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On some extensions of indian parallel context free grammars 

B y J . DASSOW 

1. Introduction 

In order to get better models for aspects of programming and natural languages 
some extensions of context free grammars are introduced, for instance matrix 
grammars, random context grammars, programmed grammars, time-variant 
grammars (see [1], [13], [7], [10], [11]), which are characterized by mechanisms 
regulating the use of the productions. The relations between the associated language 
families are studied by some authors (see [10], [4], [11]). 

In [12], R. SIROMONEY and K . KRITHIVASAN regard a parallel version of con-
text free grammars. In this paper we introduce some of the above mentioned ex-
tensions for these indian parallel context free grammars. An other generalization 
of the indian parallel grammars are the EDTOL systems (see [3]). We shall prove 
that all these language families coincide. 

The result has also another interesting aspect. The EDTOL systems work 
purely parallel, i.e. all occurrences of all letters are rewritten in a single derivation 
step; the other extensions of the indian parallel grammar have a sequential aspect 
because only all occurrences of one letter are rewritten in a single step. Therefore 
our result can be regarded as a sequential characterization of EDTOL languages. 
Thus, it is of interest in connection with the sequential characterizations of ETOL 
languages (see [14], [6], [9], [8], [2]). 

2. Definitions and notations 

At first we recall the definition of the indian parallel context free grammar 
and its derivation process. 

Indian context free grammar. An indian context free grammar is a construct 
G=(VN, VT,P, S) where 

i) VN and VT are finite nonempty sets, VN fl K r = 0 , 
ii) P is a finite subset of VNX(VN{J VT)* (the elements of P are written as 

A£VN, W(I{VN\JVTY), 
iii) S£Vn. 

1 Acta Cybcrnetica 
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Let V= VNUVT- Let V+, y£ V*. We say that x directly derives y iff 
i) x=x1Ax2Ax3...x„-1Ax„, AeVN, Xi€(V\{A})*, 

ii) y=x1wx2wx3...xn-1wxn, 
iii) A ->-w£P. 

* 

Then we write x=>y. Let => be the reflexive and transitive closure of =>. 
The language L{G) generated by G is defined as 

L(G) = {x: S^>x,x£Vl}. 

Now we define some extensions of this grammar by certain mechanisms regulating 
the derivation process. In all cases we use the alphabet VN of nonterminals, the 
alphabet VT of terminals, the axiom VN, productions A-»w, A£VN, w£V*, 
the application of a rule is in all cases defined as above, and if it is not stated other-
wise then the associated language is defined in the way given above. We give the 
regulating mechanisms. 

Indian matrix grammar. G=(VN, VT, M, S) is an indian matrix grammar iff 
M is a finite set of finite sequences of productions, 

M = {m1,m2, ..., mr}, 

™i = »V Al2 - wi2, ..., Ais - w,J for i = 1, 2, ..., r. 
The elements of M are called matrices. To apply such a matrix one has to apply 
the productions A ^ w ^ , . . . , A is-^w is in the given order. Only those words of 
Vj are in L(G) which are obtained by applications of the matrices. 

Indian periodically time-variant grammars. An indian periodically time-variant 
grammar is a construct G=(VN, VT,P, S, / ) , where / is a mapping N—ip(i>) 
such that f(i+j)=f(i) where m and j are fixed and i>m is arbitrary. The deriva-
tion is regulated by the condition that the production used in the Ar-th step has to 
be in the set / (k). 

Indian random context grammar. The productions of an indian random con-
text grammar G=(V1¥, VT, P, S) are of the form 

A+w,R,Q 

where R and Q are subsets of VN. Such a production is only applicable on a word 
x=x1Ax2Ax3...x„_1Ax„ if contains no letter of R and contains 
all letters of Q. 

Indian programmed context free grammar. The productions of an indian pro-
grammed grammar G=(VN, VT,P, S) are of the form 

(/) A w, F, S 

where / is the label of the production, F and S are sets of labels. If A—w is ap-
plicable to x, then the next production has to be a rule with a label contained in 
the success field S. If A~w is not applicable then the next production has to 
have a label contained in the failure field F. 

All these grammars work in a sequential-parallel way, i.e. only one letter is 
rewritten in a single'derivation step, but all occurrences of this letter are rewritten. 
Starting from biological motivations EDTOL languages are defined which are 
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also a generalization of indian parallel context free languages. The associated 
grammars work purely parallel as it is seen from the following definition. 

EDTOL system. An EDTOL system is a construct 
G—(V, VT, { P I , P2, . . . , P R } , S) 

where 
i) V is a finite set, VT is a nonempty subset of V, 

ii) S € F \ F r , 
iii) each Pt is a finite subset of FX V*, the projection of P, on the first coor-

dinate is V, and if A—w1, A-+w2 are in P, then w1 = iv2. 
(Usually only S£ V + is required. It is easy to prove that K \ K r does not restrict 
the generative power.) 

Let V+ and yd V*. It is said that x directly derives y (also written x=>-.y) 
iff 

i) x = x1x2...x„, x£V, 
ii) y=yly2...y„, 

iii) there is a y£{l, 2, . . . , r} such that x ^ y ^ P j for / = 1 , 2 , . . . , « . 
The language L(G) is again defined as 

L(G) = {x: S^>x,x£Vf}. 
We use the following notations 

!F (IM) — family of indian matrix languages, 
!F (IPTV) — family of indian periodically time-variant languages, 
3F (IRC) — family of indian random context languages, 
J5" (IPCF) — family of indian programmed context free languages, 
J5" (EDTOL) — family of EDTOL languages.. 

3. Comparison of the language families 

In the following proofs we will often introduce new alphabets. We make the 
next convention: If UQV and V{, — {x': U) is a new alphabet then w' = 
= x'[x'2 ...x'^ for w—x1x2.:.xn where „ = (xl € U 

~~ I*, U. 

Let min (vv) denote the set of letters occurring in w. 

Lemma 1 . 9 (EDTOL) g j ^ (IM) 

Proof. Let G=(V, VT, {P l5 P2 , . . . , Pr}, S) be an EDTOL system. Let wXtP 
be the right side of the production with the left side x in P^{P1,P2, . . . , P,}- Further 
WP put f(U,P)= U min (wx P) for UQ V. 

xiU 
For a subset UQ V we introduce a new alphabet Vu={xu: x£ U). Now we 

de^ne the following matrices for U={xh, xh, ..., x ; J Q V and P£ {Px, P2 , . . . , Pr}, 

Pu = [(*/i)i/ — (wxil,p)f(u,P)> (xi2)u "*" (wxj2,p)f(u,p)> •••» (x,k)u — (.wxik,p)nu,p)]> 

Qu — tC-^ii)C/ xhi (xiz)u xi2 > •••) (xik)u 

1* 
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and consider the indian matrix grammar 

tf=i(F\Kr)U u Vv,VT, U U (PduV U- S a . s J . 
v ugv i=iugF i/sk ' 

The application of the matrix Pv models the application of P to words w with 
£/=min(»v), i.e. if w=>w' is in G then WV^>{W')V, is in H where £ /=min(w) , 
i / ' = m i n ( w ' ) . The application of the matrix Qv is a translation of wu in w. If 
wf Vy then we can apply only the matrices Pv and Qv. Now it is easy to see that 
L(G)=L(H). Therefore L{G)^{IM). 

Lemma 2. ^ ( I M ) ^ i ^ ( I R C ) . 

Proof. Let IM) and L=L{G) for the indian matrix grammar 
G = (VN, V T , M, S). L e t M={M1, M2, ...,MR), M—LA^W^, AIT-<*WIT, ..., 
. . . , AiM—w,J for i=\,2,...,r. We introduce new alphabets V',J = {xhJ: V}, 

l s a i ^ r , l ^ j m s - l . Let V'=\J(JV'-J\JVN. 
.-=i j=i 

Now we can model the application of the matrix m l by the following sequence 
of productions of an indian random context grammar 

AH - K ) ' - 1 , 0 

x - x i ' 1 , K ' \ ( ^ j v U K i - 1 ) ) m i n ( ( w i l ) ' ' - 1 ) fo r X£VN, 

Atf - (w^)'-2, 0 

3th1 - x>'\ VXiV'^UV'-2), min((vv12)''-2) for x'-^V'-1 

A'R/-1 - (w I s), V\VI,S~1, 0 

^ K M F ' ^ - ^ F j v ) , min ( w j for x ^ " 1 ^ 1 ' ' 5 " 1 . 

If we consider only such productions in our indian random context grammar then 
we can have also only such derivations which model the application of matrices. 
Therefore, we generate the same language. Thus L £ ^ ( I R C ) . 

The above construction works correctly only if we have no rule of form A^—X 
in the matrices (A denotes the empty word). If we have a matrix M such that 

m = [A1-~ w1; ..., Aj — X, ..., Ak — wfc] 
we use 

m' = [Ax - wu ..., Aj - Bj, ..., Ak - wk, Bj - X] 

instead of m, where B} is a new nonterminal. It is easy to see that this modification 
do not change the generative capacity and that our construction works also in the 
modified case. 

Lemma 3. ^ ( I R Q i J ^ C I P C F ) . 

Proof. Let G=(VN, V t , P. S), VN={ALT A2, ..., AN}. We give a possibility 
to model a production of G by rules of an indian programmed context free 
grammar. 
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Let Aj-w, {Ah,Ah, ...,A,s}, {Ah, Ah, ..., AJt) be a rule of G. Consider 
a new alphabet V = \x': x€ VN} associated with the rule and the following diagram 
of IPCF-productions (an arc labelled by F connects a production with its failure 
field, and an arc labelled by S connects it with its success field). 

It is obvious that we can only simulate rules of G because we have associated 
the primed alphabets with the productions of G. This proves £(G)£J5"(IPCF). 

Lemma 4. J ^ ( I P C F ) g ^ ( E D T O L ) . 

Proof. Let Z,G^(IPCF), L = L(G) for an indian programmed context free 
grammar G=(VN, VT, P, S). Let R be the set of labels of the productions of P. 
With each subset I of R we associate new alphabets Vf = {xt: VN} and V[ = 
= x£ VN}. We define tables P I > M for any /6/, IQR, /€ {1, 2, 3} in the following 
way: If (/) A-*w, F, S is a rule and / € / then put 

Pi,i,i = {*/ - * ^ A}U{Aj / S - S}U{x - x: x£VT), 

Pi,i,2 = {*/ - * * A}{J{Aj - Ai, f - / , S - S}U{x - x : x£VT}, 

= {*/.-> *s = x^A}U{Ai-~ws,f~f, S - S } U { x - x : x£VT). 
Using productions from sets of these types we can only generate words which 

contain only letters of VT and Vr for a certain I with exception of one letter which 
can be in K/. If we have such a word we can apply only tables PIJJ. Further Pl<lt 1 
models the case that A, does not occur and produces a word which consist of termi-
nals and nonterminals of the alphabet associated with the failure field. The other 
two tables model the application of A—w, and we get a word with nonterminals 
of the alphabet associated with the success field. 

Let / 1 , / 2 , . . . , / r be the sets containing labels whose production has the left 
sidft S, and put 

a = {S-S/1,/-/}U{*-*: x€VTU U (VjUVi)}. 
IQR 

Then the EDTOL system 

H = ( { S , / } U r T U U (VjUVi), VT, {Phly. I ^ R , ¿€{1, 2, 3}, / € /}U 
IQR 

U{&: 1 ^ r ) , S) 

generates L. Thus LG^(EDTOL). 

Lemma 5. ^ ( I M ^ J ^ I P T V ) . 

Proof. The proof of [10], Theorem 11 works also in the indian parallel case. 

Lemma 6. ^ ( I P T V ) g J^(EDTOL). 
Proof. Let L—L(G) for the indian periodically time-variant grammar 

G=(Vn, V t , P, S , f ) where f{i+j)—f(i) for />w?. We introduce new alphabets 
K<» ={*<*>: xeF,v} for l g / S m + ; / - l . For A-*w=p£P, p£f(i), l S / < m + j - l 
we define the tables 

P. p = {x(0 - jcO+D; x ^ A}U{Aw - w ( i+1)}U {x - x : x€VT} 
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A2 — A'z 

W i s 

F{ | S 

All rules with left side 
Al and a primed version 
of Ax on the right side 

F Fi iS All rules with left side 
Al and a primed version 
of Ax on the right side 

* 
< A'n-An 

All rules with left side 
Al and a primed version 
of Ax on the right side S 

Fig.1 



309 J. Dassow: On some extensions of indian parallel context free grammars 

and 

Pm+J.liP = {x(m+-'-1> - x(m): x 7i A}U{A(m+J~1) - w(m,}U{jc - x: x£VT}. -

It is easy to see that the EDTOL system 

( m+j-l \ 

H=\VTU ¿ J y{k\ VT, {Pi,P: 1 ^ ^ m+j-l, pfj(i)}, 5 (1 )J 

generates!,. 
We say that a grammar is A-free if it contains no production with the empty 

word X at the right side. The family of X-languages generated by 1-free A'-grammars 
is denoted by Fx{X). As usual we identify languages which differ only in the empty 
word. 

Theorem 1. (EDTOL) = # ' ( I M ) = J i r ( [ R C ) = J r ( I P C F ) = ^ ( I P T V ) = 
— J5";. (EDTOL) = SF-t, (IM) = J ^ (IRC) = (IPCF) = (IPTV). 

Proof. The first row follows directly by Lemma 1—6. Further 2F (EDTOL) = 
=3Fk (EDTOL) is known and all our constructions in Lemma 1—4 and 6 preserve 
A-freeness. If the matrix grammar in the proof of [10], Theorem 11 is 1-free then 
we modify the proof in the following way: The new symbols Yj are not catenated 
with Pj, the last letter of Pj has to be in a new "primed" alphabet and the last 
rules have to change the letter into a "not primed" letter. 

By Theorem 1, we get some information on properties of the extensions of 
indian parallel context free grammars, because we have knowledge on 2F (EDTOL). 
— In [3], closure properties under AFL-operations are given. 
— There are context free languages which are not ' in (EDTOL). 
— It is known that the families of matrix languages, programmed context free 
languages, random context languages and periodically time-variant languages prop-
erly contain (EDTOL). Thus the indian parallel restriction reduces the generative 
capacity of the considered extensions. 
— The proof of v. SOLMS [14] works also in the indian parallel and deterministic 
case. This proves that indian random context grammars of special type generate 
already all indian random context languages. 

A further language family which is equal to the above families is given in [2], 
Theorem 2. 

Finally we want to mention without proof that all our language families also 
coincide with the family of indian unordered scattered context languages, which are 
the indian parallel version of the unordered scattered context grammars of [5]. 

TECHNOLOGICAL UNIVERSITY OTTO V O N GUE RI CKE 
D E P A R T M E N T OF MATHEMATICS A N D PHYSICS 
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О вентильных схемах 

О. Б. Лупанов 

Вентильные схемы являются одним из основных модельных объектов, 
на которых изучаются закономерности сложности управляющих систем. Целе-
сообразность их изучения объясняется, с одной стороны, их простотой, и, с дру-
гой стороны, возможностью использовать методы и конструкции, разработан-
ные для них, в случае «более сильных» классов управляющих систем. 

Вентильную схему можно определить как ориентированный граф, в кото-
ром выделено некоторое подмножество вершин — множество полюсов — 
и эти вершины занумерованы. С каждой вентильной схемой £ связывается 
матрица из нулей и единиц А — \\а^\\ —матрица проводимостей (ач = 1 тогда 
и только тогда, когда в 5 имеется ориентированный путь из полюса ¡' в пол-
юс у). Очевидно, что матрица проводимостей любой вентильной схемы явля-
ется транзитивной. Важным классом вентильных схем являются такие, в кото-
рых полюса разбиты на два подмножества: «входные» — с номерами 
_Р={1, ...,р) и «выходные» — с номерами 0, = {р+\, ..., р+д} и.на матрицу 
проводимостей наложено дополнительное ограничение: в у = 0, если г 
и либо /£-Р,у'£.Р, либо /€(?,./€ 6 , либо В этом случае система 
проводимостей полностью определяется подматрицей данной матрицы, име-
ющей р строк и # столбцов; ее обычно и называют матрицей проводимостей. 

Одной из основных задач в теории вентильных схем является задача син-
теза — построение по данной матрице А вентильной схемы, имеющей в ка-
честве матрицы проводимостей матрицу А. Для решения этой задачи сущест-
вует тривиальный способ, сводящийся к непосредственному соединению полю-
сов вентилями. Однако этот способ является неэкономным. Поэтому задача 
синтеза уточняется — требуется указать метод построения схем, который, 
с одной стороны, является не очень трудоемким и, с другой стороны, позволяет 
строить достаточно простые схемы. Для характеристики сложности схем вво-
дится функция В(р, д) — минимальное число вентилей, достаточное для реа-
лизации любой матрицы с р строками и д столбцами (функция Шеннона). 
Пусть В,(р, —аналогичная функция для схем глубины' г (глубина схемы — 
максимальная длина цепи от входа к выходу). 

Первые результаты об оценках функций В{р, д) и Вг(р, д) были получены 
в работе автора [1]. 
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Теорема I [1]. Пусть выполнены условия* 

а) р -

б ) р^д; 

в) 
Р 

Тогда 
РЧ 

в2(р, Ч) log q 

С л е д с т в и е 1. При условиях а), б), в) 

log (pq) ' log q' 

С л е д с т в и е 2. При условиях а), б), в) и дополнительном условии 

Го) 

д о -
выполняются соотношения 

РЧ В(р, q) ~ Вг(р, q) 
log q' 

Конструкция, использованная в методе синтеза вентильных схем глу-
бины 2, легла в основу методов синтеза «более сильных» классов управляющих 
систем (контактных схем, схем из функциональных элементов, автоматов 
и т. д.) — см., например, [2]. 

Уточнение оценок для В(р, q) было получено Э. И. Нечипоруком. 

Теорема 2 [3, 4]. Пусть выполнены условия а) и б) теоремы 1, а также 
условие 

г..) lim ]°gP = —-— , где и, о — целые числа, большие нуля. 
log q fl{Q-\) + Q 

Тогда 

Замечание . Условие гс) включает важный в приложениях случай, 
когда p x q . 

Случай, когда не выполняется условие в), был исследован В. А. Орловым. 
Оказалось, что в этом случае функция Вг(р, q) ведет себя «ступенчатообразно». 
Именно справедливы утверждения. 

* Здесь и ниже имеется в виду, что р я д являются функциями некоторого параметра п, 
и имеются в виду асимптотические соотношения при л — l o g означает логарифм по осно-
ванию 2. 
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Теорема 3 [5]. Пусть к произвольное фиксированное целое положительное 
число. Тогда 

B2([k logq], q)~(k+\)q. 

Теорема 4 [5]. Пусть выполнены условия 

a') q оо, 

BJ lim —^— = ос, причем а 1, а не целое. 
log q 

Тогда 

• в2(р,д) ~[a+ik. 

Теорема 5 [5]. Пусть q^p2p_1 —р. Тогда 

B2(p,q) = p2"-1-p + q. i 
Теорема 6 [5]. Пусть выполнено условие а), а также условия 

в'> бЬ-1; 
д) q ^ p 2 " - l - p . 

Тогда 
В2(р, q) ~ 2q. 

Теорема 7 [5]. Пусть выполнены условия а), в^, а также 
д") 

Тогда 
Bip, q) ~.Bt(p, q) ~ 2g. 

Теорема 8 [5]. Пусть выполнены условия а) и 

д + ) q^2(2"-p-l). 

Тогда 
B(p,q)~B2(p,q)~2.2' + q. 

Наряду с задачей о реализации произвольных матриц (заданных размеров) 
рассматривался вопрос о реализации матриц из специальных классов и о реа-
лизации конкретных матриц. 

Пусть Br(p, q, а) функция Шеннона для матриц с р строками q столбцами, 
имеющих otpq единиц. Пусть 

а* = min (а, 1—а), # ( а ) = а log—+(1 —а) log -¡-i—. 
а 1 —а 

Э. И. Нечипорук доказал следующие утверждения. 
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Теорема 9 [3, 4]. Пусть выполнены условия б), а также 

a j ар -

ч . log q е*,е) f б > Челое 

log — а 

Тогда 
apq 

Вг (Р, Я,«) в 
Теорема 10 [12, 4]. Пусть выполнены условия а), б), а также 

Р в*) Н(сс) 

е„) 

Тогда 

log q 
log q 

l o g 4 r a* 

B2(p, q,x)~H(a) ™ 
log q' 

Теорема 11 [4]. Пусть выполнены условия а), ва), еа), а также 

r t) log р ~ log q. 

Тогда 

В3(р, q, a) ~ Н(а) РЧ 

2 log q ' 

Пусть By
r(j>, q) — функция Шеннона для не всюду определенных матриц, 

у которых число определенных элементов — нулей и единиц — равно уpq 
(остальные (1— y)pq элементов не определены и при реализации матрицы 
заменяются нулями и единицами так, чтобы реализация была простейшей). 
Э. И. Нечипорук установил следующий факт. 

Теорема 12 [13, 4]. Пусть выполнены условия а), б), а также 

УР в7) 

е') 

l og? 
log? 

l o g y 

Тогда 

В1(р,.д)~У. РЧ 
log q ' 
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Конструкция, использованная при доказательстве верхней оценки в этой 
теоремы, применялась впоследствии многими авторами при реализации не 
всюду определенных булевых функций в различных классах схем (например, 
[6-9]). 

При изучении сложности реализации конкретных матриц наиболее высо-
кие оценки (порядка р3/2 в случае квадратных матриц порядка р) были полу-
чены Э. И. Нечипоруком («матрицы без прямоугольников» —см. [10]), а также 
Т. Г. Таръяном (матрицы Адамара — см. [11]). 

Отметим в заключение некоторые задачи, решение которых, по-видимому, 
будет связано с созданием новых методов. 

1. Получить асимптотическое выражение для В(р, q) в случае log р X log q 

(например, при — §—иррациональное число; т. е. снят ограничение log q 
rc) — см. стр. 312). 

2. Получить асимптотическую формулу для функции Шеннона В{р) в слу-
чае схем, реализующих произвольные транзитивные матрицы с р строками и 
р столбцами (в которых не выделены специально входы и выходы); оценки 

р 2 
log р log р 

получаются легко на основе, например, теоремы 1. 
3. Построить «эффективно» последовательность матриц порядка р, которые 

реализуются лишь со сложностью, существенно большей, чем р3/2. 
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Об асимптотических оценках сложности управляющих систем 

О. Б. Лупанов 

Этот доклад содержит обзор некоторых результатов в области асимпто-
тической теории сложности управляющих систем. Здесь, с одной стороны, 
будет кратко охарактеризовано общее состояние теории и, с другой стороны, 
несколько более подробно будут изложены некоторые результаты послед-
них лет. 

Асимптотическая теория синтеза управляющих систем фактически нача-
лась с работ Шеннона [1, 2]. С. В. Яблонским было введено весьма общее поня-
тие управляющей системы (УС) и были сформулированы основные задачи 
теории управляющих систем [3]. Полностью привести здесь определение УС 
не представляется возможным. Укажем лишь некоторые примеры УС. Управ-
ляющими системами являются релейно-контактные схемы, цифровые вычис-
лительные машины, программы (для ЭВМ), арифметические формулы и т. д. 
Все эти объекты характеризуются тем, что они обладают некоторой структурой, 
схемой 5, и реализуют определенную функцию / . С каждым множеством УС 
естественным образом связывается множество <5 их схем и множество 5 их 
функций. 

Одной из основных задач теории УС является задача синтеза: по функции 
/ из 3 требуется найти УС, схема которой реализует / . В настоящее время для 
исследования разных вопросов, связанных с задачей синтеза УС (как и для 
других задач теории УС) характерно рассмотрение конкретных классов УС 
(модельных объектов). К таким классам можно отнести следующие. 

1. Вентильные схемы. 
2. Дизъюнктивные нормальные формы. 
3. Формулы, являющиеся суперпозициями базисных формул. 

В частности, формулы в базисе &, V, 1 . 
4. Схемы из функциональных элементов. 
5. Контактные схемы. 
6. Автоматы (логические сети). 
7. Алгоритмы. 

