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Linear deterministic attributed transformations

By M. BARTHA

Introduction

This paper is based on and continues our earlier work [2] in the subject. Our
point of view.is close to that of the authors’ of [3] inasmuch as we, too, translate
an attribute grammar (or transformation) into a system of recursive definitions.
Our aim was to define attributed transformations as homomorphisms between
suitable algebras that can be constructed from well-known ones in a natural way.
Rational algebraic theories (cf. [13]) and magmoids (cf. [1]) turned out to be the
most appropriate for this purpose. Two questions may arise in connection with
our new definition.

1. Why do we use these complex many sorted algebras if our aim is to map
Ty, the free Z-algebra, into a certain attributed structure? It would be enough to
define an appropriate XZ-algebra on this structure.

Beyond the notational convenience and elegance of proofs there is one more
reason. Investigating one specific attributed transformation it is generally easier
to deal with Z-algebras only. However, if we investigate e.g. the composition pro-
perties of these transformations (tree transformations here), the process of “trans-
lating” into a Z-algebra becomes rather tedious and affected. In this case the main
advantage is that we can get rid of the alphabet X.

2. Wouldn’t it be enough to use algebraic .theories only instead of magmoids?

It is true that most of the results in [4] concerning top-down tree transforma-
tions could be formulated within the framework of projective magmoids, i.e. non-
degenerate algebraic theories. An attributed transformation, however, is defined
by a homomorphism A: T(2)-DR[k,I] (for the precise definitions see later),
i.e. a homomorphism between (decomposable) magmoids. One might say that the
homomorphism Th: T(Z)—~TDR[k,[] is already between algebraic theories. This
is true, but it turns out that homomorphisms of T(Z) into TDR[k, ] generally
define more complex transformations, called macro transformations (cf. [7]).

For simplicity we assume that the set of possible values is the same for all
the attributes. A natural way to generalize our deﬁmtlon could be the introduction
of “many sorted” rational theories.

1 Acta Cybernetica VIf2



126 M. Bartha

1. Preliminaries

In this section we recall the basic concepts and definitions from [2] concerning
attributed transformations.

A magmoid M=({M(p, 9)lp, =0}, ., +, 1, 1,) is a special many-sorted al-
gebra whose sorting set consists of all palrs of nonnegative integers. . and + de-
note binary operations called composition and separated sum (“ensor product),
respectively. Composition (rather denoted by juxtaposition) maps M(p, 9) X M(q, r)
into M(p, r), and separated sum maps M(p,, 41) X M(p,, g,) into M(p, +P2; @1+ 92)-
leM(l, 1) and 1,6 M(0,0) denote nullary operations. The following axioms must
be valid in M.

(i) (ab)c=a(bc) for any composable pairs {a, b)> and <{b, ¢);

(ii) (a+b)+c=a+(b+c);

(iii) (ab)+(cd)=(a+c)(b+4d);

(iv) al,=1,a=a if a€M(p,q) and 1,= 31 for n=z=1;
i=1

W) a+1,=1+a=a.

Due to (i) and (iv) M becomes a category whose ohjects are the nonnegative
integers and the identities are the elements 1, (n=0). (For a complex categorical
definition of magmoids see [11].) Therefore, ac¢ M(p, q) is often written as a: p—q
if M is understood.

Let @(p, g) denote the set of all mappings of [p]={l, ..., p} into [¢]. Defining
the composition and separated sum of mappings as it is usual, and taking the
identity map of [n] for 1, we get the magmoid ©. We denote the unique element of
6(0, q) by 0, (0,=1,), and the injection 1—p which picks out i from [p] by =,
(or m; if p is understood). For an arbitrary 0<¢©@(p, q), i0 stands for the image of
7€[p] under 6.

A magmoid M is called projective if it contains a submagmoid @,, isomorphic
to @, and the following holds for every a, b M(p, q). If ma=n;b for each i¢[p],
then a=b. Generally we shall assume that @, =@, to be able to use the same
notations in M as in @. It can be proved that for any a,, ..., a,: 1—g there exists
a unique a: p—q such that m;e=aq; for each i¢[p]. This element will be denoted
by <ay,...,a,%. We shall use {and} (source-tupling) as a derived operation,
extendmg it to the case a;: p;—~q in the usual way. (In this case <aj, ..., a,%:

Z pi—~¢.) It was pointed out in [1] that every projective magmoid is in fact a non-
i=1

degenerate algebraic theory and vice versa, depending on whether separated sum,
or source tupling and the injections are considered as basic operations.

It is well-known that for every ranked alphabet 2= 1) Z, there exists a free

n=0

projective magmoid generated by X, which we denote by T(Z). T(Z) has a represen-
tation by finite X-trees on the variables X={x, x,, ...} (cf. [1]). Viewing 6¢Z,
as 6(xq, ..., Xx)€T(Z) (1,n) (which makes X a subsystem of T(ZX)), T(ZX) has the
property that any ranked alphabet map h: ¥—M into a projective magmoid M
has a unique homomorphic extension h: T(Z)~M. In particular, if T is the void
alphatet, then T(2)=0.

T(Z) has an important subsystem 7(Z) defined as follows. t¢ T(Z)(p, q) iff
the frontier of ¢, i.e. the sequence of variables appearing at the leaves of ¢, is exactly
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Xiy eney X T(Z)(l 0)=T(2)(1,0) will be denoted by T;. T(Z) is a submagmoid
of T(Z), and it is the free magm01d generated by Z. It has the property that every
1€T(Z) can be uniquely written in the form 73 with te T (Z) and 3¢6.

Let @ denote the submagmoid of all injective mappings in ©. t€ T(Z) is called
linear if 3€6 by the decomposition t=#9 above. Clearly, the linear elements
also form a submagmoid of T(ZX), which we denote by T(Z).

T(X) is free in the important subclass of decomposable magmoids, too. A

magmoid M is called decomposable if the following two conditions are satisfied:
‘ () for every a: p—q (p=2,9=0) and i¢[p] there exists exactly one integer
g; and g;: 1—g; such that a=aq,+... +a,;

(i) M0, 0)={1,). . |

Any magmoid M can te made decomposable by the application of the functor
D. D operates as follows:

() DM(1,9)=M(1, ) if g=0,

=1M,
DM (0, g)=if q=0 then {0} else 0,
if p=2, then DM(p, q) S(U M(1,r))* such that <a, ..., a,yeDM(p, q)
r=0

with q;: 1-—g; iff Z’q, =q;

(u) {ay; .. apl>+(b1, co by =L, ., a,, b1, 5 b5 .
(i) if a= (al,... a,y: p~q with a;: 1-q; and b=(by, ..., b,>: g—r, then

a.b = <a,( )bV, ..., a,( ) b®,
G+1)

i—1
where b(")=( 2))Mbj and q9= 3 q; (i€[p+1);
=1

j=ql

@iv) if h: M—~M’ is a homomorphism, then

Dh({ay, ..., ap) = <h(ay), ..., h(a,)).

There is a natural homomorphism {: DM ~M for which {(<a,, ..., a,))=
=a,+...+a,.
Any delc,:omposable magmoid M can be made projective by the application
of the functor T which operates as follows:
@) TM(p, q) U(M(p,q)X0O (', 9)| ¢'=0),
1=y, 1), 1o= o), (1o
(i) <ay, h)+<az, 9y =<{ay+az, $+9);
(iii) let a: p—>q",9: ¢ —~q,b=<(by, ..., b»: g—r with b;: 1-r; (i€[g]) and
@: r’>r. ¢ can be uniquely written in the form <¢,, ..., ¢,%, where for each
IE[q](pl ry—>r. Now <d ‘9> <b §0> <a( )M(bls’ cees q8> {(pl!)s [ (Pq 3}>’
@iv) if h: MM’ is a homomorphism between decomposable magmoids,
then Th(<a, $>)=(h(a), .9> A
We shall also use a restriction of T denoted by T. {q, 9)e’i‘M iff 9¢é. tis
easy to see that TM is a submagmoid of TM, so T is also a functor. It is well-known
that T(T(2))=T(Z) and T(T(2)=T(2).
Let M be a magmoid and k an arbitrary natural number. k-dil M denotes the
magmoid for which (k-dil M){(p, 9)=M(kp, kq), 1= )u, 1,=(lo)sy and the

1*
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further operations are performed in it just as in M. Clearly, the operator k-dil can
also be extended to a functor. Let #, denote the inclusion function: k-dil M—M.
7, is not a homomorphism, it is only a so called k-morphism. To avoid ambiguity,
M=k-dil @ will be the only exeption when we distinguish &,, from O, using the
unique embedding 1,: @ —k-dil ©.

Rational algebraic theories were introduced in [13]. To remain in circles of
magmoids we define this concept by means of projective magmoids, thus excluding
the trivial degenerate rational theory. A rational theory R is a projective magmoid
equipped with a new unary operation *': R(p, p+4q)—R(p,q), called iteration.
The carrier sets and the operations are required to satisfy the following conditions:

(i) for each p, q=0, R(p, g) is partially ordered with minimal element | ,,
(L, if g is understood);

(ii) separated sum and composition are monotonic, and the latter is left strict,
ie. 1,.a=1,,for a:g-r;

(ii)) let a: p—~p+q, and construct the sequence (a;: p—~q|i=0) as follows

ay=1,4 01 =a%a;,1,> for i=0. -

Then |J a; exists and equals af;
i=0

(iv) composition is both left and right continuous.

Since rational theories are ordered algebras, a homomorphism between them
is required to preserve the ordering, too. It was shown in [13] that for every ranked
alphabet X the free rational theory generated by X exists. This theory R(Z) has
a representation by infinite £, -trees on X, where X, =XU{1} and 1 is a new
symbol with rank 0. Reg (Z) will denote the rational theory of all regular forests
of finite Z-trees on X.

Definition 1.1. Let R be a rational theory, k=1, /=0 integers. Define Rlk,!]=
=({R[k, 11(p, 9)|p, g=0}, ., +, 1, 1y) to be the following structure. (We do not
use the subscript M to indicate the magmoid in which the operations are performed
if only one M is reasonable from the context.)

(i) RIk, 1(p, 9)=R(kp+1q, kq+Ip),

=L+, Lo=(0)r;>

(ii) if acR[k, 1)(p1, 4.), bER[K, I1(p2, g2), then
at+b = Kpfr 4 ki, B VIEER (0 b). kbl H g, Vi Vi

where p?, (u, if m is understood)=1,+0,,, v%, (v, if n is understood)=0,+1,,;

(i) if acR[k,1](p, q), beR[k,I1(g, r), then a.b=<ku,, v;, > . €a9, boPt,
where 9=vip+lay(k+br g = O, + «v**D, 18 o > +0,, (see also Fig. 1).

In [2] we proved that R[k, ] is a magmoid. Let £: R—R’ be a homomorphism
between rational theories. Clearly, ¢ defines a homomorphism ¢&[k, /]: R[k,1]—
—~R’[k,1], and so the operator [k, /] becomes a functor.

Definition 1.2. An attributed transducer (a-transducer) is a 6-tuple A=
=(Z,R,k, 1, h, S), where
(i) ¥ is a finite ranked alphabet, S¢ Z;
(ii) R is a rational theory, k=1,/=0 are integers;
(iii) h: Zg—~DR[k,!] is a ranked alphabet map, where Zg=2U{S} with S
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kg Ip

kp Iq kq Ir kr Ip

Fig. 1

having rank 1. A(S) is required to be a synthesizer, i.e. A(S)=a+0, for some
acR(k+1, k).

Extend 4 to a homomorphism 4: T(Z)—~DRIk, I]. 7,: Ts—~R(1, 0), the trans-
formation defined by A is the following function. 7,(t)=a, where =nih(S(r))=
=a+01.

Let 4 be a ranked alphabet, and consider the homomorphism ¢,: R(4) ~Reg (4)
for which ¢4(8)={d(x;, ..., x,)} if d€4,. Let ®, denote the congruence relation
induced by e,. For simplicity we shall identify each t¢T(4) with its class [t]©,.

Definition 1.3. A deterministic attributed tree transducer (a-tree transducer)
from Z into A4 is an a-transducer A=(Z, R(4)/0,4, k, L, k, S). In this case we
consider 1, S T;XT, as a relation

1p = {&, Wk (A(S())) = u+0, and wueT,}.

Further on a deterministic a-tree transducer from X into 4 will rather be denoted
by the 6-tuple (2, 4, k, I, h, S).

A=(Z, 4, k, Lk, S) is called total if h(s)€T(4) for each o€Xs. Determin-
ism, totality and linearity of tree transducers will be denoted by d, ¢ and /, respec-
tively. Since k-dil T'(4) is a submagmoid of R(4)[k, 0], every dta-tree transducer
with s-attributes only (/=0) is in fact a dt-top-down tree transducer and vice
versa.

Let t€R(4)[k, 11(p, q)- It is convenient to consider ¢ as the image of a tree
uc T(X)(p, g) under a suitable homomorphism h: T(Z)—~R(4)[k,1]. To underline
the attributed feature of ¢ we introduce the following notations

1(r, i) = mg-n+it if refp], i€lk];
1(J, m) = Mpri-n+mt i jelgl, mell];
X(J, 1) = Xy(j-1)+1i if jelq), i€[k];

y(r,m) = Xuie-n+m  if relpl, me[l].

The intuitive meaning of these items is the following.

t(r, i): the value of the i-th synthesized attribute (s-attribute) of the r-th root;
i(j, m): the value of the m-th inherited attribute (i-attribute) of the j-th leaf;
x(j, i): reference to the i-th s-attribute of the j-th leaf;

y(r, m): reference to the m-th i-attribute of the r-th root.
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Naturally, the roots and leaves above belong to u that we never mention ex-
plicitely. If p=1, then (i) and y(m) stand for (1, i) and y(l, m), respectively.
We shall use these notations for a€R[k,/1(p, q), too, after defining the concept
of dependence on a variable in an arbitrary rational theory.

2. The composition of a dtla-tree transformation and an arbitrary
a-transformation

Linear top-down tree transducers can be defined in two different ways. The
original definition in [5] requires all the rules of the transducer be linear in the sense
that no variable occurs more than once on the right-hand side of a rule. If we
represent the transducer by a k-morphism of magmoids, say #: 7(X)—k-dil T(4)
(the transducer is taken dt for simplicity), then #(6) (6€X) resumes all the rules
above in which ¢ appears on the left-hand side. However, the meaning of the
variables in k(o) differs from that of the variables occuring in the rules. Therefore,
if we require for all 6¢Z h(o) not contain two different occurences of the same
variable, which is the second way to define linearity, the transducer need not be
linear in the original sense, and vice versa.

Unfortunately, the original definition cannot be carried out in the case of
a-tree transducers (even if the transducer is described by a set of rules as in [9]),
but the second one can be adopted quite naturally.

Definition 2.1. t€ R(4)[k, I](1, q) is called linear if t€ T(4,).teDR(A)[k, [p, q)
is linear if t=1,, or t=t,+...4+1t, and each f;: 1—g; (i€[p]) is linear. A=
=(2,4,k, 1, h, S) is linear if h(o) has a linear representant for every o¢Zjs.

Let L, (4)[k, ] denote the system of all linear elements in DR(4)[k, !], and
L(4)[k, I] that of all linear and total ones.

Lemma 2.2. L, (4)[k, ] and L(4)[k, !] are submagmoids of DR(A)[k, ].

