton is a system 

Agen = (X, A, Y, r(°), R), 
p(o) _ (/ l>/2> R - ( / , / )„ 

where fi=fi({£v}), fij=fij({£i)) are boolean functions of the parameters c l 5 c2 , ..., cq 

13. Partial ¿-vectors, ¿/-matrices, ¿/-automata 

If a partial ¿-vector (27) is also a partial p-vector then and 

/ , / , = 0 ( i ^ j ) , V/ f = 1- • (29) 

Such a partial vector is called a partial d-vector. Thus if a partial ¿»-matrix (28) 
is also a partial /»-matrix then it is of form 

D = (Jij)m,n, f i j f u = 0 C M 0 , V / I J = 1 0 = 1 ,m) (30) 

and D^3>m,n. Such a partial matrix is called a partial d-matrix. It is useful to notice 
that any subset of Q)m(S6m'n) may be specified as a partial ¿/-vector (¿/-matrix). 
For example, 

" W * && 0 " 
D = & && && 

. < ^ 3 0 , 

is a partial square ¿/-matrix of order 3. 
If a partial ¿/-matrix is a partial pa -matrix then {0, 1} may also be replaced 

by "—", but it is necessary to keep in mind the conditions (30). 
A partial deterministic automaton (a partial d-automaton) is a system 

A det = (X,A,Y,d^,D) 

where ¿ / ( 0 ) =( / i , / 2 , . . . , / J is a 'part ial ¿/-vector and D = (fsiilJ)„mikm is a partial 
¿/-matrix. 
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14. Automata programming 

Above the most general definitions of incompletely specified finite automata 
were proposed and some special classes of such automata were introduced. For 
these automata all classical problems of the automata theory may be formulated. 
Some of such problems were investigated, for example in [1]—[4] for certain 
partial p -automata, partial pi-automata and partial ¿/-automata. But a partial 
automaton is a more interesting object for investigation than a completely 
specified automaton and there are many special important problems in its theory. 
One class of such problems which we shall call "the problems of automata pro-
gramming" may be formulated in the following way. 

Let Ag].p, A J; en, • • •, A^j, be partial automata (for example generalized) and 
f be a mapping 

^ • I W Y A ' ^ Y V A № 

r • ^gen Л -f»gen Л . . . Л i*gen м. 

It is necessary to find partial automata A ^ ' , A^ i ' , such that 

A ^ g A » ( ¿ = 1 7 ? ) and Agen£Agen (t • 1,?) ^(Agen, Agen, ..., Aggn) m̂ax 
where 

i'max = „ i^ax ^(AgenJ Agen, •••> Agei)-
A1 ' F A U Agen t Agen 

l=~q 

Such problems, for example, are very important for optimization of automata or 
some systems and processes which may be described in terms of automata. One 
such problem concerned with automata reliability was solved in [1]. 

Finally the author wishes to express his deep gratitude to the University of 
Budapest which provided him with ideal working conditions during two months. 
The author is especially indepted to Prof. I. Katai, Dr. I. Peak and Dr. L. Hunyad-
vari who helped to prepare this work for publication. 
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The solvability of the equivalence problem for deterministic 
frontier-to-root tree transducers 

B y Z . ZACHAR 

1. Introduction 

In this paper we deal with effective solvability of the equivalence of frontier-
to-root tree transducers. T. V. Griffits has shown in [2] that the equivalence problem 
is unsolvable for I -free nondeterministic generalized sequential machines which 
are special frontier-to-root tree transducers, so the equivalence of the nondeter-
ministic frontier-to-root transducers is unsolvable, too. Then in a natural way one 
can raise the question whether the equivalence of deterministic frontier-to-root tree 
transducers is solvable. We show the answer is in the affirmative. The proof is based 
on the proof of the solvability of equivalence problem for X -free deterministic 
generalized sequential machines given by F. Gecseg (unpublished result). M. Steinby 
has called the author's attention to the fact that this result can be employed for 
minimalization of deterministic frontier-to-root tree transducers. In section 4 we 
give an algorithm for the minimalization. 

A systematic summary of further results concerning frontier-to-root and root-
to-frontier tree transducers can be found in [1], where they are called bottom-up 
and top-down tree transducers, respectively. 

2. Notions and notations 

L e t X ^ f o , ..-,*„, ...}, Y={y1, ...,ym, ...}and Z={z1, ...,zk, ...} be countable 
sets of variables kept fix in this paper. Denote by X„ the subset .. . , x„} of X. 
Consider a nonvoid set F and a mapping v of F into the set of all nonnegative inte-
gers. The pair (F, v) is called a type. Then the set TF (X) of polynomial symbols over 
X of type F is defined in the following way: 

(a) for each x (x£X), x£TF(X), 
(b) i f / € F , v ( f ) = k(^ 0), and A , ...,pkeTF(X) then f ( P l , ...,pk)cTF(X), 
(c) the polynomial symbols over X of type F are those and only those which 

we get from (a) and (b) in finite number of steps. 
Now we define the depth d(p) ofp£TF(X) as follows: 
(a) if p = x (x£X) then d(p) = 0, 

2* 
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(b) if p =f ( f t F) and V (f)=0 then d{p)=0, 
(c) if P=f(Pl, ...,Pk) (v(J)=k>0) then d(p)=max(d(p;)|i = l, ... ,fc) + l . 

.In the literature elements of TF(X) are called trees, or, in a more detailed form, 
/"-trees. 

Next we define the frontier f r (p) of a tree p € Tf(X) in the following way: 
(a) if p = x ( x £ X ) then fr(p) = x, 
(b) if p=RPl,...,pk) (v ( / ) = k) then fr(p) = ix(p1)...fr(pJk). 

We notice that if p=f and v ( / ) = 0 , then fr(p)=l, where /. denotes the empty word 
over X. 

We can define the set sub(p) of subtrees of pdTF(X) as follows: 
(a) if "p = x (x€ X) then sub(p) = {x}, 
(b) if p=f(pi,...,pk) ( v { f ) = k) then 
_ sub(p) = U(sub(Pi)\i = 1, , fc)U {p}. 

Let sub(p) = s u b ( p ) \ { p } be the set of proper subtrees of a tree p£TF(X). 
Next we define the concept of a substitution. Let piTF(X„) be an arbitrary 

tree and Tx, ...,T„QTF(Xn). T h e n / j f ^ - x ^ . . . , r „ - x „ ] is the set of trees obtained 
by replacing every occurrence of x l5 . . . , x„ by a tree in 7 \ , . . . . T„, respectively. 
Formally, 

(a) if p = X; (x ; e Xnj then - x 1 ; . . . , T„ - x„] = T-t, 
(b) if p = f ( P l , _ P k ) ( v ( f ) = k) then p[Tx ...,Tn - x„] = 

= {f(Pi, — x 1 ; ...,Tn - x „ ] , i = 1, ..., k}. 

Let , TF(XN) be arbitrary subsets and 6 X n . Then the xrproduct 
Tx-XiTz of by T2 is the set of trees which can be obtained by replacing every 
occurrence of x ; in some tree from 72 by a tree in TX. 

Let r" ' x> = {x;} and for every k > 0 

Tf-Xi =Tf-1'x'-xiT1. 
Obviously, 

T1-xiT2 = {p[{x1}^x1, . . . , { X i - J - X i - i , T^Xi, {xi + J - x , ^ ! , . . . , {x„}-x„] |peT 2 } . 
Let us note that a singleton will also be denoted by its element. 
Let (F, v) and (G, ¡£) be fixed finite types. Moreover, let A be a finite set of 

states. 
A frontier-to-root rewriting (TRJ rule is determined by a triple of the following 

two forms: 
(a) ( x , a , q ) , where x€ X, a£,A and q£TG(Y), 
(b) (/((fli .Zi), ...,(ak,zk)),a, q), where f£F, v ( / ) = k, 

(a„zj€AX {z,} (i = l , ...,/c), a£A and q£TG(Y<>Zk). 
In the sequel we write the F R rules in the form x-*aq and f(alz1, ..., akzk)—aq, 
respectively. 

A root-to-frontier rewriting (RF) rule is given by a triple of the following forms: 
(a) ( a , x , q ) where a£A, x£X and q£Tc(Y), 
(b) {a,f(zlt...,zj,q) where a£A, f£F, v ( f ) = k and qtTG(Y\JA XZk). 

Further on we write the R F rules in the form ax— q and a/(z l 5 . . . , zk)^q, respec-
tively. 

By a frontier-to-root tree (FRT) transducer we mean a system 2 1 = ( F , A, G, A', I ) , 
where A' is a subset of A called the set of final states and E is a finite set of F R rules. 
Since I is finite thus there is a number n such that the set of symbols x, for which 
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there exists a rule in Z with left hand side x, is a subset of X„. Similarly, there exists 
a number m such that right hand sides of rules from Z get into A X Ta( Ym U Z). 
Then we can restrict ourselves to X„ and Ym. 

For each a£A and p£TF(X„), the set of all a-translations of p, denoted by 
21 a(p), is defined as follows: 

(a) if p = xt (1 S i s n) , then 2I„G>) = {q\xt - aq£Z}, 
(b) if p = f ( p 1 , . . . , p k ) (v ( / ) = /c) then 

2ta(p) = {l\f(aizi' •••>akzk) - aqel, q£q[Hai(Pi) - zl5 ...,21 ak(pk) - zk]}. 
An F R T transducer 21 is deterministic (DFRT transducer) if 

(a) for all xt£X„, there is at most one rule with left hand side xt, 
(b) for all / £ F and a1, ..., ak£A, there is at most one rule with left hand side 

f ( f l i z i , ••••>akzk). 
By a root-to-frontier tree (RFT) transducer we mean a system 21 = (F, A, G, A', Z), 

where A' (Q A) is the set of initial states and I is a finite s e t o f R F rules. Similarly, 
in this case we can be restricted to X„ and Ym for some n and m. 

For each a£A and p£TF(X„), the set of all a-translations of p, denoted by 
2i„(/>), is defined as follows: 

(a) if p = xt ( l S i S n ) then 21 a(p) = {q\axt q£Z), 
(b) if p = f ( P l , ...,Pk) ( v ( / ) = k) then 

a(p) = ...,zk) ^q(...,aZi, qeq[...,Ms(Pi) -^aZi, ...]}. 
An R F T transducer 21 is deterministic (DRFT transducer) if 

(a) for all xi£X„ and a (¡A, there is at most one rule with left hand side axh 
(b) for a l l / 6 F { y ( f ) = k) and a£A, there is at most one rule with left hand side 

af(zt, ...,zk), 
(c) A' is a singleton. 
Let 2T = (F, A, G, A', I ) be a F R T (RFT) transducer and p£TF(X„). The trans-

lations of p induced by 21, denoted by 21 (p), is the set U OKJp^a^A'). 
We define the transformation induced by 21 to be the relation {(p, q)\p£TF(Xn), 

?€«(/>)} from TF(Xn) into Ta(Ym). 
If 21 is a deterministic FRT (RFT) transducer, then for each pdTF(X„) at most 

one element is in 2 l ( p ) . Therefore, the transformation induced by 21 is a (partial) 
mapping from TF(Xn) into TG(Ym), and it is denoted by 21, too. This mapping is 
called the mapping induced by 21. 

Let 2I = (F, A, G, A' ZA) and 93 = (F, B, G, B', ZB) be FRT (RFT) transducers. 
We say that Si and 23 are equivalent if and only if 2t and © induce the same trans-
formation. The F R T (RFT) transducer 21 is minimal if and only if for all F R T (RFT) 
transducer & = (F, C, G, C', Zc) equivalent to 21, \A\^\C\ holds. 

We say that 21 is a minimal transducer belonging to © if and only if 2t and © are 
equivalent and 21 is minimal. 

3. The equivalence of deterministic frontier-to-root tree transducers 

Let 21 = (F, A, G, A', ZA) and S = (F, B, G, B', ZB) be deterministic frontier-to-
root tree transducers such that the mappings induced by 21 and © are from TF(Xn) 
into TG(Ym). Let us construct, for the states a£A and b£B, two DFRT transducers 

= (F,A,B,A',ZAU{# ->«#}) 
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and 
& = (F,B, G, B',r„U{# -b*}). 

Then № and 93" induce mappings from TF(X„U {#}) into r c ( y m U { # } ) . 
We define the # -depth R(p) of a tree p£ TF(Xn) in the following way: 

(a) if p=Xi ( l ^ / S r t ) then cl(p) is undefined, 
(b) iip= # then 3(p)=0, 
(c) if p=f(pi, . . . , P k ) ( v ( f ) = k ) and 3(pi) (i= 1, ..., k) are undefined then d(p) 

is undefined, 
(d) if p=f(p1} (v(f)=k) and one of 3(Pi) (1 ̂ i^k) is defined, then 

d(p) = max (d{pi)\3(pi) is defined, + 
Let T be the set of all trees p£TF(Xn) for which both 910) and 93 (p) are defined. 
Take a tree p£T and an arbitrary subtree pgsub (p). Let p£TF(X„ U { # }) be 

the tree obtained by replacing a fix occurrence of p by # . Obviously, p contains 
exactly one symbol # on its frontier and p=p-p, where p • p denotes the #-product of 
p by p. Since p£T, there exist exactly one state of A and B denoted respectively by 
A? and Bp, such that both 91AP(P) and are defined. 

The following two lemmas hold under these notations. 

Lemma 1. For e a c h p £ T a n d p€sub 

91Q0 = 
and 

hold. 

Proof is obvious. 

Next let \A\=M and = 

Lemma 2. Let pdT be an arbitrary tree and p^sub (p). Then there exists 
a tree t&TF(X„\J { # }) containing exactly one symbol # on its frontier such that 
3(t)<MN, d(t)<2MN-l and p-t^T. 

Proof. First we give a tree t, for which d (;) < MN. Construct a sequence 
..., ts, ... of trees as follows: Set t0=p. Then consider the sequence q0, ...,qt 

of maximal length, for which q0 = ts, qt= # and sub ( /=1, ..., /). If 1<MN 
then 3(i s)<MA r , and in this case let t — t5. Otherwise, we can find two indices 
j and k such that 0 a n d Aq.=Aqk, Bq. = BQk. Then let i s + 1 be the tree obtained 
from ts by replacing the subtree q} in ts by qk. It is clear that 2( / s + 1 )<3( i s ) . Thus, 
continuing this process in a finite number of steps we arrive at the desired tree t. 
If d(t)<2MN—l then let t=t. In the opposite case there exists a sequence q0, ..., qt 
of subtrees of t with l ^ M N , #(£ sub (q0), qtiX„ and sub 0/;-i) 0 = 1 , . . , / ) • 
We construct a tree t from t by means of the sequence q0, ..., qt in the same way 
as t has been constructed from p. The tree t contains less occurrences of symbols 
from F than I does. It follows that the procedure can be continued till the depth 
of the resulting tree is not less than 2MN—\. The constructed tree satisfies the 
conclusions of Lemma 2. 
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Notice that if the frontier of 2tAp(p) contains the symbol # , then it occurs 
in the frontier of %A'{t). Similar statement is valid for and 5BB'(i). 

Lemma 3. Let p £ T and d(p) ^ 4MN. Then there exist trees pt, p2, p3, /?4, p&, p6 £ 
eTfCA'nUi*}) such that pz ,pz ,p i ,ps ,p<j contain exactly one symbol # in their 
frontiers. Moreover, />=7>i ,/V'/>3'/V/V/>6> ^(P;) —1 ( ¿ = 2 , 3 , 4 , 5 ) and 
d(Pi'P2'P3'Pi'Ps)—4MN. Finally, the following equations hold: 

^ P l — ^(Pl-P2> ^ (P l P2 P3) _ ^ (P l PZ PrPi) ~ ^(Pl-P2'P3 P4-P5) _ 

Rpi ~ B(.PVPS) = B(Pl P2 Ps) — B(Pl P2 P3'Pi) ~ -®(Pl P2 P3-P4 P5) ~ 

91 (?) = Ka(Pl) • mP2) ' Wa(P3) ' 2 t M • Wa(Ps) • 91 "(Pe), 

®(p) = ®>(Pi) • niPz) • ®S(p3) • • ®Hp5) : »"(Po)-
Proof. Let p be an arbitrary subtree of p with depth 4 M N . Then there exists 

a sequence qo,...,qiMN of trees with g0=p and sub (qt_j) (7=1, ..., AMN). 
Consider the pairs of states (AQi, Bg) (i=0, ..., AMN). Obviously, there exist indices 
./i> ji , Js , ji , 75 ( 4 M N > J 3 > / 4 sr 0) having the same pairs of states. 

Let p1 = qjl. Construct the tree pk by replacing the subtree qjk_1 in the tree 
qjk by the symbol # (k=2, 3, 4, 5). Finally, let ps be the tree obtained from p by 
replacing its subtree qh by # . From the construction and Lemma 1, it is clear that 
the trees px, p2, Pz, Pi, Ps, Pa constructed in this way satisfy the conditions of 
Lemma 3. 

Let Z, = max (rf(2I (/>)), dQ8(j>))\p^T, d(p)^6MN) and K=4(L + 2)MN. 

Lemma 4. Take a tree p(rT. Moreover, let pi,p2,ps,pt, p5,pe£TF(XnU{#}) 
be trees and a£A and b^ B states satisfying the conditions of Lemma 3. If Ut(p) ^ ©(/?) 
and d(W(p4-p5-p6)) is undefined, then there is a tree p£T, for which d(p)~=-K 
and 2l(p)^23(p) . 

Proof. Let S be the set of trees with minimal depth satisfying the conditions 
of Lemma 4. Let p(£ S) be a tree which has minimal number of occurrences of 
symbols from F among all trees in S. Assume that d(p)^K. 

The . #-depth of the tree ^Bb(p3 ~Pn • -Pe) is defined and 2(S£(p 3 ) )>0 , for 
otherwise 

9I(Pi-P3-P4-P5-P6) = 9I(p) ^ ®(p) = ^ ( P i - P a - h ' P s - P e ) 
or 

(Pi -Pi-Pi-Pi- Pe) = 9l(p) ^ ® (P) = ® (P i -P2 'Pi -Pi - Ps) 

holds, which contradicts the minimality of p. Next we define a tree t, for which 

d(t)<3MN-l and E(t)-<2MN—l. 
First we consider the sequence qQ, ...,ql of subtrees with maximal length for 

which q0 =p 4 • p5 • p6, qt = # and q^ sub (qt _ j) (i = 1, . . . , / ) . Then for each q{ there is 
exactly one state a^A such that 912, (<7;) is defined. Let i be the maximal index, for 
which a (9 t - ( 9 j ) ) is undefined. Since 212„(<?o) = 9l"(/>4-/>5 "Pe), d(W-(Pi-p5-pe)) is 
undefined and 2I",(i?,)= # thus O s / s / — 1 holds. Now we consider the tree t2 given 
by Lemma 2 for the tree p and the subtree p^'pi-p^-qi- Let qi~f{ri, ...,rk) 
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(v(/)=A:). Then there exists an index j (1 =j=k) such that rj = qi + 1. Let us construct 
the tree f j from rj in exactly that way as the tree t has been constructed from the 
tree p in the proof of Lemma 2. 