Всюду в дальнейшем речь будет идти о сложности задания, а не о слож-
ности вычисления. 
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Задача синтеза решается, как правило, неоднозначно. Для уточнения 
постановки задачи вводится мера сложности схем ¿ ( 5 ) функционал, удовлет-
воряющий некоторым естественным условиям. Например, в случае 
формул можно определить как число вхождений символов переменных, а в слу-
чае схем из функциональных элементов как число элементов схемы; или не-
сколько более общим образом: функциональным элементам (базисным фор-
мулам) приписываются веса, 1.(5) определяется как сумма весов всех элемен-
тов схемы (всех вхождений символов базисных формул соответственно). 
После этого задача о синтезе уточняется так: для любой функции / из 5 тре-
буется найти схему 5 из 6 , реализующую / и такую, что ¿ (5) минимально 
(«минимальную схему»). Это минимальное значение будем обозначать через 

В большинстве случаев существует алгоритм для построения минимальных 
схем, основанный на переборе всех схем определенной сложности. Однако 
трудоемкость этого алгоритма весьма велика, и он практически нереализуем 
при использовании ЭВМ даже в случае функций от сравнительно небольшого 
числа переменных (5—10). Все попытки найти более эффективные алгорит-
мы пока не привели к цели. Более того, С. В. Яблонским была высказана гипо-
теза (и получены первые результаты в направлении обоснования этой гипоте-
зы), что «полный перебор» в этих задачах необходим [4]. Поэтому задачу 
синтеза приходится уточнять дальше. Один из подходов к этому принадлежит 
К. Шеннону [2]. При этом подходе отказываются от нахождения минимальной 
схемы для каждой функции. Вместо этого рассматривают задачу синтеза для 
целого класса функций (например, для класса g ( n ) булевых функций от п пе-
ременных); кроме того, требование минимальности заменяется требованием 
«почти минимальности». Более точная постановка задачи состоит в следую-
щем. Пусть L(n)—max L ( f ) , где максимум берется по всем функциям / ( j q , ... 
..., х„) из 5(п)- Функция L(n) получила название функции Шеннона. Требу-
ется найти алгоритм, который для каждой функции f ( x u ..., хп) строит схему 
5 такую, что L{S)<L(n); трудоемкость этого алгоритма должна быть су-
щественно меньше трудоемкости полного перебора. 

Первые результаты в этом направлении были получены К. Шенноном [2]. 
Им был предложен оптимальный по порядку алгоритм синтеза контактных 
схем и получены оценки 

Асимптотически наилучший алгоритм был построен автором, и тем самым 
2" установлена асимптотика функции Шеннона: Ц л ) ' [5,6]. Автором были 

построены также асимптотически наилучшие алгоритмы синтеза формул и 
схем из функциональных элементов в произвольном конечном базисе [7, 8]. 
Асимптотики функций Шеннона для этих случаев имеют соответственно вид 

АЯ-

2' 
п 

О Л + 2 
< L(n) 5 

и 

где g — константа, простым способом определяемая по базису. 
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На основе этих методов позже появились аналогичные асимптотические 
результаты для других классов управляющих систем. Среди них отметим 
работу В. А. Кузьмина, установившего асимптотику функции Шеннона для 
сложности реализации булевых функций некоторыми типами алгоритмов 
(нормальные алгорифмы, машины Тьюринга) и выяснившего зависимость 
этой асимптотики от числа букв используемого алфавита [9]. 

Исследовался также вопрос о влиянии на сложность реализации различных 
дополнительных требований, предъявляемых к схемам. Здесь в первую очередь 
следует отметить результаты Э. И. Нечипорука о реализации функций в ба-
зисах, некоторые элементы которых имеют нулевые веса [10], и о синтезе само-
корректирующихся контактных схем [11]. Сюда же можно отнести результат 
автора об асимптотике функции Шеннона для схем из пороговых элементов: 

( 2" V'2 

в случае реализации систем m функций асимптотика имеет вид (при условии 

( ml- V/2 

L ( n , m ) ~ 2 у [12]. 
V n —log2m / 

Здесь L(S) — число элементов в схеме S; для случая, когда L(S) равно сумме 
модулей весов входов элементов, асимптотика была получена ранее Е. Ю. 
Захаровой [13]. 

В случае схем в автоматных базисах положение оказалось более сложным. 
Для некоторых частных случаев удалось получить асимптотические формулы 
для функции Шеннона (Б. А. Трахтенброт [14],' То Суан Зунг [15]). В общем же 
случае задача об асимптотическом поведении функции Шеннона для произ-
вольного автоматного базиса оказалась алгоритмически неразрешимой (В. А. 
Орлов [16]). Для частного случая (реализация булевых функций схемами в ав-
томатных базисах) результат В. А. Орлова может быть сформулирован следую-
щим образом. Существует бесконечное множество автоматных базисов {23}, 
такое что для базиса 23 функция Шеннона имеет асимптотику вида 

2" 
L{N) ~ С в — 

п 

(С® константа, зависящая от базиса 93), но не существует алгоритма, определ-
яющего по любому базису из {23} значение константы С в . 

Результаты асимптотической теории показывают, что поведение функции 
Шеннона слабо зависит от класса УС. Кроме того, оказывается, что почти 
все функции из 5 ( л ) имеют почти одинаковую сложность, асимптотически 
равную сложности самой сложной функции. 

Из приведенных выше оценок видно, что почти все функции допускают 
лишь очень сложную реализацию и поэтому практически недоступны. Поэтому 
возникает вопрос о выделении классов функций, реализуемых более просто. 
Примеры таких классов известны давно, со времени первых работ по синтезу. 

2 Acta Cybcrnetica 
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Затем С. В. Яблонским [4] было построено и изучено континуальное семейство 
функций, допускающих более простую схемную реализацию, чем большинство 
функций. Это классы функций, замкнутые относительно операции подстановки 
констант вместо (некоторых) переменных. Каждый класс характеризуется не-
которым числовым параметром <т, отражающим «мощность» класса (0 = а ^ 1). 
Для этих классов при <7^0 С. В. Яблонским были построены асимптотически 
наилучшие методы синтеза и получены асимптотики функции Шеннона. 

Впоследствии автором был предложен один общий подход к синтезу схем 
— принцип локального кодирования [17]. Этот подход позволяет по описанию 
класса функций (с соблюдением некоторых специальных требований) строить 
асимптотически наилучший метод синтеза для функций из этого класса. С по-
мощью этого принципа оказалось возможным единым способом получить 
методы синтеза для известных классов функций, а также для многих новых 
классов. Асимптотика сложности схем в конечных базисах для функций из этих 
классов определяется числом Мп функций /(хг, ..., хп) в этом классе и имеет 

вид о - — ^ п Эта функция может принимать значения от величин, 
1о§2 Мп 

2" 
близких к и, до — . Принцип локального кодирования особенно удобен при 

применении к достаточно богатым классам УС (схемы из функциональных 
элементов, автоматы, алгоритмы). Интересный вариант принципа локального 
кодирования описан в работе Е. П. Липатова [18]. 

Как уже отмечалось, большинство булевых функций допускает лишь 
очень сложную схемную реализацию. Однако доказательство этого факта 
является неэффективным. Первая «эффективная» нелинейная нижняя оценка 
была получена Б. А. Субботовской для сложности реализации линейной функции 
от п переменных формулами в базисе &, V, ; эта оценка имеет вид Сп3/2 [19]. 
В. М. Храпченко усилил эту оценку до и2; тем самым установлен порядок 
сложности [20]. И м же предложен общий метод установления квадратичных 
нижних оценок для сложности формул й базисе &, V, "1 [21]. Близкие к квадра-
тичным нижние оценки в «более сильных» классах УС (формулы в произволь-
ном базисе; контактные схемы) были получены Э. И. Нечипоруком [22]. Общий 
метод получения нелинейных нижних оценок для формул в произвольном 
базисе предложен Л. Ходесом и Е. Шпекером [23]. В «более слабых» классах 
УС (формулы в функционально неполных базисах) удается получать нижние 
оценки порядка пс, где С — произвольная константа (Э. И. Нечипорук [24], 
М. М. Рохлина [25]). До сих пор не удалось получить ни одной нелинейной 
нижней оценки для схем из функциональных элементов (в полном базисе буле-
вых функций). Для неполных базисов в /:-значной логике удается получать 
экспоненциальные оценки в случае схем из функциональных элементов (Г. А. 
Ткачев [26]). 

В связи с установлением некоторых общих закономерностей сложности 
особый интерес сейчас, по-видимому, представляет изучение различных мер 
сложности и связи между ними, выявление различных нетривиальных ситуаций, 
а также установление более общих закономерностей. 

Важной мерой сложности, связанной с числом элементов схемы, является 
ее глубина, т. е. максимальная длина цепочки элементов, соединяющей вход 
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схемы с ее выходом. Соответствующую функцию Шеннона будем обозначать 
через Т(п). Из анализа известных методов синтеза и из нижней оценки для 
Ци) легко получается асимптотическая формула для Г(и). Например, для 
базиса &, V, справедливо соотношение Т(и)~л. Более точная формула 
была получена лишь совсем недавно С. Б. Гашковым [27] 

Т(п) = n - l o g 2 l o g 2 n + 0 ( l ) 

(нижняя оценка непосредственно следует из нижней оценки для L(n) в случае 
формул; ранее известные верхние оценки для Т(п) таковы: 

T(n)Sn+log*n [28], Г (и) ^ и + 0(1) [29]). 

Глубину схемы можно трактовать как ее задержку; однако, как показал 
В. М. Храпченко, эти характеристики не всегда совпадают [30]. Полный анализ 
возможных функций Т(п) в случае, когда некоторые базисные элементы имеют 
нулевую задержку, провел С. А. Ложкин. Оказалось, что возможны лишь три 
типа поведения функции Т{п): 

Т{п) ~ ти; Т(п) ~ a logn; Т(п) = с (n ^ п0) [31]. 

Кроме того, оказалось, что во многих случаях возможно одновременное 
(т. е. в одной схеме) достижение асимптотики сложности и задержки [32, 33]. 

Из работ последних лет по исследованию других мер сложности следует 
отметить результаты О. М. Касим-Заде [34]. Он продолжил начатые М. Н. Вай-
нцвайгом [38] исследования так называемой мощности схем из функциональных 
элементов (мощность схемы — это максимальное число ее элементов, имею-
щих на выходе единицу). Пусть £я(л) соответствующая функция Шеннона 
для базиса 21. Основные результаты О. М. Касим-Заде состоят в следующем 

1. Для почти всех (в некотором естественном смысле) базисов 91 

Еф)Жп. 

2. Существует бесконечно много различных по порядку функций Ефг). 
Например, для любого целого положительного m существует базис 9lm, 
для которого 

( ух \1/т 

т ) • 

3. Для любого конечного базиса 21 имеет место лишь одна из возмож-
ностей: либо log £з,(/?)хи, либо log £щ(и)х1с^я; при этом по базису эффектив-
но устанавливается, какая из возможностей имеет место. 

4. Для базиса &, V, "1 возможно одновременное достижение (в одной 
схеме) асимптотики сложности и порядка мощности. 

В заключение отметим, что обзоры такого рода (а также по более широ-
кому кругу вопросов) делались раньше [35—37]. 

2* 
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Structure of program runs of non-standard time 

B y L . CSIRMAZ 

J 

1. Introduction 

In this section the set of natural numbers is denoted by J f , and the set of Peano 
axioms (with+and-only) by PA. In our point of view, a program is a finite se-
quence of labelled statements. The labels are (distinct) natural numbers. Each state-
ment is either an assignment of the form "v*-x" where v is a variable symbol and 
T is a term of Peano arithmetic containing operator symbols+and-only, or is an 
if-statement of the form " IF x THEN / " where x is a quantifier free formula of 
PA and IdJV is a label. Denote by Vp the (finite) set of variable symbols occuring 
in the program p and let Lp be the set of the labels of the statements and 
h£Jf\Lp (the "halt" label). A run of the program p is a sequence (/,-, 
where 

(i) /;€Lp U {A} and / ¡ : Vp-~Jf is a valuation of the variables for every i ^ J f ; 
(ii) if l=h then / ,+!=/;, fi+i=fi-, 

(iii) if the statement labelled by /,• is " V ^ T " then 

|Z ; +1 if Z ,+ l€£ p , 
I h otherwise, 

ifi(w) if w£Vp, w v, 

if Z,+ l€£ , 
otherwise, 

(iv) if the statement labelled by /, is " IF x THEN / " then 

I if l£Lp and xlfii is t rue, 
/,-+1 = • h + 1 if h + ^ L p and xUi] is false, 

h otherwise, 

fl +1 ~ fi-

i +1 

The run of the program halts, if lt = h for some i [cf. 4]. 
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It is well-known that every program can be written in this form because we 
have made no restriction on the content of variables [5]. Moreover, there is a 
straighforward way to prove partial correctness of programs of this type: assign 
formulas to every element of Lp U {h} and prove (say, from the Peano axioms) that 
if the formula assigned to /,• is satisfied then after executing the statement belonging 
to the formula assigned to / i + 1 will be satisfied, too. Then, if the run halts, the 
formula assigned to H is satisfied, i.e. the program is partially correct. This method 
is the so called Floyd—Hoare derivation [6]. 

It is easy to give a rigorous proof that if a program has a Floyd—Hoare deriva-
tion, i.e. if we may assign formulas and prove what we have to prove then the 
program is partially correct. But, alas, there are programs which always halt, al-
ways give the same result but have no Floyd—Hoare derivation. For example let 
«jo be a formula of Peano arithmetic such that neither q> nor its negation are prov-
able from PA. Our program checks whether its only input is the Godel number 
of a proof of <p from PA. If it is, it prints 1, if not, i.e. if the input is either not 
a Godel number of a proof or does not prove cp, it prints 0. Our program always 
halts because it is a decidable property to be a proof of a concrete formula, and 
always prints 0 because there is no proof of cp. Moreover, we can not prove this 
(from PA) because then we would be able to prove in PA that there is a non-
provable formula, i.e. that PA is consistent, which is impossible. 

This difficulty vanishes if we allow the program to operate not only on J f 
but on any model of PA and to run not only through finite time but through non-
standard time. This idea is behind the concept of continuous trace, it simulates 
the non-standard runs of programs, see [1], section 3 of [7], and [8]. 

2. Notation, definitions 

Denote by L the set of classical first order formulas of type t, where t is the 
similarity type of arithmetic, i.e. it consists of " + , 0,1" with arities "2, 2, 0, 0", 
respectively. PA denotes the following (infinite) set of axioms: 

PI x + l j i 0 

P2 Jt+1 = y + 1 — x = y 

P3 J t+0 = x 

P4 * + ( y + l ) = (x+y) + l 

P5 x - 0 = 0 

P6 * ' ( y + l ) = ( * ^ ) + JC -

P7 for all formulas <p with x as free variable 

|>(0)A V*($>(*) - <p(x+\))] - V*<?(*)• 

We will use other relation and function symbols, as e.g. x<y or rem (x, y) which 
are definable in PA. We introduce the bounded quantifiers (Vx~=:y)<p(y)'~ 
-^Vx(x<y—<p(x)), etc., too. The following reformulation of the axiom of in-
duction 
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P8 [(Vy < x)(p(y) - <p(x)] - \/x<p(x) 

may be obtained from P7 substituting cp(x) by (\/y<x)(p(y) [cf. 2]. 
The inclusion AcB allows the sets A and B be equal. 
To save space we use vector notation in place of sequence of symbols of same 

type. E.g. we write (p(x) instead of cp(x1, x2, ..., xn), etc. The dimension of vectors 
is always clear from the context. 

Definition. Let A be any model of PA with universe A. Let <p (x1; ..., x„, yu ..., y„) 
be a formula of PA so that 

P A h V * 1 . . - . V * , B ! f t . . . 3 l w ( x 1 ^ (2.1) 

Let qa = (ql, ..., q") be a sequence of length n of elements of A for every a£A. We 
say that the sequence (qa)aiA is a continuous trace (ct in short) of <p if 

A N ?fl+1) for every a£A; (2.2 
for every formula \j/ of PA and every sequence p of elements of A 

A N [ > ( W ) A A (ip(.qa,P) - A t(§a,P)- (2-3) 
aZA aiA 

In the remaining part of this paper we fix the model A of PA, the formula cp, the 
sequence q0 and its length n. Whenever we speak about continuous traces we mean 
ct of cp with first element q0 in A. 

We shall need the notion of coding function of sequences. Let rem (x, y) be 
the remainder when x is divided by y and define the ordered pair (x,y) as (x+y) • 
• Let moreover the triplet (x,y, z)=(x, (y, z)> and define the formulas 
PAIR (z), SEQ (u) and the functions LENGTH (it), ELEM (u, i) as follows. 

PAIR(z) = V u ( i c u S zA(u + l ) - ( u + l) > z — z ^ u -u + u); 

SEQ («) = PAIR (u)A Vx Vy(u — (x, y) — PAIR (y)); 

{n if SEQ (u) and u = (x, y, n), 
0 otherwise, 

frem (m, 1 + ( / + 1 ) • b) if SEQ (u) and u = (m, b, n) and i < n, 
ELEM (m, 0 = | 0 o t h e r w . s e 

A straighforward proof shows that 

PA | - PAIR (z) - 3 ! x 3 ! y ( z = <x, j;» 

PA t- Vu 3 !n (LENGTH (u) = n) 

PA | - V« V i 3 !x(ELEM («, i) = x). 

We say that m6 A is a sequence if A N SEQ (w), its length is n if A1= LENGTH (M) = n 
and its i'-th element is a if AN ELEM (w, i)—a. Note that 0 is a sequence of 
length 0. 

The following theorem says that every sequence can be lengthened by 1 [3]. 
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Theorem 1. P A | - V " Vz 3 D ( S E Q ( M ) -

{SEQ (v) A LENGTH (v)=LENGTH (M) +1A 

(V/<LENGTH(w))(ELEM(w, i)=ELEM(t; , /))A 

ELEM (d, LENGTH («))=2}). • 

3. The result 

First we prove some lemmas. We remind that A, q>, q0 and n are fixed. 

Lemma 1. There are a formula $ of PA and a unique sequence (qa)aiA of se-
quences of length n of elements of A with the given q0 such that 

P A I - V M V X J . . . VX„ 3 . . . 3 I y„$(m, xx, ...,x„, ..., y„) 

PA f- Mm Mx V j Vz($(m, x,y)h$(m + \, x,z) - <p(y, z)) 

A |= <P(a, q0, qa) for every a£A 

A 1= <p(9fl,ia+i) for every a£A. 

Proof. Let <P1(m) be 

Vx1...Vx„ Bu%(x1, ..., x„,u, m). 

where 1 is "u is a sequence of length m + 1 such that every element of u is a sequence 
of length n, ihe elements of the 0-th element of u are x1, ..., x„ in this order and for 
every i<m the z'-th element y and the (7+ l)-st element z of u satisfy cp(y, z)". 

It is clear that P A | - # i ( 0 ) , one only have to use Theorem 1 n times. In view 
of (2.1) and Theorem 1, P A | - ^ ( w ) — + 1 ) holds. Therefore, by the induc-
tion axiom, PA l- V m ^ i W . A very similar argument shows that the following 
formula, denoted by <P2, is also PA provable (by induction on i): 

... V*„ V« V^ V' ("if u and v are sequences as above and 
z'^min (LENGTH (m), LENGTH (y)) then the elements of 
the z-th element of u and v coincide"). 

Now let <P be 3u(%(xj, . . . , xn, u, m)A "the elements of the m-th element of u are 
yt, ...,yn in this order"). The existence in (3.1) is ensured by 4>1, the uniqueness 
is by <P2- (3-2) is trivial. Consider now the valuation of in A where the values of 
Xx, ..., x„ are ql, . . . , respectively while m has the value a£A. Denote the values 
of ylt ...,yn for which <P(m,x,y) holds in A by ql, ..., q", respectively. The qa's 
are determined uniquely by (3.1) and (3.3) is satisfied by definition. (3.4) follows 
immediately from (3.2). • 

Definition. The sequence (qa)aiA defined previously is called the standard con-
tinuous trace (set in short). (We will see later that this sequence forms a continuous 
trace indeed.) 

Lemma 2. Let \f/ be any formula of PA, p a fixed sequence of elements of A 
and 

A \j/(a, qa,p) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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for some adA. Then there is a least suffix with this property, i.e. ad A such that 

Proof. Suppose the contrary, i.e. whenever A \=ij/(b,cjb ,p) for every b<a 
then At=i\>(a,qa,~p). Denote by W(m,x,z) the formula x, y)A 
A\j/(m,y,z)). Then, by the reformulation of the induction axiom, 

PA h [(Vn < m ) f (n, 3c, z) - f ( m , 3c, I ) ] - V m W(m, 3c, z). 

Now valuate this in A putting q0 instead of 3c an p instead of z. Notice, that the 
implication in the square bracket holds, therefore the second half of the implication 
holds also, i.e. At=i¡i(a, qa,p) for every ad A, which is a contradiction. • 

COROLLARY. In virtue of this lemma, we may use induction type proofs for 
the sequence (qa)a€A. • 

Lemma 3. Let u, v£A, 0<v. If qu = qu+E then 

for every x, yd. A. 

Proof. Let y= 1 and use induction by the Corollary on x. After this fix x 
and use induction on y. • 

Lemma 4. There exists an EczA such that 

Proof. If all of the elements of the sequence <qa)a(A are different, the set E—A 
satisfy (3.5)—(3.7). If not, there is an ad A so that qa occurs at least twice in the 
sequence. This property is expressible by an L-formula, so, by Lemma 2, we can 
assume that this a is the minimal one, i.e. qb is unique if b<a. There are other 
occurrences of qa , hence, also by Lemma 2, there is a second one, i.e. there is an 

such that qa = qe+i but ¡Ja^i]b if a < b ^ e . We claim that the set 
E={adA: a^e} satisfies (3.5) and (3.6). It is sufficient to see (3.5) in case 

only. Suppose qbl=^b2- Lemma 3 with the cast u=b1,v—bi—bi, 
x = rem (e+1 — b1} b2-b1) gives q e + 1 = qbl+x9£qa which is a contradiction. (3.6) 
is an easy consequence of Lemma 3. • 

Now we have all of the tools for the proof of the main result of this paper. 
First we need some more preliminaries. 

Definition. The subset SczA is a slice if ad S implies a+ Id S and bd S for all 
¿><0. 

The subset TczA is a thread if adT implies, a+ldT, a-IdT (for a^O) and 
a,bdT, a<b imply that for some natural number n 

A \j/(a, qa,p) but A N \j/(b, qb,p) if b < a. 

if b2dE, b^bz then qbl ^ qb%; 

for every adA there exists bdE such that qa=qb, 

either E=A or for some edE, E— {adA: a^e}. 

(3.5) 

(3.6) 

(3.7) 

b = a + l + ... + l (n times). 
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The function f : A-+A is a projector if / ( 0 ) = 0 and f(a+ l)=f(a)+1 for 
every a£A. 

The sequence (pa)aiA is a projection of the sequence (qa)aeA if there exists 
a projector f and a slice S such that 

Theorem 2. The standard continuous trace (<ja)a£A forms a continuous trace. 

Proof. (2.2) of the definition is satisfied by (3.4) of Lemma 1. (2.3) is immediate 
from the Corollary of Lemma 2. • 

Theorem 3. The projections of the standard continuous trace are continuous 
traces. Moreover every continuous trace is a projection of the standard one. 

REMARKS. An easy consequence of Theorem 3 is that if A is a non-standard 
model of PA then for all <p and q0, the cardinality of ct's of (p with first element 
q0 is 2M. 

Now consider a ct (pa)azA the defining formula of which is 

and let Po=0 for the initial position p0. Then pl+1=pl +1 for every a£A but 
one can not hope for p\=a in general. Actually, by Theorem 3, the standard ct 
is the only ct which has this property. We may interpret this'phenomenon as follows. 
We add a "clock" to a continuous trace and suppose that the clock works well 
(i.e. it jumps by 1 at every step). If we require the clock to show the correct time 
then the ct is unique. Compare with Theorem 3.3 of [7]. 

Proof of the theorem. First let / : A— A be the projector and S the slice of 
a projection. We prove that {pa)aiA is a ct. (2.2) of the definition follows from 
f(a+ \)=f («) +1 . To prove (2.3) let i//£L be arbitrary and assume 

By the hypotheses, pa—qa, for all ¿>£5 there is an a£A such that qb=p„ and if 
qb=Pa then qb + 1—p a + 1 . So we know that 

A N iK<?0>P) and A t= ^ (§„,/>) - il>(qa+i,p) for all a£S (3.11) 

and it is enough to show that this implies 

Suppose the contrary. Then, by Lemma 2, there is a least counter-example, say b. 
But this b belongs to S because S is a slice, which contradicts (3.11). 

Now we turn to the second and longer part of the proof. Let (pa)aiA be any ct, 
/50=<70. We claim that for any a£A there exists a least b£A such that ¡7),.-In-
deed, let \]/(y, x) be "3m&(m, x, y)". It is clear that A\=ip(p0, q0) with m=0 and 

Pa = bw for every 
Rng ( / ) c S 

for every b£ S there is an a£A such that qb = q/iay. 

(3.8) 

(3.9) 

(3.10) 

(p(xu ...,x„, >>!, ...,>'„) = = Xi+IA... 

A N \ll{p0,p)h A ( ' K p a , p ) - Pa + l'P))• 

A N ip(qa,p) for all a£S. 
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if At= 4>(Pa> 9o) with some m, then A.\=ijj(pa+1,q0) with (m + 1) because the 
successors are unique. Then by (2.3), A i=^ (p a , go ) for all a£A which states the 
existence of b. Finally, Lemma 2 ensures a least one. Denote this b by / ( a ) and 
denote S the range of the function / . Let moreover E and e be as defined in 
Lemma 4. 