Proof. It is enough to prove the lemma for L(A)[k, I]. Indeed, let. ¢: R(4,)~
—~R(4) be the homomorphism extending the identity map 4, ~4U{1}. If
L(4))[k, ] is a submagmoid, then so is L, (4)[k, /], which is the image of it under
the embedding Dolk, /]. ' )

Let t¢R(A)[k,1](1, q) be arbitrary, and construct the directed graph G, as
follows. The nodes of G, are

{rs (D), ri(m), 1s(J, D), Hi(j, m)|i€[k], me[1], jelgl}

(s,i,r and 1 suggest synthesized, inherited, root and leaf, respectively). There is
an arc from rs(i) to Is(j, i")(ri(m)) iff ¢(¥) contains an occurence of x(j, i’) (y(m),
resp.). Similarly, there is an arc from 1i(j, m) to Is(j’, )(ri(m")) iff i(j, m) contains
an occurence of x(j’, i)(y(m’), resp.). G, has no more arcs than those listed above.
G, is called a dependency graph. Unfortunately, the direction of the arcs is just
the opposite of the direction used in most of works concerning attribute grammars
(e.g. [8], [9], [12]). However, this direction is more natural from the point of view
that ¢: k+Ilg—~kq+IcR(4), where the arrow leads from the ‘“‘components” to
the ‘“‘variables™. - S o -
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Clearly, t€ L(4)[k, ] iff

(i) teT(4); _
(ii) there is at most one arc entering each of the nodes

{Is(j, D), ri(m)|ic[k], me[l], j€lql}
in G, (i.e. G, is a forest).
Let ¢,=0 and for each 0=s=gq,, t,cL(4)[k,!](1,q,) with g'qs=q. It
s=1

90
suffices to prove that t=t,. > t,€ L(4)[k,I](1, g). Construct the graphs G, for

s=1
each 0=s=gq,, marking the nodes of G, with a subscript 5. For each i¢[k], me[/],
j€[g,] identify the node Isy(j, i) with rs; ;@) and lig(j, m) with ri;(m) to get the
graph G. This graph fully descrlbes the dependence relation of the attrlbutes while

performing the composition . Zt Therefore it is easy to see that G,=G"\ N,,

where G+ denotes the transmve closure of G and
Nin = {lso(j, l)(E l'Sj(i)), liO(j’ m)(E l'i_,(m))]lE[k], mE[l], JE[qO]}

Let us remark that, by construction, there is at most one arc entering each node
of G, moreover, no arc enters the nodes

{rs, (i), lis(j, m)li€[k], me[1], s€[qol, j€lq,]}-

This implies that the connected subgraphs starting from these nodes are trees, so
t is finite and G, is a forest, which was to be proved.

Observe that the connected subgraphs starting from the nodes of N;, might
be circles. This means that circularity might appear if we want to achieve the result
of the composition by computing the value of all the concerning attributes, but this
“inside” circularity does not affect the value of the important attributes.

Now we generalize the notion of “dependence on a variable” to projective
magmoids.

Lemma 2.3. Let M be a pI'Q]CCthC magmoid with M(l 0)>#0. For any
acM(p,q) let a=d’9, where a’: p—~q’,3€O(q, q) and g’ is minimal. The image
of 9,Im (9) is then uniquely determined.

Proof. Suppose the decompositions a=a;9;=a53, both satisfy the condi-
tions of the lemma and Im(3)#=Im(9y), e.g. i€¢Im(3,) but i¢Im(Iy). Let.
1 eM(,0), and consider the element p¢=1;,_;+ 1 +0,+1,_;: g—q. Since
i¢Im(9,), we have $3,0=39,, thus, a=a;9,0. Observe that 9,0=(1;_;+ L +
+0,+1,_,)9,, where i=j3;. On the other hand

] Lo+ L4041, =1+ L+1, (1 +0,+ 1, ),
that is : .
a;d0 = (a{(lj—l‘l' 1 +1q'—j))(1j—1+01+ 1p-Dd.

This is a contradiction,. since ¢’ was supposed to be minimal.
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We shall say that a: p-~q depends on x; (i¢[q]) if i¢Im(9) by the decom-
position a=da’3 above.
Let R be a rational theory, and extend the homomorphism {: DR[k, /]

—~R[k,1] to a mapping : TDR[k,!]-R[k,[] as follows. For 9€@(p,q) let
6(9) = ‘K'?k('k('g))'*‘olpa qu'f"P},
where ¢: lg—+Ip satisfies
Ti-n+m® =i jEIM(8) and j=1i8 then mG_1yem else 1,

for each je[q] and me[l]. Now, for any a:n—p and 9: p—q let {(<a, 9))=
={(a).{(9).

Intuitively, {(<{a, 9>) can be obtained as follows (for simplicity let R=R(4)
and a: 1-p). Starting from {(a), any reference to an s-attribute of a leaf (say the
i-th) must be pointed to the corresponding s-attribute of the i9-th leaf. References
to i-attributes of the root remain wunaltered (though the corresponding variable
indices may be shifted), but the values of the i-attributes of the leaves must also
be rearranged according to 3. The value of all the i-attributes of a ““fictive” leaf
is set to .

The following example shows that, contrary to our expectations, { is not a
homomorphism. )

Let R=R(4) with A=4,={8}, k=I=1. Consider the elements a=
=6(y(1)): 1-0 and b={1,s(y(1))>: 1-1 of DR(A)I[1, 1]. Then a

2 0)-(b, 1) = 8(a, 0,) = B(y(D), L,
but £(<a, 0,5).£(<B, 1)=¢5(y(D), 8(L)). |

However, it must be noticed that the only difference is between the values
of the i-attrbutes of the “fictive” leaf.

Let R[k,/]SR[k,1] be the following system. a€R[k,1](p,q) iff there exists
a system I={I(r)S[q]lir€[p]} of pairwise disjoint subsets of [g] for which the
following two conditions are satisfied :

() if a(r, i) depends on x(j,i") re[p], j€lq), i, i’€[k]), then jcI(r), more-
over, if a(r,i) depends on y(r’, m) (r’€[pl, m€[l]), then r=r’;

(i) if a(j, m) depends on y(r, m’), then j€I(r), moreover, if a(j, m) depends
on x(j’,i), then for each re[p] we have: jelI(r) iff j/¢I(r).

For a fixed a€R[k,!](p,q) there might be several systems I satisfying (i)
and (i) above. There exists, however, a minimal one I,, in which for every
re[pl, I,(r) is the least subset of [q] satisfying the following two conditions:

(i) if a(r, i) depends on x(j,i’), then jeI(r) i

(ii) if a(j, m) depends on x(j’,i) for some; jeI(r), then j'€I,(r), too.

Define the binary relation ¥ on R[k,!] as follows. For every a,b: p—q,
a¥h iff

(l) Iazlb;

@) a(r,i)=>b(r,i) for each re¢[p], i¢[k];

(iii) a(j, m)#b(j, m) implies that j§I,(r) for any r€[p]. We shall see that
R[k, ] is a submagmoid of R[k,!] and ¥ is a congruence relation. It could also
be proved that {¥: TDR[k, ] R[k, I]/¥ is already a homomorphism.
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Let us start with two easy observations.

p Proposition 2.4. 1. For any appropriate a¢DR[k,I] and 9¢6,{({a, )¢
€R[K, 1].
2. If {:R—~R is a homomorphism and a¥h holds in R[k, 1], then
Elk, 11(a) PE[k, I1(b) holds in R'[k, I]. _
The first statement is trivial, while the second follows from the fact that the
components of ¢[k, I1(a) and [k, 1](b) depend on at most the same variables as

the corresponding components of ¢ and & do.
Let k'=1,1’=0, and for each g=0 define the bijections g, and g; as follows

q q
0 = L+ 40y + < 21 ui 21' 175 S THIS N
i= =

a g
e =< 21 HEE 4+ Vv 2; VI + O
j= j=
See also Fig. 2.

Kk k1 k'l 'k 'k 'l
Qq: ;
k'k Il k'l 'k k1 'k
kk ... kk k'l Ik e ...
o ?
k'k Il - k'k Vi k'l Uk
Fig, 2

Definition 2.5. ac R[kK'k+1"], k’I+1'k](1, q) is called [k, []-linear if g, ags€
€R[K, I'|(k+1g, kq+1). Generally, acDR[K'k+U'l, K’I+I'k] is [k, []-linear if
a=1,, or a=a;+...+a, and for each i€[p], a;: 1 ~q; is [k, []-linear.

Let a,béDR[k’k+l"l, k’'l+1'k] be [k, []-linear elements, a=2p'ai,b=
i=1
= b, with a,,b;: 1~g, (ic[p]). Define adb iff g,a,0,¥o,bi0; for each ic[p).
i=1

Lemma 2.6. The [k, []-linear elements form a (decomposable) submagmoid
“of DR[k’k+1'Lk’I+1’k] and & is a congruence relation on it.

The proof of this lemma will be given in the Appendix because of the great
amount of computation it needs. The submagmoid of [k, /]-linear elements will
be denoted by L[k, I|DR[k’k+1"], k’1+1’k]. Taking k=1 and /=0 in the lemma
we get that R[k’,1’] is a submagmoid of R[K’,!’] and ¥ is a congruence relation,
as we stated it before. '
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Let h: T(4)—R[k’,!’] be a homomorphism, and define the mappmg hlk, 1]:
L(M)[k,1]~L[k, IDR[k’k+1’l, k’I+1’k] as follows (the notation A[k, /] is some-
what abusing here): )

(i) for teL(A) [k, 11(1, @) (=TT (4)(k+1g, kq+1))

hlk, 11() =07 *L(TR(D)) 0,7
(i) for t=t,+...+1,€L(A) [k, [}(p, q) (t:: 1-q)
hlk, () =hik, [1(t) + ... + B[k, 1(t,)-

Lemma 2.7. hlk, 1] ®: L(Dk,I]-L[k,/JDR[K’k+1'l,k’I+!’k])/® is a homo-
morphism.

This lemma, too, will be proved in the Appendix.

Now we are ready to prove the main result of this section.

Theorem 2.8. Let A,=(Z,4,k,,h,S;) be a dtla-tree transducer, A,=
=(4, R, k’, I, hy, S;) an arbltrary a-transducer. Then 7,,07,, is also an a-trans-
formation.

Proof. By Lemma 2.2, k, is in fact a homomorphism of T(Zs) into L(4)[k, l]
Let Zg 5,=2ZU{S:1, Sq}, where S; and S, both have rank 1, and extend h ot

a homomorphism of T(Zs s) into L(4s)k,I] by h(S)=S.mi+ 2 50+O,

d, is an arbitrary element of 4,. (We can suppose that J, exists, because 4,=90
would imply 7,,=1,,074,=0.) Let S be a new symbol, and define the ranked
alphabet map A: Xg—DR[K'k+1I'l, kK'I1+1’k] as follows:

() k(e)=hslk, 1](hy(0)) if o€Zs, i

(i) A(S)=h(S2)h(S)).
We claim that the transducer A=(Z, R,k’k+I'L,k’I+1'k, h, S) satisfies 7,=
=174,0T4,- Viewing & as a homomorphlsm of T'(Zs,s,) into Lik,[1DR[k'k+1"],
Kk’ l+l k] the following diagram commutes:

n, L (4s) [k, 1]

hylk, N0

T(2s,5) <

"Nk, [DR[Kk+ 1], K1+ 'K]/®.
Now, for any 7¢7Ty

(5®) = hShohO otk [simi 13 800 (s, =
= il D[Syt S0+ 3 ) = 067 [ (S (0,00, 00+ 5] G, 00) i =

= U(<ha(Sa(am, ) 0)+ 3 E(ChaGD), 00)
By the definition of @, -
n,l(,kH,,h(S(t)) = ﬂi’kﬂ’l(t((hz(Sz(TAl (t))): 01>)+
k=1
+ ;1' C(<h2(50)’ 00))) = 0+ (mk. 1y (Sa(ta, (t))))+01'(k—1) = TAz(TAl(t))+0k'l+l'k

which was to be proved.
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ReMARK. The intuitive meaning of the above construction is the following.
The attributes of the transducer A can be devided into four classes. These are
s—s, i—s,s—i and i—i containing k'k, k’1, I’k and [l’] attributes, respectively. To
interpret the value of the four kinds of attributes let €75 and o a node in . Sup-
pose that the value of the i-th s-attribute (m-th i-attribute) of « under A, appears
as a subtree below the node B; (v,,, resp.) in S,(74,(7)). The following table describes
the value of all the attributes of « under the composite transformation.

Attribute Index Class Type E\e?;z?:((;c)i)e Value
G, i kKG—1)+i’ s—s | synthesized B s(B:, 1)
{m, i’y Kk+VI+k(m—1)+i’ i—s | inherited o $(Vm»> 1)
i, m'y kKk+VI+k'l+U'((—1)+m' | s—i | inherited B i(B, m')
(m, m") Kk+U'(m—1)+m i—i | synthesized Vi i (Yo ')

In the last column, e.g. s(;, i") denotes the value of the i’-th s-attribute of §; under
hy. If “related node in Sy(t,,(¢))” does not exist, then the value of the corresponding
attribute is undefined or unimportant (see the congruence ®). It is rather surprising
that .the attributes of class i—i can be computed in synthésized way.

Theorem 2.9. The class of all dtla-tree transformations is closed under com-
position. :

Proof. Let A, be a dtla-tree transformation from 4 into I in Theorem 2.8.
Then the composite transducer A is obviously dl, but in general not total. Let us
remark, however, that for each o€ X there exists a total representant in [A(c)] ®.
For example, it is enough to replace the | components of A(c) (which in fact corre-
spond to the values of the i-attributes of the fictive leaves of 4,(c) under h,) by an
arbitrary yp,€Iy. Clearly, this modification does not change the transformation
T, S0 we are through.

Example 2.10. Let k=I=k'=l'=1, Z,=4,={a), Z,={a}, 4,= {f, g}, Z=
=2,UZ,,4=4,1U4, and I'=4. Define h, and h, as follows

hi(S) = hy(Sp) = <x(1), @p;

hi(@) = hy(f) = f(x(D). g(rD)s
hi(@) = hy(a@) = y(1);

he(®) = {g(x(D), F(PD-

Cleafly, TA,0T4,={<a" c’z., frgfrg"ay|n=0} (i)arenthesis are omitted for short).
Following the construction of Theorem 2.8 we get the transducer A=(X, I, 2,2, h, S),
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where
h(S) = [{x(1), L, x(2), ay<{x(1), L, x(2), y@P)Or =

= [<X(1), 4, x(2), a)] @r = <X(1), aa X(Z), a> (¢):
h(@) = f(x D), f(xD), g(ryD), g(QP;
h(a) = <{y(1), y(2)).

It is easy to check that, indeed, T,=1,07,,.
Let v(A) denote the mm1mal value of the natural number K for which A, a
da-tree transducer, is K visit (for the definition of visits see e.g. [8], [12]). The

complexity of A, c(A) is defined implicitely by the equation v(A)= c(a) +1.
plexity q 5

Now, let A, and A, be dtla-tree transducers with c(A;)=¢; (i=1,2), and construct
the transducer A defining 7,,07,,. It can be proved that c(A)=c,c;+¢;+¢; and
this is the best possible upper bound.

3. The composition of a dla-tree transformation and an arbitrary
a-transformation

Let 'A =(2, 4,k, 1, h, S) be a dla-tree transducer. We define a homomorphism
Ch: T(Z5)~L, (0) [k+1,k+1} (called the trace of h) having the property that for
every t€Ty and i€fk] ‘

. Ch(S@®) = if n,ih(S(t)):_Ll, then 1, .., else miy.

(Obviously, Ch(S) is not a synthesizer here.)