Furthermore, let t1 be the tree arising from the tree f(rl,..., rJ_1,rj, rj+1,..., rk) 
in the same way as the tree t has been obtained from the tree t in Lemma 2. Let 
t=h-ts. 

Consider the tree q=p1-p%+1 • t, where Ps+1 = {ps}L+1-*. It is clear that q£T, 
and 

2 1 ( f ) = 2 l " ( 0 
and 

hold by Lemma 1. Since d(<H(q))sL and d(<B(qj)>L thus 21(f) ̂ 23 fa). But 
d(q)<K, which contradicts the minimality of p. 

Lemma 5. L e t p £ T b e a tree for which 210?)?^©(/?)• Assume that there exist 
trees p[,Pi,p'z,Pi,p'b,p'^Tj(Xn\J{^}) and states a£A and b£B satisfying the 
conditions of Lemma 3. If d(<tHa(p'i-p,

5-p'6)) is defined, then there exists a tree T 
such that d(p)^K and SH(p)^(p). 

Proof. Let S be the set of trees with minimal depth satisfying the conditions 
of Lemma 5. Let p (£ S) be a tree which has minimal number of occurrences of symbols 
from F among all trees in S. Assume that d(p)^K. 

Let t be the tree given by Lemma 2 to the tree p and the subtree p'x • p'2-p^ -pi-p'b. 
We introduce the following notations: 

Pi = Pi 'Pi-PS, Pl = Pi» P3 = P'o, Pi = Ps 

. 2I . (PI) = ? I , » 6 (P.) = I"!, 

8C(P2) = ?2, ®b(P 2 ) = 

ars(Pa) = ®2(P3) = r8 , 

Wipt) = q4, ©fc(p4) = r4, 

2 I " ( 0 =qt, » 6 ( 0 = r 4 . 

First let us illustrate the idea of the proof in a special case. Assume that v ( / ) = 1 
and / i (g )= l for all f£F and Then the D F R T transducers 21 and 23 may be 
considered as deterministic generalized sequential machines. 

In Figure 1 we indicate the trees p, 2I(/>), ©(/?). Now let us consider the trees 
=p1-pl

2-t and 2I(/,), »( / , ) ( /=1, .. . , L + l ) (see, Figure 2). 
Since 21 (?,)=©(?,) ( /=1, .. . , L+1) , thus Figure 2 shows that the same tree is 

constructed in two different ways. As it appears from Figure 2, and it can be readily 
verified, too, q2=r2-q2 and r2=q2-r2. The idea behind the proof of Lemma 5 is 
similar, but more involved. 

The #-depth of ^(pi • p'-, • pd is defined, for otherwise, by Lemma 4, there 
exists a tree p£T, for which d(p)<K and 2t(p)^23(p) hold contradicting the mini-
mality of p. Since both d('ii''(p2-p3-pi)) and d(3Sb(p2 • p^ • p4)) are defined thus all 
the trees q2, qs, #4 and r2, r3, r4 contain the symbol # in their frontiers. Moreover, 
by the note following Lemma 2, the frontiers of the trees qi and r4 contain it, too. 
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Assume that d(q.2)=cl(r2) = 0. Then 

9I(p) = qi • 9s ' = (Pi • Ps • Pi) 

®(P) = »"î->V4 = ^(Pi-Ps-PÙ-
i.e. 9I(/71-/73-j!74)?iS(/71-7?3'/74), which is a contradiction. 

In the same way we obtain that if d(q3)=d(r3) = 0, then Ul (/>, • • p4) ^ 
^^{Pi 'Pz 'PÙ> which is impossible. 

Now we consider the trees 

h = Pi'PÏ't and s, = ( / = 0, . . . , L + l ) . 
By Lemma 1, it follows that 

9I(i,) = qx -ql-qt, »(*,) = ^ • r|-r4, 

SI(sl) = î i - ? i - 9 4 , ®(s/) = » i - i i - r , (i = 0 , . . . , L + 1 ) . 



174 Z. Zachar 

Since d(tt), d(st)<K thus 9I(i,) = ®(ii) and 21 fa) = »(>,) ( /=0, ...,L+1). If exactly 
one of 3(q2) and 3(r2) is equal to zero, say 3(q2)=0 and 3(r 2 )>0, then 
i / (2I( ; i + i ))<i/(©(/L + i )) , consequently, which contradicts the 
minimality of p. It means that the following equalities are true: 

4<Jt(f,)) = 3(qi) + (l- 1 )d(q2) + d(q1 • q2) 
and 

d(®(td) = a(rJ+Q- l)*(rj+d(ri-rj (/ = L, L+1). 

This implies that 3(q2)=3(r2)>0. Similarly, we get that 3(f3)=3(/-3)>0. 

The tree 2 l ( / i + 1 ) is obtained from the tree q4 by replacing all occurrences of the 
subtree # by the tree q1 • q2

+1, while ® ( / i + 1 ) is given by replacing all occurrences 
of # in r4 by the tree rx • r2

L+1. 
We have that d(q4)^L, d(r4)^L and d(qx-q%+v)>L, d(rx-if+1)>L. Thus the 

equality 2I(/L+1) = S ( / £ + 1 ) implies that ^ • r 2
t + 1€sub (qx-q2

+1) o r <7i• qt+id 
esub (rx • r2

i+1). 
Assume that / v r ^ + 1 £ s u b (<7i*<72

 + 1). Let j be the minimal number, for which 
ri • r2

i + 1€sub (qx • q{). Since rx • /-2
L+1(;sub (qx • q2

+1) and d(rx • rl'+1) >d(ql- q2) thus 

Let q2 be the tree obtained from the tree q1 • q{ by replacing all occurrences of 
rx • r2

 + 1 by the symbol #. Therefore, r2
+1 -q2 = q1- qJ

2 and rx-r2
+1§ sub (q2). Since 

j is minimal, it follows that rx • r2
+1$_ sub (qy • ql'1). On the other hand rx • r2

+1 -q2 = 
= and /•1- r2

L+1$sub (q2). Therefore, (rx-rk+l). 
Let r2 be the tree given from rx • r2

+1 by replacing all occurrences of qx • q{_1 

by the symbol # . Thus qx-q{~1 •r2=rx-r^JrX and <7i*?| - 1$sub(r2). It means that 

Next we show that qx •qi'1^ sub (r2 -q2) holds, too. Indeed, if q1 • 
6sub (r2 • q2), then qx • sub (q2) because of qx • qi"1^ sub (r2) and r2$ sub (qx • q{~1 j. 
Thus, in qx • ql-1 • q2 there exists a subtree qx • q{~x, which is not a subtree of rx • r2

+1. 
But this is impossible since in this case one can show that r1-/-2

i ,+16sub 
Therefore, one have 

r2-q2 = q2. 
Since Vl(tL+1) = &(tL+1) thus 

rx-r%+1-r4 = qx-q^-qi = qx-qi • q2
L+1~J-qt = rx • r2

t+1 -q2 • • q4. 

Furthermore, rx-r2
+1 is not a subtree of any of the trees q4, q2, q2,r4. Thus the 

preceding equality implies 

h = q2-q2+1~j-Vi-

We have 21 (/„) = ©(/„). Thus ql-qi = r1-ri = r1-q2-q[+l--'-qi. Therefore, 

qx = rx-q2-qt+1~i. 

Using the equality 91 ( i i )=® we get 

. = rx-q2-(f2.q2)L+1-J-(f2-q2)-q4, 

rx.r2-r4 = rx-r2-q2-(r2'q2)L+1-->'q4. 
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This implies that r1-q2-r2 = r1-r2. Furthermore, from the equalities (/,) = ©(?,) 
{/=0, .. . , L+l), by induction, we obtain r1-(q2-r2)L+1=r1'(q2-r2)L-r2. Since 
2 si (/>! • p2 -p3 -J)) ==L, thus d(i\ • (q2 • r2)L) > d(r1-q2-r2) = ¿/(^ • r2) ^ ¿(r2). 
Therefore, rx • (q2 • r2)L$ sub (>2), implying 

q2-fz = r2. 

Now consider the trees i • t (1=0, ..., L +1). Then rt • r3
L+1£sub (q1 • q^+1) 

because of ri=q2-q^+x~j-qi. In the above way we get that there are trees q3, ra 
and a number i (2si^L + l) such that 

= r1-q3-qji+1-i, 
q3 = f3-q3, 

r3 = qs'rs-
Since p is minimal thus 

91 (Pi • Pd = ® (Pi • p^ and 91 • p2 • p4) = 23 ( P l - p 2 • p4), 
i.e., 

^i-<li = r1'ri and qi-qi-qi = r1-r2-r4L. 

The first equality implies 'that ( f 2 ' q 2 ) L + 1 ~i ' q t . Consequently, 
¡\ can differ from q2-(r2-q2)L+1~J • q^ in the tree rx only, i.e. whenever # is a 
subtree in one of them then the corresponding subtree in the other one should be 
i\ or #. By the above second equality we get 

• q2 • f2 - r4 = r± • q2 • (r2 • • ( f 2 • q2) • q4. 
Thus ri and q2-(r2'q2)L+1~j-q^can differ only in rx • r2. Thus, by r1~r29ir1, we have 

Similarly, using the trees p i ' p t and Px 'P 3 ' P \ , we obtain 

Therefore, q2 • (r2 • q2)L+1~J • qt=q3 • (r3 • q3)L+1~'• 9«. implying 

Finally, using the above equalities, we get 

= r1-q2-(r2-q2)L+1-]'-(r2-q2)- q3- qt = 

= »'i • (<z2 • r2) • q2 • (h • i2)t+1_J'»• 94 = •r2-q3• (F3 • q3)L+1'~i • (r3 • q3) • = 

= ri • r2 • (q3 • f3) • q3 • (r3 • ¿/3)i+1_i • = r1-r2-r3-ri, 

i.e., 21[(/>) = 93(/j) contradicting our assumption. 
Similarly, we arrive at a contradiction by assuming 

<7i-#2
 + 1£sub (r1-A-

2
+1). 

This means that the depth of p is smaller than K ending the proof of this lemma. 
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Theorem 6. The equivalence problem of deterministic frontier-to-root tree 
transducers is effectively solvable. 

Proof. Consider two arbitrary DFRT transducers 2 l= (F , A, G, A', IA) and 
93 = OF, B, G, B', IB). The set of all trees p, for which 210) and S O ) are defined, 
is a regular set of trees, which can be given effectively (see, Corollary 3.12. in [1]). 
Thus, the problem whether or not the domains of mappings induced by 21 and 23 
are equal is solvable. If they are not equal, then the transducers are not equivalent. 
In the opposite case, by Lemmas 4 and 5 it is sufficient to check whether their trans-
lations coincide on a finite number of trees. This ends the proof of Theorem 6. 

Finally, we present a result concerning the equivalence problem in a special 
class of deterministic root-to-frontier tree transducers. 

Let 9JI be the set of deterministic root-to-frontier tree (DRFT) transducers 
2t = (F, A, G, A', I ) with the following property: if af(z1, ..., zk)-*q is in I ( v ( f ) = 
=k, K> 0), then there are states a , , . . . , ak£A such that q£ TG(YU {(a;, z;)|/ = 1, . . . , A:}). 
For such D R F T transducers one can prove Lemmas 1—5. Thus we have 

Theorem 7. The equivalence problem of D R F T transducers in 9Ji is effectively 
solvable. 

4. Minimalization of DFRT transducers 

Take a D F R T transducer 21= (F , A, G, A', IA) such that the mapping induced 
by 21 is from TF(X„) into TG(YM). Moreover, let p be an arbitrary tree, for which 
210) is defined, i.e., / ' 62 t _ 1 ( r G (y m ) ) . In this case for any p g s u b O ) of the form 
p=f(p1, ...,pk) or p = Xi, there is exactly one rule in SA, denoted by a(p) such, 
that if ff^^/fezj, . . . , akzk)-+Apq then 

Wap(P) = mai(Pi) - - , ^ M ) - zk], 
and 

^ap(P) = 9 if = Xi~ A.q. 

Lemma 8. Let /?62i_1(T'G(rm)) and p£sub (p) be arbitrary. Then there exist 
a / € 2 I - 1 ( r c ( 7 J ) and a p ' e s u b O ' X such that a(p) = a(p') and d(p')^2\A\. 

Proof. Let p denote the tree obtained by replacing the subtree p in p by # . 
Let p' be the tree given by Lemma 2 to the tree p and its subtree p. Assume, tha t 
j?=/Oi, •••,Pk)- Let us construct the tree P i from pt 0 '=1, ..., k) in exactly tha t 
way as the tree t has been constructed from the tree p in the proof of Lemma 2 
( /=1, ...,k). Let p'—f(p i, Pk) and p'=p' • p'. From the construction it is clear, 
that the trees p' and p' satisfy the conditions of Lemma 8. A similar argument can 
be used in the case 

LetL=max(42IO))b€2I-1(rc(yj), d(p)^2\A\). 

Lemma 9. There exists a minimal D F R T transducer © = (F, B, G, B', IH) be-
longing to 21 such that if x^bq or f(b1z1,bkzk)-^bq is in IB then d(q)^L. 

Proof Let S be a minimal D F R T transducer belonging to 21. Assume that there 
exist /7 6© _ 1 (J ' G (y m ) ) and p i sub (p) such that the depth of the right hand side of 
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c(p) is greater, than L. We show that 5(33 (p)) is undefined, where p is obtained 
by replacing p in p by # . 

Indeed, by Lemma 8, there exist trees p' and p', p', for which p'=p' • p\ o(p) = 
= a(p% p'tX-HToCrJ) and d(p')^2\B\^2\A\. 

By the note following Lemma 2, if d(35 (p)) is defined then so is (p')). But 
¿/(23(p'))=3(© (p')) + (P'))- Furthermore, by our assumption d(T>(p'j)>L. 
Thus d(®(p'))>L which is a contradiction since S(/>') = 210 ' ) a n d d(p')<.2\B\^ 

Now for all <r=f(b1z1, ..., bkzk)—bq and a=Xi-*bq with d(q)>L, let us replace 
<r in IB by (j=f(b1z1, ..., bkzk)^by1 and a — xi^by1, respectively, and denote the 
resulting set of rules by IB. Then the D F R T transducer ^B — (F,B,G,B',IB) is 
equivalent to 23, completing the proof of Lemma 9. 

Theorem 10. There exists an algorithm for determining to any DFRT trans-
ducer 21 = (F, A, G,A',IA) a minimal D F R T transducer belonging to 21. 

Proof. Let \A\ = M and L = max ( ¿ / ( U l ( / ; ) ) | p € 9 1 ( Y ) ) , d(p)<2M). Then 
for a minimal D F R T transducer belonging to 21, it holds that the number of its 
states is less than or equal to M. Furthermore, by Lemma 9, we can assume that 
the depths of right hand sides of rules of a minimal D F R T transducer belonging to 21 
are less than or equal to L. But there is only a finite number of DFRT transducers 
satisfying these two assumptions. This means that it is enough to check only for 
finitely many D F R T transducers whether they are equivalent to 2i. 

After determining all such DFRT transducers equivalent to 21, we choose one 
of them with minimal number of states. 
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A note on deadlocks 

B y Z . LABORCZI 

Introduction 

A set of processes uses resources of several types concurrently. We assume that 
there is only a limited number of resources from each type. The number of resources 
can be characterized by a vector t, where ti is the total number of resources of type i. 

Another constraint is that the processes cannot be forced to release resources 
they currently use. 

If we know nothing about the behaviour of the processes, then the only possible 
way for scheduling the processes is the strictly sequential ordering. Real concurrency 
could not be allowed because each concurrent process may request all the resources 
at any time, and this request cannot be fullfilled if resources are allocated to other 
processes. 

Therefore, we must have information on the behaviour of the processes in form 
of some kind of limitation the processes comply with. 

One possible limitation among others [4] is the following: on entering the system, 
a process p has to announce a vector goal(p) declaring that it will not use more than 
goali (p) resources from the z'-th resource type. In order to be able to satisfy other 
requests, processes are not allowed to work forever, that is, if we place goal(p) 
resources at p's disposal and wait, p will terminate in finite time and return all the 
resources allocated to it. When p starts, it usually does not need all goal (p) resources 
immediately, and if we want to describe the current state of p, we have to introduce 
the vector alloc (p) which tells us how many resources have been allocated to p. 
It is clear that alloc (p)^ goal (p), and the difference 

need(/>) = goal (p)—alloc (p) 

shows how many resources p still needs in order to complete. We may assume that 
there is no process in the system with need (p) — 0 for if that is the case, we wait until 
p completes and continue the examination of the system only after the completion. 
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1. Graphical representation of processes 

We describe a graphical representation of competing processes, which will turn 
out to be very useful later. The current need of a process may be represented by a 
point of the /-dimensional space, where / is the number of different resource types. 
A process p starts from goal (p) and currently stays at need(p), thus it is very natural 

to think of p as an arrow from goal (p) to 
/ = ( 7 , 6 ) n e e d ( p ) -

Figure 1 visualizes three processes com--
peting for resources of two different types. 

The number of resources in the system 
equals (7, 6), furthermore, 

goal (ft) =(2,3) , 
need (ft) =(1, 1), 
goal (ft) =(5, 4), 
need (ft) = (4, 2), 
goal (ft) =(5, 5), 
need (ft) = (2, 4). 
This kind of representation is applicable 

only if 1=2. For greater values of I one 
Figure 1 needs to be highly imaginative. . 

2. The definition of deadlock 

Informally speaking, a system of concurrent processes is in deadlock, if there 
is no guarante that every process can complete. In other words the system is free of 
deadlocks if all the processes can finish, even if they request all their needs immediately. 
A formal definition of the latter assertion is the following: 

Definition. The set of processes n is said to be free of deadlock (or deadlock-free) 
if there exists a permutation ft,ft, . . . ,p k of the processes in 7t*such that 

need 0;) s t - ^ alloc (ft) 

for / = 1 , 2, . . . , k. 
This inequality means that if ft, ft, ..., ft_t have completed and returned the 

resources they used, then the need of ft does not exceed the amount of the currently 
available free resources. 

The following theorem is sometimes stated as another definition of the deadlock. 