It is clear that S c £ , / ( 0 ) = 0 and if f(a)?e then f(a+])=f(a)+\. Now 
let b£A, b$S and let \p{x,y,m) be the formula " ( E 3 m ' < m ) x , y)". Since 
0 < 6 and if f(a)~zb then / ( a + l ) = s / ( a ) + l<&, we know 

ANIMPO,<io,b) and A |= q0, b) - ^(pa+1, q0, b). 
By (2.3) of the definition of ct, A\=^(pa,q0,b), i.e. /(a)<Z> for all a£A. This 
means that if b£ S and c<b t h e n c f S . 

We distinguish tvfo cases. 
1. E—A or E^A but S. In this case / is a projector and S is a slice, there-

fore {pa)aZA is a projection. _ _ 
2. eZS, i.e. S=E. Let b£E so that qb—qe+1- By Lemma 3 qu—Qe-y\.=^b 

if u=a+y • (e+1 —a), so if we choose y large enough then the thread Tu of u does 
not contain b. For each thread T define the function gT: T-»A as follows. If T 
is the thread of 0 then let gT(a)=a. Otherwise if f(v)—b for some v£T then let 
gT(a)=b+a—v. Otherwise if f(v)—e for some y ^ r t h e n let gT(a)=u—l+a—v, 
otherwise let gr(fl)=f (a). Finally, let g(a)=gT(a) if a is in the thread T. 

It is clear from the definition of gT that g is a projector and ;?0=<7 /(fl)=#9(a). 
By Lemma 4, every qb equals to some pa, i.e. in this case the projector g and the 
whole A as a slice shows that (pa)aiA is a projection. • 

Abstract 

Continuous traces are introduced to simulate program runs when time is measured by the ele-
ments of a non-standard model of Peano axioms. This concept is a very useful one in considerations 
of program verification. We give here a full description of continuous traces in every model of PA. 
It turns out that there is exactly one continuous trace definable by a formula of PA and every 
other one can be got from this by a simple transformation. 
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Nondeterministic programming within the frame 
of first order classical logic, Part 1 

B y T . GERGELY a n d L . U R Y 

1. Introduction 

1.1 Nondeterminism in computer science 

In computer practice a lot of phenomena have arisen that deviate from the 
deterministic attitude forming the base of traditional programming. These non-
deterministic phenomena may be due to varying reasons. 

Considering the reasons three main types of nondeterminism can be distin-
guished. The first type of nondeterminism is quite independent from the will of 
programmers and its causes are hidden in the construction and functioning of 
computers. Due to this nondeterminism almost every program has some uncertainty 
while execution. These could be caused by power cut, current trouble, machine 
break-down or by any other unforseeable reason. If the computer works in time-
sharing mode the uncertainty further increases and the behaviour of a program 
will depend on the other programs executed alternately with it. Moreover it de-
pends on the memory requirements of the programs, on the number of peripheries 
at disposal, etc. In computers allowing parallel computations further causes of 
uncertainty interfer, namely the speed difference of certain processes and com-
munication, the noise level of the communication channel, the concurrency for re-
sources etc. In interactive mode another type of uncertainty is caused by the 
randomness of interactions affecting the program under execution. 

We may call probability programming the methods that consider the above 
uncertainties and its theory should be based on the usage of the tools of mathe-
matical statistics and those of theory of probability. Random events occuring in 
program execution are handled by these tools. In this type of programming the 
commands do not have a uniquely defined result, only its distribution is known. 
Thus the running of a program can be described by using stochastic process e.g. 
by using either Markov or semi-Markov chains. One of the main aims of the 
theory of such type of programming is to minimalize the expectable number of 
failures. 

The second type of nondeterminism is already connected with the programmer's 
will. The programmer's attitude is still deterministic, but he uses probabilistic 
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methods containing well defined randomness in the solution of some tasks. A wide-
spread method of this type is connected with the use of random number, generator. 
The programming style using this method is deterministic and it also supposes the 
determinism of the computer, however, for the solution of certain tasks it uses 
one of the Monte-Carlo methods. 

The third type of nondeterminism is connected with the essential and logical 
uncertainty enclosed in the solutions of tasks. It embodies two kinds of uncertain-
ties. The first one occurs in such a situation of problem solving when there are more 
alternat ives selecting from which any, the result will be produced without difficulty. 
The second kind of uncertainty is connected with such a situation where only certain 
alternatives lead to correct results but, in advance, we do not know which one. 

A programming style which considers the above mentioned two kinds of un-
certainties suggests a nondeterministic attitude in contrast with the deterministic 
one of the traditional style of programming. The main difference between these 
two kinds of attitudes is that the nondeterministic one considering different kinds 
of choices does riot specify how to make them though the deterministic attitude 
does not leave the question how to make choices (if there are any) unspecified. 
Programming theory connected with the third type of nondeterminism is in the 
focus of our further investigations. 

1.2 Some reasons of interest in nondeterministic programming 

Recently nondeterministic programming has attracted more and more atten-
tion. It provides the programmers to concentrate on some important questions 
about deterministic programs without specifying details irrelevant to the questions 
to be analysed. Thus this programming attitude can be used to reason about deter-
ministic programs. 

The possibility to consider actions not describing their details makes the non-
deterministic programming very useful in the field of Artificial Intelligence, e.g. 
in natural language understanding, in problem solving, in robot planning, etc. 
E.g. it suggests a fractional method of problem solving or robot-planning as follows. 
First a global algorithm — a "global plan" can be designed as a nondeterministic 
program, then, by analyzing this program and completing it with appropriate parts 
we get a concrete deterministic program, i.e. a complete detailed algorithm to 
solve the task. 

One of the most significant reasons why nondeterministic programming be-
comes more and more important is that it plays a significant role in the elaboration 
of the theory of interactive and parallel programming. Most.of its applications are 
connected with this area. See e.g. HOARE ( 1 9 7 8 ) , MILNER ( 1 9 7 3 ) , OWICKI and GRIES 
( 1 9 7 5 ) , PLOTKIN ( 1 9 7 6 ) , e t c . 

In view of aboves it is quite natural that nondeterministic programming plays 
an increasing role in both the theory and practice of programming. 

The aim of our investigation in the present work is the elaboration of a mathe-
matical theory of nondeterministic programming which can handle both syntax 
and semantics by using mathematical tools and provides tools to speak about 
program properties and to prove them. The elaboration of this theory will be done 
by using the approach developed in GERGELY and U R Y ( 1 9 7 8 ) . 
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1.3 Some words on our approach 

The essence of the programming situation to be considered is that beside 
programming language such a new language arises that is suitable to describe the 
properties and the meaning of programs and our expectations towards programs 
in an unambiguous way. Thus this new language is a descriptive one in contrast 
with the programming language which serves to give instruction, i.e. commands. 
To assure unambiguity the descriptive language should have well defined and exact 
semantics beyond the syntax.1 The syntax should be suitable to describe program 
properties and with the power of proof to analyse whether certain features of pro-
grams correspond to the expectations given by the specification, i.e. to analyse the 
correctness of programs. The semantics of the descriptive language should provide 
unambiguous understanding of the meaning of programs, hence it has to be com-
patible with the semantics of programming language. There are two main possibil-
ities to give exact semantics. The first is to characterize programs according to the 
question "what the program does?" the second is to do it according to the question 
"how the programs do it?" 

In programming theories we find the following three approaches for the 
exact handling of semantics: operational, functional and resultative. The first aims 
to give a direct answer to both questions to what and how. The resultative or, in 
other words, axiomatic semantics neglects the question how and characterizes only 
the main properties of the change of data environment of the program produced 
while execution. Functional or, in other words, denotational semantics also gives 
the meaning of programs answering both questions, though it does it in an 
indirect way. 

We wish to elaborate such a theory of nondeterministic programming which 
would be also a useful base for developing the mathematical theory of interactive 
and parallel programming. In order to understand the main features of interaction 
and parallelism in detail the execution processes themselves are to be considered. 
This permits to follow up the specific features connected with the mutual effects 
of the processes (e.g. communication, interaction). Thus operational semantics 
seems to be adequate to our aim. To have this type of semantics first the question 
what has to be answered by the characterization of changes in data caused by the 
execution of program and, secondly, the flow of programming processes in time 
has to be described to have an answer to the question how. 

Thus the theory of programming to be developed has to have such a descrip-
tive language that is capable of describing and characterizing both the data en-
vironment of programs and the time related to program execution. The first re-
quirement is quite familiar with nearly every theory of programming, but not so 
is the time consideration, for programming theories do not consider time explicitly 
except for some of the most recent works. 

Of course in the case of sequential programming the time aspects can be charac-
terized through the change of data without considering time explicitly. However 
this approach is not applicable in those cases where time plays a primary and 
independent role as e.g. in interactive, real time and parallel programming. Therefore 
the programming theory to be developed here will contain tools that also provide 
explicit time consideration. 

3 Acta Cybernetica 
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1.4 The role of classical first order logic in a theory of programming 

To develop a mathematical theory of programming that corresponds to our 
aim the first problem is to introduce such a descriptive language that satisfies the 
above mentioned expectation concerning the characterization of time and data 
and it has to have exact and well defined semantics and appropriate tools to prove 
different statements about the program properties. In the case of sequential deter-
ministic programming the first order classical language was quite satisfactory to be 
a descriptive language for the corresponding theory of programming as it was 
shown in GERGELY and URY ( 1 9 7 8 ) where the frame of classical first order mathe-
matical logic was used to develop the theory of programming. 

In the present work we show that the above mentioned logical frame is sufficient 
to develop the corresponding theory and the first order language can be used in 
the role of the descriptive one for the case of sequential nondeterministic programm-
ing. Why do we prefer the classical first order language? Because 
— it has a well defined exact and transparent syntax and semantics; 
— it has a special branch, the model theory with very strong mathematical methods 

to investigate semantics; 
•— it has a well developed proof theory that offers effective notion of proof and 

effective tools and methods for.proving; 
— it is currently used in the research practice so its use is fairly familiar; 
— it is the simplest one of the languages of mathematical logic by which a programm-

ing language can be investigated since the propositional language is not suitable 
for this. 

So it is justified to try to elaborate the mathematical basis of programming theory 
within the frame of classical mathematical logic that is the most highly developed 
branch of mathematical logic. This is encouraged by the fact that data environments 
of programs can be given without major restriction of generality by first order 
language. 

In this work the mathematical foundations of programming theory, and the 
elaboration of the theory itself is done by strictly keeping to the frame of first 
order logic. 

In the theory both date and time will be explicitly discussed by using first 
order language. 

1.5 A short survey 

Nondeterministic programming is mainly used in the area of Artificial Intelli-
gence and in the investigation of parallel computation as it has already been men-
tioned. In connection .with the first area MANNA (1970) introduces a nondeterministic 
programming language which is very similar to the language to be introduced here. 
It contains both kinds of choices, but it does not allow the description of time 
conditions. 

Several works are devoted to the nondeterminism in connection with parallel 
computation. In the early work of ASHCROFT and MANNA ( 1 9 7 0 ) parallelism has 
already been explained in terms of nondeterminism. Milner handles nondeterminism 
by using oracles. In the case of two computing processes executed parallelly an 
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oracle is such an infinite sequence of 0 and 1 that be however far contains both 
elements 0 and 1. By this oracle the execution of two parallelly computed processes 
can be described so that 0 and 1 denote which process is at work. The theory using 
oracles is described in MILNER ( 1 9 7 3 ) and ( 1 9 7 8 ) . 

A very elegant mathematical theory of the same handling of nondeterminism 
is developed in PLOTKIN ( 1 9 7 5 ) . Developing the theory of programming both MILNER 
and PLOTKIN use denotational description of semantics of nondeterministic prog-
rams. EGLI ( 1 9 7 5 ) also uses this type of the description of semantics. 

An axiomatic definition of semantics is given in OWICKI and GRIES ( 1 9 7 6 ) . 
The parallel programming containing nondeterminism suggests to introduce 

effective nondeterministic elements into the language. The very simple command 
choice S1, S2 has been replaced by the guarded commands introduced in DIJKSTRA 
(1975) . In HOARE ( 1 9 7 8 ) and FRANCEZ et al. ( 1 9 7 8 ) input-output commands are 
added to the guarded ones. Analogical commands are also introduced in MILNER 
( 1 9 7 8 ) . Not depending on the aboves we mention the work of HAREL and PRATT 
(1978 ) where the execution of programs is supposed to be ambiguous and in the 
descriptive language modalities are introduced in order to handle the ambiguity. 
Thus by this descriptive language such statements can be expressed that "there 
exists such a run...", "every run is such...". In this work the semantics is opera-
tional. An analoguous descriptive language is developed in MIRKOWSKA ( 1 9 7 8 ) 
within the frame of algorithmic logic. Summarizing aboves we would like to em-
phasize that so far no work has been engaged in using tools to describe time con-
ditions explicitly. The problem of completeness is discussed only in HAREL and 
PRATT ( 1 9 7 8 ) and MIRKOWSKA ( 1 9 7 8 ) . The previous shows that the introduced 
descriptive language is complete with respect to arithmetics, in the latter it is proved 
that the nondeterministic algorithmic logic is co-complete. We note that these two 
results are really equivalent. 

1.6 What is new and the contents of the work 

The theory of nondeterministic programming is developed strictly within the 
frame of first order classical logic. The semantics of nondeterministic programs is 
described in an operational way by using a special type of games. A descriptive 
language to describe program properties is introduced by using the classical first 
order language. This descriptive language allows to describe and to speak explicitly 
about both time and data. 

Moreover the question of completeness is discussed and a complete calculus 
in the spirit of Floyd and Hoare is introduced. 

The first part including the first three sections contains the conceptual and 
mathematical base providing exact tools to handle nondeterminism. Thus the next 
section is devoted to the main tool of our theory to a special type of games. Section 3 
contains the main notions of classical first order mathematical logic and arithmetic 
and the representation of data and time in the frame of first order logic. Here first 
of all the description of time properties is discussed in details. In Section 4 the basic 
notions and properties of games are introduced within the frame of first order logic. 
A very simple but powerful enough nondeterministic programming language is 
introduced in Section 5. Its semantics is given by using associated games. With 

3« 
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respect to nondeterministic programs many different questions can arise. Some of 
them are given in Section 6. Here we immediately show that an adequate descriptive 
language is needed to answer the questions for each one. Selecting two questions 
in connection with partial and total correctness we give the appropriate descriptive 
language and show that it is complete. In Section 7 we introduce a calculus which 
is analoguous to that of introduced by Floyd and Hcare for the sequential deter-
ministic programming (see details in GERGELY and URY ( 1 9 7 8 ) ) . In Section 8 we 
illustrate the use of the calculus by some examples. Present paper consists of two 
parts. The first one contains the first three sections. 

1.7 Basic conventions 

We use basic notations and concepts of the naive set theory in the usual fashion. 
The notation {x\(p(x)} denotes the set of all x such that <p(x). Both inclusion and 
proper inclusion are denoted by the same symbol c . The empty set is denoted 
by 0. In the case of natural numbers for ordered finite set we use intervals defined 

by [i, / 1 = {k\i=k^j}. The domain and range of a function / are denoted by d o / 
and rg / respectively. f : A-+B denotes that / is a function for which d o f = A 
and rgf=B. A function f : A-+B is injective if for any a, b£A if f(a)=f(b) then 
a=b. It is called bijective if it is injective and f(A)=B. 

The symbol <J,),ej denotes a function / with domain I such that f ( i ) = Si 
for all i£l. Such a function / is called sequence. 

For a non-empty set A let A+ denote the set of all finite non-empty sequences 
formed from the elements of A. AB denotes the set of all functions from A to B. 
co is the least infinite ordinal. \A\ denotes the cardinality of the set A. Moreover 
for informal logic we use "iff" for "if and only i f" and w.r.t. for "with respect to". 

The end of significant units like proofs, definitions etc. is marked by the 
symbol • . 

2. Games 

2.1 More about nondeterminism 

As we have seen the uncertainty in nondeterministic programming is caused 
by two kinds of choices. The first one: from the alternatives one chooses such 
a possible step of a task solution that leads to the result. The other one is when 
each one of the alternative steps may be chosen and the result thus can be reached. 

Having a nondeterministic program its execution can be so imagined that 
there is someone who represents the interests of the program, say Mr. A. He is 
the one who makes the first kind of choices. In opposition there is someone else, 
say Mr. B, representing the circumstances influencing the program execution. He 
is the one who makes the other kind of choices without being influenced by the 
interests of the program. 

Thus we have a situation analoguous to a game situation where two players 
A and B are playing. Player A has to choose so that whatever B chooses the course 
of the game should favour A. This analogy suggests the games to be a useful and 
easily handable tool for our investigation. The games are very close to our intui-
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tion because they are widespread. At the same time they clearly represent essential 
nondeterminisms e.g. that of due to the uncertainty of players in the moves of one 
another. This uncertainty is quite analoguous to that of the nondeterministic pro-
gramming. Thus we use an appropriate type of games as the main tool in our theory 
of nondeterministic programming. 

Now let us consider what type of game is adequate to represent the non-
determinism of nondeterministic programming. 

According to the aboves we say that the rules define the circumstances within 
the frame of which a game can be played, i.e. they define the game-frame. A game-
frame still does not possess goals for the players though in the type of games used here 
the goals are well-defined for both players. E.g. such a goal can be either to win, 
or not to lose. Having goals players aspire to win or not to lose within a given 
game-frame. Games considered here are antagonistic in the sense that players try 
to achieve in fact two opposite goals. Beside the goals such rules are to be introduced 
that specify the conditions by which one of the players wins, or loses or the play 
is draw. These conditions can be defined by the appropriate set of those situations 
(or states) that provide the winning (or not losing) of one of the players. In this 
case to achieve his goal the player is to reach the winning situations, i.e. he has 
to make moves providing the appropriate states. The improvement of the positions 
of one of the players at the same time is spoiling the positions of the other one. 
Another possibility is to give a rule specifying a payment function which renders 
a payment to each possible state. This payment is to be received by one of the 
players and is payed by the other one and its sum depends on the situation. More-
over the gain of one of the players and the loss of the other one is equal but opposite 
in sign. Now the winning of each player means to receive the greatest payment. 
Thus the goal of a player is to maximize the payment he receives. 

If we add rules describing the winning conditions to the game-frame we get 
the corresponding game. It is obvious that with respect to a given game-frame a lot 
of games can be defined, which only differ in the winning conditions. 

t 
2.2 Basic notions of games -

s 

Let us consider such a type of game that presumes two players and possesses 
well-defined rules for each of them. A game presupposes a sequence of moves, each 
of which is an occassion for a choice between certain alternatives. 

The rules of the game specify for each move which player does it and what 
his alternatives are. These rules are finitely describable, and are to be known by 
each player. At each move, the player precisely knows what his alternatives are 
and his choice will become immediately known to the other player. Moreover each 
player precisely knows what moves, i.e. what choices have been made previously. 
Thus the players have full information about what has happened in the game so 
far and what else can ever happen, during the course of it. For the latter the rules 
are to specify that no choice can be made by chance (e.g. by a dice). This means 
that each move is deterministic in such a sense that the situation formed after having 
the moves is foreseen in a unique way. A course of game contains a complete sequence 
of choices (moves) made by the players' 
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Thus the type of games used here consists of the rules that define the circum-
stances of playing and of the goals and rules defining the winning conditions. 

To illustrate the abovesaids let us consider the following version of the well-
known game NIM. First of all let us see its frame. There is a single pile of chips 
containing e.g. 21 chips and there are two players A and B. The two players take 
turns one after the other picking up chips from the pile. At each move, a player 
must take at least one chip and at most three ones. This is the game-frame. If we 
fix the winning circumstances then we get the game of the game-frame. Let us suppose 
that the player who picks up the last chip loses and thus we have got a game. Note 
that this kind of NIM game is often called Last One Loses. Of course we can define 
an opposite game with respect to the same frame, namely we add the following 
rule: the player picking up the last chip wins. By adding another winning condition 
we get a new game. There are a lot of other possibilities. 

A game-frame graphically can be represented by a tree. The nodes of the tree 
correspond to the situations involved in the game. The arcs emanating from a 
given node are the alternatives associated with the corresponding move. A tree 
representing all the possible moves of both players and all the possible corresponding 
situations is called a game-tree or an and/or-tree. A path of the game tree represents 
a play of the corresponding game-frame. The winning condition can be represented 
by a set of paths per players leading to winning. Thus a tree represents a game-frame. 
Marking out the winning paths of both players we get the tree representation of 
a' game of the given game-frame. 

Note that the representability of a game by a tree means that the game is of 
full information, i.e. the players have full information about the course of the 
game because each node of the tree includes the history of its acces since each node, 
except the root, has exactly one predecessive node. 

B -

B -

A -

B 

A 

A 

Fig. 1 
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To illustrate the abovesaids let us see the game-tree (Fig. 1) of the game Last 
One Loses for the case when the players begin with five chips in the pile. The nodes 
are labelled by the number of the remained chips in the pile. At alternate levels 
of depth in the tree, alternate players choose which move to make. To be definite 
we suppose that player A moves first. Each depth level is labelled by the name of 
the player who has the next choice at that level. 

Since the so far mentioned type of game is a basic means of the theory of pro-
gramming to be developed and since we wish to execute the investigation within 
a mathematical frame it is necessary to provide the mathematical definition of 
the basic notions of the games. To introduce games as mathematical objects we 
use their tree representation. 

Let N be the set of natural numbers and let N* denote the set of all finite se-
quences consisting of the elements of N. A denotes the empty sequence. 

Let us take the following functions: 

~ pair: N*XN — N* 

left: N*\{A} - N* 

right: N*\{A}^N 
fO if v = A 

length (v) - yength Qgj-t ̂  + j otherwise 
for any v£N*. 

Intuitively speaking by the use of the function pair we can construct a new 
sequence if we add a natural number to a given sequence from the right side. The, 
functions left and right provide the decomposition of sequences. 

Definition 2.1. A set VcN* is said to be a tree iff the following properties 
hold: 

(0 Aev, 

(ii) if v£V and v^A then left(v)£V. • 

Example 2.2. Let us consider the following tree in graphical representation 
shown in Fig. 2. 

According to our definition this can be represented as the following tree: 
{0, 01, 014, 0148, 015, 02, 026, 0269, 03, 037}, where 0 stends for A. 

The graphical representation of this tree is shown in Fig. 3. • 

Let v, u>6 V. If left (w) = v then w is a successor of v and v is a predecessor of 
w in the tree V. 

The set of all successors of a node v in V is 

Sy(v)= {w£V\ left (w) = v}. 

Let Wa V be such that it satisfies the conditions (i) and (ii) of 2.1. Then W is 
a subtree of V. 
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Definition 2.3. A subtree Wcz V is said to be a path of V iff the function 
left: W\{/1}— W is an injection. 

Definition 2.4. Let V be a tree and C c V. The pair (V, C) is said to be a 
game-frame. • 

The above defined game-frame provides frame for games of two players with 
full information. Let Mr. A and Mr. B be the players. The set C indicates those 
nodes of the tree V in which player A makes moves. Thus a (V, C) game-frame 
provides the following course. The starting point v0=A, for an arbitrary node 

Fig. 2 

0 1 4 8 

vn if v„£C then it is A's turn and he can choose one of the alternatives and the course 
is driven into the corresponding node of Sr(vn). If vn^C then it is B's turn and 
the move is analogous to the above situation. 

A course in the game-frame (V, C) is a path. Along a course there are the follow-
ing possibilities: 

(i) the course is finite, i.e. neither A nor B can move further because the 
corresponding set of successive nodes is empty; 

(ii) the course is infinite, i.e. A and B can move further in every node. 
Thus a game course of the game-frame ( V, C) is a finite or infinite path in the tree V. 

To have a game in the frame of a given (V, C) a winning condition is needed. 
According to the aboves the winning condition can be given as a set of those paths 
in V along which the player, say A, wins. Thus let rA and rB be sets such that 
rA n r B = 0 . We say that rA(rB) is the set of winning paths in V of the player A(B) 
if it contains those paths along which player A(B) wins. If the course of the game 
provides such a path that belongs neither to r A nor to r B we have a play which is 
draw. We note that there is a lot of different possibilities to give the sets r A and 
rB. For example it may be the case when player A aspires not to win as well as 
not to lose. This means that A wishes to prevent the winning of player B. In such 
cases it is quite enough to give the set r B . The set r A is unnecessary because any 
path that does not belong to f B is satisfactory to player A. 

Definition 2.5. Let (V, C) be a game-frame. Moreover, let rA and rB be the 
set of all winning paths of the players A and B respectively. The quadruple 91 = 
=(V, C, f A , rB) is said to be a game of the game-frame (V, C). • 
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A player can move in such a way that he decides in advance which alternative 
he chooses in each possible situation. This means that the player uses a special 
set of rules that tells him what choices he should make for all situations that might 
arise during the course of a game. This set of rules is called a strategy which is 
definable by mathematical tools. 

Definition 2.6. Let (V, C) be a game-frame. A function str defined on C is 
a strategy of player A for the game-frame ( V , C) iff str (v)£Sv(v) for every v£C. 

