
f

Tomus 4. Fasciculus 4.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

F U N D A V I T : L. KALMÁR

R E D I G I T : F. G É C S E G

COMMISSIO R E D A C T O R U M

A. Á D Á M
M. ARATÓ
S. CSIBI
B. D Ö M Ö L K I
B. K R E K Ó
K. L I S S Á K
Á. MAKAY
D. M U S Z K A
ZS. N Á R A Y

F. O B Á L
F. P A P P
A. P R É K O P A
J. S Z E L E Z S Á N
J. S Z E N T Á G O T H A 1
S. S Z É K E L Y
J. S Z É P
L. V A R G A
T. VÁMOS

SECRETARIUS C O M M I S S I O N S

I. B E R E C Z K I

Szeged, 1980
Curat: Universitas Szegediensis de Attila József nominata

4. kötet 4. füzet

ACTA
CYBERNETICA

A HAZAI KIBERNETIKAI KUTATÁSOK
KÖZPONTI PUBLIKÁCIÓS FÓRUMA

A L A P Í T O T T A : KALMAR LASZLO

F Ő S Z E R K E S Z T Ő : G É C S E G F E R E N C

A SZERKESZTŐ

Á D Á M A N D R Á S
ARATÓ MÁTYÁS
C S I B I S Á N D O R
D Ö M Ö L K I B Á L I N T
K R E K Ó B É L A
L I S S Á K K Á L M Á N
MAKAY ÁRPÁD
M U S Z K A D Á N I E L
N Á R A Y Z S O L T

BIZOTTSÁG TAGJAI

O B Á L F E R E N C
P A P P F E R E N C
P R É K O P A A N D R Á S
S Z E L E Z S Á N J Á N O S
S Z E N T Á G O T H A I J Á N O S
S Z É K E L Y S Á N D O R
S Z É P J E N Ő
V A R G A L Á S Z L Ó
V Á M O S T I B O R

A SZERKESZTŐ BIZOTTSÁG TITKÁRA

B E R E C Z K I I L O N A

Szeged, 1980. június
A Szegedi József Attila Tudományegyetem gondozásában

Tomus 4.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

F U N D A V I T : L. KALMÁR

R E D I G I T : F. GÉCSEG

COMMISSIO R E D A C T O R U M

A. Á D Á M
M. ARATÓ
S. CSIBI
B. D Ö M Ö L K I
B. K R E K Ó
K. L I S S Á K
Á. MAKAY
D. M U S Z K A
ZS. N Á R A Y

F. O B Á L
F. P A P P
A. P R É K O P A
J. S Z E L E Z S Á N
J. S Z E N T Á G O T H A I
S. S Z É K E L Y
J. S Z É P
L. V A R G A
T. VÁMOS

SECRETARIUS C O M M I S S I O N S

I. B E R E C Z K I

Szeged, 1980
Curat: Universitas Szegediensis de Attila József nominata

INDEX

Tomus 4.

H. Andréka and I. Németi: The generalised completeness of Horn predicate-logic as a programm-
ing language 3

M. A. Arbib and E. G. Manes: Tree transformations and the semantics of loop-free programs.. 11
A. P. Ershov: Mixed computation in the class of recursive program schemata 19
M. A. Gavrilov: Certain operations with the sets of discrete states 25
F. Gécseg and M. Steinby: Minimal ascending tree automata 37
T. Gergely and M. Szőts: On the incompleteness of proving partial correctness 45
G. T. Herman and H. K. Liu: A simple shading for computer displayed surfaces 59
G. Hotz: Normal-form transformations of context-free grammars 65
A. Iványi and I. Kátai: Processing of random sequences with priority 85
H. Jürgensen: Über das Rechnen mit den Elementen abstrakt präsentierter Halbgruppen 103
W. Kämmerer: Zur Synthese von DOL-Systemen 117
M. B. Pour-El and I. Richards: Difierentiability properties of computable functions — a sum-

mary 1 123
A. Salomaa: Equality sets for homomorphisms of free monoids 127
K. Schütte: Ein Ansatz zum Entscheidungsverfahren für eine Formelklasse der Prädikatenlogik

mit Identität 141
M. K. Chirkov: On some types of incompletely specified automata 151
Z. Zachar: The solvability of the equivalence problem for deterministic frontier-to-root tree

transducers 167
Z. Laborczi: A note on deadlocks : 179
J. Sifakis: Use of Petri nets for performance evaluation 185
B. Zelinka: Strongly connected digraphs in which each edge is contained in exactly two cycles 203
K. Vesztergombi: Some remarks on the chromatic number of the strong product of graphs . . . 207
H.-D. O. F. Gronau: On Sperner families in which no 3 sets have an empty intersection 213
F. Jó/esz and M. Szilágyi: A possible new model of neurons and neural processes based on the

quantum-mechanical theory of measurement 221
A. Békéssy: Estimation of average length of search on random zero-one matrices 241
J. Demetrovics: On the equivalence of candidate keys with Sperner systems 247
Z. Gidófalvy: A new statistical solution for the deadlock problem in resource management

systems 253
L. K. Bruckner: Or. the Garden-of-Eden problem for one-dimensional cellular automata 259
E. Katona: Linear parallel maps of tessellation automata 263
К. H. Kim and F. W. Roush: Schützenberger's monoids 269
J. Demetrovics and L. Hannák: The cardinality of closed sets in pre-complete classes in ¿-valued

logics 273
H.—D.O.F. Gronau: Recognition of monotone functions 279
F. Móricz, A. Varga and P. Ecsedi-Tóth: A method for minimizing partially defined Boolean

functions :. 283
K. Tóth: Modal logics with function symbols 291
J. Dassow: On some extensions of indian parallel context free grammars 303
О. Б. Лупанов: О вентильных схемах • 311
О. Б. Лупанов: Об асимптотических оценках сложности управляющих систем 317
L. Csirmaz: Structure of program runs of non-standard time 325
T. Gergely and L. Úry: Nondeterministic programming within the frame of firs order classical

logic, Part 1- 333
T. Gergely and L. Úry: Nondeterministic programming within the frame of first order classical

logic, Part 2 355
K. Tóth: Completeness in non-simple and stable modal logics 377
К. H. Kim and F. W. Roush: Enumeration of certain words 383
F. Ferenci: Groupoids of pseudoautomata 389

79-5678 — Szegedi Nyomda — F.v.: Dobó József igazgató

On some extensions of indian parallel context free grammars

B y J . DASSOW

1. Introduction

In order to get better models for aspects of programming and natural languages
some extensions of context free grammars are introduced, for instance matrix
grammars, random context grammars, programmed grammars, time-variant
grammars (see [1], [13], [7], [10], [11]), which are characterized by mechanisms
regulating the use of the productions. The relations between the associated language
families are studied by some authors (see [10], [4], [11]).

In [12], R. SIROMONEY and K . KRITHIVASAN regard a parallel version of con-
text free grammars. In this paper we introduce some of the above mentioned ex-
tensions for these indian parallel context free grammars. An other generalization
of the indian parallel grammars are the EDTOL systems (see [3]). We shall prove
that all these language families coincide.

The result has also another interesting aspect. The EDTOL systems work
purely parallel, i.e. all occurrences of all letters are rewritten in a single derivation
step; the other extensions of the indian parallel grammar have a sequential aspect
because only all occurrences of one letter are rewritten in a single step. Therefore
our result can be regarded as a sequential characterization of EDTOL languages.
Thus, it is of interest in connection with the sequential characterizations of ETOL
languages (see [14], [6], [9], [8], [2]).

2. Definitions and notations

At first we recall the definition of the indian parallel context free grammar
and its derivation process.

Indian context free grammar. An indian context free grammar is a construct
G=(VN, VT,P, S) where

i) VN and VT are finite nonempty sets, VN fl K r = 0 ,
ii) P is a finite subset of VNX(VN{J VT)* (the elements of P are written as

A£VN, W(I{VN\JVTY),
iii) S£Vn.

1 Acta Cybcrnetica

304 J. Dassow

Let V= VNUVT- Let V+, y£ V*. We say that x directly derives y iff
i) x=x1Ax2Ax3...x„-1Ax„, AeVN, Xi€(V\{A})*,

ii) y=x1wx2wx3...xn-1wxn,
iii) A ->-w£P.

*

Then we write x=>y. Let => be the reflexive and transitive closure of =>.
The language L{G) generated by G is defined as

L(G) = {x: S^>x,x£Vl}.

Now we define some extensions of this grammar by certain mechanisms regulating
the derivation process. In all cases we use the alphabet VN of nonterminals, the
alphabet VT of terminals, the axiom VN, productions A-»w, A£VN, w£V*,
the application of a rule is in all cases defined as above, and if it is not stated other-
wise then the associated language is defined in the way given above. We give the
regulating mechanisms.

Indian matrix grammar. G=(VN, VT, M, S) is an indian matrix grammar iff
M is a finite set of finite sequences of productions,

M = {m1,m2, ..., mr},

™i = »V Al2 - wi2, ..., Ais - w,J for i = 1, 2, ..., r.
The elements of M are called matrices. To apply such a matrix one has to apply
the productions A ^ w ^ , . . . , A is-^w is in the given order. Only those words of
Vj are in L(G) which are obtained by applications of the matrices.

Indian periodically time-variant grammars. An indian periodically time-variant
grammar is a construct G=(VN, VT,P, S, /) , where / is a mapping N—ip(i>)
such that f(i+j)=f(i) where m and j are fixed and i>m is arbitrary. The deriva-
tion is regulated by the condition that the production used in the Ar-th step has to
be in the set / (k).

Indian random context grammar. The productions of an indian random con-
text grammar G=(V1¥, VT, P, S) are of the form

A+w,R,Q

where R and Q are subsets of VN. Such a production is only applicable on a word
x=x1Ax2Ax3...x„_1Ax„ if contains no letter of R and contains
all letters of Q.

Indian programmed context free grammar. The productions of an indian pro-
grammed grammar G=(VN, VT,P, S) are of the form

(/) A w, F, S

where / is the label of the production, F and S are sets of labels. If A—w is ap-
plicable to x, then the next production has to be a rule with a label contained in
the success field S. If A~w is not applicable then the next production has to
have a label contained in the failure field F.

All these grammars work in a sequential-parallel way, i.e. only one letter is
rewritten in a single'derivation step, but all occurrences of this letter are rewritten.
Starting from biological motivations EDTOL languages are defined which are

On some extensions of indian parallel context free grammars 305

also a generalization of indian parallel context free languages. The associated
grammars work purely parallel as it is seen from the following definition.

EDTOL system. An EDTOL system is a construct
G—(V, VT, { P I , P2, . . . , P R } , S)

where
i) V is a finite set, VT is a nonempty subset of V,

ii) S € F \ F r ,
iii) each Pt is a finite subset of FX V*, the projection of P, on the first coor-

dinate is V, and if A—w1, A-+w2 are in P, then w1 = iv2.
(Usually only S£ V + is required. It is easy to prove that K \ K r does not restrict
the generative power.)

Let V+ and yd V*. It is said that x directly derives y (also written x=>-.y)
iff

i) x = x1x2...x„, x£V,
ii) y=yly2...y„,

iii) there is a y£{l, 2, . . . , r} such that x ^ y ^ P j for / = 1 , 2 , . . . , « .
The language L(G) is again defined as

L(G) = {x: S^>x,x£Vf}.
We use the following notations

!F (IM) — family of indian matrix languages,
!F (IPTV) — family of indian periodically time-variant languages,
3F (IRC) — family of indian random context languages,
J5" (IPCF) — family of indian programmed context free languages,
J5" (EDTOL) — family of EDTOL languages..

3. Comparison of the language families

In the following proofs we will often introduce new alphabets. We make the
next convention: If UQV and V{, — {x': U) is a new alphabet then w' =
= x'[x'2 ...x'^ for w—x1x2.:.xn where „ = (xl € U

~~ I*, U.

Let min (vv) denote the set of letters occurring in w.

Lemma 1 . 9 (EDTOL) g j ^ (IM)

Proof. Let G=(V, VT, {P l5 P2 , . . . , Pr}, S) be an EDTOL system. Let wXtP
be the right side of the production with the left side x in P^{P1,P2, . . . , P,}- Further
WP put f(U,P)= U min (wx P) for UQ V.

xiU
For a subset UQ V we introduce a new alphabet Vu={xu: x£ U). Now we

de^ne the following matrices for U={xh, xh, ..., x ; J Q V and P£ {Px, P2 , . . . , Pr},

Pu = [(*/i)i/ — (wxil,p)f(u,P)> (xi2)u "*" (wxj2,p)f(u,p)> •••» (x,k)u — (.wxik,p)nu,p)]>

Qu — tC-^ii)C/ xhi (xiz)u xi2 > •••) (xik)u

1*

306 J. Dassow

and consider the indian matrix grammar

tf=i(F\Kr)U u Vv,VT, U U (PduV U- S a . s J .
v ugv i=iugF i/sk '

The application of the matrix Pv models the application of P to words w with
£/=min(»v), i.e. if w=>w' is in G then WV^>{W')V, is in H where £ /=min(w) ,
i / ' = m i n (w ') . The application of the matrix Qv is a translation of wu in w. If
wf Vy then we can apply only the matrices Pv and Qv. Now it is easy to see that
L(G)=L(H). Therefore L{G)^{IM).

Lemma 2. ^ (I M) ^ i ^ (I R C) .

Proof. Let IM) and L=L{G) for the indian matrix grammar
G = (VN, V T , M, S). L e t M={M1, M2, ...,MR), M—LA^W^, AIT-<*WIT, ...,
. . . , AiM—w,J for i=\,2,...,r. We introduce new alphabets V',J = {xhJ: V},

l s a i ^ r , l ^ j m s - l . Let V'=\J(JV'-J\JVN.
.-=i j=i

Now we can model the application of the matrix m l by the following sequence
of productions of an indian random context grammar

AH - K) ' - 1 , 0

x - x i ' 1 , K ' \ (^ j v U K i - 1)) m i n ((w i l) ' ' - 1) fo r X£VN,

Atf - (w^)'-2, 0

3th1 - x>'\ VXiV'^UV'-2), min((vv12)''-2) for x'-^V'-1

A'R/-1 - (w I s), V\VI,S~1, 0

^ K M F ' ^ - ^ F j v) , min (w j for x ^ " 1 ^ 1 ' ' 5 " 1 .

If we consider only such productions in our indian random context grammar then
we can have also only such derivations which model the application of matrices.
Therefore, we generate the same language. Thus L £ ^ (I R C) .

The above construction works correctly only if we have no rule of form A^—X
in the matrices (A denotes the empty word). If we have a matrix M such that

m = [A1-~ w1; ..., Aj — X, ..., Ak — wfc]
we use

m' = [Ax - wu ..., Aj - Bj, ..., Ak - wk, Bj - X]

instead of m, where B} is a new nonterminal. It is easy to see that this modification
do not change the generative capacity and that our construction works also in the
modified case.

Lemma 3. ^ (I R Q i J ^ C I P C F) .

Proof. Let G=(VN, V t , P. S), VN={ALT A2, ..., AN}. We give a possibility
to model a production of G by rules of an indian programmed context free
grammar.

307 J. Dassow: On some extensions of indian parallel context free grammars

Let Aj-w, {Ah,Ah, ...,A,s}, {Ah, Ah, ..., AJt) be a rule of G. Consider
a new alphabet V = \x': x€ VN} associated with the rule and the following diagram
of IPCF-productions (an arc labelled by F connects a production with its failure
field, and an arc labelled by S connects it with its success field).

It is obvious that we can only simulate rules of G because we have associated
the primed alphabets with the productions of G. This proves £(G)£J5"(IPCF).

Lemma 4. J ^ (I P C F) g ^ (E D T O L) .

Proof. Let Z,G^(IPCF), L = L(G) for an indian programmed context free
grammar G=(VN, VT, P, S). Let R be the set of labels of the productions of P.
With each subset I of R we associate new alphabets Vf = {xt: VN} and V[=
= x£ VN}. We define tables P I > M for any /6/, IQR, /€ {1, 2, 3} in the following
way: If (/) A-*w, F, S is a rule and / € / then put

Pi,i,i = {*/ - * ^ A}U{Aj / S - S}U{x - x: x£VT),

Pi,i,2 = {*/ - * * A}{J{Aj - Ai, f - / , S - S}U{x - x : x£VT},

= {*/.-> *s = x^A}U{Ai-~ws,f~f, S - S } U { x - x : x£VT).
Using productions from sets of these types we can only generate words which

contain only letters of VT and Vr for a certain I with exception of one letter which
can be in K/. If we have such a word we can apply only tables PIJJ. Further Pl<lt 1
models the case that A, does not occur and produces a word which consist of termi-
nals and nonterminals of the alphabet associated with the failure field. The other
two tables model the application of A—w, and we get a word with nonterminals
of the alphabet associated with the success field.

Let / 1 , / 2 , . . . , / r be the sets containing labels whose production has the left
sidft S, and put

a = {S-S/1,/-/}U{*-*: x€VTU U (VjUVi)}.
IQR

Then the EDTOL system

H = ({ S , / } U r T U U (VjUVi), VT, {Phly. I ^ R , ¿€{1, 2, 3}, / € /}U
IQR

U{&: 1 ^ r) , S)

generates L. Thus LG^(EDTOL).

Lemma 5. ^ (I M ^ J ^ I P T V) .

Proof. The proof of [10], Theorem 11 works also in the indian parallel case.

Lemma 6. ^ (I P T V) g J^(EDTOL).
Proof. Let L—L(G) for the indian periodically time-variant grammar

G=(Vn, V t , P, S , f) where f{i+j)—f(i) for />w?. We introduce new alphabets
K<» ={*<*>: xeF,v} for l g / S m + ; / - l . For A-*w=p£P, p£f(i), l S / < m + j - l
we define the tables

P. p = {x(0 - jcO+D; x ^ A}U{Aw - w (i+1)}U {x - x : x€VT}

308 J. Dassow

A2 — A'z

W i s

F{ | S

All rules with left side
Al and a primed version
of Ax on the right side

F Fi iS All rules with left side
Al and a primed version
of Ax on the right side

*
< A'n-An

All rules with left side
Al and a primed version
of Ax on the right side S

Fig.1

309 J. Dassow: On some extensions of indian parallel context free grammars

and

Pm+J.liP = {x(m+-'-1> - x(m): x 7i A}U{A(m+J~1) - w(m,}U{jc - x: x£VT}. -

It is easy to see that the EDTOL system

(m+j-l \

H=\VTU ¿ J y{k\ VT, {Pi,P: 1 ^ ^ m+j-l, pfj(i)}, 5 (1)J

generates!,.
We say that a grammar is A-free if it contains no production with the empty

word X at the right side. The family of X-languages generated by 1-free A'-grammars
is denoted by Fx{X). As usual we identify languages which differ only in the empty
word.

Theorem 1. (EDTOL) = # ' (I M) = J i r ([R C) = J r (I P C F) = ^ (I P T V) =
— J5";. (EDTOL) = SF-t, (IM) = J ^ (IRC) = (IPCF) = (IPTV).

Proof. The first row follows directly by Lemma 1—6. Further 2F (EDTOL) =
=3Fk (EDTOL) is known and all our constructions in Lemma 1—4 and 6 preserve
A-freeness. If the matrix grammar in the proof of [10], Theorem 11 is 1-free then
we modify the proof in the following way: The new symbols Yj are not catenated
with Pj, the last letter of Pj has to be in a new "primed" alphabet and the last
rules have to change the letter into a "not primed" letter.

By Theorem 1, we get some information on properties of the extensions of
indian parallel context free grammars, because we have knowledge on 2F (EDTOL).
— In [3], closure properties under AFL-operations are given.
— There are context free languages which are not ' in (EDTOL).
— It is known that the families of matrix languages, programmed context free
languages, random context languages and periodically time-variant languages prop-
erly contain (EDTOL). Thus the indian parallel restriction reduces the generative
capacity of the considered extensions.
— The proof of v. SOLMS [14] works also in the indian parallel and deterministic
case. This proves that indian random context grammars of special type generate
already all indian random context languages.

A further language family which is equal to the above families is given in [2],
Theorem 2.

Finally we want to mention without proof that all our language families also
coincide with the family of indian unordered scattered context languages, which are
the indian parallel version of the unordered scattered context grammars of [5].

TECHNOLOGICAL UNIVERSITY OTTO V O N GUE RI CKE
D E P A R T M E N T OF MATHEMATICS A N D PHYSICS
M A G D E B U R G , G R D

References

[1] ABRAHAM, S . , Some questions of phrase structure grammars, Comput. Linguistics, v. 4 , 1 9 6 5 ,
p p . 6 1 — 7 0 .

[2] DASSOW, J . , E T O L systems and compound grammars, Rostock, Math. Colloq., v. 1 1 , 1 9 7 9 ,
p p . 4 1 — 4 6 .

310 J. Dassow: On some extensions of indian parallel context free grammars

[3] EHRENFEUCHT, A. & G. ROZENBERG, On images of inverse homomorphisms, Automata, Lan-
guages, Development, Ed. A. Lindenmayer, G. Rozenberg, North-Holland, 1976.

[4] MAYER, O . , Some restrictive devices for context-free grammars, Inform, and Control, v. 20,
1972, pp. 69—92.

[5] MILGRAM, D . & A . ROZENFELD, A note on scattered context grammars, Inform. Process. Lett.,
v. 1, 1971, pp. 47—50.

[6] PENTTONEN, M., ETOL-grammars and N-grammars, Inform. Process. Lett., v. 4, 1975, pp.
11—13.

[7] ROSENKRANTZ, D. J., Programmed grammars and classes of formal languages,/. Assoc. Comput.
Mach., v. 10, 1969, pp. 107—131.

[8] ROZENBERG, G., More on ETOL systems versus random context grammars, Inform. Process.
Utt., v. 5, 1976, pp. 102—106.

'91 ROZENBERG, G. & D. VERMEIR, Context-free programmed grammars and ETOL systems,
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, v. 45,
1976, pp. 482—487.

[1 0] SALOMAA, A . , On grammars with restricted use of productions, Ann. Acad. Sci. Fenn. Ser.
A I Math., No. 454, 1969.

[11] SALOMAA, A., Formal languages, Academic Press, 1973.
[12] SIROMONEY, R. & K. KRITHIVASAN, Parallel context-free languages, Inform, and Control, v.

24, 1974, pp. 155—162.
[13] VAN DER WALT, A . P . J . , Random context languages, Information Processing 1971, North-

Holland, 1972, pp. 68—66.
[14] VON SOLMS, S . H., On TOL languages over terminals, Inform. Process. Lett., v. 3, 1975, pp.

69—70.
(Received June 6,1979)

О вентильных схемах

О. Б. Лупанов

Вентильные схемы являются одним из основных модельных объектов,
на которых изучаются закономерности сложности управляющих систем. Целе-
сообразность их изучения объясняется, с одной стороны, их простотой, и, с дру-
гой стороны, возможностью использовать методы и конструкции, разработан-
ные для них, в случае «более сильных» классов управляющих систем.

Вентильную схему можно определить как ориентированный граф, в кото-
ром выделено некоторое подмножество вершин — множество полюсов —
и эти вершины занумерованы. С каждой вентильной схемой £ связывается
матрица из нулей и единиц А — \\а^\\ —матрица проводимостей (ач = 1 тогда
и только тогда, когда в 5 имеется ориентированный путь из полюса ¡' в пол-
юс у). Очевидно, что матрица проводимостей любой вентильной схемы явля-
ется транзитивной. Важным классом вентильных схем являются такие, в кото-
рых полюса разбиты на два подмножества: «входные» — с номерами
_Р={1, ...,р) и «выходные» — с номерами 0, = {р+\, ..., р+д} и.на матрицу
проводимостей наложено дополнительное ограничение: в у = 0, если г
и либо /£-Р,у'£.Р, либо /€(?,./€ 6 , либо В этом случае система
проводимостей полностью определяется подматрицей данной матрицы, име-
ющей р строк и # столбцов; ее обычно и называют матрицей проводимостей.

Одной из основных задач в теории вентильных схем является задача син-
теза — построение по данной матрице А вентильной схемы, имеющей в ка-
честве матрицы проводимостей матрицу А. Для решения этой задачи сущест-
вует тривиальный способ, сводящийся к непосредственному соединению полю-
сов вентилями. Однако этот способ является неэкономным. Поэтому задача
синтеза уточняется — требуется указать метод построения схем, который,
с одной стороны, является не очень трудоемким и, с другой стороны, позволяет
строить достаточно простые схемы. Для характеристики сложности схем вво-
дится функция В(р, д) — минимальное число вентилей, достаточное для реа-
лизации любой матрицы с р строками и д столбцами (функция Шеннона).
Пусть В,(р, —аналогичная функция для схем глубины' г (глубина схемы —
максимальная длина цепи от входа к выходу).

Первые результаты об оценках функций В{р, д) и Вг(р, д) были получены
в работе автора [1].

312 О. Б. Лупанов

Теорема I [1]. Пусть выполнены условия*

а) р -

б) р^д;

в)
Р

Тогда
РЧ

в2(р, Ч) log q

С л е д с т в и е 1. При условиях а), б), в)

log (pq) ' log q'

С л е д с т в и е 2. При условиях а), б), в) и дополнительном условии

Го)

д о -
выполняются соотношения

РЧ В(р, q) ~ Вг(р, q)
log q'

Конструкция, использованная в методе синтеза вентильных схем глу-
бины 2, легла в основу методов синтеза «более сильных» классов управляющих
систем (контактных схем, схем из функциональных элементов, автоматов
и т. д.) — см., например, [2].

Уточнение оценок для В(р, q) было получено Э. И. Нечипоруком.

Теорема 2 [3, 4]. Пусть выполнены условия а) и б) теоремы 1, а также
условие

г..) lim]°gP = —-— , где и, о — целые числа, большие нуля.
log q fl{Q-\) + Q

Тогда

Замечание . Условие гс) включает важный в приложениях случай,
когда p x q .

Случай, когда не выполняется условие в), был исследован В. А. Орловым.
Оказалось, что в этом случае функция Вг(р, q) ведет себя «ступенчатообразно».
Именно справедливы утверждения.

* Здесь и ниже имеется в виду, что р я д являются функциями некоторого параметра п,
и имеются в виду асимптотические соотношения при л — l o g означает логарифм по осно-
ванию 2.

О вентильных схемах 313

Теорема 3 [5]. Пусть к произвольное фиксированное целое положительное
число. Тогда

B2([k logq], q)~(k+\)q.

Теорема 4 [5]. Пусть выполнены условия

a') q оо,

BJ lim —^— = ос, причем а 1, а не целое.
log q

Тогда

• в2(р,д) ~[a+ik.

Теорема 5 [5]. Пусть q^p2p_1 —р. Тогда

B2(p,q) = p2"-1-p + q. i
Теорема 6 [5]. Пусть выполнено условие а), а также условия

в'> бЬ-1;
д) q ^ p 2 " - l - p .

Тогда
В2(р, q) ~ 2q.

Теорема 7 [5]. Пусть выполнены условия а), в^, а также
д")

Тогда
Bip, q) ~.Bt(p, q) ~ 2g.

Теорема 8 [5]. Пусть выполнены условия а) и

д +) q^2(2"-p-l).

Тогда
B(p,q)~B2(p,q)~2.2' + q.

Наряду с задачей о реализации произвольных матриц (заданных размеров)
рассматривался вопрос о реализации матриц из специальных классов и о реа-
лизации конкретных матриц.