Instead of presenting a formal description we illustrate Ch via an example.
Let 0€(Zs), and t the linear representant of /(g) having the fewest nodes. Con-
struct the graph G, as in Lemma 2.2. For example, let k=/=n=2. On Fig. 3
s- and i-attributes are represented by o-s and --s, respectively, in the order from
left to right. The mark X indicates a 1 -valued attribute.

% {rs @), Tim)li, me (2]}
. x e {1s(j, D), li(j, m)lj, i, me[2]}
’ ig. 3

Associate to each s-attribute a new i-attribute and to each i-attribute a new s-one.
On Fig. 4 the nodes denoting these new attributes are placed below the corresponding
old ones. The predicate, whether the value of an attribute a under # is 1 or not
will be expressed by: the value of a under Ch is | or the same as the value of the
associated new attribute @’. This can be achieved by checking the value of all the
attributes a depends on, tracing them one after the other in an arbitrary order.
In our example Ch (¢) can be represented by the graph of Fig. 4.
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frs(i), ri(m)li, me[2]}

\ {xi’ (i), x5’ (m)li, mE 2]}
x {lS(_], i)» li(.]’ m)l]’ l’ m€[2]}
I ° I (i’ (J, D), Is"(J, m)|J, i, me[2]}

Fig. 4

To get the required result we only have to order the (old and new) attributes so.that
the i-th s-attribute and the i-th i-attribute (i¢[k]) should be the i-th old s-attribute
and its associated new i-attribute, respectively.

There is a natural embedding ®: R[k, [1XR[k’, I")~R[k+k’,I+1’] defined
as follows. a®b=¢(a+b)y, where a,b: p—~q and

= lkp {vfgp’ /";cqp} + ll’qs
l//_l - lkq "tvk ‘g3 .uk",q}-l'll’p'
It is easy to check that ® is indeed a 1—1 homomorphism.

Lemma 3.1. Let A,=(2,4,k,,h,S) be a dla-tree transducer, A,=
=(Z, R, k', I’, hy, S) an arbitrary a-transducer. 7,,|D1,, (the restriction of 7,, to
the domain of 7,,) is an g-transformation.

Proof. Let Ag=(Zs, R, k+I+k’,k+I1+1’, hg, S”) be the following a-trans-
ducer: '

() hs(o)= Ch1 (0) ®hy(0) for g€y,

(i) £s(S) =471, Lisi+kr~1> Bh+1+1s Le+r+r-1F. Observe that for every 1€ T

Tas(S(t)) = if teDrty, then 1,,(t) else L,,.

Now, consider the a-transducer A=(Z, R, k+I+k’, k+I1+1", h, S), where h(o)=
=hs(o) for g€Z and h(S)=hs(S)hs(S). Clearly, t5=14,/D14,.

Remark 3.2. If A, is a dla-tree transducer, then so is A.

Théorem 33. Let A,=(Z,4,k,1,h,S;) be a dla-tree transducer, A,=
=(4, R, k', ", hy, Sy) an arbitrary a-transducer. Then 14,0174, is also an a-trans-
formation.

Proof. Choosing _any linear representant of /#,(0) (6€Zs5) we get a
homomorphism #4;: T(Z‘s)—»LJ_(A)[k 1]. Since LJ_(A)[k NE L(AJ_)[k I}, we can
use Ay to define the dtla-tree transducer Aj=(2, 4.,k 1 hi, S). Extend hy to
a, by hy(L)= 14,1 Theorem 2.8 implies that 7,;014,=7, for an appropriate
a-transducer A. Clearly, t,|Dt,,=174,07,,, S0 the statement of the theorem follows
from Lemma 3.1. :

Corollary 3.4. The class of all dla-tree transformations is closed under com-
position.

Proof. If A, is a dla-tree transducer in Theorem 3.3, then so is the composite
transducer A. Thus, the corollary follows from Remark 3.2.
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4. dla-tree to string transformations

Let T be a (string) alphabet and let CF (T) denote the rational theory of all
context free languages over TUX (cf. [13]). CF(T) is in fact the ““front” theory
of Reg (Z) supposing Zo=T. L=(L,, ..., L,)€CF (T)(p, q) is called linear de-
terministic if each L; (lE[p]) contains at most one string and no variable occurs
more than once in L.

Definition 4.1. A dla-tree to string transducer from X into T™* (T is finite) is
an a-transducer (2, CF(T), k, 1, h, S), where h(o) is linear deterministic for each
c€ls.

By Lemma 2.2 the linear deterministic elements form a submagmoid of
CF (T)[k, 1] which will be denoted by LCF (T)[k,/]. If A is a dla-tree to string
transducer from X into T*, we consider 7, as a relation, 7, STyXT*.

Theorem 4.2. Let A=(Z, CF (T), k, I, h, S) be a dla-tree to string transducer.
Then t,=(p, K, ), where K is a regular forest, ¢ is a relabeling tree homomorph-
ism (injective on K) and y is a dtl-top-down tree to string transformation. (Recall
from [4] that the transformation defined by the bimorphism (¢, K,y¥) is

Ko@), ¥ ()]t K})

Proof. Let ¢: CF(T)—~CF (#) denote the homomorphism defined by the
unique homomorphlsm of T* into 0*={1}. Let 4,SLCF (0)[k, /](1, 0) such that
acd, iff nta={A} and nia&S{i} for each i¢[k]. Since LCF (9)[k,!] is a finite
magmoid, the pair (hoé[k,[], A;) can be considered a deterministic finite state
bottom-up tree automaton working on Ty, where 4=LCF (9)[k, 1](1 0) is the
set of states, (hol[k,l}(o)lo€Zs) describes the transitions and A, is the set of
final states. Let Q denote the relabeling transducer defined by this automaton.
Q marks each node of a tree t¢T;, by a new label, which is a pair consisting of
the old label 6¢(X5), and a vector of states {a,, ..., a,» in which the automaton
passes through the node and its sons, respectively, during the recognition (or refuse)
of t. Let 2§ denote the ranked alphabet of these new labels.

Define K=14(Fs5)E T;s, where Fs={u€T;_|u=S(t) for some 1€Ty}.
Furthermore, let ¢: T(Zg)—T(X) be such that @({S, {qy, add)=x, and
0 (Ko, {ay, ..., a))=0c if a€Z,. Obviously, K is regular, ¢ is injective on K and

@(K)=Dr,.

We describe ¥ as a homomorphism of 7'(Z5) into LCF (T)[k+/, 0], i-e. ¥ will
be a (k+[)-state dl-top-down tree to string transformation. To avoid ambiguity
we shall use the variables Z={z,, z,, ...} (ZNT=0@) instead of X in the definition
of Y. Let $ be a distinguished symbol in T and 4 a new symbol not in 7. Take
an arbitrary a€A. If a=Quy, ..., u), then let a=u, % ... 3 4,, where #;=if u;=0
then § else u; (i€[k]). Let n denote the number of all the 4-s and y(m)-s (mg[l])
— called separating symbols — in a. Clearly n=k+/. Define the mapping n,:
(TUZY*Y+~LCF(TUZ)[k, 11(1,0) as follows. If w=d{w, ..., wp.p), then
n.(W)=<(v, ..., 0>, where for each ic[k]

(i) if 4,=$, then v;=0;
(1) if #;=4, then v;=w;,,, where the # preceding #; is the j-th separating
symbol in a.
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(i) if #;=p(})...y(i;+n), where y(i}) is the j-th separating symbol in a
(from left to right), then v; = w;y((DW;s1-.. Y en) Witn +1-

Taking the inverse of some element under 7, we shall assume that the unnecessary
components of 75 ({vy, ..., BeY)=CWy, <., Weyp (Which do not take part in (ii)
and (iii)) are set to $.

Now, if (o, {aq, .-, a,»y€(Z5),, then let

W((U, {ags ooy an>>) = 11.;01 (h (0)- ié; ’1a,-(<z(k+z)(i—1)+1, cees Zkk+l)i>)) .

Y is obviously linear, so it is enough to prove that for every t€K with root (¢)=
={S, <@y, a)> Y (1)=1z (h(¢(2))). This follows from the following induction.

If <o, <aq, .., aYE(ZS), (n=0), 1,€Ty, with root(t)=<(—,<a; ...)> and
Y(e)=n (h(e(1))), then for 1=<o, <@y, .., a>(t, ..., &) We have Y ()=
=11 (h(@(?))). Really,

R CRONEASED ATOR
= Y ({0, {ag; .. :an>>)[z(k+l)(i—1)+j - “j¢(ti)|i€[n], jE[k+l]j =

=0 (1) 3 ma (1 (B @) = nit (b (o))

Corollary 4.3. The surface sets of dla-tree to string transformations are the
same as that of dtl-top-down tree to string transformations.
This class of languages was investigated e.g. in [10].

5. Problems

The existence of the trace homomorphism Ch described in section 3 raises
the following problem. Given any regular forest FC Ty, is it possible to find a
homomorphism ¢: T(Z)—~L, (0)[k,!] such that for any r€Ty, m&(t)=if t€F
then m, else 1,? The answer is positive if 2 is a unary alphabet (Z=2,UZ,), al-
though a negative answer is more likely in the general case. It is also open whether
it is possible to define deterministic finite state bottom-up or look-ahead tree trans-
formations (cf. [6]) by attributed tree transducers. However, it can be shown that
the classes of deterministic attributed and macro tree transformations coincide
in the monadic case (i.e. if both the domain and range alphabets are unary). The
proof of this result will be given in a forthcoming paper.

Appendix

To prove Lemmas 2.6 and 2.7 we need a preliminary observation.

An infinite tree t€ R(4)(p, q) is called local if it is determined by the sequence
Be(dUX,)? of its roots and a ““successor” function x, which for every d¢c4, (n=0)
specifies the sequence of labels of the sons of any node in ¢ labeled by & (i.e. x(6)€
€(4UX)"). In this case we write 1=(8,%). = '
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Let © and A be finite ranked alphabets, T¢T(2)(p, g) an ideal (i.e. =; T#x;
for any i¢[p], je[q]) such that any two distinct nodes of T have different labels
This allows us to identify a node of T by its label. Let nds (T) denote the set of
nodes (labels) of 7, and for wénds (T), weQ,, let {w(0), ..., o(n)> denote the
sequence of nodes obtained by enumerating the father of @ followed by the sons
of w. Take w(0)=i if w is the root of ; T. Furthermore, let x: T'(2)~DR(A)[k, 1]
be a homomorphism such that

x(w) = 4a(l, w), ...,ak, ), da(1, w), ..., a(ln, w) %,

where n=0, weQ, and {a(i, w), a(J, w)|i€[k), j€[In]} S Awn+i-

It is routine to check that ((x(T))=(B, x)€ R(MIk, [1(p,q) is the following
local tree:

@ B=<4(),..., A(kp), B(1), ..., B(lg), ('1)
‘where Vrelp)l, Vie[k]
A=+ =a(,0) if r=w(),
and Vj€[gl, Vme[l]
B(I(j—-D+m)=a(ls—D+m ) if x;=a(s)

for some weQ,, s¢[n];
(i) if wends (T), 0€Q,, then Vig[k], Vj€[in]

2(a(, ) = x(@(j, @) = <A (), ..., A(kn), BQ), ..., B(),
where Vsg[n], Vielk] '
A(k(s—1)+i) = Case w(s) of o' (€Q):a(,®); x;: x(j, i);
and Vme[l]
B(m) = Case w(0) of o'(€Q):a(l(s—1)+m,w’), where o'(s)=ow
r(€[pD:y(r, m).
Moreover, if 9€6(g, q°), then f(’i‘x(TS));—(ﬂ’, ¥)) is the following:
® B =<4, ..., A(kp), B'(V), ..., B’(Iq"),
where A(i) and B(j) (i€[kp), j€[lg]) are as in (1), and V j’€[q’], Vme[l]
B —-D+m)=if jecIm(9) and j=j8 then B(I(j—1)+m) else L;
(i) for each
Ae{a(i, w), a(j, w)|wends(T), w€Q,, i€[k], j€[in]}
X (A = 2D [xG, D ~ x(, Dlielkl, jellgl, j§ =7
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Proof of Lemma 2.6. It is enough to prove the following two statements:
1. if ¢,=0 and for each 0=s=gq,, w,cL(k, )DR[K'k+I’], K'I+1'k](1, q,)

do
with > g.=g, then
s=1
Wy ﬁ w€ L[k, IDR[K’k+ 1], K'1+1K](1, q);
s=1

2. if w,dw, for every 0=s5=¢q,, then

40 g0 ,
W= Wy ZWSQW(;' Zws =
s=1 §=1
Let g(w,) stand for g, w0, , and let

Iq(w,) = {I (1)’ ls(k)’ Is(l)’ veey Is(lqs)}

with L@ =n,0), 1) =n s(.]) and kg, +1-|| Ul ll=n, (GE€[k], jellg,).
Choose injective mappings 9,(i), 3,(j) and 8, which map [n,(i)], [7,(/)] and [n]
into [kg,+I] such that Im(3,())=L(), Im(3(N)=L(/) and Im(9)=
=[kgs+IN\Ul,,,. Let Q consist of the symbols {T(i), T.(/)|0=s5s=gq,, ic[k],
j€llgsl}, where T(i)€Q,q and T.(j)€Q;, ;- Define A as the least ranked
alphabet satisfying the following conditions:

(i) for every weQ, (n=0)

{a(, ), a(j’, @) |VE[K], JEVn]} S Apnars
(ii) for each 0=s5=gq, )
{a(j’, ) @ (7, )N ellndy & Aun,-

Construct local trees W, W,/ and W' (0=s=gqy) of R(MNKk+I'L Kk I+
+1"kY(1, g,) as follows. W,=(f,, x;) with

() B.=<AQ), ..., AK’K), BQ), ..., BU'D), CQ, 1), ..., C(1, k'], D(L, 1), ...
. D(LI'K), ..., C(gs, 1), ..., C(gs, K'D), D(gs5 1), .., D(qs, I’k)), where Vi€[k],

Vi'elk']
A(K (i—D)+1) = a(’, T,(),
vme[l], Vm'€[l']

B(Y(m—1)+m’) = Case kq,+m of (7))
nd, (i): N L());
nd():=a(l' (n-1)+m’, = T,());
ndg: 5);

Vj€lgsl, Ymell], Vi’e[k’]
C(j, K (m—1)+1) = a(¥, T.AG-1)+m)),

and V j'€lgs), Vre[kl, Ym' €[I’] D(j’,I'(r—1)+m’) is of the form (2) [kqs+m+
~k(j’~1+r], ie., (2) with kg,+m replaced by k(j'—1)+r; -

2 Acta Cybernetica VI/2
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(iia) Viek], .
ViEK), ¥ el )]
%:(a @, T.(0) = 1:(@(J’, To(@))) = <AQ), ..., AK'n (@), B(L), ..., BI)),
where Vi’€[k’), Vn€[n,(i)] _
A(K' (n—1)+1") = Case n3,() of k(j'—1)+r(j’€lgy), relk): x(J’, k(r=D+7");
kgs+m(mell): y(k'(m—1)+7); A3)
and VYm'€[l’] B(k'ys(i)fm')=y(k'1+1'(f-1)+mf);
| (iib) v jellg,),
Vi'e[k), v j e[l ()]
%:(a(, T() = 1@ TOGY) = KAQ), ..., A(K'A()), BQ), ..., B,

where Vi‘€[k’], Vn€[a (/)] A(k’(n——l)+z) is of the form (3) [3,())<& ()],
and Vm'¢[l'] B(m)=x(j, Kk+I'(m—D)+m’) if j=I(j’—1)+m for some
J'elgs), me[l]; A

(i) VJ'€ll'n] 1 (@(j’s 9)=<A(), ..., AR'nYy, where Vi’€[K), Vne[n]
A(K' (n—1)+i") is of the form (3) [, (1)« Al

We get W, and Wt from W, by replacing the symbols a(j’, s) (j'€[l’n,])
occuring in it by a’(j’, s) and |, respectively.