• 
The other player's strategy can be similarly defined, but we do not need it. 
The function str gives the successor for each vZC and it seems that this depends 

only on v. However, remember that each node v includes its prehistory. 
The strategy of player A defines what move he has to make when he achieves 

a situation v where his turn is the next. From the above definition follows that 
a strategy provides the moves in each possible statement many of which do not 
appear during a game because the player never reaches them if he plays according 
to the given strategy. 

So it is quite natural to define the strategy in a less redundant way, namely 
considering only the subtree that can be potentially arisen by using the strategy. 

Definition 2.7. Let str be a strategy of player A for the game-frame (V, C). 
A subtree Rstrc V is generated by the strategy str iff it has the following properties: 

(i) if v£Cf)R then SRstr(v) = {str(v)} i.e. v has exactly one successor in Rstr 
that is picked up by str, 

(ii) if v£R\C then SRmtr(v) = Sy(v). 
This subtree Rstr is unique. • 

Thus if player A makes moves in accordance with his strategy str, then during 
a course of the game-frame (V , C) any of the paths of Rstr can be realized. However 
since the moves of A are determined by str, player B can choose any of his alterna-
tives. Thus B can realize any of the paths of RstT. According to the aboves it is quite 
natural to define a strategy of the player A for a game-frame (V, C) by means of 
an appropriate subtree of V. 

Definition 2.8. Let (V, C) be a game-frame. A subtree RczV is said to be 
a run of the game-frame iff the following properties hold: 

(i) if v£CP\R then there is a unique successor w of v in R. (I.e. there is a unique 
w£R such that left (w) = v.) 

(ii) if v£R\C then SR(v) = Sv(v). • 

It is obvious that for any run R there exists a strategy str of player A such that 

Note that for a given run R the appropriate function str is not unique because 
while defining it we consider only its subdomaine RC\C and its values on C\R 
can be arbitrary. So far the strategy has been introduced fdr a game-frame (V, C). 
Considering winning conditions, i.e. a game (V, C, TA, TB), we can speak about 
winning strategy or not losing strategy. A strategy of player A is winning (not losing) 
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iff moving accordingly the course of game realizes only paths belonging to r A 
(not belonging to r B ) . I.e. if n c R then (71$ r B ) . 

For the illustration of the so far introduced notions let us see the following 

Example 2.9. Let us consider the game Last One Loses with game-tree given 
in Fig. 1. In this case there is one pile of five chips and players have the alternatives 
to pick up from one to three chips at a move. The frame of this game is the pair 
(V, C), where 

V = {5, 54, 543, 5432, 54321, 543210, 54320, 5431, 54310, 5430, 542, 5421, 54210, 

5420, 541, 5410, 53, 532, 5321, 53210, 5320, 531, 5310, 530, 52, 521, 5210, 520}, 

C = {5, 543, 542, 541, 532; 531, 530, 521, 520, 54321, 54320, 54310, 54210, 53210}. 

The winning condition of the game Last one Loses is as follows: 

r A = {(5, 54, 543, 5432, 54321, 543210), 

(5, 54, 543, 5430), 

(5, 54, 542, 5420), 

(5, 54, 541, 5410), 

(5, 53, 532, 5320), 

(5,53,531,5310), 

(5, 52, 521,5210)}. 

r B consists of all paths not belonging to r A . 

Let us consider the following run R: 

R = {5, 54, 543, 5430, 542, 5420, 541, 5410}. 

A corresponding winning strategy sir of player A is the following: 

V 5 543 542 541 54321 532 531 521 

sir (V) 54 5430 5420 5410 543210 5320 5310 5210 

3. Logic and arithmetic 

3.1 Logic 

We intend to develop the theory of nondeterministic programming within 
the frame of classical first order mathematical logic. To be able to do so we recall 
the basic notions and definitions that we need to reach our aim. 

Definition 3.1. A similarity type 9 is a pair of functions (SR , 9F) such that 
rg 9f<Z(d, rg 9KC<»\{0}, do 9 f f l d o 9 * = 0 and |do • |do The elements 
of do BR and do &F are called relation and function symbols respectively. DR and 
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9f give the arity of symbols. The 0-ary function symbols are called constant 
ones. • 

For the following we fix a similarity type 9 for which = £ do 9R and 
9r(=)=2. 

Definition 3.2. A S-type model 91 is a function on do 9R U do 9F U {0} such that 
(i) 9l(0)=/i is a nonempty set, which is called the universe of the model, 

(ii) 91(е)сэк<еМ for any do 9R, 
(iii) 3 l ( = ) is the diagonal relation on 2A, 
(iv) Щ/): W>A^A for any f£do9F. 
In a special case °А = Щ i.e. if 9F(f)=0 then 9 l ( / ) can be identified with 

an element of A. • 

In general instead of 91 (s) we write s<a where i£do do 9F. A 9-type model 
will always be denoted by a German capital and its universe by the corresponding 
Roman capital. M 9 denotes the class of all 9-type models. 

Now we turn to the definition of the syntax. 

Definition 3.3. Let V be any denumerable set. Let be the minimal set sat-
isfying the following properties: 

(i) K c 7 T , 
(ii) for any n and f£9F

1(n) if r l s . . . , т „ e l j then / (т х , 
The elements of T% are called terms. 

Take Al = {g(r1, . . . , т„) |д£9~ 1 (п) , n£a>, The elements of A% 
are called atomic formulas. 

The set F% of 3-type formulas with variable symbols belonging to V is the 
minimal set satisfying the following properties: 
' (0 A Z c F Z , 

(ii) if <p,\l/£Fl then ( p h ^ d F l , • 
(iii) if q>£FZ then IqXiFg, 
(iv) if <p£Fg and v£V then 3vcpZFg. 
Let Ql be the minimal set satisfying the above conditions (i)—(iii). The elements 

of are called quantifier free formulas. • 

We use the following abbreviations 
a) (рМф for ~\(~\(pA~]\j/), 
b) for A(p), 
c) tp~~ф for 1(1фЛф)Л1(1<рЛф), 
d) \/v(p for ~~|3v~\(p, 

where v£ V and (p,\j/£Fl. 
For any s£Tl{JF$ let Var j denote the set of free variable symbols occur-

ing in s. 
For any v£V, x^Tl and cp(z let <p[ r/v] be the formula obtained from <p by 

replacing every free occurrence of v in (p by т so that there would not be a collision 
between the variable symbols of т and the variable symbols of cp occuring with 
quantifiers. 

Now we define the semantics of the first order language by defining a relation 
N s C M a X i t f -
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Definition 3.4. Let 91 £M 9 . A valuation of V in 91 is a function q: V— A, i.e. 
a valuation is an element of v A . Now we extend the valuation q to a function 
q: taking: 

(i) q(v) = q(v) for every V\ 
(ii) q{f{xx, ...,xn))=f<a(q(x1), ..., q(x„)) for every n£co, f t ^ f n ) and T1; . . . , 

Instead of q(r) we write x[q]. It is clear that T[q] depends only on the values of 
Var r. So sometimes we use the following notations: 

(i) a variable symbol is often written underlined by a waved line to denote 
its value by a given valuation. E.g. if q is a given valuation then we write x instead 
of q(x); 

(ii) let a£A denote an arbitrary finite sequence of elements from A. For any 
tc Tl supposing that a contains at least as many elements as Var t we write x [a] 
instead of x[q]. 

The validity relation is defined by the following well known 

"Definition 3.5. Let 9i£M 3 be arbitrary. Moreover, let 91 )=&<zF%X.yA be the 
following relation: 

(0 •••, O f ? ] iff (^[<7], ..., xn[q])iQ<a for any atomic formula;. 
(ii) 9tN9(<pVi/0[?] iff 91 ̂ <p[q] and 9it 

(iii) 9 IN 9 (1 <P№ iff <»[?]; 
(iv) 9It=sBv<p[q] iff there is a valuation q*: V—A such that i ' V x M ^ t f t K N » 

and 91 <?[?*]• 

91 \=9<p[q] means that the formula <p is valid in the model 91 by the valuation q. 
In the end 91|=9<p iff for every valuation q£yA, 9 1 1 = 9 • 
So the 3-type first order language |=9) has been defined. If 

it does not cause ambiguity we write f= instead of |=9. 
Now let AxaFl be an arbitrary consistent set of formulas. Restricting Ma 

to Md(Ax) = M3|9( |= Ax} from the language Z,9 we can define a new first 
order language L*x = (Fl, Md(Ax), t= ), which consists of the class of the models 
of Ax only. Further on in this study while an Ax is considered it is always supposed 
to be consistent without claiming this explicitly. 

The notion of definiability plays a main role among the tools of our investiga-
tion. We recall that this notion is used in mathematical logic in two different senses. 
In the first one it is considered when and how new symbols with given properties 
can be added to a fixed language. This is the topic of the Definition Theory. For us, 
however, the other sense which is interested in knowing whether a function or 
a relation given in an arbitrary model can be expressed in a fixed language is more 
useful. We introduced the main definitions corresponding to this second approach. 

Let us fix a language L 3 and let 91 £M 9 be arbitrary. 

Definition 3.6. A partial function g: "A—A is said to be parametrically defin-
able in 91 iff there is a formula <p£ such that 

(i) Var (p — {xt, ...,x„,y, a1; . . . ,am}; 
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(ii) There are a1 , . . . , am£A such that for any 

x£A and y£A, 21 N <p[x, y, S] iff g(x) — y. 

Similarly, a relation Q(Z"A is said to be parametrically definable in 21 iff there 
is a formula (piFl. such that . 

(i) Var (¡p = {x1, . a x , . . . ,am}; 
(ii) There are a1, . . . , am£A such that for any x£A, 21N q>[x, a] iff x£q. , 
A partial function g or a relation Q is definable iff the appropriate <p does not 

contain a/s. • 

We say that the above <p parametrically defines the partial function g or the 
relation Q in 91. 

Now we also fix an Ax<^F%. Let us suppose that for any 9 l £ M d ( A x ) a func-
tion gat: "A-*A (a relation ¡ i a c M ) is given. Take G = {g<i^\£Md{Ax)} {R = 

Definition 3.7. G (or R) is parametrically definable in Ax iff there is a formula 
(p which parametrically defines gn !(or 0ai) in 91 for every 91 £Md(Ax). 

If the set {gai191£ Mdx)} ( { J 21 £Md(Ax)}) is parametrically definable and 
the definition is given by the formula (p then the function symbol g (the relation 
symbol Q) is said to be universally definable in Md(Ax). 

Example 3.8. Let q>£be such that Var cp = {x1, ..., xk, y}, and suppose that 

Ax t= V*!. . . xk My Vz((pA(p[z/y] — y = z) (1) 

If so then in every model 91 of Ax cp defines a partial function in the following 
way: 

(i) x € d o / iff Ax |= 3ycp[x], 

(ii) / (x ) = y iff Ax N <p[x, y]. 
N By (1) this definition is good and thus we use the following abbreviation: 

d 
P a r c ( ? = Vx My Mz(cp/\<p[z/y] — y = z). • 

We say that the above q> parametrically defines G or R. If q> contains no at's 
we omit the adjective "parametrically". 

Remark 3.9. If the above G is definiable in Ax and every is total then a new 
function symbol g "can be added" to BF of arity n with the following new axiom 

AxB: MxM y(y = g(x)** cp(x, y)) 

where cp defines G. So we get a new language Li*', where Ax'=AxU {Axg}. The 
phrase "can be added" means that for any cp^Fl, Ax'l=<p iff Ax\=<p. 

The details see in Section 2 .9 of MENDELSON (1964) . 
A similar fact holds for the above R. 
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3.2. Arithmetic 

As known arithmetic plays an important role in computer science. It provides 
an unambiguous characterization of any formal language syntax. This permits 
the widespread use of computers since their functioning is based on natural number 
representation. While the numeric use of computers arithmetic plays an important 
role since the data form a structure satisfying the basic features of arithmetic. Arith-
metic is also important to formalize our intuitive concept about discrete time con-
nected with computer functioning. Thus in our investigation of programming 
theory arithmetic plays an important role. Namely, it provides formal tools to 
characterize sequences which prove to be useful in the study of program properties. 

Let t] be the type of arithmetic, i.e. do rjR = {=}, dorjF={0, 1, + , •} and 
i iF(0)=»jF(l)=0, > ? F ( + ) = f / f ( . ) = 2. 

For the axiomatization of the arithmetic we choose the well-known Peano 
axioms: 

= ~1 (y + 1 = 0) 
d 

A2=V+ 1 = w + l — v — w 
d A3 =v + 0 = v 

A4=V + (W+1) = (D + W)+1 

AB=v-0 = 0 
d 

Ae=v(w+1) — (v-w) + v 

A 7„ = <p [0/Y] A V v (<p q> [Y +1 /v]) ^ V vcp 

Take I={Altp\<p£F% and v£ Var (pj. The set of Peano-axioms is 

PA = {A/10 ^ i ^ 6 } U / . 

For detailed analysis of PA see e.g. MENDELSON ( 1 9 6 4 ) . 

As usually we use the following abbrevations 

x^y instead of 3 z ( z + x=y), 

x<y instead of 'x^yA lx=y. 
We recall that for every infinite cardinal there are at least continuum number 

of non-isomorphic models of that cardinality of PA. For every <$l£Md(PA) its 
smallest submodel Ac satisfies PA and these submodels are isomorphic to each 
other and they are called standard models of PA. We would like to consider only 
standard models but unfortunately that is impossible at a first order language because 
there is no first order formula describing exactly the standard part of the models 
of PA. Thus if we are interested whether a first order formula is valid then we must 
consider not only standard models but nonstandard ones as well. 

As usually 91 denotes the fixed standard model of PA and N stands for its 
universe. 

For handling of non-standard models see e.g. ROBINSON (1966 ) . 
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3.3 The role of time in the theory of programming 

As mentioned already in Introduction often not only the output result of a 
computing process is significant, but its temporal course too. Thus we would like 
to develop such a theory of nondeterministic programming that handles both data 
and time explicitly by the help of first order tools. 

The representation of data within the frame of first order logic is straightfor-
ward; it can be done by the universe of the classical models. However relations 
and functions of the models correspond to data properties and to their possible 
changes respectively. Thus from the point of view of data computers are represented 
by the models of first order languages. Thus the previously mentioned representa-
tion neglects the explicit time representation. How to represent time is a question 
that should be looked at in details. But the functioning of computers is controlled 
by an "inner clock" so the change in data happens in time. 

We assume that a change in data corresponds to a command which is executed 
for a timecycle of the machine. Let us denote the set of these disjoint time intervals 
by T. From theoretical point of view the time intervals of T can be considered as 
time moments supposing that the change takes place infinitely fast. We also assume 
that a machine works as long as it is needed i.e. as long as it is required by the 
program. This means that a machine itself can work infinitely long never stopping 
due to a break-down. However it stops only if it is required by the program and 
by this the program execution terminates. Let us consider the simplest case when 
there are only assignment statements. 

The execution of a program on a machine is but the execution of assignment 
statements step by step i.e. iteratively. The transition of states of the machine rep-
resenting the change in data is defined by the transition function. This function 
can be defined by induction on T as follows. In case we already know the state 
S, of the machine at moment t then the state at the next moment i + 1 can be defined 
by the state S, using the concrete command that is to be executed in the moment t. 
To describe this by mathematical tools the closeness of the transition function 
under iteration (recursion) must be ensured. 

Thus to represent time an arbitrary structure can be used which provides 
the starting moment, the generation of the next moment and the induction by 
succession. For example if we take a{(0, 0), ( ', l)}-type structure X = (T, 0 , ' ) on 
which the induction works well then this can be used to represent time. Here T 
represents the set of time moments. Note that further on it will be also supposed 
that on the set of time moments T the usual addition and multiplication are also 
considered and the time moments are in order. 

Thus to represent discrete time the use of the structure 91 = (N, 0, 1, + , •) 
of natural numbers is obvious. However our main standpoint is to use classical 
first order language to describe models. Thus we cannot restrict ourselves to the 
standard model but any model X of an appropriate first order axiomatization 
of is allowed. Consequently beside N, which is very close to our intuition, very 
strange sets of time moments are allowed as well. Especially such sets T in which 
"infinitely large" (or non-standard) time moments also occur. 

As usual the theories of programming developed so far use either implicitely 
or explicitely the set of natural numbers N to represent time. 
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So our assumption that the structure representing time has to satisfy only one 
condition, namely the axiom scheme of induction, seems not to be very close to 
our intuition. Thus let us go into a bit more details. 

Our first notion is purely theoretical. If the iteration is the essence of programm-
ing then to represent time any such model can be chosen that provides to follow 
the changes done by iteration. So on this structure the induction must be allowed. 
Hence developing a theory of programming we have no reason to introduce further 
restriction for time (e.g. to suppose that time moments belong to N). 

If we have a practical look at it then the situation seems to be totally different. 
Namely, in practice there exists no procedure containing non-standard number 
of steps. So the "infinitely large" time moment seems to be a fiction. However, if 
we consider the history of mathematics this opinion can be dissipated. That is, 
infinitesimal values play an important role in the history of mathematical analysis 
but their reason for the existence was only recently observed by A . ROBINSON 
and his followers. 

Non-standard analysis is applied in computer science as well. It provides some 
very effective methods to solve differential and integral equations. 

In order to develop a theory of programming being able to analyse the real 
situations of programming practice there is no reason to restrict it to the considered 
notions of "standard and real" machines and time. It is not our aim, of course, to 
investigate machines with non-standard time. Nevertheless if we have a theory of 
programming which can handle non-standard time as well then the execution of 
a program being correct within the frame of this theory will be correct in any machine 
with any type of time, especially in the machines with standard time. 

Indeed well written and well used programs, in our opinion, can be executed 
in machines with arbitrary type of time, though programmers having developed 
the programs know absolutely nothing about this. This is so because programmers 
write down programs thinking in first order language though always imagining 
the standard time (i.e. the set N) to it. These impressions, fortunately are not em-
bedded in the programs! 

It may seem that the first order language is not sufficient to think about pro-
grams for it might provide far too many restrictions. However we have proved in 
GERGELY and U R Y ( 1 9 7 8 ) that within the frame of classical first order logic for the 
sequential and deterministic programming a theory of programming of unified 
attitude can be developed and this frame fully satisfies the solution of the tasks 
of a programming theory. Present work shows that this frame is completely satis-
factory for developing a theory of non-deterministic programming as well. 

Now we give the mathematical description of the programming situation. Let 
9 be an arbitrary similarity type containing the type q of arithmetic (r/c!)). In-
tuitively 9 provides the name of those relations and functions which have to be 
understood by the computer. The properties of relations and functions are de-
scribed by the set of formulas AxczF%. The set of axioms Ax expresses the ex-
pectations with respect to data and "hardware". Intuitively we always suppose 
that PAczAx i.e. the computer "understands" the arithmetic in the form of Peano 
axinmatization. 

According to the above saids it is clear that at least two sets are needed to charac-
terize a computer: — the set A of possible data and the set T of possible time 
moments. We intend to speak of both time and data in a first order language. Since 
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time and data are of different entities it is advisable to distinguish their languages 
while describing a computer. This could be done by the use of a two sorted first 
order language, where the first sort corresponds to time and the second one to 
data. If different data types were allowed then we need a many sorted first order 
language. The mixed sorted functions and relations describe the connection be-
tween time and data. 

For the sake of simplicity let us stick to the frame of the classical (one sorted) 
first order language and to describe time we use the same language as for data 
representation with the only difference that a new unary relation symbol £ is intro-
duced. By this we supply our models with an inner time supposing that time can 
be modelled by data. Of course not each data type can be satisfactory for this aim, 
e.g. the Boolean data type is not. 

Already in this approach we seem to meet the advantages provided by the ex-
plicit handling of time. Therefore, it was not necessary to introduce and use the 
many-sorted first order language. 

To describe time we introduce a new unary relation symbol £ (£ do S and let 
us add £ to the type S. So, we have #* = $U{(i, 1)}. Expectations with respect 
to time beyond data would be given by a set of axioms Ax* (Ax cz Ax* с t%). Of 
course the set Ax* is larger than the set of axioms Ax expressing the expectations with 
respect to data. To formalize the minimal properties expected from time we intro-
duce the following notations £*(x)=Bf (x^ /A( ( i ) ) (where the relation symbol s 
is the ordering used in PA), 

B0 = (*(0), 

The fulfilment of the formulas B0 and Bx provides that the set of time moments 
is not empty. The induction under (* can be formalized as follows: 

B2ip = [(p(0)AVx(C(x)Axp(x) - ср{х+Щ - Ух(Г(х) - <?(*))• 

Bx and B'2v s provide the closing under addition and multiplication. 
According to the abovesaids with respect to time we always suppose that £* 

satisfies PA*, where 
PA* = {B0, B1}{J{BbfWdFl,, x€Var q>}. 

Definition 3.10. A set of formulas Ax*cF[* is said to be a 3-type system if 
PA* a Ax*. siC is a model with inner time Тш of the system Ax* if ll^Ax* and 

Examples 3.11. (i) Let Ax=PA and Ax* = PAU{\/xC(x)}UPA*. In this 
case any model 4i^Md(PA) will be the model of Ax* if С is interpreted by the 
universe A itself. The model 2Г provided by such a way will be evidently a model 
of Ax* with inner time A. 

(ii) Let т1 = т2 be a Diophantine equation which has no solution in N, but 
PA&LT^YZ. L e t AX* = PAUPA*U{\/XC*(X)-~1-C1(X) = T:2(X)}. U s i n g t h e m e t h -
od of (i), from a model 4i£Md(PA) a model Ul' can be arisen, which would be 
a model inner time of Ax* if the equation т г =т 2 has no solution in A. 

4 Acta Cybernetica 
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(iii) Let Ax*=PAUPA*, and let 216Md(PA) be arbitrary. 
It is obvious that if ( would be interpreted by the standard part of the model 

21 (i.e. by N) then the model 21' arisen by using the method of (i) would be a model 
of Ax* with inner time N. • 

Remarks 3.12. (i) In Definition 3.10 it would be satisfactory to claim that 
Ax* h- PA*. Thus in Definition 3.11 (i) Ax* = PAU{Vx((x)} would be enough. 

(ii) Intuitively speaking a 9-type system Ax* provides the description of the 
hardware of a computer. It fixes those features that characterize the static (Ax) 
and the dynamics of the computer. Ax* may have a lot of models which 
are usually different but it does not completely define a machine. However only 
those features of machines are interesting in our investigation that are true in 
every model of Ax*. • 

3.4 Recursive definability 

Let Ax* be a 9-type system. A fairly often used method of implicit definition 
is the recursive one. In order to understand this situation in the case when Ax* 
refers to time we need the following. Let g be a new k-ary relation symbol not 
occuring in 9* (g$do9*). Let <p(g) denote the inclusion <p€.Fa*u{((!ifc)} i.e. cp(g) 
is a formula of the syntax the type of which is the extention of 9* with the /c-ary 
relation symbol g. Moreover we need a tool by which we can reduce a formula of 
Fa*u{(.<>,k)} t o a formula of Fjf*. For this the following type of substitution can 
be used. 

Definition 3.13. Let <p€ ¿T*u{re j t )} and let F^ with Var / = {.x ,̂ . . . , xk}. Let 
cp[yjg] be defined by the following way: 

(i) if g does not occur in q> then <P[XIQ] = <P, 
(ii) if <p = g (rlt...,rk) then <?[*/<?] = «L 

(iii) if <p = <p1()<p2 where <) is either A or V then <P[XIQ\ = (PI[XIQ\QVAXIQI 
(iv) if <p=l\l/ then <p\xle]= labile], 
(v) if (p = Qvij/ then <p[x/g] = Qv\l/[x/g] where Q is either V or 3. • 

We are interested whether the equation g-*-*<p(g) has a solution in Ax* i.e. 
whether a formula x£Fa* exists such that 

Ax* |= x** VlxlQl 

In this case we say that x is a solution of the recursive equation g-*(p(g) in Ax*. 
Moreover for some types of formulas in F^tu{(e,k)} there exists a minimal 

solution of the above recursive equation. 

Definition 3.14. A formula <p£ia*u((0,fc)} w ' t h Var <p={xlt ..., is a pedigree 
formula iff there is a formula i//6/"j/»(J{(Si4)} such that 

(i) AX*\=9* CP~\L/\ 
(ii) I¡j has the form I/' = I/'0VI//1, where g does not occur in ip0 and the symbols 

~1 and V do not act on g in i 
(iii) all occurences of g in ip contain only variable symbols; 
(iv) bounded variable symbols of ip are distinct from each other. • 
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The forthcoming theorem shows the recursive definition to be allowed, pro-
vided that we make only "positive" statements. This latter is contained in condi-
tion (ii) of the above definition of pedigree formula. It is needed in recursive defini-
tion to consider only already existing objects and not to speak about such that 
have not occured so far but may do so sometimes in the future. So for example 
we cannot say which objects should not belong to a recursively defined set. So the 
condition (ii) provides the constructive feature of the recursive definability. The 
conditions (iii) and (iv) are merely technical. If a formula <Рб^Г*и((еД)} satisfies 
conditions (i) and (ii) then it is already a pedigree formula, of course with another 
ф as if q> satisfied conditions (iii) and (iv) as well. 