Пусть Br(p, q, а) функция Шеннона для матриц с р строками q столбцами,
имеющих otpq единиц. Пусть

а* = min (а, 1—а), # (а) = а log—+(1 —а) log -¡-i—.
а 1 —а

Э. И. Нечипорук доказал следующие утверждения.

314 О. Б. Лупанов

Теорема 9 [3, 4]. Пусть выполнены условия б), а также

a j ар -

ч . log q е*,е) f б > Челое

log — а

Тогда
apq

Вг (Р, Я,«) в
Теорема 10 [12, 4]. Пусть выполнены условия а), б), а также

Р в*) Н(сс)

е„)

Тогда

log q
log q

l o g 4 r a*

B2(p, q,x)~H(a) ™
log q'

Теорема 11 [4]. Пусть выполнены условия а), ва), еа), а также

r t) log р ~ log q.

Тогда

В3(р, q, a) ~ Н(а) РЧ

2 log q '

Пусть By
r(j>, q) — функция Шеннона для не всюду определенных матриц,

у которых число определенных элементов — нулей и единиц — равно уpq
(остальные (1— y)pq элементов не определены и при реализации матрицы
заменяются нулями и единицами так, чтобы реализация была простейшей).
Э. И. Нечипорук установил следующий факт.

Теорема 12 [13, 4]. Пусть выполнены условия а), б), а также

УР в7)

е')

l og?
log?

l o g y

Тогда

В1(р,.д)~У. РЧ
log q '

О вентильных схемах 315

Конструкция, использованная при доказательстве верхней оценки в этой
теоремы, применялась впоследствии многими авторами при реализации не
всюду определенных булевых функций в различных классах схем (например,
[6-9]).

При изучении сложности реализации конкретных матриц наиболее высо-
кие оценки (порядка р3/2 в случае квадратных матриц порядка р) были полу-
чены Э. И. Нечипоруком («матрицы без прямоугольников» —см. [10]), а также
Т. Г. Таръяном (матрицы Адамара — см. [11]).

Отметим в заключение некоторые задачи, решение которых, по-видимому,
будет связано с созданием новых методов.

1. Получить асимптотическое выражение для В(р, q) в случае log р X log q

(например, при — §—иррациональное число; т. е. снят ограничение log q
rc) — см. стр. 312).

2. Получить асимптотическую формулу для функции Шеннона В{р) в слу-
чае схем, реализующих произвольные транзитивные матрицы с р строками и
р столбцами (в которых не выделены специально входы и выходы); оценки

р 2
log р log р

получаются легко на основе, например, теоремы 1.
3. Построить «эффективно» последовательность матриц порядка р, которые

реализуются лишь со сложностью, существенно большей, чем р3/2.

Литература

[1] Лупанов, О. Б., О вентильных и контактно-вентильных схемах, ДАН СССР, т. 111, № 6,
1956, стр. 1171—1174.

[2] Лупанов, О. Б. О синтезе некоторых классов управляющих систем, Проблемы кибернети-
ки, вып. 10, 1963, стр.'63—97.

[3] Нечипорук, Э. И., О вентильных схемах, ДАН СССР, т. 148, № 1, 1963, срт. 50—53.
[4] Нечипорук, Э. И., О топологических принципах самокорректирования, Проблемы кибер-

нетики, вып. 21, 1969, стр. 5—102.
[5] Орлов, В. А., Реализация «узких» матриц вентильными схемами, Проблемы кибернетики

вып. 22, 1970, стр. 45—52.
[6] Шоломов, Л. А., О реализации недоопределенных булевых функций схемами из функцио-

нальных элементов, Проблемы кибернетики, вып. 21, 1969, стр. 215—226.
[7] Мадатян, X. А., О реализации не всюду определенных матриц заданной «густоты»

вентильными схемами глубины два, Кибернетика, Киев, № 6, 1973, стр. 12—15.
[8] Липатов, Е. П., Об одном случае неравномерного локального кодирования, Проблемы

кибернетики, вып. 26, 1973, стр. 95—107.
[9] PiPPENGER, N., Information theory and the complexity of Boolean functions, Math. Systems

Theory, v. 10, 1976/77, No. 2, pp. 129—167.
[10] Нечипорук, Э. И., Об одной булевской матрице, Проблемы кибернетики, вып. 21, 1969,

стр. 237—240.
[11] TARJÁN, Т . G., Complexity of lattice-configurations, Studio Sei. Math. Hungar., v. 10, 1975,

pp. 203—211.
[12] Нечипорук, Э. И., О синтезе вентильных схем, Проблемы кибернетики, вып. 9, 1963,

стр. 37—44.
[13] Нечипорук, Э. И., О сложности вентильных схем, реализующих булевские матрицы

с неопределенными элементами, ДАН СССР, т. 163, № 1, 1965, стр. 40—42.

(Поступило 2-ого августа 1979 г.)

Об асимптотических оценках сложности управляющих систем

О. Б. Лупанов

Этот доклад содержит обзор некоторых результатов в области асимпто-
тической теории сложности управляющих систем. Здесь, с одной стороны,
будет кратко охарактеризовано общее состояние теории и, с другой стороны,
несколько более подробно будут изложены некоторые результаты послед-
них лет.

Асимптотическая теория синтеза управляющих систем фактически нача-
лась с работ Шеннона [1, 2]. С. В. Яблонским было введено весьма общее поня-
тие управляющей системы (УС) и были сформулированы основные задачи
теории управляющих систем [3]. Полностью привести здесь определение УС
не представляется возможным. Укажем лишь некоторые примеры УС. Управ-
ляющими системами являются релейно-контактные схемы, цифровые вычис-
лительные машины, программы (для ЭВМ), арифметические формулы и т. д.
Все эти объекты характеризуются тем, что они обладают некоторой структурой,
схемой 5, и реализуют определенную функцию / . С каждым множеством УС
естественным образом связывается множество <5 их схем и множество 5 их
функций.

Одной из основных задач теории УС является задача синтеза: по функции
/ из 3 требуется найти УС, схема которой реализует / . В настоящее время для
исследования разных вопросов, связанных с задачей синтеза УС (как и для
других задач теории УС) характерно рассмотрение конкретных классов УС
(модельных объектов). К таким классам можно отнести следующие.

1. Вентильные схемы.
2. Дизъюнктивные нормальные формы.
3. Формулы, являющиеся суперпозициями базисных формул.

В частности, формулы в базисе &, V, 1 .
4. Схемы из функциональных элементов.
5. Контактные схемы.
6. Автоматы (логические сети).
7. Алгоритмы.

Всюду в дальнейшем речь будет идти о сложности задания, а не о слож-
ности вычисления.

318 О. Б. Лупанов

Задача синтеза решается, как правило, неоднозначно. Для уточнения
постановки задачи вводится мера сложности схем ¿ (5) функционал, удовлет-
воряющий некоторым естественным условиям. Например, в случае
формул можно определить как число вхождений символов переменных, а в слу-
чае схем из функциональных элементов как число элементов схемы; или не-
сколько более общим образом: функциональным элементам (базисным фор-
мулам) приписываются веса, 1.(5) определяется как сумма весов всех элемен-
тов схемы (всех вхождений символов базисных формул соответственно).
После этого задача о синтезе уточняется так: для любой функции / из 5 тре-
буется найти схему 5 из 6 , реализующую / и такую, что ¿ (5) минимально
(«минимальную схему»). Это минимальное значение будем обозначать через

В большинстве случаев существует алгоритм для построения минимальных
схем, основанный на переборе всех схем определенной сложности. Однако
трудоемкость этого алгоритма весьма велика, и он практически нереализуем
при использовании ЭВМ даже в случае функций от сравнительно небольшого
числа переменных (5—10). Все попытки найти более эффективные алгорит-
мы пока не привели к цели. Более того, С. В. Яблонским была высказана гипо-
теза (и получены первые результаты в направлении обоснования этой гипоте-
зы), что «полный перебор» в этих задачах необходим [4]. Поэтому задачу
синтеза приходится уточнять дальше. Один из подходов к этому принадлежит
К. Шеннону [2]. При этом подходе отказываются от нахождения минимальной
схемы для каждой функции. Вместо этого рассматривают задачу синтеза для
целого класса функций (например, для класса g (n) булевых функций от п пе-
ременных); кроме того, требование минимальности заменяется требованием
«почти минимальности». Более точная постановка задачи состоит в следую-
щем. Пусть L(n)—max L (f) , где максимум берется по всем функциям / (j q , ...
..., х„) из 5(п)- Функция L(n) получила название функции Шеннона. Требу-
ется найти алгоритм, который для каждой функции f (x u ..., хп) строит схему
5 такую, что L{S)<L(n); трудоемкость этого алгоритма должна быть су-
щественно меньше трудоемкости полного перебора.

Первые результаты в этом направлении были получены К. Шенноном [2].
Им был предложен оптимальный по порядку алгоритм синтеза контактных
схем и получены оценки

Асимптотически наилучший алгоритм был построен автором, и тем самым
2" установлена асимптотика функции Шеннона: Ц л) ' [5,6]. Автором были

построены также асимптотически наилучшие алгоритмы синтеза формул и
схем из функциональных элементов в произвольном конечном базисе [7, 8].
Асимптотики функций Шеннона для этих случаев имеют соответственно вид

АЯ-

2'
п

О Л + 2
< L(n) 5

и

где g — константа, простым способом определяемая по базису.

Об асимптотических оценках сложности управляющих систем 319

На основе этих методов позже появились аналогичные асимптотические
результаты для других классов управляющих систем. Среди них отметим
работу В. А. Кузьмина, установившего асимптотику функции Шеннона для
сложности реализации булевых функций некоторыми типами алгоритмов
(нормальные алгорифмы, машины Тьюринга) и выяснившего зависимость
этой асимптотики от числа букв используемого алфавита [9].

Исследовался также вопрос о влиянии на сложность реализации различных
дополнительных требований, предъявляемых к схемам. Здесь в первую очередь
следует отметить результаты Э. И. Нечипорука о реализации функций в ба-
зисах, некоторые элементы которых имеют нулевые веса [10], и о синтезе само-
корректирующихся контактных схем [11]. Сюда же можно отнести результат
автора об асимптотике функции Шеннона для схем из пороговых элементов:

(2" V'2

в случае реализации систем m функций асимптотика имеет вид (при условии

(ml- V/2

L (n , m) ~ 2 у [12].
V n —log2m /

Здесь L(S) — число элементов в схеме S; для случая, когда L(S) равно сумме
модулей весов входов элементов, асимптотика была получена ранее Е. Ю.
Захаровой [13].

В случае схем в автоматных базисах положение оказалось более сложным.
Для некоторых частных случаев удалось получить асимптотические формулы
для функции Шеннона (Б. А. Трахтенброт [14],' То Суан Зунг [15]). В общем же
случае задача об асимптотическом поведении функции Шеннона для произ-
вольного автоматного базиса оказалась алгоритмически неразрешимой (В. А.
Орлов [16]). Для частного случая (реализация булевых функций схемами в ав-
томатных базисах) результат В. А. Орлова может быть сформулирован следую-
щим образом. Существует бесконечное множество автоматных базисов {23},
такое что для базиса 23 функция Шеннона имеет асимптотику вида

2"
L{N) ~ С в —

п

(С® константа, зависящая от базиса 93), но не существует алгоритма, определ-
яющего по любому базису из {23} значение константы С в .

Результаты асимптотической теории показывают, что поведение функции
Шеннона слабо зависит от класса УС. Кроме того, оказывается, что почти
все функции из 5 (л) имеют почти одинаковую сложность, асимптотически
равную сложности самой сложной функции.

Из приведенных выше оценок видно, что почти все функции допускают
лишь очень сложную реализацию и поэтому практически недоступны. Поэтому
возникает вопрос о выделении классов функций, реализуемых более просто.
Примеры таких классов известны давно, со времени первых работ по синтезу.

2 Acta Cybcrnetica

320 О. Б. Лупанов

Затем С. В. Яблонским [4] было построено и изучено континуальное семейство
функций, допускающих более простую схемную реализацию, чем большинство
функций. Это классы функций, замкнутые относительно операции подстановки
констант вместо (некоторых) переменных. Каждый класс характеризуется не-
которым числовым параметром <т, отражающим «мощность» класса (0 = а ^ 1).
Для этих классов при <7^0 С. В. Яблонским были построены асимптотически
наилучшие методы синтеза и получены асимптотики функции Шеннона.

Впоследствии автором был предложен один общий подход к синтезу схем
— принцип локального кодирования [17]. Этот подход позволяет по описанию
класса функций (с соблюдением некоторых специальных требований) строить
асимптотически наилучший метод синтеза для функций из этого класса. С по-
мощью этого принципа оказалось возможным единым способом получить
методы синтеза для известных классов функций, а также для многих новых
классов. Асимптотика сложности схем в конечных базисах для функций из этих
классов определяется числом Мп функций /(хг, ..., хп) в этом классе и имеет

вид о - — ^ п Эта функция может принимать значения от величин,
1о§2 Мп

2"
близких к и, до — . Принцип локального кодирования особенно удобен при

применении к достаточно богатым классам УС (схемы из функциональных
элементов, автоматы, алгоритмы). Интересный вариант принципа локального
кодирования описан в работе Е. П. Липатова [18].

Как уже отмечалось, большинство булевых функций допускает лишь
очень сложную схемную реализацию. Однако доказательство этого факта
является неэффективным. Первая «эффективная» нелинейная нижняя оценка
была получена Б. А. Субботовской для сложности реализации линейной функции
от п переменных формулами в базисе &, V, ; эта оценка имеет вид Сп3/2 [19].
В. М. Храпченко усилил эту оценку до и2; тем самым установлен порядок
сложности [20]. И м же предложен общий метод установления квадратичных
нижних оценок для сложности формул й базисе &, V, "1 [21]. Близкие к квадра-
тичным нижние оценки в «более сильных» классах УС (формулы в произволь-
ном базисе; контактные схемы) были получены Э. И. Нечипоруком [22]. Общий
метод получения нелинейных нижних оценок для формул в произвольном
базисе предложен Л. Ходесом и Е. Шпекером [23]. В «более слабых» классах
УС (формулы в функционально неполных базисах) удается получать нижние
оценки порядка пс, где С — произвольная константа (Э. И. Нечипорук [24],
М. М. Рохлина [25]). До сих пор не удалось получить ни одной нелинейной
нижней оценки для схем из функциональных элементов (в полном базисе буле-
вых функций). Для неполных базисов в /:-значной логике удается получать
экспоненциальные оценки в случае схем из функциональных элементов (Г. А.
Ткачев [26]).

В связи с установлением некоторых общих закономерностей сложности
особый интерес сейчас, по-видимому, представляет изучение различных мер
сложности и связи между ними, выявление различных нетривиальных ситуаций,
а также установление более общих закономерностей.

Важной мерой сложности, связанной с числом элементов схемы, является
ее глубина, т. е. максимальная длина цепочки элементов, соединяющей вход

Об асимптотических оценках сложности управляющих систем 321

схемы с ее выходом. Соответствующую функцию Шеннона будем обозначать
через Т(п). Из анализа известных методов синтеза и из нижней оценки для
Ци) легко получается асимптотическая формула для Г(и). Например, для
базиса &, V, справедливо соотношение Т(и)~л. Более точная формула
была получена лишь совсем недавно С. Б. Гашковым [27]

Т(п) = n - l o g 2 l o g 2 n + 0 (l)

(нижняя оценка непосредственно следует из нижней оценки для L(n) в случае
формул; ранее известные верхние оценки для Т(п) таковы:

T(n)Sn+log*n [28], Г (и) ^ и + 0(1) [29]).

Глубину схемы можно трактовать как ее задержку; однако, как показал
В. М. Храпченко, эти характеристики не всегда совпадают [30]. Полный анализ
возможных функций Т(п) в случае, когда некоторые базисные элементы имеют
нулевую задержку, провел С. А. Ложкин. Оказалось, что возможны лишь три
типа поведения функции Т{п):

Т{п) ~ ти; Т(п) ~ a logn; Т(п) = с (n ^ п0) [31].

Кроме того, оказалось, что во многих случаях возможно одновременное
(т. е. в одной схеме) достижение асимптотики сложности и задержки [32, 33].

Из работ последних лет по исследованию других мер сложности следует
отметить результаты О. М. Касим-Заде [34]. Он продолжил начатые М. Н. Вай-
нцвайгом [38] исследования так называемой мощности схем из функциональных
элементов (мощность схемы — это максимальное число ее элементов, имею-
щих на выходе единицу). Пусть £я(л) соответствующая функция Шеннона
для базиса 21. Основные результаты О. М. Касим-Заде состоят в следующем

1. Для почти всех (в некотором естественном смысле) базисов 91

Еф)Жп.

2. Существует бесконечно много различных по порядку функций Ефг).
Например, для любого целого положительного m существует базис 9lm,
для которого

(ух \1/т

т) •

3. Для любого конечного базиса 21 имеет место лишь одна из возмож-
ностей: либо log £з,(/?)хи, либо log £щ(и)х1с^я; при этом по базису эффектив-
но устанавливается, какая из возможностей имеет место.

4. Для базиса &, V, "1 возможно одновременное достижение (в одной
схеме) асимптотики сложности и порядка мощности.

В заключение отметим, что обзоры такого рода (а также по более широ-
кому кругу вопросов) делались раньше [35—37].

2*

322 О. Б. Лупанов

Литература

[1] SHANNON, С. Е., A symbolic analysis of relay and switching circuits, Trans. Amer. Electr. Eng.,
v. 57, 1938, pp. 713—722.

[2] SHANNON, С. E., The synthesis of two-terminal switching circuits, Bell System Tech. J., v. 28,
1949, No. 1, pp. 59—98.

[3] Яблонский, С. В., Основные понятия кибернетики, Проблемы кибернетики, вып. 2, 1959,
стр. 7—38.

[4] Яблонский, С. В., Об алгоритмических трудностях синтеза минимальных контактных
схем, Проблемы кибернетики, вып. 2, 1959» стр. 75—121.

[5] Лупанов, О. Б., О синтезе контактных схём, ДАН СССР, т. 119, № 1,1958, стр. 23—26.
[6] Лупанов, О. Б., О синтезе некоторых классов управляющих систем, Проблемы киберне-

тики, вып. 10, 1963, стр. 63—97.
[7] Лупанов, О. Б., О сложности реализации функций алгебры логики формулами, Проблемы

кибернетики, вып. 3, 1960, стр. 61—80.
[8] Лупанов, О. Б., Об одном методе синтеза схем, Известия вузов, Радиофизика, т. 1, № 1,

1958, стр. 120—140.
[9] Кузьмин, В. А., Реализация функций алгебры логики автоматами, нормальными алго-

рифмами и машинами Тьюринга, Проблемы кибернетики, вып. 13, 1965, стр. 75—96.
[10] Нечипорук, Э. И., О сложности схем в некоторых базисах, содержащих нетривиальные

элементы с нулевыми весами, Проблемы кибернетики, вып. 8, 1962, стр. 123—160.
[11] Нечипорук, Э. И., О топологических принципах самокорректирования, Проблемы кибер-

нетики, вып. 21, 1969, стр. 5—102.
[12] Лупанов, О. Б., О синтезе схем из пороговых элементов, Проблемы кибернетики, вып. 26,

1973, стр. 109—140.
[13] Захарова , Е. Ю., О синтезе схем из пороговых элементов, Проблемы кибернетики, вып. 9,

1963, стр. 317—319.
[14] Трахтенброт, Б. А., Асимптотическая оценка сложности логических сетей с памятью,

ДАН СССР, т. 127, № 2, 1959, стр. 281—284.
[15] Т о С у а н З у н г , Об асимптотических закономерностях сложности автоматов из некоторых

классов, Проблемы кибернетики, вып. 22, 1970, стр. 5—43.
[16] Орлов, В. А., О сложности реализации ограниченно-детерминированных операторов

схемами в автоматных базисах, Проблемы кибернетики, вып. 26, 1973, стр. 141—182.
[17] Л у п а н о в , О. Б., Об одном подходе к синтезу управляющих систем—принципе локаль-

ного кодирования, Проблемы кибернетики, вып. 14, 1965, стр. 31—110.
[18] Липатов , Е. П., Об одном случае неравномерного локального кодирования, Проблемы

кибернетики, вып. 26, 1973, стр. 95—107.
[19] Субботовская, Б. А., О реализации линейных функций формулами в базисе V, &, —,

ДАН СССР, т. 136, № 3, 1961, стр. 553—555.
[20] Храпченко, В. М., О сложности реализации линейной функции в классе п-схем, Мат.

заметки, т. 9, № 1, 1971, стр. 35—40.
[21] Храпченко, В. М., Об одном методе получения нижних оценок сложности п-схем, Мат.

заметки, т. 10, № 1, 1971, стр. 83—92.
[22] Нечипорук, Э. И., Об одной булевской функции, ДАН СССР, т. 169, № 4, 1966, стр.

765—767.
[23] HODES, L., Е. SPECKER, Lengths of formulas and elimination of quantifiers I. Proc. Logic

Colloquium, Hannover 1966, Contributions to mathematical logic, North-Holland, Amsterdam,
1968, pp. 175—188.

[24] Нечипорук, Э. И., О реализации дизъюнкции и конъюнкции в некоторых монотонных
базисах, Проблемы кибернетики, вып. 23, 1970, стр. 291—293.

[25] Рохлина, M. М., О схемах, повышающих надежность, Проблемы кибернетики, вып. 23,
1970, стр. 295—301.

[26] Ткачев, Г. А., О сложности реализации одной последовательности функций Л-значной
логики, Вестник Московского университета, Вычислительная математика и кибернетика,
№ 1, 1977, стр. 45—57.

[27] Гашков, С. Б., О глубине булевых функций, Проблемы кибернетики, вып. 34, 1978, стр.
265—268.

[28] SPIZA, Р . М . , On the time necessary to compute switching functions, IEEE Trans. Comput.,
C—20, No. 1, 1977, pp. 104—105.

Об асимптотических оценках сложности управляющих систем 323

[29] MCCOLL, W . F . , М . S . PATERSON, The depth of all Boolean functions, SI AM J. Comput., v. 6 ,
N o . 2 , 1 9 7 7 , p p . 3 7 3 — 3 8 0 .

[30] Храпченко, В. M., Различие и сходство между задержкой и глубиной, Проблемы кибер-
нетики, вып. 35, 1979, стр. 141—168.

[31] Ложкин, С. А., Асимптотическое поведение функций Шеннона для задержек схем из
функциональных элементов, Мат. заметки, т. 19, № б, 1976, стр. 939—951.

[32] Лупанов, О. Б., О схемах из функциональных элементов с задержками, Проблемы кибер-
нетики, вып. 23, 1970, стр. 43—81.

[33] LOSHKAN, S . А . , Über die Synthese von Schemata aus Funktional-elementen mit Verzögerung,
Wiss. Z. Humboldt-Univ. Berlin Math-Natur. Reihe, v. 24, 1975, No. 6, pp. 730—732.

[34] Касим-Заде, О. М., Об одной мере сложности схем из функциональных элементов,
ДАН СССР, т. 250, № 4, 1980, стр. 797—801.

[35] YABLONSKI, S . V . , A survey of some results in the field of discrete mathematics, Proc. IFIP
Congress 1968, Edinburgh, North-Holland, Amsterdam, 1969, pp. 266—270.

[36] Лупанов, О. Б., Об асимптотических оценках сложности управляющих систем, Между-
народный конгресс математиков в Ницце 1970, Доклады советских математиков, М.,
1972, стр. 162—167.

[37] Лупанов, О. Б. О методах получения оценок сложности и вычисления индивидуальных
функции, Дискретный анализ, Новосибирск, вып. 25, 1974, стр. 3—18.

[38] Вайнцвайг, М. Н., О мощности схем из функциональных элементов, ДАН СССР, т.
139, № 2, 1961, стр. 320—323.

(Поступило 2-ого августа 1979 г.)

Structure of program runs of non-standard time

B y L . CSIRMAZ

J

1. Introduction

In this section the set of natural numbers is denoted by J f , and the set of Peano
axioms (with+and-only) by PA. In our point of view, a program is a finite se-
quence of labelled statements. The labels are (distinct) natural numbers. Each state-
ment is either an assignment of the form "v*-x" where v is a variable symbol and
T is a term of Peano arithmetic containing operator symbols+and-only, or is an
if-statement of the form " IF x THEN / " where x is a quantifier free formula of
PA and IdJV is a label. Denote by Vp the (finite) set of variable symbols occuring
in the program p and let Lp be the set of the labels of the statements and
h£Jf\Lp (the "halt" label). A run of the program p is a sequence (/,-,
where

(i) /;€Lp U {A} and / ¡ : Vp-~Jf is a valuation of the variables for every i ^ J f ;
(ii) if l=h then / ,+!=/;, fi+i=fi-,

(iii) if the statement labelled by /,• is " V ^ T " then

|Z ; +1 if Z ,+ l€£ p ,
I h otherwise,

ifi(w) if w£Vp, w v,

if Z,+ l€£ ,
otherwise,

(iv) if the statement labelled by /, is " IF x THEN / " then

I if l£Lp and xlfii is t rue,
/,-+1 = • h + 1 if h + ^ L p and xUi] is false,

h otherwise,

fl +1 ~ fi-

i +1

The run of the program halts, if lt = h for some i [cf. 4].

326 L. Csirmaz

It is well-known that every program can be written in this form because we
have made no restriction on the content of variables [5]. Moreover, there is a
straighforward way to prove partial correctness of programs of this type: assign
formulas to every element of Lp U {h} and prove (say, from the Peano axioms) that
if the formula assigned to /,• is satisfied then after executing the statement belonging
to the formula assigned to / i + 1 will be satisfied, too. Then, if the run halts, the
formula assigned to H is satisfied, i.e. the program is partially correct. This method
is the so called Floyd—Hoare derivation [6].

It is easy to give a rigorous proof that if a program has a Floyd—Hoare deriva-
tion, i.e. if we may assign formulas and prove what we have to prove then the
program is partially correct. But, alas, there are programs which always halt, al-
ways give the same result but have no Floyd—Hoare derivation. For example let
«jo be a formula of Peano arithmetic such that neither q> nor its negation are prov-
able from PA. Our program checks whether its only input is the Godel number
of a proof of <p from PA. If it is, it prints 1, if not, i.e. if the input is either not
a Godel number of a proof or does not prove cp, it prints 0. Our program always
halts because it is a decidable property to be a proof of a concrete formula, and
always prints 0 because there is no proof of cp. Moreover, we can not prove this
(from PA) because then we would be able to prove in PA that there is a non-
provable formula, i.e. that PA is consistent, which is impossible.

This difficulty vanishes if we allow the program to operate not only on J f
but on any model of PA and to run not only through finite time but through non-
standard time. This idea is behind the concept of continuous trace, it simulates
the non-standard runs of programs, see [1], section 3 of [7], and [8].

2. Notation, definitions

Denote by L the set of classical first order formulas of type t, where t is the
similarity type of arithmetic, i.e. it consists of " + , 0,1" with arities "2, 2, 0, 0",
respectively. PA denotes the following (infinite) set of axioms:

PI x + l j i 0

P2 Jt+1 = y + 1 — x = y

P3 J t+0 = x

P4 * + (y + l) = (x+y) + l

P5 x - 0 = 0

P6 * ' (y + l) = (* ^) + JC -

P7 for all formulas <p with x as free variable

|>(0)A V*($>(*) - <p(x+\))] - V*<?(*)•

We will use other relation and function symbols, as e.g. x<y or rem (x, y) which
are definable in PA. We introduce the bounded quantifiers (Vx~=:y)<p(y)'~
-^Vx(x<y—<p(x)), etc., too. The following reformulation of the axiom of in-
duction

Structure of program runs of non-standard time 327

P8 [(Vy < x)(p(y) - <p(x)] - \/x<p(x)

may be obtained from P7 substituting cp(x) by (\/y<x)(p(y) [cf. 2].
The inclusion AcB allows the sets A and B be equal.
To save space we use vector notation in place of sequence of symbols of same

type. E.g. we write (p(x) instead of cp(x1, x2, ..., xn), etc. The dimension of vectors
is always clear from the context.