By construction, for any 0=s=g, and zE[k’k+l I+ 1+1'k)q,), =W, and
7; W, depend on all those variables which m;w; or 7;w; may depend on. Therefore
if W =1¢ for some A€A and ¢€O, then ; w(’)—a.9 where Im (8) SIm (¢).
Define the ranked alphabet map &: A—R by & (/1) a%¢ 1, where ¢! is an ar-
bitrary right inverse of ¢. & is correct, since for every AEA there exists exactly
one s, i and ¢ such that n,W(7=1¢p. Obviously 3¢ '¢=39, thus E(W)=w,
and ¢(W)=w; hold by the extension of ¢ to a homomorphrsm of R(A) into R.

Let x%: T(Q)—~DR(A)[k’, "] te the homomorphism extending the following
ranked alphabet map. For every weQ;, .

w(w) = <a(l, w), ..., a(k’, ), a(l co) Sa(l’ n, vy,
Consider the elements " _ A
T, = « L3, ... T.(k) S, ®), T3, ..., T,(19) 3,(q)+
of L(Q)[k 111, ¢), and observe that
C(T%(T)) = oW Po(W).
To complete the proof it is enough to show that

o) = 0 (K- Syt [T% [T > T)] | @

Indeed, (4) shows that both W and W’ aré [k, []- lmear (see Proposition 2.4/1) and
WoWw’. Thus, by Proposition 2.4/2, wow'.
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' [:{
First we compute T=T,- Zo' T,. Following the proof of Lemma 2.2 it is easy

s=1
to see that T¢€L(Q)[k, I1(1, ¢) is the following finite Q-tree. With the notations of
. our pre»liminary observation

() Vielk] ,
To(H)(©0) =i,
vné€[no(9)]
To()(n) = Case n3y()) of k(s—1)+r(s€lqol, re[kD: T,(r);

kgo+m(me[l]): y(m); (5)
Vs€[qol, Vme[l]

To(I(s—1)+m)(0) = Case kg, +m of n3,(): T,(); n3.()): T,());
nd,: To(I(s—1)+m)¢ nds (T);
V j€llgo), Vne[y ()] To())(m) is of the form (5) [3,() < I,());

(11) v § E [qO] >
Vielk]

T,(i)(0) = Case k(s—D)+i of n3y(r): To(; n3(): To(i);
n9: T,())¢nds (T);

T,()(n) = Case 13,()) of
kG4 r(elad relk): x(q@-+7,7) (¢ = ?q} ©
kq,+m(me[l]): To(I(s—1)+m);
v j€llgs)

T.(HO) = k+199+j,

Vel ()] T{j)(n) is of the form (6) [3,(i)«5,(/)].
Computing {(Tx(T)) we get a local tree (B, x) for which
Q) B = <AQL), ..., AK’K), C(L, 1), ..., C(L, k), ..., C(g, 1), ..., C(q, KI),
D, 1), ..., DQ, k), ..., D(q, 1), ..., D(g, I'k), BQL), ..., B, 0

where Vie[k], Vi'€[k’]

A(K (i=1)+1)) = a(i’, To(), |
VSE[qO]’ .

v jelgsl, melll, Vi'e[k’]

C(q®+), K (m=1)+7) = a(i', T,UG~1)+m)),

2%
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Vie[k),ym'€[l’]
D(¢®+j, ' (i—1)+m’) = Case k(j—1)+i of ®)
n3,(r): T,(M);
n8,(7):Na(r (=) + v, LT);
n9: 1;
vme[l], vm'€[l’]
B(I'(m—1)+m’) = Case kgy+m of )
n3(i): To(l))
nBol):~a(l (r=1)+ ', LT, (1);
n9: L

(ila) -Vi€[k],
Vi’e[k'l, V j €ll'ny ()]

x(a(@, To()) = 1@ To(D)) = <A, ..., A(K'no(1)), B(), ..., BA'Y,
where Vi’€[k’), V.né['_io(i)]
Ak’ (n=1)+1") = Case n(i) of k(s—D)+r(s€lqol, re[kD: a(¥’, T,(»);
kgo+m (me€[l): x(kg+m,i); (10)
and Ym'€[l’), B(m)=y(i, m");

(iib) Vjellg,),
Vi'e[k’), Vj ellng()]

2@, To(M) = 1@, TH(M) = <AQ), ... A(K'A (7)), BQA), ..., BOD,

where Vi’€[k’), Vne[fg(j)] Ak (n—1)+i’) is of the form (10) [8,()) ~ 90(1)]
and vYm'¢[l’] if j=Il(s—1)+m for some s€[q,], me[l], then

B(m") = Case kq,+m of
nd,(): L,();

n8,07):Na(l (n=1)+ ', ZT();
59y To(j)é nds(T);

(iic) Vs€lgol, Vi€[k],
Vi'€k], ¥ j €ll'n (D]

x(aG, TGY) = 2(a(J", L. (l))) <4 (1) s A(K 1, (D), BQ, ..., BA',
where Vi‘€[k’], Vne[n()] .
A(K' (n—1)+i’) = Case n3,(i) of k(j —-1)+r(] €lqJ, relk]): x(k(q(s)+]')+r i');
 kgAm(mel): a7, To(l(s—D+m); (1D

el
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and Ym'€[l’]
B(m’) = Case k(s—1)+i of

n9y(r): To();
n3o(): N a (! (n=1)+m', ZTo(0):
n90: T.(i)¢ nds (T);

Vi'e[k’], ¥ j ell'ng ()]

2@, TGN = 2@, TL(N) = <4Q), ..., AK'7(D), BO), .., BUD,

where Vi’€[k’], Vne[a(7)] Ak’ (n—1)+i’) is of the form (11) [3,() < 3,(/)], and.
v €[l')B(m =y (k+1g®+j—1, m’).

Now we compute W=W,- g’ W,. The result is (8, 3), the following local tree:
s=1
@ B =<40),..., A(K'k), BQ), ..., B'D, C(L, 1), ..., C(L, K'D),
bQ,,..,.bQ1,rk),..,C,....C(q, k'l), D(g, 1), ..., D(q, V'k)),

where all the symbols in B’ are the same as the corresponding ones under (7),
exept that in (8) and (9) L must be replaced by a(l/’(n—1)+n,s) and a(’(n—1)+
+m’, 0), respectively.

(iia) For each symbol occuring in both W and {(Twu(T )) we get x’(4) from
1(A4) by the following variable transformation:

Vj€clql, Vi€lkl, Vi'€[k], Vme[ll, Ym'€e[l]
x(k(j—=1)+1i, i) « x(j, K (=) +i), x(kg+m, i) < y(K'(m—1)+7"),
¥y, m) «~ y(V(i=D+m’), yk+1(j-1)+m, m’) « x(j, Kk+V(m—-1)+m);
(iib) YO=s=q,, V j €['n]
X (@, 9) =<AQ), ..., A(K'n)),

where Vi’€[k’], Vne[ny] A(k’(n—1)+z) is of the form (9) [9,(i))<3] or (10)
[8,(:) < 9] depending on s=0 or s€[go).

Finally, as it is obvious, we get W’ from W by replacing a(j’, s) by a’(j’, s)
for each 0=s=gq,, j €[l'n,)-

It is now easy to check that (4) is true, so the lemma is proved.

Proof of Lemma 2.7. Let ¢,=0, and for each 0=s=gq, let

t, = <L), ..., L. (0) 3, (k), A)I, D), ..., 1.Ug) 3, (1g)

be an element of L(4)[k,/1(1,g;) with £,(i)eT(4)(1, n,()), t(])ET(A)(l X0
(i€[k], j€llg,]). Construct the alphabets Q and A, the homomorphism »: T(Q2)—~

~DR(A)[K’,I']) and the trees {T [0=s=gq,} as in the proof of Lemma 2.6. It
is clear that any component of A[k, /](z,) depends on at most the same variables
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as the corresponding component of 2[k, /](T,) does. Therefore there exists a homo-
morphism £: R(A)- R such that

E(rlk, ITY) = hlk, 11(t).

Let p:T (Q) —~T(4) be the homomorphism by which u(T,(i))=1() and

y(T (]))—t (j) for every O=s=gq,, ic[k], je[lq,)- Since T is a functor and 7(Q)
is free, the following diagram commutes:

7@ - TDR()[K, 1T
T ITD:[k' r]
() — . TDRIK, I
This implies that for every T€L(Q)[k,!](1, q)
hike, N(Tw(T)) = &(2lk, 11(T)).

Thus, by (4), we get that

e 00 - 3tk 06 = Ak, 1(Ra(T9) - 3 ik, 1(Eu(T) =
= e{ete 1o~ 3 2k 1) oe s (12 37| =

= hik, 1] [Ty_ (To.éi T]] = hlk, 1] [to-éi ts],

what was to be proved.

Abstract

We define an mterestmg subclass of deterministic attributed tree transducers. The importance
of this subclass lies in its nice closure properties with respect to composition. It is proved that a deter-
ministic and linear attributed tree transformation can be composed by any attributed transformation
without leaving the class of attributed transformations. Moreover, the class of linear deterministic
attributed tree transformations is closed under composition. Finally we show that the surface sets
of linear deterministic attributed tree to string transformatlons are the same as the surface sets of
linear deterministic top-down ones. .
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A. JOZSEF UNIVERSITY
ARADI VERTANUK TERE 1.
SZEGED, HUNGARY
H—6720



Linear deterministic attributed transformations 147

References

[1]1 ArNoLD, A. and M. DaucHeT, Theorie des’ magmoides, RAIRO Inform Theor., v. 12, 1978,
pp. 235—257 and v. 13, 1979, pp. 135—154.
[2] BARTHA, M., An algebralc deﬁnmon of attributed transformations, Acta Cybernet to appear.
[3] CHIRICA, L. M and D. F. MARTIN, An order-algebraic definition of Knuthian semantics, Math.
Systems Theory, v. 13, 1979, pp. 1—27.
[4] DAucHET, M., Transductions de foréts, bimorphismes de magmoides, Thése, Univ. de Lille,
1977.
[5] ENGELFRIET, J., Bottom-up and top-down tree transformations — a comparison, Math. Systems
Theory, v. 9, 1975, pp. 198—231.
[6] ENGELFRIET, J., Top-down tree transducers with regular look-ahead, Math. Systems Theory,
v. 10, 1977, pp. 289—303.
[7] ENGELFRIET, J., Tree transducers and syntax—dlrected semantlcs, Memorandum 293, Twente
University of Technology, 1981, (also in: Proc. 7 ¢éme CAAP, Lille, 1982).
[8] ENGELFRIET, J., The formal power of one-visit attribute grammars Acta Inform., v. 16, 1981,
pp. 275—302.
[9] FuLoe, Z., On attributed tree transducers, Acta Cybernet., v. 5, 1981, pp. 261—279.
[10] LiLiN, E., Une généralisation des transducteurs d’états finis d’arbres: les S-transducteurs,
Theése de 3-e cycle, Univ. de Lille, 1978.
[11] PoiGNE, A. and H. Huwic, Généralisation de la theorie des magmoides, 4-e Colloque de Lille
sur les Arbres en Algébre et en Programmation, 1979, pp. 122—133.
[12] Rus, H. and S. SkyuM, k-visit attribute grammars, DAIMI PB—121, Aarhus Univ., 1980.
[13] WriGHT, J, B., J. W. THATCHER, E. G. WAGNER and J. A. GOGUEN, Rational algebraic theories
and fixed-point solutions, 17-th IEEE Symposium on Foundations of Computing, Houston
1976, pp 147—158.

(Received May 21, 1982)



A e B Rlalie (L

i o



On v;-products of automata

By P. DOomOs1* and B. IMREH**

In this paper we introduce a family of compositions and investigate it from
the point of view of isomorphic completeness. Using results concerning well-known
types of compositions, we give necessary and sufficient conditions for a system
of automata to be isomorphically complete with respect to these products.

By an automaton we mean a finite automaton without output. For any non-
void set X let us denote by X* the free monoid generated by X. Furthermore,
denote by X* the free semigroup generated by X. Considering an automaton
A=(X, 4,9), the transition function & can be extended to AXX*—~A4 in the
following way: &(a, 2)=a and &(a, p)=56(8(a, p’), x) for any acd, p=p’x€X*,
where A denotes the empty word of X*. Further on we shall use the notation ap,
for 8(a, p). If there is no danger of confusion then we omit the index A in ap,.
Let M be an arbitrary nonvoid set. Denote by P(M) the set of all subsets of M.

Let A,=(X,, 4,,8,) (t=0, ...,n—1) be a system of automata. Moreover let
X be a finite nonvoid set, ¢ a mapping of Ay X ... X A,_; XX into X, X ... X X,,_; and
y a mapping of {0, ...,n—1} into P({0, ..., n—1}) such that ¢ can be given in
the form

@(agy oes Ay X) = (@o(Aos ey uogs %)y ooy Ppo1(dygy ooy Aoy, X))
where each ¢, (0=t=n-1) is independent of states, which have indices not con-
tained in the set y(¢). We say that A=(X, "]_IIA,,é) is a v;-product of A,
(t=0, ...,n—1) with respect to X, ¢ and y if t];zt)léi (z=0, ...,n—1) and for
any (ao,...,a,,_l)Gt"]—ZlA, and x¢X
8((ag, - ), x) =

= (60(‘103 (Po(am vy Gp_1, X)), ey 6"_1(0"_1, (pn—l(aOa ceey A1, x)))

n—1
For this product we use the notation J] A,(X, ¢, 7).
t=0

It is clear that the v,-product is the same as the quasi-direct product. There-
fore, we consider the case i=1 only. Furthermore, it is interesting to note that
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if n=2,i=1,y(0)={1},y(1)={0} then we obtain the cross product (see [2]) as
a spec1al case of the v, -product. Finally, observe that the v -product is rearrangable,

i.e. changing the order of components of a v;-product ]] A, (X, ¢, y) and choosing

suitable mappings ¢’,y" we get such a v;-product Wthh is isomorphic to the
original one.

Let X be a system of automata. X is called isomorphically complete with re-
spect to the v;-product if any automaton can be embedded isomorphically into
a v;-product of automata from Z. Furthermore, X is called a minimal isomorphically
complete system if X is isomorphically complete and for arbitrary A¢Z the system
IN\({A} is not isomorphically complete.

For any natural number n=1 denote by D,=(X,, {1, ...,n}, d,) the auto-
maton for which X,={x,: 1=r,s=n} and

s if t=r,

8,(t, x,5) = {

for any ¢€{l,...,n} and x€X,.
The following theorem holds for the v;-products if i=1.

t otherwise

Theorem 1. A system X of automata is isomorphically complete with respect
to the v;-product (i=1) if and only if for any natural number n=z=1, there exists
an automaton A€ZX such that D, can be embedded isomorphically into a v;-
product of A with a single factor.