Theorem 1. The set of processes n contains a deadlock (or is in deadlock) if 
and only if there exists a nonempty subset n' of n such that the following inequality 
holds for every p in n': • 

need {p) =ji free (n') (1) 

where free(71') = t— 2 alloc(9) is the amount of the resources currently not used gin 71* 
by the processes in n'. 
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3. A condition and an algorithm 

The definition of the deadlock and Theorem 1 speak about permutations and 
subsets of the process set. It is desirable to find a necessary and sufficient condition 
in which these notions do not occur, or in other words in which every process is 
mentioned only once, and not as a member of a permutation or a subset. This is 
accomplished by Theorem 2. 

Theorem 2. Let n be a vector describing some amount of resources and n < t 
(t is the total number of resources)1. A set of processes n is deadlock-free if and only 
if for every such n we have: 

2 alloc(/?) ^ t - n . (2) 
p in jr and 
[ict'd I/>) " • n 

For a deadlock, we can not only state that we can find an n such that ^ holds in (2) 
instead of but we can replace = by = , that is the following assertion holds: 
7i is in deadlock if and only if there is an n < t such that 

2 alloc (p) = t—n (3) 
p in 7i and 

nt't'd (p)n 
Proof. It is sufficient to prove that 
I. if k is deadlock-free, then (2) holds for each n; 

II. if 7i contains a deadlock, then (3) holds for at least one n. 

Proof of I. Let n be deadlock-free and n<t . We define 

<P(n) = {q in 7r |need(p) ^ n}. 

<i(n) contains exactly those processes for which (2) forms a sum, so if 4>(n) is empty, 
(2) is true. 

Otherwise we apply Theorem 1 for <P(n) and find a p in <f>(n) for which 

need (p) S t - 2 alloc (q) (4) 
q in <P(a) 

For p as a member of <2>(n) we have also need (/?)^n, and replacing the left hand 
side of this inequality by the right hand, side of (4) we get (2). 

Proof of II. Let 7t be in deadlock and let n ' be a maximal subset of n which 
statisfies Theorem 1, i.e., if we put a new element to 7i ' ,(l) will not be true. We 
prove that (3) holds for 

n = t - 2 alloc (q) 
q in 7i' 

by showing t h a t <£(n) = 7r'. 
Assuming that p is in 4>(n), we recall the definition of and n 

need (p) ^ t — 2 alloc (q). 
q in 7c' 

1 n < t means that ^ holds for every component and < holds for at least one component. 

3 Acta Cybernetica 1V/2 



182 Z. Laborczi 

It is now easy to verify that (1) holds for the subset n'U {p} and as n' is a maximal 
subset in deadlock, p is in n'. 

Starting from the other end, assume that p is in n'. From (1) we get 

n e e d ( p ) $ t - 2 alloc (?), 
g ill it' 

that is need(/>)^n and this means that p is in 
After completing the proof of Theorem 2, we append the following remark to 

the last step of the proof: 
At the very end we showed that n is a subset of <Kn). This means that 

t - n = 2 a l loc0>)s 2 alloc(p), 
p in JI' p in 0(a) 

and this is exactly the negation of (2). If n happens to be a maximal subset, then 
the equality will hold. 

If we write the formula of Theorem 2 in the following way 

t - 2 alloc (p) ^ II (5) 
p in i>(n) 

we might formulate the meaning of Theorem 2 in terms of the arrows introduced 
earlier. Choosing an n we select the members of n which (as arrows) lie outside the 
rectangle consisting of the points less than or equal to n. This set is $(n). (5) states 
that if we start at t and decrease our coordinates by alloc (p) for each p in </>(n), 
we eventually reach a point lying still outside the rectangle. 

For a deadlock state there must be an n such that the resultant point is not only 
within the rectangle but is identical to n. 

Exploiting these facts we may devise an algorithm to decide whether a set of 
processes is in deadlock or not. The algorithm runs as follows: 

I. We define the function f: 
f(n) = t - n 

for every n-=t. 
II. For every p in n, decrease the value of f by alloc (p) in the points of its 

domain for which 

n ^ need (/7) and n s t—alloc (p) (6) 

III. Test after each decrease, whether the new value of f is 0. If so, we have a 
deadlock situation, otherwise if no 0 occured while performing II the system 
is free of deadlocks. 

Condition (6) in step II needs some explanation. Requiring n ^ need (p) guaran-
tees that p is in i>(n). However, not all such n-s have to be taken into consideration, 
because the decrease of f may result in 0 only for n-s for which n s t - a l l o c ( / 7 ) is 
also true. 

The small circles on Figure 2 indicate the points for which f has to be decreased 
in connection with p:i. For the point n=(3, 3) we have initially f (n)=(4, 3). On 
executing step II f o r p 2 a n d p s , f ( n ) becomes 0, so these two processes are in deadlock 
independently of the existence of p x . 

The algorithm as described above detects deadlock within a system. A slight 
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modification makes it capable of handling the deadlock avoidance problem. Let us 
assume that n is deadlock-free and a process p requests some more resources. If we 
update f(n) by performing step II and step III for p only, it can be decided whether 
the fulfilling of the new request leads to a 

t-alloc(p3) 
t=( 7,6) 

Figure 2 

deadlock state. 
Unfortunately this algorithm is not 

suitable for being incorporated into a real 
system, because it requires a great amount 
of space and time. Let us assume that we 
have 256 memory pages and 4—4 pe-
ripheral devices from two different types 
as resources at our disposal. In this case t 
becomes (256, 4, 4) and the number of n-s 
is ( 2 5 6 + l ) * ( 4 + l ) * ( 4 + l ) —1 =6424. 

Therefore we need almost 100,000 
bits for representing the function f, and 
we have mentioned nothing about the time 
needed to update such amount of infor-
mation. Therefore, we conclude that the 
general algorithms for detecting and avoid-
ing deadlock [2, 3] have to be applied 
in the general case. 

In one dimension, that is for one resource type, however, everything becomes 
very simple. There are no vectors, thus we may replace ^ and ^ by > and < 
respectively. In addition f becomes a scalar to scalar function. The updating of / 
is also less complicated: for a process p, f has to be decreased in those n-s where 
n<need(p) holds. In fact we have arrived at a modified version of Habermann's 
theorem on detecting deadlocks for one resource type [1], thus this paper generalizes 
his results. 

Conclusion 

On investigating whether a simple theorem on detecting deadlock with one re-
source type can be generalized to more resource types, we found that the answer is 
yes, but the new theorem still needs further works to develop a practically usable 
algorithm. 

Acknowledgement. I am indebted to Mr. J. Somogyi for many fruitful discussi-
ons on the subject of this paper and related areas. 
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Use of Petri nets for performance evaluation 
By J. SiFAKIS 

Introduction 

Petri nets [1], [2] have been found a simple and elegant formalism for the descrip-
tion of asynchronous systems with concurrent evolutions. According to the adopted 
interpretation, they can be used to model flow phenomena of information, of energy 
and of materials [3], [4] and [5]. However, this model is not complete enough for 
the study of system performances since no assumption is made about the firing of 
a transition as far as its duration and the moment at which it takes place after the 
transition has been enabled. 

Timed Petri nets have been introduced by C. Ramchandani [6] by associating 
firing times to the transitions of Petri nets. He studied the steady'state behavior 
and gave methods for calculating the throughput rate for certain classes of Petri 
nets. The results given in this paper are applicable to the class of pure [7] Petri nets 
and generalize, in some sense, those presented in [6]. The littérature on timed Petri 
nets is very poor: to the author's knowledge, the only works on this subjet are the 
Ramchandani's thesis and a paper by S. Ghosh [8] comparing the properties of 
boundedness and liveness for timed Petri nets and unrestricted Petri nets. 

I. Definitions 

Definition 1. A Petri net (PN) is a quadruple J/={P, T, a, fi) where 
P is a set of places, / V 0 
T is a set of transitions, TV 0, Pfl T= 0 
a: PXT—N forward incidence function 
ft: P X T - * N backward incidence function 
(N represents the set of natural numbers: 0, 1,2,3, ...). 
REPRESENTATION. T O a PN one can associate a digraph the nodes of which are 

the places and the transitions, represented respectively by circles and dashes. There 
is a directed edge from the placep s to the transition tj iff a(ps, tj) = nSJ^0, This edge 
is labeled by the value n s j , called weight of the edge. There also is a directed edge 
f rom the transition tr to the place p„ iff ft(pw, tr)=nWr?±0. This edge is labeled by the 
weight nWr. 
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Definition 2. Let J/'—iP, T, a, P) be a PN. We adopt the following notations: 
For teT, •t = {p£P\a(j), 1)9*0} and t'= {p<iP\P(p, t)^0). 
F o r p £ P , 'p = {tÇT\p(p, 0^0} and p={t£T\a(p, t)*0}. 
We call 'i(t') set of input (output) places of t and by analogy, 'p(p') set of input 
(output) transitions of p. These notations are extended to subsets of T and P; for 
example, if P1czP then, 'Pl — [J 'pk. 

Definition 3. A marking M of a PN Jf=(P, T, a, /?) is a mapping of P into 
N:P~N. When \P\=n, one can represent a marking M by a vector MgN" such 
that its i-th entry mi=M(pi). 

Definition 4. A transition t of a P N is enabled for a marking M iff: 

~ipCt=>OL(p, t) S M(p). 

Definition 5. Let Jlt be the set of markings for which a transition / of a P N 
is enabled. The firing of the transition t(F(t)) is a mapping of Jit into the set of the 
markings Jt defined as follows: if F(t)[Mi] = Mj then 

Definition 6. Let jV=(P, T, a, ft) be a PN and M0 one of its markings. Consider 
a sequence of transitions a=th tj%... tjs. We say that a is a simulation sequence 
or a firing sequence from M„ iff there exists a sequence of markings M l 5 M2, M3, ..., 
...,MS such that F(tj) [M i_1] = M i for /=1 , 2, 3, . . . , j . We.note that M0-~MS. Ms 
is the marking attained by applying a from M 0 . We denote by M0 the set of markings 
that can be attained from M 0 . The firing vector of a is a vector R(R£ Nm, m=\T\) 
such that its A>th entry is equal to the number of occurrences of the transition 
tk in <7. 

Definition 7. An ordinary PN is a PN jV=(P, T, a, [i), such that a: P x r - { 0 , 1} 
and p: PXT-~-{0, 1}. A marked graph is an ordinary P N such that V/>€/\ \'p\ = 1 
and A state graph is an ordinary P N such that \/t£T, and | 'T |S1. 

Definition 8. Take a PN and one of its markings MQ. __ 
We say that a place p is bounded for M0 iff BArgN such that V M £ M 0 , M(p)<k. 

A PN is bounded for M0 iff all its places are _bounded. We say that a transition t 
is live for M0 iff for every marking M,M£M0, there exists a sequence a, a^T* 
such that at is a firing sequence from M. A net having all its transitions live for 
a marking M0 is called live for M0. 

Definition 9. A pure PN is a PN such that V/€T, {V}Pl {/ '}=0. 
For a pure PN jV=(P, T, a, p) (j^P|=/i, \T\=m) one can define the matrices: 

pkiP i 

I A/F — T\ W R Mi (p) - a (p, t), VP £ 't - (•/ n f •), 
Mi(p)+P(p,t),ypef-Ctnn, 
Mi(p)+P(p, t)-a(p, O.vpevnr. 

p(Pl, tj) if P(Pi, tj) * 0, 
c = [ci]]nxm wi th ci} = -a(Pi, t j ) if a(pi, t}) ^ 0, 

0 otherwise. 
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C is called incidence matrix of the net [7]. 

C W c + 1 with c + - l P ( P " t j ) i f ^ i ' ^ 0 ' C - M „ x m with c,j - | 0 otherwise 

\a(p„tj) if oc(Pi,tj)^0, 
C - = [ci7]„xm with ty = | Q o t h e r w . s e 

REMARK. C=C+-C~. 

II. Timed Petri nets 

II. 1. Definitions 

Definition 10. A timed Petri net (TPN) consists in giving: 
a Petri net Jf=(P, T, oc, 
T=(rl5 t 2 , . . . , Tj, ...) an increasing sequence of real numbers called time base, 
a mapping v: PXT-+T such that V (p , T ¡ )£PXT: v(p, T,)=Tj=>Tj^r¡. 
SIMULATION RULES 
a,) A marker in a TPN may be in one of the two following states: available 

or unavailable. Initially each place p contains M0(p) available markers. 
b) A transition t is enabled iff every place ps(psCt) contains a ( p s , t) available 

markers at least. 
c) The firing of a transition t has to take place instantaneously as soon as t 

is enabled. It consits in removing a(ps, t) available markers from each place ps 
(psCt) and in placing P(pw, t) markers in each place pw€t'. 

d) A marker remains unavailable in a place ps during the time interval between 
the instant of its arrival r, and the instant v(ps, T;); then it becomes available. 

REMARK. According to the above definition, firings in a TPN take place only 
at moments of T. 

In what follows we study the behaviour of pure TPN's such that V ( P i , t) € 
£ P X T : Y ( P I , T)—T=Z;=constant. That is, each marker is delayed by z; in the 
place independently of the instant of its arrival. 

Definition 11. Take a TPN and let MlMz... Ms be the markings attained 
successively from an initial marking M0 by applying a firing sequence a = tio, th, ..., 
..., tis_, and T(O, TFL, . . . , T , s 1 the moments of firing of the transitions i io, th, ..., tis l 
respectively. The marking of the net at a moment xik will be by definition the marking 
of the net in the interval T/fc_1^T'<Tift. Generally, the marking of a T P N with 
T = ( T 0 , T 1 ; T2, . . . , T J 5 ...) at a moment x w i l l be the marking of the net at the 
interval / = 1 , 2 , 3 , . . . The marking at r0 corresponds to the initial 
marking. For a T P N with n places we define a general temporal variable Q'(r) = 

<7„(r)] such that VT¡£T, Q(T() = M where M is the marking at 
the moment Tf (Q' denotes the transpose of a matrix Q). The variable Q(z) will be 
called charge variable. 
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Let Ms be a marking attained from a marking M0 by applying a sequence a, 
(M0 — M s ) in a PN defined by its incidence matrix C. Then 

Ms = Ma+CR (I) 

where R£Nm, m=\T\, is the firing vector of a. Equation (I) can be written for a T P N 

e « = e w + o ( T ) . (ii) 

Let us suppose now, that T^T0 and put Ax = x — x0. We have from (II) 

A_M = GW-GFRJ = = CM => = C M M 
Ax Ax Ax Ax 

where 

is a vector representing the mean variation of the charge of the net 
Ax 

in the interval Ax, 
r ( T ) 

the A:-th entry of the vector I, — represents the mean frequence of 

firing of the transition tk during Ax. The vector 7(T) will be called current vector, and evidently V Xj € T, I(xj) > 0 . 

II. 2. Description of the behavior for constant currents 

II. 2.1 — General case. We are interested in the cases of functioning with 
constant currents for which the total charge of the net remains bounded. This amounts 
to searching for solutions of the equation 

CI = 0 ( / > 0 ) . (IV) 

Those solutions correspond to cyclic firing sequences in the net as it is shown in 
[6]. We give additional relations that the current vector I must satisfy in terms of the 
initial marking and of the delays associated to the places. 

Definition 12. Let C be a matrix of order nXm on Q. We denote by (# ') 
the set of nori negative solutions of CX= 0 (C'X= 0). A generator of #(<<?') is a set 
of vectors { X j Y j = 1 with Z ,£N m (XjdN") such that any element X„ of f€((<3') could 
be expressed as the linear combination of elements of {A^}^! with non-negative 
rational coefficients, i.e., Xn= 2 where ?.j are non-negative rational numbers. 

j=i 
If we assign constant currents to the transitions of a bounded TPN, we have 

a periodic functioning, and let Q(xko), Q(xkl), ..., Q(tj,s) be the successive markings 
of the net during a period. Then, the mean vaJue 'Q of the charge variable Q(x) 
is given by 

D_ Qfa0)+Qfa,)+Qfaa) + • • • + Q(xks) 
^ 5 + 1 

If we multiply this last equation by J l i J f e ^ ' ) , we obtain 

m = o)- • (Va) 
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But the mean value qw of the charge of a place pw satisfies the inequality 

qw - z w I 

where C+ is the w-th line of the matrix C + , and the product / represents the mean 
frequence of the arrivals of markers at the place pw. 

Let Z be the following square matrix of order n: 

Zl 0 0 0 0 . . 0 
0 z2 0 0 0 . . 0 

z = 0 0 z3 0 0 . . 0 

0 0 0 0 0 . 

Then, the set of the inequalities {qw^zwC+I}l, = 1 can be written in the form 

Q^ZC+I = ZC~I. ( V b ) 

Let J'0 be a positive solution of J'C=0. From (Va) and (Vb) one can obtain 

JIQ(t0) s JqZC+I = JHZC-I. (Vc) 

This last inequality establishies a relation between the initial marking, the current 
vector and the delays associated to the places of a TPN. 

Let / = {J{,JL,..., J'K) be a generator of <<?'. If J'0 € then any inequality JIQ (r0) 
^JL, ZC+1 can be expressed as a linear combination of the set of inequalities {J'S Q (T0) S 
SJ'SZC+IFS = 1. 

The relations 

CI=0 ( / > 0 ) ( IV) 

{J'SQ(R0) & J'SZC + IFS=1 (V) 

describe the functioning of a timed Petri net for constant currents. 

II. 2.2 — Functioning of TPN at its natural rate. 

Definition 13. Given a TPN by its incideme matrix C and its delay matrix Z. 
We say that it functions at its natural rate for a given current vector /0 iff /„ satisfies 
the e q u a t i o n s CI= 0 (IV) a n d {J'SQ(X0)=J'SZC+ IFS=1 (VI), w h e r e {J'S}K

S = 1 is a g e n e r a t o r 
of W. 

Proposition 1. There exist at most n linearly independent equations describing 
the functioning at natural rate of a TPN with n places. 