Definition. Let A be any model of PA with universe A. Let <p (x1; ..., x„, yu ..., y„)
be a formula of PA so that

P A h V * 1 . . - . V * , B ! f t . . . 3 l w (x 1 ^ (2.1)

Let qa = (ql, ..., q") be a sequence of length n of elements of A for every a£A. We
say that the sequence (qa)aiA is a continuous trace (ct in short) of <p if

A N ?fl+1) for every a£A; (2.2
for every formula \j/ of PA and every sequence p of elements of A

A N [> (W) A A (ip(.qa,P) - A t(§a,P)- (2-3)
aZA aiA

In the remaining part of this paper we fix the model A of PA, the formula cp, the
sequence q0 and its length n. Whenever we speak about continuous traces we mean
ct of cp with first element q0 in A.

We shall need the notion of coding function of sequences. Let rem (x, y) be
the remainder when x is divided by y and define the ordered pair (x,y) as (x+y) •
• Let moreover the triplet (x,y, z)=(x, (y, z)> and define the formulas
PAIR (z), SEQ (u) and the functions LENGTH (it), ELEM (u, i) as follows.

PAIR(z) = V u (i c u S zA(u + l) - (u + l) > z — z ^ u -u + u);

SEQ («) = PAIR (u)A Vx Vy(u — (x, y) — PAIR (y));

{n if SEQ (u) and u = (x, y, n),
0 otherwise,

frem (m, 1 + (/ + 1) • b) if SEQ (u) and u = (m, b, n) and i < n,
ELEM (m, 0 = | 0 o t h e r w . s e

A straighforward proof shows that

PA | - PAIR (z) - 3 ! x 3 ! y (z = <x, j;»

PA t- Vu 3 !n (LENGTH (u) = n)

PA | - V« V i 3 !x(ELEM («, i) = x).

We say that m6 A is a sequence if A N SEQ (w), its length is n if A1= LENGTH (M) = n
and its i'-th element is a if AN ELEM (w, i)—a. Note that 0 is a sequence of
length 0.

The following theorem says that every sequence can be lengthened by 1 [3].

328 L. Csirmaz

Theorem 1. P A | - V " Vz 3 D (S E Q (M) -

{SEQ (v) A LENGTH (v)=LENGTH (M) +1A

(V/<LENGTH(w))(ELEM(w, i)=ELEM(t; , /))A

ELEM (d, LENGTH («))=2}). •

3. The result

First we prove some lemmas. We remind that A, q>, q0 and n are fixed.

Lemma 1. There are a formula $ of PA and a unique sequence (qa)aiA of se-
quences of length n of elements of A with the given q0 such that

P A I - V M V X J . . . VX„ 3 . . . 3 I y„$(m, xx, ...,x„, ..., y„)

PA f- Mm Mx V j Vz($(m, x,y)h$(m + \, x,z) - <p(y, z))

A |= <P(a, q0, qa) for every a£A

A 1= <p(9fl,ia+i) for every a£A.

Proof. Let <P1(m) be

Vx1...Vx„ Bu%(x1, ..., x„,u, m).

where 1 is "u is a sequence of length m + 1 such that every element of u is a sequence
of length n, ihe elements of the 0-th element of u are x1, ..., x„ in this order and for
every i<m the z'-th element y and the (7+ l)-st element z of u satisfy cp(y, z)".

It is clear that P A | - # i (0) , one only have to use Theorem 1 n times. In view
of (2.1) and Theorem 1, P A | - ^ (w) — + 1) holds. Therefore, by the induc-
tion axiom, PA l- V m ^ i W . A very similar argument shows that the following
formula, denoted by <P2, is also PA provable (by induction on i):

... V*„ V« V^ V' ("if u and v are sequences as above and
z'^min (LENGTH (m), LENGTH (y)) then the elements of
the z-th element of u and v coincide").

Now let <P be 3u(%(xj, . . . , xn, u, m)A "the elements of the m-th element of u are
yt, ...,yn in this order"). The existence in (3.1) is ensured by 4>1, the uniqueness
is by <P2- (3-2) is trivial. Consider now the valuation of in A where the values of
Xx, ..., x„ are ql, . . . , respectively while m has the value a£A. Denote the values
of ylt ...,yn for which <P(m,x,y) holds in A by ql, ..., q", respectively. The qa's
are determined uniquely by (3.1) and (3.3) is satisfied by definition. (3.4) follows
immediately from (3.2). •

Definition. The sequence (qa)aiA defined previously is called the standard con-
tinuous trace (set in short). (We will see later that this sequence forms a continuous
trace indeed.)

Lemma 2. Let \f/ be any formula of PA, p a fixed sequence of elements of A
and

A \j/(a, qa,p)

(3.1)

(3.2)

(3.3)

(3.4)

Structure of program runs of non-standard time 329

for some adA. Then there is a least suffix with this property, i.e. ad A such that

Proof. Suppose the contrary, i.e. whenever A \=ij/(b,cjb ,p) for every b<a
then At=i\>(a,qa,~p). Denote by W(m,x,z) the formula x, y)A
A\j/(m,y,z)). Then, by the reformulation of the induction axiom,

PA h [(Vn < m) f (n, 3c, z) - f (m , 3c, I)] - V m W(m, 3c, z).

Now valuate this in A putting q0 instead of 3c an p instead of z. Notice, that the
implication in the square bracket holds, therefore the second half of the implication
holds also, i.e. At=i¡i(a, qa,p) for every ad A, which is a contradiction. •

COROLLARY. In virtue of this lemma, we may use induction type proofs for
the sequence (qa)a€A. •

Lemma 3. Let u, v£A, 0<v. If qu = qu+E then

for every x, yd. A.

Proof. Let y= 1 and use induction by the Corollary on x. After this fix x
and use induction on y. •

Lemma 4. There exists an EczA such that

Proof. If all of the elements of the sequence <qa)a(A are different, the set E—A
satisfy (3.5)—(3.7). If not, there is an ad A so that qa occurs at least twice in the
sequence. This property is expressible by an L-formula, so, by Lemma 2, we can
assume that this a is the minimal one, i.e. qb is unique if b<a. There are other
occurrences of qa , hence, also by Lemma 2, there is a second one, i.e. there is an

such that qa = qe+i but ¡Ja^i]b if a < b ^ e . We claim that the set
E={adA: a^e} satisfies (3.5) and (3.6). It is sufficient to see (3.5) in case

only. Suppose qbl=^b2- Lemma 3 with the cast u=b1,v—bi—bi,
x = rem (e+1 — b1} b2-b1) gives q e + 1 = qbl+x9£qa which is a contradiction. (3.6)
is an easy consequence of Lemma 3. •

Now we have all of the tools for the proof of the main result of this paper.
First we need some more preliminaries.

Definition. The subset SczA is a slice if ad S implies a+ Id S and bd S for all
¿><0.

The subset TczA is a thread if adT implies, a+ldT, a-IdT (for a^O) and
a,bdT, a<b imply that for some natural number n

A \j/(a, qa,p) but A N \j/(b, qb,p) if b < a.

if b2dE, b^bz then qbl ^ qb%;

for every adA there exists bdE such that qa=qb,

either E=A or for some edE, E— {adA: a^e}.

(3.5)

(3.6)

(3.7)

b = a + l + ... + l (n times).

330 L. Csirmaz

The function f : A-+A is a projector if / (0) = 0 and f(a+ l)=f(a)+1 for
every a£A.

The sequence (pa)aiA is a projection of the sequence (qa)aeA if there exists
a projector f and a slice S such that

Theorem 2. The standard continuous trace (<ja)a£A forms a continuous trace.

Proof. (2.2) of the definition is satisfied by (3.4) of Lemma 1. (2.3) is immediate
from the Corollary of Lemma 2. •

Theorem 3. The projections of the standard continuous trace are continuous
traces. Moreover every continuous trace is a projection of the standard one.

REMARKS. An easy consequence of Theorem 3 is that if A is a non-standard
model of PA then for all <p and q0, the cardinality of ct's of (p with first element
q0 is 2M.

Now consider a ct (pa)azA the defining formula of which is

and let Po=0 for the initial position p0. Then pl+1=pl +1 for every a£A but
one can not hope for p\=a in general. Actually, by Theorem 3, the standard ct
is the only ct which has this property. We may interpret this'phenomenon as follows.
We add a "clock" to a continuous trace and suppose that the clock works well
(i.e. it jumps by 1 at every step). If we require the clock to show the correct time
then the ct is unique. Compare with Theorem 3.3 of [7].

Proof of the theorem. First let / : A— A be the projector and S the slice of
a projection. We prove that {pa)aiA is a ct. (2.2) of the definition follows from
f(a+ \)=f («) +1 . To prove (2.3) let i//£L be arbitrary and assume

By the hypotheses, pa—qa, for all ¿>£5 there is an a£A such that qb=p„ and if
qb=Pa then qb + 1—p a + 1 . So we know that

A N iK<?0>P) and A t= ^ (§„,/>) - il>(qa+i,p) for all a£S (3.11)

and it is enough to show that this implies

Suppose the contrary. Then, by Lemma 2, there is a least counter-example, say b.
But this b belongs to S because S is a slice, which contradicts (3.11).

Now we turn to the second and longer part of the proof. Let (pa)aiA be any ct,
/50=<70. We claim that for any a£A there exists a least b£A such that ¡7),.-In-
deed, let \]/(y, x) be "3m&(m, x, y)". It is clear that A\=ip(p0, q0) with m=0 and

Pa = bw for every
Rng (/) c S

for every b£ S there is an a£A such that qb = q/iay.

(3.8)

(3.9)

(3.10)

(p(xu ...,x„, >>!, ...,>'„) = = Xi+IA...

A N \ll{p0,p)h A (' K p a , p) - Pa + l'P))•

A N ip(qa,p) for all a£S.

Structure of program runs of non-standard time 331

if At= 4>(Pa> 9o) with some m, then A.\=ijj(pa+1,q0) with (m + 1) because the
successors are unique. Then by (2.3), A i=^ (p a , go) for all a£A which states the
existence of b. Finally, Lemma 2 ensures a least one. Denote this b by / (a) and
denote S the range of the function / . Let moreover E and e be as defined in
Lemma 4.

It is clear that S c £ , / (0) = 0 and if f(a)?e then f(a+])=f(a)+\. Now
let b£A, b$S and let \p{x,y,m) be the formula " (E 3 m ' < m) x , y)". Since
0 < 6 and if f(a)~zb then / (a + l) = s / (a) + l<&, we know

ANIMPO,<io,b) and A |= q0, b) - ^(pa+1, q0, b).
By (2.3) of the definition of ct, A\=^(pa,q0,b), i.e. /(a)<Z> for all a£A. This
means that if b£ S and c<b t h e n c f S .

We distinguish tvfo cases.
1. E—A or E^A but S. In this case / is a projector and S is a slice, there-

fore {pa)aZA is a projection. _ _
2. eZS, i.e. S=E. Let b£E so that qb—qe+1- By Lemma 3 qu—Qe-y\.=^b

if u=a+y • (e+1 —a), so if we choose y large enough then the thread Tu of u does
not contain b. For each thread T define the function gT: T-»A as follows. If T
is the thread of 0 then let gT(a)=a. Otherwise if f(v)—b for some v£T then let
gT(a)=b+a—v. Otherwise if f(v)—e for some y ^ r t h e n let gT(a)=u—l+a—v,
otherwise let gr(fl)=f (a). Finally, let g(a)=gT(a) if a is in the thread T.

It is clear from the definition of gT that g is a projector and ;?0=<7 /(fl)=#9(a).
By Lemma 4, every qb equals to some pa, i.e. in this case the projector g and the
whole A as a slice shows that (pa)aiA is a projection. •

Abstract

Continuous traces are introduced to simulate program runs when time is measured by the ele-
ments of a non-standard model of Peano axioms. This concept is a very useful one in considerations
of program verification. We give here a full description of continuous traces in every model of PA.
It turns out that there is exactly one continuous trace definable by a formula of PA and every
other one can be got from this by a simple transformation.

MATHEMATICAL INSTITUTE OF THE
H U N G A R I A N ACADEMY OF SCIENCES
REÁLTANODA U. 13—15.
BUDAPEST, H U N G A R Y
H—1053

References

[1] ANDRÉKA H . , I . NÉMETI, Completeness of Floyd logic, Bull, of Section of Logic v. 7, 1978,
pp. 115—121.

[2] CHANG, C . C . , H. J. KEISLER, Model theory, North Holland, 1973 .
[3] CSIRMAZ, L., On definability in Peano arithmetic, Bull, of Section of Logic, v. 8 , 1 9 7 9 , pp. 1 4 8 — 1 5 3 .
[4] MANNA, Z., Mathematical theory of computation, McGraw-Hill, 1974.
[5] PÉTER, R., Rekursive Funktionen in der Komputer-Theorie, Akadémiai Kiadó, 1976.
[6] PRATT, V . R . , Semantic considerations on Floyd-Hoare logic, 17-th IEEE Symp. Found. Comp.

Sci., 1 9 7 6 .
[7] SAIN, I., There are general rules for specifying semantics, Observations on Abstract Model Theory,

CL & CL, 1979, No. 2, to appear.
[8] SÁNTÁNÉ—TÓTH, E., M. SZŐTS, Colloquium on Logic in Programming, Salgótarján, Rundbrief

der Fachgruppe der Gesellschaft für Informatik, 1979, No. 17.

(Received April 5, 1979)

Nondeterministic programming within the frame
of first order classical logic, Part 1

B y T . GERGELY a n d L . U R Y

1. Introduction

1.1 Nondeterminism in computer science

In computer practice a lot of phenomena have arisen that deviate from the
deterministic attitude forming the base of traditional programming. These non-
deterministic phenomena may be due to varying reasons.

Considering the reasons three main types of nondeterminism can be distin-
guished. The first type of nondeterminism is quite independent from the will of
programmers and its causes are hidden in the construction and functioning of
computers. Due to this nondeterminism almost every program has some uncertainty
while execution. These could be caused by power cut, current trouble, machine
break-down or by any other unforseeable reason. If the computer works in time-
sharing mode the uncertainty further increases and the behaviour of a program
will depend on the other programs executed alternately with it. Moreover it de-
pends on the memory requirements of the programs, on the number of peripheries
at disposal, etc. In computers allowing parallel computations further causes of
uncertainty interfer, namely the speed difference of certain processes and com-
munication, the noise level of the communication channel, the concurrency for re-
sources etc. In interactive mode another type of uncertainty is caused by the
randomness of interactions affecting the program under execution.

We may call probability programming the methods that consider the above
uncertainties and its theory should be based on the usage of the tools of mathe-
matical statistics and those of theory of probability. Random events occuring in
program execution are handled by these tools. In this type of programming the
commands do not have a uniquely defined result, only its distribution is known.
Thus the running of a program can be described by using stochastic process e.g.
by using either Markov or semi-Markov chains. One of the main aims of the
theory of such type of programming is to minimalize the expectable number of
failures.

The second type of nondeterminism is already connected with the programmer's
will. The programmer's attitude is still deterministic, but he uses probabilistic

334 T. Gergely and L. IJry'

methods containing well defined randomness in the solution of some tasks. A wide-
spread method of this type is connected with the use of random number, generator.
The programming style using this method is deterministic and it also supposes the
determinism of the computer, however, for the solution of certain tasks it uses
one of the Monte-Carlo methods.

The third type of nondeterminism is connected with the essential and logical
uncertainty enclosed in the solutions of tasks. It embodies two kinds of uncertain-
ties. The first one occurs in such a situation of problem solving when there are more
alternat ives selecting from which any, the result will be produced without difficulty.
The second kind of uncertainty is connected with such a situation where only certain
alternatives lead to correct results but, in advance, we do not know which one.

A programming style which considers the above mentioned two kinds of un-
certainties suggests a nondeterministic attitude in contrast with the deterministic
one of the traditional style of programming. The main difference between these
two kinds of attitudes is that the nondeterministic one considering different kinds
of choices does riot specify how to make them though the deterministic attitude
does not leave the question how to make choices (if there are any) unspecified.
Programming theory connected with the third type of nondeterminism is in the
focus of our further investigations.

1.2 Some reasons of interest in nondeterministic programming

Recently nondeterministic programming has attracted more and more atten-
tion. It provides the programmers to concentrate on some important questions
about deterministic programs without specifying details irrelevant to the questions
to be analysed. Thus this programming attitude can be used to reason about deter-
ministic programs.

The possibility to consider actions not describing their details makes the non-
deterministic programming very useful in the field of Artificial Intelligence, e.g.
in natural language understanding, in problem solving, in robot planning, etc.
E.g. it suggests a fractional method of problem solving or robot-planning as follows.
First a global algorithm — a "global plan" can be designed as a nondeterministic
program, then, by analyzing this program and completing it with appropriate parts
we get a concrete deterministic program, i.e. a complete detailed algorithm to
solve the task.

One of the most significant reasons why nondeterministic programming be-
comes more and more important is that it plays a significant role in the elaboration
of the theory of interactive and parallel programming. Most.of its applications are
connected with this area. See e.g. HOARE (1 9 7 8) , MILNER (1 9 7 3) , OWICKI and GRIES
(1 9 7 5) , PLOTKIN (1 9 7 6) , e t c .

In view of aboves it is quite natural that nondeterministic programming plays
an increasing role in both the theory and practice of programming.

The aim of our investigation in the present work is the elaboration of a mathe-
matical theory of nondeterministic programming which can handle both syntax
and semantics by using mathematical tools and provides tools to speak about
program properties and to prove them. The elaboration of this theory will be done
by using the approach developed in GERGELY and U R Y (1 9 7 8) .

Nondeterministic programming within the frame of first order classical logic 335

1.3 Some words on our approach

The essence of the programming situation to be considered is that beside
programming language such a new language arises that is suitable to describe the
properties and the meaning of programs and our expectations towards programs
in an unambiguous way. Thus this new language is a descriptive one in contrast
with the programming language which serves to give instruction, i.e. commands.
To assure unambiguity the descriptive language should have well defined and exact
semantics beyond the syntax.1 The syntax should be suitable to describe program
properties and with the power of proof to analyse whether certain features of pro-
grams correspond to the expectations given by the specification, i.e. to analyse the
correctness of programs. The semantics of the descriptive language should provide
unambiguous understanding of the meaning of programs, hence it has to be com-
patible with the semantics of programming language. There are two main possibil-
ities to give exact semantics. The first is to characterize programs according to the
question "what the program does?" the second is to do it according to the question
"how the programs do it?"

In programming theories we find the following three approaches for the
exact handling of semantics: operational, functional and resultative. The first aims
to give a direct answer to both questions to what and how. The resultative or, in
other words, axiomatic semantics neglects the question how and characterizes only
the main properties of the change of data environment of the program produced
while execution. Functional or, in other words, denotational semantics also gives
the meaning of programs answering both questions, though it does it in an
indirect way.

We wish to elaborate such a theory of nondeterministic programming which
would be also a useful base for developing the mathematical theory of interactive
and parallel programming. In order to understand the main features of interaction
and parallelism in detail the execution processes themselves are to be considered.
This permits to follow up the specific features connected with the mutual effects
of the processes (e.g. communication, interaction). Thus operational semantics
seems to be adequate to our aim. To have this type of semantics first the question
what has to be answered by the characterization of changes in data caused by the
execution of program and, secondly, the flow of programming processes in time
has to be described to have an answer to the question how.

Thus the theory of programming to be developed has to have such a descrip-
tive language that is capable of describing and characterizing both the data en-
vironment of programs and the time related to program execution. The first re-
quirement is quite familiar with nearly every theory of programming, but not so
is the time consideration, for programming theories do not consider time explicitly
except for some of the most recent works.

Of course in the case of sequential programming the time aspects can be charac-
terized through the change of data without considering time explicitly. However
this approach is not applicable in those cases where time plays a primary and
independent role as e.g. in interactive, real time and parallel programming. Therefore
the programming theory to be developed here will contain tools that also provide
explicit time consideration.

3 Acta Cybernetica

336 T. Gergely and L. IJry'

1.4 The role of classical first order logic in a theory of programming

To develop a mathematical theory of programming that corresponds to our
aim the first problem is to introduce such a descriptive language that satisfies the
above mentioned expectation concerning the characterization of time and data
and it has to have exact and well defined semantics and appropriate tools to prove
different statements about the program properties. In the case of sequential deter-
ministic programming the first order classical language was quite satisfactory to be
a descriptive language for the corresponding theory of programming as it was
shown in GERGELY and URY (1 9 7 8) where the frame of classical first order mathe-
matical logic was used to develop the theory of programming.

In the present work we show that the above mentioned logical frame is sufficient
to develop the corresponding theory and the first order language can be used in
the role of the descriptive one for the case of sequential nondeterministic programm-
ing. Why do we prefer the classical first order language? Because
— it has a well defined exact and transparent syntax and semantics;
— it has a special branch, the model theory with very strong mathematical methods

to investigate semantics;
•— it has a well developed proof theory that offers effective notion of proof and

effective tools and methods for.proving;
— it is currently used in the research practice so its use is fairly familiar;
— it is the simplest one of the languages of mathematical logic by which a programm-

ing language can be investigated since the propositional language is not suitable
for this.

So it is justified to try to elaborate the mathematical basis of programming theory
within the frame of classical mathematical logic that is the most highly developed
branch of mathematical logic. This is encouraged by the fact that data environments
of programs can be given without major restriction of generality by first order
language.

In this work the mathematical foundations of programming theory, and the
elaboration of the theory itself is done by strictly keeping to the frame of first
order logic.

In the theory both date and time will be explicitly discussed by using first
order language.

1.5 A short survey

Nondeterministic programming is mainly used in the area of Artificial Intelli-
gence and in the investigation of parallel computation as it has already been men-
tioned. In connection .with the first area MANNA (1970) introduces a nondeterministic
programming language which is very similar to the language to be introduced here.
It contains both kinds of choices, but it does not allow the description of time
conditions.

Several works are devoted to the nondeterminism in connection with parallel
computation. In the early work of ASHCROFT and MANNA (1 9 7 0) parallelism has
already been explained in terms of nondeterminism. Milner handles nondeterminism
by using oracles. In the case of two computing processes executed parallelly an

Nondeterministic programming within the frame of first order classical logic 337

oracle is such an infinite sequence of 0 and 1 that be however far contains both
elements 0 and 1. By this oracle the execution of two parallelly computed processes
can be described so that 0 and 1 denote which process is at work. The theory using
oracles is described in MILNER (1 9 7 3) and (1 9 7 8) .

A very elegant mathematical theory of the same handling of nondeterminism
is developed in PLOTKIN (1 9 7 5) . Developing the theory of programming both MILNER
and PLOTKIN use denotational description of semantics of nondeterministic prog-
rams. EGLI (1 9 7 5) also uses this type of the description of semantics.

An axiomatic definition of semantics is given in OWICKI and GRIES (1 9 7 6) .
The parallel programming containing nondeterminism suggests to introduce

effective nondeterministic elements into the language. The very simple command
choice S1, S2 has been replaced by the guarded commands introduced in DIJKSTRA
(1975) . In HOARE (1 9 7 8) and FRANCEZ et al. (1 9 7 8) input-output commands are
added to the guarded ones. Analogical commands are also introduced in MILNER
(1 9 7 8) . Not depending on the aboves we mention the work of HAREL and PRATT
(1978) where the execution of programs is supposed to be ambiguous and in the
descriptive language modalities are introduced in order to handle the ambiguity.
Thus by this descriptive language such statements can be expressed that "there
exists such a run...", "every run is such...". In this work the semantics is opera-
tional. An analoguous descriptive language is developed in MIRKOWSKA (1 9 7 8)
within the frame of algorithmic logic. Summarizing aboves we would like to em-
phasize that so far no work has been engaged in using tools to describe time con-
ditions explicitly. The problem of completeness is discussed only in HAREL and
PRATT (1 9 7 8) and MIRKOWSKA (1 9 7 8) . The previous shows that the introduced
descriptive language is complete with respect to arithmetics, in the latter it is proved
that the nondeterministic algorithmic logic is co-complete. We note that these two
results are really equivalent.

1.6 What is new and the contents of the work

The theory of nondeterministic programming is developed strictly within the
frame of first order classical logic. The semantics of nondeterministic programs is
described in an operational way by using a special type of games. A descriptive
language to describe program properties is introduced by using the classical first
order language. This descriptive language allows to describe and to speak explicitly
about both time and data.

Moreover the question of completeness is discussed and a complete calculus
in the spirit of Floyd and Hoare is introduced.

The first part including the first three sections contains the conceptual and
mathematical base providing exact tools to handle nondeterminism. Thus the next
section is devoted to the main tool of our theory to a special type of games. Section 3
contains the main notions of classical first order mathematical logic and arithmetic
and the representation of data and time in the frame of first order logic. Here first
of all the description of time properties is discussed in details. In Section 4 the basic
notions and properties of games are introduced within the frame of first order logic.
A very simple but powerful enough nondeterministic programming language is
introduced in Section 5. Its semantics is given by using associated games. With

3«

338 T. Gergely and L. IJry'

respect to nondeterministic programs many different questions can arise. Some of
them are given in Section 6. Here we immediately show that an adequate descriptive
language is needed to answer the questions for each one. Selecting two questions
in connection with partial and total correctness we give the appropriate descriptive
language and show that it is complete. In Section 7 we introduce a calculus which
is analoguous to that of introduced by Floyd and Hcare for the sequential deter-
ministic programming (see details in GERGELY and URY (1 9 7 8)) . In Section 8 we
illustrate the use of the calculus by some examples. Present paper consists of two
parts. The first one contains the first three sections.

1.7 Basic conventions

We use basic notations and concepts of the naive set theory in the usual fashion.
The notation {x\(p(x)} denotes the set of all x such that <p(x). Both inclusion and
proper inclusion are denoted by the same symbol c . The empty set is denoted
by 0. In the case of natural numbers for ordered finite set we use intervals defined

by [i, / 1 = {k\i=k^j}. The domain and range of a function / are denoted by d o /
and rg / respectively. f : A-+B denotes that / is a function for which d o f = A
and rgf=B. A function f : A-+B is injective if for any a, b£A if f(a)=f(b) then
a=b. It is called bijective if it is injective and f(A)=B.

The symbol <J,),ej denotes a function / with domain I such that f (i) = Si
for all i£l. Such a function / is called sequence.

For a non-empty set A let A+ denote the set of all finite non-empty sequences
formed from the elements of A. AB denotes the set of all functions from A to B.
co is the least infinite ordinal. \A\ denotes the cardinality of the set A. Moreover
for informal logic we use "iff" for "if and only i f" and w.r.t. for "with respect to".

The end of significant units like proofs, definitions etc. is marked by the
symbol • .

2. Games

2.1 More about nondeterminism

As we have seen the uncertainty in nondeterministic programming is caused
by two kinds of choices. The first one: from the alternatives one chooses such
a possible step of a task solution that leads to the result. The other one is when
each one of the alternative steps may be chosen and the result thus can be reached.

Having a nondeterministic program its execution can be so imagined that
there is someone who represents the interests of the program, say Mr. A. He is
the one who makes the first kind of choices. In opposition there is someone else,
say Mr. B, representing the circumstances influencing the program execution. He
is the one who makes the other kind of choices without being influenced by the
interests of the program.