Proof. Theorem 1 can be proved in a similar way as the corresponding state-
ment for the o;-products in [4]. The sufficiency follows from Theorem 2 in [4],
but it is not difficult to see directly. In order to prove the necessity we show that
for any n=1 if D, can be embedded isomorphically into a v;-product of automata
from X then there exists an automaton A€ZX such that D,,, can be embedded

n

it1
the largest integer less than or equal to V.
If n=1 then the statement is obvious. Now let n>1 and assume that D,

isomorphically into a v,-product of A with a single factor, where [ +VrT_l denotes

k
can be embedded isomorphically “into a v-product B= J[ A,(X,, ¢, y) of auto-
=0

mata A,=(X/, A,,6)€X (t=0, ..., k). Let us denote by u such an isomorphism
and for any t¢{l, ..., n} denote by (ay, ..., a,) the image of t under u. We dis-
tinguish two cases depending on the sets y(¢) (+=0,...,k). If y(1)=0 for all
tc{0, ..., k} then B is a quasi-direct product. Since the quasi-direct product can
be considered as a special oz,~+1-product we have that D, can be embedded iso-

morphically into an «;,,-product ]] A,(X,, ¢) of automata from X. From this,

by the proof of Theorem 2 in [4], 1t follows that there exists an automaton A¢ZX
such that D[”, can be embedded isomorphically into an «;,-product of A with

|

a single factor. Since an o;.,-product with a single factor is a v;-product with a
single factor we have proved the statement for this case.
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Now assume that y(f)#0 for some t€{0, ..., k}. By the rearrangability of
v-products, without loss of generality we may suppose that y(0)=0. We show
that D, can be embedded isomorphically into a v;.,-product of automata from
{Ao, ..., A} with at most i+1 factors. If k=i then we are ready. Assume that
k=i. We may suppose that there exist natural numbers rss (1=r,s=n) such
that a,,7#a,, since otherwise D, can be embedded isomorphically into a v;-
product of automata from {A,, ..., A} with k factors. Let y(0)={/jy, ..., Ju}-
By the definition of the v;-product, we have that w=i and

0@y, s A, X)=04(a;j,, .--» a;,,, ¥) for any (a,, ..., a)€ ]]A and x€X,.

We prove that the elements (ay, j,, ..., a;;) (=1, ...,n) are pairwise different.
 Indeed, assume that a,,=a,, and a,,,—a,,, (t =, . ,]w) for some u#v(1=u, v<n)
Then @o(d,j,, ---s Quj> X) =Po(@ojys --os Auj,» X) for any x€X,. Therefore, in the
v;-product B the automaton A, obtams the same input signal in the states a,
and a, for any x€X,. Since p is isomorphism, u>v and a,=a,, thus the
automaton A, goes from the state a,, into the state a,, and from the state a,y
it goes into the state a,, for any x, (¢=1, ..., n). This implies g,,=a,, (t =1, ..., n)
which contradicts our assumption &,,7dy. Therefore, we have that the elements
(@0, ayjy> - arj,) (t=1,...,n) are pairwise different. Now take the following
v,-+1-product C= AOXA“X XA; (X,,¥,9) where for any 1€{0,...,w} $(t)=
={0,1,...,w} and

©old,g, oo r > x) if =0 and there exists 1=r=n
such that by =a,, b;=a,;, (=1,..,w),

©; (s -y ap, x) if 10 and there exists 1=r=n
such that by =a,,, by;=a,;, (s=1,...,w),

otherwise arbitrary input signal from X; if
t=0 and from X; if =0,

lpt(bO’ AR bws x) =

for all (b, ..., b)€EAgXA;,X...XA4;, and x€X,. It is notdifficult to see that the
correspondence 't t—~(ap, G4j;, -..» 4;,) (=1, ...,n) is an isomorphism of D,
into C. Therefore, we have that D, can be embedded isomorphically into a v;,,-
product of automata from {A,, ..., A,} with at most i+1 factors. But a v; .-
product with at most i+1 factors is an a;,;-product and thus, in a similar way
as in the first case, we obtain that D,,,  can be embedded isomorphically into

a vi-product of A, with a single factor for some O=¢=k. This ends the proof of
Theorem 1.

Observe that D,, can be embedded isomorphically into a v,-product of D,
with a single factor for any m=n. Using this fact, by Theorem 1, we get the following

CoroLLARY. There exists no system of automata which is isomorphically
complete with respect to the v;-product (=1) and minimal.

In [1] F. Gécseg has introduced the concepts of the generalized «;-product and
the simulation and characterized the isomorphically and homomorphically complete
systems with respect to them. Further on we shall introduce the concept of the gene-
ralized v;-product and investigate the isomorphically complete systems with respect
to this product and the simulation.
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We say that an automaton A=(X, A, 6) isomorphically simulates B=(Y, B, &)
if there exist one-to-one mappings p:B—~A and 1: Y—X* such that p(6'(, y))=
=6(u(b), 1(»)) for any b€B and y€Y. The following obvious observation holds
for the isomorphic simulation.

Lemma 1. If A can be simulated isomorphically by B and B can be simulated
isomorphically by C then C isomorphically simulates A.

Let A,=(X,, 4,,8) (t=0,...,n—1) be a system of automata. Moreover let
X be a finite nonvoid set, ¢ a mapping of AyX...XA4,_1 XX into Xg" X... XX
and y a mapping of {0, ...,n—1} into P({0, ..., n—1}) such that ¢ can be given
in the form

(g ooy @y, X)=(0o (@0, oo @y_15 X); ooy P (@ps -y Gp1, X))
where each ¢,(0=t=n-1) is independent of states, which have indices not contain-
ed in the set y(r). We say that A:[X, ﬁl A,, 6) is a generalized v;-product of
A, (t=0,..., n—1) with respect to X, ¢ and }t’zlof ly(¢)|=i (¢t =0, ...,n—1) and for any
@@ ---» a"_l)éth A, and x€X 6((ap, --., @y-1), X)=(66(d0> @y, -..s Gy_y, X)); ...

s 6n—l(an—1’ (pn—l(ao’ <o @y, X)))

A system X of automata is called isomorphically S-complete with respect to the
generalized v;-product if any automaton can be simulated isomorphically by a gene-
ralized v;-product of automata from ZX.

Observe that in the definitions of the simulation and the generalized v;-product
all input words are different from the empty word. Therefore, further on, by an
input word we mean a nonempty word. Also the following notation will be used. -
If k,s are integers and ¢ is a natural number then k+s(mod ¢) denotes the least
nonnegative residue of k+s modulo z. . Furthermore, for any n=1 denote by
T,=(T,, {0, ...,n—1}, 8,) the automaton for which T, is the set of all transforma-
tions of {0,...,n—1} and §,(k,t)=t(k) for any k€{0,..,n—1} and t€T,.

Lemma 2. If T, can be simulated isomorphically by a generalized «4-product
k
IT A(X, ¢) then T, can be simulated isomorphically by A; for some j€{0, ..., k}.
t=90

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give
another proof. Obviously it is enough to prove the statement for the generalized
ay-product of two factors. Indeed, assume that T, can be simulated isomorphically
by the generalized oy-product AXB(X, ¢) under p and 1. Let us denote by
(a,, b)) the image of ¢ under pu (t=0,...,n—1). If g,=a, for all te{l,...,n—1}
then the elements b, (t =0, ..., n—1) are pairwise different. Now define the mapping
7’ in the following way: for any 1, T, t'(t)=¢i(dy, y1)-.-01(ay, y5) if Tt)=y1...ps.
Let us denote by u’ the mapping determined by up'(¢)=b, (¢=0,...,n—1). It is
not difficult to see that B isomorphically simulates T, under p’ and 1’. Now
assume that there exist natural numbers r##s (0=r, s=n-1) such that a,>a;.
In this case we show that the states a, (t=0,...,n—1) are pairwise different.
Suppose that a,=a, for some u#v (0=u,v=n—1). Let us denote by ¢;; the
element of T, for which #,;(i))=j and f;(k)=k if k=i (k=0,1,...,n—1) for all
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i,j (0=i,j=n—1). Now let w¢c{0,...,n—1} be arbitrary. Then ¢, (#)=w and
t.(v)=v. By isomorphic simulation, (a,,b,)t(¢,.)=(a.,b,) and (a,,b,)t(t,.)=
=(a,, b,). Let 1(t,,)=Y1-.-Vm- Then a,@4(y1)...@o(Ym)=a,, and a,@o(y1)...0(ym) =
=aq,. Therefore, by a,=a,, we obtain a,=a,. Since w was arbitrary we got
that a,=a, for all t€{0,...,n—1} which contradicts our assumption a,#a,.
Now we have that the states a, (t=0,...,n—1) are pairwise different. In this
case it is not difficult to see that A isomorphically simulates T, under x” and 7’
where p'(ty=a, (¢=0, ...,n—1) and forany 2,€T, 7' (t)=0¢(y1)...0o(ys) if 7(t,)=
=Y1- Vs

Lemma 3. If T, can be simulated isomorphically by a generalized v,-product
]] A,(X, ¢, y) then T, can be simulated by a generalized v,-product ]] B,(X, ¢’, v")
where r=k,B,c{A,, ..., A;} and y(1)={t—1 (mod (r+1))} for any 16{0 , T}

Proof. We proceed by induction on the number of components of the generalized
v,-product. If k=0 then the statement is obvious. Now let k>0 and assume that
the statement is valid for any / less than k. Moreover, suppose that T, can be

simulated isomorphically by a generalized v;-product ]] A,(X, @, 7). Define the

binary relation ¢ on the set {0, ..., k} as follows: lQ_] 1f and only if i=j or
y(@)={j} or y(j)={i} for any i,j€{0, ..., k}. Denote by ¢ the transitive closure
of o. Then § is an equivalence relation on {0, ..., k}. Depending on @, we shall
distinguish three cases.

First assume that the partition induced by ¢ has at least two blocks. Let us
denote by §(j) the block containing j. By the rearrangability of the v;-product,
we may assume that 9(0)={0, ..., m—1}. From this, using the fact that (J y(s)&

seé(t)
€ 6(¢) holds for any 1¢{0, ..., k—1}, we obtain that ]] A, (X, @, y) is isomorphic

to a quasi-direct product of two automata C; and. C2 where C, is a generalized
v-product of A,,...,A,_, and C, is a generalized v,-product of A, ..., A,.
Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the
statement is valid.

Now let us suppose that the partition induced by ¢ has one block only and

k
there exists an u€{0, ..., k} with u¢ U y(¢). By the rearrangability of v;-product,

we may suppose that u=k. Then observe that ]] A(X, ¢,y) is isomorphic to

a generalized oy-product of two automata C, and Ak where C, is a generalized
v;-product of A,, ..., A,_,. From this, by Lemma 1, Lemma 2 and induction
hypothesis, the statement follows.

Finally, assume that the partition induced by ¢ has one block only and U (@)=

={0, ..., k}. Consider the mapping f determined as follows: for any te{O }
f)y=j lf and only if j€y(r). By the definition of § and our assumption on o,
it can be seen that f is a cyclic permutation of the set {0, ..., k}. Now rearrange



154 P. Domgsi and B. Imreh

k K

ITAX, ¢,y) in the form [] Af(ko-)t—l(X, ¢’, 7). Then, by the rearrangability

t=0 =0

of v;-product and Lemma 1, we obtain that T, can be simulated isomorphically
K

by [T Af(ls;t—l(X, ¢’,7"). On the other hand, it is not difficult to see that
=0 .

k
IT Af&;,-l(X, ¢’, 7)) satisfies the condition of our statement. This ends the proof of
t=0
Lemma 3.
Now we are ready to study the generalized v,-product. We have

Theorem 2. A system X of automata is isomorphically S-complete with
respect to the generalized v,-product if and only if one of the following three con-
ditions is satisfied by X: :

(1) for any natural number n=1 there exists an automaton in X having
n different states q, (t— n—1) and input words g, (¢t =0, ...,n—1) such that
aq:= at+1(modn) (t_ _1)

(2) Z contains an automaton which has two different states a, b and mput
words p, g, r such that ap=br=a and aq=bp=b,

(3) there exists an automaton in X which has two different states a,b and
input words p, g, r such that ap=bp, apg=bpg=a and ar=b.

Proof. In order to prove the sufficiency of conditions (1)—(3) we use the follow-
ing observation.

For any automaton A=(X, 4,d), A can be simulated isomorphically by
T, with nz=max (2, |4[). Therefore, by Lemma 1, if for any n=2 the automaton
T, can be simulated isomorphically by a generalized v,-product of automata from
XY then X isisomorphically S-complete with respect to the generalized v,-product.
On the other hand, take the following elements 1,,?, and ¢; of T,

t,(k) = k+1(mod n) (k=0, ...,n—1),
100 =1, (1) =0, t,(k) =k (k=2,...,n—1),
10 =t1,(1) =0 and t,(k) =k (k=2,...,n—1).

It can be proved (see [3]) that the mappings ¢, ¢,, ¢; generate the complete trans-
formation semigroup over the set {0,...,n—1}. Therefore, the automaton T,
can be simulated isomorphically by the automaton T,=({#, t2, t:}, {0, ..., n—1}, 5;)
where 8,=0,l(,..,n-1)x{ts, 12,15y FTOM this we obtain that if for any n>2 the
automaton T, can be simulated isomorphically by a generalized v,-product of auto-
mata from E then Z is isomorphically S-complete with respect to the generalized
v,-product.

First suppose that X satisfies (1). Then it is not difficult to see that for any
automaton A there exists an automaton B€ X such that A can be simulated
isomorphically by a generalized v,-product of B with a single factor.

Now assume that X satisfies (2) by A€ 2. Let n=5 be arbitrary and take the
generalized v,-product A"(X, ¢, y) where

X={u:1=i<n}U
Ufp: 0=si<njU{x: l<i<njU{y: 1=i<n—1}U{o, x, y, z, w}
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and the mappings y and ¢ are defined in the following way: forany 7€ {0, ..., n—1}
y(¢) = t—1(mod n),
g if t=i,
@i(a, u) = P, @b, ) = {p otherwise (i=1,...,n—1),

r- if t=1i, r if 0<t=<i,

ouan) = o/b.0) =]

p otherwise, p otherwise (i=0,...,n—1),

r if i=tr=n-1,
¢:(a,x) = p, @b, x) = {p otherwise i=2...,n=1),
eoa, y)=p, @b, y) =4,
r if 1=st<i, i#2,
¢:(a, ) =p, @b, y)= {p otherwise (i=1,...,n—2 and t=1)
r if 1=t=n-2,
(9, 0) = P, V(p'(b’ v) = {p otherwise,
@o(a,x) =p, @o(b,x)=r, @a,x)=¢/b,x)=p (=1,
@o(a,2) =p, @o(b,2)=r, ¢1(@a,2)=7r, @i(b,2)=p,
02(a,2) = @o(b, 2) =p, ¢, (a,2)=p, ¢(b2)=71 (t>2),
@o(a, W) =g, @o(b,w)=p, @a,w)=p, @ bw)y=r (t=1),
00(a, ) =g, @o(b, ) =0, (a,y)=,(b,y)=p (=1).
Take the mappings
0 —~(b,a,...,a),
[
n-1-(,a,...,b),
L~ Gyoa,s
T by = Us oo Uy 1 Y1ZUy oo Uy YXolg ... Uy _q0g XUy ... Upy_1 VX5,

t3 - u3 eae u,,._lylzul e u,,_lw,
where

G1= Uy ... Up—oUp_1Uy ... Uy 10Y,
Gy = Uy ... Up—3UpaVgly ... Up_2Xp—1YVp—2Up-1Ds
G = Uy ... Up_ gV, 3V Xp_1 XUy 1Yy . Up 3 Xy olUp—1 Vn—3Xp—1Up=olpn—1)s
G = Uy .. Up—j—1Up—iVoXp—itoln—i4g e Upo1 XXy j1aUpy—iro ... Up—1
Up oo Uy i Xp—jrUp—ig2 - un—lynv—ixn—i+2un—i+1 R
if 4=i<n—1 and

. qn—l = le2u4 s un_lxx,1u3 P u"_lvox3u2 “ee un_lyxz-
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Now we show that T, can be simulated isomorphically by A"(X, ¢,7) under
u and t. The validity of the equations  u(6,(J, 1)) = a(u(/), (1)) (1=2,3)
(j=0, ...,n—1) can be checked by a simple computation.