Proof. Suppose that the rank of C is equal to Q. Then (IV) contains at most 
Q linearly independent equations. Also, the dimension of the space of the solutions 
of J'C= 0 is n — Q. Thus (VI) has at most n — Q linearly independent equations, and 
consequently there exist at most n linearly independent equations in the system 
(IV) and (VI). 
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Example 1. Consider the TPN of Figure 1. We want to calculate the current 
vectors (if there exist any) corresponding to functionings at natural rate. Q(r0) 
and Z are supposed given. 

r - l - I 1 1 
0 1 0 - 1 

C = 

L 

0 - 1 
1 

-1 

0 
0 0 
0 0 

Solution of C / = 0: we find i2 = /4 = 3;,, i1 = i3 

Figure 1 

A generator of <8* is {/¿ = [1 1 1 0 0], J^=[0 0 0 1 1]}. Thus 

J{ZC+I = JIQ0 => <70l + ^ + <7o3 = z^ + z^ + z^ + z^ 
and 

J'2ZC+I = JIQ0 q0i + q0. = /,zi + 3i1z5 

The condition for the existence of a solution is 

go1 + go2 + go3 _ 9O4+9O5 

In this case 
4z1 + 3z2 + z3 3(Z4 + Z 5 ) 

• g04 + g05 , _ g04 + g05 
1 3(z4 + z 5 ) ' '2 z4 + z5 • 

Suppose now that we have z 1 = z 2 = z 3 = z 4 = z 5 = 1 and 2o=[ l 0 0 3 0]. Then 
the equation (a) is not verified and there is no functioning at natural rate. The ine-
qualities (V) give 

<70l + ?o2 + = z i ('3 + h) + z2'2 + z3 h => 1 3s 8 / j , 

904+?05 - ' 2 ^ + 3/^5 = > 3 £ 6i\ 

3 
yielding 

; m i n { i ' T } = i and = -
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III. Solution of CI=0 and J'C= 0 decomposition 

In this section we present some results relative to the properties of non-negative 
solutions of CI= 0 and J'C=0, where C is the incidence matrix of a PN. Many 
authors have used linear equations for the study of the properties of PN's ([6], [7], 
19], [10], [11], [12] and [14]). In particular, a part of the results on the decomposition 
of PN's exposed in this section have been developped independently by Memmi [10], 
Crespi—Reghizzi and Mandrioli [9] and the author [14]. Also, similar results, in 
a less restrained context, are well known since several years (see, for example [13]). 
Our contribution consists in making evident the ralations between the structure of 
the net (decomposability into consistent and invariant components) and the solu-
tions of C / = 0 and J'C=0. We borrowed the terms "consistent" and "invariant" 
from [6] and [7], respectively, and the term "support" from FulKerson [13], although 
it is used in a slightly different sense. This study is limited to pure and strongly con-
nected PN's. Pureness is imposed by the fact that we use the incidence matrix for 
representing PN's and strong connexity by the fact that it is a necessary condition 
for a net to be bounded [6]. In what follows, the term " P N " denotes a strongly con-
nected and pure PN. 

Definition 14. For a PN Jf= (P, T, a, ft asubnet o f ^ i s a P N ^ = (PX, T1,oi1, ft) 
such that P j c P, c T, moreover a2 : X — N and ft : A X 7\ —N are restrictions 
of a and ft respectively. 

Definition 15. The union of two subnets Ar
1 = (Pl, 7\ , , ft) and jV2 = (P2, T2, 

•a2, ft) of a PN Jf=(P, T, a, ft is a subnet J f 3 = {P3, T3, a3 , ft) of ^fwith i >
3 =P 1 Ui >

2 
.and T3 = T1UT2.' 

Definition 16. Let Jf=(P,T, a, ft be a PN and $f= T{, «¡, ft)}?=1 
•a set of subnets of J f . -yfis covered by S or S is a decomposition of ^Viî 

P = U Pi and T = U Tt. 
i=1 1 = 1 

III. 1. Non-negative solutions of CI= 0. Decomposition into consistent 
components 

Definition 17. LetjV=(P, T, a, ft be a PN. Then a set 7 \ c T defines a t-complele 
subnet -yV{=(Px., 7\ , a l 5 ft) of J f \ i P1 = -T1 = r;. 

Proposition 2. Let C be the incidence matrix of a PN and Then the set 
_F1= {tj\i0 j^0} defines a i-complete subnet of the net having C as incidence matrix. 

Proof. Consider the subnet with T± = {t j \ i0 .^§} and P ^ T j U T j . Then each 
place p of P± has at least one input transition or one output transition (by construction 
•of the set P^. Suppose that a place p„ (pwdPy) has the input transitions th, th, ..., tir 
but no output transition in the subnet defined by Pt and Then we have 
2'oij PiPwi Uj)=0 where i0iJ and P(pw, ts) are positive rational numbers which is 
j 

absurde. Thus pw must have an output transition belonging to Tx. In the same 
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manner one can prove that if a place pw has an output transition belonging to 7"L 
then it has an input transition belonging to Tx. 

Definition 18. Let C be the incidence matrix of a PN J f . A consistent component 
of ./Fis any ¿-complete subnet J f x defined by the set of transitions corresponding t a 
the positive entries of a vector FX (/1£'<f)- >s the support of IX, (we note J f x = S(IX)). 
If there exists 70 such that S(/0) = ./t/"then we say that Jf is consistent. 

Definition 19. Let a PN be given with an initial marking M. A firing sequence 
a is a cyclic firing sequence from M iff M— - M. 

Proposition 3 [6]. A PN having a live and bounded marking is concistent. 

Proposition 4. [6]. Let Jfx—(Px, Tx, zx, px) be a consistent component of a net J f . 
Then J f x has a marking M from which there exists a cyclic firing sequence 

s 
° — tkl tki ••• fks

 s u c h that U tkj = Tl. Inversely, each cyclic firing sequence 
j-1 s 

o = tkl tk2 ... tks in J f , defines a consistent component of ./^having Tx — U h as set 

of transitions. J = 1 

Proposition 5. The union of two consistent components of a net is a consistent 
component. 

Proof. Let Ix and I2 be two elements of if defining two consistent components 
S(/i) and S(I2). Then Ix+I2^ defines the consistent component S(ix)fl S(/2). 

Definition 20. Let where C is the incidence matrix of a PN J f . Then S(11) 
is an elementary consistent component of Jf iff there exists no /2 (72^0, 72£<^) such 
that ^ ( y t S f t ) . A vector Ix defining an elementary consistent component 5 (7^ 
is called elementary vector of 

Proposition 6. If C is the incidence matrix of a PN and Ix and /2 are two elemen-
tary vectors of such that S(/1) = S(/2) then Ix and I2 are linearly dependent. 

Proof. Suppose that Tx and I2 are linearly independent and S(IX) = S(I2). Let 

A = min j—ij and I3—IX — ).I2. Then 7 3 ' a n d there exists a scalar n such that 73 = U J 
We have 5(73)0:5(7!). Thus 5(7j) is not elementary. 

Proposition 7. Every consistent PN ./Fcan be decomposed into a set of elementary 
consistent components. 

Proof. Let S{I0)=^Vand suppose that J^is not elementary. Then, there 
exists a consistent component j¥x{Jfx<tJf) and Ix such that S(I^)=Jfx. Let 

X — minimi]. and I2=I0—).IX. Then it is easy to verify that there exists a scalar /« 
• V 1. v 

such that I2 = hI2£^ and if Jft=S (Ithen ¿V=Jfx\JJf2. 
Corollary 1. The set of elementary vectors of ^ is a generator. 

Definition 21. Let a PN Jf with incidence matrix C be given and S a set of 
elementary vectors of <€. Then S is a t-base of Jf iff S is a generator (of of minimal 
cardinality. 
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Proposition 8. Let £ = [ / l 5 /2 , . . . , /s] be a matrix of order mXs such that {/,-}j=i 
is a /-base of a PN. Then the rank of B is less than or equal to m — g where g is the 
rank of the incidence matrix of the net. Furthermore, if the net is consistent then the 
rank of B is equal to m — g. 

Proof. The fact that rank [B\^m — g is obvious because the space of the solutions 
of Cl= 0 is of dimension m — g. In order to prove that rank [B] = m — g, in the case 
of a consistent net, it is sufficient to prove that any solution /0 of CI= 0 can be expressed 
as the linear combination of / 1 ; /2 , ..., /s (columns of B). If / o > 0 then this is^always 
possible according to corollary 1. If not, one can obtain from I0, a vector /( /=^0) 

^ s 
such that 1=2 Pjlj + Io where the ft' s are non-negative rational numbers. But C / = 0 

J = 1 

and / defines a consistent component. Thus, according to the Corollary 1, we can 

write 7= 2 yjlj-This g ' v e s 7o= 2 (yj-Pj)^-
j = i J = i 

REMARK. CB = 0. For any current vector /£<<?, I=BIb, the £-th entry of Ib being 
the "loop current" associated to the elementary component corresponding to the 
k-th column of B. 

III. 2. Non-negative solutions of J'C = 0. Decomposition into invariant components 

The following definitions and propositions are dual of those in III. 1.' 

Definition 22. Let Jf=(P, T, a, ft be a PN. Then a set /", c P) defines a 
p-complete subnet ¿Vi = (P1, Tx, a l 5 ft) of Jf if T1 = 'Pl = P[. 

Proposition 9. Let C. be the incidence matrix of a PN and Then the set 
{PiL/o. ^O} defines a /^-complete subnet of the net having C as incidence matrix. 

Definition 23. Let C be the incidence matrix of a PN J f . An invariant component 
pf jV"\s any /»-complete subnet J/[ defined by the set of places corresponding to the 
oositive entries of a vector J{ •A'l is the support of J[, (we note J^ = S(Jl)). 
If there exists J,\ such that 5(7,5) = .yf then we say that yTis invariant. 

Proposition 10. The union of two invariant components is an invariant compo-
nent. 

Definition 24. Let Jli'tf' where C is the incidence matrix of a PN J f . Then 
S(>/i) is an elementary invariant component of Jriff there exists no (J'«^0, Jl^W) 
such that 5 ( / 2 ) C J : 5 ( / 0 - A vector J[ defining an elementary invariant component 
S(J{) is called elementary vector of . 

Proposition 11. If C is the incidence matrix of a PN and J[ and J{ are two ele-
mentary vectors of with S{J{) = S(J'2) then J[ and J'2 are linearly dependent. 

Proposition 12. Every invariant PN Jrcan be decomposed into a set of elemen-
tary invariant components. 

Corollary 2. The set of elementary vectors of W is a generator (of  c6 (). 
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Definition 25. Let Jf be a PN with incidence matrix C and S a set of elementary 
vectors of W. Then S is a p-base of Jf iff 5 is a generator (of <£") of minimal cardi-
nality. 

Proposition 13. Let D' = [J1, J2, . . . , / J be a matrix of order nXs such that 
{y/}-=1 is a /?-base of a PN. Then the rank of D is less than or eqiial to n — g where 
g is the rank of the incidence matrix of the net. Furthermore, if the net is invariant 
then rank [D]=n — q. 

Proposition 14. Let C be the incidence matrix of a pure and strongly connected 
state graph with n places and m transitions. Then the following statements are well 
known : 

a) rank [C]=H — 1, 
b) the space of solutions of CI=0 is of dimension m—n + l, 
c) the space ofsolut ionsofy 'C=Ois of dimension 1 and the vector 7,5=[1 1 1...1] 

is a base of this space. 

REMARKS. A ¿-base for a state graph is a circuit base, 
C in Proposition 14 expresses the fact that any strongly connected state 
graph is an elementary invariant component. 

Proposition 15. Let C be the incidence matrix of a pure strongly connected 
marked graph with «-places and m transitions. Then we have the dual of Proposition 

a) rank [C\—m—\, 
b) the space of the solutions of CI=0 is of dimension 1 and the vector /¿ = 

=[1 1 1 ... 1] is a base of this space, 
c) the space of solutions of J'C=0 is of dimension n—m+l. 

REMARKS. A /-base for a marked graph is a circuit base, 
b) in Proposition 15 expresses the fact that any strongly connected mar-
ked graph is an elementary consistent component. 

IV. Resolution of the equations (IV) and (VI) with given Q(T0) and Z 

In this section we show that the problem of determining the currents of a T P N 
for functioning at natural rate, when we know Q(r0) and Z may have either several 
solutions or no solution at all. The extreme cases correspond to state graphs and 
marked graphs. 

Example 2. For the TPN of Figure 2 the system of the equations (TV) and (VI) 
generally has a unique solution for I. We have: 

III. 3. Particular cases: state graphs and marked graphs 

14: 

2 1 1 0 1 1 " 

.2 1 1 1 2 . 0 . 
J and D = 
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If ix and iy are the currents associated respectively to the two elementary 

consistent components of the net, we have, I=B 

On the other hand, we have two equations expressing the charge conservation in 
the state graphs defined by the lines of D: 

and 
(¿x+ iy)2z0 = 1 (we put z0 = z5 = z6) 

2 ( i x + iy) z i + 2 ( i* + ¿y) + (i* + iy) z3 + (2iy + ix) z4 = 1. 

Figure 2 

By resolving this system, we obtain 

. _ 2(Z1 + Z2 + Z4) + Z 3 -2Z 0 

* ~ 2Z0Z4 

2z0—2(z1 + z2) — z3 — z4 

2 z0z4 

where ix and iy must satisfy the inequalities /^>0 and ix + iy>0. The second ine-
quality is always verified, and the first gives the condition 

2(Z1 + Z2) + Z3 + Z4 

TIMED MARKED GRAPHS. In this case we have n^m{n=\P\, m= | T | , the equality 
is verified only if the marked graph is a circuit). Thus, the currents determined by 
solving m equations among the n equations (IV) and (VI) must satisfy the remaining 
n—m equations in order to have a functioning at natural rate. If not, it is sufficient 
to search for the solutions of 

{J'rQ0 ^ J<rZC+iyrZ?+1 

where {/r'}pr]"+1 is a p-base (base of circuits in this case) and I' = [ii...i] a solution 
of CI=0. 
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The r-th inequality can be written in the form zt)>' where is the 
kr kr kr 

sum of the markers in the circuit Kr, Kr=S(J'r) and 2zi is the sum of the delays 
К associated to the places of this circuit. Therefore, 

n — /71 + 1 

'max = min { ( 2 g 0 ) K 2 Zi)}-r=1 kr kr 
This result is given in [6]. 

TIMED STATE GRAPHS. In this case m^n, and for I it is always possible to solve 
the system (IV) and (VI). One can construct a system having a imique solution for 

I by giving additional equations imposing a 
constant ratio between the currents of the 
transitions having the same input place. There 
exist exactly m — n linearly independent 
equations of this kind for any state graph. 

Example 3. Consider the timed state graph 
of Figure 3. The solution of C / = 0 gives 

' i = г"з + ' 4+ 'б> 

¡2 = (3 + '4> 

h = <6 + '4 • 

The equation of conservation of the charge in the graph is 

4 

(¡6 + i3 + i4) (zL + z2) + (¡3 + i4)z3 + (i4 + i 6 )z 4 = 2 • 
j=i 

If we impose and = we have 

h = ¿1 t'i 
K+V 

X1X2i1 

о + д а + л , ) ' 

( 1 + ^ ( 1 + ; . , ) ' 

u = 
Alii 

(1 + ; . 1 ) ( i + ; . 2 ) ' 

IR = 

We can now uniquely determine the currents in terms of Q0, Z and parameters 
X1 and X2. For example, for i\ we obtain 

• x h 1+/-X+/-2 1 J , 

REMARK. One can construct a system having a unique solution for / , from the 
system of the equations (IV) and (VI) by imposing the additional constraint that 
the sum of the charge of each circuit of a base of circuits of the state graph is constant. 
In this case we have (« — 1) linearly independent equations from the system C / = 0 
and m—n + l linearly independent equations by application of this constraint. Thus 
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we have m equations describing the behaviour of the net. (The equation [1 1 1 ... 1] 
0 O =[1 1 1 ... 1] Z C + 7 can be obtained as the linear combination of n—m + l 
equations). The analogy with the electrical circuits is obvious. The m—n + l equations 
express the application of the Kirchhoff's voltage law: the sum of ij • Zj (voltage drops) 
for a circuit is equal to its total charge (electromotive force). 

V. Applications 

Example 4. Producer-consumer system. Consider the producer-consumer problem 
with a buffer of bounded capacity N0. We suppose that the producer and the con-
sumer do not try to access the buffer at the same time. The producer deposits items in 
the buffer as long as it is not full and the consumer does not try to take an item from the 
buffer when it is empty. Items are produced, deposited, taken and consumed one by 
one. 

The TPN of Figure 4 describes the system producer-consumer with a possible 
initial marking. Interpretation of the delays associated to the places: 

zp means time of producing an item, 
zd means time of depositing an item, 
zt means time of taking an item, 
zc means time of consuming an item. 
We suppose that the z\ s associated to the other places are equal to zero. That is, 

the producer and the consumer are functioning at maximum speed: the producer 
is allowed to deposit an item right after having produced one and he always finds 
the access to the buffer free. Also, the consumer is allowed to take an item right 
after having consumed one and he always finds the access to the buffer free. 

By solving the equation CI=0 we find that the same current i must be associated 
to all the transitions. Also, a cover by elementary invariant components (state graphs 
in this case) is given in Figure 5. 

PROBLEM. Considering as initial marking the marking given in Figure 4 , find 
conditions for functioning at natural rate. 

The inequality (V) applied for SGI, SG2, SG3, SG4 gives, respectively, 

1 1 1 ' . . N 0 ' 
r S , i S , , i s zp + zd zd + z,+.zs zc+z, ,zd + z, + za . , 

, • , '1*1 • / 1 1 1 # 0 ' 1 which yield: ima„ = mini , , , h. 

I zp + zd' zd + zt+zs' zc+zt' zd + zt+zal 

Conditions for functioning at natural rate are 

z, = zp-z, = ze-zd>.0 and' JV c- l = i ^ = g zp + zd zc+tt 

CONCLUSION. The producer's and consumer's periods must be equal: z = z p + z d = 
=zc+z,. Also, z,. the mean time between two successive accesses, is given by zs = 

z —z =zp—zt=zc—zd>0. From N0—1 = — — 1 we deduce that: 

4 Acta Cybernetica IV/2 
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a) for z 0 <z 5 , a finctioning at natural rate is impossible, 
b) if za=zs, a minimum capacity N0= 1 is necessary, 

c) if z„>z s , a minimum capacity of Nn= 1 +——— is necessary. 

Example 5. System of r producers and w consumers. Let a system of r producers 
and w consumers be connected with a buffer of capacity N0. The simultaneous access 
to the buffer is not allowed. We consider for the delays associated to the places the 
same notations as in the preceding example by adding an index in order to distinquish 
the producers and the consumers among them. Thus, zdl is the time for the deposit 
of an item by the i-th producer and zc. is the time of consuming an item by the 
j-th consumer. We consider the case in which procuders and consumers are func-
tioning at maximum speed, which implies] zero waiting times before the deposit'or 
before taking an item (Figure 6). 
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In Figure 7, we give a decomposition of the PN representing the system into 
elementary invariant components. 