Thus we have a situation analoguous to a game situation where two players
A and B are playing. Player A has to choose so that whatever B chooses the course
of the game should favour A. This analogy suggests the games to be a useful and
easily handable tool for our investigation. The games are very close to our intui-

Nondeterministic programming within the frame of first order classical logic 339

tion because they are widespread. At the same time they clearly represent essential
nondeterminisms e.g. that of due to the uncertainty of players in the moves of one
another. This uncertainty is quite analoguous to that of the nondeterministic pro-
gramming. Thus we use an appropriate type of games as the main tool in our theory
of nondeterministic programming.

Now let us consider what type of game is adequate to represent the non-
determinism of nondeterministic programming.

According to the aboves we say that the rules define the circumstances within
the frame of which a game can be played, i.e. they define the game-frame. A game-
frame still does not possess goals for the players though in the type of games used here
the goals are well-defined for both players. E.g. such a goal can be either to win,
or not to lose. Having goals players aspire to win or not to lose within a given
game-frame. Games considered here are antagonistic in the sense that players try
to achieve in fact two opposite goals. Beside the goals such rules are to be introduced
that specify the conditions by which one of the players wins, or loses or the play
is draw. These conditions can be defined by the appropriate set of those situations
(or states) that provide the winning (or not losing) of one of the players. In this
case to achieve his goal the player is to reach the winning situations, i.e. he has
to make moves providing the appropriate states. The improvement of the positions
of one of the players at the same time is spoiling the positions of the other one.
Another possibility is to give a rule specifying a payment function which renders
a payment to each possible state. This payment is to be received by one of the
players and is payed by the other one and its sum depends on the situation. More-
over the gain of one of the players and the loss of the other one is equal but opposite
in sign. Now the winning of each player means to receive the greatest payment.
Thus the goal of a player is to maximize the payment he receives.

If we add rules describing the winning conditions to the game-frame we get
the corresponding game. It is obvious that with respect to a given game-frame a lot
of games can be defined, which only differ in the winning conditions.

t
2.2 Basic notions of games -

s

Let us consider such a type of game that presumes two players and possesses
well-defined rules for each of them. A game presupposes a sequence of moves, each
of which is an occassion for a choice between certain alternatives.

The rules of the game specify for each move which player does it and what
his alternatives are. These rules are finitely describable, and are to be known by
each player. At each move, the player precisely knows what his alternatives are
and his choice will become immediately known to the other player. Moreover each
player precisely knows what moves, i.e. what choices have been made previously.
Thus the players have full information about what has happened in the game so
far and what else can ever happen, during the course of it. For the latter the rules
are to specify that no choice can be made by chance (e.g. by a dice). This means
that each move is deterministic in such a sense that the situation formed after having
the moves is foreseen in a unique way. A course of game contains a complete sequence
of choices (moves) made by the players'

340 T. Gergely and L. IJry'

Thus the type of games used here consists of the rules that define the circum-
stances of playing and of the goals and rules defining the winning conditions.

To illustrate the abovesaids let us consider the following version of the well-
known game NIM. First of all let us see its frame. There is a single pile of chips
containing e.g. 21 chips and there are two players A and B. The two players take
turns one after the other picking up chips from the pile. At each move, a player
must take at least one chip and at most three ones. This is the game-frame. If we
fix the winning circumstances then we get the game of the game-frame. Let us suppose
that the player who picks up the last chip loses and thus we have got a game. Note
that this kind of NIM game is often called Last One Loses. Of course we can define
an opposite game with respect to the same frame, namely we add the following
rule: the player picking up the last chip wins. By adding another winning condition
we get a new game. There are a lot of other possibilities.

A game-frame graphically can be represented by a tree. The nodes of the tree
correspond to the situations involved in the game. The arcs emanating from a
given node are the alternatives associated with the corresponding move. A tree
representing all the possible moves of both players and all the possible corresponding
situations is called a game-tree or an and/or-tree. A path of the game tree represents
a play of the corresponding game-frame. The winning condition can be represented
by a set of paths per players leading to winning. Thus a tree represents a game-frame.
Marking out the winning paths of both players we get the tree representation of
a' game of the given game-frame.

Note that the representability of a game by a tree means that the game is of
full information, i.e. the players have full information about the course of the
game because each node of the tree includes the history of its acces since each node,
except the root, has exactly one predecessive node.

B -

B -

A -

B

A

A

Fig. 1

Nondeterministic programming within the frame of first order classical logic 341

To illustrate the abovesaids let us see the game-tree (Fig. 1) of the game Last
One Loses for the case when the players begin with five chips in the pile. The nodes
are labelled by the number of the remained chips in the pile. At alternate levels
of depth in the tree, alternate players choose which move to make. To be definite
we suppose that player A moves first. Each depth level is labelled by the name of
the player who has the next choice at that level.

Since the so far mentioned type of game is a basic means of the theory of pro-
gramming to be developed and since we wish to execute the investigation within
a mathematical frame it is necessary to provide the mathematical definition of
the basic notions of the games. To introduce games as mathematical objects we
use their tree representation.

Let N be the set of natural numbers and let N* denote the set of all finite se-
quences consisting of the elements of N. A denotes the empty sequence.

Let us take the following functions:

~ pair: N*XN — N*

left: N*\{A} - N*

right: N*\{A}^N
fO if v = A

length (v) - yength Qgj-t ̂ + j otherwise
for any v£N*.

Intuitively speaking by the use of the function pair we can construct a new
sequence if we add a natural number to a given sequence from the right side. The,
functions left and right provide the decomposition of sequences.

Definition 2.1. A set VcN* is said to be a tree iff the following properties
hold:

(0 Aev,

(ii) if v£V and v^A then left(v)£V. •

Example 2.2. Let us consider the following tree in graphical representation
shown in Fig. 2.

According to our definition this can be represented as the following tree:
{0, 01, 014, 0148, 015, 02, 026, 0269, 03, 037}, where 0 stends for A.

The graphical representation of this tree is shown in Fig. 3. •

Let v, u>6 V. If left (w) = v then w is a successor of v and v is a predecessor of
w in the tree V.

The set of all successors of a node v in V is

Sy(v)= {w£V\ left (w) = v}.

Let Wa V be such that it satisfies the conditions (i) and (ii) of 2.1. Then W is
a subtree of V.

342 T. Gergely and L. IJry'

Definition 2.3. A subtree Wcz V is said to be a path of V iff the function
left: W\{/1}— W is an injection.

Definition 2.4. Let V be a tree and C c V. The pair (V, C) is said to be a
game-frame. •

The above defined game-frame provides frame for games of two players with
full information. Let Mr. A and Mr. B be the players. The set C indicates those
nodes of the tree V in which player A makes moves. Thus a (V, C) game-frame
provides the following course. The starting point v0=A, for an arbitrary node

Fig. 2

0 1 4 8

vn if v„£C then it is A's turn and he can choose one of the alternatives and the course
is driven into the corresponding node of Sr(vn). If vn^C then it is B's turn and
the move is analogous to the above situation.

A course in the game-frame (V, C) is a path. Along a course there are the follow-
ing possibilities:

(i) the course is finite, i.e. neither A nor B can move further because the
corresponding set of successive nodes is empty;

(ii) the course is infinite, i.e. A and B can move further in every node.
Thus a game course of the game-frame (V, C) is a finite or infinite path in the tree V.

To have a game in the frame of a given (V, C) a winning condition is needed.
According to the aboves the winning condition can be given as a set of those paths
in V along which the player, say A, wins. Thus let rA and rB be sets such that
rA n r B = 0 . We say that rA(rB) is the set of winning paths in V of the player A(B)
if it contains those paths along which player A(B) wins. If the course of the game
provides such a path that belongs neither to r A nor to r B we have a play which is
draw. We note that there is a lot of different possibilities to give the sets r A and
rB. For example it may be the case when player A aspires not to win as well as
not to lose. This means that A wishes to prevent the winning of player B. In such
cases it is quite enough to give the set r B . The set r A is unnecessary because any
path that does not belong to f B is satisfactory to player A.

Definition 2.5. Let (V, C) be a game-frame. Moreover, let rA and rB be the
set of all winning paths of the players A and B respectively. The quadruple 91 =
=(V, C, f A , rB) is said to be a game of the game-frame (V, C). •

Nondeterministic programming within the frame of first order classical logic 343

A player can move in such a way that he decides in advance which alternative
he chooses in each possible situation. This means that the player uses a special
set of rules that tells him what choices he should make for all situations that might
arise during the course of a game. This set of rules is called a strategy which is
definable by mathematical tools.

Definition 2.6. Let (V, C) be a game-frame. A function str defined on C is
a strategy of player A for the game-frame (V , C) iff str (v)£Sv(v) for every v£C.

•
The other player's strategy can be similarly defined, but we do not need it.
The function str gives the successor for each vZC and it seems that this depends

only on v. However, remember that each node v includes its prehistory.
The strategy of player A defines what move he has to make when he achieves

a situation v where his turn is the next. From the above definition follows that
a strategy provides the moves in each possible statement many of which do not
appear during a game because the player never reaches them if he plays according
to the given strategy.

So it is quite natural to define the strategy in a less redundant way, namely
considering only the subtree that can be potentially arisen by using the strategy.

Definition 2.7. Let str be a strategy of player A for the game-frame (V, C).
A subtree Rstrc V is generated by the strategy str iff it has the following properties:

(i) if v£Cf)R then SRstr(v) = {str(v)} i.e. v has exactly one successor in Rstr
that is picked up by str,

(ii) if v£R\C then SRmtr(v) = Sy(v).
This subtree Rstr is unique. •

Thus if player A makes moves in accordance with his strategy str, then during
a course of the game-frame (V , C) any of the paths of Rstr can be realized. However
since the moves of A are determined by str, player B can choose any of his alterna-
tives. Thus B can realize any of the paths of RstT. According to the aboves it is quite
natural to define a strategy of the player A for a game-frame (V, C) by means of
an appropriate subtree of V.

Definition 2.8. Let (V, C) be a game-frame. A subtree RczV is said to be
a run of the game-frame iff the following properties hold:

(i) if v£CP\R then there is a unique successor w of v in R. (I.e. there is a unique
w£R such that left (w) = v.)

(ii) if v£R\C then SR(v) = Sv(v). •

It is obvious that for any run R there exists a strategy str of player A such that

Note that for a given run R the appropriate function str is not unique because
while defining it we consider only its subdomaine RC\C and its values on C\R
can be arbitrary. So far the strategy has been introduced fdr a game-frame (V, C).
Considering winning conditions, i.e. a game (V, C, TA, TB), we can speak about
winning strategy or not losing strategy. A strategy of player A is winning (not losing)

344 T. Gergely and L. IJry'

iff moving accordingly the course of game realizes only paths belonging to r A
(not belonging to r B) . I.e. if n c R then (71$ r B) .

For the illustration of the so far introduced notions let us see the following

Example 2.9. Let us consider the game Last One Loses with game-tree given
in Fig. 1. In this case there is one pile of five chips and players have the alternatives
to pick up from one to three chips at a move. The frame of this game is the pair
(V, C), where

V = {5, 54, 543, 5432, 54321, 543210, 54320, 5431, 54310, 5430, 542, 5421, 54210,

5420, 541, 5410, 53, 532, 5321, 53210, 5320, 531, 5310, 530, 52, 521, 5210, 520},

C = {5, 543, 542, 541, 532; 531, 530, 521, 520, 54321, 54320, 54310, 54210, 53210}.

The winning condition of the game Last one Loses is as follows:

r A = {(5, 54, 543, 5432, 54321, 543210),

(5, 54, 543, 5430),

(5, 54, 542, 5420),

(5, 54, 541, 5410),

(5, 53, 532, 5320),

(5,53,531,5310),

(5, 52, 521,5210)}.

r B consists of all paths not belonging to r A .

Let us consider the following run R:

R = {5, 54, 543, 5430, 542, 5420, 541, 5410}.

A corresponding winning strategy sir of player A is the following:

V 5 543 542 541 54321 532 531 521

sir (V) 54 5430 5420 5410 543210 5320 5310 5210

3. Logic and arithmetic

3.1 Logic

We intend to develop the theory of nondeterministic programming within
the frame of classical first order mathematical logic. To be able to do so we recall
the basic notions and definitions that we need to reach our aim.

Definition 3.1. A similarity type 9 is a pair of functions (SR , 9F) such that
rg 9f<Z(d, rg 9KC<»\{0}, do 9 f f l d o 9 * = 0 and |do • |do The elements
of do BR and do &F are called relation and function symbols respectively. DR and

Nondeterministic programming within the frame of first order classical logic 345

9f give the arity of symbols. The 0-ary function symbols are called constant
ones. •

For the following we fix a similarity type 9 for which = £ do 9R and
9r(=)=2.

Definition 3.2. A S-type model 91 is a function on do 9R U do 9F U {0} such that
(i) 9l(0)=/i is a nonempty set, which is called the universe of the model,

(ii) 91(е)сэк<еМ for any do 9R,
(iii) 3 l (=) is the diagonal relation on 2A,
(iv) Щ/): W>A^A for any f£do9F.
In a special case °А = Щ i.e. if 9F(f)=0 then 9 l (/) can be identified with

an element of A. •

In general instead of 91 (s) we write s<a where i£do do 9F. A 9-type model
will always be denoted by a German capital and its universe by the corresponding
Roman capital. M 9 denotes the class of all 9-type models.

Now we turn to the definition of the syntax.

Definition 3.3. Let V be any denumerable set. Let be the minimal set sat-
isfying the following properties:

(i) K c 7 T ,
(ii) for any n and f£9F

1(n) if r l s . . . , т „ e l j then / (т х ,
The elements of T% are called terms.

Take Al = {g(r1, . . . , т„) |д£9~ 1 (п) , n£a>, The elements of A%
are called atomic formulas.

The set F% of 3-type formulas with variable symbols belonging to V is the
minimal set satisfying the following properties:
' (0 A Z c F Z ,

(ii) if <p,\l/£Fl then (p h ^ d F l , •
(iii) if q>£FZ then IqXiFg,
(iv) if <p£Fg and v£V then 3vcpZFg.
Let Ql be the minimal set satisfying the above conditions (i)—(iii). The elements

of are called quantifier free formulas. •

We use the following abbreviations
a) (рМф for ~\(~\(pA~]\j/),
b) for A(p),
c) tp~~ф for 1(1фЛф)Л1(1<рЛф),
d) \/v(p for ~~|3v~\(p,

where v£ V and (p,\j/£Fl.
For any s£Tl{JF$ let Var j denote the set of free variable symbols occur-

ing in s.
For any v£V, x^Tl and cp(z let <p[r/v] be the formula obtained from <p by

replacing every free occurrence of v in (p by т so that there would not be a collision
between the variable symbols of т and the variable symbols of cp occuring with
quantifiers.

Now we define the semantics of the first order language by defining a relation
N s C M a X i t f -

346 T. Gergely and L. IJry'

Definition 3.4. Let 91 £M 9 . A valuation of V in 91 is a function q: V— A, i.e.
a valuation is an element of v A . Now we extend the valuation q to a function
q: taking:

(i) q(v) = q(v) for every V\
(ii) q{f{xx, ...,xn))=f<a(q(x1), ..., q(x„)) for every n£co, f t ^ f n) and T1; . . . ,

Instead of q(r) we write x[q]. It is clear that T[q] depends only on the values of
Var r. So sometimes we use the following notations:

(i) a variable symbol is often written underlined by a waved line to denote
its value by a given valuation. E.g. if q is a given valuation then we write x instead
of q(x);

(ii) let a£A denote an arbitrary finite sequence of elements from A. For any
tc Tl supposing that a contains at least as many elements as Var t we write x [a]
instead of x[q].

The validity relation is defined by the following well known

"Definition 3.5. Let 9i£M 3 be arbitrary. Moreover, let 91)=&<zF%X.yA be the
following relation:

(0 •••, O f ?] iff (^[<7], ..., xn[q])iQ<a for any atomic formula;.
(ii) 9tN9(<pVi/0[?] iff 91 ̂ <p[q] and 9it

(iii) 9 IN 9 (1 <P№ iff <»[?];
(iv) 9It=sBv<p[q] iff there is a valuation q*: V—A such that i ' V x M ^ t f t K N »

and 91 <?[?*]•

91 \=9<p[q] means that the formula <p is valid in the model 91 by the valuation q.
In the end 91|=9<p iff for every valuation q£yA, 9 1 1 = 9 •
So the 3-type first order language |=9) has been defined. If

it does not cause ambiguity we write f= instead of |=9.
Now let AxaFl be an arbitrary consistent set of formulas. Restricting Ma

to Md(Ax) = M3|9(|= Ax} from the language Z,9 we can define a new first
order language L*x = (Fl, Md(Ax), t=), which consists of the class of the models
of Ax only. Further on in this study while an Ax is considered it is always supposed
to be consistent without claiming this explicitly.

The notion of definiability plays a main role among the tools of our investiga-
tion. We recall that this notion is used in mathematical logic in two different senses.
In the first one it is considered when and how new symbols with given properties
can be added to a fixed language. This is the topic of the Definition Theory. For us,
however, the other sense which is interested in knowing whether a function or
a relation given in an arbitrary model can be expressed in a fixed language is more
useful. We introduced the main definitions corresponding to this second approach.

Let us fix a language L 3 and let 91 £M 9 be arbitrary.

Definition 3.6. A partial function g: "A—A is said to be parametrically defin-
able in 91 iff there is a formula <p£ such that

(i) Var (p — {xt, ...,x„,y, a1; . . . ,am};

Nondeterministic programming within the frame of first order classical logic 347

(ii) There are a1 , . . . , am£A such that for any

x£A and y£A, 21 N <p[x, y, S] iff g(x) — y.

Similarly, a relation Q(Z"A is said to be parametrically definable in 21 iff there
is a formula (piFl. such that .

(i) Var (¡p = {x1, . a x , . . . ,am};
(ii) There are a1, . . . , am£A such that for any x£A, 21N q>[x, a] iff x£q. ,
A partial function g or a relation Q is definable iff the appropriate <p does not

contain a/s. •

We say that the above <p parametrically defines the partial function g or the
relation Q in 91.

Now we also fix an Ax<^F%. Let us suppose that for any 9 l £ M d (A x) a func-
tion gat: "A-*A (a relation ¡ i a c M) is given. Take G = {g<i^\£Md{Ax)} {R =

Definition 3.7. G (or R) is parametrically definable in Ax iff there is a formula
(p which parametrically defines gn !(or 0ai) in 91 for every 91 £Md(Ax).

If the set {gai191£ Mdx)} ({ J 21 £Md(Ax)}) is parametrically definable and
the definition is given by the formula (p then the function symbol g (the relation
symbol Q) is said to be universally definable in Md(Ax).

Example 3.8. Let q>£be such that Var cp = {x1, ..., xk, y}, and suppose that

Ax t= V*!. . . xk My Vz((pA(p[z/y] — y = z) (1)

If so then in every model 91 of Ax cp defines a partial function in the following
way:

(i) x € d o / iff Ax |= 3ycp[x],

(ii) / (x) = y iff Ax N <p[x, y].
N By (1) this definition is good and thus we use the following abbreviation:

d
P a r c (? = Vx My Mz(cp/\<p[z/y] — y = z). •

We say that the above q> parametrically defines G or R. If q> contains no at's
we omit the adjective "parametrically".

Remark 3.9. If the above G is definiable in Ax and every is total then a new
function symbol g "can be added" to BF of arity n with the following new axiom

AxB: MxM y(y = g(x)** cp(x, y))

where cp defines G. So we get a new language Li*', where Ax'=AxU {Axg}. The
phrase "can be added" means that for any cp^Fl, Ax'l=<p iff Ax\=<p.

The details see in Section 2 .9 of MENDELSON (1964) .
A similar fact holds for the above R.

348 T. Gergely and L. IJry'

3.2. Arithmetic

As known arithmetic plays an important role in computer science. It provides
an unambiguous characterization of any formal language syntax. This permits
the widespread use of computers since their functioning is based on natural number
representation. While the numeric use of computers arithmetic plays an important
role since the data form a structure satisfying the basic features of arithmetic. Arith-
metic is also important to formalize our intuitive concept about discrete time con-
nected with computer functioning. Thus in our investigation of programming
theory arithmetic plays an important role. Namely, it provides formal tools to
characterize sequences which prove to be useful in the study of program properties.

Let t] be the type of arithmetic, i.e. do rjR = {=}, dorjF={0, 1, + , •} and
i iF(0)=»jF(l)=0, > ? F (+) = f / f (.) = 2.

For the axiomatization of the arithmetic we choose the well-known Peano
axioms:

= ~1 (y + 1 = 0)
d

A2=V+ 1 = w + l — v — w
d A3 =v + 0 = v

A4=V + (W+1) = (D + W)+1

AB=v-0 = 0
d

Ae=v(w+1) — (v-w) + v

A 7„ = <p [0/Y] A V v (<p q> [Y +1 /v]) ^ V vcp

Take I={Altp\<p£F% and v£ Var (pj. The set of Peano-axioms is

PA = {A/10 ^ i ^ 6 } U / .

For detailed analysis of PA see e.g. MENDELSON (1 9 6 4) .

As usually we use the following abbrevations

x^y instead of 3 z (z + x=y),

x<y instead of 'x^yA lx=y.
We recall that for every infinite cardinal there are at least continuum number

of non-isomorphic models of that cardinality of PA. For every <$l£Md(PA) its
smallest submodel Ac satisfies PA and these submodels are isomorphic to each
other and they are called standard models of PA. We would like to consider only
standard models but unfortunately that is impossible at a first order language because
there is no first order formula describing exactly the standard part of the models
of PA. Thus if we are interested whether a first order formula is valid then we must
consider not only standard models but nonstandard ones as well.

As usually 91 denotes the fixed standard model of PA and N stands for its
universe.

For handling of non-standard models see e.g. ROBINSON (1966) .

Nondeterministic programming within the frame of first order classical logic 349

3.3 The role of time in the theory of programming

As mentioned already in Introduction often not only the output result of a
computing process is significant, but its temporal course too. Thus we would like
to develop such a theory of nondeterministic programming that handles both data
and time explicitly by the help of first order tools.

The representation of data within the frame of first order logic is straightfor-
ward; it can be done by the universe of the classical models. However relations
and functions of the models correspond to data properties and to their possible
changes respectively. Thus from the point of view of data computers are represented
by the models of first order languages. Thus the previously mentioned representa-
tion neglects the explicit time representation. How to represent time is a question
that should be looked at in details. But the functioning of computers is controlled
by an "inner clock" so the change in data happens in time.

We assume that a change in data corresponds to a command which is executed
for a timecycle of the machine. Let us denote the set of these disjoint time intervals
by T. From theoretical point of view the time intervals of T can be considered as
time moments supposing that the change takes place infinitely fast. We also assume
that a machine works as long as it is needed i.e. as long as it is required by the
program. This means that a machine itself can work infinitely long never stopping
due to a break-down. However it stops only if it is required by the program and
by this the program execution terminates. Let us consider the simplest case when
there are only assignment statements.

The execution of a program on a machine is but the execution of assignment
statements step by step i.e. iteratively. The transition of states of the machine rep-
resenting the change in data is defined by the transition function. This function
can be defined by induction on T as follows. In case we already know the state
S, of the machine at moment t then the state at the next moment i + 1 can be defined
by the state S, using the concrete command that is to be executed in the moment t.
To describe this by mathematical tools the closeness of the transition function
under iteration (recursion) must be ensured.

Thus to represent time an arbitrary structure can be used which provides
the starting moment, the generation of the next moment and the induction by
succession. For example if we take a{(0, 0), (', l)}-type structure X = (T, 0 , ') on
which the induction works well then this can be used to represent time. Here T
represents the set of time moments. Note that further on it will be also supposed
that on the set of time moments T the usual addition and multiplication are also
considered and the time moments are in order.

Thus to represent discrete time the use of the structure 91 = (N, 0, 1, + , •)
of natural numbers is obvious. However our main standpoint is to use classical
first order language to describe models. Thus we cannot restrict ourselves to the
standard model but any model X of an appropriate first order axiomatization
of is allowed. Consequently beside N, which is very close to our intuition, very
strange sets of time moments are allowed as well. Especially such sets T in which
"infinitely large" (or non-standard) time moments also occur.

As usual the theories of programming developed so far use either implicitely
or explicitely the set of natural numbers N to represent time.

350 T. Gergely and L. IJry'

So our assumption that the structure representing time has to satisfy only one
condition, namely the axiom scheme of induction, seems not to be very close to
our intuition. Thus let us go into a bit more details.

Our first notion is purely theoretical. If the iteration is the essence of programm-
ing then to represent time any such model can be chosen that provides to follow
the changes done by iteration. So on this structure the induction must be allowed.
Hence developing a theory of programming we have no reason to introduce further
restriction for time (e.g. to suppose that time moments belong to N).

If we have a practical look at it then the situation seems to be totally different.
Namely, in practice there exists no procedure containing non-standard number
of steps. So the "infinitely large" time moment seems to be a fiction. However, if
we consider the history of mathematics this opinion can be dissipated. That is,
infinitesimal values play an important role in the history of mathematical analysis
but their reason for the existence was only recently observed by A . ROBINSON
and his followers.

Non-standard analysis is applied in computer science as well. It provides some
very effective methods to solve differential and integral equations.

In order to develop a theory of programming being able to analyse the real
situations of programming practice there is no reason to restrict it to the considered
notions of "standard and real" machines and time. It is not our aim, of course, to
investigate machines with non-standard time. Nevertheless if we have a theory of
programming which can handle non-standard time as well then the execution of
a program being correct within the frame of this theory will be correct in any machine
with any type of time, especially in the machines with standard time.

Indeed well written and well used programs, in our opinion, can be executed
in machines with arbitrary type of time, though programmers having developed
the programs know absolutely nothing about this. This is so because programmers
write down programs thinking in first order language though always imagining
the standard time (i.e. the set N) to it. These impressions, fortunately are not em-
bedded in the programs!

It may seem that the first order language is not sufficient to think about pro-
grams for it might provide far too many restrictions. However we have proved in
GERGELY and U R Y (1 9 7 8) that within the frame of classical first order logic for the
sequential and deterministic programming a theory of programming of unified
attitude can be developed and this frame fully satisfies the solution of the tasks
of a programming theory. Present work shows that this frame is completely satis-
factory for developing a theory of non-deterministic programming as well.

Now we give the mathematical description of the programming situation. Let
9 be an arbitrary similarity type containing the type q of arithmetic (r/c!)). In-
tuitively 9 provides the name of those relations and functions which have to be
understood by the computer. The properties of relations and functions are de-
scribed by the set of formulas AxczF%. The set of axioms Ax expresses the ex-
pectations with respect to data and "hardware". Intuitively we always suppose
that PAczAx i.e. the computer "understands" the arithmetic in the form of Peano
axinmatization.

According to the above saids it is clear that at least two sets are needed to charac-
terize a computer: — the set A of possible data and the set T of possible time
moments. We intend to speak of both time and data in a first order language. Since

Nondeterministic programming within the frame of first order classical logic 351

time and data are of different entities it is advisable to distinguish their languages
while describing a computer. This could be done by the use of a two sorted first
order language, where the first sort corresponds to time and the second one to
data. If different data types were allowed then we need a many sorted first order
language. The mixed sorted functions and relations describe the connection be-
tween time and data.