Introduce the following notation

b if j=t, j=n—i—1 or t=1, j>n—i-1
ufd = or t=n—i—-1, t=>}],
a otherwise,

l§i<n—2, 0=t=n—1 and 0=j=n—1. It can be proved by induction on i that
p(N G qi=@, ..., u)_y) for any j€{0,..,n—1} and 1=i<n—2. On the
other hand (ul3- 3) 7}t 1) Y, A 1—/1(]+1 (mod n)) for any j€{0,...,n—1}
Therefore, p(6,(j, )= u( +1(m0dn))—(u‘" RPN 7Yt )T Y e N
-—6A..(p( 7), 1(ty)) for any j€{0,...,n—1}. This ends the proof of the sufficiency
of condition (2).

Now suppose that X satisfies (3) by A<Z. Then there exist states a=b of
A and input words p, q,r such that ap=bp, apg=bpg=a and ar=b>b. Observe
that it is enough to prove the sufficiency of (3) for the case a¢ {ap, bp}. Indeed,
assume that ac¢ {ap, bp}. We distinguish two cases. If be{ap, bp} then p is a per-
mutation of the set {g, b} and thus the automaton A has the property required
in (2). If bé¢{ap, bp} then introducing the notations a'=b, b'=a, p’=p, q’'=¢r,
r'=pq we obtain that &' =b’, a'p’=b’p’, a'p'q=b'p’q¢=d, a'r'=b" and a'¢
¢{a’p’, b’p’}. Therefore, without loss of generality we may assume that a ¢ {ap, bp}.
Now let. n=6 be arbitrary and take the generalized v,-product A"(X, ¢, y) where
X={x,, ..., xs} and the mappings y, ¢ are defined in the following way: for any

te{0, ....n—1}
y(?) = {—1(mod n)}
o.(a, x)) =pq, @b, x))=r,
p if t=1, {p if t=2,
¢i(a, x) = {Pqp otherwise, 710 %) = rp otherwise,
@.(ap, x3) = ¢, ¢,(bp, X3) = qr,
pqg if t=1,
¢(a %) = p,  ¢u(b, xg) = { otherwise,
qp ]f b # ap’ r if t = 1,
o, x5) = {p if b=ap, @@PX) =4 ¢(bpx)= {qr i o1,
b {q if t=2,
q’t(aa xﬁ) =D (pt( ’ xs) - P otherwise,
{pq if b ap, b {pq if b= ap,
:(ap, xg) = o,(b, x;) otherwise, (P_'( P Xo) = ¢.(b, x¢) otherwise,
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P if bs#ap, t=23,

_Jap if b#ap, t#3,

¢:(a, x) = rp if b=ap, t=3,
grp if b=ap, t#3

r if t=2,

oan ) =g ebpr={ o

p if 1=3 gp if 1=3,

ou(a, %) = | > abx={p if 1=4
' pgp otherwise, rp otherwise,
qrp if bs#ap, t=4,
_ipr if bsxap, t=35,
P X0 =165, x) if b= ap,
an arbitrary input word otherwise,
(qrp if b=ap, t=4,
_lp if b=ap, t=5,
PP %) =106, %) if b= ap,
an arbitrary input word otherwise,

and in all other cases ¢, is defined arbitrarily. Take the following mappings

0 —-(,a,..,a L~ X,
uro T2ty — XgX5Xg X Xg X X1 %,
n—1-(a,..,a,b) ty = XpXa X372,

Distinguishing the cases b=ap and bs#ap it can be seen easily that
p(6,()), 1)=08s(u(), ©(1;)) for any j€{0,...,n—1} and [€{1,2,3} which yields
the sufficiency of (3). '

In order to prove the necessity assume that none of conditions (1)—(3) is
satisfied by X~ and X is isomorphically S-complete with respect to the generalized
v;-product. Since Z does not satisfy (1) there exists a natural number m=>2 such
that Z does not contain an automaton having the property required in (1) for any

m
n=m. Let n>m(2) be an arbitrary fixed natural number. By the assumption

on the isomorphic S-completeness of X, there exists a generalized v,-product
k=1

B= ]I A(X, ¢,y) of automata from X such that T, can be simulated isomor-
t

=0
phically by B under suitable ¢ and 7. By Lemma 3, we may suppose that y(t)=
={t—1(mod k)} (¢t=0,...,k—1). Let us denote by (g, ...,a,-;) the image
of I under p for any [/€{0,...,n—1}. Consider an arbitrary nonvoid subset
k—1
r={j,...,j,} of the set {0,...,k—1}. Define a relation n, on [] A, in the
. ’ . t=0
following way: (do, ..., @—)7r(o, ..., b2y if -and only if @ _(m;ymoaty=

3 Acta Cybernetica VI/2
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—b =@+ umodiy =1, ..., @), (s=1, ...,r) for any (g, ..., @_1), (bg, --.. by _,)€
k-1
€ ]] A,. Ttis clear that r is an equivalence relation on [ A4,. Now let us de-

1=0
note by B the set {(ay, ..., di_1): 0=I/=n—1} and let a,=n;N(BXB).
We shall show that (a,, ..., @._)@r (b, ..., by_,) implies (g, .. > G i)y

(by, ..., by_)t(t) for any teT, and (ay, ..., a_1), (bg, -.-s Dy 1)6]] A,, where

I’'={j.+t()|(mod k): 1 =s=r}. Indeed, assume that (a,, ..., a;_,) nr(bo, ey bi_1)
and let t€T, be arbitrary. Since T, can be simulated isomorphlcally by B there
exist t, t;, ;€ 7T, such that

@, vy A1) T(DT(H) = (byy ..., DT (D) T(11),
(aOs veey ak—l)r(t)r(ll)r(tz) = (boa sees bk—l),
(by, s DT (DT (1D T(t3) = (ag, ..., Ax-1)

Let t(t)=x;..xj, t(t})=X;41...-Xj14» T(t}=x1...y, and 1(t)=2,...z,,. Introduce
the following notatlons

9P = 0@ 1(moarys X)) (¢ =0, ..., k=1),
g = ‘Px(at—l(modk)q{rl) 2modk) - A 1—1(modry> X)) (=0, ..., k—1), 2=1=j+u),
7P = 0, (b —1imoary> X1) (=0, ..., k—1),
P = ‘Pr(bx—l(modk)‘h:—l(modk) ql(g)lt—l(modk), x) (t=0,.., k=1, @Q=l=j+u),
Pu = (pt(at—l(modk)ql(})—l(modk) ‘1§'l+)m—1(modk)’ w @=0,..,k=1),
D = (pt(ar—l(modk)ql(tl)—l(modk) q}?u:—l(modk)l’n—l(modk) <os Pi-1t—1(mod k) > »
(t=0,..,k~-1), 2=Il=v),
Fu= (pt(bt—l(modk)q{tz)—l(modk) q,(‘2+)u:—1(modk), zp) (=0,.,k=-1),
P = q,t(bt'-l(modk)qg)—l(modk) qj('z-!?ut-l(mod KT 1e—1(modk) ++- T1~1~1(mod k) > z)
(t=0,...,k=1), @=I=w).
Then, by the above equations, we have that for any #¢{0, ..., k—1}

(l) atq{}) Q}qu = btql(z) qﬁ?un
(i) aqfd ... @uPy - Pu = by,
(iii) bl ... gDl P = 4.
Now let us denote by (a, ..., af2,), (b, ..., b)) the states (ap, ..., @ _,),
(bys ---s b)) and (ag", ey q,ﬁ'll), ®8, ... “)1) the states (ag, ..., d,_1)X;...X;,
(bgy -os By )X x; (=1, .., ), respectlvely To prove our statemen‘g we show that
@, ...r @) Trlbg, ..., bpy) implies (af?, ..., a )7, (b, ..., 62) for any

0<1S], where I';= {Js+1(mod k):1=s=r}. We proceed by induction on .
@®, ...,a®pnr, (b“” . b{®,) obviously holds. Now assume that our statement
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has been proved for i—1 (1=i=j). Then from (a{~Y, ..., af"P)n,,_ (D, ...
bfi-D) it follows that

(i~1) —1) _ o
aJ;—(2)+I+| —1(mod k) ™™ bj:—(i")+l+i—1(modk) (l - 1, “ery (gl))s (S - 19 sersy _7‘).

Therefore, by the definition of ¢, ¥ we have that
qii,—(;‘)+l+i—-1(modk) = qij,—-(;")+l+|'—1(modk) (l =2,.., (34")+1), (=1,

and thus @i e /4 imedry =B 411 imoary ([ =1, ooy @) =1), 5=1, ..., 7).

Now, 1f & imoary=bPvimoary for all 1=s=r then we get that
@, ..., aP ) (b, ..., b)) and so we are ready. In the opposite case there
exists an index se{l ,r} such that @, ;ax)#bi? ) imoary. Let us denote by
f the index Js+z(mod k). Then a");éb") From this, by q(l)—q(z), it follows
that afi~ 1)¢b(' Y and afi~ 1)q(“¢b(' 1)q(l) Now let A=min (j+u—1, ™-1).
Then by af @ +,(m°dk)_bf_(g.) + imod k) (I 1,..,(~—1), we have that ¢, =

P (=1, —1) Therefore ¥y q(l),,f g% s...98%,;. Now we show
that aq,.. q“) =b g ,...q!Y,. Indeed, if h=i+u—i then we get the
required equality from ). If k=(")—1 then let us consider the sets M, (I=0, ..., k)
defined by  My={af?, b} and M,=M,_ g%, (=1, ..., k). If [M}|=1 for some
le{l, ..., h} then (l)q(l)lf q(l)lf_b(l) PrseaPy and thus a(')q(l)lf -4f =
=b{ (1)1, gy Therefore, it is enough to consider the case for which |M)|=2
for all 1e{0,....,h}. If M,=M, for some O0=g<I/=h then M,p=M, where
=4 1s-. q,+, ;- But in thrs case it can be seen easily that the automaton A,
has the property required in (2) which is a contradiction. Now consider the case for
which [My|=2 forall /€{0, ..., A} and the sets M, (=0, ..., h) are pairwise diﬁ'er-

ent. Itis not difficult to see that from (ii) and (iii) it follows that for any a, b¢ U M,
there exists an mput word p of A, with ap=b. From this, by the deﬁnltlon m,

om
has (§) pairwise different subsets of two elements which is a contradiction. There-
fore, we have proved that af?q{:,..q% =0 g c..q%,,. In this case, by
@, (n) (iii), it can be seen eas11y that the automaton A, with the states af="), b" D
has the property requlred in (3) which i 1s a contradlctlon So we get a contradlctlon
from the assumption @$, i(moar) 0Pt itmeary for some se{l, ... r}. _Therefore,
}s+z(modk)_b}s+l(modk) fOI‘ all SE{I r} and thus (a(‘) . (l) 1) nl‘ (bé‘)’ cy bl?-)-l)'
From this, by i=j we obtain that (ao, v QX1 X nrj(bo,. .,bk_l)xl...xj ie.
(@o, ..os ax_)T(@) 7 (byy ..., br_)t(t). On the other hand (a9, --.r @ _)T(2),
(by, ..., by_y)7(1)€B and thus (@5 s )T (@) T (by, ..., by_y)7(t) Which ends the
proof of the statement.

we obtain that =m’<m. Thus we got that a set with cardinality m’(<m)

Since n>m®) there exists a subset ref{o,...,k—1} such that 7ys=A4pg,
where 4 B denotes the identity relation on B. Therefore the set C={I":TC<
{0, ..., k—1}, I'sp, mr~Ag} is nonempty. Then let us denote by I'={j,.. A

such an element of C for which |I'| is maximal. Since #i.#=Ap there exist us=
#v€{0, ..., n—1} with p(u)7rpu(v). Consider the element t,€ T, defined by ¢,(u)=v,
tw=u and n()=! if 1€{0,...,n—I\{u, v}. By the isomorphic simulation,

3*
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we have that p(u)(t,)=p), p@)r(@t)=p@) and p()r(r)=u(l) if 1¢{0,...,n—1}\
\{#, v}. On the other hand u(u)7 pu(v) and thus ;(u)t(t) 7y p(v)r(t,), where
I'={j,+]x(t)|(mod k): 1=s=r}. Therefore, p@)ar u(w). It is clear that the
mapping B,:t—~t+jt(t)|(mod k) (¢=0,...,k—1) is a permutation of the set
{0, ..., k—1} and thus |[|=|I'|. By the maximality of |I'| we have that I"CTI
and thus I'=I". This means that the mapping B, fixes the set I', i.e. (=T,
where B,(I') denotes the set {f,(t):z¢I'}. On tke other hand it is not difficult to
see that B, fixes a subset M of the set {0, ..., k—1} if and only if

M = {i,i+|[t(t)|(mod k), ..., i+(f— D]z (t,)|(mod k)}

for some i€{0, 1, ..., g.c.d. (k, {t(1,)[)— 1} or M is equal to an union of such sets,
where g.c.d. (k, |‘t(t1)|) denotes the greatest common divisor of the numbers k, |t(2,)]
and f=k/g.c.d (k, [t¢(t)]). Furthermore, it is clear that the considered sets m;=
={i, i+ |1(tp)|(mod k), ..., i+ (f—1)|z(z,)|(mod k)} form a partition of {0, ..., k— 1}

'Thus assume that I'= U m;,.. Now consider the set B\ {u(u), u(v)}. Since n=3

there exists an element wE{O ., n—1} such that p(w)e B\ {u(v), u(v)}. Let us
denote by - ¢, a cyclic permutatlon from T, with #(@)=v and t,(v)=w. By the
isomorphic simulation we have that pu(u)t(t))=p() and p)r(t;)=p(w). On the
other hand pu(u)7; u(v). Therefore, u(u)t(ty) 7 p(v)r(t) where I'"={j .+ |t(t)]
(mod k): 1=s=r}. Since the mapping B,: t—~t+|t(ty)|(mod k) (¢=0,...,k—1)
is a permutation of {0, ..., k—1} we obtain that |I'|=[I""|. Now we distinguish
two cases.

First assume that I'=I". Then it is not difficult to see that u(u)7, u(/) holds
for any I¢{0, ..., n—1} which contradicts the maximality of [I].

Now assume that I's¢I’. Observe that I''= U Bum;) and  B.(my)=

=, 4 |e(ia) | (modg,c.d. Gk, [e(rpp)- L herefore, from r\=|r l and I'=#TI” it follows that
there exists an index j¢{0, ..., g.c.d. (k [t(t)])—1} with m;N\ =@ and m; &I
On the other hand p(v)nr,p(w) and thus p(v)t(t)7r- u(w)r(tl) where I'” ﬁl(F ).
By u@®rt(t)=un) and p(w)r(tl) u(w) we obtain that up(u)7,. p(w). Since
B, fixes the sets m; (i=0, ..., g.c.d. (k, |t(;)[)—1) we have that m;STI'”. Then
Jje€r’ and jer” and thus

Qi (P)+1mod k) = Frj— (PV+I(mod k) I=1,..,E)
Ay @y +imod k) = Aujmry+imoary (=1, ..., (F)).