Figure 7 

If i0j and i0j are the currents associated to the cycles of the y'-th producer and 
y-th consumer, respectively, we have: 

i'1' ~ -Zdj + Zp, i=i a n d ^ 
r w 

Furthermore, 2 hj = 2 = h • where /„ is the current throughout the buffer. 
j=i j=i 
( r 1 w 1 1 

Thus, i0 = min 2 — — 2 7 , . f-
lJ = l Zdj + z p j j=1 Zcj + Ztj> 

The equation of conservation of the charge for SGS is: 
r w 

1 - 2 >ijzdj - 2 hjztj 

But, 
2 h j z d j + 2 h j z , j + iozs = 1=> zs 

j=i j=i 

j=i j= i (a) 

a n d Z ^ r -J = L J = 1 ZDJ+ZPJ J = 1 J = 1 I C . - T I T J 

From the two preceding inequalities and (a) we get 
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Finally, for SGO (Figure 7) we have 

(c) 

2 hjzdj+ 2 h/.j + zJo = N0 => l-i0zs + i0za = Nq =• J V 0 - 1 = (za-zs)i0. j= j . j = I 

From l his last equation and the inequality (b) we obtain 

The inev jualities (b) and (c) give least bounds for the mean time between two successive 
accesses to the buffer ( z j and for the mean waiting time ( z j of an item in the buffer. 

Example 6. Consider the TPN of Figure 8. One could imagine that it represents 
the functioning of an enterprise of car lo-
cation having customers of two types. Cus-
tomers of type 1, whose number is Nx, have 
a mean location time zx and a mean time 
between two succesive demands for location 
za i. Also, customers of type 2, whose num-
ber is N2, have a mean location time z2 and 
a mean time between two successive de-
mands for location z„2. We suppose that the 
total number of cars of the enterprise is N0 
and that after location, a service of mean 
duration zs is done to each car. We finally 
admit that a car ready for location waits Figure 8 
during z0 before a customer demands it. 

By solving CI= 0, we get iy=/3, z'2 = /4, / 5 =/ j + ;2. Furthermore, the resolution 
of J'C=0 gives a decomposition into state graphs (Figure 9). 

PROBLEM. Knowing N1 and N2 as well as the delays associated to the places, 
determine N0 such that a functioning at natural rate will be possible. 

The equations of charge conservation for SGI and SG2 are, respectively, 

N x 

zl +zai 
and • No 

¿2 + Z„, 



202 J. Sifakis: Use of Petri nets for performance evaluation 

For SGO, we have 

N0 = Ox -I- ¿2) (z„ + zs) + ijZj + /2z2 => Â o = 
^ l Ç Z n + Z t + Z,) 

+ N2 
(z0+zs + z2) 

za, + z2 

N0 is the minimum number of cars to satisfy the demands of the (A^ + N2) customers. 

We study the behavior of pure timed Petri nets for constant current assignments. It is given 
a set of relations describing the behavior of a timed Petri net and it is shown that its maximum 
computation rate can be calculated by solving a set of n linear equations where n is the number 
of its places. These relations are established between the currents, the initial marking and the delays 
of the network. Also, in order to better understand and use these relations, we give some results 
on the decompositions of a Petri net, obtained by studying the types of solutions of the equations 
C / = 0 and J'C=0 where C is the incidence matrix of the net. It is shown, that every consistent 
(resp. invariant) Petri net can be decomposed into a set of consistent (invariant) "elementary" sub-
nets. We finally give some examples in order to illustrate the use of timed Petri nets in the study 
of the dynamic behavior of the systems. 
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Strongly connected digraphs in which each edge is contained 
in exactly two cycles 

B y B . ZELINKA 

In [1] A . ÁDÁM suggests a problem to characterize strongly connected digraphs 
without cut vertices with the property that each edge of such a graph is contained 
at most in two cycles. (See Problem 2, p. 189 in [1].) In this note we do net solve this 
problem in general, but we consider a particular case when each edge is contained 
exactly in two cycles. We consider 
finite digraphs without loops and with- A i 
out pairs of equally oriented edges 
joining the same pair of vertices. 

We start by a definition. 

DEFINITION. L e t Ax, A2, ..., A„ f o r 
n ^ 2 be pairwise disjoint cycles. On 
each At for i=\,...,n choose two 
distinct vertices ai, bt. Then identify 
bi with ai + 1 for all i = l , . . . , « — 1 and 
bn with a1. The class of all digraphs 
obtained in this way will be denoted 
by sá (Fig. .1). 

Further, by a diagonal path of a 
cycle C we shall mean a directed path 
whose initial and terminal vertices are 
in C, while its edges and inner vertices 
(if any) are not. 

THEOREM. Let G be a strongly 
connected finite digraph without cut vertices. Then the following two assertions are 
equivalent: 

(i) 
(ii) Each edge of G is contained in exactly two cycles of G. 

PROOF: (i)=>-(ii). Let G^sé. Let e be an edge of G. The edge e is contained in 
. some cycle Ai for 1 ^ i ^ n . The cycle Ai is the union of two directed paths Z^1', 
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where is the path from a ; into bt in A-, and is the path from into ai in 
these two paths are edge-disjoint. If e belongs to P[l) then, evidently, each cycle 
containing e contains the whole P}0, therefore, it must contain also a directed path 
from bi into at in G. There are exactly two such paths; one of them is Pi'\ the other is 
the union of all P[j) for where / \ ( j ) is defined analogously as There-
fore, there are exactly two cycles in G which contain e. For the case when e is in 
Pi'* the proof is analogous, obtained from this proof by interchanging subscripts 1 
and 2. 

(ii)=>(i). Let G satisfy (ii). Let C„ be a cycle in G. Let uxu2 be an edge of C„. 
As uxu2 must be contained in two cycles, there exists a cycle Cx containing uxu2 
and distinct from C0. Evidently, there exists thé longest directed path Px which 
contains u1u2 and is contained in both Cg and C1. Let this path go from a vertex 
M3 into a vertex u4. Let P[ be the path in C\ from u4 into u3. Suppose that P[ contains 
a vertex u' of C0 distinct from u3 and w4; let u[ be the first vertex of P'x with this 
property. Then there exists a cycle which is the union of Px, the subpath of P'x from 
w4 into u[ and the path in C0 from u[ into u3. This cycle is evidently distinct from 
both C0 and C1 and contains ux u2, which is a contradiction. Thus P[ is a diagonal 
path of C„. Let w5 be the terminal vertex of the edge of C0 whose initial vertex is u4. 
There exists a cycle C2 distinct from C0' and Cx which contains the edge w4t/g. Let P2 
be the longest path which contains m7«5 and is contained in both C0 and C2, let it 
go from a vertex H6 into a vertex u7. Let P'2 be the path in C2 from u7 into w6; it is 
a diagonal path of C0. Suppose that Pi and P2 have a common inner vertex; and 
let v be the first inner vertex of P2 belonging to Pi .Iiu7?±u3, then any edge belonging 
to the intersection of the paths in C0 from w6 into u4 and from u3 into u7 belongs to 
three cycles, namely C0 , Cx and the cycle which is the union of the path from u3 
into u7 in Cx, the subpath of P2 from u7 into v and the subpath of P'x from v into 
u3, which is a contradiction. An analogous contradiction will be obtained for u6^u4. 
Therefore P'x and P'2 can have a common inner vertex only if u7=u3 and we = m4 ; 
this case will be denoted by (*) , the opposite case by (* *). 

Consider the case (*) . Each edge of the path in C0 from u3 into u4 is contained 
in C„ and Cj, each edge of the path in C„ from u4 into u3 is contained in C0 and C2 . 
Let vx be the first vertex of Pi distinct from u4 and belonging to P'2. The subpath 
of Pi from u4 into vx and the subpath of P2 from vx into u4 form a cycle Dx. Each 
edge of Dx is contained in two cycles only, therefore, an inner vertex neither of the 
subpath of Pi from ^ into u3, nor of the subpath of P2 from u3 into vx can belong 
to Dx. If vx^u3, we repeat this consideration with the subpath of Pi from vx into 
u3 instead of Pi and with the subpath of P2 from u3 into vx instead of P2, and analo-
gously as we have obtained vx and Dx we obtain v2 and D2. Thus we proceed further, 
until we obtain vk=u3 for some k (this will be performed after a finite number of 
steps). The cycles C„, Dx, ...,Dk correspond to the cycles AX,A2, ...,A„ from the 
definition of si. The graph G evidently cannot contain further vertices or edges, 
because then (ii) would be violated. Therefore (Fig. 2). 

Now consider the case (* *). Suppose that w6^«4 . As C2 must contain u4u&, 
the vertex w4 lies on the path in C0 from H6 into u7. As W6?ÎM4, also the edge of C0 
whose terminal vertex is u4 is contained in this path and in the cycle C2. Then this 
edge is contained in three cycles C„, Cx, C2 , which is a contradiction. Therefore, 
u6 — u4. If u7 is an inner vertex of Px, then an arbitrary edge of the path in C0 from 
u3 into u7 is contained in C0, Cx and the cycle which is the union of P2, Pi and the 
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path in C0 from ua into u7, which is a contradiction. Therefore, M, lies on the path 
in C0 from w4 into u3. We see that Cj and C2 have only one common vertex w4. Thus 
we may proceed further and we obtain further cycles C3 , ..., Ck. The cycles Cx , C2, . . . , 
..., Ck then correspond to the cycles Az, ..., A„ from the definition of jtf. As G 
cannot contain further vertices and edges, we have G^sd (Fig. 3). 

Ul 

Сильно связные орграфы, в которых каждая дуга принадлежит точно 
двум циклам 

В статье характеризован класс всех конечных сильно связных ориентированных графов, 
в которых каждая дуга принадлежит точно двум циклам. Это является частичным решением 
одной проблемы предложенной А. Ádám-ом. 
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Some remarks on the chromatic number of the strong 
product of graphs 
B y K . VESZTERGOMBI 

Let Gt, G2 be two graphs. Let F(GX) = {xj, . . . , xn}, V(G2) = {y,, ..., v,„} be the 
sets of points, E(Gj), E(G2) the sets of edges. The definition of the strong product 
_H=G1XG2, is the following: 

V{H) = {(x;, y j ) | x,.€ K(G,), yj€ V(G2)} 
E(H) = {((x ;, yj), (xk, y,))| either x ; = xk and (yj, y,)eE(G2) 

or (Xi, xJiEiGj) a n d yj = y, 

or (xt,xk)eE(G,) and ( j j , y,HE(Gj}. 

The sets {(x;, yj)\xi fixed, yj£V(G2)} will be called raws, the sets {(x;, ^Oj.^fE ^(G,), 
yj fixed} will be called columns. There are some trivial estimations for the chro-
matic number of the product. Let / ( G ) denote the chromatic number of the graph 
G, we have then the following inequality (see e.g. [1], [2]) 

max (/(GO, Z(G2)) ^ Z ( t f ) s Z(GX) • Z(G2). 

The upper bound is sharp, in the sense, that we have equality in many cases, for in-
stance if in both Gl and G2, the chromatic number equals to the clique number. 
(The clique number is the maximum cardinality of complete subgraphs.) In this 
.sense the lower bound is not sharp. In the following we give a better lower estimation. 

Let us denote by K2 the single edge, we have then: 

Theorem 1. y,(K2XG)^y_(G) + 2. 

Proof. We give an indirect proof. Let / ( G ) = k. Let us suppose that we have 
•coloured the product K2XG in k+l colours. 1, 2, . . . , k+ 1. In this case we can 
•colour G as follows. Let us denote the points of K2 by a and b. Then we can colour 

F(G) with the smaller one of the colours of (a, x•) and (b, x,) if this minimum is 
smaller than A:. If this minimum equals k, then we colour xt byk — l. This colouring 
is a good colouring of G. In fact, the pairs with minimum k or k — 1 cannot be adja-
cent, since this would give a complete graph on 4 points, coloured in three colours, 
which is a contradiction. This way we have a colouring of G with k — 1 colours and 
this contradicts our assumption that x(G)=k. So we have proved the theorem. 
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In the case when / ( G ) = 2 our lower bound coincides with the upper bound, 
so this is a trivial case. 

COROLLARY. If both GX and G , have at least one edge, then 

/ ( G X X G 2 ) S maxfcCGJ, / ( G 2 ) ) + 2. 

Next we examine the case / (G, )=/ (G 2 ) = 3. 

Theorem 2. The product of any two odd circuits longer than 3 can be col-
oured with 5 colours. 

Proof. Let us denote the circuit of length m by Cm. One can easily see that 
the colouring of C5XC3 shown on Fig. 1 with 5 colours is a good colouring. 

1 2 3 4 5 

4 5 1 2 3 

2 3 4 5 1 

5 1 2 3 4 

3 4 5 1 2 

Fig. l 

F o r C 5 X C 2 ( + i ( /=-2) , we can d o the fo l lowing (see Fig . 2). 

1 2 3 4 5 

4 5 1 2 3 

2 3 4 5 1 

5 1 2 3 4 

3 4 5 1 2 

/ - 1 times 

Fig. 2 

The first 5 columns are coloured in the same way as in X , and we repeat the 
colouring of the 4th, and 5th columns /— 1 times. This trivially gives a good colouring. 
In the case of C2k+1xC2i+1 2) first we colour C 5 x C a + 1 , then we repeat the 
colouring of the 4th and 5th rows k— 1 times. 

Remark 1. Consider the graph K2X.C-a. It has 10 points. In a 5-coIouration of 
this graph, a colour can occur at most twice, therefore each colour must occur 
exactly twice. So if one row contains all 5 colours then so does the other. Moreover 
one can easily check that if one row is coloured say (1 2 3 4 5) then the other is 
either (3 4 5 1 2) or (4 5 1. 2 3). 

Theorem 3. C5 X C5 can be coloured with 5 colours essentially uniquely. 

Proof. We show, that we can colour C 5XC 5 with 5 colours only so, that in 
every row we use all the 5 colours. Suppose, indirectly that we have found a colouring, 
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in which for instance in the first row colour 5 does not occur. Then in the second 
row; colour 5 must occur twice by Remark 1. Continuing the colouring, in the 
third row we cannot have 5, in the fourth row we must find it twice, in the fifth row 
we cannot have number 5, which is impossible. 

So suppose that the first row is coloured 1 2 3 4 5 by Remark 1 we may as-
sume that the second row is coloured (4 5 1 2 3). The third row is therefore either 
(1 2 3 4 5) or (2 3 4 5 1). The first possibilty cannot occur, because the above 
argument applies to the columns as well, therefore the colours of the first column 
must be different. Going on similarly we get that the fourth and fifth rows are 
(5 1 2 3 4), (3 4 5 1 2). 

In the sequel we present a characterization of graphs which give a five-
colourable product with C6. Before stating the theorem we need the following 
definition. 

A homomorphism of G into H is a mapping cp: V(G) V(H) for which we 
have that whenever (x, y)£E(G) then (<p(x), <p(y))£E(H). 

Theorem 4. Let G be a graph, for which *(<?)>2. Then /(GxC5) = 5 if and 
•only if there is a homomorphism of G into C5. 

Proof. I. We know that we have a 5-colouring for C 5XC 5 . Let us take a 
homomorphism cp of G into C5. Let K(G), then (0 (u) (- and we colour the 
row vX C5 in the same way as the cp(v)th row of C 5XC 5 . This colouring is obviously 
.good because of the definition of homomorphism. 

II. For the proof of the "only i f " part we introduce the 5-colouration graph 
of C5 . We define the k-colouration graph of G in the following way. Let k^y(G). 
The vertices of the fc-colouration graph are the different colourings of G with k 
given colours (which need not occur all in the colouring) and two vertices a, b are 
adjacent if and only if GXK2 can be coloured with k colours so that the colouring 
•of the first row corresponds to a, and the colouring of the second row corre-
sponds to b. 

Lemma 1. The 5-colouration graph of C5 has the following structure. There 
are 5! colouration with 5 colours in which every colour occurs exactly once. Those 
-colourations form 4! pentagons. The remaining colourations form a bipartite graph. 

The proof of this Lemma is straightforward from the proof of Theorem 3. 
Continuing the proof of Theorem 4, assume that we have a 5-colouring of 

GX.C5. Every row vi X C5 expresses a 5-colouring of the pentagon and this 5-colour-
ing corresponds to a point in the 5-colouration graph. We take the mapping ip. for 
which q>(vt) is this point of the 5-colouration graph, this mapping cp will be a homo-
morphism of G into the 5-colouration graph. Lemma 1 gives the structure of the 
5-colouration graph of the pentagon and this graph has a homomorphism \]/ into 
the pentagon (obviously). Now the mapping 1¡/cp is a homomorphism of G into the 
pentagon, and this is what we wanted to show. 

From the generalization of the above theorem, one can get the next theorem: 

Theorem 5. Let k^yXG), and assume that G has 'at least one edge. Then for 
a graph H we have x(GXH)^k if and only if H has a homomorphism into the 
^-colouration graph of G. 
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Proof. I. The rows of the product are copies of the graph G. So if H X G is k col-
oured then the colouring of a row vXG corresponds to some vertex of the ^-coloura-
tion graph. This defines a homomorism of H into the ^-colouration graph of G. 

II. Conversely, assume that H has a homomorphism <p into the A:-colouration_ 
graph of G. Then colour the row vXG as in the colouration (p{v). 

A very simple argument shows that if we take the product A „ X C a + 1 (K„ is. 
the complete «-graph) then the chromatic number of this product decreases as k 
increases, but for k > n we always get z(A r

nXC2 t + 1)=2« +1 . In particular,. 
X ' № X C t t + i ) = 7. One can have the feeling that if we take the product of odd circuits 
with 3-chromatic graphs with girth (the length of the shortest circuit in the graph) 

larger than 3, we can get smaller chromatic number for the 
product, probably only 5. We show some examples which 
contradict to this tendency. 

Lemma 2. Let a(G) denote the maximum number of 
independent points in G. Then for any G and k, we have 
the inequality: 

2a(GxC 2 k + 1) ^ (2k+l)a(G) . 

Proof. The maximum number of independent points 
Fig- 3 in GXK2 is the same as in G. Summing this for all edges 

of C2k+1 the inequality follows. 
Let P5 denote the Petersen-graph shown in Fig. 3. It is obvious that / (P 5 ) = 3. 

Then we have the following theorem. 

Theorem 6. The chromatic number of the product P5 X C 2 / + 1 is always greater 
than 5. 

Proof. We have <x(P5)—4. From Lemma 2 we get the inequality: 

a(P 5 XC 2 I + 1 ) ^ 2 ( 2 / + l ) . 

We show that here the equality cannot hold. Suppose it does. Then equality holds 
in the proof of Lemma 2 on all edges of C 2 / + 1 . 