For the sake of simplicity let us stick to the frame of the classical (one sorted)
first order language and to describe time we use the same language as for data
representation with the only difference that a new unary relation symbol £ is intro-
duced. By this we supply our models with an inner time supposing that time can
be modelled by data. Of course not each data type can be satisfactory for this aim,
e.g. the Boolean data type is not.

Already in this approach we seem to meet the advantages provided by the ex-
plicit handling of time. Therefore, it was not necessary to introduce and use the
many-sorted first order language.

To describe time we introduce a new unary relation symbol £ (£ do S and let
us add £ to the type S. So, we have #* = $U{(i, 1)}. Expectations with respect
to time beyond data would be given by a set of axioms Ax* (Ax cz Ax* с t%). Of
course the set Ax* is larger than the set of axioms Ax expressing the expectations with
respect to data. To formalize the minimal properties expected from time we intro-
duce the following notations £*(x)=Bf (x^ /A((i)) (where the relation symbol s
is the ordering used in PA),

B0 = (*(0),

The fulfilment of the formulas B0 and Bx provides that the set of time moments
is not empty. The induction under (* can be formalized as follows:

B2ip = [(p(0)AVx(C(x)Axp(x) - ср{х+Щ - Ух(Г(х) - <?(*))•

Bx and B'2v s provide the closing under addition and multiplication.
According to the abovesaids with respect to time we always suppose that £*

satisfies PA*, where
PA* = {B0, B1}{J{BbfWdFl,, x€Var q>}.

Definition 3.10. A set of formulas Ax*cF[* is said to be a 3-type system if
PA* a Ax*. siC is a model with inner time Тш of the system Ax* if ll^Ax* and

Examples 3.11. (i) Let Ax=PA and Ax* = PAU{\/xC(x)}UPA*. In this
case any model 4i^Md(PA) will be the model of Ax* if С is interpreted by the
universe A itself. The model 2Г provided by such a way will be evidently a model
of Ax* with inner time A.

(ii) Let т1 = т2 be a Diophantine equation which has no solution in N, but
PA<^YZ. L e t AX* = PAUPA*U{\/XC*(X)-~1-C1(X) = T:2(X)}. U s i n g t h e m e t h -
od of (i), from a model 4i£Md(PA) a model Ul' can be arisen, which would be
a model inner time of Ax* if the equation т г =т 2 has no solution in A.

4 Acta Cybernetica

352 T. Gergely and L. IJry'

(iii) Let Ax*=PAUPA*, and let 216Md(PA) be arbitrary.
It is obvious that if (would be interpreted by the standard part of the model

21 (i.e. by N) then the model 21' arisen by using the method of (i) would be a model
of Ax* with inner time N. •

Remarks 3.12. (i) In Definition 3.10 it would be satisfactory to claim that
Ax* h- PA*. Thus in Definition 3.11 (i) Ax* = PAU{Vx((x)} would be enough.

(ii) Intuitively speaking a 9-type system Ax* provides the description of the
hardware of a computer. It fixes those features that characterize the static (Ax)
and the dynamics of the computer. Ax* may have a lot of models which
are usually different but it does not completely define a machine. However only
those features of machines are interesting in our investigation that are true in
every model of Ax*. •

3.4 Recursive definability

Let Ax* be a 9-type system. A fairly often used method of implicit definition
is the recursive one. In order to understand this situation in the case when Ax*
refers to time we need the following. Let g be a new k-ary relation symbol not
occuring in 9* (g$do9*). Let <p(g) denote the inclusion <p€.Fa*u{((!ifc)} i.e. cp(g)
is a formula of the syntax the type of which is the extention of 9* with the /c-ary
relation symbol g. Moreover we need a tool by which we can reduce a formula of
Fa*u{(.<>,k)} t o a formula of Fjf*. For this the following type of substitution can
be used.

Definition 3.13. Let <p€ ¿T*u{re j t)} and let F^ with Var / = {.x ,̂ . . . , xk}. Let
cp[yjg] be defined by the following way:

(i) if g does not occur in q> then <P[XIQ] = <P,
(ii) if <p = g (rlt...,rk) then <?[*/<?] = «L

(iii) if <p = <p1()<p2 where <) is either A or V then <P[XIQ\ = (PI[XIQ\QVAXIQI
(iv) if <p=l\l/ then <p\xle]= labile],
(v) if (p = Qvij/ then <p[x/g] = Qv\l/[x/g] where Q is either V or 3. •

We are interested whether the equation g-*-*<p(g) has a solution in Ax* i.e.
whether a formula x£Fa* exists such that

Ax* |= x** VlxlQl

In this case we say that x is a solution of the recursive equation g-*(p(g) in Ax*.
Moreover for some types of formulas in F^tu{(e,k)} there exists a minimal

solution of the above recursive equation.

Definition 3.14. A formula <p£ia*u((0,fc)} w ' t h Var <p={xlt ..., is a pedigree
formula iff there is a formula i//6/"j/»(J{(Si4)} such that

(i) AX*\=9* CP~\L/\
(ii) I¡j has the form I/' = I/'0VI//1, where g does not occur in ip0 and the symbols

~1 and V do not act on g in i
(iii) all occurences of g in ip contain only variable symbols;
(iv) bounded variable symbols of ip are distinct from each other. •

Nondeterministic programming within the frame of first order classical logic 353

The forthcoming theorem shows the recursive definition to be allowed, pro-
vided that we make only "positive" statements. This latter is contained in condi-
tion (ii) of the above definition of pedigree formula. It is needed in recursive defini-
tion to consider only already existing objects and not to speak about such that
have not occured so far but may do so sometimes in the future. So for example
we cannot say which objects should not belong to a recursively defined set. So the
condition (ii) provides the constructive feature of the recursive definability. The
conditions (iii) and (iv) are merely technical. If a formula <Рб^Г*и((еД)} satisfies
conditions (i) and (ii) then it is already a pedigree formula, of course with another
ф as if q> satisfied conditions (iii) and (iv) as well.

Theorem 3.15. For any pedigree formula <р€ з̂'*и{(еД)> there exists a formula
X^Fl* such that

(i) Var /1()=Var <p;
(ii) Ax*\=x<i>*—<pixjg] i-e- X<p is a solution of the recursive equation owp(o) ;

(iii) if x is any other solution of the recursive equation, i.e. it is a formula of
such that Ax*)= х~-*(р[х/ в] then Ax*t=x<p~~X> i-e- X? is the minimal solution.

Sketch of the proof It is similar to that of Theorem 3 . 4 in GERGELY and U R Y
(1 9 7 8) . It uses the fact, that there is a formula ф — ф0Чф1 such that the properties
(i)—(iv) of Definition 3.14 hold. By using the property (i) and the following fact:
if Ax*|= for any срх, (p.2d /Т»и{(е>Д)} then for any with exactly к vari-
able symbols:

Ax* \=^<PMQ]**<PMe]

to prove the theorem it is enough to construct such a formula x<p that Ax* И x
.xje]- The idea of the construction is that xv is either ф0 or it builds up from

ф0 applying фг (-many times. The building up of x<p can be done similarly to that
o f GERGELY a n d U R Y (1 9 7 8) . •

Abstract (to Part 1)

Nondeterministic programming play an increasing role in the theory of programming. This
role is discussed in Section 1 together with the role of classical first order logic in developing a
theory of programming. Two kinds of nondeterminism are considered: any and every. The un-
certainty in programs that use both any and every is quite analogous to that of game situations.
So in our theory games are the centre of interest. The basic constructions of games are introduced
in Section 2. The theory will be built within the frame of classical first order logic. The basic notions
and constructions needed to develop this theory are given in Section 3.

RESEARCH INSTITUTE FOR
APPLIED COMPUTER SCIENCE
CSALOGANY U. 30—32.
BUDAPEST, H U N G A R Y
H—1536

References

[1] ASHCROFT, E. and Z. MANNA, Formalization of properties of parallel programs, Artificial
Intelligence Memo AIM—110, Stanford University, Stanford, 1970.

[2] DIJKSTRA, E. W., Guarded commands; nondeterminacy and formal derivation of programs,
Comm. ACM, v. 18, 1975, № 8, pp. 453—457.

5*

354 T. Gergely and L. IJry'

[3] EGLI, H., A mathematical model for nondeterministic computations, Technological University,
Zürich, 1975.

[4] FRANCEZ, N., C. A. R . HOARE and W. P. DE ROEVER, Semantics of nondeterminism, concur-
rency and communications, Mathematical Foundations of Computer Science, Ed. J. Winkowski,
Springer Verlag, Berlin, 1978.

[5] GERGELY, T . and L . ÚRY, Mathematical theories of programming (manuscript), Budapest,
'1978.

[6] HAREL, D . and V . R. PRATT, Nondetermism in logics of programs, Report M I T / L C S / T M — 9 8 ,
1 9 7 8 .

[7] HOARE, C. A. R., Communicating sequential processes, Comm. ACM, v. 21, 1978, № 8, pp.
6 6 6 — 6 7 7 .

[8] MANNA, Z., The correctness of nondeterministic programs, Artificial Intelligence, v. 1. 1970,
№ 1—2, pp. 1—26.

[9] MENDELSON, E . , Introduction to mathematical logic, Van Nostrand, N. Y . , 1964 .
[10] MILNER, R . , An approach to the semantics of parallel programs, Proceedings of the Convegno

di Informático Teórica, Instituto di Elaborazione delle Informazione, Pisa, 1973.
[11] MILNER, R . , Synthesis of communicating behaviour, Mathematical Foundations of Computer

Science, Ed. J. Winkowski, Springer Verlag, Berlin, 1978.
[12] MIRKOWSKA, G . , Algorithmic logic with nondeterministic programs, Proceedings of Colloquium

Mathematical Logic in Programming, North Holland, 1980 (under publication).
[13] OWICKI, S. and D . GRIES, An axiomatic proof technique for parallel programs I., Acta Inform.,

v . 6 , 1 9 7 6 , p p . 3 1 9 — 3 4 0 .
[14] PLOTKIN, G. D . , A powerdomain construction, SIAM J. Comput., v. 5 , 1976, № 3, pp. 4 5 2 —

487.
[15] ROBINSON, A., Nonstandard analysis, North Holland, Amsterdam, 1966.

(Received Sept. 7, 1979)

Nondeterministic programming within the frame
of first order classical logic, Part 2

B y T . GERGELY a n d L . U R Y

In this part we develop a mathematical theory of nondeterministic sequential
programming by using the mathematical tools introduced in the first part (see
GERGELY and U R Y (1980)). Our investigation is concentrated around the problem of
completeness. While this we introduce an appropriate complete descriptive language
and a complete calculus in the spirit of Floyd and Hoare. The usage of the calculus
is illustrated by three examples.

4. Definable games

We aim at developing a theory of non-deterministic programming within the
frame of first order language and therefore we have to formalize the games pro-
viding consideration of nondeterminism. Unfortunately the basic notions belonging
to games introduced in Section 2 are not that of first order language. To keep our-
selves within the frame of first order logic we have to consider such version of these
notions that are parametrically definable. Thus we permit only parametrically
definable games, strategies etc. However it might happen that the property " to be
a definable game" is not definable while each game is definable. By using the
arithmetization of formal languages we show below that this is not the case.

Let Ax* be a 9-type system and let 91 £Md(Ax*) be arbitrary. There are several
definable bijections between AxA and A. Let us fix one of them and denote it by
pair. Let left and right be the two components of the inverse of the function pair,
i.e. for any x, yd A

left (pair (x, y)) = x and right (pair (x, y))=y.

Remember that in any model 91 £Md(Ax*) induction can be done by inner
time Tai i.e. by the set {t£A |2INT[>]} (see Definition 3.10). Thus the usual notion
of sequence (see Section 1.7) has to be modified in the following way.

Definition 4.1. Let 91 £Md(Ax*) and let D be an initial segment of inner time
r a . A function s: D-*A is a finite (in 21) sequence. If Z)=[0, n — \] then s is called
an n-long sequence. A function s: T^-^A is said to be a sequence or a long sequence.

•

\

356 T. Gergely and L. IJry'

Let iTc=/4\{0} be a definable set and let *K denote the set of all parametrically
definable finite (in 91) sequences containing only elements of K. Let A denote the
empty sequence.

Lemma 4.2. "To be an element of *K" is definable in 91.

Proof. Let cp be the formula which defines K in 91, i.e. Var cp = {x} and
91 t=(p[a]oa£K.

Let us consider the following formula:

(p*(s) = 3t(left(s) S MC(OA Vi(i — left (5) - q>[r (right (s), left (s), i)/x])),

where F is the well-know Gôdel-function (see e.g. in MENDELSON (1 9 6 4)) . Since the
functions r, left and right are definable in Ax* the formula q>* is equivalent to
a formula of For the sake of convenience we suppose that a formula (p* (e.g.
i=left (a)) at the same time denotes the corresponding formula of F$t, i.e. F£t.

Now let s£A be an element such that

Vlt=(p*[s].

Let us take the following sequence :

/ s (0 = r{right (s), left (s), i) for any i == left (s).
Now we prove that s<-*f is a surjective map, i.e. the elements of *K are coded

by s but these codes are not unique.
Let / : [0,«]—AT be a parametrically definable function in 91. By using the

generalized Sequence Number Theorem (see GERGELY and Û R Y (1 9 7 8) , Theorem 2 . 8)
there is a b£A such that for any /6[0, «], f (i) = r(b, n, i).

Let s=pair (c, b). If / is finite in 91 then by using the fact that Ax* is a system
and the definition of T we have 9l(=Ç*|>] i.e. there is a t£A such that s^t and
9l(=C[i]. Thus 9I|=(p*[s] and s codes the given function / . •

Lemma 4.3. The following functions are parametrically definable in 91 (and
also in Ax*)

pair: *KXK^*K,

left: *K-~*K,

right: *K-*A. •
Note that here the functions pair, left and right are defined on the sequences.

However we use the same notation as on page 355 because the présent case can be
obtained by iteratiye usage of the functions introduced there. Thus this notion
does not lead to ambiguity. For the sake of convenience we suppose that the
empty sequence A is cpded by 0.

Further on we do not distinguish the elements of *K from the corresponding
elements of A coding them.

Definition 4.4. .
r0 if a = A

length (a) = \length (jefi +1 otherwjse

Nondeterministic programming within the frame of first order classical logic 357

Definition 4.5. A set Fc*G4\{0}) is called a tree iff
(0 A€ V,

(ii) V=>left (v)€ V.
For any V and V take Sv(v) = V\ left(w) = v).

A tree V is called a path iff left: is an injection, i.e. any V has
at most one successor.

A tree V is definable in 2t iff it is parametrically definable in 21 as a unary rela-
tion on A. •

Note that because 0 codes A it is sufficient to use v4\{0} instead of A in the
above definition. Thus 0 can be maintained to denote the end of a sequence.

Definition 4.6. A trace in 21 is a function of the form / : V->-"A (for some
natural number n) where V is a tree in 21. If / is parametrically definable then it
said to be a definable trace in 21. •

Definition 4.7. Let V be a trace in 21. A game-frame in 21 is a pair GF=(V, C)
where CaV is an arbitrary set. C is called the nodes of choice of V. A run in
a game-frame GF=(V, C) is a subtree RczV such that

(i) if c^COR then c has a unique successor in R,
(ii) if r£R\C then Sv(r)=SR(r).
A strategy in a game-frame G is a function str: C—rg str in such a way that

for any c£C, str (c)£Sv(c).
A game-frame is definable in 21 iff V and C are parametrically definable. A

run R of GF is definable in 21 if both GF and R are parametrically definable in 21.
A strategy str in GF is definable in 21 iff GF itself and the function str are para-

metrically definable. •

Definition 4.8. Let GF=(V, C) be an arbitrary game-frame and let str be
a strategy in GF. A run R is said to be generated by the strategy str if {iir(c)}=
= SR(c) for any c€CDR. •

We note that if str is definable then there exists a minimal definable run generated
by str and this is denoted by Rstr.

Definition 4.9. A tree F i n 21 is finitary iff for any V there is a d£A such that
1) 2 t N C №
2) if pair (v, e)£Sv(v) then eSrf , i.e. any node of V has only finitely many

successors (in 21). • ;

Definition 4.10. A game in 21 is a quadruple G=(V, C, rA, rB) where (V, C)
is a game-frame and tA,TB are disjoint sets of paths in V.

A game (V, C, TA, rB) is definable in 21 iff
(i) (V, C) is a definable game-frame,

(ii) r A and r B are definable sets,
(Hi) each path of FA and FB is definable. •

Definition 4.11. A strategy str'in the game-frame GF=(V,C) is a winning
(non-losing) strategy of player A in the game (V, C, rA, rB) iff each definable path
of Rstr belongs to Fa (not to FB). •

358 T. Gergely and L. IJry'

According to this definition a run R of the game is non-losing for player A if
none of its paths belong to any of rB and R.

Thus a stategy of the player A is a winning (non-losing) one in the game
(V, C, rA, rB) iff moving accordingly the course of game realizes only paths belong-
ing to r A (not belonging to r f l) . If we are interested only in non-losing strategies
then it is enough to consider games of the form (V, C, 0, rB).

In order to show that among others the property "to be a definable tree" is
expressible by a first order formula we need the following well known theorem
about the existence of a universal formula, though the precise form of this formula
is not necessary to our investigation.

Theorem 4.12. (On universal formula.) Let us fix an arbitrary 9-type system
Ax*. There is a recursive map N (q>>—f<p 1 where f<pl denotes the Godel
number of the formula <p) and a formula Valid (g, a, x)£ F%* such that for any
H£Md(Ax*) and <p£F&, 91 t=cp[a, x] iff 11Valid [i(p\ a, x].

Proof. See in MENDELSON (1 9 6 4) .

Theorem 4.13. (Expressibility.) For any Ax* the following properties are ex-
pressible in Ax* by using the formulas of :

a) "to be a definable tree",
b) "to be a definable path in a definable tree",
c) " to be a definable game-frame",
d) "to be a definable run in a definable game-frame",
e) "to be a definable strategy in a definable game-frame",
f) " to be a non-losing definable run of a definable game",
g) "to be a non-losing definable strategy of a definable game",
h) "there is a non-losing definable strategy in a definable game".

Proof. Each statement can be proved by the same method. Thus we detail
only the proof of property a) by showing the existence of the formula corresponding
to this case.

a) Let Q be the variable symbol the values of which correspond to the Godel
number of the formula <p that parametrically defines a tree in 21 and let a be the
vector of variable symbols the values of which correspond to the parameters.

The property "to be an element of tree V" can be defined by using the formula
Valid (see Theorem 4.13). Namely Valid (i2, a, x) means that the element x is an
element of the tree Q with parameter a (here of course we identify the definable
objects with the Godel number of the appropriate formulas defining them). Having
this defining formula we can construct the formula defining the property a). Namely

Tree (Q, 3)= Valid(Q, a, A)A Vx (Valid (Q, a, x) - Valid(Q, a, left (*)).

Let 21 £Md(Ax*). Now for fixed Q, q£A take

VGa= {u£/4|2I N Valid[Q, a, »]}.

It is clear that Va,d is a parametrically definable tree in 21. Moreover if <p defines
a tree V by parameters a then, using 4.12, we have V= Vv>s-

Nondeterministic programming within the frame of first order classical logic 359

b) Let Path (i2, g, a, B) = Vx (Valid(g, b, x) - Valid (Q, S, x))A

Vx Vy {Valid (g, B, x) A Valid(g, b, y) A left (x) = left (y) - x = y}.

It is clear that if 1l£Md(Ax*) and Q,g, a, B^A then V9ts is a definable path in
F n , a . ,We omit the proof of properties c), e) and f). -

d) Let GF(QV, Qc, a) be the formula corresponding to property c)

R(QV, ß c . a, r, b)=GF(Qy, Qc, a)A Tree (r, B)A \jx[Valid(r, B, *)-

Valid(Qv, a,x)]AVxVy[Valid(r, B, x)AValid(Qv, B,y)Aleft(y)=xA

-]Valid(Qc, a, x) - Valid(r, B, y)]A

Vx Vy y z [Valid (r, B, x)AValid(r, B, y)AValid(r, B, z) A

left(y) = x A left (z) = yAValid(Qc,a, x) - y = z].

It is evident that this formula is good,
g) Let

NL(Qv, Qc, QrB, a)= 3r 35 (R(Qv,Qc,a, r, 5)A

Vg Vc(Path(r, g, B, c) — Valid(Qrg, pair (a, c), g))).

This formula means that there is a run r with parameters B such that r is a run
of the game defined by Qv and Qc and no path g with parameter c of r belongs
to Q f B . •

Now we reformalize the well-know König's lemma for the case of definable
finitary trees.

Lemma 4.14. (König.) Let V be a parametrically definable and finitary tree
in such that for any d£A satisfying 9X |= [d] there is a ¿/-long definable path.
Then there is a (-long definable path as well.

Proof Any proof of the original form of this lemma can be repeated because
the definability of the tree and paths provides the expressibility of each step of
the proof in the first order language. Details are omitted. •

5. Nondeterministic programming language

We introduce a nondeterministic programming language of the autocode level.
This level provides a relatively simple definition of semantics considering time con-
ditions as well. This description is done by using games introduced in Section 4.
Having exact semantics we turn to the investigation of the question of descriptive
languages, which is one of the foundamental component of a mathematically based
programming theory.

Now we introduce a 9-type nondeterministic programming language NPS.
The programs of the language NP9 might be "executed" in the models of on ar-
bitrary .9-type system. Altogether the "meaning" of the programs varies by systems
and by their models.

360 T. Gergely and L. IJry'

Let us fix a denumerable infinite set Y of variable symbols.

Definition 5.1. The set U9 of 9-type nondeterministic commands consists of
the following elements:

(i) j: y—t,
(i i) j : Dy^T ,

(iii) y: if x then • ki> •••» kr
where nd{any, every}, j, k^, ..., kr are natural numbers, yd Y, and Q\.

•
Further on sign • in commands stands either for any or every.
Thus the commands of U9 have the form j: u, where the natural number j

is said to be the label of the command.

Definition 5.2. A 3-type nondeterministic program p is a nonempty sequence
• of 3-type commands p — (/0: z/0, . . . , /„: »„)£ t/3

+ in which no two commands have
the same labels, i.e. for any j, n] if j?±k then

Let NP9 denote the set of all 3-type nondeterministic programs:

NP3 = {p \p is a 9-type nondeterministic program}. •

Note that we often write a program p in the form of column

»o : "o

instead of the form of row. In the column form we always assume that /„<...-=:/„.
For any nondeterministic program p=(i0: u0,...,i„: un)£NPs we use the

following notations:
(i) Var p= [J Var {ii: i/j) denotes the set of variable symbols occuring in

j i tO,n]

the program p. Here Var(/j.: Uj) is the set of variable symbols occuring in the
command i f Uj defined as follows

"Var(j: .y — T) == VarrU{y},

Var (j : • y = T) = Var rU{y},

V a r (j : if x then • kx, ..., kr)= Var x-

For the sake of convenience we often use Yp instead of Var p.

(") i n + 1 =min{ fc | k i { i 0 , . . . , i„}}. 1

The programming language NPS seems to be far too weak though it is powerful
enough as shown in its deterministic counter part in GERGELY and U R Y (1 9 7 8) . Now
we note only the command j: if x=x then • kt, ..., kn is the same as /: goto
• klt ..., k„. We use the latter in the language NP9 as an abbreviation.

Since the "meaning" of a program is its "execution" let us consider the case
when the execution takes place in an arbitrary model of a given 9-type system Ax*.

Nondeterministic programming within the frame of first order classical logic 361

Definition 5.3. Let us fix a system Ax*. Let us consider an arbitrary model
^l^Md(Ax*) and an arbitrary program p — (i0: w0, ...,«'„: u„)^NPB.

Let q: Var p -+A be an arbitrary evaluation of the variable symbols of p.

Let Gq=(Vq, Cq) be a game-frame and fq=(l, s): XV""A be a trace with
the following properties:

1. Gq and fq are parametrically definable in 91;
2. (i) 9£|=C [length (v)] for any v£ Vq,
(ii) /(0) = io and s(0) = q,
(iii) if /(iOi {im\m^n}' then there exists no successor of v, i.e. Sr (v) = 9;
3. Let us suppose that l(v) = im

(i) if um = y r then S¥q(v) = {pair(v, 0)=w}, /(w) = im+1,

(ii) if um=ny = x then SVq(v) = {pair (v, e) and for any u>6 SK ,
Kw) - im +1,

(iii) if um = if x then • ...,kr then
a) if then Sy (v) = {pair (v, 0)} and l(w)=im+1 for w£ Sv (0),
b) if 91N*[*(»)] then SVq(v)= {pair (v, kj)\je[l, r]> and l(w) = right (w)" for

any w(iSVq(v).
In both cases a) and b) for any w£SVq(v), s(w)=s(v).
The set of nodes of choice in the cases (ii) and (iii) is defined as follows

Cq= {v£Vq\l(v) = im and um is either any y S x or if x then any k1, ..., kr}.

The game-frame of the above properties is said to be the q-game-frame associated
to the program p; the trace fq of above properties is said to be a trace of the pro-
gram p in the model 91 starting with input data q. •

Now we take the points of the definition one by one and show what conditions
of programming are indicated by them. The ^-game frame (Vq, Cq) describes the
nondeterminism of the trace of a program; the function fq—{l, s) shows the actual
value of the variable symbols of the program in each moment of execution.

If the program gets in a state represented by the node v£ Vq then in the next
step the command labelled by l(v) will be executed with the s(v) evaluation of the
variable symbols.

Condition 1 is in accordance with the assumption that the first order language
is used to describe the 9-type models.

Condition 2 (ii) provides that the game goes on for time T=£* and it only
stops when the situation 2 (iii) arises, i.e. when the control l(v) gets such a label
that does not occur among z0, . . . , i n . So the termination of the trace is equivalent

362 T. Gergely and L. IJry'

to a jump onto such label. This is the reason why a special command stop is not
included in U9.

According to 2 (ii) a trace starts always with the first command of the program,
i.e. with the label z0 with an evaluation q given in advance. This is the reason why
a start command is not used.

Conditions of point 3 describe the one step transition of the program execu-
tion in the usual way. If a no control command with label im is executed then after
the execution the control gets on label i m + 1 . This is why the virtual label in+1 was
introduced to indicate the termination of the execution.

While executing commands with nondeterminism, i.e. with the sign • , the
game-tree branches out according to the possible choices. The cases any and every
differ from one another simply whether player A or B moves. The correctness of
the above definition is ensured by the following

Lemma 5.4. For an arbitrary program p£NP9, H£Md(Ax*) and q: V a r p - ~ A
there is a unique trace of p in 21 starting with; q and there is a unique associated
^-game-frame GFq. Moreover, the parameters of the formulas that define the trace
fq and the game-frame GFq are the values of q and these definitions are universal
(i.e. in each model of Ax* they are defined by the same formula).

Proof. The uniqueness means that the associated game-frame GFq and the
corresponding trace fq are unique. Let GF'q, and fq be another ^-game-frame and
another trace for which conditions 1—3 of Definition 5.3 hold. Let v be an element
of V with minimal length such that V or V but fq(v)^fq(v). This minimum
exists because both (GFq , fq) and (GF'q, fq) are parametrically definable. Since
v?±A so w=left (v)£ V and by the minimality of v we have w£ V and f(w)=f'(w).
If so then by using conditions 1—3 we have that v£V also holds and f(v)=f'(v)
which is a contradiction. To prove the existence of the trace we construct a recursive
equation, the solution of which gives a trace of p in 21 starting with q.