From this it follows that je¢I' which is a contradiction. This ends the proof of the
necessity.
The next theorem holds for the generalized v;-product if i>1.

Theorem 3. A system X of automata is isomorphically S-complete with respect
to the generalized v;-product (i>1) if and only if X contains an automaton which
has two different states a,b and input words p, g such that ap=b and bg=a.

Proof. The necessity is obvious. Conversely, assume that X satisfies the con-
dition of Theorem 3 by A. Let n=3 be arbitrary and take the generalized v,-product
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AYX, »,y) where X={x,...,xs} and the mappings 7, ¢ are defined in the
following way: for any t€{0,...,n—1 .
(0 = {t, t—1(mod n)},
¢.(a, a, x;) = pq, ¢.(a, b, x;) = g, ¢,(b, a, x;) = p, .
@o(a, a, X2) = @o(b, a, x2) = p, 9o(a, b, x2) = g, ¢:1(a, a, x2) = pg, ¢1(a, b, x;) = q,

b {pq if v=a,
(pl( » Ay x2) =D (pt(ua v, xZ) - qp if v = b, (t — 2, s n—l),
pqg if v=a,

<Pr(”’”’x3)={qp if v=b, (t=0,1),

p if v=a, u=5s,
¢, (U, v, x5) =\pq if v=a, u=a,
gp if v#2a (#=2,..,n—1)
®o(a, a, X)) = @o(b, a, X)) = pg, @o(a, b, x0) = gp, @o(b, b, xy) = ¢,
{pq if v=a,
¢t(u, v, X4)_ qp if 1)=b, (t= 1,.--,”-1),
pq if v=a,
gp if v=b, (t=0,1),
g if u=v=25,
o (u,v,x) =1gqp if u=a, v=>b,
pq if v=a (=2,..,n-1),
®o(a, a, xg) = @o(b, a, Xg) = P, @o(a, b, x¢) = qp,
@1(a, a, xg) = ¢1(b, a, x¢) = pq, ¢1(a, b, x5) = g,
pqg if v=aq,
gp if v=b, (¢=2,...,n—1).

o, (u, v, x;5) = {

(1, v, Xg) = {

In the remaining cases @,(u, v, x;) is an arbitrary input word from {p, g}. Now
consider the mappings:
0 —-(,a,...,a), ty > Xy,
p: v —>(a,b,...,0q), t:ty—>xx873x,.x;,
: ty > Xg X8 3 x, X5.
n—1-(a,a,..., b)),

It is not difficult to see that the automaton T, can be simulated isomorbhically by
A"(X, ¢,7) under u and 7.
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Decomposition results concerning K-visit attributed
tree transducers

By Z. FOLOP

The concept of attributed tree transducer was introduced in [1], [4] and [6].
On the other hand, the 1-visit, pure K-visit and simple K-visit classes of attributed
grammars were defined in [3] and [5]. In this paper, we formulate these properties
for deterministic attributed tree transducers defined in [6] and prove some de-
composition results. Namely, we show that each tree transformation induced by a
pure K-visit attributed tree transducer can be induced by a bottom-up tree transdu-
cer followed by an I-visit attributed tree transducer. Here, the bottom-up tree trans-
ducer can be substituted by a top-down one. Moreover, each tree transforma-
tion induced by a simple K-visit attributed tree transducer can be induced by a
deterministic bottom-up tree transducer followed by an I-visit attributed tree trans-
ducer.

1. Notions and notations

By a type we mean a finite set F of the form F= |J F, where the sets F,

are pairwise disjoint and F,=0.

For an arbitrary type. F and set S the set of trees over S of type F is the
smallest set T(S) satisfying:

(i) F,USESTKS),

@) f(p1, ..., )ETH(S) whenever f€F,, py,....,0,€T(S) (n=0). If S=0
then Tg(S) is written TFg.

The set of all positive integers is denoted by N. Let N* denote the free monoid
generated by N, with identity A. _

For a tree p(€T(S)) the depth (dp (p)), root (root (p)), the set of subtrees
(sub (p)) of p and paths (path (p)) of p as a subset of N* are defined as follows:

() dp (p)=0, sub (p)={p}, root (p)=p, path (p)={A} if peF,US,

(i) dp (p)=1+max {dp (py|1 =i =n}, root (p)=£, sub (p)={p}U(U(sub (p)|
1=i=n)), path (p)={1}U{iv|l =i =n, vepath (p)} if p=f(py, ..., p,) (1=0, fE F)).
Subtrees of height 0 of a tree p(€TH(S)) are called leaves of p.
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For each p(eTg(S)), w(€path(p)) there is a corresponding label Ib,(w)
(€FUS) and a subtree str,(w) (€sub(p)) in p which are defined by induction
on the length of w:

(i) 1b,(w)=root (p), str,(w)=p if w=J, :

(i) Ib,(w)=lb,, (v), str,(w)=str,, (v) if w=iv, p=f(ps, ..., ), 1=i=n.

In the rest of this paper, F, G and H always mean types, moreover, the set of
auxiliary variables Z={z,, z, ...} and its subsets Z,={z,, ..., z,} (n=0,1,..)
are kept fixed. Observe that Z,=0. Let n=0 and peTy(Z,). Substituting the
elements s,,...,s, of aset S for z,..,z, in p, respectively, we have another
tree, which is in Tx(S) and denoted by p(s,, ...,s,). There is a distinguished
subset Tx(Z,) of Tx(Z,) defined as follows: pcTp(Z,) if and only if each z
(1=i=n) appears in p exactly once.

We now turn to the definition of tree transducers. The terminology used here
follows [2].

Subsets of TpX T are called tree transformations. The domain of a tree trans-
formation (< Ty X T) is denoted by dom 7 and defined by dom t={p€ T¥|(p, g) €
for some g€Tg;). The composition 7,01, of the tree transformations 7,(S T X Tg)
and 1,(CSTeXTy) is defined by t0t.={(p, @l(p, r)€7,, (r,9) €1, for some r}.
If 4, and %, are classes of tree transformations then their composition %,0%,
is the class %,0%,= {1,07,|t,€%, T.€%,}.

By a bottom-up tree transducer we mean a system A=(F, 4, G, A’, P) where
A is a nonempty finite set, the set of states, 4'(& A4) is the set of final states, moreover,
P is a finite set of rewriting rules of the form f(a,z,, ..., a,z;) ~aq where k=0,
fEF,, a, a, ..., aq,€A, g€ Te(Z,). A is said to be deterministic if different rules in
P have different left sides. P can be used to define a binary relation = on the

set Te(AXTg). The reflexive, transitive closure of = is denoted by :=> and

called derivation. The exact definition can be found in [2]. The tree transformation
induced by A is a relation 1,(STpXT;) defined by

74 = {(p, ‘q‘)lp%aq for some a(€4)}.

A top-down tree transducer is again a system A=(F, 4,G, 4’, P) which
differs from the bottom-up one only in the form of the rewriting rules. Here,
P is a finite set of rules of the form af(zy, ..., z) ~q(a,z;, ..., a;z;) where k, =0,
fE€F,, a,a,...,4€4, 1=i, ..., ii=k,qeT¢(Z). Moreover, A’ is called the set
of initial states. The relation = can now be defined on the set T5(4X Tp) and

its reflexive, transitive closure is again denoted by % (c.f.[2]). The tree transforma-
tion induced by ‘A is a relation 1,(STXT;) defined by ‘

7, = {(p, q)lap%:» g for some a(€4’)}.

The following concept of attributed tree transducer was defined in [6]. We repeat
this definition, . with: a $lightly different formalism, because this new orne seems to be
simpler. Moreover, we allow not only the completely defined but the partially
defined case as well. - ¢ '
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By a deterministic attributed tree transducer, or shortly DATT, we mean a
system A=(F, 4, G, a,, P, rt) defined as follows:

(a) A is a finite set, the set of attributes, which is the union of the disjoint sets
A, and A; where A, is called the set of synthesized attributes, A; is called the
set of inherited attributes;

(b) ap€ A4s;

(c) rtis a partial mapping from A4; to T;;

(d) P is a finite set of rewriting rules of the form

af(zl,-'-,Zk)“le-(alzjl,‘--,azzj,) ¢))

where k, =0, fcFy, GeT4(Z), acd,, 0=j, ..., ji=k, a,€A; if j,=0 and a,€4,
if 1=j,=k (r=1,...,1) aswell as rules of the form '

a(Zjaf)‘_q(alzjla”'s atzj,) " (2)

where feF, for some k(=1), I=0, acd;, 1=j=k, §cTs(Z), 0=}, ..., =k
and a, is the same as above (r=1,...,1). Any two different rules of P are re-
quired to have different left sides.

From now on, for the sake of convenience we shall use the following notation
for each element x of the set NU {0}

x if x€EN
{l if x=0.

Let pcTr. We can define the relation <= on the set Tq(A4Xpath(p))
in the following way. For g, r(€T¢(4Xpath (p)) 9= r if r is obtained from

g by substituting the tree g((a;, vy), ..., (@, v;)) for sorne leaf (a, w)(€ A4 X path (p))
of g if either the condition (a) or (b) holds

(@ @O acd,,
(i) b, (w)=f(€F, for some k=0),
(iti) the rule (1) isin P,
Giv) o.=wj, (r=1,...,D);

(b) (i) aeAi’
‘ (i) w=yj for some j(€N),
(iii) 1b,()=f(€F, for some k=1),
(iv) the rule 2)isin P,
v ov=v, (r=1,...,D.
Observe that a leaf of g which is in A;X {A} can never be substituted because,

for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation
<=: concerning rt”’ which contains = in the following manner: qge=r
b,

X =

concerning rt if either ¢ <=__ r orris obtalned from ¢ by substituting rt(a)
(if it exists) for a leaf (a, l)(EA X {A}) of g. Let the n-th power, trans1t1ve closure,
reflexive, transitive closure of == be denoted by c: i <=+_ c;—, respectively,

p,A
and similarly for the relation <=r concerning rt. We can now define the tree



166 Z. Filop

transformation 7,(S Ty x T;) induced by A in the following way
a = {(2; Pl@0, ) C*T g concerning rt}.
P

An example for a DATT can be found in [6]. The relation c% is called
ps
derivation. The length It (¢) of a derivation a=q<=*7r is defined as the integer n
Es

for which ¢ c% r.

ps

In the rest of this paper, by a DATT we always mean a noncircular DATT
(see [6)). '

Before going on, we make an observation which will often be used without
reference. Let p€Ty, wepath(p), [=0, g€T:(Z), acA,, a,...,aq€A; and let
str,(w) be denoted by p,.

Suppose that

(a, W) == q((a1, W). ..., (@1, W)) ©)
and there is no step in (3), in which, a leaf in 4;X {w} is substituted. Then

(a, 1) == q((@1, ), ---> (@, )

and the converse also holds.

The classes of all tree transformations induced by top-down tree transducers,
(deterministic) bottom-up tree transducers, deterministic attributed tree transducers
are denoted by 7, (2)%B, 2, respectively.

2. K -visit attributed tree transducers

Let A(=(F, 4, G, ay, P, rt)) be a DATT and let K(z=1) be an integer.

By a partition of 4 we mean a sequence ((I;, Sy), ..., (J;, S)) where I; (S))
are pairwise disjoint subsets of A; (4,) whose union is A; (4,). Let @x(A)
denote the set of all partitions of A with /=K.

Now let f¢ F, (k=0), €€ Px(4) with e'=((Ii, S, ..., (I}, §§)) (=0, 1, ..., k).
The oriented graph D (e’ e, ..., €") is defined as follows. Its nodes are the symbols
1}, 8t (j=1,.., 1) and the symbols I, S} (i=1,...,k, j=1,...,1). Edges are
oriented for each

@) j=1, ..., 1) from I} to S%;

@) j(=1, ..., ,—1) from S} to I},;

i) i(=1, ..., k), j(=1, ..., ) from I} to S%;

(v) i(=1, ..., k), j(=1, ..., ;-1) from Si to Iiyy;

W) j(=1, ..., L), a(€S) from X}s to S} ifthere is a rule af(z, ..., z)~
~g(ayz;,, ..., qz;)) in P for which a,cX/s under some s(=1,...,0),r(=1, .., 1),
Xe{l, S}; ]

i) i(=1, ..., k), j(=1, ..., ), a(eI}) from X, to I; if there is a rule
alz;, ) ~q(ayz;,, ..., ayz;) in P with a,€X}s under some s,r, X defined as in (v).
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The graph D,(e% ¢!, ..., ¢¥) corresponds to the concept of partition graph for
a production of an attribute grammar, which concept was introduced in [5].

Let p(=f(ps, -. ,p,‘))eTF (k>0 f€F) and consider a mapping =: path (p)—
—+®y(A4). The mappings =':path(p;)—~®x(4) are defined by = (w) 7 (iw)
(i=1, ..., k, wepath ()

Now let again p€T; and =:path(p)—®Px(4). The oriented graph D (r)
is defined by induction on dp (p):

(i) if p=f(cF)) with n(A)=e then D, (m)=D(e);

@ii) if p f(pl,. P (=0, feF) with n(2)=e, n(z) e (i=1,...,k) then
D(n)=D(e, ¢, ..., YU(U(D,(n)|l =i =k)) where D, (7r') is obtained from D, ()
by “multlplymg 1ts nodes by z” that is, the nodes of D ("), are the symbols X*
where X;* are nodes of Dm(n'), moreover, there is an edge from X to Y¥
in Dp,(n') iff there is an edge from X} to ¥ in D,(n'). Nodes and edges of
graphs are combined as sets.

Definition 1. We say that A is pure K-visit, if for each p(€ domt,) there
exists a n: path (p) ~®x(4) with acyclic D,(n).

To support this definition, the followmg observation can be made. If D, (n)
is acyclic then a computation sequence (see in [5] for attribute grammars) can be
constructed, which induces a K-visit tree-walking attribute evaluation strategy on p.

Definition 2. Suppose that to each f(€F) there corresponds an element
e/ of &x(A4) and let Ix={e/|fcF}. A is said to be simple K-visit concerning
M if for each p(eédom 7,) there exists a n: path (p)—II; for which the following
two conditions hold:

(1) if 1b,(w)=f then n(w)=e/ (wepath (p)),

(ii) D,(n) is acyclic.

A is simple K-visit, if it is simple K-visit concerning some ITg.

The classes of all tree transformations induced by pure, simple K visit DATTs
are denoted by Dofpy, D5y, respectively. Observe, that @,(A)={(4;, 4y} so, in
the particular case K =1, the two properties defined above are identical. There-
fore Dolp, =9, and they can be denoted by 2.,.

Theorem 3. For each K(=1), Dpyx C Bo DA, .

Proof. Let A(=(F, 4, G, ay, P, rt)) be a pure K-visit DATT. Consider the
bottom-up tree transducer B(_(F B, F, B’, P")) where

(a) B=B"=®g(4);

(b) for each m(=0), F,, is defined as follows {f; e, €., ..., ¢ F, if and only if

(i) f¢ F, for some k(=0),

(ii) e, €., ..., e¥C Py(A),

(i) m=4+...+1], where /; is the number of components of & (i=1, ..., k),

(iv) Ds(e, €, ..., € is acyclic;

(¢) for each m(=0), {f; e, ¢, ..., e (¢F,) the rule

i, times I times
Sletzy, ...,ekz) —e(f; e, € oo, €D (21, oees 20y cny Zky onns Z1)

isin P’.
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Moreover, let the DATT C=(F, C, G, ¢,, P”, rt”) be defined as follows

(a) Cs:As’ Ci=Ai7 Co=4ay, l't”=l't;

(b) P” is constructed in the following way. Let m=0, {f;e, €\, ..., e)¢cF,
with e=((I, Sy, ..., I;, S)) and e&=((}{, S), ..., (I,fj, Slj;)) (I=j=sk). For
each a(€C)) let the rule a{f;e e, ..., (7, ....2,)~gla,z;, ..., a,z;). be in
P” if the following conditions hold:

@ af(zy, ..., z) < q(a1zj,,---, aszj,)€P3
. . {]r(= 0) if a,EA,' (T = 1, ey S)
@ = L+..+1;, y+n if a€S)- for some n(=1,..,1;).