Let us consider the independent vertices in the first row of the product PbXC2l+i. 
Let its number be / ( / = 0 , 1, 2, 3, 4). We can choose from the second row at most" 
4—/independent vertices. Since equality holds in the proof of Lemma 2, we have 
precisely 4 —/ vertices from the second row. From the third row we must choose f 
independent vertices again. Continuing this procedure from the (2/),h row we must 
choose 4—/vertices. From the (2/+l) s t row we must choose/vertices because this 
row is the neighbour of the (2/),h row, but this is the neighbour of the first row too, 
se we must choose 4—/ vertices from the (2/+l) s t row. This is possible only i f 
f=4—f, f=2. It can be easily seen that if we take in Pb two independent vertices, 
then they uniquely determine the maximal independent set which contains these 
vertices. In the case f—2 this gives that in every (2z'-t-l)st row ( /< / ) we have the 
same two vertices. But this excludes any vertices in the (2/+l) s t row because it is-
the neighbour of both of the first and (2/),h row. Thus we get 

a ( ? 5 X C 2 l + 1 ) < 2 ( 2 l + l). 
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From this and from the well-known inequality 

\V(G) | 
a(G) X(G). (1) 

We get that / ( P 5 X C 2 i + 1 ) > 5 for any /. 
Let us take the "generalized Petersen-graph", P13, seen in Fig. 4. 
One can easily see that x(Pi3) — 3- The length of the shortest circuit is 7. For 

this graph we have the following theorem: 

Theorem 7. For any k z(A3XC2fe+1)=> 5. 

Proof. Let us consider the maximal number 
of independent vertices in P13. In the outer and 
the inner circuit there can be at most six independ-
ent vertices. We show that if we have in the outer 
circuit six independent vertices, then we can have 
in the inner circuit at most four vertices. The outer 
six independent vertices exclude their six inner 
neighbours (seei Fg. 5a). 

It is essentially unique to choose six independent 
vertices in the outer circuit. The remaining seven 
vertices in the inner circuit consist of one iso- Fig. 4 
lated vertex and from three independent edges and 
from this graph we can choose at most four independent vertices (as it is indicated 
in Fig. 5a). 

We can argue similarly in the case when we have six independent vertices in the 
inner circuit (see Fig. 5b). Thus a(i ,

13) = 10. Using Lemma 2 we have the following 
inequality: 

cc(P13XC2k + 1)S(2k+\)-5. 
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From this and using inequality (1) we have: 

So we have proved the theorem. 

Problems. 1. Give a better lower bound for the / {Gi X G2) if / (Gj) , / (G 2) 
are larger than 3. 

2. Prove that for any large gone can find Gx and G2, for which / (G 1 )= / (G 2 ) = 3, 
the girth of both graphs is larger than g but / ( G 1 X G 2 ) s 6 . 

3. It would be interesting to determine the structure of the ^-colouration graphs 
of some classes of graphs, to get similair results as in Theorem 4. 
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On Sperner families in which no 3 sets have an empty 
intersection 

B y H . - D . O . F . G R O N A U 

1. Introduction 

Let 'Sir, k) denote the set of all Sperner families J27 (i.e. Xct Y for all different 
X, Yd on i ?=[ l , r] (the interval of the first r natural numbers with satisfying 
k 
U XtcR for all (¿=1, . . . , k) where c is used in the strong sense. Further-

i = l 
more we use the following notations: 

^{r, k) = {<F: FC), | J X = R}, 

9\r, k) = J k ) , \J X<z R}, 

n(r, k) = max 1^1. n1^, k) = max W\ and n°(r, k) = max \!F\. 

We notice that &1 (r, k) = Q holds for k^r. 
n(r, 2) was determined by E. C. M I L N E R [6] (for the dual case) and later by 

A. BRACE and D . E. D A Y K I N [1], and n(r,k) with k^4 was determined by the 
author [3]. 

For n(r, 3) the following two configurations are known: 

and 

n(r, 3) = 

n(r, 3) = 

1 

№ 
r — 1 

M 
+ 1 (1) 

(2) 

P. F R A N K L [2] proved (1) for large enough even /• (e.g. for r>1000) and (2) for 
large enough odd r (e.g. for r>300). The author [3] showed (1) for r=l and even 

5 Acta Cybernetica IV/2 
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r>400, and(2)for all odd r with the exception of the following 12 values: 7, 11, 13, 
17, 19, 23, 25, 29, 31, 35, 37 and 43. 

In the present paper we prove 
(1) for r = 4 , 6, 114 and even r ^ l 2 0 and 
(2) for r= 11, 17,23, 29, 35,43. 
We observe that exchanging all X^S? by R\X we get analogous results for 

Sperner families in which no 3 sets have an empty intersection. 
We shall sharpen Theorem 5 of [3] in the case k=3. There we divided a maxi-

mal family 3) to two families J^q and ^ i , and showed 

1 

and 1^1 
•1 

In fact depends on For k=3 and even r, 
r - 1 1 

[¥1 implies 1. 

In section 2 we shall present our main results and give a new type estimation of 
families of sets, which will be used in section 3 to prove a theorem analogous to The-
orem 5 [3]. Finally, in section 4 we shall prove our main result. 

2. Main results 

Throughout this paper let a = [ ~ 2 ~ ] an<^ 6 = • 

r-l 

Ml Theorem 1. 1° n(r, 3)= + 1 far /-=4, 6, 114 and even 120, 

2° n(r, 3)--

r— 1 

M for r = 11, 17, 23, 29, 35, 43. 

Let r^4. Then n(r, 3), n1 (r, 3) and n°(r, 3) exist and it holds n(/•, 3) = 
=max {nx(r, 3), n°(r, 3)). 

For 3) there is an element v£R such that is a Sperner family on 
R\{v}, and it follows by SPERNER'S theorem [7]: 

Lemma 1. n°(r, 3) -
r-1 

M 
We shall use the following lemma shown in more general form in [3| 

(Lemma 2). 
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Lemma 2. Let ^ ^ ( r , 3) such that |Js"[=n1C>3) and max \X\ is minimal. 
Then \X\Sfl holds for all X& 

f 

Lemma 3. Let s be an integer and let J^ denote an arbitrary family of differ-
ent ¿--element subsets of R. Finally, let &2s denote the largest family of (2i)-element 
subsets of R such that for every X£^2* there is at least one pair (Y, Z) of subsets 
of satisfying YUZ=X. Then 

M 

Proof. Let us consider the following families: 

W,={X:X<zR,\X\ = s,X$&t), • 

^* = {X:X<zR, \X\ = 2s, X ^ } . 

Then for any there is no pair (Y, Z) of sets of with YUZ=X. For every 

such Xd-'Fr* there exist exactly y Q5 j = ^ j unordered pairs (Y, Z) with 

|y| = |Z| = i and YUZ=X. All these sets are mutually disjoint, i.e., at least p 5 ^ 
¿-element subsets belong to for every 

On the other hand for every ¿-element set Y of i? there exist exactly K 
disjoint ¿-element sets Z. Hence 5 

Using | ^ | = L r ) - \ ^ 2 s | and = w e obtain the inequality of 
Lemma 3. • V s ' ' 

3. An upper bound for n1 (r, 3) 

Let J ^ ^ ( r , 3) such that \&r\=n1(r, 3) and max \X\ is minimal. By Lemma 2, 
we have \X\ for all X^W. The numbers ¡{X: X ^ , |AT|=i}| (i=0, . . . , r ) 
are called parameters of the family Sr. SfSF denotes the canonical Sperner family 
(see A . J . W . HILTON [4]). 

Now we decompose J5" to the subfamilies S>, S and 2/C defined as follows. 
— 3) is a subfamily of J*" with {X: X^tfP, X). 
— S={X\ \X\^r-2a-\). 
— 3tf={X\ \X\*=r-2a). 

5* 
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1. It has been proved by A. J. W. HILTON [4] that all X £ S F with \ X \ > 6 belong 

to 3 ) . S f 2 > is a Sperner family on i?\{r}. Using ( ^ j 1 ) S j ] for \ X \ ^ a - 1 , 

by LUBELL'S inequality [5] we obtain 

2 "77~iT = 2 7 7 ^ + ^ T T ^ S l , XcyQ _ — f r - l l X&9 | > - n xtsrB i r _ 1 ' i 
[ \ X \ } 1*1—- { a J I*i3—i [ \ X \ ) 

Pa , ~Pa ^ x 

and 
f;1) (:=!) 

I^I a i"1"— 1"! r—2a 
+ pa r — a \ a J r — a 

2 . / = { 1 : Z U { r } £ y ( @ U ^ ) , / - i i r } is a Sperner family of cardinality \S\ on 
i ? \{ r} and \ X \ ^ r - 2 a - 2 holds for all X £ f . 

By LUBELL'S inequality [5] we obtain 

i F / p i T - 1 ' f ^ h " 1  a n d  l S l = l / l H r - 2 a - 2 ) -

{ \ X \ } [ r — 2 a — 2 ) 

3. Let ¿ r t*={X: Then ^ U ^ U ^ L * is a Sperner family. We 
notice that ^ r - 2 a holds for all X £ 3 i \ J ^

 1 and \ X \ = r - 2 a holds for all 
Clearly, ©U^f and are Sperner families themselves. We have only to show 
that there is no pair ( Y , Z ) with and Z £ Q > U J V satisfying Y ^ Z . Let us 
assume the contrary. Then there are two sets Y ± , Y 2 £ 3 > with i^U Y 2 = R \ Y . Hence 
for the sets Y l t Y 2 , Z <E & it follows i^U 7 2 U Z = ( i ? \ y ) U Z i ( J R \ y ) U y = / ? , which 
is impossible for 3). 

f ' = { X : ZU U X r U & S ) , r $ X } is a Sperner family on R \ { r } . If g „ q [ 

and q" are the parameters of the families & and I F ^ , respectively, then qi=q'i+-i + 

+q"+ J holds. By LUBELL'S inequality [5], using ^ ^ for \ X \ 

- J — ^ i 2 L _ + y i 
< ( r - 1 ) - ' x t r ( r - l )  +

x S ? a ( r - 1 \ 

i l J f l J [ \ X \ - l j \r — 2 a — \ ) 

and 
\H\ , | 

+ 1
 x s i . 

[ b - 1 ) ( r - 2 a - l ) 

By Lemma 3 using \ 3 F \ 3 ) and the estimations for 2), £ and J f we obtain 

1 as min \X\^r-2a- 1 would imply ^ = 0 and, together with 1. and 2., the estimation 

given in Theorem 2. 
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Theorem 2. 

-5 max 
Pa 

3) -

_ a _ | > - n r —2a ( r-1 \ (r-l\2(r-a) 
-a { a )+ r-a Pa+{r-2a-2) + {b~l) r-2a 1 - Pa M 

Clearly, n(r, 3)=max 

4. Proof of Theorem 1 

r-1 
n\r, 3), M holds by . Lemma 1. 

1 . Let r be even. Then all a-element subsets of R\{r} and the set {/•} form 

a family 3) having the cardinality So we,have only to show 

that the right side of the inequality of Theorem 2 has the value ^ +1 , too. 

For r = 4 it is easy to see that «*(4, 3 )=4 holds. 
• Now let r=6,114 or 120. . 

The function f(pa), of which we consider the maximum in Theorem 2, is a linear 

function in pa. We have to take the maximum over the interval *)]> a s 

an immediate' consequence of A. J. W. HILTON'S result [4] which we used in the 

definition of 2>. We h a v e / ^ ~ 1 ) ) = ( r ~ + 1. We have only to show that the 

factor of pa in f(Pa) is positive (or equal to o), i.e., using r—2a=2, ' 

2 , Ab-1) ——(r-a)-K 

(3) is equivalent to 
(v1) 0. 

l ( r - w , - t - . ) (r . + 1) • 
(r — a)a(a — l)...b 

35047435882784 

(3) 

(4) 

M( 6) = — and M(124) = 
34511088479301 

Furthermore, 

M(6t+10) _ 210 

M(6t + 4) 

1 3 5 
t+^r 

36 t+2 t + 2 
t+ 3 

t +1 
4 

i + T 

2 ' + 2 
2 

i + T 

1. 

g ( 0 " 

is monotonically increasing, because t ^ r X 

x and y with x~=y. ^ ^ 
is monotonically increasing for fixed 
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For i s 2 0 we obtain g(t)^g(20)= ^ J f f ^ J f >1 . By induction it follows 
that M ( 6 i + 4 ) > 1 for fS20. 99866624 

Moreover we have 

M(6 /+2 ) 9 / + 1 i + 1 i + 3 9 
M(6 /+4 ) 8 3 2 

4 ^ 3 

4- > 1 

and 
_2 

M(6t) 34 / + 1 i + 1 / + T 81 
M(6 i+4 ) 28 3 1 1 64 H— H— t 

4 2 2 
which proves Af(2/)>1 for / a 6 0 . 

_ „ . . , M(114) 59025914157' 
W C C ° m p l e t e ° U r p r ° ° f b y MO24) = 53793208352> L 

2°. In [3] the author proved the following estimation for { S U M | s 

" ( f t l ) ' o u r estimation for we obtain \3F\ — r ° a + ^ ^ + 

(ft l ) ' ®o t '1 ' estimation and the bound given in Theorem 2 are valid for 

each \SF\. It suffices to show that for every pa one of our upper bounds is less than 

^ j j , because in this case r is odd, i.e. [~2~~] = a + 1 - We distinguish the follow-

ing cases. 

^-tMC; !)-(::!)-(;:;))•N-FCL)» 
last estimation. 

. a + 3 lYr — 1") f r - n f r - n i 22a + 3(r-l) a + 3 ( r - n 
2- 3 — U a + l J - L - l J - U - l J ) = T ^ r r l a J 3 — U - l J 

Then we use the estimation of Theorem 2. First we prove that the factor of pa in 
f(pa) is negative, i.e. 

r - 2 a 2 ( r - a ) ( f o - l ) Q 

r — 2a 

(5) is equivalent to 
M 

9 ( r - f e ) ( r - f r - l ) . . . ( * + 4) 
' ( J 2(a + 3)a(a— 1)... b 

We have that 

N(6t+ 5) 210 t+4 t+~2 i + 4 
~g(t) N(6t~ 1) 36 4 4 2 1 
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is monotonically increasing by our remark above. 

For 2 s i==5we obtain 1. F r o m N ( 1 1 ) = ^ - , W ( 6 i - l ) < l 
013/ / 

10179 
follows by induction for Finally, we get TV(43)= < 1 . f(pa) takes 

the maximum in the described interval at pa= 

consequently. We will complete our proof by showing the following inequality. 

(r-!)' / 3 2a + 3 f r - n a + 3 f r - l ) ) l 3 2 J f i - l ) . _ a _ f r - l ) , 
i T - T T T l a J - — l è - l J I { ^ - T ( f l + 3 ) - p T j J + 7 T T l a J + 

+ ( r _ 1 ) + 4 ( a + 3 ) ( ; : ; ) 

This inequality is equivalent to 

2(a + 3)2 

9(a + l) 
l - ( a + l ) (ï=!) MJ - ( r — 1) ^ 0. 

w ( l l ) = 112 s- 0. 

Furthermore we prove the inequality w'(r)= 
( a + 3 ) ( f l + l ) (r-!) • 

(2a +13) J r - l j 

= 17, 23,29, 35,43 by referring to the following table: 

r 17 23 29 35 43 

= 2 for r = 

w'(r) 
140 1 154 442 9044 
297 2 323 1035 19981 

Using this estimation of w'(r) we get first 

2 ( o + 3 ) 2 ( . 2a 
w 

s j r - l j 2(a — 6) 

^ W T T f l 1 

9(a +1) - ( r - 1 ) , 



220 H.-D. O. F. Gronau 

then v f ( 1 7 ) a ^ ^ > 0 . r s l 7 implies — — a r i d for 2 s i ^ b — 1 we h a v e 
9 a+1, .8 

r-b-l+i > 3 Hence ^ ^ 

,, 2(a-6) »-1 r - b - l + i 
w ( - r ) - ( r - l ) W T T ) M — T 1'-» 

> 0 follows. • 

5. Concluding remark 

T h e a u t h o r conjectures tha t (1) holds f o r the remaining even r and (2) holds f o r 
the remaining odd r, i.e. 13, 19, 25, 31 and 37. 
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A possible new model of neurons and neural processes based 
on the quantum-mechanical theory of measurement 

B y F . JOLESZ* a n d M . SZILAGYI** 

Abstract 

A new model of neurons and neural processes is proposed which aims at pro-
viding a framework for treating the phenomena of statistical nature in the nervous 
system. Its conceptual base is the quantum-mechanical theory of measurement and 
some general characteristics of the interactions between systems. The simpler form 
of the model takes into account two observables, the stimulus intensity and length, 
measured by individual neurons, with only one threshold for each. By considerations 
analogous to those of quantum mechanics an' uncertainty relation is derived between 
the possible accuracy of the measured intensity and time length values. The model 
is extended to the case of many thresholds and to measurements made by neuron 
populations which, in fact, generally occur in the nervous system. 

Introduction 

The paradigms of various sciences, particularly that of biology, have always 
shown characteristic relationships to the current theories of physics. Approaches 
to the problem of neural processes have in all ages, and today as well, depended on 
the generally accepted physical model of the world. 

In classical considerations the changes of state of the units are always related 
to some interactions — "stimulation — excitation" — but there is no attention 
paid for the unique character of this interaction, namely that it means a kind of 
measurement, too. In our present knowledge, the measuring interaction is in general 
not. negligible to the interaction determining the change of state. The principle of 
strict individuality of neural objects results, however, in an essentially dynamic 
treatment in which the neural units — like the organism as a whole — behave as 
the subject in the interaction with their own environment and remain separable 
from it during the process. Therefore, the states and their transitions belong to the 
units themselves and not to the interactions. 

. In constrast to this dynamic picture the recent use of some methods of statistical 
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mechanics in the theoretical approach to neural systems was a serious step forward 
{Wiener, 1965; Cowan, 1968; Cowan, 1970, Amari, 1974). 

Today the application of techniques developed in statistical mechanics seems 
unavoidable in the study of the nervous system and these techniques meet quite 
general acceptance. One can, nevertheless, expect that in the light of further experiences 
these statistical concepts would not be satisfactory enough, and the group of available 
theoretical methods should again be enlarged by developing ideas more departed 
f rom those of classical physics. 

In our opinion three important features of the neural phenomena point to this 
•direction. First, the discrete character of the structural and functional organization 
of the nervous system on various levels. Second, the probabilistic character of the 
distribution of activity in space and time. Third, last but not least, the existence of 
the above mentioned "measuring process" itself. 

Generalization of the concept of "measurement" 

Before trying to describe any hypothetical "measuring process" in the nervous 
•system it is worth discussing the meaning of some general terms to be used. If we 
want to generalize the concept of measurement we must be aware that, in the defini-
tion and quantitative characterization of any measurable quantity — i.e. any observ-
able —, the task of finding an appropriate device for the measurement can not be 
rejected. At the first steps of generalization, however, we need not identify these 
devices immediately with some concrete physical objects, in particular if we start 
with empirical experiences in the cases when objects and events are not separable 
f rom each other. 