V3»*, /*, yt ...,y*k{g(v*, I*, y*, ...,yt al5 ..., ak)Al*i{im\rn ^ n},A<T(length v).A

k
e(v, l,y1, ...,yk, ax, ...,at)~(l = i0Av = AA A yj = a ,)

m = 0
A /* = im
n

i m - \v - (v*, 0)A A yt = yiAys = T[y*/y]A I = f m + 1 J - A
l Ms)

¡=1

n
- \v = (V*, ys)A A yf = yiAys = T[y*/y]Al = i m + J a

iVs) i^s
¡=1 ¡=1

m = 0
A . l* = L
n

= «•» - [.A yt= ytA{lx - » = (v*, 0)AI - im+i)A
"m = if X then • Itr

Nondeterministic programming within the frame of first order classical logic 363

Applying Theorem 3.15 this equation has a minimal solution say g*£F9*.
It is eviden that

Qv(w,a)=3l,y!, ...,ykQ*(w, ...,yk,ai, ...,ak)

defines a tree in 91 and if

i 2 c (w , a) = 3/ , ylt ...,yk\g*(v, l,yt, ...,yk, at ak)A V 1 = L
^ m=0

um="nyys
"m = ' f x then any kl,...,kr

then (Qv, Qc) defines the associated ^-game-frame GFq and g* parametrically
defines the trace of p in 21 starting with q.

Note that since the solution of the above recursive equation is the same in
any model of Ax* thus g* defines the trace of p in any model of Ax*. The universali-
ty of the definition of GFq is evident from the construction. •

6. Descriptive language

Let Ax* be a 3-type system and >H^Md(Ax*) an arbitrary model. Let
p = (i0: «o, . . . , /„ : U„)£NP9 and q: V a r p ^ A an arbitrary input. We emphasize
that the input q is arbitrary but fixed. The ^-game-frame associated with the pro-
gram/? is GFq=(Vq, Cq).

Let rB be an arbitrary set of winning paths of player B in game-frame GFq
and consider the game (Vq, Cq, 0, FB). From the point of view of the theory of
programming it is of great significance to consider whether player A has a non-
losing strategy in the game (Vq, Cq, 0, F„). The meaning of this consideration for
the theory depends on what set FB is selected. To illustrate the significance of the
existence of a not losing strategy of A we consider the game (Vq, Cq, 0, FB) with
different FB.

A. Let rB be the set of those definable paths of the game-frame GFq in which
there exists a situation (node) v such that i.e. FB consists of the
terminating definable paths of Vq.

In this case "to have a not losing strategy of the player A" means that A is
able to ensure that the program execution never "dies", i.e. it runs infinitely long
(more precisely £-long). •

B. Let ¡l/€Fgr be an arbitrary formula that is called the output condition and
let rB be the set of those definable paths of Vq each of that contains a node v such
that

(i) l(v)$ {ijm^n} and
(ii) 91
So rB consists of those executions of the program p that terminate without

satisfying the output condition i¡/.
In this case the non-losing strategy of A means the partial correctness of the

program p with respect to the output condition t¡/ (while the input condition is
any tautology e.g. x=x). •

364 T. Gergely and L. IJry'

C. Let <p, ip£ be arbitrary formulas that are called input and output con-
ditions respectively and let rB be the set of those definable paths of Vq for each of
which:

(i) 91|=9>[i(0)],
(ii) there exists a node (in the path) such that

l{v)i{im\m^n) and 21 ^ ip[s(v)].

In this case the non-losing strategy of A means the partial correctness of the
program p w.r.t. the input condition <p and output condition tp. Note that we can
suppose that if the program executed by input q which does not satisfy the con-
dition <p then rB=Q. •

D. Let (p, \p£Fgp be arbitrary formulas and let rB be the set of definable paths
of Vq such that each satisfies both

(i) %\=<p[s(Q)] and
(ii) either it does not terminate or it has a node v such that 1 (v) t| {im \m^n)

and l$L^\p[s(v)].
Now the non-losing strategy of A means the total correctness of the program

p w.r.t. the input condition <p and output condition ip. •

Before proceeding to the next cases we introduce further notations. The value of
the input is subject to change while executing a program, i.e. during the corre-
sponding computing process. Thus in order to describe program properties during
execution we need both the input values and the actual values of program variables.
For any fixed program p we distinguish a set XpzzY of variable symbols that
duplicates the variable symbols Yp and refers to the input values of the latter.

If Yp—{y1,...,yk} then Xp={x1, ..., xk} and for any/€[0, «], x,- duplicates
the corresponding y t .

Moreover let t be a distinguished variable symbol of Y which will be used to
describe time conditions. A formula <p€F9* is said to be an input condition for a fixed
program p iff Var <pczXp. Moreover, a formula \p<zF%* is called output condition
for the program p iff Var ip<zXp U Yp U {/}.

Now let us consider the further cases.

E. Let <p and ip be input and output conditions for a fixed program p respec-
tively and let rB be the set of those definable paths of Vq which satisfy 2It=<p[<7]
and have a node v such that l(v)$ {/,„ \m^n} and <$L\^\p[q, s(v), length (u)].

In this case^the existence of a non-losing strategy of player A is of the follow-
ing meaning. An execution of program p carried out in accordance whith the
strategy is such that it starts with input q that satisfies condition (p and when it
stops it satisfies condition ip. •

F. Let cp and tp be input and output conditions for program p respectively and
'let rB be the set of such definable paths of Vq that each of them satisfies 211= <p[q]
and it is either infinite or there exists a node v such, that and.
t±\p[q, s(v), length (i>)].

In this case the existence of a non-losing strategy of player A means the follow-
ing. An execution of program p done in accordance with the strategy starts with
input q satisfying condition <p and it terminates by satisfying condition \p. •

Nondeterministic programming within the frame of first order classical logic 365

We could go on listing cases infinitely, but we hope that the aboves represent
the basic idea well.

However each of the above cases represents its own situation in the theory
of programming, having its application in the mentioned way. From theoretical
point of view it would be very useful to have a unique descriptive language for
any version of the set r B , i.e. this language has to be suitable to define sets of paths
in trees. But for the time being we have not such a universal descriptive language.
Thus for each r B we have to introduce a new descriptive language remaining within
the same definable game-frame (V q , Cq).

Corresponding to aboves a theory of nondeterministic programming though
having one programming language has to possess several descriptive languages
each of which fits in to certain conditions corresponding to some pragmatical aims.

To illustrate this theory we give the appropriate descriptive language for the
cases E and F. This language will be common for both cases. We have chosen these
cases because in literature time consideration is hardly investigated.

First we introduce the syntax of the descriptive language.

Definition 6.1. F a =={((?,p, \l/)\p£NPa, q> and i¡1 are input and output condi-
tions for p r e s p e c t i v e l y } U p , ij/]\p(zNP9, q> and 1j/ are input and output con-
ditions for p respectively}. •

When we are interested only in the triple of (p, p, ij/ without specifying the type
of brackets that include them we write \cp,p,tl/\.

Now we are going to define the semantics of the descriptive language.
Let x=\<p,p, IA|6F9 and let 91 £Md(Ax*). According to Lemma 5.4 for any

q: Varp-~A there is a game-frame Gp = (Vq, Cq) and a function fq = (l,s): Vq^A
and they are definable in Ax*. Starting out from the game-frame Gq and taking
the formula x into account the following game can be constructed:

0) r \ = V,
(ii) if Sl^ipfa] then let TJ=0 . In opposite case there are two possibilities:
a) First if x—{(p,p, i/0 then.TJ = {y is a definable path in F 4 | thereisa ugysuch

that l(v)$ {im\m^n} and SH^ij/iq, s(v), length (V)]}.
d {

b) Secondly if x=[<P>P> W then let r% = \y is a definable path in Vq\y is either
infinite or there is a v£y such that l(v)(i {im\m^n} and jj[q,s(v), length (v)]}.

Thus we have got a game G* = (Vq, Cq, 0, which is called the associated
q-game generated by x-

By using the technique used in the proof of Theorem 4.12 it is not difficult
to verify that the set r*B is parametrically definable in Ax* in both of the above
cases a) and b). Moreover, the value of q are used only as parameters in the defining
formulas. Thus we have the following

Lemma 6.2. Let 21 £Md(Ax*) be arbitrary, and q: X„->-A. Then the
associated q-game (Vq, Cq, 0, TJ) is parametrically definable in Ax*. •

Now we turn to the definition of the semantics of the descriptive language
to be defined.

366 T. Gergely and L. IJry'

Definition 6.3. Let 91 £Md(Ax*) and be arbitrary. 9ll= y iff for any
q: Va rp-*A player A has a non-losing definable strategy in the associated g-game G*.

•
Note that if /=(<?,/?, ip) (x=[(p,p, ip]) then ii\=x means the partial (respec-

tively total) correctness of the program p in the model 91 w.r.t. the input condition
(p and output condition [p.

Definition 6.4. For an arbitrary 9-type system Ax* the descriptive language
expressing partial and total correctness and describing the corresponding time
condition is

D9 ** = (F3, Md(Ax*), |=).

Remark 6.5. Similarly to the fact that the associated g-game is parametrically
definable, if 21l= x then the non-losing strategy and the corresponding run are also
parametrically definable in 91.

What is the connection between the validity relation introduced above and the
validity relation of Definition 3.5. The answer to this and the expressibility of some
notions introduced above by the first order language is given by the following

Theorem 6.6. For any x€F 9 there is a formula such that for any
9 \ £Md(Ax*) , iff 91 NX*.

The function rendering x* to x is recursive.
Moreover, there is a formula ax(a,v, w)dF** such that if 9l|=x then for any

q\ Va rp-*A , ax[q] defines a non-losing strategy of player A in the associated
<7-game G*.

Proof. The existence of the formula /* for a given F 3 is an easy consequence
of Theorem 4.9. The recursiveness of the function that renders the corresponding
X* to each of them can be established by using Godel-numbering. We omit the
details. • '

Let Efx* denote the set of all formulas that are true in the models of Ax*, i.e.

Et-{x\Ax*\=xl
From the point of view of the usability of the descriptive language D3

X* for
the theory of programming the handlebility of E*x* is very important. This is es-
tablished by the following

Theorem 6.7. (Completeness.) If the system Ax* is recursively enumerable
then so is set of formulas E£x*, i.e. the descriptive language is complete.

Proof. Immediate from 6.6. •

Remark 6.8. If 9I|= x would be defined so that for any input data q in the
game G* player A had a non-losing strategy (without the assumption of definability)
then the language D9

X* would lose the completeness, even more, it would be neither
co-complete nor complete relative to arithmetic in contrast with the case of deter-
ministic programming (see BANACHOWSKI et al (1 9 7 7) and COOK (1 9 7 8) , PRATT (1 9 7 8)
respectively).

Nondeterministic programming within the frame of first order classical logic 367

7. A complete calculus

Being aware of the completeness of the language D9** we are going to intro-
duce such a complete calculus which is close to the programmer's intuition. This
calculus has to be convenient to prove about a given program p either its partial
or total correctness w.r.t. given input and output conditions. To provide such
a calculus is significant from the point of view of both theory and practice.

Theorem 6.6 shows that the syntax F s can be coded in the syntax F l however
the proofs in the latter can nfct be interpreted directly by programming situations.

Below we introduce a calculus in the spirit of Floyd and Hoare.
First we introduce the following

Notation 7.1. Let Lab: NP&-*-P(N) be the function rendering to each non-
deterministic program p=(i0: u0, ...,/„: un)£NP9 the set of labels occuring in
it as follows.

Lab Cp)={/m|/M^n + l}U{&| there is an m such that um= if x then
• € {any, every}}.

Definition 7.2. Let us fix a 9-type system Ax* and let x = \(p, p, i/H be an arbi-
trary formula of F 9 . Let <P : Lab (p)-+Fs* be a function which to each label of the
program p renders a formula <£(/) with variable symbols x, y, Y. Remember
that x serves to duplicate the program variable y and t refers to time. Further on
we write instead of The function $ is said to be the description of x w.r.t.
Ax* iff it satisfies the following conditions:

(iii) if im: any y^s.t then

Ax*\=$lm-+ Bz(zSrA^ f m + 1 [z /y , i+ l / i]) (assignment rule of A's choice)

(iv) if im: every y^z then

y4x*l=4>im — Vz(z^TA^ f m + 1 tz /y , t+l/t]) (assignment rule of B's choice)

(v) if im: if x then any fcx, ..., kr then

(i) Ax*t= <p -•$IO[0/i, x/y]

(ii) if im: y — T then *

A x * ^ ^ ^ [r / y , t+l/t]

(input1 rule)

(assignment rule)

r
Ax*\=<PimA~\x—<Pim+1[t+l/t], Ax*^$imAx~y Q^t+l/t]

(rule of conditional jump of A's choice)

(vi) if im: if x then every k1, ..., kr then

Ax*^<PirnMx-~4>im+1[t + lit], Ax*t=$imf\x->- V <Pkj[t + l/t]

(rule of conditional jump of B's choice)

(vii) Ax*t=<Pz-~\l/ (output rule for z(f { i j m s n })

5 Acta Cybemetica

368 T. Gergely and L. IJry'

Moreover if z=[<p,p,4>] then
(viii) for any {im \m^n}

Ax*t=3v \/y[<P2-rv^/] (rule of termination).
We denote by Ax*\~x the fact that the formula x has a description w.r.t. Ax".

•
Now let us see some remarks on the above definition:
Each formula <Pf (O^ /Sn) shows the conditions the data should satisfy before

executing the command labelled by i and the corresponding time conditions. We
note that (can be used in any formula .

The rule (i) shows that the execution of the program starts at the moment 0.
In the rules (ii)—(vi) the substitution [i + l / i] denotes unambiguously that

the execution of each command happens during one unit of time however complex
e.g. the term T is. This has already been supposed in the definition of the q-game
associated to the program (see 5.3).

This assumption can be generalized without any trouble in the following way.
We render to any command im: um an execution time tm which can also depend
on the data y. Thus the game associated to the program continues a unique path
during tm time-units. Now this corresponds to the fact that the game stays in one
and the same state. Using this generalization in the description of x in every rule
(ii)—(vi) instead of the substitution [i + l / i] we write [t+tjt].

The rule (vii) says that if the'execution of the program p stops then it stops
forever i.e. its time rstops,:^-:- the process "dies".

The rule (viii) is needed only to prove the total correctness of p.
In'the descriptive formulas the usage of separate variable symbols x is allowed

in order to refer to the input values. These are needed only in the formulas used
in the description of total correctness. While proving the completeness we shall get
a formula independent from x for the case z=(q>, p, by using the definition
<P* = 3x <f>z for each descriptive formula <PZ.

It is interesting that in the case of nondeterministic programming total correct-
ness is not equal to partial correctness plus termination in contrast with the deter-
ministic sequential case. Thus in our case the total correctness cannot be established
by proving the partial correctness and the termination separately.

Now we show that the calculus introduced above is complete.

Theorem 7.3. (Completeness.) For any 3-type system Ax* and x€F s , Ax* \=x
iff Ax*hX-

Proof. First we show that if Ax*hx then Ax*\=x-
Let us fix a x=\(P>P>xl'\ a n d let <P: Labp—Fg* be a description of x w.r.t.

Ax*. Let 21 £Md(Ax*) and q: Warp—A be arbitrary. We must prove that in the
q-game G*=(Vq, Cq, 0, rx

B) player A has a non-losing strategy.
Let (l ,s): Vq—N x V a r M be the trace of p in 21 starting with q. First we

define a strategy for player A.
Let v£Cq be arbitrary. Since v£Cq for an 1, w] we have l(v) — im and um —

=any y^z or um — i f x then any k1,...,kr. If 2i^=<^l(v)[q,s(v), length v] then let
sir (v) be the minimal element of SKj(y). (It might be arbitrary but we have to be

Nondeterministic programming within the frame of first order classical logic 369

sure that str is parametrically definable.) So let us suppose that 9t|= <Pl{D)[q, s(v),
length (v)]. First let um=any y^r. By our assumption with im=l(v)

91 N <P(M - 3z(z ^ zA$im+1[i/y, t+\/t],

91N $im[q, s(v), length u] and thus

91 1= 3z(z ^ rA4>im+1[r/y, t+l/t][q, s(v), length (u)].

Now let z* be the minimal z£A such that

91 t= zS TAi>,m + 1[i/y, t+l/t][q, s(v), length (v), z].

It is clear that pair (v, z*)£SVg(v) and so let

str (v) == pair (v, z*).
Obviously

91 1= ¡¡(str (»)), length (str (»))] (1)

In the end let um — if x then any kx, ...,kr. Since v£Cq so 9lt=jc[s(u)]. Using r
9tt=^,mA?<- V $k j[t+l / t] and 9lt=^ImAj<[q, s(v), length (v)] we have

j=i m
 s

91 1= V &kj[t+ l/t][q,s(v), length (v)].
j'=i

Let k* be the minimal k£{klt ...,kr} for which

91 t= <Pk[t+\/t][q, s(v), length (a)] (2)

and take str (v)=pair (v, k*).

Thus the strategy str is defined. Since Gq is definable and the method used in
the aboves can be defined in F*t so str is also parametrically definable. The fact,
that str is a non-losing strategy follows from the following

Lemma 7.4. Let n be a parametrically definable path in the run Rslr of the
strategy str. For every V£TC

« t= <*>/(„)[?, s(v), length 0)].

In fact if / (y) { i m \ m ^ n } then

91 |= ij/[q, s(v), length (v)].

Moreover, if x—1<P> P> M then n terminates.
Proof. The proof goes by induction on the length (V). If v = A and length (v)~0

then by using 91 \=(p [q] and (i) of Definition 7.2, 911= *nA)[q, s(/l), 0]. The inductive
step can be done by using (1), (2) and (ii)—(vi) of Definition 7.2. If l(v) $ {im\m^n}
then from (vii) of Definition 7.2 we get 9l|=i/'[<7> s(v)> length (i>)].

If x = [< p , i p] then let us apply (viii) of Definition 7.2 and we get a t£A
such that if length (v)=~t then for any z£ {im\m^n}, 21N <Pz[q, s(v), length (v)].
Hence using yi)=<t>Hv)[q,s(v), length (v)] we have l(v)$ {im\m^n\.

The proof of the lemma is completed. •

5*

370 T. Gergely and L. IJry'

Now the proof of the theorem is continued by showing that if Ax*\=x then
Ax* Н / .

Let x=\<p, p, ф\ be such that Ax*\=/- Let S2y(a, v) and Qc(a, w) be the for-
mulas which parametrically define the game-frame GF=(V, С) in Ax* generated
by x- By the second part of Theorem 6.6 there is a formula ox(a, v, w) with the same
parameters as Qv, Qc which in Ax* parametrically defines a non-losing strategy
for player A in the game (J*. Hence there is a formula Qx(a, which defines
in Ax* the run of the strategy defined by ax. Now we give a description of x in Ax* :

Ф2(х, у, t)=(p(x)A Зу {^ (x , v)Al(v) = zt\y — s(v)Mength(v) = /}.

Since s is parametrically definable in Ax* by using only the parameter x so
It is clear that Var Ф г с { х 1 , . . . , xk, уг, ..., yk, /}.

The following lemma is enough to complete the proof.

Lemma 7.5. The above function Ф is a description of x w.r.t. Ax*.

Proof. Let s2t£Md(Ax*) and q: Var/?—A be arbitrary. We have to prove that
for any y, t_£A the rules in Definition 7.2 hold, (i)—(vii) can be proved in the same
way so e.g. we prove (iii). Let y,t£A be such that 91 н Ф,т[<7, y,t] and um—every
y^z. Let G£=(Vq, Cq, 0, be the associated ^-game generated by x a n d let
(/, j) be the trace of p in 91. By the definition of Ф,т there is a Vq such that
y—s(v) and t=length (v). Moreover v^R^ where str is the non-losing strategy
of player Л defined by a and q. Let zs r a [i(y)] bearbitrary. Then w=pair (v, z)dRstr,
length (w) = t+1,

{ z if X = y,
s(y)(x) otherwise;

and l(v)=im+1.
This means that

21 И <I>im[q, s(w), l(w)].
Hence

t= Ф1т+1[г1У,1+1/ШУ,1].
Summarizing:

91 N Ф,-т - Vz(z ё гЛФ ; т+1[2/у, i+ l / i]) .

If x=[<P,p, \]/] we must prove that for any {im\m^n),

91 t= З Г Vj> \//[Фг(у, /) - * ' = Г].
By the definition of G* and Rstr in Rstr any definable path terminates. It is clear

that Rslr is finitary and thus Konig's Lemma can be applied: there is a T£A such
that for any v£Rstr, length (v)^ T. As in the first part of the proof for any
(y, t)£A with

Я N ФЛЯ.9, £1
there is a v£Rslr such that s(v)=y and length (v) = t. Hence tj=T and thus

91 и Vj?Vf [* , (? , /) - / € Г] [* , Г | .

The proof of the lemma is completed and so is the proof of the theorem. •

Nondeterministic programming within the frame of first order classical logic 371

8. Examples

8.1. The least common multiplier

Let us consider the following nondeterministic program that we would like
to use for the computation of the least common multiplier of two positive integers :

d
/>1 =

0: any y ^ m a x (a, b)

1: if a\y2Ab\y2Ay2^0 then 5

2: if y2>ab then 5

3: y2^y2 + yi
4: goto 1

The input and output conditions are respectively
d

(p = a > OAb > 0AJ>2 = 0
and

d
il/=y2 = [a, b].

Let Ax be the set of axioms, which contains PA and the axiomatic definition
of |, max, < , s , and [. , .]. Let

Ax*=AxU{Vxt;(x)}.
We are going to prove that

:f Ax*\=(<p,p1, i/O-
i.e. in the label 0 the value of yx can be chosen so that if the program terminates
then y2 = [a,b\. Indeed let us consider the following description of % w.r.t. Ax*:

<P0^=a > 0 A b >0Aj>2 = 0

*i=yi =*OA(y1|flVj'il&)AVz(z s yzAyJz - z\a\J~]z\b)

d

<P3=<P2Ay2 ab
d $ 4 = Î>!

4>5==y2 = la, b]
It is easy to verify that the function described above is really the description

of x w.r.t. Ax*.
It is obvious that the greater value is chosen for yx f rom that of satisfying the

condition the sooner termination of the program occurs. That is why from

372 T. Gergely and L. IJry'

the output condition we claim the expression of early termination. So let

r d 4([a,b] + \)
max (a, ft)

Now let us consider the description ¿»'of x=[<p,p, »AI w.r.t. where the
time conditions are to be expressed in the descriptive formulas The
description $ is a light modification of $ as follows:

i>0== a > OAb > OA y 2 = 0

^ i ^ y j = max (a, ¿OAy., = sî abA Vz(z ë j^-A^lz — l z | a V lz|f>)

= max (a, b)Ay2 = ^ - ^ y ^ y z ^ ai»AVz(z j ^ A j ^ z — ~|z|aV ~lz|b)

^ 5 = = [a, b]Ai == u . . / . 5 1 J max (a, b)

From the descriptions <P and $ it immediately follows that the command 2:
if y2>ab then 5 is really unnecessary. It is good exercise to prove that if in the
program p1 we write every instead of each occurence of any we get a program p[
such that

Ax* 1= [cp, pi, t s 4ab + 4],

8.2 Pattern matching

Now we show how the nondeterministic programming language NPa can be
used for handling the problem of pattern matching. First let us specify what
pattern-matching is.

Let ^ be a definable partial ordering in a fixed system Ax*. Let S}\£Md(Ax*).
If for some a, b£A, a^b then we say that 6 is defined at least that much as a. Let
us give a vector {X(j))JS„ of w + 1 elements. We would like to match to this vector
a pattern from the matrix (A(i, j))irSmj^„.

More precisely, we would like to find such a row in the matrix each element
of which is defined at least that much as the corresponding element of the vector
m))jSn-

Since vectors and matrices are not allowed in our language NPg. explicitly we
have to suppose that the type 9 contains the function symbols vcomp and mcomp,
for which 9(vcomp)= 2 and 9(mcomp) —3. The function symbol vcomp provides
the i'-th component of the vector having the code X. Analoguously mcomp pro-
vides the (/, y)-th component of the matrix having the code A.

Nondeterministic programming within the frame of first order classical logic 373

Let us consider the following program the input data of which are A, x, n, m.
d

P2 =
0: any i^m
1: every jSn
2: if vcomp (x, j)^mcomp (A, i, j) then 5
3: « = 0
4: goto 6
5: w = l

Let u= 1 be the output condition of the program. It is a useful exercise to
prove the fact that the execution of p2 w.r.t. the input values A, x, n, m is correct
iff such a row s can be chosen for the label 0 that can be matched to X.

8.3 A NIM-game

According to the definition the execution of programs is represented by an
associated game. Of course this can be reversed as follows: the properties of a
game can be represented by an appropriate nondeterministic program.

Let us-consider the following version of the game NIM. There are two players
A and B and there is a single pile of n chips. The two players take turns alternately
and at each move a player must pick up at least one and at most k chips from the
pile. This is the game-frame. We add to this the following: the player who picks
up the last chip wins. Thus we have the game G.

Let player A move first. By using the calculus of Definition 7.2 and Theorem
7.3 we show that player A has a winning strategy if n is divisible by k+1 i.e. if k+11n.

Let us-take the same system Ax* as in 8.1 and consider the following program,
d

Pa =
0: any y^k
1: if y=0 then 9
2: if y^n then 11
3: n-n—y
4: every y^k
5: if y=0 then 11
6: if y^n then 9
7: n—n—y
8: goto 0
9: u = 0

10: goto 12
11: u = 1

374 T. Gergely and L. IJry'

Note that the commands of labels 0 and 4 allow to choose 0 chips in contrast
with the rules of the game G. This is connected with our programming language
NP&, where for the sake of simplicity we introduced the assignment commands
with choices in the form of /: ny=t, • 6 {any, every} .However we could have given
them in the following form i: • zx=y~^x2 or i: • y£q> (where t15 and q>£Fl
and it has at least one free variable symbol). Thus to keep up with the game rules
we need the commands labelled by 1 and 5. These commands assure that if one of
the players on his turn chooses 0 chips that this move will be considered as a cheat
and he loses the game immediately.

It is obvious that player A has winning strategy in the game G iff the pro-
d

gram p3 is correct w.r.t. the output condition tj/ = u=l. Since in the game G drow
is not possible so a non-losing strategy of player A is, at the same time, his winning
strategy. Thus it is enough to show that Ax*t~x where

X = [~)k+\\n,p3,u = 1],

i.e. it is enough to give a description of the formula x w.r.t. Ax*. It is easy to
verify that the formulas below define a description of x w.r.t. Ax*:

<P0== " l f c + l | n

<PX= 1 ^ y S kAy = n mod (fc+1)

d

2 = 1 ^ y ^ fcAy = n mod (k+1)

d

<&3= y < nAy = n mod (fc+1)

<P4= k+ l |nAn > 0

^ kAn > 0 A f c + l | n

<P6= l g y s kAk+l\nAn > 0

1 fcAfe+l|nAn > 0

$ 8 = n f c + l | n

<Pg=false

$10=false

^ d <Plt=true d
^ 1 2 = " = I-

Nondeterministic programming within the frame of first order classical logic 375

Abstract (to Part 2)
/

Games are adequate to nondeterministic programming shown in Part 1 and the theory of
nondeterministic programming is intended to be developed within the frame of classical first order
logic. So in Section 4 the representation of games is given by considering definable games within
this frame. The nondeterministic programming language is introduced in Section 5. In Section 6
a descriptive language is introduced which, beside the classical data consideration, handles time
conditions as well. It is shown (in Theorem 6.7) that this language is complete. Section 7 contains
a calculus in the spirit of Floyd and Hoare, the usage of which is illustrated in the last section by
examples.