Theorem 3.15. For any pedigree formula <р€ з̂'*и{(еД)> there exists a formula 
X^Fl* such that 

(i) Var /1()=Var <p; 
(ii) Ax*\=x<i>*—<pixjg] i-e- X<p is a solution of the recursive equation owp(o) ; 

(iii) if x is any other solution of the recursive equation, i.e. it is a formula of 
such that Ax* )= х~-*(р[х/ в] then Ax*t=x<p~~X> i-e- X? is the minimal solution. 

Sketch of the proof It is similar to that of Theorem 3 . 4 in GERGELY and U R Y 
( 1 9 7 8 ) . It uses the fact, that there is a formula ф — ф0Чф1 such that the properties 
(i)—(iv) of Definition 3.14 hold. By using the property (i) and the following fact: 
if Ax*|= for any срх, (p.2d /Т»и{(е>Д)} then for any with exactly к vari-
able symbols: 

Ax* \=^<PMQ]**<PMe] 

to prove the theorem it is enough to construct such a formula x<p that Ax* И x 
.xje]- The idea of the construction is that xv is either ф0 or it builds up from 

ф0 applying фг (-many times. The building up of x<p can be done similarly to that 
o f GERGELY a n d U R Y ( 1 9 7 8 ) . • 

Abstract (to Part 1) 

Nondeterministic programming play an increasing role in the theory of programming. This 
role is discussed in Section 1 together with the role of classical first order logic in developing a 
theory of programming. Two kinds of nondeterminism are considered: any and every. The un-
certainty in programs that use both any and every is quite analogous to that of game situations. 
So in our theory games are the centre of interest. The basic constructions of games are introduced 
in Section 2. The theory will be built within the frame of classical first order logic. The basic notions 
and constructions needed to develop this theory are given in Section 3. 
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Nondeterministic programming within the frame 
of first order classical logic, Part 2 

B y T . GERGELY a n d L . U R Y 

In this part we develop a mathematical theory of nondeterministic sequential 
programming by using the mathematical tools introduced in the first part (see 
GERGELY and U R Y (1980)). Our investigation is concentrated around the problem of 
completeness. While this we introduce an appropriate complete descriptive language 
and a complete calculus in the spirit of Floyd and Hoare. The usage of the calculus 
is illustrated by three examples. 

4. Definable games 

We aim at developing a theory of non-deterministic programming within the 
frame of first order language and therefore we have to formalize the games pro-
viding consideration of nondeterminism. Unfortunately the basic notions belonging 
to games introduced in Section 2 are not that of first order language. To keep our-
selves within the frame of first order logic we have to consider such version of these 
notions that are parametrically definable. Thus we permit only parametrically 
definable games, strategies etc. However it might happen that the property " to be 
a definable game" is not definable while each game is definable. By using the 
arithmetization of formal languages we show below that this is not the case. 

Let Ax* be a 9-type system and let 91 £Md(Ax*) be arbitrary. There are several 
definable bijections between AxA and A. Let us fix one of them and denote it by 
pair. Let left and right be the two components of the inverse of the function pair, 
i.e. for any x, yd A 

left (pair (x, y)) = x and right (pair (x, y))=y. 

Remember that in any model 91 £Md(Ax*) induction can be done by inner 
time Tai i.e. by the set {t£A |2INT[>]} (see Definition 3.10). Thus the usual notion 
of sequence (see Section 1.7) has to be modified in the following way. 

Definition 4.1. Let 91 £Md(Ax*) and let D be an initial segment of inner time 
r a . A function s: D-*A is a finite (in 21) sequence. If Z)=[0, n — \] then s is called 
an n-long sequence. A function s: T^-^A is said to be a sequence or a long sequence. 

• 

\ 
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Let iTc=/4\{0} be a definable set and let *K denote the set of all parametrically 
definable finite (in 91) sequences containing only elements of K. Let A denote the 
empty sequence. 

Lemma 4.2. "To be an element of *K" is definable in 91. 

Proof. Let cp be the formula which defines K in 91, i.e. Var cp = {x} and 
91 t=(p[a]oa£K. 

Let us consider the following formula: 

(p*(s) = 3t(left(s) S MC(OA Vi(i — left (5) - q>[r (right (s), left (s), i)/x])), 

where F is the well-know Gôdel-function (see e.g. in MENDELSON ( 1 9 6 4 ) ) . Since the 
functions r, left and right are definable in Ax* the formula q>* is equivalent to 
a formula of For the sake of convenience we suppose that a formula (p* (e.g. 
i=left (a)) at the same time denotes the corresponding formula of F$t, i.e. F£t. 

Now let s£A be an element such that 

Vlt=(p*[s]. 

Let us take the following sequence : 

/ s ( 0 = r{right (s), left (s), i) for any i == left (s). 
Now we prove that s<-*f is a surjective map, i.e. the elements of *K are coded 

by s but these codes are not unique. 
Let / : [0,«]—AT be a parametrically definable function in 91. By using the 

generalized Sequence Number Theorem (see GERGELY and Û R Y ( 1 9 7 8 ) , Theorem 2 . 8 ) 
there is a b£A such that for any /6[0, «], f ( i ) = r(b, n, i). 

Let s=pair (c, b). If / is finite in 91 then by using the fact that Ax* is a system 
and the definition of T we have 9l(=Ç*|>] i.e. there is a t£A such that s^t and 
9l(=C[i]. Thus 9I|=(p*[s] and s codes the given function / . • 

Lemma 4.3. The following functions are parametrically definable in 91 (and 
also in Ax*) 

pair: *KXK^*K, 

left: *K-~*K, 

right: *K-*A. • 
Note that here the functions pair, left and right are defined on the sequences. 

However we use the same notation as on page 355 because the présent case can be 
obtained by iteratiye usage of the functions introduced there. Thus this notion 
does not lead to ambiguity. For the sake of convenience we suppose that the 
empty sequence A is cpded by 0. 

Further on we do not distinguish the elements of *K from the corresponding 
elements of A coding them. 

Definition 4.4. . 
r0 if a = A 

length (a) = \length (jefi +1 otherwjse 
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Definition 4.5. A set Fc*G4\{0}) is called a tree iff 
(0 A€ V, 

(ii) V=>left (v)€ V. 
For any V and V take Sv(v) = V\ left(w) = v). 

A tree V is called a path iff left: is an injection, i.e. any V has 
at most one successor. 

A tree V is definable in 2t iff it is parametrically definable in 21 as a unary rela-
tion on A. • 

Note that because 0 codes A it is sufficient to use v4\{0} instead of A in the 
above definition. Thus 0 can be maintained to denote the end of a sequence. 

Definition 4.6. A trace in 21 is a function of the form / : V->-"A (for some 
natural number n) where V is a tree in 21. If / is parametrically definable then it 
said to be a definable trace in 21. • 

Definition 4.7. Let V be a trace in 21. A game-frame in 21 is a pair GF=(V, C) 
where CaV is an arbitrary set. C is called the nodes of choice of V. A run in 
a game-frame GF=(V, C) is a subtree RczV such that 

(i) if c^COR then c has a unique successor in R, 
(ii) if r£R\C then Sv(r)=SR(r). 
A strategy in a game-frame G is a function str: C—rg str in such a way that 

for any c£C, str (c)£Sv(c). 
A game-frame is definable in 21 iff V and C are parametrically definable. A 

run R of GF is definable in 21 if both GF and R are parametrically definable in 21. 
A strategy str in GF is definable in 21 iff GF itself and the function str are para-

metrically definable. • 

Definition 4.8. Let GF=(V, C) be an arbitrary game-frame and let str be 
a strategy in GF. A run R is said to be generated by the strategy str if {iir(c)}= 
= SR(c) for any c€CDR. • 

We note that if str is definable then there exists a minimal definable run generated 
by str and this is denoted by Rstr. 

Definition 4.9. A tree F i n 21 is finitary iff for any V there is a d£A such that 
1) 2 t N C № 
2) if pair (v, e)£Sv(v) then eSrf , i.e. any node of V has only finitely many 

successors (in 21). • ; 

Definition 4.10. A game in 21 is a quadruple G=(V, C, rA, rB) where (V, C) 
is a game-frame and tA,TB are disjoint sets of paths in V. 

A game (V, C, TA, rB) is definable in 21 iff 
(i) (V, C) is a definable game-frame, 

(ii) r A and r B are definable sets, 
(Hi) each path of FA and FB is definable. • 

Definition 4.11. A strategy str'in the game-frame GF=(V,C) is a winning 
(non-losing) strategy of player A in the game (V, C, rA, rB) iff each definable path 
of Rstr belongs to Fa (not to FB). • 
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According to this definition a run R of the game is non-losing for player A if 
none of its paths belong to any of rB and R. 

Thus a stategy of the player A is a winning (non-losing) one in the game 
(V, C, rA, rB) iff moving accordingly the course of game realizes only paths belong-
ing to r A (not belonging to r f l ) . If we are interested only in non-losing strategies 
then it is enough to consider games of the form (V, C, 0, rB). 

In order to show that among others the property "to be a definable tree" is 
expressible by a first order formula we need the following well known theorem 
about the existence of a universal formula, though the precise form of this formula 
is not necessary to our investigation. 

Theorem 4.12. (On universal formula.) Let us fix an arbitrary 9-type system 
Ax*. There is a recursive map N (q>>—f<p 1 where f<pl denotes the Godel 
number of the formula <p) and a formula Valid (g, a, x)£ F%* such that for any 
H£Md(Ax*) and <p£F&, 91 t=cp[a, x] iff 11Valid [i(p\ a, x]. 

Proof. See in MENDELSON ( 1 9 6 4 ) . 

Theorem 4.13. (Expressibility.) For any Ax* the following properties are ex-
pressible in Ax* by using the formulas of : 

a) "to be a definable tree", 
b) "to be a definable path in a definable tree", 
c) " to be a definable game-frame", 
d) "to be a definable run in a definable game-frame", 
e) "to be a definable strategy in a definable game-frame", 
f ) " to be a non-losing definable run of a definable game", 
g) "to be a non-losing definable strategy of a definable game", 
h) "there is a non-losing definable strategy in a definable game". 

Proof. Each statement can be proved by the same method. Thus we detail 
only the proof of property a) by showing the existence of the formula corresponding 
to this case. 

a) Let Q be the variable symbol the values of which correspond to the Godel 
number of the formula <p that parametrically defines a tree in 21 and let a be the 
vector of variable symbols the values of which correspond to the parameters. 

The property "to be an element of tree V" can be defined by using the formula 
Valid (see Theorem 4.13). Namely Valid (i2, a, x) means that the element x is an 
element of the tree Q with parameter a (here of course we identify the definable 
objects with the Godel number of the appropriate formulas defining them). Having 
this defining formula we can construct the formula defining the property a). Namely 

Tree (Q, 3)= Valid(Q, a, A)A Vx (Valid (Q, a, x) - Valid(Q, a, left (*)). 

Let 21 £Md(Ax*). Now for fixed Q, q£A take 

VGa= {u£/4|2I N Valid[Q, a, »]}. 

It is clear that Va,d is a parametrically definable tree in 21. Moreover if <p defines 
a tree V by parameters a then, using 4.12, we have V= Vv>s-
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b) Let Path (i2, g, a, B) = Vx (Valid(g, b, x) - Valid (Q, S, x))A 

Vx Vy {Valid (g, B, x) A Valid(g, b, y) A left (x) = left (y) - x = y}. 

It is clear that if 1l£Md(Ax*) and Q,g, a, B^A then V9ts is a definable path in 
F n , a . ,We omit the proof of properties c), e) and f). -

d) Let GF(QV, Qc, a) be the formula corresponding to property c) 

R(QV, ß c . a, r, b)=GF(Qy, Qc, a)A Tree (r, B)A \jx[Valid(r, B, *)-

Valid(Qv, a,x)]AVxVy[Valid(r, B, x)AValid(Qv, B,y)Aleft(y)=xA 

-]Valid(Qc, a, x) - Valid(r, B, y)]A 

Vx Vy y z [Valid (r, B, x)AValid(r, B, y)AValid(r, B, z) A 

left(y) = x A left (z) = yAValid(Qc,a, x) - y = z]. 

It is evident that this formula is good, 
g) Let 

NL(Qv, Qc, QrB, a)= 3r 35 (R(Qv,Qc,a, r, 5)A 

Vg Vc(Path(r, g, B, c) — Valid(Qrg, pair (a, c), g))). 

This formula means that there is a run r with parameters B such that r is a run 
of the game defined by Qv and Qc and no path g with parameter c of r belongs 
to Q f B . • 

Now we reformalize the well-know König's lemma for the case of definable 
finitary trees. 

Lemma 4.14. (König.) Let V be a parametrically definable and finitary tree 
in such that for any d£A satisfying 9X |= [d] there is a ¿/-long definable path. 
Then there is a (-long definable path as well. 

Proof Any proof of the original form of this lemma can be repeated because 
the definability of the tree and paths provides the expressibility of each step of 
the proof in the first order language. Details are omitted. • 

5. Nondeterministic programming language 

We introduce a nondeterministic programming language of the autocode level. 
This level provides a relatively simple definition of semantics considering time con-
ditions as well. This description is done by using games introduced in Section 4. 
Having exact semantics we turn to the investigation of the question of descriptive 
languages, which is one of the foundamental component of a mathematically based 
programming theory. 

Now we introduce a 9-type nondeterministic programming language NPS. 
The programs of the language NP9 might be "executed" in the models of on ar-
bitrary .9-type system. Altogether the "meaning" of the programs varies by systems 
and by their models. 
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Let us fix a denumerable infinite set Y of variable symbols. 

Definition 5.1. The set U9 of 9-type nondeterministic commands consists of 
the following elements: 

(i) j: y—t, 
( i i ) j : Dy^T , 

(iii) y: if x then • ki> •••» kr 
where nd{any, every}, j, k^, ..., kr are natural numbers, yd Y, and Q\. 

• 
Further on sign • in commands stands either for any or every. 
Thus the commands of U9 have the form j: u, where the natural number j 

is said to be the label of the command. 

Definition 5.2. A 3-type nondeterministic program p is a nonempty sequence 
• of 3-type commands p — (/0: z/0, . . . , /„: »„)£ t/3

+ in which no two commands have 
the same labels, i.e. for any j, n] if j?±k then 

Let NP9 denote the set of all 3-type nondeterministic programs: 

NP3 = {p \p is a 9-type nondeterministic program}. • 

Note that we often write a program p in the form of column 

»o : "o 

instead of the form of row. In the column form we always assume that /„<...-=:/„. 
For any nondeterministic program p=(i0: u0,...,i„: un)£NPs we use the 

following notations: 
(i) Var p= [J Var {ii: i/j) denotes the set of variable symbols occuring in 

j i tO,n] 

the program p. Here Var(/j.: Uj) is the set of variable symbols occuring in the 
command i f Uj defined as follows 

"Var(j: .y — T) == VarrU{y}, 

Var ( j : • y = T) = Var rU{y}, 

V a r ( j : if x then • kx, ..., kr)= Var x-

For the sake of convenience we often use Yp instead of Var p. 

(") i n + 1 =min{ fc | k i { i 0 , . . . , i„}}. 1 

The programming language NPS seems to be far too weak though it is powerful 
enough as shown in its deterministic counter part in GERGELY and U R Y ( 1 9 7 8 ) . Now 
we note only the command j: if x=x then • kt, ..., kn is the same as /: goto 
• klt ..., k„. We use the latter in the language NP9 as an abbreviation. 

Since the "meaning" of a program is its "execution" let us consider the case 
when the execution takes place in an arbitrary model of a given 9-type system Ax*. 
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Definition 5.3. Let us fix a system Ax*. Let us consider an arbitrary model 
^l^Md(Ax*) and an arbitrary program p — (i0: w0, ...,«'„: u„)^NPB. 

Let q: Var p -+A be an arbitrary evaluation of the variable symbols of p. 

Let Gq=(Vq, Cq) be a game-frame and fq=(l, s): XV""A be a trace with 
the following properties: 

1. Gq and fq are parametrically definable in 91; 
2. (i) 9£|=C [length (v)] for any v£ Vq, 
(ii) /(0) = io and s(0) = q, 
(iii) if /(iOi {im\m^n}' then there exists no successor of v, i.e. Sr (v) = 9; 
3. Let us suppose that l(v) = im 

(i) if um = y r then S¥q(v) = {pair(v, 0 )=w}, /(w) = im+1, 

(ii) if um=ny = x then SVq(v) = {pair (v, e) and for any u>6 SK , 
Kw) - im +1, 

(iii) if um = if x then • ...,kr then 
a) if then Sy (v) = {pair (v, 0)} and l(w)=im+1 for w£ Sv (0), 
b) if 91N*[*(»)] then SVq(v)= {pair (v, kj)\je[l, r]> and l(w) = right (w)" for 

any w(iSVq(v). 
In both cases a) and b) for any w£SVq(v), s(w)=s(v). 
The set of nodes of choice in the cases (ii) and (iii) is defined as follows 

Cq= {v£Vq\l(v) = im and um is either any y S x or if x then any k1, ..., kr}. 

The game-frame of the above properties is said to be the q-game-frame associated 
to the program p; the trace fq of above properties is said to be a trace of the pro-
gram p in the model 91 starting with input data q. • 

Now we take the points of the definition one by one and show what conditions 
of programming are indicated by them. The ^-game frame (Vq, Cq) describes the 
nondeterminism of the trace of a program; the function fq—{l, s) shows the actual 
value of the variable symbols of the program in each moment of execution. 

If the program gets in a state represented by the node v£ Vq then in the next 
step the command labelled by l(v) will be executed with the s(v) evaluation of the 
variable symbols. 

Condition 1 is in accordance with the assumption that the first order language 
is used to describe the 9-type models. 

Condition 2 (ii) provides that the game goes on for time T=£* and it only 
stops when the situation 2 (iii) arises, i.e. when the control l(v) gets such a label 
that does not occur among z0, . . . , i n . So the termination of the trace is equivalent 
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to a jump onto such label. This is the reason why a special command stop is not 
included in U9. 

According to 2 (ii) a trace starts always with the first command of the program, 
i.e. with the label z0 with an evaluation q given in advance. This is the reason why 
a start command is not used. 

Conditions of point 3 describe the one step transition of the program execu-
tion in the usual way. If a no control command with label im is executed then after 
the execution the control gets on label i m + 1 . This is why the virtual label in+1 was 
introduced to indicate the termination of the execution. 

While executing commands with nondeterminism, i.e. with the sign • , the 
game-tree branches out according to the possible choices. The cases any and every 
differ from one another simply whether player A or B moves. The correctness of 
the above definition is ensured by the following 

Lemma 5.4. For an arbitrary program p£NP9, H£Md(Ax*) and q: V a r p - ~ A 
there is a unique trace of p in 21 starting with; q and there is a unique associated 
^-game-frame GFq. Moreover, the parameters of the formulas that define the trace 
fq and the game-frame GFq are the values of q and these definitions are universal 
(i.e. in each model of Ax* they are defined by the same formula). 

Proof. The uniqueness means that the associated game-frame GFq and the 
corresponding trace fq are unique. Let GF'q, and fq be another ^-game-frame and 
another trace for which conditions 1—3 of Definition 5.3 hold. Let v be an element 
of V with minimal length such that V or V but fq(v)^fq(v). This minimum 
exists because both (GFq , fq) and (GF'q, fq) are parametrically definable. Since 
v?±A so w=left (v)£ V and by the minimality of v we have w£ V and f(w)=f'(w). 
If so then by using conditions 1—3 we have that v£V also holds and f(v)=f'(v) 
which is a contradiction. To prove the existence of the trace we construct a recursive 
equation, the solution of which gives a trace of p in 21 starting with q. 

V3»*, /*, yt ...,y*k{g(v*, I*, y*, ...,yt al5 ..., ak)Al*i{im\rn ^ n},A<T(length v).A 

k 
e(v, l,y1, ...,yk, ax, ...,at)~(l = i0Av = AA A yj = a , ) 

m = 0 
A /* = im 
n 

i m - \v - (v*, 0 )A A yt = yiAys = T[y*/y]A I = f m + 1 J - A 
l Ms ) 

¡=1 

n 
- \v = (V*, ys)A A yf = yiAys = T[y*/y]Al = i m + J a 

iVs ) i^s 
¡=1 ¡=1 

m = 0 
A . l* = L 
n 

= «•» - [.A yt= ytA{lx - » = (v*, 0)AI - im+i)A 
"m = if X then • Itr 
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Applying Theorem 3.15 this equation has a minimal solution say g*£F9*. 
It is eviden that 

Qv(w,a)=3l,y!, ...,ykQ*(w, ...,yk,ai, ...,ak) 

defines a tree in 91 and if 

i 2 c ( w , a ) = 3/ , ylt ...,yk\g*(v, l,yt, ...,yk, at ak)A V 1 = L 
^ m=0 

um="nyys 
"m = ' f x then any kl,...,kr 

then (Qv, Qc) defines the associated ^-game-frame GFq and g* parametrically 
defines the trace of p in 21 starting with q. 

Note that since the solution of the above recursive equation is the same in 
any model of Ax* thus g* defines the trace of p in any model of Ax*. The universali-
ty of the definition of GFq is evident from the construction. • 

6. Descriptive language 

Let Ax* be a 3-type system and >H^Md(Ax*) an arbitrary model. Let 
p = (i0: «o, . . . , /„ : U„)£NP9 and q: V a r p ^ A an arbitrary input. We emphasize 
that the input q is arbitrary but fixed. The ^-game-frame associated with the pro-
gram/? is GFq=(Vq, Cq). 

Let rB be an arbitrary set of winning paths of player B in game-frame GFq 
and consider the game (Vq, Cq, 0, FB). From the point of view of the theory of 
programming it is of great significance to consider whether player A has a non-
losing strategy in the game (Vq, Cq, 0, F„). The meaning of this consideration for 
the theory depends on what set FB is selected. To illustrate the significance of the 
existence of a not losing strategy of A we consider the game (Vq, Cq, 0, FB) with 
different FB. 

A. Let rB be the set of those definable paths of the game-frame GFq in which 
there exists a situation (node) v such that i.e. FB consists of the 
terminating definable paths of Vq. 

In this case "to have a not losing strategy of the player A" means that A is 
able to ensure that the program execution never "dies", i.e. it runs infinitely long 
(more precisely £-long). • 

B. Let ¡l/€Fgr be an arbitrary formula that is called the output condition and 
let rB be the set of those definable paths of Vq each of that contains a node v such 
that 

(i) l(v)$ {ijm^n} and 
(ii) 91 
So rB consists of those executions of the program p that terminate without 

satisfying the output condition i¡/. 
In this case the non-losing strategy of A means the partial correctness of the 

program p with respect to the output condition t¡/ (while the input condition is 
any tautology e.g. x=x). • 
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C. Let <p, ip£ be arbitrary formulas that are called input and output con-
ditions respectively and let rB be the set of those definable paths of Vq for each of 
which: 

(i) 91|=9>[i(0)], 
(ii) there exists a node (in the path) such that 

l{v)i{im\m^n) and 21 ^ ip[s(v)]. 

In this case the non-losing strategy of A means the partial correctness of the 
program p w.r.t. the input condition <p and output condition tp. Note that we can 
suppose that if the program executed by input q which does not satisfy the con-
dition <p then rB=Q. • 

D. Let (p, \p£Fgp be arbitrary formulas and let rB be the set of definable paths 
of Vq such that each satisfies both 

(i) %\=<p[s(Q)] and 
(ii) either it does not terminate or it has a node v such that 1 (v) t| {im \m^n) 

and l$L^\p[s(v)]. 
Now the non-losing strategy of A means the total correctness of the program 

p w.r.t. the input condition <p and output condition ip. • 

Before proceeding to the next cases we introduce further notations. The value of 
the input is subject to change while executing a program, i.e. during the corre-
sponding computing process. Thus in order to describe program properties during 
execution we need both the input values and the actual values of program variables. 
For any fixed program p we distinguish a set XpzzY of variable symbols that 
duplicates the variable symbols Yp and refers to the input values of the latter. 

If Yp—{y1,...,yk} then Xp={x1, ..., xk} and for any/€[0, «], x,- duplicates 
the corresponding y t . 

Moreover let t be a distinguished variable symbol of Y which will be used to 
describe time conditions. A formula <p€F9* is said to be an input condition for a fixed 
program p iff Var <pczXp. Moreover, a formula \p<zF%* is called output condition 
for the program p iff Var ip<zXp U Yp U {/}. 

Now let us consider the further cases. 

E. Let <p and ip be input and output conditions for a fixed program p respec-
tively and let rB be the set of those definable paths of Vq which satisfy 2It=<p[<7] 
and have a node v such that l(v)$ {/,„ \m^n} and <$L\^\p[q, s(v), length (u)]. 