Let us try first to find a mathematical model that is fairly general to serve as 
a framework for any possible structure of events. Mathematically, the concept of 
an event is considered a primitive notion that is not otherwise defined; our ultimate 
aim is to get to a formalism for treating the systems of events taking place in the 
nervous system. Thus every object will be defined only by the system of events 
belonging to it. 

Fortunately, there is already existing a general model of physical systems which 
applies not only to physical but any other systems as well and is adequate for the 
description of the measuring process (Mackey, 1963). Let us now sum it up briefly. 

Suppose the structure of our system is not changing in time and the values of 
all the observable quantities are real numbers. The distribution of any of these quan-
tities can be determined by measurements, i.e., by processes which select out a subset 
of the sample set given for the observables. The observables can have several different 
distributions; the state a of the system determines which one of them would result 
as the outcome of the measurement. Thus a real-numbered random variable cp 
belongs to each observable. Mathematically, \p is a Borel function mapping an 
(Q, S, P) measurable space into the set R of real numbers: 

cp: Q R (1) 

where (Í2, S) is the set of events being subsets of the sample set Q and P is a proba-
bility measure defined on (£2, S). 
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Now, let (p be assigned to a given observable 0 and let £ be a given subset of 
the a -algebra B of the Borel sets in the set R of real numbers, i.e., E£B. In simple 
cases E is an interval. The question, then, arises: what is the probability that the 
value of q> falls into the set El 

According to the definition of cp, 
there is a subset cp~1(E) in (Q, S) 
which is mapped to E by cp (Fig. 1). 
<p~1(E) is, of course, an event. As P 
is the probability measure defined in 
the same space (Q, S, P) the probabil-
ity we asked is P[<p_1(ii)]. 

The distribution of the values of (p 
given in this way can be called the 
distribution induced by P. We shall 
denote it by P% expressing the depend-
ence of this distribution on the state a 
of the system and on the observable cp 
Therefore, every system has a family 
of distributions P% (Fig. 2). 

Mathematically, if we consider several different (Q, S, P) probability spaces 
the induced distributions P* may also be different. Physically, however, we expect 
that if the state of the system, denoted by a, is the same while the measured observables 

Fig. 1 

<Pl, <P2, <P« are different, the distributions pa pa r<n> 1 <P11 •• Pi should be induced 
by the same probability measure P=P* depending only on a in a fixed (Q, S) meas-

Fig. 2 

urable space. In other words, as we want to characterize the system by the simultaneous 
description of the different observables — i.e., physical quantities —• we must have 
an event space common to all of them. This common event space, then, represents 
the system by representing the states that determine the induced distributions. 

As it is well known in probability theory, the most general event space in which 
a probability measure can be defined — i.e., in which the events are all compatible, 
with each other — is the Boolean a-algebra. Accordingly, Boolean CT-algebra can 
be an adequate structure for the common space outlined above if all combinations 
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of simultaneous events are physically possible in the system. For example, in this case 
any set of predetermined values f l t f s , . . . , /„ for the observables <Pi, cp2, ..., cp„ 
can be given as an outcome of a measurement. The structure of the event space 
in classical physics — involving statistical mechanics and such extensions as e.g. 
the present models of neural systems — is therefore Boolean o-algebra but in quantum 
mechanics where, in fact, it is not possible for certain events to occur simultaneously, 
another structure must be chosen. 

In quantum mechanics the subspace lattice of the Hilbert space / / (of infinite 
dimensions) is used as a common event space. Thus the mapping operates from 

the intervals of real numbers — 
more generally, the subsets of the 
set of Borel sets of real numbers — 
to the subspaces of H : 

(p-1: B - H (2) 

where (p~1(E) = {q>~1(x)\xiE}, and 
x i s a real number (that is taken by 
the random variable cp at an ele-
ment of H) (Fig. 3). 

It is obvious that the mapping 

(p-1: B -~H 

is a homomorphism. 
Now we can construct a one-to-one correspondence I between the subspaces 

of H and the operators P projecting to these subspaces. Then the mapping 

/ o < p - 1 : 5 - / > (3) 

operating from the intervals of real numbers to the set of projection operators will 
be a so-called projection measure. As it is known, each projection measure is equiva-
lent to a self-adjoint operator; the theory of self-adjoint operators (Neumann, 1932; 
Araki and Yanase, 1960) then provides us with the formalism adequate for deducing 
all the consequences essential in quantum mechanics. 

The operators corresponding to the observables in classical physics are all 
commutative. Mathematically this follows from the fact that the common event 
space in this case is a distributive lattice; in quantum mechanics, on the contrary, 
the subspace lattice of H is not distributive, thus the -opierators do hot always 
commute. From the point of view of measurement the non-commutativity involves 
the existence of observables whose values are not measurable simultaneously. There-
fore, if we want to decide whether a system can be described by means of a formalism 
of classical type . or not, we examine the physical possibilities for simultaneous 
determination of any set of values of the various observables. 

. The aim of this paper is to suggest and outline a model of abstract neural 
objects in which the common event space is a non-distributive lattice; i.e., the formal-
ism of treatment is analogous to that of quantum mechanics. Apart from the mathe-
matical construction described above one can have another, more general, possibility 
to approach the problem that in which cases an essentially probabilistic view of 
a given system is necessary. 

X £ E £B P l  
* (!> 

Fig. 3 
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Measurement and complexity 

It is trivial that any process by which information can be obtained — i.e., any 
measurement — involves an interaction between at least two systems, say A and B. 
A and B are connected together in such a way that as a result of the measuring 
interaction the states Si, Si, •••, Si of A will inevitably correspond to some states 
S f , Si, S% of B and vice versa. Thus, if 0(A) is an observable belonging to A 
and 0(D> is another belonging to B, any given value of 0(A) (determined by the 
state of A) corresponds to a given value of 0 ( B ) (determined by the corresponding 
state of B). Let now A be the system to be measured and B the measuring one. 
Assume that both A and B have more or less complex structure. The notion 
of complexity does not need a strict definition here; it is enough to consider that the 
more complex a system is, the more complex the changes of its states and the para-
meters describing these changes will be. In the case of the measuring interaction 
between A and B there are two basic possibilities. 

If A and B have equal complexity or B is more complex than A then the state 
changes in B can reflect in an adequate way the state changes in A. If, howewer, 
B is less complex than A, B does not have a large enough number of states for this 
purpose and in this case the measurement can lead to only a probabilistic description 
of A via the parameters of the state changes of B. 

In practice, there is possible an important compromise. Namely, if though the 
system A is the more complex one, but it does not take part, as a whole, in the inter-
action, then the description may be dynamic. The necessary condition for this is 
that the part of A interacting with the measuring system B should not be more 
complex than the totality of B. H is possible only in this case — that all observables 
describing A are measurable simultaneously. 

The quantum-mechanical concept of measurement is, therefore, the adequate 
tool for studying systems exhibiting non-negligible complexity in their interactions. 
In our opinion the nervous system does have this property. The application of the 
theory of measurement for this branch of biology is possible because the interactions 
between the nervous system and its environment, or between the parts of the nervous 
system itself, can be viewed as measuring processes (Jólesz and Gyöngy, 1975). 
In addition, any measurement has an aspect regarding to information, as the result 
of the measurement appears as a given state of the system (or its parameters), and 
the same is true for the new information obtained by the measurement. If we observe 
the measuring processes in the nervous system are of statistical nature we accordingly 
tend to discard the dynamic principles that would uniquely determine all details 
of the interactions occuring in the system. 

A simple model of the neural measuring process 

The simple abstract model of the neuron, discussed here, is somewhat similar 
to the so-called formal neuron, but a few of its properties are essentially different. -
As the mathematical concepts and procedures are all well known from quantum 
mechanics, for the sake of conciseness we will confine the treatment to a brief outline. 

The basic postulates are as follows: 
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1. The system is characterized by a wave function <P ; the state of the system is 
fully determined by 0. is an element of the Hilbert space H. 

2. The properties of the system are described by giving the possible values (the 
so-called eigenvalues) of the observables and by associating with each of them one 
or more state-functions in the Hilbert space, termed eigenfunctions. In addition, 
each wave function $ can be expanded as a linear combination of the eigenfunctions 
of any observable. Thus, the observables 01,02, . . . , On, ... are characterized by the 
appropriate sequences of real numbers: 

0\- feg1') •••> ••• 

n • L-(2) 1,(2) 

To each observable a set of probability values is assigned: 

O,: W(lci1', <£), <?),..., W(k?>, <P),... 

02. W(ki2\ $), W(k?\ <P), ...., W(k<°-\ <Z>), ... 

where the probabilities W depend also on <£. 
The wave functions are elements of the space H and can be demonstrated as 

vectors in the Euclidean space of infinite dimensions. The observables are operators 
in the space of functions or matrices in the Euclidean space. Matrices and operators 
are both linear mappings of vector spaces. 

3. The probability of that any given observable O takes on a value from the 
given interval {k', k") can be determined in any state. (See Fig. 4.) 

k' k" 

I I. I I I | .1 I 1 I I I 1 1 1 I 1 I 1 I 

0(h) 
Fig. 4 

4. The probability of that the values of two observables Ox and 02 falls simul-
taneously into the intervals (k ' , k") and (/', /"), respectively, can be computed for 
some observables but can not be done so for others. The operators of these latter 
are not commutable: 

0 1 0 2 ^ 0 2 0 1 (4) 
or 

0X02 - 020X = cl (5) 

where c is an imaginary number and / is the unit operator or matrix. 
In the model we assume that from the point of view of the measurement only 

two observables are relevant: the stimulation intensity I and the time length T during 
which the stimulation operates. In other words we assume that the stimulation has 
the only physical properties of intensity and length. As for both these observables 
the number of possible values is infinitely large we need some further simplifications. 
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In accordance with the existence of intensity and length thresholds and 
/„ — in real neurons suppose that both these observables can take on only two values 
each (Fig. 5). 

To be more clear, let the states be represented by vectors of unit length on the 
plane. Let cp1 and cp2 be the state vectors associated with the two possible values 

/ 0 - -

11 to ti 

Fig. 5 
Where and t l denote 

values below, while /, and 
above the threshold 

Fig. 6 

/j and i2 of the observable / and i a n d tJ/2 the state vectors similarly for the observable 
T (Fig. 6). 

It may be worth noting that all the eigenfunctions are mutually orthogonal, 
i.e., the scalar product of all pairs of them is equal to zero. 

Now we have the symbols necessary for working with the model: the stimulus 
intensity / and length T as quantities to be measured, the possible values i1} i2 and 
t1, t2 of them, being equal either 0 or 1: 

r » i = 0 f a > i ) f i i = 0 ( ^ , ) -

U = i o2) U = 1 ow 

Operators, probabilities, expectations and variances 

Let the projection of an arbitrary state i> to the direction of the eigenstates 
<Pi and <p2 be a± and a2, respectively, and to the direction of ip! and \j/2 be bx and b2 
(Fig. 7). 

Thus, 0 can be written as 

^ = ai<Pi + a2<7>2 = b^i + b^i. 

The expansion of as a linear combination of the eigenstates of / (or T) is 
called the / (or T) representation of <P. 
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The operators projecting to a given state cr will be denoted by Pa. Thus applying 
to <J> we get 

Pq>l& = a1(p1. 

It is obvious that projecting to itself it remains unchanged 

P9l<P i = <Pi, 
and projecting to a direction orthogonal to it the result will be zero 

P«<Pi = 0. 

In the simple model presented here we consider only two operators A and B 
representing the observables I and t , respectively. As it was assumed, I and T can 

take on two values each and with every one of 
these values a corresponding state is associated. 
Note that in quantum mechanics this kind of 
characterization of the states and observables 
is quite general but the number of states is 
usually infinite. Therefore, the operators repre-
senting / and T can be written as 

I-*A = i1P<Pl + i2Pv 
and 

T ~B= txP^ + t2P^ 

If we want to compute the probability of 
obtaining the various values of the observables 
in a given state we should multiply by the 
proper projection operators and then take the 
scalar product of the result with itself: 

Probability {The measurement yields the value k}=(Px<P, Py <P) (6) 
where x is the eigenstate associated with k. 

Applying the above procedure to i1, i2, tx and t2 the probabilities essential in 
our model are 

W(U,0) = (P9t$,Pn*) = al, 

W(tl,0) = (Pfl0,P^)^bl ( 7 ) 

= i V . * ) = ft! • 
Note that 

at + a¡ = 1 (8) 
and 

bt+b¡ = 1 (9) 

as in both cases one of the two possible values will certainly be obtained with proba-
bility 1. 

As two important special cases, it is apparent that obtaining the value i2 in the 
state <p1 is impossible 

W(it, (Pi) = <PX, P„ P I ) - 0 , ( 1 0 ) 
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and obtaining the value ix in the state <pi is certain 

W(i1,q>1) = (Ptfl<Pi,P9icPl) = \, (11) 

In general, if the state of the system coincides with one of the eigenstates of 
a given operator, the observable corresponding to that operator has a uniquely deter-
mined value by the measurement; and in any other state the probabilities of obtaining 
any permissible value of that observable can be computed in the way outlined above. 
If, however, we want to determine the probability of that in an arbitrary state 0 the 
observable / takes on the value and the observable T takes on the value t1 we may 
easily get to a confusing result. In this case, 0 should first be projected to cp1 belong-
ing to h 

P ^ = ai<Pi, 02 ) 

then the result of this projection should be projected to i//1 belonging to 

P*x = = a i P ^ P i - (13) 

The sought probability according to. (6) is 

faiP^iPi, a i P ^ V i ) = a K P ^ V i , P ^ V d = a l i v M 2 - (14) 

But, if we follow the reverse order of this procedure, namely projecting first 
to and then to cp1 

I P^ = b (15) 

P 9 1 ( . P ^ ) = ^ ( ¿ i W = (16) 

(Z>i Pj>i, hPM = b\(PVl Vi, 1) = ¿I(«Ai, <Pif- (17) 

It is trivial that the two computed values for the same probability are not equal: 

a K v ^ y ^ b l ^ c p t f (18) 

as because of the result of the scalar product being independent of the order of the 
factors 

(<Pi, <A 1) = OK, <Pi) (19) 
and thus 

a\ b\ (20) 
causes the inequality to hold. 

Accordingly, it is not possible to make a unique assertion about the probability 
of obtaining simultaneous values for I and T. The order of applying the operators 
corresponding to I and T to a given state function 0 is not commutable: 

AB0 ^ BA0 (21) 
or 

AB0-BA& = C0 (22) 

where CV0 is called commutator. C is independent of the state, i.e., of the wave 
function 0. 

6 Acta Cybernetica IV/2 
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In the model it is of paramount importance to compute the expectation value 
and the variance of the stimulus intensity and length. The expectations in a given 
state 0 are 

I = hal + wl = h(PVl<P, + P ^ ) = 

= k(PVl0, 0) + i2(P^, 0) = ([hP^+hPJ <t>) = (A*, (23) and 
T=t1b\ + hb\ = (B0,0). (24) 

The expectation value thus can be given without knowing the analytic form of 
the wave function and the operator representing the observable to be measured: 

A = (A0, 0) (25) 

B = (B<P, 0 ) (26) 

In a quite similar way we get the variances : 

(AI)2 = ([A-Ai\20,0) (27) 

(AT)2 = ([B-BI\20, 0) (28) 

where I is the unit operator. 

Appearance of the uncertainty relations 

In the light of the above considerations a question arises concerning the 
meaning of the simultaneous measurement of the stimulus intensity and time length. 
It is obvious that the neuron can be regarded as a physiological device for measuring 
the intensity and length of various stimuli and not less obviously this measuring 
process relates to some threshold conditions. In our simple model what consequences 
can be drawn if, as we have just seen, there is an inherent ambiguity in the process 
of simultaneous determination of the probabilities for / and 77 

If the measurement of one of the observables, e.g. the stimulus intensity, can 
yield two permitted values and ;2 according to the existence of a threshold, the 
states (pi and <p2 associated with the eigenvalues il and i2 respectively assign the proba-
bility 1 to the corresponding or /2 values of the observable I. If by the same measure-
ment the neuron does determine the length of the stimulus, too, the measurement 
yields either the value t1 or t2 for the observable T and, consequently, we can be sure 
that the system was either in the state {¡/1 or \f/2. Thus, in a simultaneous measurement 
one of the eigenstates of / would be the same as one of the eigenstates of T. This 
involves the commutativity of the operators belonging to I and T. In the model 
suggested here, however, like in quantum mechanics, neither cp1 or q>2 is equal 
to ipi or ip2. The contradiction disappears only if we accept that in the measuring 
process of the neuron there are measurable quantities whose statistics can not be 
correlated with each other. In other words, as there are no common eigenstates of 
the intensity and length of the stimulus, these two observables can not be measured 
simultaneously however obey them, separately, quite well-defined probabilistic laws. 

The variances of the observables relevant in our model have a relationship 
to each other similar to that between the variances of canonical conjugate variables 



A possible new model of neurons and neural processes based on the quantum-mechanical 231 

The variances 

Now let 

described by the Heisenberg uncertainty relation. This relation expresses, in fact, 
that the two observables have no common eigenstates. 

The farer is the state of a neural object from the eigenstate, for a given observ-
able, the more uncertain the value of that observable; the variance is zero only in 
an eigenstate. If the equation (21)—(22) holds true, the variances of the two quantities 
in that equation can not be zero simultaneously. Of course, this means that the 
simultaneous measurement of these quantities can not, even theoretically, be arbitrar-
ily accurate. We can ask only to what extent the (A A)2 and (A Bf variances can be 
simultaneously lowered. 

To see this let us introduce two auxiliary operators: 

A' = A-AI 
and _ (29) 

B' = A-BI 

As it is obvious the commutation relations remain true for A' and B' 

A'B'-B'A' = C. 

(AA)2 = (<Z>, A'2<P) = (A'<P, A'$) 
(30) 

CdB)2 = (<2>, B'24>) = (B'<¡>, B'4>). 

f — A'$ (31) 
g = B'0. 

As / and g are quadratically integrable functions, according to the Schwartz 
inequality 

l ( / , g ) M 11/11-llgll. (32) 

Substituting from (30) into (32): 

(AÁ)2(AB)2 == |(A'$, B'$)\2 = |(<P, A'B'Q)|2 (33) 

With some trivial transcriptions: 

A A A B ^ ^ \ C \ (34) 

This inequality characterizes the correlation between the uncertainties in the 
measured value of observables corresponding to non-commutable operators. The 
choice of the state of the model neuron does not affect the validity of (34). 