RESEARCH INSTITUTE FOR
APPLIED COMPUTER SCIENCE
CSALOGÄNY U. 30—32.
BUDAPEST, H U N G A R Y
H—1536

References

[1] BANACHOWSKI, L . , A . KRECZMAR, G . MIRKOWSKA, H . RASIOWA a n d A . SALWICKI, A n i n t r o -
duction to algorithmic logic, Mathematical Foundations of Computer Science, Banach Center
Publications, Warszawa, v. 2, 1977, pp. 7—99.

[2] COOK, S. A., Soundness and completeness of an axiom system for program verification, SIAM
J. Comput. v. 7, 1978, pp. 73—92.

[3] GERGELY, T. and L. ÜRY, Nondeterministic programming within the frame of first order classical
logic, Part 1, Acta Cybernet., v. 4, 1980, pp. 333—354.

[4] HAREL, D . , Arithmetical completeness in logics of programs, Automata, Languages and Pro-
gramming, Eds, G. Ausiello and C. Böhm, Springer-Verlag, Heidelberg, 1978.

[5] MENDELSON, E., Introduction to mathematical logic, Van Nostrand, N. Y. 1964.

(Received Sept. 7. 1979)

Completeness in non-simple and stable modal logics

B y K . TÓTH

In my work [1] I have defined the syntax and semantics of modal logics. Also, in-
ference systems and completeness theorems for simple, non-stable logics have been
included. Unfortunately, the methods used there cannot apply directly to non-
simple and stable logics. In this paper I give a modification of the method and
prove completeness theorems for the cases not covered in [1]. In fact, this paper
is a continuation to [1], all non-common notions and notations are introduced there.

§ 1. Completeness in non-simple logics

The notion of consistency is defined in [1].

DEFINITION. The set of formulae is complete if the following conditions are
satisfied: _

(i) a is consistent;
(ii) If si contains variables only from n(a), then either A£a. or

(iii) Let sd contain variables only from 7r(a). If then there exists
a variable ad-n(a) such that a is free for JC and s/[xfa]£<x;

(iv) Let / be «-argument function symbol and let xx, ..., xn£n(a). There exists
a variable a£_n (a) such that for all classical f o r m u l a ^ the fact f(xu ...,x„) is free for a
in si implies that the two assertions si^a. and st{alf(xx, ..., x„)]€oc are equivalent.

\

Theorem 1. If a is consistent, then there exists a complete set /? such that ctQfi.

Proof. Parallel to the proof of Theorem 5 in [1] using the following Lemma.

LEMMA. Let / be an «-argument function symbol, a a consistent set and A$7T(A).
Moreover, let a ' = a U { j j / : .si is a classical formula, f (x x , ..., xn) is free for a in

and si[alf(x1, . . . , x„)]6a}. Then a ' is consistent.

Proof. In contrary, let us suppose that there exist the formulae six, ...,sik,
such that six, ...,sik£<x, ^ [a / / ^ , ..., *„)], ... ,.3§,[al f (x x , ...,x„)]€a

378 K. Tóth

and | (si1A...AsfkA@1A...A@l). Applying R2 and A6.b we have

h-Va ~(sixA...As!kA®xA...A381)

h- ~(stfiA...AsfkA&1[a/f(x1,..., x„)]A . . .Aa , [a l f (x l t ...,xn)])

which is a contradiction.
Definition of a complete system of formula-sets is just the same as in [l]-how-

ever, item (iii) can be omitted by the remark above.
The theorem remains valid for the new concept:

Theorem 2. If a is a complete set of formulae, then there exists a complete
system of sets M such that a

The completeness result follows easily from this theorem.

Theorem 3. Let a non-simple, non-stable modal logic be given. If si cannot
be derived in this logic, then is satisfiable.

Proof. By the previous theorems, there exist a complete set a and a complete
system of sets M such that ~ si£ct, a£M. We assume, by the definition of a complete
set, that is a function for which the following property holds: if a£M, / is «-argu-
ment function symbol, x l 5 x„^n(a), then v(a,f(x1, ..., x„)) is a variable, such
that for all classical formula 38, if f (x . . . , x„) is free for v(a, f (x x , . . . , x„)) in
38, then the two assertions and 3S[V(OL, f i x j , . . . , xn))/ f(XX, ...,x„)]£oc are
equivalent.

Let us introduce the notations:

N= {j9: P£M and P+ * 0};

If p, y£M, then PRy {(P+ £ y and P+ * 0) or (p+ = 0 and y=P));

\P(P) I = *(P);

fp^ix!, ...,xn) = v(P,f(x1, ...,x„)), where x , , ..., x„£n(p);

rpm(xi> xn) r(*i> •••> xn)£P, where x l 5 ..., xnen(P).

It is clear that (M, N, a, R, P) is a model. Let us extend the domain of v as follows:
let v(P,x)=x, where x£it()3); and let v(P, /(T^ ..., T„)) = d(P, f(v(P, x^, ...,
...,V(P, T„))), where TX, . . . , T„ are terms containing variables from N(P) exclusively.
The following assertions can be proved by (the usual) induction:

Let k be an interpretation and x the corresponding valuation.
(i) If then X(T,P)=V(P,T[Xi, ..., xjk(xO, ...,k(xm)]), where

x l 5 . . . , x m are all variables occuring in r.
(ii) If then p\=SS[k]o3S[Xi, ...,xjk(xi), ..., k(xm)]<ip; where

x 1 ; . . . , x m are all variables occuring in 38.
In particular, it follows that ~ si is valid in the model (M , N, a, R, P).
Properties K1—K3 can be proved just as in [1, Theorem 7].

379 K. Tóth ¡Completeness in non-simple and stable modal logics

§ 2. Completeness in stable logics

Theorem 4. If a is complete, then there exist a complete set ß and a complete
system of sets M such that <xQß, ßdM and for every y£M, n(ß) = n(y).

Before proving this theorem we give the completeness result for stable logics.

Theorem 5. Let a stable modal logic be given. If the formula si cannot be
derived in this logic, then ~ s i is satisfiable.

Proof. Very similar to the proof of Theorem 3 above or Theorem 7 of [1] pro-
vided complete system of sets M, given by Theorem 4, is used in the construction.

§ 3. Proof of Theorem 4

We introduce the following notations: let a be a set of formulae. By i/*(a)
we shall mean the set of all formulae which contain variables only from 7i(a).

Let R be a two-argument relation. We define the relation Rn, n finite, by the
following recurrence: R° is the identity relation and let i?"+1 be defined by ARn+1B
if there exists C such that AR"C and CRB.

Then, R = (J R", where R is the reflexive, transitive closure of R.
n = 0

In the following we shall deal with certain ordered triplets (a, M, R). Without
further mentioning we always suppose that the following conditions hold for
<«, M, R):

(i) M is a set of complete sets, a£M, R is a binary relation on M.
(ii) For every ß£M,ocRß and if SQR and for all ß^M aSß, then R = S.

(iii) If a£n(ß), then there exists y such that a£n(S) if and only if yRö.
(iv) a) If ßRy then ß+f)>l/(y)Qy and

b) Let ß£M, Qsitß. If there is a y£M, such that ßRy and si£\]/(y), then
there also is a ydM with ßRy and sidy.

Assertion 1. For arbitrary triplet (t x , M , R) there is no ß£M such that ßRa.
If ßRS and yRö then ß=y.

Proof, (a) Consider the triplet (a, M, S>, where S is defined by ßSy if and only
if ßRy and y^a. By the second clause (ii) above, R—S.

(b) Let us suppose that ßRS, yR8 and /My. Let S be defined as ßx Sß2 if
and only if ßxRß2 and (ßi, ß2)^(ß, ö). Then conditions above will hold for
(a, M, S), but SQR and S^R which contradicts the second condition (ii).

DEFINITION, (a , M , R) is called n-th order triplet if for every ß £ M there is
a k (O^k^n) such that a R k ß . (a, M, R) is totally w-th order triplet if it is an n-th
order triplet and if 0^k<n, a R k ß , ()si£ß, then there exists ydM for which
ßRy and si^y.

It is clear, that for every m (m^ri) the fact (a, M, R) is an n-th order triplet
implies that (a, M, R) is an m-th order triplet too. Similarly, if (a, M, R) is a zero
order triplet, then M={a), R=0, thus (a, M, R) is totally zero order.

Let (a, M, R) be arbitrary, ß£M. Let us set
. MIß = {y: ßRy), Rjß = RC\(M/ßxM/ß).

380 K. Tóth

Assertion 2. If <a, M, R) is an w-th order triplet and aRfi then (/?, M/P, R/P)
is an (« —l)-th order triplet.

DEFINITION. Let us define the operation L by the following items: if (a, M, R)
is a 0-order triplet, then L{a, M, R)—a, if w>0 and (a, M, R) is an w-th order
triplet, then let L(u, M, R)=a\J (J si is a conjunction of formulae from the

aRP
set L(P,Mfp,R/p)}.

Theorem 6. Let (a, M, R) be an w-th order triplet. Then L(a, M, R) is con-
sistent.

Proof. We proceed by induction on n. If « = 0 then the assertion clearly holds.
Let n > 0 , and assume the contrary, i.e. there exist sily si2, ... and a conjunction
SS1 of formulae from M\px, RjP^), a conjunction SS2 of formulae from
L(P2,MIP2,R/P2) etc., such that

I - ~ Asi2A... A A O^aA.. .)
that is

I st2\/...\Jn •

We can assume that all /?,, Pj are distinct, for if not, then can apply

h- • • - • ~

Hence we obtain a form in which all sets /?,-, Pj are distinct. Let x be a variable of
such that It follows from Assertion 1 and condition (iii) that x does

not occur in the formulae s/1,s#2, or SS2,
Apply rule R2 for all variables not occuring in n(a):

h - ~ ^ i V ~ ^ 2 V . . . V V x 1 1 V x 1 2 . . . • ~ ^ 1 V V x 2 1 Vx2 2 . . . •

Since the fixed logic is stable we can repeatedly apply the axiom \j'xHsi— • \/xsi
and obtain

I- ~ j ^ V ~ si2\l...\l • V x u Vx12 . . . • Vx21 Vx2 2 . . . ~ 3S2\/...

where all free variables are from n(a). Since bound variables can be substitued
by suitable ones from n{a) we have

H ~ j / i V ~ j* ,V. . . 'V • V * i i V * i t . . . ~ • V * n Vx 2 2

a complete, so this possible only when some disjunctive terms, e.g. • V*n ^x' i 2 . . .
(For if then j^jCa which contradicts the completeness of a.) So

V*ix Vxi2 i L(px, Mlplt R/Pi)
and

We concluded that L(Plt M/px , is consistent, wich proves the theorem.

Theorem 7. If (a, M, R) is an n-th order triplet, aRy and P is a complete set
such that L(tx, M, R)QP then P+{JL(y, M/y, R/y) is consistent.

381 K. Tóth ¡Completeness in non-simple and stable modal logics

Proof. In contrary, let us assume that there are formulae 3SdP+ and a con-
junction of elements from L(y, M/y, R/y) such that i.e.
By R3, we obtain | - • ¿ i — • i.e. f - In accordance with our
conditions, n@tdP and so which contradicts the completeness of p.

DEFINITION. We say that (a, M, R) is a continuation of (P, N, S) if there exists
a function / : N'-*M, such that f{fi)=a., if y^N then y g / (y) , and if yS5 then
f(y)Kf(Sl

Theorem 8. If (a, M, R) is an w-th order triplet and /J is a complete set for
which L(a, M, R)^P, then there exists a totally n-th order triplet (¡3, N, S> which
is a continuation of (a, M, R).

Proof We proceed by induction on w. If « = 0 , the assertion follows. Let
n>0 . If a + = 0, then for all sidtyid), Qsida, so QsidP. In particular if si is
a negation of a tautology, then \ - () s i t h u s for every ¡/(P), ()@dp, i.e.
P+=V). It is impossible that pSy, by definition, hence (fi, {/?}, 0) is a totally «-th
order triplet and this is a continuation of (a, M, R) — (a, {a}, 0).

Let a + and so As we see Qs idP implies the consistency of
P+U{jtf), hence we can assume that P+U {si}Q8^, 8^ is complete. By the pre-
vious theorem, /?+U L(y, M/y, R/y) is consistent, too, provided txRy, thus there
is a complete set 8y such that fi+UL(y, M/y, R/y)QSy.

It is clear, that the new variables, introduced in these steps, may be chosen
so that the sets n(8Si,)\n(P), ..., n(8y)\n(P), ... are pairwise disjoint. As (5^,
{¿.a,}, 0) is an (n — l)-th order triplet, and since L (8^, {8^}, 0) ^ 8^ it follows that
a totally (« — l.)-th order continuation (8^, M^, RJ) of (8^, {<5.̂ }, 0) exists. Since
L(y, M/y, R/y)Q.8y by the induction hypothesis, it follows that there exist My, Ry
such that (8y, My, Ry) is a totally («— l)-th order triplet and it is a continuation
of (y, M/y, R/y).

We may assume that the common variables of any two sets n (\) M J) , .. . ,
. . . , i (U M 7) , ... are contanied in n(P).
Let 8dN, provided 8=P , or

if there is an si, such that QjsidP and 8dM^, or
if there is a y, such that a Ry and 8£My.

Let 82(LN and provided
if 8X=P and there is an si such that QsidP and 82=8or
if 8X=P and there is an y for which a Ry and 82=8y, or
if there is an si, such that QsidP and 8XR^82, or
if there is an y, such that a Ry and 81Ry82.

It is obvious, that the conditions (i)—(iv) hold for (/?, N, S). Also, it is a totally «-th
order triplet and is a continuation of (a, M, R).

Now we can return to the proof of Theorem 4: Let (oc0, M0, R0) = (a, {a}, 0)
i.e. a totally 0-order triplet. Let us suppose, that for some «, a totally «-th order
triplet {a„, M„, R„) is defined. By Theorem 6, L(a„, M„, Rn) is consistent, and
hence there is a complete set a„+ 1 , such that L(a„, M„, Rn)Q ot„+1. By Theorem 8,
there exist M„+1, Rn+1 such that (a„+1 , M„+1, R„+1) is a totally (« + l)-th order triplet
and it is a continuation of <a„, M„, Rn). Thus, there exists a function /„: M„—Afn+1
such that/„(«„) = a„+1 and p(LMn implies pQfn(p) and if pRny, then/„(^)i?n+1/n(y).

382 K. Tóth ¡Completeness in non-simple and stable modal logics

Let /?= (J a„ and M=\ | J y„: yk£Mk and for all i^k, y i + 1 =/¡(7,)}. Since union
n=0 ln=fc J

of increasing complete sets is also complete we have that every element of M is
complete.

Let y£M, and ()stf£y. For y— (J y„, there exists an /, such that
n=k

0 0

y, and hence there also exists <5, for which 7,7?, <5, and Let <5 = | J <5„.
0 0 0 0

y+= U 7 n
+ i ' U and si^b, thus M is a complete system of sets.

n = l n = l

Let a£n(li). For some k,a£n(ak), and if />&, then adn(ak),' too. If 5

then for some /, <5 = (J <5„. We may assume that k-=-.i and so Since n = i
(a,, Mi, Ri) is a totally /-th order triplet, we have 7r (a,) Q 7t (<),), and thus a£n(S).

0 0

Let a£n(S) for some SdM. We may assume that S= (J Sk and a£n(dk). For
n=k

L(ak, Mk, Rk)Quk+1, a£n(ock+1) and hence a£n(fi).
We gained, that for every 5£M, n(fi)=n(b) which completes the proof of

Theorem 4 and also the completeness theorem.

References

[1] T6TH, K., Modal logics with function symbols, Acta Cybernet., v. 4, 1979, pp. 291—302.

(Received July 13, 1979)

Enumeration of certain words *

B y K . H . KIM a n d F . W . ROUSH

1. Introduction

Both the content and methods of this paper are closely related to those of [2].
Let F denote a free semigroup on generators x2, ..., xm. We wish to enumerate,
for fixed n and k, the number of length n words which do not have any segment
which is the square of a length k word.

One reason for considering this problem is that it is related to the more
difficult problem of enumerating words not containing any segment which is a
square word. GOULDEN and JACKSON [1, Corollary 4 .1] have obtained our Theorem
1 by completely different methods.

2. A recursion formula

Definition 1. Let F1 be a free monoid. Let w1, w2d F1.
(1) J w2 if xw1y—w2 for some y£Fx.
(2) w1\iw2 if vf2 = w-'ij' for some y£ FL.
(3) Wj| fw2 if w2=xw1 for some x^F1.
(4) |wj| denotes the length of w^; |1 |=0.
(5) If l i j W i is the unique word such that

tfiliWi, IM̂ I = K l - l .

Definition 2. Let F be a free semigroup on m > l generators and F1 the associ-
ated free monoid. Fix /c>0.

To any word w in F1 we assign a length k — 1 (0, l)-vector v as follows. The
number Vj is 1 if and only if the n — k+j+1 letter of w equals the n — 2k+j+1 letter
of w, and n—2&+j'+l >0 . We assign-an integer a(w) to w by stating that a(w) is
the length of the longest terminal sequence of 1 components of v. Let S(n, c) for
OSc^fc— 1 denote the set of length n words Wj of F1 such that a(w1) = c and if
\w2\=k it is false that (w2)21 Wj.

* This work was supported by Alabama State University Faculty Research Grant R—78—6.

6 Acta Cybernetica

384 K. H. Kim and F. W. Roush

In other terms, given a word w^ consider the terminal segment vv3 of length
2k — 1 of Wj. Then a(vvi) is the length of the longest initial segment of vv3 which
equals a final segment of w3, or is k — 1 if this length exceeds k—l. The set S(n, c)
is the set of words tv of length n such that a(w)=c and w is not divisible by the
square of a word of length k.

Theorem 1. For n>k, 0

|S(«,C)| = | S (« - 1 , C - 1) | ,

|S(«,0)| = Z O n - i J I s O i - i . j) ! -j = o
Furthermore, |5(n, 0) |=w", |S(w, c) | = 0 for n^k, 0

Proof Suppose x€5(n, C). Then x£S(n, c - 1) . (Note that if c=k-l, the
n—k and n—2k letters of x must differ, else x would be divisible by the square
of a length k word.) And if y£S(n, c — 1) there is one and only one x£S(n, c) such
that x=y. Namely the last letter of x must equal the n—k letter of y. Thus

k-1
|S(n, c)| = |S(n, c—1)|. Also the function x—x maps S(n, 0) into | J S(n— 1, _/').

j=0
Each element y of the latter set arises from exactly (m — 1) elements of S(n, 0).
Namely we can add to y any letter except the (n—k)th. Therefore

• \S(n,0)\=(m-l)kZ\S(n-l,j)\.
o

This proves the theorem.
This formula can be recast into a matrix form. Left M be the kxk matrix

m - 1 i 0 . . . 0
m — l 0 1 . . . 0
m — l 0 0 . . . 0

m - 1 • 0 0 . . . 0

Let u be the vector (mk, 0, 0, ..., 0). Then |S(n, c)| is the c+1 component of uM"~k,
for n^k. The characteristic polynomial of M is

P(z) = zk-(m-l)(zk-1+zk~2+...+z+l).

Definition3. For n < k put / («) = 0 . For n ^ k , let / (n) be

j=0

Theorem 2. The generating function of f (n) is

mkzk (1 -zk)
l—mz+(m — l)zk+1 '

Enumeration of certain words 385

Proof. As in [2], the generating function of / («) must have the form

q(z)zk

zk p (i)
where q(z) is some polynomial of degree at most k—l. In degree less than 2k, this
quotient must be

zk m ' (l + m z + . . . + mk~1zk~1).

Therefore q(z) is the portion of

mk(\-(m-l)z-...-(m~l)zk)(l+mz+... + mk-1zk-1)

having degrees no more than k. A computation gives the formula above (note
that (1 — z) can be cancelled from numerator and denominator).

3. Asymptotic values of / (n)

Lemma 3. The equation P(z) = 0 has a unique positive real root rk of multiplicity 1.
This root exceeds the absolute value of any other root. We have rk^rk_1 and

Moreover
lim rk = m.

m — 1 m —1
m ¡— > rk =*• m —

A
for j-<k.

Proof. If P(z)=0 then u = — satisfies

k mu — l
m — 1

as does u—l. However no straight line can cut the curve y=xk+1, x>-0 in more

than two places since y=xk+1 is concave upwards. Therefore 1 and — are the
rk

only positive solutions of
k ! mu-1

t r + 1 = —.
m — 1

I

Therefore P(z)=0 has only one positive real solution rk and rk>~ 1. Differenti-
ation shows that rk has multiplicity 1. Let z be a root of P(z)=Q which is negative
or complex. Then

zk = (m - l) (z f c - 1 + z " - 2 + ... + l)

6*

386 K. H. Kim and F. W. Roush

implies

|z|* < (m — l X I z l ^ + l z l ^ + . - . + l) .

So | z |< r t because for \z\^.rk we have P(|z |)>0 . We have

r*"1 = (m - 1) (rjT2 + . . . + 1 4 -jU) > (ti~2 + . . . + l)(m - 1)

and
4-1 = (w-l)0k-i +••• + !)•

\

This implies rk>rk_1. It also implies that

r = lim rk

satisfies

Therefore r=m.
From

at z—rt we have

r = (m —1)—-
1 - 1

r

z " - l
zk = (m — 1) -z — 1

= 1 + (m _ 1) (1 _ J _) .

This implies the last inequality of the lemma. This proves the lemma.

Theorem 4. The asymptotic value of f (n) is

mk(1 —uk)u k\,,k — n — l

m - (m - l) (/ c + I)«*

where u= — .
rk

Proof. Expand the generating function in partial fractions. All other terms will
be insignificant compared with the term

1 — rtz

This term can computed by letting z approach — in the generating function. This
rk

proves the theorem..

i

Enumeration of certain words 387

Abstract

We study the number of words of length n, in m generators, divisible by the square of a length
k word. We find a recursion formula, the generating function, and the asymptotic value of this
number.

MATHEMATICS RESEARCH GROUP
ALABAMA STATE UNIVERSITY
MONTGOMERY, ALABAMA 36101
U.S.A.

Reference

[1] GOULDEN, J. M. and D. M. JACKSON, An inversion theorem for cluster decompositions of
sequences with distinguished subsequences, Univ. of Waterloo, Dept. of Combinatorics and
Optimization Research Report CORR 78/24, August 1978.

[2] KIM, K . H . , M . S . PUTCHA and F . W . ROUSH, Some combinatorial properties of free semigroups,
J. London Math. Soc. (2), v. 16, 1977, pp. 397-402.

(Received\Nov. 9, 1978)

Groupoids of pseudoautomata

B y F . FERENCI

Introduction

It is known [7] that to a unary universal algebra (universal algebra [6] with unary
operations only) there corresponds a monoid (semigroup with identity). An auto-
maton without outputs [4], or shortly automaton, can be obtained from a unary
universal algebra by selecting an element and a subset from its base set, for the
initial state and the final state set of automaton, respectively [8]. The above men-
tioned monoid is associated with this automaton, as well [5].

The concept of a tree automaton [1] is such a generalization of that of an auto-
maton, when the corresponding universal algebra is not necessarily unary [12], [11].
The purpose of this paper is to show that there is an other way of generalization
obtained by replacing the monoid by an arbitrary groupoid. Then the notions
corresponding to those of the unary universal algebra and the automaton are the
pseudoalgebra and the pseudoautomaton (which is a kind of tree automata, as well),
respectively (see Conclusion at the end of the paper). These notions are introduced
in the paper [10].

The method used here for representation of formal languages [9] by a set of
trees is analogous to that in the author's paper [2].

1. Trees and algebraic structures

By a) we denote the set of all nonnegative integers, i.e., ©={0 ,1 ,2 , . . . } ,
and by % the set of two parentheses (and), i.e., n — {(,)}. Furthermore, we suppose
that n is disjoint from each other sets used here. For a set A, A* is the set of all
finite strings on A including the empty string X and A+=A* — {X). If p is a finite /
string on A, then lg (p) denotes the length of p, i.e., the number of occurences of
symbols from A in p. An alphabet is allways a finite nonempty set.

Let V be an alphabet and X a set of symbols disjoint from V (X may be infinite,
finite, nonempty or empty). The set of trees of type V over the set X, in notation
[V, X], is a subset of (KUXUrt)+ defined as follows:

390 F. Ferenci

1.1.(1) xi[V, X] for all x£X;
(2) if v£ V, k£a> and t£[V, X] for l^i^k, then v(tJ(.t2)...(tJt[V, X] (in the

special case k=0, v 6 [V, A"]);
(3) the elements of [V, X] are those and only those which we get f rom (1)

and (2) in a finite number of steps.
It can be proved that for every t=v(t1)(t2)...(tk)£[V, X], the components

v£ V, k£co and ¡¡^[V, X] (1 ^i^k) are uniquely determined.
If X=0 then we write [V] for [V, X], i.e., [V]=[V, 0].

Example 1.1. If {uj, v2,v3,v4) and X={xu x2}, then t - u1(i33(x1))(iy2(u1)(i;2))
is an element of [V, X], This tree is represented graphically in the next figure:

(It can be noticed from our definition of trees, that the use of parentheses
differ from usually manner, see [10], [12], [1], etc. Our method is taken from [3].)

The word function fV: [V]~*V+ we define in the next way:

1.2. (1) if t = v for some v£V, then W(t)=v;
(2) if t=v(t1)(t2)...(tk) where v<EV, k^l, t£[V], l^isk, then W(t) =

=vW(t1)W(t2)...W{tk).
It can be seen that for a i£[F], W(t) is the word over the alphabet V [9] which

is obtained from t by erasing all parentheses.

Example 1.2. If V={vlt v2, i>3} and t=v1(v2)(v1(v2)(v2)}, then W{t) =
— V1V2VXV2 v2.

For TQ[V], W(T) is the set {W(t)\t£T} and it is a 1-free language over V[9].
Let V be an alphabet. A pseudoalgebra of type V is a system A = a (V , A)

where A is a nonvoid set disjoint from V, the base set of A, and a is an operator
which for each v f rom Vdetermines a mapping ay: A*—A [10]. The pseudoalgebra
A is finite iff A is finite. A pseudoalgebra B = f i (V , B) of the same type V is called
a subpseudoalgebra of A iff B^A and fiv(p)=xv(p)£B for every vd V and p£B*.
Let C = y (V , C) be a pseudoalgebra and h a mapping of C into A. When for ar-
bitrary v(iVand c1c2...ck£C* (k£a>, c^C, l^i^k) h(yv(c1c2...ck))=otv(h(c1)h(c2)...
...h(ck)) holds, then h is a homomorphism of C into A. If in addition h is onto then
A is a homomorphic image of C. Moreover, if h is an onto and one-to-one homo-
morphism then it is an isomorphism, and A and C are called isomorphic pseudoalgebras.

Let us consider a pseudoalgebra A=a(V,A) and the set of trees [V, A]. By
a we define a mapping a from [V, A] into A in the following way:

1.3. (1) if t—a for an a£A, then oi(t)=a;
(2) if. t=v(t1)(t2)...(tk) where v£V and t£[V, A] for l^i^k, then a (f) =

=av(a(t1)a(t2) ...a(tk)).
The next lemma expresses a property of homomorphisms.

Groupoids of pseudoautomata 391

Lemma 1.1. If A = a (V , A) and B = f i { V , B) are pseudoalgebras and h: B-»A
a homomorphism of B into A, then h(P(t))—u(t) holds for every t from [V].