In this case^the existence of a non-losing strategy of player A is of the follow-
ing meaning. An execution of program p carried out in accordance whith the 
strategy is such that it starts with input q that satisfies condition (p and when it 
stops it satisfies condition ip. • 

F. Let cp and tp be input and output conditions for program p respectively and 
'let rB be the set of such definable paths of Vq that each of them satisfies 211= <p[q] 
and it is either infinite or there exists a node v such, that and. 
t±\p[q, s(v), length (i>)]. 

In this case the existence of a non-losing strategy of player A means the follow-
ing. An execution of program p done in accordance with the strategy starts with 
input q satisfying condition <p and it terminates by satisfying condition \p. • 
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We could go on listing cases infinitely, but we hope that the aboves represent 
the basic idea well. 

However each of the above cases represents its own situation in the theory 
of programming, having its application in the mentioned way. From theoretical 
point of view it would be very useful to have a unique descriptive language for 
any version of the set r B , i.e. this language has to be suitable to define sets of paths 
in trees. But for the time being we have not such a universal descriptive language. 
Thus for each r B we have to introduce a new descriptive language remaining within 
the same definable game-frame (V q , Cq). 

Corresponding to aboves a theory of nondeterministic programming though 
having one programming language has to possess several descriptive languages 
each of which fits in to certain conditions corresponding to some pragmatical aims. 

To illustrate this theory we give the appropriate descriptive language for the 
cases E and F. This language will be common for both cases. We have chosen these 
cases because in literature time consideration is hardly investigated. 

First we introduce the syntax of the descriptive language. 

Definition 6.1. F a =={((?,p, \l/)\p£NPa, q> and i¡1 are input and output condi-
tions for p r e s p e c t i v e l y } U p , ij/]\p(zNP9, q> and 1j/ are input and output con-
ditions for p respectively}. • 

When we are interested only in the triple of (p, p, ij/ without specifying the type 
of brackets that include them we write \cp,p,tl/\. 

Now we are going to define the semantics of the descriptive language. 
Let x=\<p,p, IA|6F9 and let 91 £Md(Ax*). According to Lemma 5.4 for any 

q: Varp-~A there is a game-frame Gp = (Vq, Cq) and a function fq = (l,s): Vq^A 
and they are definable in Ax*. Starting out from the game-frame Gq and taking 
the formula x into account the following game can be constructed: 

0) r \ = V, 
(ii) if Sl^ipfa] then let TJ=0 . In opposite case there are two possibilities: 
a) First if x—{(p,p, i/0 then.TJ = {y is a definable path in F 4 | thereisa ugysuch 

that l(v)$ {im\m^n} and SH^ij/iq, s(v), length (V)]}. 
d { 

b) Secondly if x=[<P>P> W then let r% = \y is a definable path in Vq\y is either 
infinite or there is a v£y such that l(v)(i {im\m^n} and jj[q,s(v), length (v)]}. 

Thus we have got a game G* = (Vq, Cq, 0, which is called the associated 
q-game generated by x-

By using the technique used in the proof of Theorem 4.12 it is not difficult 
to verify that the set r*B is parametrically definable in Ax* in both of the above 
cases a) and b). Moreover, the value of q are used only as parameters in the defining 
formulas. Thus we have the following 

Lemma 6.2. Let 21 £Md(Ax*) be arbitrary, and q: X„->-A. Then the 
associated q-game (Vq, Cq, 0, TJ) is parametrically definable in Ax*. • 

Now we turn to the definition of the semantics of the descriptive language 
to be defined. 
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Definition 6.3. Let 91 £Md(Ax*) and be arbitrary. 9ll= y iff for any 
q: Va rp-*A player A has a non-losing definable strategy in the associated g-game G*. 

• 
Note that if /=(<?,/?, ip) (x=[(p,p, ip]) then ii\=x means the partial (respec-

tively total) correctness of the program p in the model 91 w.r.t. the input condition 
(p and output condition [p. 

Definition 6.4. For an arbitrary 9-type system Ax* the descriptive language 
expressing partial and total correctness and describing the corresponding time 
condition is 

D9 ** = (F3, Md(Ax*), |=). 

Remark 6.5. Similarly to the fact that the associated g-game is parametrically 
definable, if 21l= x then the non-losing strategy and the corresponding run are also 
parametrically definable in 91. 

What is the connection between the validity relation introduced above and the 
validity relation of Definition 3.5. The answer to this and the expressibility of some 
notions introduced above by the first order language is given by the following 

Theorem 6.6. For any x€F 9 there is a formula such that for any 
9 \ £Md(Ax*) , iff 91 NX*. 

The function rendering x* to x is recursive. 
Moreover, there is a formula ax(a,v, w)dF** such that if 9l|=x then for any 

q\ Va rp-*A , ax[q] defines a non-losing strategy of player A in the associated 
<7-game G*. 

Proof. The existence of the formula /* for a given F 3 is an easy consequence 
of Theorem 4.9. The recursiveness of the function that renders the corresponding 
X* to each of them can be established by using Godel-numbering. We omit the 
details. • ' 

Let Efx* denote the set of all formulas that are true in the models of Ax*, i.e. 

Et-{x\Ax*\=xl 
From the point of view of the usability of the descriptive language D3

X* for 
the theory of programming the handlebility of E*x* is very important. This is es-
tablished by the following 

Theorem 6.7. (Completeness.) If the system Ax* is recursively enumerable 
then so is set of formulas E£x*, i.e. the descriptive language is complete. 

Proof. Immediate from 6.6. • 

Remark 6.8. If 9I|= x would be defined so that for any input data q in the 
game G* player A had a non-losing strategy (without the assumption of definability) 
then the language D9

X* would lose the completeness, even more, it would be neither 
co-complete nor complete relative to arithmetic in contrast with the case of deter-
ministic programming (see BANACHOWSKI et al ( 1 9 7 7 ) and COOK ( 1 9 7 8 ) , PRATT ( 1 9 7 8 ) 
respectively). 
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7. A complete calculus 

Being aware of the completeness of the language D9** we are going to intro-
duce such a complete calculus which is close to the programmer's intuition. This 
calculus has to be convenient to prove about a given program p either its partial 
or total correctness w.r.t. given input and output conditions. To provide such 
a calculus is significant from the point of view of both theory and practice. 

Theorem 6.6 shows that the syntax F s can be coded in the syntax F l however 
the proofs in the latter can nfct be interpreted directly by programming situations. 

Below we introduce a calculus in the spirit of Floyd and Hoare. 
First we introduce the following 

Notation 7.1. Let Lab: NP&-*-P(N) be the function rendering to each non-
deterministic program p=(i0: u0, ...,/„: un)£NP9 the set of labels occuring in 
it as follows. 

Lab Cp)={/m|/M^n + l}U{&| there is an m such that um= if x then 
• € {any, every}}. 

Definition 7.2. Let us fix a 9-type system Ax* and let x = \(p, p, i/H be an arbi-
trary formula of F 9 . Let <P : Lab (p)-+Fs* be a function which to each label of the 
program p renders a formula <£(/) with variable symbols x, y, Y. Remember 
that x serves to duplicate the program variable y and t refers to time. Further on 
we write instead of The function $ is said to be the description of x w.r.t. 
Ax* iff it satisfies the following conditions: 

(iii) if im: any y^s.t then 

Ax*\=$lm-+ Bz(zSrA^ f m + 1 [z /y , i+ l / i ] ) (assignment rule of A's choice) 

(iv) if im: every y^z then 

y4x*l=4>im — Vz(z^TA^ f m + 1 tz /y , t+l/t]) (assignment rule of B's choice) 

(v) if im: if x then any fcx, ..., kr then 

(i) Ax*t= <p -•$IO[0/i, x/y] 

(ii) if im: y — T then * 

A x * ^ ^ ^ [ r / y , t+l/t] 

(input1 rule) 

(assignment rule) 

r 
Ax*\=<PimA~\x—<Pim+1[t+l/t], Ax*^$imAx~y Q^t+l/t] 

(rule of conditional jump of A's choice) 

(vi) if im: if x then every k1, ..., kr then 

Ax*^<PirnMx-~4>im+1[t + lit], Ax*t=$imf\x->- V <Pkj[t + l/t] 

(rule of conditional jump of B's choice) 

(vii) Ax*t=<Pz-~\l/ (output rule for z(f { i j m s n } ) 

5 Acta Cybemetica 
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Moreover if z=[<p,p,4>] then 
(viii) for any {im \m^n} 

Ax*t=3v \/y[<P2-rv^/] (rule of termination). 
We denote by Ax*\~x the fact that the formula x has a description w.r.t. Ax". 

• 
Now let us see some remarks on the above definition: 
Each formula <Pf (O^ /Sn) shows the conditions the data should satisfy before 

executing the command labelled by i and the corresponding time conditions. We 
note that ( can be used in any formula . 

The rule (i) shows that the execution of the program starts at the moment 0. 
In the rules (ii)—(vi) the substitution [ i + l / i ] denotes unambiguously that 

the execution of each command happens during one unit of time however complex 
e.g. the term T is. This has already been supposed in the definition of the q-game 
associated to the program (see 5.3). 

This assumption can be generalized without any trouble in the following way. 
We render to any command im: um an execution time tm which can also depend 
on the data y. Thus the game associated to the program continues a unique path 
during tm time-units. Now this corresponds to the fact that the game stays in one 
and the same state. Using this generalization in the description of x in every rule 
(ii)—(vi) instead of the substitution [ i + l / i ] we write [t+tjt]. 

The rule (vii) says that if the'execution of the program p stops then it stops 
forever i.e. its time rstops,:^-:- the process "dies". 

The rule (viii) is needed only to prove the total correctness of p. 
In'the descriptive formulas the usage of separate variable symbols x is allowed 

in order to refer to the input values. These are needed only in the formulas used 
in the description of total correctness. While proving the completeness we shall get 
a formula independent from x for the case z=(q>, p, by using the definition 
<P* = 3x <f>z for each descriptive formula <PZ. 

It is interesting that in the case of nondeterministic programming total correct-
ness is not equal to partial correctness plus termination in contrast with the deter-
ministic sequential case. Thus in our case the total correctness cannot be established 
by proving the partial correctness and the termination separately. 

Now we show that the calculus introduced above is complete. 

Theorem 7.3. (Completeness.) For any 3-type system Ax* and x€F s , Ax* \=x 
iff Ax*hX-

Proof. First we show that if Ax*hx then Ax*\=x-
Let us fix a x=\(P>P>xl'\ a n d let <P: Labp—Fg* be a description of x w.r.t. 

Ax*. Let 21 £Md(Ax*) and q: Warp—A be arbitrary. We must prove that in the 
q-game G*=(Vq, Cq, 0, rx

B) player A has a non-losing strategy. 
Let ( l ,s): Vq—N x V a r M be the trace of p in 21 starting with q. First we 

define a strategy for player A. 
Let v£Cq be arbitrary. Since v£Cq for an 1, w] we have l(v) — im and um — 

=any y^z or um — i f x then any k1,...,kr. If 2i^=<^l(v)[q,s(v), length v] then let 
sir (v) be the minimal element of SKj(y). (It might be arbitrary but we have to be 
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sure that str is parametrically definable.) So let us suppose that 9t|= <Pl{D)[q, s(v), 
length (v)]. First let um=any y^r. By our assumption with im=l(v) 

91 N <P(M - 3z(z ^ zA$im+1[i/y, t+\/t], 

91N $im[q, s(v), length u] and thus 

91 1= 3z(z ^ rA4>im+1[r/y, t+l/t][q, s(v), length (u)]. 

Now let z* be the minimal z£A such that 

91 t= zS TAi>,m + 1[i/y, t+l/t][q, s(v), length (v), z]. 

It is clear that pair (v, z*)£SVg(v) and so let 

str (v) == pair (v, z*). 
Obviously 

91 1= ¡¡(str (»)), length (str (»))] (1) 

In the end let um — if x then any kx, ...,kr. Since v£Cq so 9lt=jc[s(u)]. Using r 
9tt=^,mA?<- V $k j[ t+l / t ] and 9lt=^ImAj<[q, s(v), length (v)] we have 

j=i m
 s 

91 1= V &kj[t+ l/t][q,s(v), length (v)]. 
j'=i 

Let k* be the minimal k£{klt ...,kr} for which 

91 t= <Pk[t+\/t][q, s(v), length (a)] (2) 

and take str (v)=pair (v, k*). 

Thus the strategy str is defined. Since Gq is definable and the method used in 
the aboves can be defined in F*t so str is also parametrically definable. The fact, 
that str is a non-losing strategy follows from the following 

Lemma 7.4. Let n be a parametrically definable path in the run Rslr of the 
strategy str. For every V£TC 

« t= <*>/(„)[?, s(v), length 0)]. 

In fact if / ( y ) { i m \ m ^ n } then 

91 |= ij/[q, s(v), length (v)]. 

Moreover, if x—1<P> P> M then n terminates. 
Proof. The proof goes by induction on the length (V). If v = A and length (v)~0 

then by using 91 \=(p [q] and (i) of Definition 7.2, 911= *nA)[q, s(/l), 0]. The inductive 
step can be done by using (1), (2) and (ii)—(vi) of Definition 7.2. If l(v) $ {im\m^n} 
then from (vii) of Definition 7.2 we get 9l|=i/'[<7> s(v)> length (i>)]. 

If x = [ < p , i p ] then let us apply (viii) of Definition 7.2 and we get a t£A 
such that if length (v)=~t then for any z£ {im\m^n}, 21N <Pz[q, s(v), length (v)]. 
Hence using yi)=<t>Hv)[q,s(v), length (v)] we have l(v)$ {im\m^n\. 

The proof of the lemma is completed. • 

5* 
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Now the proof of the theorem is continued by showing that if Ax*\=x then 
Ax* Н / . 

Let x=\<p, p, ф\ be such that Ax*\=/- Let S2y(a, v) and Qc(a, w) be the for-
mulas which parametrically define the game-frame GF=(V, С) in Ax* generated 
by x- By the second part of Theorem 6.6 there is a formula ox(a, v, w) with the same 
parameters as Qv, Qc which in Ax* parametrically defines a non-losing strategy 
for player A in the game (J*. Hence there is a formula Qx(a, which defines 
in Ax* the run of the strategy defined by ax. Now we give a description of x in Ax* : 

Ф2(х, у, t)=(p(x)A Зу {^ (x , v)Al(v) = zt\y — s(v)Mength(v) = /}. 

Since s is parametrically definable in Ax* by using only the parameter x so 
It is clear that Var Ф г с { х 1 , . . . , xk, уг, ..., yk, /}. 

The following lemma is enough to complete the proof. 

Lemma 7.5. The above function Ф is a description of x w.r.t. Ax*. 

Proof. Let s2t£Md(Ax*) and q: Var/?—A be arbitrary. We have to prove that 
for any y, t_£A the rules in Definition 7.2 hold, (i)—(vii) can be proved in the same 
way so e.g. we prove (iii). Let y,t£A be such that 91 н Ф,т[<7, y,t] and um—every 
y^z. Let G£=(Vq, Cq, 0, be the associated ^-game generated by x a n d let 
(/, j ) be the trace of p in 91. By the definition of Ф,т there is a Vq such that 
y—s(v) and t=length (v). Moreover v^R^ where str is the non-losing strategy 
of player Л defined by a and q. Let zs r a [i(y)] bearbitrary. Then w=pair (v, z)dRstr, 
length (w) = t+1, 

{ z if X = y, 
s(y)(x) otherwise; 

and l(v)=im+1. 
This means that 

21 И <I>im[q, s(w), l(w)]. 
Hence 

t= Ф1т+1[г1У,1+1/ШУ,1]. 
Summarizing: 

91 N Ф,-т - Vz(z ё гЛФ ; т+1[2/у, i+ l / i ] ) . 

If x=[<P,p, \]/] we must prove that for any {im\m^n), 

91 t= З Г Vj> \//[Фг(у, / ) - * ' = Г]. 
By the definition of G* and Rstr in Rstr any definable path terminates. It is clear 

that Rslr is finitary and thus Konig's Lemma can be applied: there is a T£A such 
that for any v£Rstr, length (v)^ T. As in the first part of the proof for any 
(y, t)£A with 

Я N ФЛЯ.9, £1 
there is a v£Rslr such that s(v)=y and length (v) = t. Hence tj=T and thus 

91 и Vj?Vf [ * , ( ? , / ) - / € Г ] [ * , Г | . 

The proof of the lemma is completed and so is the proof of the theorem. • 
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8. Examples 

8.1. The least common multiplier 

Let us consider the following nondeterministic program that we would like 
to use for the computation of the least common multiplier of two positive integers : 

d 
/>1 = 

0: any y ^ m a x (a, b) 

1: if a\y2Ab\y2Ay2^0 then 5 

2: if y2>ab then 5 

3: y2^y2 + yi 
4: goto 1 

The input and output conditions are respectively 
d 

(p = a > OAb > 0AJ>2 = 0 
and 

d 
il/=y2 = [a, b]. 

Let Ax be the set of axioms, which contains PA and the axiomatic definition 
of |, max, < , s , and [. , .]. Let 

Ax*=AxU{Vxt;(x)}. 
We are going to prove that 

:f Ax*\=(<p,p1, i/O-
i.e. in the label 0 the value of yx can be chosen so that if the program terminates 
then y2 = [a,b\. Indeed let us consider the following description of % w.r.t. Ax*: 

<P0^=a > 0 A b >0Aj>2 = 0 

*i=yi =*OA(y1|flVj'il&)AVz(z s yzAyJz - z\a\J~]z\b) 

d 

<P3=<P2Ay2 ab 
d $ 4 = Î>! 

4>5==y2 = la, b] 
It is easy to verify that the function described above is really the description 

of x w.r.t. Ax*. 
It is obvious that the greater value is chosen for yx f rom that of satisfying the 

condition the sooner termination of the program occurs. That is why from 
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the output condition we claim the expression of early termination. So let 

r d 4([a,b] + \) 
max (a, ft) 

Now let us consider the description ¿»'of x=[<p,p, »AI w.r.t. where the 
time conditions are to be expressed in the descriptive formulas The 
description $ is a light modification of $ as follows: 

i>0== a > OAb > OA y 2 = 0 

^ i ^ y j = max (a, ¿OAy., = sî abA Vz(z ë j^-A^lz — l z | a V lz|f>) 

= max (a, b)Ay2 = ^ - ^ y ^ y z ^ ai»AVz(z j ^ A j ^ z — ~|z|aV ~lz|b) 

^ 5 = = [a, b]Ai == u . . / . 5 1 J max (a, b) 

From the descriptions <P and $ it immediately follows that the command 2: 
if y2>ab then 5 is really unnecessary. It is good exercise to prove that if in the 
program p1 we write every instead of each occurence of any we get a program p[ 
such that 

Ax* 1= [cp, pi, t s 4ab + 4], 

8.2 Pattern matching 

Now we show how the nondeterministic programming language NPa can be 
used for handling the problem of pattern matching. First let us specify what 
pattern-matching is. 

Let ^ be a definable partial ordering in a fixed system Ax*. Let S}\£Md(Ax*). 
If for some a, b£A, a^b then we say that 6 is defined at least that much as a. Let 
us give a vector {X(j))JS„ of w + 1 elements. We would like to match to this vector 
a pattern from the matrix (A(i, j))irSmj^„. 

More precisely, we would like to find such a row in the matrix each element 
of which is defined at least that much as the corresponding element of the vector 
m))jSn-

Since vectors and matrices are not allowed in our language NPg. explicitly we 
have to suppose that the type 9 contains the function symbols vcomp and mcomp, 
for which 9(vcomp)= 2 and 9(mcomp) —3. The function symbol vcomp provides 
the i'-th component of the vector having the code X. Analoguously mcomp pro-
vides the (/, y)-th component of the matrix having the code A. 
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Let us consider the following program the input data of which are A, x, n, m. 
d 

P2 = 
0: any i^m 
1: every jSn 
2: if vcomp (x, j)^mcomp (A, i, j) then 5 
3: « = 0 
4: goto 6 
5: w = l 

Let u= 1 be the output condition of the program. It is a useful exercise to 
prove the fact that the execution of p2 w.r.t. the input values A, x, n, m is correct 
iff such a row s can be chosen for the label 0 that can be matched to X. 

8.3 A NIM-game 

According to the definition the execution of programs is represented by an 
associated game. Of course this can be reversed as follows: the properties of a 
game can be represented by an appropriate nondeterministic program. 

Let us-consider the following version of the game NIM. There are two players 
A and B and there is a single pile of n chips. The two players take turns alternately 
and at each move a player must pick up at least one and at most k chips from the 
pile. This is the game-frame. We add to this the following: the player who picks 
up the last chip wins. Thus we have the game G. 

Let player A move first. By using the calculus of Definition 7.2 and Theorem 
7.3 we show that player A has a winning strategy if n is divisible by k+1 i.e. if k+11n. 

Let us-take the same system Ax* as in 8.1 and consider the following program, 
d 

Pa = 
0: any y^k 
1: if y=0 then 9 
2: if y^n then 11 
3: n-n—y 
4: every y^k 
5: if y=0 then 11 
6: if y^n then 9 
7: n—n—y 
8: goto 0 
9: u = 0 

10: goto 12 
11: u = 1 
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Note that the commands of labels 0 and 4 allow to choose 0 chips in contrast 
with the rules of the game G. This is connected with our programming language 
NP&, where for the sake of simplicity we introduced the assignment commands 
with choices in the form of /: ny=t, • 6 {any, every} .However we could have given 
them in the following form i: • zx=y~^x2 or i: • y£q> (where t15 and q>£Fl 
and it has at least one free variable symbol). Thus to keep up with the game rules 
we need the commands labelled by 1 and 5. These commands assure that if one of 
the players on his turn chooses 0 chips that this move will be considered as a cheat 
and he loses the game immediately. 

It is obvious that player A has winning strategy in the game G iff the pro-
d 

gram p3 is correct w.r.t. the output condition tj/ = u=l. Since in the game G drow 
is not possible so a non-losing strategy of player A is, at the same time, his winning 
strategy. Thus it is enough to show that Ax*t~x where 

X = [~)k+\\n,p3,u = 1], 

i.e. it is enough to give a description of the formula x w.r.t. Ax*. It is easy to 
verify that the formulas below define a description of x w.r.t. Ax*: 

<P0== " l f c + l | n 

<PX= 1 ^ y S kAy = n mod (fc+1) 

d 

# 2 = 1 ^ y ^ fcAy = n mod (k+1) 

d 

<&3= y < nAy = n mod (fc+1) 

<P4= k+ l |nAn > 0 

^ kAn > 0 A f c + l | n 

<P6= l g y s kAk+l\nAn > 0 

1 fcAfe+l|nAn > 0 

$ 8 = n f c + l | n 

<Pg=false 

$10=false 

^ d <Plt=true d 
^ 1 2 = " = I-
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Abstract (to Part 2) 
/ 

Games are adequate to nondeterministic programming shown in Part 1 and the theory of 
nondeterministic programming is intended to be developed within the frame of classical first order 
logic. So in Section 4 the representation of games is given by considering definable games within 
this frame. The nondeterministic programming language is introduced in Section 5. In Section 6 
a descriptive language is introduced which, beside the classical data consideration, handles time 
conditions as well. It is shown (in Theorem 6.7) that this language is complete. Section 7 contains 
a calculus in the spirit of Floyd and Hoare, the usage of which is illustrated in the last section by 
examples. 
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Completeness in non-simple and stable modal logics 

B y K . TÓTH 

In my work [1] I have defined the syntax and semantics of modal logics. Also, in-
ference systems and completeness theorems for simple, non-stable logics have been 
included. Unfortunately, the methods used there cannot apply directly to non-
simple and stable logics. In this paper I give a modification of the method and 
prove completeness theorems for the cases not covered in [1]. In fact, this paper 
is a continuation to [1], all non-common notions and notations are introduced there. 

§ 1. Completeness in non-simple logics 

The notion of consistency is defined in [1]. 

DEFINITION. The set of formulae is complete if the following conditions are 
satisfied: _ 

(i) a is consistent; 
(ii) If si contains variables only from n(a), then either A£a. or 

(iii) Let sd contain variables only from 7r(a). If then there exists 
a variable ad-n(a) such that a is free for JC and s/[xfa]£<x; 

(iv) Let / be «-argument function symbol and let xx, ..., xn£n(a). There exists 
a variable a£_n (a) such that for all classical f o r m u l a ^ the fact f(xu ...,x„) is free for a 
in si implies that the two assertions si^a. and st{alf(xx, ..., x„)]€oc are equivalent. 

\ 

Theorem 1. If a is consistent, then there exists a complete set /? such that ctQfi. 

Proof. Parallel to the proof of Theorem 5 in [1] using the following Lemma. 

LEMMA. Let / be an «-argument function symbol, a a consistent set and A$7T(A). 
Moreover, let a ' = a U { j j / : .si is a classical formula, f ( x x , ..., xn) is free for a in 

and si[alf(x1, . . . , x„)]6a}. Then a ' is consistent. 