For the measurements of stimulus intensity and length 

AIAT^C. (35) 

This relationship is analogous to the Heisenberg uncertainty relation with the 
important difference of C being not a universal constant but only one independent 
of the state. (35), (27), (28) assert that in the proposed model the accurate simultaneous 
measurement of the stimulus intensity and length has an absolute (theoretical) limita-
tion (Jólesz and Szilágyi, 1974.). This does not mean that the neuron could not 

6* 
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measure either the intensity or the length of a given stimulus; it states only that it 
can not measure them simultaneously with an arbitrary precision. In other words, if 
the state function is not an eigenvector of a given operator A, by the measure-
ment of the observable corresponding to A we can be given several different results 
and the farer is the state of the neuron from an eigenstate of A, the more uncertain 
the value of the given observable. 

To sum up the process of measurement by the model neuron, the most important 
points, in our opinion, are the following. The neuron measures the property I or T 
of the stimulus, or rather their thresholds; in the process of this measurement its 
original state <P turns into q>1 or rp2 (associated with the numbers and i2 charac-
terizing the value of I being above or below the threshold) in the case of measuring I, 
and into i o r iJ/2 (associated with tt or t2) in the case of measuring T: 

< ! > - > (36 ) 
<?2 

This state change is called the measuring process. It corresponds to the projec-
tion process of the state vector onto the direction of one of the eigenvectors. In 
the measuring process the object being in the state <P turns into one of the eigen-
states (pj of the operator A of the measured variable (/ or T). The process itself 
does not require any description; what is relevant are only the probabilities of the 
occurrence of the various possible (pj final states. 

Denoting the projection operator projecting onto the direction of by P<f,. 
we obtained that the probability of the 

$ - P ^ = <PJ)(PJ (37) 

transition is |(sP, (pj)|2 as a result of the measuring process. 
As the state vectors are normalized to unity the multiplicative coefficient of 

(pj can be eliminated by normalization. Thus the original state <J> becomes completely 
vanished from the expression of the final state. The original state takes part only 
in the expression of the transition probability. The measuring process has a repre-
sentative only in the set of the projection operators. 

Apart from the measuring process — which is in some sense a singular one — 
another process is existing in the model: the spontaneous change of state of the 
undisturbed system. This process can be described by a continuous rotation: 

(38) 

where U(a) a unitary operator with the rotation parameter a. 
It is obvious that both processes outlined are well identifyable in the case of 

our model and of real neurons as well. In contrast to the continuous transition in 
spontaneous processes, the measuring process represents a discrete change of state. 

Finally, it may be worth noting that it is possible to draw conclusions about 
the state before a measurement. One can do so by the measurement itself, because 
the probability distribution of the measured spectrum reflects just the distribution 
of the possible states before the measurement. This latter but characterizes a real 
state for, in the case of neurons as analogous systems to micro-objects in quantum 
mechanics, it is the probability distribution of the possible eigenvalues which con-
tains the whole information about any given state independently of the measurement. 
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An extension of the model 

As we have stated before, the neuron can be viewed as a device for measuring 
the stimulus intensity and length. The neuron can have, however, not only one thresh-
old for the measured observables, but many different ones for each. It involves 
the need for extending the previous simple model to be able to treat a series of eigen-
values {Í'Í, i2, ...,*'„, ...} and {i l512, . . . , t n , ...}. 

Consider the points k¡ on the real line permitted for a given observable R to 
take on as measured values. Thresholds can be taken into account by leaving out 
certain points from the set of the possibilities; mathematically this is done by means 
of a projection operator E(k) which increases in the permitted points and remains 
constant elsewhere. The whole set of the permitted values will be called the spectrum 
of R. 

It is obvious that operators having discrete series of eigenvalues are adequate 
for the description of observables whose permitted values constitute also a discrete 
series. Thus, this kind of operators can be used in a neuron model with a number of 
discrete thresholds. 

For theoretical derivation of the possible values of a given observable — e.g. 
thresholds of intensity — we need to know the operator corresponding to that observ-
able. It is enough to determine the two observables characterizing the stimulus be-
cause all the other observables — e.g. which relates to the speed of the stimulus 
intensity change in time — and consequently their operators can be deduced from 
these. 

The formal neuron (McCulloch and Pitts, 1943) and the variations of it can 
also be regarded as devices for measuring the stimulus intensity (Lábos, 1975). 
In some experiments (Lábos, 1973; Sclabassi, Lábos et al., 1973) neurons have 
yielded response characteristics the analysis of which by means of model frequency 
code points towards the idea of the neuron with more than one threshold. A similar 
system of thresholds can be obtained from the Hodgkin—Huxley model (successive 
current thresholds, Lieberstein, 1973) as well. 

According to Lábos (1975) any neuron having response characteristic with 
generalized distribution function can be regarded as a measuring device. The response 
characteristics which refer to more than one threshold generate discrete Lebesgue— 
Stieltjes measurable spaces. In addition, Lábos stated that neurons have various 
different sets of thresholds depending on the length of the stimulus: the shorter the 
stimulus in time, the fewer levels of intensity can be distinguished. As it was mentioned 
before, the neuron should be represented by not only some thresholds in intensity 
but in length as well. Therefore, the outlined model should be extended. 

In the most general case there must be a solution both for discrete and contin-
uous eigenvalues. Thus, let i be an arbitrary real number (being one of the eigen-
values of the stimulus intensity as an observable) and E(i) an operator with the 
argument i. E(i) is a generalization of projection operators of the simple model, 
projecting to different subspaces depending on the value i. Let / and g be two arbitrary 
elements of the domain of E(i). Taking the inner product 

( / , E(i)g) = (E(i)f, g) (39) 
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if the following Lebesgue—Stieltjes integral exists: 

f id ( / , E(i)g) ' (40) 

where 
£ ( - « 0 = 0, £ ( + « ) = I (41) 

Tbeing the unit operator, then an operator A can be constructed: 

( / , Ag) = f id{f, E(i)g) (42) 

A = f id£(i) (43) 
E(i) is called the spectral decomposition of the operator A. In the case of discrete 

spectrum E(i) depends on i in the following way 

E(i) = ZPn- (44) 
¡„=51 

The intervals where ( / , E(i)g) is constant may be excluded from the domain 
of integration. These values do not belong to the spectrum of A; to this spectrum 
do belong only the values i whose corresponding product ( / , E(i)g) is changing. 
Where the change is continuous, so is the spectrum, while the points where 
there is an abrupt change in (f,E(i)g) constitute the point spectrum of A. In this 
way the existence of thresholds may be taken into consideration. There can be no 
projection operator attributed to the isolated points in the domain of any continuous 
spectrum. On the contrary, to the interval (/', i") the following projection operator 
belongs 

£ = £ ( i " ) - £ ( i ' ) . (45) 

those for 

(46) 

(47) 

(48) 

(49) 

It would hold true only, however, if both A and B were functions of the same 
operator but, according to our assumptions, now this is not the case. 

In our opinion the extended neuron model is characterizable by the set of thresh-
olds of stimulus intensity and length. The operators associated with these observ-
ables are in one-to-one correspondence with some subspaces of H and hence the 
equality EF=FE would be valid only if EE and £ £ projected onto the same subspace. 
As but the system of eigenvectors and so the subspaces in question are not common 
the operators do not commute. 

According to the outlined model, neural objects are represented by the Hilbert 
space; events are represented by its subspaces or the projection operators being in 
one-to-one correspondence with the subspaces. 

The commutation relations for the operators are closely related to 
their spectral.decompositions. Let 

A = JidE(i) 
and 

B=f tdF{t). 

E(i)F(t) = F(t)E{i) then 
AB = BA. 
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The relevance of measurement should be stressed in particular. The outcome 
of the measurement is affected by chance; the probability of any given transition 
from a state before to another after the measurement depends on the beginning 
state and the measured observable. The beginning state $ of the object is an element 
of the Hilbert space representing the object in question. The resulting state (p„ is 
always an eigenstate of the operator of the measured observable. The measured value 
of the observable is the in eigenvalue (in the case of intensity measurement) belonging 
to the eigenstate (pn. The distribution function determined by the transition proba-
bilities, i.e., the probability of that the value i„ of / i s not greater than a given value i 
is as follows 

W(in =S i \<P) = («P, E(i) <*>) (50) 

or, with some trivial transcriptions 

W(in i |S) = ( / , £(00) = (*, E*(i)<fi) = (E(i)$, E(i)$) = \\E(i)<Pf. (51) 

Knowing the probability distribution, the expected value is easily computed 

A = f id{<t>, E(i)$). (52) 
The scatter 

(A-Alf = (<P, (A-A\ft>) = \(A-Al)<P, (A-Al)<P\ = (53) 

As regards to the measuring process, the following are important. In the case 
of the measuring interaction the object being in the state $ turns into another state 
(p„. (p„ is one of the eigenvectors of the operator of the measured observable, i.e., 
/, where / can be expanded by the projection operators P„ : 

¿= 2 hPn=j id(E(i)) 

Pn<Pn = (Pn, A<Pn = in<Pn (54) 

E(i)= 2 Pn 

The distribution function of the transition probabilities by transcribing (51) 

W(in ^ i[<P) = \\E(r><PV = 2 \(<P«> (55) 
¡„Si 

where \(cpn,<P)\2 is the probability of the transition <£—<p„. 
The measurement yields a correct value for / if <pn uniquely determines in and 

vice versa. The eigenvalue iB is really the correct value, because in the state q>n the 
deviation for the operator / is zero: 

(<pn, [A - AW q>n) = ([A - A\] <?„,[/(- ¿I] <pn) = 

= \\(A-Al)cpnr = \\Acpn-A<pnV = 0 

Another case occurs if the observable to be measured has a continuous spectrum 
(i.e. set of eigenvalues). Let the spectral decomposition of / be E(i). A measurement 
with given correctness means that the outcome i falls into a given interval (V, i"). 
The probability of this is 

W(V < i 3= i" |«P) = (<P, E(i)$) (57) 
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where <P is the state before the measurement. The length of the interval ( / ' , /'•") may 
be arbitrarily small the value of remains finite; it follows then that 
the probability of the case of absolute correct measurement is zerof 

W(i' < I =s i" | = 0 . ( 5 8 ) 

Consequently, in the continuous range of the spectrum (according to the model 
suggested) there exist measurements only with non-zero uncertainty. 

Probabilistic interpretation of the neural measuring process 

Theoretical interpretations regarding to the operation of the nervous system — 
in spite of that they contradict to each other in some respects — have the common 
feature of accepting (at least at present) the probabilistic nature of the neural proc-
esses. In this respect the opinions are diverging in whether this nature is the same 
as that of other disciplines in physics (classical physics, thermodynamics, quantum 
mechanics) or is inherently different. 

In our model the spontaneous and the measuring process may be in close connec-
tion with the probabilistic interpretation. The measuring process influences the state 
of the system, so obtaining information is connected to the state change. When we 
state that the new information, i.e., the result of the measurement, is reflected in the 
new state of the system, we lay stress on the statistical meaning of the state. Namely, 
while during the spontaneous process the state transition $ — is not statistic 
(the system turns from U=P0 into U=P0. in a continuous way), the measuring 
process causes the state <P to transform into one of the eigenstates <px,tp2, •••, this 
transformation being only stochastically determined: the probabilities.\(<P, cp^l, 

(Pi)],.:, of the states<p1,(p2,... are uniquely determined and not so is the final 
state itself. During the measuring process the states turn into mixed form 

U = P 0 ^ U ' = ¿ m < P „ ) \ 2 P V n . (59) 
/ 1 = 1 

In the language of information theory the measurement is a kind of mixing 
processes hence it is necessarily irreversible. 

The basic difference between the spontaneous and measuring processes is that 
while in the time interval between two measurements the variation of the state vector 
is determined and continuous, the variation owing to the measurement is sudden 
and discontinuous. This latter can be described only by probability laws. 

After the measurement the state of the system is a compound consisting of the 
eigenstates of the operator of the measured observable. All these statements are of 
importance if one considers a measurement taken by the neuron: from the point 
of view of neural networks, the outcome of the measurement means that a group 
of neurons is not in a homogeneous state but its members have different states with 
different probabilities. Any combination of these states can be a measurement out-
come if the measuring device is the given group. After the measurement the group 
can yield only probabilistic relationships. 

In the field of theoretical neurobiology relatively large area is occupied by 
statistical mechanics (Wiener, 1958; Cowan, 1968; 1970; Amari, 1974). Regarding 
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to the origin of the probabilistic laws applied, the analysis may show different levels 
of deepness (Griffith, 1971). In the application of the theory of random processes to 
macroscopic neural networks one can disregard even the existence of the 
network structure. It causes, then, the treatment to confine itself to statistical fluctu-
ations. However, there are a number of theories of considerable efficiency by the 
utilization of probabilistic concepts of neural processes. 

In addition to the use of the methods of statistical mechanics some examples 
of the use of quantum statistics can also be found (Winograd and Cowan, 1963; 
Cowan, 1965; Agin, 1963; Michalov, 1967, 1968). In our opinion this way is very 
promising. By means of the formalism of quantum mechanics essential features of 
the neural measuring process may become known. Moreover, we can extend the 
borders of the probabilistic interpretation by taking into account that only the 
statistics of the observables are really "observable". The connection between the 
state functions and the observables has an inherent statistical nature because, in 
the model suggested here, in the case of a system with k degrees of freedom the states 
are characterized by a function <P(g1,g2, • ••,&) which is an element of the Hilbert 
space; therefore, with even a full giving of cP one can make only statistical assertions 
about the system. (Obviously it is irrelevant that the probability of the truth of these 
assertions lies sometimes near 0 or 1). 

Characterization of the state of a neural micro-object by a state function yields 
the possibility of making probabilistic statements, but the validity of the statements 
can be checked only on some groups of micro-objects, i.e., on neural populations. 
This means also that this formalism expects immediately the measurement to be 
made by neuron populations or, equivalently, it expects the recording of the sta-
tistics of the measured observables. In classical statistical mechanics the question 
concerning the probability of finding a given neuron from the population in a given 
state can always be asked and answered as well. On the contrary, the probabilistic 
expressions in the formalism of quantum theory give possibility only of answering 
the question about the probabilities of a given value to fall into the interval (/', i") 
or the interval ( t t " ) separately. There is no probability measure common to both 
intervals because there is no common state in which both probabilities can be 
measured. 

Assuming that populations of neurons are generally not in pure state (i.e., 
all neurons are not in the same state) we should consider mixtures. If a measurement 
is made on a system in mixed state it forces the system to turn into an eigenstate. 
The sudden change of the state function at the moment of the measurement can be 
described by means only of probabilistic relationships. In the theory of measurement 
(Neumann, 1932) it is generally assumed that measuring an observable on a single 
object R is not all that possible and the measurement even should be made on a 
system of very many objects. With the attitude of measurement theory the large 
dimensionality of the nervous system and also the concept of redundancy can gain 
a new interpretation. Namely, according to this attitude, it is advisable to make 
measurements on large statistical groups consisting of a number of micro-objects 
R¡, R2, ..., RN, where N is a large number. On such a group the distribution of the 
values of the measured observable is determined. The advantage of this procedure 
is that though the measurement disturbs the object on which it was made, the dis-
turbance of the population as a whole may be arbitrarily small if N is large enough. 
Furthermore, though two observables having non-commuting operators can not 
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be measured simultaneously to any degree of accuracy, in the population their proba-
bility distributions can be determined with an arbitrarily small error. It is enough 
to measure a part of the whole system, if the number of elements M of that part is 
large, i.e. M » 1, but it is much smaller than N(M<s:N). In this case the measurement 
affects only the M/N part of the total system. Measuring another observable on 
another part, made up by K elements, of the system, the two measurements do not 
interfere if (K+M)<s:N and (K+M)/N<s. 1. These requirements can easily be fulfilled 
if N is large enough; in this case K and M may also be large. 

In the nervous system by means of statistically large populations of neurons 
there is a possibility of objective measurements being independent of occasional 
disturbations and of that any single neural object is unable to make simultaneous 
accurate measurements of two non-commuting observables. However, as it will soon 
be demonstrated, the measurement can not be absolutely accurate even in this case: 

Consider, for example, the simpler one of the models described, in which the 
observable / can take on the values i1 and i2 only. Let us measure / on a population 
{2?1; R2, . . . , /?„}; then we get % as a result at a part . . . , i ?^} of the population 
and z"2 at another part {Rx, . . . , As a consequence of the measuring process, 
however, the neuron states will change in both parts of the population and, for this 
reason, if we measure another observable T on the same population (with possible 
values tx and /2) it is no more possible to obtain scatterless results because the eigensta-
tes of / can not be eigenstates of T. Accordingly, simultaneous measurements can 
not produce pure populations. 

It is generally stated that probability is a property of certain classes of popula-
tions. This permits, however, to apply probability calculus to some individual 
(e.g. neural) processes, if we know that probability calculus is applicable if the process 
at hand leads to statistical populations. In the study of neural processes the reason 
for probability to play role is twofold. On the one hand, in the starting mixed state 
of the system certain properties — e.g. intensity and length thresholds — have sta-
tistical distributions and this causes a statistical distribution of the measured values 
as well. On the other hand, during the measurement the nervous system passes 
through a series of interactions which gives rise to statistical distributions of certain 
parameters. In both cases it is plausible that the individual objects making up the 
population (i.e. the neurons) obey some dynamic laws different from the statistical 
ones. Therefore, the concept of the so-called measuring interaction requires an ade-
quate framework to be placed in, in order to be distinguishable from another types 
of interactions. 
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Summary 

The purpose of the present paper is to investigate some properties of measuring processes 
performed by single nerve cells and neural nets. We applied the formalism of quantum mechanics; 
and the quantum-mechanical concept of measurement. We used the subspace lattice of the Hilbert 
space as a common event space. Two neuron models were analyzed in which we assumed that only 
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two observables (stimulus intensity and time) are relevant. In these models we considered only two 
operators representing the observables. 

The first model was characterizable by one threshold, the second one by the set of thresholds. 
In the proposed models the simultaneous measurement of the observables has an absolute limita-
tion and the variances of them have a relationship which is analogous to the Heisenberg uncertain-
ty relation, with the important difference of C being not a universal constant. Statistical properties 
of the neuronal measuring processes were examined. 

The mathematical methods for dealing with neuronal systems that we have described in this 
paper seem to have many advantages over the methods usually used. There is a strong analog be-
tween these methods and the techniques generally used for physical systems. Although we have 
limited ourselves in this paper to two neuron models, the presented new method is generalizable 
to neuronpopulations that are composed of elements with n thresholds and in which not only two 
observables are measured. 
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