Proof. The proof is by induction on lg(i)- First.it can be shown that if t = v
for some «€ V, the assertion is true. Then, supposing that the assertion is true for

l ^ i ^ k , fcsl, one can prove, that it is true for t = v(t1)(t2)...(tk).
A pseudoalgebra A = a(V,A) is connected iff oi([V]) = A.
The next statement is a consequence of the previous lemma.

Lemma 1.2. If A and B are connected pseudoalgebras of the same type and
there exists a homomorphism h of B into A then h is uniquelly determined and A
is a homomorphic image of B.

A nonvoid set A with a binary operation "multiplication" defined on A is
a groupoid A. The result of the multiplication of two elements a1 and a2 from A
(their "product") will be denoted by (a1 • a2), but expressions obtained by a succes-
sive application of multiplication can be simplified in the known way, i.e., by erasing
the outer parentheses. For example, instead of (a • b) and (a-(b- c)) we shall write
a • b and a • (b • c), respectively.

If to a groupoid A we add an alphabet V disjoint from A and introduce a mapp-
ing £: K—A, we get a designed groupoid si, in symbols, si = {A, V, £). The designed
groupoid si is finite iff A (i.e. A) is finite. It is connected iff A is generated by the
set £(V) = {l;(v)\v(iV}. If ^S = (B,V,rj) is a designed groupoid too, then the
mapping h: B-*A is termed homomorphism of into si iff it is a homomorphism
of B into A and h(ri(v)) = ^(v) holds for arbitrary v£V. "Onto" homomorphism
and isomorphism are defined in the natural way.

Using a designed groupoid si —(A, V, £) one can consruct a pseudoalgebra
which is denoted by ind si (pseudoalgebra induced by si) in the next way: ind si =
= a(V, A), i.e. it is of type V, its base set is A, and for every v£ V, p£A* and a£A
holds

1.4. (1) a»(X) = m ;

(2) av(pa) = xv(p) -a.

In other terms, for p=a1a2...ak (a£A, 1 S/S/c) ow(/?) = (...((£(u) • • a2) •

The following lemma will be useful in some proofs..

Lemma 1.3. Let si be a designed groupoid. Then ind si is connected iff stf
is connected.

Proof. Let si —{A, V, £) and ind si = a(V,A). We shall show that an a£A
is a product of some elements from £(V) iff there exists a t£[V] with a(t) = a.
We proceed by induction.

When the number of factors in the product is one, i.e. a = ^(v) for some v£ V,
then it is equivalent to a = a.(t) for t = v£[V], If we suppose that the element a;
from A is a product of elements from £(V) and a, = a(i,) holds for some t£[V],
where 1 ^i^k, k^l, then a=(...((£(v)-a1)-a2)-...)-ak iff a = txv(a1a2...ak) =
= a (0 for t = v(t1Xt2)...(tkX[V].

392 F. Ferenci

2. The groupoid of a pseudoalgebra

Let 9 be a binary relation on a set X(9Q X2). Then we write Xj 6x2 iff , 0.
If 9 is an equivalence relation, then X/6 denote the partition of X induced by 0, i.e.
the set of all equivalence classes modulo 9. For an x£X the equivalence class con-
taining x will be denoted by 0(;c).

Let [V, A] be the set of trees of type V over a nonempty set A. We define the
subsets [V, A]' and [V, A]" of this set in the following way:

2.1. [V,A\ = [V,A]-A

and ,

2.2.

[V, A]" = {t\t£[V, A], t = viaJia^)... (ak) for v£ V and ax a2... A* (a,€ A, 1 i == k)}z

If t£[V, A]' and p — a1a2...ak is an element from A* (a^A, l^i^k), then let
tp = t(a1)(a2)...(.aK)(WAN

Let us suppose that A = a (F , A) is a pseudoalgebra of type V. On the set
[V, A]' we define the relation o'Q([V, A]')2 in the next way:

2.3. for arbitrary trees i j and t2 from [V, AY hg't2 holds iff a(t1p)=a(t2p) is
satisfied for each p£A*.

The relation g' is evidently an equivalence relation on the set [V, AY- Into the
set [V, AYIQ' of equivalence classes modulo Q' one can introduce a binary opera-
tion — multiplication — in the next manner: for arbitrary it and t2 f r o m [V, AY

2.4. Q'(,h)-Q'(t2) = Q'{t) where t = h(t2).

One can easily prove that this operation is well defined.

Now, we have a groupoid [V, AYIQ' whose multiplication is defined by 2.4.

The designed groupoid ([V, AYIQ', V, a') where A'(v) = g'(v) holds for each V,
we call the groupoid of the pseudoalgebra A and denote it by ^(A) .

Since Q"—QT\([V, AYT is an equivalence relation too, however now on the
set [V, AY'C=[V, AY), and each equivalence class modulo Q' contains elements f rom
[V, AY' (if t1 = v(r1)(r2)...(rk) and «(r^a^A, l = s I S K , then txg't2, where t2 =
= u(a 1) (a 2) . . .K)€[F , AY'). If on the set [V, AY'/Q" we define the multiplication by

2.5. Q"(h)-Q"{t2) = Q"(t), where / = h { a { Q \

we get a groupoid [V, AY'IQ" isomorphic to [V, AYIQ'. Namely, it can be easily
shown that the mapping / : [V, AY' IQ"~[V, AYIQ', which is defined by f((e"(t)) =
— Q' (t), is an isomorphism between these groupoids. For this reason the designed

groupoid ([V, AY'IQ", V, a") where OC"(V) = Q"(V) holds for each V£ V, is isomorphic
to (A). That means that we can consider this designed groupoid to be equal to

We investigate now the nature of the elements of ^ (A) . For this purpose, for
every t£[V, AY let us introduce a mapping at: A*.-rA in the next way: for arbitrary
p£ A* let oct(p)

=oe(tp). Since for t=v(v£V), dit(p)—ctv(p) holds a is an extension
of a. This mapping at can be called the mapping induced by t in A. From 2.3 we

Groupoids of pseudoautomata 393

conclude now that the set of elements of 0(A), up to notation, is the same as the
set of all different mappins induced by trees from [V, A]' (or [V, A]") in A.

In a similar way as we obtained the relation g" we can get the relation Q = Q'C\
fl([F])2. The set [V]jg of equivalence classes modulo g equals to the set of all
mappings induced by trees from [V] in A, and it is a subset of all mappings induced
by trees from [V, A]'. This set forms a groupoid with the multiplication defined
as in 2.4, and this groupoid is the subgroupoid of [V, A]'IQ' generated by the set
{e'OOl^ V}- (For each t from [V], g'(t) is a product .of elements from {g'(t;)|r€ V}-
This can be proved by induction on Ig (i)-) If A is connected then [V, AJ/Q' is
generated by the set {e'(v)\v£V} (since then for every t from [V, A]' there is an
r from [V] for which rg't is valid; r can be getted from t by substituting each a£A
with an ra from [V] for which a(ra)=a). Now the next lemma, by the Lemma 1.3,
follows from the fact that the set {g'(v)\v£ V} equals to the set u'(V).

Lemma 2.1. If the pseudoalgebra A is connected, then so is ind 0(A).
The following theorem gives a connection between a pseudoalgebra and its

groupoid.

Theorem 2.1. Let A—A(V, A) be A pseudoalgebra and 0(A) its groupoid.
Then the following assertions are valid:

1° There exists a homomorphism h from ind 0(A) into A.
2° If A is connected then
(a) the homomorphism h is completely determined and it is an onto homo-

morphism;
(b) if for some connected designed groupoid 38={B, V, r\) there exists a ho-

momorphism from ind 38 into A, then 0 (A) is a homomorphic image of 08 and
ind 0(A) is a homomorphic image of ind 3S\

(c) if A = ind si for some designed groupoid si, then si is isomorphic to
0(A) and therefore, A is isomorphic to ind 0(A).,

Proof. 1° Since 0 (A) = ([v7WiQ', V, a'), the mapping h: [V,A]'/Q'-~A for
which h(Q'(t)) — a(/) holds, where t is an arbitrary element from [V,A]', is well
defined by 2.3. It can be easily shown that h is a homomorphism from ind 0(A)
into A.

2° (a) It follows from 1°, and Lemmas 2.1 and 1.2.
(b) Let ind 38=P(V, B). By Lemma 1.3, ind 38 is connected and, by Lemma

1.2, A is a homomorphic image of ind under the mapping h: B->-A which is
determined by Lemma 1.1. From these facts it follows that the mapping / : B--
-•[V, A]'IQ', where f(P(t))=Q'(t) holds for arbitrary t$\V], is well defined. In-
deed, if for tlt /2€[F], P(h)~Hh) holds, then g'(t1) = Q,(t2) holds too. It can be
checked as follows.

Since h is a homomorphism from ind 38 onto A, then for" alt a2, from
A there exists bx,b2, ..., bk from B such, that h(bi) = ai for l^i^k. Then

. . . *(ti(a1)(a2)...(ak)) = h(J3(h(b1)(b2)...(bk))) =

= h((...(Hti)' bd • b2). .„) • bk) = h((...{Hh) • bj • ft2) •...) .bk) =

= hifiit^b0(6,)...(b»))) = « (^ H a ,) . . . ^)) (see 2.3).

394 F. Ferenci

Moreover, the mapping / is a homomorphism from ind Si into i n d ^ (A) ,
and since ind 38 is connected then from Lemmas 2.1 and 1.2 it follows t h a t / i s
an onto homomorphism.

The same mapping / is a homomorphism from id onto ^(A) .
(c) The proof is a routine computation.
From the assertion 2° (c) of the previous theorem, it follows that each con-

nected designed groupoid is the groupoid of a pseudoalgebra.

3. Finite pseudoalgebras

Let us suppose that the pseudoalgebra A = a (K , A) is finite, i.e., A is a finite
set. For arbitrary v£V and a£A, let £C(v, a) denote the set {pjpÇA*, ocv(p) = a}.
It is evident, that J?(v, a) is a language over A. We shall say that the pseudoalgebra
A is regular iff £?(v, a) is a regular language over A [9] for each v£ V and a£A.

The next theorem is of great importance for our approach.

Theorem 3.1. The groupoid of a finite pseudoalgebra A is finite iff A is regular.

Proof. Let A=<x{V, A). It is known from the previous chapter, that &(A) is
isomorphic to the designed groupoid ([V, A]"/Q", V,OL"). Therefore, ^ (A) is finite
iff there are finitely many equivalence classes modulo Q".

For arbitrary vÇ. V let ev = Q"(~)([{v}, A]")2. The equivalence relations Q"v,
when v is running through V, have the property that each equivalence class modulo
q" is the union of some equivalence classes modulo e'ù such that for each v£ V at
most one equivalence class modulo Q'Û occurs in this union. Consequently, for
the finiteness of V, there are finitely many equivalence classes modulo Q" iff there
are finitely many equivalence classes modulo Q'„, i.e. [{y}, A]"/Qis finite, for
each V.

We give now a necessary and sufficient condition for the finiteness of
[{y}, A]"IQ'^. From 2.3 we have that for arbitrary t1 = vp and t2 = vq f rom [{f}, A]",
where p and q are in A*, t1QU2 holds iff à(t1r) = û(t2r) is valid for every rÇA*, which
is the same as

3.1. <xv(pr) = xv(qr) for every r£A*.

Now, we can induce an equivalence relation av on the set A* in the next way: pavq
holds iff 3.1 is valid. It is obvious that A*/AV is finite iff [{i;}, A]"IQ"V is finite.

An other equivalence relation 5V on A* can be defined by: paDq iff av(p) =
= av(q). In the members of the partition A*jdv we can recognise the sets Z£(v, a)
for those a(LA for which a) is nonempty. Moreover, the partition A*/av is
a refinement of A*/5V. From the definitions of av and 5V it can be seen that the parti-
tion A*/<jv is the maximal right automaton-partition of the set A* written into"
the partition A*jdv (see [5]). It is finite iff each member of A*/av is a regular language
over the alphabet A, in other terms, iff each i?(i>, a) is regular.

Groupoids of pseudoautomata 395

4. Pseudoautomata

Let A=oc{V, A) be a pseudoalgebra of type V. Selecting a subset AF of A,
we get from A a pseudoautomaton A = (A, AF) = (a(V, A), AF). Sets V, A and AP
are the sets of inputs, states and final states of A, respectively, while a can be called
the transition function of A (see [10]). The pseudoautomaton A is finite, regular
or connected iff the pseudoalgebra A is finite, regular or connected, respectively.
The set of trees represented by A, in symbols 2T (A), is a subset of [V] defined by

4.1. ^"(A) — [t\t£[V], a(t)ZAF}.

For an alphabet V, a subset T of trees from [V] will be called recognizable
iff it is represented by a finite pseudoautomaton. In the caseNwhen the pseudo-
automaton is regular, T is called pseudoregular. _

The language represented by a pseudoautomaton A, in symbols ¿f(A), is de-
fined by

4.2. Sf(A)=W(Sr(A)) = {W(t)\t^(A)}.

The set i?(A) is, obviously^ a language over the set of inputs of A.
Let A = (A , AF) and B=(B, BF) be two pseudoautomata, where A=a(V, A)

and B = P(V, B) are pseudoalgebras of the same type V. If there is a mapping
ft: B-+A which is a homomorphism from B into A, and in addition for every b
from B, b£BF iff h(b)£AF then h is a homomorphism from B into A. If h is also a
homomorphism (isomorphism) of B onto_ A, then we say that h is a homomorphism
(isomorphism) of B onto A. In this case A is a homomorphic image ofB (h is an iso-
morphism between A and B). We shall say that the pseudoautomaton B is a sub-
pseudoautomaton of A iff B is a subpseudoalgebra of A and BF—AFC)B. The pseudo-
automaton B is the trunk of the pseudoautomaton A iff B is the connected sub-
pseudoautomaton of A. (Note that the trunk is completely determined and
5={a(i) | /€[F]} .)

Two pseudoautomata A and B will be called_equivalent iff =
It is evident, that for equivalent pseudoautomata A and B, ££ (A) = i f (B) also
holds (the opposite is not true).

The next result is a direct consequence of our definitions and Lemma 1.1.

Theorem 4.1. If there jexists a_ homomorphism of the pseudoautomaton B
into the pseudoautomaton A, then A and B are equivalent. Consequently, JS? (A) =
= i f (B) . '

Moreover, we obviously have

Theorem 4.2. Any pseudoautomaton is equivalent to each of its subpseudo-
automata. Especially, a pseudoautomaton is equivalent to its trunk.

The second part of the previous theorem shows that connected pseudoauto-
mata are of special interest.

From Lemma 1.2 we can get the next theorem.

Theorem 4.3. Let A and B be connected pseudoautomata with a common
set of inputs. Assume that h is a homomorphism of B into A. Then h is uniquelly
determined and A is a homomorphic image of B.

396 F. Ferenci

By the groupoid of a pseudoautomaton A = (A, Af), in symbols &(A) we mean
the designed groupoid &(A).

If for a pseudoautomaton B=(B, BF) the pseudoalgebra B is of the form ind 38,
where 38 is a designed groupoid, we shall call B groupoid pseudoautomaton. The
groupoid pseudoautomaton B is the groupoid pseudoautomaton belonging to
A = (a (V , A) , A F) , iff_ a=9(5) = ([V,'X№', V,a') and BP={e'(t)\tZ[V, A]',
a(t)£AF}. In this case B is denoted by (7(A).

On account of our definitions and previous results we can state the following
three theorems. The first of them is based on Lemma 2.1.

Theorem 4.4. If A is a connected pseudoautomaton then (7(A) is connected too.
The next theorem follows from Theorem 2.1, properties of the mapping h

from the proof of the assertion 1° in this theorem and from our definitions.

Theorem 4.5. Let A=(A, AF) be a pseudoautomaton and (7(A) the groupoid
pseudoautomaton belonging to A. The following assertions are valid:

1° There exists a homomorphism h from (7(A) into A.
2° If A is connected then
(a) (7(A) is connected and h is completely determined onto homomorphism;
(b) if B is a connected groupoid pseudoautomaton and there exists a homomor-

phism of B into A then A is a homomorphic image of B and (7(A) is a homomorphic
image of B;

(c) if A is a groupoid pseudoautomaton then (7(A) is isomorphic to A.
From the previous theorem it is clear, that the relation between a pseudoauto-

maton and its groupoid is similar to the relation between an automaton and its
monoid (see [5]).

The following theorem is important in investigating finite pseudoautomata.
It follows from Theorem 3.1.

Theorem 4.6. If A is a finite pseudoautomaton then (7(A) is finite iff A is regular.
In the next theorem languages represented by regular pseudoautomata are

characterised. (For language-theoretic terminology used here, see [9]. It should
be emphasized that here in the definition of context-free grammar we take a set
of initial letters instead of a single letter. Obviously, this modification does not
alter the generative capacity of context-free grammars.)

Theorem 4.7. A language over an alphabet V is a ¿-free context-free language
iff it is represented by a regular pseudoautomaton with set of inputs V.

Proof. Since a finite groupoid pseudoautomaton is regular, by Theorems 4.1,
4.5 (assertion 1°) and 4.6, it will be sufficient to prove that a language is A-free and
context-free iff it is represented by a finite groupoid pseudoautomaton.

First we prove the sufficiency of the condition.
Let A = (A , A f) be a finite groupoid pseudoautomaton, i.e. A= ind , where

si=(A, V, £) is a finite Resigned groupoid. Using A one can construct a A-free
context-free grammar T(A) of Chomsky normal form in the next way: r(A)—
= (A, V, AF, 77), where A and V are the nonterminal and terminal alphabets, re-

Groupoids of pseudoautomata 397

spectively. Moreover, AF is the set of initial letters and 77 is the set of productions
for which n = n 1 U n 2 where

= {a - v\v£V, a£A, = a},
and

J72 = {a -* axa2\a, ai> a2€A, a — a1-a2 in Â}.

It can be_shown that the language generated by T(A), in symbols i f (r(A)),
equals to i?(A). For this purpose it is enough to show that for arbitrary a£A and
p£V+,a=>*p is valid iff there exists a_t from [V] for which W(t)=p and a(t)—a
where a is the transition function of A. The proof is by induction. First, it can be
seen easily that if p=v and t=v for an arbitrary v from V, then a=>*p holds
iff « (/) = « . Furthermore, let us suppose that for p£V+, a&A, l ^ i ^ k , k s l ,
it have been shown that a,=>-*/?i is valid iff there exists a t£ [V] for which
fV(ti)=pi and «(/,) = ûj hold. But then, there is a sequence of productions from
IJ2: a—bkak, bk-"bk_1ak_1, . . . , è 2 — b ^ , and a production from 77^ b^v such
that by a succesive application of them we get the derivation a=>*va1a2...ak, and
by at=>*Pi, a=>*vp1p2...pk=p, p£ V+ iff there is a sequence of identities a—bk-ak,
i'k=bk_1-ak_1, ..., b2—b1 • ax, b1 = Ç(v) in Â, from which we get
•a2)- . . .) • ak = av(ala2...ak), and for = a = oc(t), where t = v(t1)(t2) ,..(tk),
and moreover W(t)=vp1pi...pk=p.-

To prove the necessity of the condition, let us suppose that L is a A-free con-
text-free language over V. Then there exists a grammar in Chomsky normal form
generating L. From this grammar, by the method applied to the proof of Theorem
3.1 of Part Three in [9] (with the difference that here the set S'Q contains the empty
subset of S0 , as well) we can get an equivalent grammar r of the form (A, V, AF, II).
For the set of productions 77 we have 77 = 771U772, where n 1 contains productions
of the form a--v only (aÇA, v£ V) such that for each v from V there is exactly
one production of this form, while 772 contains productions of the form a-^axa2
only (a, a l 5 a2£A) such that for each (aa, a2) from A2 there is exactly one produc-
tion of this form. From these properties of r it follows that there is a finite groupoid
pseudoautomaton A with r = T (A) .

' NOTE. If for a A-free context-free grammar r=(N, V,N',II) we introduce
the grammar rT=(N, VU it, N', 77T) where 77T is obtained from 77 by substituting
every production a-*a1a2...ak (a£N, k^l, a^NUV, l^isk) in 77 by the pro-
duction a—a1(a2(...(ak])) then the language £?(TT) generated by rT is a subset
of [V], Let us call ^£(tT) the set of trees generated by r. It was shown in [3] that
the following assertion is valid : a set of trees is pseudoregular i f f it is the set of trees
generated by a X-free context-free grammar. Since JV(JC (rT))=J? (F) is valid, our
Theorem 4.7 is now a consequence of this assertion. (Moreover, for T(A) from the
proof of Theorem 4.7, S£ (r (Â) T)=3r (Â) is valid.)

5. Relations between various types of the sets of trees

We shall say that a set of trees is regular iff it is represented by a such modi-
fication of our finite pseudoautomaton that if the transition function, the set of
inputs and the set of states are denoted by a, V, and A, respectively, than for any
vÇV, ctv : {p\p£Â*, lg (p)^Kv}-* A, where Kv is a finite nonempty subset of to. It can

398 F. Ferenci

be checked that this definition of regular sets of trees is equivalent to the definition
of recognizable sets in [11].

Each regular set of trees is pseudoregular. (It can be seen by adding to our
modified finite pseudoautomaton a new state b and mapping by otv all remaining
words from (A U {6})* into it. The pseudoautomaton obtained by this procedure
is regular.) The opposite is not true, i.e. there exist such sets of trees which are
pseudoregular but not regular (for example [V] for an alphabet V).

If a set of trees is pseudoregular it is recognizable by definition. However, there
are recognizable sets of trees which are not pseudoregular. To show it, let us take
an alphabet by a single letter v. Then each subset of the set

{t\t = v(v)(v)...(v) = v(v)\ kico),
k times

is represented by a pseudoautomaton which has at most three states. Therefore,
selecting a subset T of this set, for which fV(T) is not context-free, we get a -
recognizable set of trees and it is not pseudoregular by Theorem 4.7.

To finish these discussions, we demonstrate that for any alphabet V there are
subsets of [V] which are not recognizable. Let us suppose that v is an element of
Vand define a subset U of [V] in the next way:

(1) veu-,
(2) if U, then w(/)G U;
(3) the elements of U are those and only those which we get from (1) and

(2) in a finite number of steps.
Every recognizable subset of U is regular, therefore, it is pseudoregular. Select-

ing from U a subset S for which fV(S) is not context-free, we get a set which is
not recognizable.

6. Conclusion

From our point of view, we shall now answer to the question: what is the
connection between pseudoautomata and automata?

The importance of connected pseudoautomata follows from Theorem 4.2.
By the assertion 2° (a) of Theorem 4.5 every pseudoautomaton of this kind is a
hnmomorphic image of a connected groupoid pseudoautomaton, and therefore
(for Theorem 4.1) equivalent to it.

Let A = (a(V, A), AF) be a connected groupoid pseudoautomaton, i.e. a(V, A) =
= ind si for some connected designed groupoid si = (A,V,Q. Moreover, let
A be a monoid (semigroup with identity). Then, from the associativity it follows,
that for each p£V+ the set T{p)={t\t£[V\,W{t)=p} has the property, that the
whole set is represented by a single state of A. (This means that from , t2£T(p)
it follows oi(t1)=ix(t2). It can be proved by induction on lg (p).) For this reason
it may be chosen a representative from T(p) which is simpler than other members
of this set, and only it must be represented by the pseudoautomaton A. If
p = v1v2...vk V, l^i^k), then this representative can be t=v1(v2(...(vk)...))
where arities of symbols v1, v2, ...,vk_1 equal to 1 and of vk to 0. However, the
situation becomes yet more simpler, if arities of each v from V equal to 1 and the
other arities are ignored because they are unnecessary. But, it needs the introducing

Groupoids of pseudoautomata 399

of a nullary symbol A which is not in V and whose realization is the identity e of
the monoid A. Then the representative of T(p) is the tree ^ (^ (. . . (^ (A)) . . .)) . By
these modifications we got from A a (connected) automaton in the sense of [4], [5],
with initial state e. Now, an arbitrary homomorphic image of this automaton is a
(connected) automaton too, its initial state is the image of e under the homomor-
phism, and moreover these automata are equivalent. (The first of them is a "mono-
id" automaton, but the second is an arbitrary one.)

By this interpretation, we got that the (ordinary) automaton is a simplification
of the pseudoautomaton for the case when its groupoid is a monoid, and con-
versely, the concept of the pseudoautomaton is such a generalization of the con-
cept of the automaton where its monoid is replaced with an arbitrary groupoid.

Abstract

The notion of a pseudoalgebra and that of a pseudoautomaton are introduced in a paper by
THATCHER (1967). In this work it is shown that with a pseudoalgebra and with a pseudoautomaton
a groupoid can be associated, in the same way as to a unary universal algebra and to an automa-
on a monoid can be corresponded.

FACULTY O F CIVIL E N G I N E E R I N G
24000 SUBOTICA
YUGOSLAVIA

References

[1] BRAINERD, W. S., The minimalization of tree automata, Inform, and Control, v. 13, 1968, pp.
484—491.

[2] FERENCI, F . , A new representation of context-free languages by tree automata, Found. Control
Engrg., v. 1, 1976, pp. 217—222.

[3] FERENCI, F . , Generalized automata, Dissertation, University of Novi Sad, 1977 (in Serbocroatian).
[4] GÉCSEG, F . and I . PEAK, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1 9 7 2 .
[5] Глушков, В. M., Абстрактная теория автоматов, Успехи матем. наук, 16:5 (101), 1961,

pp. 3—62.
[6] GRATZER, G . Universal algebra, D. van Nostrand Company, inc. Princeton, 1968.
[7] Мальцев, А. И., Алгебраические системы, Москва, 1970.
[8] Медведев, Ю. Т., О классе событий, допускающих представление в конечном автомате,

Сборник «Автоматы», Москва, 1956, pp. 385—401.
[9] SALOMAA, A., FormaI languages, Academic Press, New York, 1 9 7 3 .

[10] THATCHER, J. W., Characterizing derivation trees of context-free grammars through a general-
ization of finite automata theory, J. Comput. System. Sci., v. 1 , 1 9 6 7 , pp. 3 1 7 — 3 2 2 .

[11] THATCHER, J. W., Generalized2 sequential machine maps, J. Comput. System. Sci., v. 4, 1970,
p p . 2 5 7 — 2 8 7 .

[12] THATCHER, J. W . and J. B . WRIGHT, Generalized finite automata theory with an application
to a decision-problem of second-order logic, Math. Systems Theory, v. 2, 1968, pp. 57—81.

(Received August 29, 1979)

i

INDEX — TARTALOM

J. Dassow: On some extensions of indian parallel context free grammars 303
О. Б.'Лупанов: О вентильных схемах 311
О. Б. Лу панов: Об асимптотических оценках сложности управляющих систем 317
L. Csirmciz: Structure of program runs of non-standard time 325
T. Gergely and L. Úry: Nondeterministic programming within the frame of firs order classical

logic,Parti : 333
T. Gergely and L. Úry: Nondeterministic programming within the frame of first order classical

logic, Part 2 355
K. Tóth: Completeness in non-simple and stable modal logics 377
К. H. Kim and F. W. Roush: Enumeration of certain words 383
F. Ferenci: Groupoids of pseudoautomata 389

I S S N 0 3 2 4 — 7 2 1 X

Kiadja
Felelős szerkesztő: Gécseg Ferenc

79-5678 Szegedi Nyomda
Felelős vezető: Dobó József

Felelős kiadó: Gécseg Ferenc
Terjedelem 8,5 (A/5) ív

Készült az MSZ 5601 és MSZ 5602—55 szabvány szerint
A kézirat a nyomdába érkezett: 1979. november 30.