Proof. In contrary, let us suppose that there exist the formulae six, ...,sik, 
such that six, ...,sik£<x, ^ [ a / / ^ , ..., *„)], ... ,.3§,[al f ( x x , ...,x„)]€a 
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and | (si1A...AsfkA@1A...A@l). Applying R2 and A6.b we have 

h-Va ~(sixA...As!kA®xA...A381) 

h- ~(stfiA...AsfkA&1[a/f(x1,..., x„ ) ]A . . .Aa , [a l f ( x l t ...,xn)]) 

which is a contradiction. 
Definition of a complete system of formula-sets is just the same as in [l]-how-

ever, item (iii) can be omitted by the remark above. 
The theorem remains valid for the new concept: 

Theorem 2. If a is a complete set of formulae, then there exists a complete 
system of sets M such that a 

The completeness result follows easily from this theorem. 

Theorem 3. Let a non-simple, non-stable modal logic be given. If si cannot 
be derived in this logic, then is satisfiable. 

Proof. By the previous theorems, there exist a complete set a and a complete 
system of sets M such that ~ si£ct, a£M. We assume, by the definition of a complete 
set, that is a function for which the following property holds: if a£M, / is «-argu-
ment function symbol, x l 5 x„^n(a), then v(a,f(x1, ..., x„)) is a variable, such 
that for all classical formula 38, if f ( x . . . , x„) is free for v(a, f ( x x , . . . , x„)) in 
38, then the two assertions and 3S[V(OL, f i x j , . . . , xn))/ f(XX, ...,x„)]£oc are 
equivalent. 

Let us introduce the notations: 

N= {j9: P£M and P+ * 0}; 

If p, y£M, then PRy {(P+ £ y and P+ * 0) or (p+ = 0 and y=P)); 

\P(P) I = *(P); 

fp^ix!, ...,xn) = v(P,f(x1, ...,x„)), where x , , ..., x„£n(p); 

rpm(xi> xn) r(*i> •••> xn)£P, where x l 5 ..., xnen(P). 

It is clear that (M, N, a, R, P) is a model. Let us extend the domain of v as follows: 
let v(P,x)=x, where x£it()3); and let v(P, /(T^ ..., T„)) = d(P, f(v(P, x^, ..., 
...,V(P, T„))), where TX, . . . , T„ are terms containing variables from N(P) exclusively. 
The following assertions can be proved by (the usual) induction: 

Let k be an interpretation and x the corresponding valuation. 
(i) If then X(T,P)=V(P,T[Xi, ..., xjk(xO, ...,k(xm)]), where 

x l 5 . . . , x m are all variables occuring in r. 
(ii) If then p\=SS[k]o3S[Xi, ...,xjk(xi), ..., k(xm)]<ip; where 

x 1 ; . . . , x m are all variables occuring in 38. 
In particular, it follows that ~ si is valid in the model ( M , N, a, R, P). 
Properties K1—K3 can be proved just as in [1, Theorem 7]. 
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§ 2. Completeness in stable logics 

Theorem 4. If a is complete, then there exist a complete set ß and a complete 
system of sets M such that <xQß, ßdM and for every y£M, n(ß) = n(y). 

Before proving this theorem we give the completeness result for stable logics. 

Theorem 5. Let a stable modal logic be given. If the formula si cannot be 
derived in this logic, then ~ s i is satisfiable. 

Proof. Very similar to the proof of Theorem 3 above or Theorem 7 of [1] pro-
vided complete system of sets M, given by Theorem 4, is used in the construction. 

§ 3. Proof of Theorem 4 

We introduce the following notations: let a be a set of formulae. By i/*(a) 
we shall mean the set of all formulae which contain variables only from 7i(a). 

Let R be a two-argument relation. We define the relation Rn, n finite, by the 
following recurrence: R° is the identity relation and let i?"+1 be defined by ARn+1B 
if there exists C such that AR"C and CRB. 

Then, R = (J R", where R is the reflexive, transitive closure of R. 
n = 0 

In the following we shall deal with certain ordered triplets (a, M, R). Without 
further mentioning we always suppose that the following conditions hold for 
<«, M, R): 

(i) M is a set of complete sets, a£M, R is a binary relation on M. 
(ii) For every ß£M,ocRß and if SQR and for all ß^M aSß, then R = S. 

(iii) If a£n(ß), then there exists y such that a£n(S) if and only if yRö. 
(iv) a) If ßRy then ß+f)>l/(y)Qy and 

b) Let ß£M, Qsitß. If there is a y£M, such that ßRy and si£\]/(y), then 
there also is a ydM with ßRy and sidy. 

Assertion 1. For arbitrary triplet ( t x , M , R ) there is no ß£M such that ßRa. 
If ßRS and yRö then ß=y. 

Proof, (a) Consider the triplet (a, M, S>, where S is defined by ßSy if and only 
if ßRy and y^a. By the second clause (ii) above, R—S. 

(b) Let us suppose that ßRS, yR8 and /My. Let S be defined as ßx Sß2 if 
and only if ßxRß2 and (ßi, ß2)^(ß, ö). Then conditions above will hold for 
(a, M, S), but SQR and S^R which contradicts the second condition (ii). 

DEFINITION, ( a , M , R ) is called n-th order triplet if for every ß £ M there is 
a k (O^k^n) such that a R k ß . (a, M, R) is totally w-th order triplet if it is an n-th 
order triplet and if 0^k<n, a R k ß , ()si£ß, then there exists ydM for which 
ßRy and si^y. 

It is clear, that for every m (m^ri) the fact (a, M, R) is an n-th order triplet 
implies that (a, M, R) is an m-th order triplet too. Similarly, if (a, M, R) is a zero 
order triplet, then M={a), R=0, thus (a, M, R) is totally zero order. 

Let (a, M, R) be arbitrary, ß£M. Let us set 
. MIß = {y: ßRy), Rjß = RC\(M/ßxM/ß). 
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Assertion 2. If <a, M, R) is an w-th order triplet and aRfi then (/?, M/P, R/P) 
is an (« —l)-th order triplet. 

DEFINITION. Let us define the operation L by the following items: if (a, M, R) 
is a 0-order triplet, then L{a, M, R)—a, if w>0 and (a, M, R) is an w-th order 
triplet, then let L(u, M, R)=a\J (J si is a conjunction of formulae from the 

aRP 
set L(P,Mfp,R/p)}. 

Theorem 6. Let (a, M, R) be an w-th order triplet. Then L(a, M, R) is con-
sistent. 

Proof. We proceed by induction on n. If « = 0 then the assertion clearly holds. 
Let n > 0 , and assume the contrary, i.e. there exist sily si2, ... and a conjunction 
SS1 of formulae from M\px, RjP^), a conjunction SS2 of formulae from 
L(P2,MIP2,R/P2) etc., such that 

I - ~ Asi2A... A A O^aA.. . ) 
that is 

I st2\/...\Jn • 

We can assume that all /?,, Pj are distinct, for if not, then can apply 

h- • • - • ~ 

Hence we obtain a form in which all sets /?,-, Pj are distinct. Let x be a variable of 
such that It follows from Assertion 1 and condition (iii) that x does 

not occur in the formulae s/1,s#2, or SS2, .... 
Apply rule R2 for all variables not occuring in n(a): 

h - ~ ^ i V ~ ^ 2 V . . . V V x 1 1 V x 1 2 . . . • ~ ^ 1 V V x 2 1 Vx2 2 . . . • 

Since the fixed logic is stable we can repeatedly apply the axiom \j'xHsi— • \/xsi 
and obtain 

I- ~ j ^ V ~ si2\l...\l • V x u Vx12 . . . • Vx21 Vx2 2 . . . ~ 3S2\/... 

where all free variables are from n(a). Since bound variables can be substitued 
by suitable ones from n{a) we have 

H ~ j / i V ~ j* ,V. . . 'V • V * i i V * i t . . . ~ • V * n Vx 2 2 

a complete, so this possible only when some disjunctive terms, e.g. • V*n ^x' i 2 . . . 
(For if then j^jCa which contradicts the completeness of a.) So 

V*ix Vxi2 i L(px, Mlplt R/Pi) 
and 

We concluded that L(Plt M/px , is consistent, wich proves the theorem. 

Theorem 7. If (a, M, R) is an n-th order triplet, aRy and P is a complete set 
such that L(tx, M, R)QP then P+{JL(y, M/y, R/y) is consistent. 
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Proof. In contrary, let us assume that there are formulae 3SdP+ and a con-
junction of elements from L(y, M/y, R/y) such that i.e. 
By R3, we obtain | - • ¿ i — • i.e. f - In accordance with our 
conditions, n@tdP and so which contradicts the completeness of p. 

DEFINITION. We say that (a, M, R) is a continuation of (P, N, S) if there exists 
a function / : N'-*M, such that f{fi)=a., if y^N then y g / ( y ) , and if yS5 then 
f(y)Kf(Sl 

Theorem 8. If (a, M, R) is an w-th order triplet and /J is a complete set for 
which L(a, M, R)^P, then there exists a totally n-th order triplet (¡3, N, S> which 
is a continuation of (a, M, R). 

Proof We proceed by induction on w. If « = 0 , the assertion follows. Let 
n>0 . If a + = 0, then for all sidtyid), Qsida, so QsidP. In particular if si is 
a negation of a tautology, then \ - ( ) s i t h u s for every ¡/(P), ()@dp, i.e. 
P+=V). It is impossible that pSy, by definition, hence (fi, {/?}, 0) is a totally «-th 
order triplet and this is a continuation of (a, M, R) — (a, {a}, 0). 

Let a + and so As we see Qs idP implies the consistency of 
P+U{jtf), hence we can assume that P+U {si}Q8^, 8^ is complete. By the pre-
vious theorem, /?+U L(y, M/y, R/y) is consistent, too, provided txRy, thus there 
is a complete set 8y such that fi+UL(y, M/y, R/y)QSy. 

It is clear, that the new variables, introduced in these steps, may be chosen 
so that the sets n(8Si,)\n(P), ..., n(8y)\n(P), ... are pairwise disjoint. As (5^, 
{¿.a,}, 0) is an (n — l)-th order triplet, and since L (8^, {8^}, 0) ^ 8^ it follows that 
a totally (« — l.)-th order continuation (8^, M^, RJ) of (8^, {<5.̂ }, 0) exists. Since 
L(y, M/y, R/y)Q.8y by the induction hypothesis, it follows that there exist My, Ry 
such that (8y, My, Ry) is a totally («— l)-th order triplet and it is a continuation 
of (y, M/y, R/y). 

We may assume that the common variables of any two sets n ( \ ) M J ) , .. . , 
. . . , i ( U M 7 ) , ... are contanied in n(P). 
Let 8dN, provided 8=P , or 

if there is an si, such that QjsidP and 8dM^, or 
if there is a y, such that a Ry and 8£My. 

Let 82(LN and provided 
if 8X=P and there is an si such that QsidP and 82=8or 
if 8X=P and there is an y for which a Ry and 82=8y, or 
if there is an si, such that QsidP and 8XR^82, or 
if there is an y, such that a Ry and 81Ry82. 

It is obvious, that the conditions (i)—(iv) hold for (/?, N, S). Also, it is a totally «-th 
order triplet and is a continuation of (a, M, R). 

Now we can return to the proof of Theorem 4: Let (oc0, M0, R0) = (a, {a}, 0) 
i.e. a totally 0-order triplet. Let us suppose, that for some «, a totally «-th order 
triplet {a„, M„, R„) is defined. By Theorem 6, L(a„, M„, Rn) is consistent, and 
hence there is a complete set a„+ 1 , such that L(a„, M„, Rn)Q ot„+1. By Theorem 8, 
there exist M„+1, Rn+1 such that (a„+1 , M„+1, R„+1) is a totally (« + l)-th order triplet 
and it is a continuation of <a„, M„, Rn). Thus, there exists a function /„: M„—Afn+1 
such that/„(«„) = a„+1 and p(LMn implies pQfn(p) and if pRny, then/„(^)i?n+1/n(y). 
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Let /?= (J a„ and M=\ | J y„: yk£Mk and for all i^k, y i + 1 =/¡(7,)}. Since union 
n=0 ln=fc J 

of increasing complete sets is also complete we have that every element of M is 
complete. 

Let y£M, and ()stf£y. For y— (J y„, there exists an /, such that 
n=k 

0 0 

y, and hence there also exists <5, for which 7,7?, <5, and Let <5 = | J <5„. 
0 0 0 0 

y+= U 7 n
+ i ' U and si^b, thus M is a complete system of sets. 

n = l n = l 

Let a£n(li). For some k,a£n(ak), and if />&, then adn(ak),' too. If 5 

then for some /, <5 = (J <5„. We may assume that k-=-.i and so Since n = i 
(a,, Mi, Ri) is a totally /-th order triplet, we have 7r (a,) Q 7t (<),), and thus a£n(S). 

0 0 

Let a£n(S) for some SdM. We may assume that S= (J Sk and a£n(dk). For 
n=k 

L(ak, Mk, Rk)Quk+1, a£n(ock+1) and hence a£n(fi). 
We gained, that for every 5£M, n(fi)=n(b) which completes the proof of 

Theorem 4 and also the completeness theorem. 
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Enumeration of certain words * 

B y K . H . KIM a n d F . W . ROUSH 

1. Introduction 

Both the content and methods of this paper are closely related to those of [2]. 
Let F denote a free semigroup on generators x2, ..., xm. We wish to enumerate, 
for fixed n and k, the number of length n words which do not have any segment 
which is the square of a length k word. 

One reason for considering this problem is that it is related to the more 
difficult problem of enumerating words not containing any segment which is a 
square word. GOULDEN and JACKSON [1, Corollary 4 .1] have obtained our Theorem 
1 by completely different methods. 

2. A recursion formula 

Definition 1. Let F1 be a free monoid. Let w1, w2d F1. 
(1) J w2 if xw1y—w2 for some y£Fx. 
(2) w1\iw2 if vf2 = w-'ij' for some y£ FL. 
(3) Wj| fw2 if w2=xw1 for some x^F1. 
(4) |wj| denotes the length of w^; |1 |=0. 
(5) If l i j W i is the unique word such that 

tfiliWi, IM̂ I = K l - l . 

Definition 2. Let F be a free semigroup on m > l generators and F1 the associ-
ated free monoid. Fix /c>0. 

To any word w in F1 we assign a length k — 1 (0, l)-vector v as follows. The 
number Vj is 1 if and only if the n — k+j+1 letter of w equals the n — 2k+j+1 letter 
of w, and n—2&+j'+l >0 . We assign-an integer a(w) to w by stating that a(w) is 
the length of the longest terminal sequence of 1 components of v. Let S(n, c) for 
OSc^fc— 1 denote the set of length n words Wj of F1 such that a(w1) = c and if 
\w2\=k it is false that (w2)21 Wj. 

* This work was supported by Alabama State University Faculty Research Grant R—78—6. 

6 Acta Cybernetica 
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In other terms, given a word w^ consider the terminal segment vv3 of length 
2k — 1 of Wj. Then a(vvi) is the length of the longest initial segment of vv3 which 
equals a final segment of w3, or is k — 1 if this length exceeds k—l. The set S(n, c) 
is the set of words tv of length n such that a(w)=c and w is not divisible by the 
square of a word of length k. 

Theorem 1. For n>k, 0 

|S(«,C)| = | S ( « - 1 , C - 1 ) | , 

|S(«,0)| = Z O n - i J I s O i - i . j ) ! -j = o 
Furthermore, |5(n, 0) |=w", |S(w, c ) | = 0 for n^k, 0 

Proof Suppose x€5(n, C). Then x£S(n, c - 1 ) . (Note that if c=k-l, the 
n—k and n—2k letters of x must differ, else x would be divisible by the square 
of a length k word.) And if y£S(n, c — 1) there is one and only one x£S(n, c) such 
that x=y. Namely the last letter of x must equal the n—k letter of y. Thus 

k-1 
|S(n, c)| = |S(n, c—1)|. Also the function x—x maps S(n, 0) into | J S(n— 1, _/'). 

j=0 
Each element y of the latter set arises from exactly (m — 1) elements of S(n, 0). 
Namely we can add to y any letter except the (n—k)th. Therefore 

• \S(n,0)\=(m-l)kZ\S(n-l,j)\. 
o 

This proves the theorem. 
This formula can be recast into a matrix form. Left M be the kxk matrix 

m - 1 i 0 . . . 0 
m — l 0 1 . . . 0 
m — l 0 0 . . . 0 

m - 1 • 0 0 . . . 0 

Let u be the vector (mk, 0, 0, ..., 0). Then |S(n, c)| is the c+1 component of uM"~k, 
for n^k. The characteristic polynomial of M is 

P(z) = zk-(m-l)(zk-1+zk~2+...+z+l). 

Definition3. For n < k put / ( « ) = 0 . For n ^ k , let / ( n ) be 

j=0 

Theorem 2. The generating function of f (n) is 

mkzk (1 -zk) 
l—mz+(m — l)zk+1 ' 
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Proof. As in [2], the generating function of / ( « ) must have the form 

q(z)zk 

zk p (i) 
where q(z) is some polynomial of degree at most k—l. In degree less than 2k, this 
quotient must be 

zk m ' ( l + m z + . . . + mk~1zk~1). 

Therefore q(z) is the portion of 

mk(\-(m-l)z-...-(m~l)zk)(l+mz+... + mk-1zk-1) 

having degrees no more than k. A computation gives the formula above (note 
that (1 — z) can be cancelled from numerator and denominator). 

3. Asymptotic values of / (n) 

Lemma 3. The equation P(z) = 0 has a unique positive real root rk of multiplicity 1. 
This root exceeds the absolute value of any other root. We have rk^rk_1 and 

Moreover 
lim rk = m. 

m — 1 m —1 
m ¡— > rk =*• m — 

A 
for j-<k. 

Proof. If P(z)=0 then u = — satisfies 

k mu — l 
m — 1 

as does u—l. However no straight line can cut the curve y=xk+1, x>-0 in more 

than two places since y=xk+1 is concave upwards. Therefore 1 and — are the 
rk 

only positive solutions of 
k ! mu-1 

t r + 1 = —. 
m — 1 

I 

Therefore P(z)=0 has only one positive real solution rk and rk>~ 1. Differenti-
ation shows that rk has multiplicity 1. Let z be a root of P(z)=Q which is negative 
or complex. Then 

zk = ( m - l ) ( z f c - 1 + z " - 2 + ... + l) 

6* 
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implies 

|z|* < (m — l X I z l ^ + l z l ^ + . - . + l) . 

So | z |< r t because for \z\^.rk we have P( |z | )>0 . We have 

r*"1 = (m - 1 ) (rjT2 + . . . + 1 4 -jU) > (ti~2 + . . . + l)(m - 1 ) 

and 
4-1 = (w-l)0k-i +••• + !)• 

\ 

This implies rk>rk_1. It also implies that 

r = lim rk 

satisfies 

Therefore r=m. 
From 

at z—rt we have 

r = (m —1)—-
1 - 1 

r 

z " - l 
zk = (m — 1) -z — 1 

= 1 + ( m _ 1 ) ( 1 _ J _ ) . 

This implies the last inequality of the lemma. This proves the lemma. 

Theorem 4. The asymptotic value of f (n) is 

mk( 1 —uk)u k\,,k — n — l 

m - ( m - l ) ( / c + I)«* 

where u= — . 
rk 

Proof. Expand the generating function in partial fractions. All other terms will 
be insignificant compared with the term 

1 — rtz 

This term can computed by letting z approach — in the generating function. This 
rk 

proves the theorem.. 

i 
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Abstract 

We study the number of words of length n, in m generators, divisible by the square of a length 
k word. We find a recursion formula, the generating function, and the asymptotic value of this 
number. 
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Groupoids of pseudoautomata 

B y F . FERENCI 

Introduction 

It is known [7] that to a unary universal algebra (universal algebra [6] with unary 
operations only) there corresponds a monoid (semigroup with identity). An auto-
maton without outputs [4], or shortly automaton, can be obtained from a unary 
universal algebra by selecting an element and a subset from its base set, for the 
initial state and the final state set of automaton, respectively [8]. The above men-
tioned monoid is associated with this automaton, as well [5]. 

The concept of a tree automaton [1] is such a generalization of that of an auto-
maton, when the corresponding universal algebra is not necessarily unary [12], [11]. 
The purpose of this paper is to show that there is an other way of generalization 
obtained by replacing the monoid by an arbitrary groupoid. Then the notions 
corresponding to those of the unary universal algebra and the automaton are the 
pseudoalgebra and the pseudoautomaton (which is a kind of tree automata, as well), 
respectively (see Conclusion at the end of the paper). These notions are introduced 
in the paper [10]. 

The method used here for representation of formal languages [9] by a set of 
trees is analogous to that in the author's paper [2]. 

1. Trees and algebraic structures 

By a) we denote the set of all nonnegative integers, i.e., ©={0 ,1 ,2 , . . . } , 
and by % the set of two parentheses ( and ), i.e., n — {(,)}. Furthermore, we suppose 
that n is disjoint from each other sets used here. For a set A, A* is the set of all 
finite strings on A including the empty string X and A+=A* — {X). If p is a finite / 
string on A, then lg (p) denotes the length of p, i.e., the number of occurences of 
symbols from A in p. An alphabet is allways a finite nonempty set. 

Let V be an alphabet and X a set of symbols disjoint from V (X may be infinite, 
finite, nonempty or empty). The set of trees of type V over the set X, in notation 
[V, X], is a subset of (KUXUrt)+ defined as follows: 
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1.1.(1) xi[V, X] for all x£X; 
(2) if v£ V, k£a> and t£[V, X] for l^i^k, then v(tJ(.t2)...(tJt[V, X] (in the 

special case k=0, v 6 [ V, A"]); 
(3) the elements of [V, X] are those and only those which we get f rom (1) 

and (2) in a finite number of steps. 
It can be proved that for every t=v(t1)(t2)...(tk)£[V, X], the components 

v£ V, k£co and ¡¡^[V, X] (1 ^i^k) are uniquely determined. 
If X=0 then we write [V] for [V, X], i.e., [V]=[V, 0]. 

Example 1.1. If {uj, v2,v3,v4) and X={xu x2}, then t - u1(i33(x1))(iy2(u1)(i;2)) 
is an element of [V, X], This tree is represented graphically in the next figure: 

(It can be noticed from our definition of trees, that the use of parentheses 
differ from usually manner, see [10], [12], [1], etc. Our method is taken from [3].) 

The word function fV: [V]~*V+ we define in the next way: 

1.2. (1) if t = v for some v£V, then W(t)=v; 
(2) if t=v(t1)(t2)...(tk) where v<EV, k^l, t£[V], l^isk, then W(t) = 

=vW(t1)W(t2)...W{tk). 
It can be seen that for a i£[F], W(t) is the word over the alphabet V [9] which 

is obtained from t by erasing all parentheses. 

Example 1.2. If V={vlt v2, i>3} and t=v1(v2)(v1(v2)(v2)}, then W{t) = 
— V1V2VXV2 v2. 

For TQ[V], W(T) is the set {W(t)\t£T} and it is a 1-free language over V[9]. 
Let V be an alphabet. A pseudoalgebra of type V is a system A = a ( V , A) 

where A is a nonvoid set disjoint from V, the base set of A, and a is an operator 
which for each v f rom Vdetermines a mapping ay: A*—A [10]. The pseudoalgebra 
A is finite iff A is finite. A pseudoalgebra B = f i ( V , B) of the same type V is called 
a subpseudoalgebra of A iff B^A and fiv(p)=xv(p)£B for every vd V and p£B*. 
Let C = y ( V , C ) be a pseudoalgebra and h a mapping of C into A. When for ar-
bitrary v(iVand c1c2...ck£C* (k£a>, c^C, l^i^k) h(yv(c1c2...ck))=otv(h(c1)h(c2)... 
...h(ck)) holds, then h is a homomorphism of C into A. If in addition h is onto then 
A is a homomorphic image of C. Moreover, if h is an onto and one-to-one homo-
morphism then it is an isomorphism, and A and C are called isomorphic pseudoalgebras. 

Let us consider a pseudoalgebra A=a(V,A) and the set of trees [V, A]. By 
a we define a mapping a from [V, A] into A in the following way: 

1.3. (1) if t—a for an a£A, then oi(t)=a; 
(2) if. t=v(t1)(t2)...(tk) where v£V and t£[V, A] for l^i^k, then a ( f ) = 

=av(a(t1)a(t2) ...a(tk)). 
The next lemma expresses a property of homomorphisms. 
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Lemma 1.1. If A = a ( V , A) and B = f i { V , B ) are pseudoalgebras and h: B-»A 
a homomorphism of B into A, then h(P(t))—u(t) holds for every t from [V]. 

Proof. The proof is by induction on lg(i)- First.it can be shown that if t = v 
for some «€ V, the assertion is true. Then, supposing that the assertion is true for 

l ^ i ^ k , fcsl, one can prove, that it is true for t = v(t1)(t2)...(tk). 
A pseudoalgebra A = a(V,A) is connected iff oi([V]) = A. 
The next statement is a consequence of the previous lemma. 

Lemma 1.2. If A and B are connected pseudoalgebras of the same type and 
there exists a homomorphism h of B into A then h is uniquelly determined and A 
is a homomorphic image of B. 

A nonvoid set A with a binary operation "multiplication" defined on A is 
a groupoid A. The result of the multiplication of two elements a1 and a2 from A 
(their "product") will be denoted by (a1 • a2), but expressions obtained by a succes-
sive application of multiplication can be simplified in the known way, i.e., by erasing 
the outer parentheses. For example, instead of (a • b) and (a-(b- c)) we shall write 
a • b and a • (b • c), respectively. 

If to a groupoid A we add an alphabet V disjoint from A and introduce a mapp-
ing £: K—A, we get a designed groupoid si, in symbols, si = {A, V, £). The designed 
groupoid si is finite iff A (i.e. A) is finite. It is connected iff A is generated by the 
set £(V) = {l;(v)\v(iV}. If ^S = (B,V,rj) is a designed groupoid too, then the 
mapping h: B-*A is termed homomorphism of into si iff it is a homomorphism 
of B into A and h(ri(v)) = ^(v) holds for arbitrary v£V. "Onto" homomorphism 
and isomorphism are defined in the natural way. 

Using a designed groupoid si —(A, V, £) one can consruct a pseudoalgebra 
which is denoted by ind si (pseudoalgebra induced by si) in the next way: ind si = 
= a(V, A), i.e. it is of type V, its base set is A, and for every v£ V, p£A* and a£A 
holds 

1.4. (1) a»(X) = m ; 

(2) av(pa) = xv(p) -a. 

In other terms, for p=a1a2...ak (a£A, 1 S/S/c) ow(/?) = (...((£(u) • • a2) • 

The following lemma will be useful in some proofs.. 

Lemma 1.3. Let si be a designed groupoid. Then ind si is connected iff stf 
is connected. 

Proof. Let si —{A, V, £) and ind si = a(V,A). We shall show that an a£A 
is a product of some elements from £(V) iff there exists a t£[V] with a(t) = a. 
We proceed by induction. 

When the number of factors in the product is one, i.e. a = ^(v) for some v£ V, 
then it is equivalent to a = a.(t) for t = v£[V], If we suppose that the element a; 
from A is a product of elements from £(V ) and a, = a(i,) holds for some t£[V], 
where 1 ^i^k, k^l, then a=(...((£(v)-a1)-a2)-...)-ak iff a = txv(a1a2...ak) = 
= a ( 0 for t = v(t1Xt2)...(tkX[V]. 



392 F. Ferenci 

2. The groupoid of a pseudoalgebra 

Let 9 be a binary relation on a set X(9Q X2). Then we write Xj 6x2 iff , 0. 
If 9 is an equivalence relation, then X/6 denote the partition of X induced by 0, i.e. 
the set of all equivalence classes modulo 9. For an x£X the equivalence class con-
taining x will be denoted by 0(;c). 

Let [V, A] be the set of trees of type V over a nonempty set A. We define the 
subsets [V, A]' and [V, A]" of this set in the following way: 

2.1. [V,A\ = [V,A]-A 

and , 

2.2. 

[V, A]" = {t\t£[V, A], t = viaJia^)... (ak) for v£ V and ax a2... A* (a,€ A, 1 i == k)}z 

If t£[V, A]' and p — a1a2...ak is an element from A* (a^A, l^i^k), then let 
tp = t(a1)(a2)...(.aK)(WAN 

Let us suppose that A = a ( F , A) is a pseudoalgebra of type V. On the set 
[V, A]' we define the relation o'Q([V, A]')2 in the next way: 

2.3. for arbitrary trees i j and t2 from [V, AY hg't2 holds iff a(t1p)=a(t2p) is 
satisfied for each p£A*. 

The relation g' is evidently an equivalence relation on the set [V, AY- Into the 
set [V, AYIQ' of equivalence classes modulo Q' one can introduce a binary opera-
tion — multiplication — in the next manner: for arbitrary it and t2 f r o m [V, AY 

2.4. Q'(,h)-Q'(t2) = Q'{t) where t = h(t2). 

One can easily prove that this operation is well defined. 

Now, we have a groupoid [V, AYIQ' whose multiplication is defined by 2.4. 

The designed groupoid ([V, AYIQ', V, a') where A'(v) = g'(v) holds for each V, 
we call the groupoid of the pseudoalgebra A and denote it by ^(A) . 

Since Q"—QT\([V, AYT is an equivalence relation too, however now on the 
set [V, AY'C=[V, AY), and each equivalence class modulo Q' contains elements f rom 
[V, AY' (if t1 = v(r1)(r2)...(rk) and «(r^a^A, l = s I S K , then txg't2, where t2 = 
= u(a 1 ) (a 2 ) . . .K)€[F , AY'). If on the set [V, AY'/Q" we define the multiplication by 

2.5. Q"(h)-Q"{t2) = Q"(t), where / = h { a { Q \ 

we get a groupoid [V, AY'IQ" isomorphic to [V, AYIQ'. Namely, it can be easily 
shown that the mapping / : [V, AY' IQ"~[V, AYIQ', which is defined by f((e"(t)) = 
— Q' (t), is an isomorphism between these groupoids. For this reason the designed 

groupoid ([V, AY'IQ", V, a") where OC"(V) = Q"(V) holds for each V£ V, is isomorphic 
to (A). That means that we can consider this designed groupoid to be equal to 

We investigate now the nature of the elements of ^ (A) . For this purpose, for 
every t£[V, AY let us introduce a mapping at: A*.-rA in the next way: for arbitrary 
p£ A* let oct(p) 

=oe(tp). Since for t=v(v£V), dit(p)—ctv(p) holds a is an extension 
of a. This mapping at can be called the mapping induced by t in A. From 2.3 we 
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conclude now that the set of elements of 0(A), up to notation, is the same as the 
set of all different mappins induced by trees from [V, A]' (or [V, A]") in A. 

In a similar way as we obtained the relation g" we can get the relation Q = Q'C\ 
fl([F])2. The set [V]jg of equivalence classes modulo g equals to the set of all 
mappings induced by trees from [V] in A, and it is a subset of all mappings induced 
by trees from [V, A]'. This set forms a groupoid with the multiplication defined 
as in 2.4, and this groupoid is the subgroupoid of [V, A]'IQ' generated by the set 
{e'OOl^ V}- (For each t from [V], g'(t) is a product .of elements from {g'(t;)|r€ V}-
This can be proved by induction on Ig (i)-) If A is connected then [V, AJ/Q' is 
generated by the set {e'(v)\v£V} (since then for every t from [V, A]' there is an 
r from [V] for which rg't is valid; r can be getted from t by substituting each a£A 
with an ra from [V] for which a(ra)=a). Now the next lemma, by the Lemma 1.3, 
follows from the fact that the set {g'(v)\v£ V} equals to the set u'(V). 

Lemma 2.1. If the pseudoalgebra A is connected, then so is ind 0(A). 
The following theorem gives a connection between a pseudoalgebra and its 

groupoid. 

Theorem 2.1. Let A—A(V, A) be A pseudoalgebra and 0(A) its groupoid. 
Then the following assertions are valid: 

1° There exists a homomorphism h from ind 0(A) into A. 
2° If A is connected then 
(a) the homomorphism h is completely determined and it is an onto homo-

morphism; 
(b) if for some connected designed groupoid 38={B, V, r\) there exists a ho-

momorphism from ind 38 into A, then 0 (A) is a homomorphic image of 08 and 
ind 0(A) is a homomorphic image of ind 3S\ 

(c) if A = ind si for some designed groupoid si, then si is isomorphic to 
0(A) and therefore, A is isomorphic to ind 0(A)., 

Proof. 1° Since 0 (A ) = ([v7WiQ', V, a'), the mapping h: [V,A]'/Q'-~A for 
which h(Q'(t)) — a( /) holds, where t is an arbitrary element from [V,A]', is well 
defined by 2.3. It can be easily shown that h is a homomorphism from ind 0(A) 
into A. 

2° (a) It follows from 1°, and Lemmas 2.1 and 1.2. 
(b) Let ind 38=P(V, B). By Lemma 1.3, ind 38 is connected and, by Lemma 

1.2, A is a homomorphic image of ind under the mapping h: B->-A which is 
determined by Lemma 1.1. From these facts it follows that the mapping / : B--
-•[V, A]'IQ', where f(P(t))=Q'(t) holds for arbitrary t$\V], is well defined. In-
deed, if for tlt /2€[F], P(h)~Hh) holds, then g'(t1) = Q,(t2) holds too. It can be 
checked as follows. 

Since h is a homomorphism from ind 38 onto A, then for" alt a2, from 
A there exists bx,b2, ..., bk from B such, that h(bi) = ai for l^i^k. Then 

. . . *(ti(a1)(a2)...(ak)) = h(J3(h(b1)(b2)...(bk))) = 

= h((...(Hti)' bd • b2). .„) • bk) = h((...{Hh) • bj • ft2) •...) .bk) = 

= hifiit^b0(6,)...(b»))) = « ( ^ H a , ) . . . ^ ) ) (see 2.3). 
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Moreover, the mapping / is a homomorphism from ind Si into i n d ^ ( A ) , 
and since ind 38 is connected then from Lemmas 2.1 and 1.2 it follows t h a t / i s 
an onto homomorphism. 

The same mapping / is a homomorphism from id onto ^(A) . 
(c) The proof is a routine computation. 
From the assertion 2° (c) of the previous theorem, it follows that each con-

nected designed groupoid is the groupoid of a pseudoalgebra. 

3. Finite pseudoalgebras 

Let us suppose that the pseudoalgebra A = a ( K , A) is finite, i.e., A is a finite 
set. For arbitrary v£V and a£A, let £C(v, a) denote the set {pjpÇA*, ocv(p) = a}. 
It is evident, that J?(v, a) is a language over A. We shall say that the pseudoalgebra 
A is regular iff £?(v, a) is a regular language over A [9] for each v£ V and a£A. 

The next theorem is of great importance for our approach. 

Theorem 3.1. The groupoid of a finite pseudoalgebra A is finite iff A is regular. 

Proof. Let A=<x{V, A). It is known from the previous chapter, that &(A) is 
isomorphic to the designed groupoid ([V, A]"/Q", V,OL"). Therefore, ^ ( A ) is finite 
iff there are finitely many equivalence classes modulo Q". 

For arbitrary vÇ. V let ev = Q"(~)([{v}, A]")2. The equivalence relations Q"v, 
when v is running through V, have the property that each equivalence class modulo 
q" is the union of some equivalence classes modulo e'ù such that for each v£ V at 
most one equivalence class modulo Q'Û occurs in this union. Consequently, for 
the finiteness of V, there are finitely many equivalence classes modulo Q" iff there 
are finitely many equivalence classes modulo Q'„, i.e. [{y}, A]"/Qis finite, for 
each V. 

We give now a necessary and sufficient condition for the finiteness of 
[{y}, A]"IQ'^. From 2.3 we have that for arbitrary t1 = vp and t2 = vq f rom [{f}, A]", 
where p and q are in A*, t1QU2 holds iff à(t1r) = û(t2r) is valid for every rÇA*, which 
is the same as 

3.1. <xv(pr) = xv(qr) for every r£A*. 

Now, we can induce an equivalence relation av on the set A* in the next way: pavq 
holds iff 3.1 is valid. It is obvious that A*/AV is finite iff [{i;}, A]"IQ"V is finite. 

An other equivalence relation 5V on A* can be defined by: paDq iff av(p) = 
= av(q). In the members of the partition A*jdv we can recognise the sets Z£(v, a) 
for those a(LA for which a) is nonempty. Moreover, the partition A*/av is 
a refinement of A*/5V. From the definitions of av and 5V it can be seen that the parti-
tion A*/<jv is the maximal right automaton-partition of the set A* written into" 
the partition A*jdv (see [5]). It is finite iff each member of A*/av is a regular language 
over the alphabet A, in other terms, iff each i?(i>, a) is regular. 
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4. Pseudoautomata 

Let A=oc{V, A) be a pseudoalgebra of type V. Selecting a subset AF of A, 
we get from A a pseudoautomaton A = (A, AF) = (a(V, A), AF). Sets V, A and AP 
are the sets of inputs, states and final states of A, respectively, while a can be called 
the transition function of A (see [10]). The pseudoautomaton A is finite, regular 
or connected iff the pseudoalgebra A is finite, regular or connected, respectively. 
The set of trees represented by A, in symbols 2T (A), is a subset of [ V] defined by 

4.1. ^"(A) — [t\t£[V], a(t)ZAF}. 

For an alphabet V, a subset T of trees from [V] will be called recognizable 
iff it is represented by a finite pseudoautomaton. In the caseNwhen the pseudo-
automaton is regular, T is called pseudoregular. _ 

The language represented by a pseudoautomaton A, in symbols ¿f(A), is de-
fined by 

4.2. Sf(A)=W(Sr(A)) = {W(t)\t^(A)}. 

The set i?(A) is, obviously^ a language over the set of inputs of A. 
Let A = ( A , AF) and B=(B, BF) be two pseudoautomata, where A=a(V, A) 

and B = P(V, B) are pseudoalgebras of the same type V. If there is a mapping 
ft: B-+A which is a homomorphism from B into A, and in addition for every b 
from B, b£BF iff h(b)£AF then h is a homomorphism from B into A. If h is also a 
homomorphism (isomorphism) of B onto_ A, then we say that h is a homomorphism 
(isomorphism) of B onto A. In this case A is a homomorphic image ofB (h is an iso-
morphism between A and B). We shall say that the pseudoautomaton B is a sub-
pseudoautomaton of A iff B is a subpseudoalgebra of A and BF—AFC)B. The pseudo-
automaton B is the trunk of the pseudoautomaton A iff B is the connected sub-
pseudoautomaton of A. (Note that the trunk is completely determined and 
5={a( i ) | /€[F]} . ) 

Two pseudoautomata A and B will be called_equivalent iff = 
It is evident, that for equivalent pseudoautomata A and B, ££ (A) = i f (B) also 
holds (the opposite is not true). 

The next result is a direct consequence of our definitions and Lemma 1.1. 

Theorem 4.1. If there jexists a_ homomorphism of the pseudoautomaton B 
into the pseudoautomaton A, then A and B are equivalent. Consequently, JS? (A) = 
= i f (B) . ' 

Moreover, we obviously have 

Theorem 4.2. Any pseudoautomaton is equivalent to each of its subpseudo-
automata. Especially, a pseudoautomaton is equivalent to its trunk. 

The second part of the previous theorem shows that connected pseudoauto-
mata are of special interest. 

From Lemma 1.2 we can get the next theorem. 

Theorem 4.3. Let A and B be connected pseudoautomata with a common 
set of inputs. Assume that h is a homomorphism of B into A. Then h is uniquelly 
determined and A is a homomorphic image of B. 
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By the groupoid of a pseudoautomaton A = (A, Af), in symbols &(A) we mean 
the designed groupoid &(A). 

If for a pseudoautomaton B=(B, BF) the pseudoalgebra B is of the form ind 38, 
where 38 is a designed groupoid, we shall call B groupoid pseudoautomaton. The 
groupoid pseudoautomaton B is the groupoid pseudoautomaton belonging to 
A = ( a ( V , A ) , A F ) , iff_ a=9(5) = ([V,'X№', V,a') and BP={e'(t)\tZ[V, A]', 
a(t)£AF}. In this case B is denoted by (7(A). 

On account of our definitions and previous results we can state the following 
three theorems. The first of them is based on Lemma 2.1. 

Theorem 4.4. If A is a connected pseudoautomaton then (7(A) is connected too. 
The next theorem follows from Theorem 2.1, properties of the mapping h 

from the proof of the assertion 1° in this theorem and from our definitions. 

Theorem 4.5. Let A=(A, AF) be a pseudoautomaton and (7(A) the groupoid 
pseudoautomaton belonging to A. The following assertions are valid: 

1° There exists a homomorphism h from (7(A) into A. 
2° If A is connected then 
(a) (7(A) is connected and h is completely determined onto homomorphism; 
(b) if B is a connected groupoid pseudoautomaton and there exists a homomor-

phism of B into A then A is a homomorphic image of B and (7(A) is a homomorphic 
image of B; 

(c) if A is a groupoid pseudoautomaton then (7(A) is isomorphic to A. 
From the previous theorem it is clear, that the relation between a pseudoauto-

maton and its groupoid is similar to the relation between an automaton and its 
monoid (see [5]). 

The following theorem is important in investigating finite pseudoautomata. 
It follows from Theorem 3.1. 

Theorem 4.6. If A is a finite pseudoautomaton then (7(A) is finite iff A is regular. 
In the next theorem languages represented by regular pseudoautomata are 

characterised. (For language-theoretic terminology used here, see [9]. It should 
be emphasized that here in the definition of context-free grammar we take a set 
of initial letters instead of a single letter. Obviously, this modification does not 
alter the generative capacity of context-free grammars.) 

Theorem 4.7. A language over an alphabet V is a ¿-free context-free language 
iff it is represented by a regular pseudoautomaton with set of inputs V. 

Proof. Since a finite groupoid pseudoautomaton is regular, by Theorems 4.1, 
4.5 (assertion 1°) and 4.6, it will be sufficient to prove that a language is A-free and 
context-free iff it is represented by a finite groupoid pseudoautomaton. 

First we prove the sufficiency of the condition. 
Let A = ( A , A f ) be a finite groupoid pseudoautomaton, i.e. A= ind , where 

si=(A, V, £) is a finite Resigned groupoid. Using A one can construct a A-free 
context-free grammar T(A) of Chomsky normal form in the next way: r(A)— 
= (A, V, AF, 77), where A and V are the nonterminal and terminal alphabets, re-
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spectively. Moreover, AF is the set of initial letters and 77 is the set of productions 
for which n = n 1 U n 2 where 

= {a - v\v£V, a£A, = a}, 
and 

J72 = {a -* axa2\a, ai> a2€A, a — a1-a2 in Â}. 

It can be_shown that the language generated by T(A), in symbols i f (r(A)), 
equals to i?(A). For this purpose it is enough to show that for arbitrary a£A and 
p£V+,a=>*p is valid iff there exists a_t from [V] for which W(t)=p and a(t)—a 
where a is the transition function of A. The proof is by induction. First, it can be 
seen easily that if p=v and t=v for an arbitrary v from V, then a=>*p holds 
iff « ( / ) = « . Furthermore, let us suppose that for p£V+, a&A, l ^ i ^ k , k s l , 
it have been shown that a,=>-*/?i is valid iff there exists a t£ [V] for which 
fV(ti)=pi and «(/,) = ûj hold. But then, there is a sequence of productions from 
IJ2: a—bkak, bk-"bk_1ak_1, . . . , è 2 — b ^ , and a production from 77^ b^v such 
that by a succesive application of them we get the derivation a=>*va1a2...ak, and 
by at=>*Pi, a=>*vp1p2...pk=p, p£ V+ iff there is a sequence of identities a—bk-ak, 
i'k=bk_1-ak_1, ..., b2—b1 • ax, b1 = Ç(v) in Â, from which we get 
•a2)- . . . ) • ak = av(ala2...ak), and for = a = oc(t), where t = v(t1)(t2) ,..(tk), 
and moreover W(t)=vp1pi...pk=p.-

To prove the necessity of the condition, let us suppose that L is a A-free con-
text-free language over V. Then there exists a grammar in Chomsky normal form 
generating L. From this grammar, by the method applied to the proof of Theorem 
3.1 of Part Three in [9] (with the difference that here the set S'Q contains the empty 
subset of S0 , as well) we can get an equivalent grammar r of the form (A, V, AF, II). 
For the set of productions 77 we have 77 = 771U772, where n 1 contains productions 
of the form a--v only (aÇA, v£ V) such that for each v from V there is exactly 
one production of this form, while 772 contains productions of the form a-^axa2 
only (a, a l 5 a2£A) such that for each (aa, a2) from A2 there is exactly one produc-
tion of this form. From these properties of r it follows that there is a finite groupoid 
pseudoautomaton A with r = T ( A ) . 

' NOTE. If for a A-free context-free grammar r=(N, V,N',II) we introduce 
the grammar rT=(N, VU it, N', 77T) where 77T is obtained from 77 by substituting 
every production a-*a1a2...ak (a£N, k^l, a^NUV, l^isk) in 77 by the pro-
duction a—a1(a2(...(ak])) then the language £?(TT) generated by rT is a subset 
of [V], Let us call ^£(tT) the set of trees generated by r. It was shown in [3] that 
the following assertion is valid : a set of trees is pseudoregular i f f it is the set of trees 
generated by a X-free context-free grammar. Since JV(JC (rT))=J? (F) is valid, our 
Theorem 4.7 is now a consequence of this assertion. (Moreover, for T(A) from the 
proof of Theorem 4.7, S£ ( r (Â) T )=3r (Â) is valid.) 

5. Relations between various types of the sets of trees 

We shall say that a set of trees is regular iff it is represented by a such modi-
fication of our finite pseudoautomaton that if the transition function, the set of 
inputs and the set of states are denoted by a, V, and A, respectively, than for any 
vÇV, ctv : {p\p£Â*, lg (p)^Kv}-* A, where Kv is a finite nonempty subset of to. It can 



398 F. Ferenci 

be checked that this definition of regular sets of trees is equivalent to the definition 
of recognizable sets in [11]. 

Each regular set of trees is pseudoregular. (It can be seen by adding to our 
modified finite pseudoautomaton a new state b and mapping by otv all remaining 
words from (A U {6})* into it. The pseudoautomaton obtained by this procedure 
is regular.) The opposite is not true, i.e. there exist such sets of trees which are 
pseudoregular but not regular (for example [V ] for an alphabet V). 

If a set of trees is pseudoregular it is recognizable by definition. However, there 
are recognizable sets of trees which are not pseudoregular. To show it, let us take 
an alphabet by a single letter v. Then each subset of the set 

{t\t = v(v)(v)...(v) = v(v)\ kico), 
k times 

is represented by a pseudoautomaton which has at most three states. Therefore, 
selecting a subset T of this set, for which fV(T) is not context-free, we get a -
recognizable set of trees and it is not pseudoregular by Theorem 4.7. 

To finish these discussions, we demonstrate that for any alphabet V there are 
subsets of [V] which are not recognizable. Let us suppose that v is an element of 
Vand define a subset U of [V] in the next way: 

(1) veu-, 
(2) if U, then w(/)G U; 
(3) the elements of U are those and only those which we get from (1) and 

(2) in a finite number of steps. 
Every recognizable subset of U is regular, therefore, it is pseudoregular. Select-

ing from U a subset S for which fV(S) is not context-free, we get a set which is 
not recognizable. 

6. Conclusion 

From our point of view, we shall now answer to the question: what is the 
connection between pseudoautomata and automata? 

The importance of connected pseudoautomata follows from Theorem 4.2. 
By the assertion 2° (a) of Theorem 4.5 every pseudoautomaton of this kind is a 
hnmomorphic image of a connected groupoid pseudoautomaton, and therefore 
(for Theorem 4.1) equivalent to it. 

Let A = (a(V, A), AF) be a connected groupoid pseudoautomaton, i.e. a(V, A) = 
= ind si for some connected designed groupoid si = (A,V,Q. Moreover, let 
A be a monoid (semigroup with identity). Then, from the associativity it follows, 
that for each p£V+ the set T{p)={t\t£[V\,W{t)=p} has the property, that the 
whole set is represented by a single state of A. (This means that from , t2£T(p) 
it follows oi(t1)=ix(t2). It can be proved by induction on lg (p).) For this reason 
it may be chosen a representative from T(p) which is simpler than other members 
of this set, and only it must be represented by the pseudoautomaton A. If 
p = v1v2...vk V, l^i^k), then this representative can be t=v1(v2(...(vk)...)) 
where arities of symbols v1, v2, ...,vk_1 equal to 1 and of vk to 0. However, the 
situation becomes yet more simpler, if arities of each v from V equal to 1 and the 
other arities are ignored because they are unnecessary. But, it needs the introducing 
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of a nullary symbol A which is not in V and whose realization is the identity e of 
the monoid A. Then the representative of T(p) is the tree ^ (^ ( . . . ( ^ (A) ) . . . ) ) . By 
these modifications we got from A a (connected) automaton in the sense of [4], [5], 
with initial state e. Now, an arbitrary homomorphic image of this automaton is a 
(connected) automaton too, its initial state is the image of e under the homomor-
phism, and moreover these automata are equivalent. (The first of them is a "mono-
id" automaton, but the second is an arbitrary one.) 

By this interpretation, we got that the (ordinary) automaton is a simplification 
of the pseudoautomaton for the case when its groupoid is a monoid, and con-
versely, the concept of the pseudoautomaton is such a generalization of the con-
cept of the automaton where its monoid is replaced with an arbitrary groupoid. 

Abstract 

The notion of a pseudoalgebra and that of a pseudoautomaton are introduced in a paper by 
THATCHER (1967). In this work it is shown that with a pseudoalgebra and with a pseudoautomaton 
a groupoid can be associated, in the same way as to a unary universal algebra and to an automa-
on a monoid can be corresponded. 
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