Moreover, for each j(=1,...,k), n(=1,..,1), a(€[{U...UIj) let the rule
a(z;, {f;e €, ...,e)~qg(az;, ...,a.z;) bein P” if

@) a(z;, ) = q(az;,, ..., a,z; )EP,

) i=l4.. ] +n,
) {j,(= 0) if a€4; (r=1,...,5)
4 L+..+1, ,+u if a€S) forsome u=(,..,1;).

The 1-visit property of C can be shown in the following manner. In [3], it was
proved that an attributed grammar is 1-visit iff each of its brother graphs is acyclic.
We can formulate the concept of the brother graph for DATTs and can easily show
that each brother graph of C is acyclic.

The proof of the next lemma can be performed by a simple induction on dp (p).

Lemma 4. Let p€Ty,e€B. Then p %»ezj for some g(€Tr) if and only
if there exists a 7: path (p)~®Px(4) with n(l)=e and acyclic D,(n).

Lemma 5. Let peTy, G€Tr, g€ T(Z), a1, ..., a,€4;, € B with e=((I;, Sy), ...
s (I, S)) and let a¢S; for some j(=1,...,I). Suppose that p::>e2j and

(a, A C:T q((a1, 2), ..., (a5, ). Then ay, ..., a€LU...UI;.

Proof. 1t follows from the previous lemma that there exists a =: path (p)—
- @x(A) with n(})=e and acyclic D,(rn). Suppose that, say, a,€l, where k=>j.
Then, by the definition of D,(r), there is a path from I} to S? m Dy(n) due
to the dependency edges of D,(m). On the other hand, there is a path from S} to
I} in D,(n) because k=j, which contradicts the fact that D,(r) is acyclic.

Lemma 6. Let a€A,, p€Tr, G€Tp, q€Ts(A4;X{A})), ecB. Suppose that
(a,7) <= gq and p= eg. Then (g, }) == ¢.
p,A B % C

Proof. The proof can be performed by induction on dp (p).

(a) Let dp (p)=0 1.e. p=f(€F,). Then by supposition, af - q(a,z, ..., a;z;)€EP
(SEO, ¢I'E TG(Zs 2 Qs ooy asEAi)a q:q,((al’ ’1")9 i (an )"))a moreover, f_'e<f) e>EP’
and §=(f;e). Therefore, by the definition of C, alf;e)~g'(a,z,, ..., Aszs) €EP”.
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(b) Now let dp(p)=0 that is p=f(py, ..., p) (k=0,fcF,). Here, p:;=> eq
can be written in the form

* —-— —_—
p=f(Pr, s P) 3 S(@ s -, €7)) =

1, times I, times
! e,

L _;—-/—_ _
4 elf; e, el ., €D (Guy ooy Qus ooes iy <oes G) = €4
o = (I, S, s (B, 59) (G =1, ...,k).

First we can prove the following
STATEMENT. Let 1= '<k l=n=l;,beliU.. UI,{, tcTe(A4;X {A}) and suppose
that the relation g=(b, j) <== t holds. Then (b, i) <=_C_ t where i=hL+...+[;_;+n.
9

The proof of this statement can be done by an induction on It (). When
It(B)=1 then b(z;, f)«~1t'(bzg, ..., bz)€P (s=0,t'€TG(Z), by, ..., b;€4;) and
t=t'((by, %), ..., (bs, ) so, by the definition of C,b(z, )t (blzo, ey BsZg)EP.

When It ([3)>1 then B can be written in the following form

with

. ’ 3 3 L ’ —
(b».]) iz_—“ t ((b19 .]1)’ sees (bs’ ]s)) ‘:A_ 4 (t1’ cuey ts)_t
where

520, t'€T6(Z,), by, ..., bs€4, 1y, ..., t,€Te(A;X {2, b(zj, ) <1 (b1z),, s bsZ; )EP.
Then, by the definition of C, b(z;, {f; e, €, ..., )« 1t'(byz;,, ..., bz, )EP” where
. {jr(= 0 if b,E€4; (r=1,..,59)
= L+.. .+l y+v if beS) for some wv(=1,..,1,).

Now let r(=1, ...,5) be such an index for which b,€ Sir and so 1=j,=k. Then
the relation (b,, j,) c% t, can be written in the form (b,, j,) cZ: 1 ((ers i)y -

P, p,

NRCA). <=*= 1/ (G, .., 1,)=t, for some u(z0), t(¢ T6(ZD), c1y ..., Cal €A), Ty, ...

, L(ET, (A x{l}) and we can suppose that the derivation (b,, j,) <=_ M(CAAR

(c,,, J,)) has no such a step, in which, a leaf in A4;X {j,} substltuted Then
(b,, A) <=__ t/((c1, A), ..., (c,, ) so, by the induction hypothesis concerning dp (p),
we have (b,, 2) < <== t/((¢1, A), ..., (¢,, 4)) which means that (b,, i,) <=_ t;/((c1, 1)), -

vs (Cus 1) because lb 7(i)=3;,. On the other hand, by Lemma 5, cl, s c,,EIJ'U
. UI,{’, moreover, the length of each of the derivations (¢, J,) C*T i, ...

p,
o (Cus Jr) <=*= i, is less than 1t (B) so we have (¢, i,) c_:*E—_ Fis ooes (Cus iy) <_=*c_—_ i,
q, 9

that is (b,, ,) <=_t G, ., B) =T
g,C
If r is such an index for which b,€4; and so j,=0 then t,=(b,, A), therefore
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®,,1) é% t, again. All that means that
- q

G.0) ez (b 1) s b 1) 5= 0, a 1) = 1

. proving our statement.
Now we return to the induction step of the lemma. The relation (a, 1) <=*A= q
. . ps
can be written in the form

(as A) 77 q,((alajl)a cevs (as’js)) ‘7% q’(qla see qs) =4q

where s=0, ¢'€T6(Z), ay, ..., a€4, qy, ..., q€T(A4;x{1}) and af(z, ..., z) -
«~g'(a,zj,, ..., aiz;)) isin P. Then, by the definition of C, therule a{f;e, ¢!, ..., e
(z1, ..o Z~q(arz;,, ..., a5z;) is in P” where m=Il+...+/, and

] j(=0) if a,€A4; (r=1,..,s
'r L+..+L _1+n if a€S) for some n(=1,..,1).

Let r(=1,...,5) be an index for which a,€S} for some n(=1,...,/;) and
so 1= j,.S k. Then the relation (a,, J) <=t= g, can be written in the form
(ar’ .,r) <=’— qr((bl, .]r)s Ly (bu > ]r)) <=— Qr(‘hs ey qu) qr for some u>0 q;ETG(Zu)9

b EA,, G1s --es §u€ TG(A ><{,1}) We can again suppose, that there is no step
in the derivation (4, /) = 07( 1), - G ), in which, a leaf in A (1)
is substituted. Therefore (a,, 2) <=_ q,((bl, 2), ..., (bys 2)) from which, by Lemma 5,

L belrU.. UL and, by the induction hypothe51s on dp(p), we get

(a,, A) <_=*=C g/ ((by, 2), ..., (b, A)) that is (a,,7,) <_=C= g:((b1, 3,), ..., (b, 7). On the
j 4, )
other hand, by the statement, we have (by, i) <_=% Grs ooy (Bus 7)) ‘-:a_‘ g, which
q, q,
means that (ar’ r) <=— ‘]r(‘h, . 9qu) qr
41
If r(=1, ..., s) is such an index for which q,€4; and so j,=0 then it is clear

that ¢,=(a,, A), therefore (a,,1,) <=_ g, again. The two cases of r and
g, C
alf; e e, ...,e (2, ..., z,) g (@12, ..., a5z; )EP” together prove that

@) == d(@, 1), ... @ 1) fg— 9@, - 9)=9-
This ends the proof of Lemma 6.
‘The proof of the next lemma is essentially the converse of the previous one.
Lemma 7. Let a€A,, p€Ty, G€Tr, g€Ts(A; X {2}), e€ B. Suppose that p% e
and (a, ) <=— g. Then (a,4) <=._
Now we are ready to prove our theorem. Suppose that (p, g)€t, that is
(ag, A) <:A= g concerning rt. Because A is K-visit, by Lemma 4, there exist g€ Ty
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and e¢B withp ;=>eq, therefore, by Lemma 6, (a,, 2) <_=*C= g concerning rt”, hence
q,
(p, g)€tgotc. Conversely, by (p, g)€tgore we have a g€Ty for which p]*? eq
under some e(¢B) and (aq, 4) <_=*-C= g concerning rt”. Then, by Lemma 7, we have
q,

(ay, 4) <=_ g concerning rt. The fact, that the inclusion is strict follows from the

proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3.

After studying the proof of the previous theorem two observation can be made.
On the onhe hand, instead of the bottom-up tree transducer B we can have a top-
down one which can be constructed by reversing the rewriting rules of B. Although
this top-down one does not induce the same tree transformation as B, the following
will be valid.

Corollary 8. Dedpy < ToDA,.

On the other hand it also seems that if A is simple K-visit then a deterministic
bottom-up tree transducer can be constructed, so we have :

Corollary 9. DA sk C DBoDHA,.
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On a representation of deterministic uniform
root-to-frontier tree transformations

By F. GECSEG

- The concepts of products and complete systems of finite automata can be
generalized for ascending algebras in a natural way (see [4]). Results in finite auto-
mata theory imply that for most types of products there are no finite complete
systems of ascending algebras. Therefore, it is reasonable to investigate a weaker
form of completeness to be called m-completeness when tree transformations are
represented up to a finite but not bounded height. In this paper we give necessary
and sufficient conditions under which a system of ascending algebras is m-complete
for the class of all deterministic uniform root-to-frontier tree transformations with
respect to different kinds of products. Moreover, we show the existence of such
finite m-complete systems.

1. Notions and notations

The terms ‘“‘node of a tree” and *‘subtree at a given node of a tree”’ will be used
in an informal and obvious way. '

The symbol R will stand for a nonvoid finite rank type with 04 R.

By a path of rank type R we mean a word over U(R)= U({(m, 1), ..., (m, m)}|
|mé& R). The set of all paths with rank type R will be denoted by pt (R). :

Take a ranked alphabet 2 of rank type R, a tree p€Fy(X,) and a path
u€pt (R). Then the realization u(p) of u in p (if it exists) is defined in the follow-
ing way:

1. if u=e then u(p)=e and uendsin p at the root of p,
2. if u=u(m, i), u,(p) exists, u, ends in p at the node d of p labelled by
¢ and ¢€X, then u(p)=u,(p)o,i) and u endsin p atthe i descendent of d.

For USpt(R) and TCEFs(X,) (n=1) let U(T)={u(p)lucU, p€T}. One
can easily see, that for arbitrary nz=1, pt (R)(Fy(X,))=U(2)*, where U(Z)=
=U({(s, 1), ..., (6, m}|o€ Z,,, m=0). ‘

Let X be an operator domain with X,=@. A (deterministic) ascending X-
algebra s/ is a pair consisting of a nonempty set 4 and a mapping that assigns

Acta Cybernetica VI/2
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to every operator o€ZX an m-ary ascending operation o<: A—~A™, where m 1is
the arity of o. The mapping 6—0< will not te mentioned explicitely, but we
write &/ =(4, Z). If X is not specified then we speak about an ascending algebra.
The ascending Z-algebra & is finite if both 4 and X are finite. Moreover,
& has rank type R if X is of rank type R. The class of all finite ascending Z-
algebras of rank type R will be denoted by K(R). If there is no danger of con-
fusion then we omit &/ in o*.

In this paper by an algebra we mean a finite deterministic as.cending algebra.

A (deterministic) root-to-frontier ZX,recognizer or a (D)RZX,recognizer, for
short, is a system A=(#,a,, X,, a), where

(1) &/ =(4, X) is a finite Z-algebra,
(2) a,€ A 1s the initial state,
(3) a=(4Y, ..., A P(A)" is the final-state vector.

Next we recall the concept of a tree transducer.

A root-to-frontier tree transducer ( R-transducer) is a system U=(Z, X,, 4, Q,
Y., A’, P), where '

(1) £ and Q are ranked alphabets,

(2) X, and Y,, are the frontier alphabets,

(3) 4 is a ranked alphabet consisting of unary operators, the state ser of AU.
(It is assumed that A is disjoint with all other sets in the definition of U, except A’.)

(4) A’S A is the set of initial states,

(5) P is a fintte set of productions of the following two types:

() ax,~q (€4, %€ X, g€ Fo(Y,),

(i) ac—~q (a€A,0€Z;,1=0, qEFQ(Y UAE)). (E = {&, &, ...} is the set of
auxiliary variables.)

The transformation induced by U will be denoted by 7y.

The R-transducer U is deterministic if A’={a,} is a singleton and there are
no distinct productions in P with the same left side. Moreover, the R-transducer
U is uniform if each production ao ~q (a€ A4, o€ Z;, [ =0, g€ Fo(Y,,UAZ))) can be
written in the form ao—g(a,¢,, ..., q;¢,) for some qEFQ(Y UZ). In this paper
by a transducer we shall mean a deterministic uniform R-transducer. One can easily
see that for every transducer U=(Z, X,, 4, 2, Y,,, ay, P) there exists a transducer
B=(Z,X,,B, Q,Y,, by, P") such that (i) for arbitrary b€B and o¢€ZX, with
m=0 there is exactly one production in P’ with left side bo, and (i) tg=14.
In the sequel we shall confine ourselves to transducers having property (i) and
L,=9.

To a transducer U=(Z, X, 4, @, Y,,, a,, P) we can correspond an RZX,-
recognizer A=(o, dy, X,,a) with #=(4,Z) and a=(4Y, ..., 4®™), where

(1) for arbitrary />0, g€Z;, a€A and (ay, ...,a)eA" if (ay,...,a)=0%(a)
then ao—~q(a&,, ..., ;)€ P for some g€ F(Y,UE),

(2) acAD (1=i=n) if and only if ax;—~g€P for some g€ Fy(Y,).

The class of all recognizers obtained from A in the above way will be denoted

by rec ().
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Now take an RZXX,-recognizer A=(«,a,, X,,a) with & =(4,2) and
a=(4", ..., AM). Define a transducer U=(Z, X,, 4, Q, Y,,, a,, P) by

P = {ax; - ¢ |ac 4V, ¢V Fy(¥,), i=1,..,nU
Ufas - ¢ (a¢,, ..., a1&)|ac A, €2, 1 =0,
(al’ Trey al) = ad(a)’ q(n’”)EFQ(YmUEl)}:

where the ranked alphabet Q, the integer m and the trees on the right sides of the
productions in P are fixed arbitrarily. Denote by tr (A) the class of all trans-
ducers obtained from A in the above way. Obviously, for arbitrary transducer
A and Acrec (Y) the inclusion Aetr (A) holds. Therefore, we have

Statement 1. For every transducer U there exists a recognizer A such that
Actr (A). '

Next we recall the concept of a product of ascending algebras (see [4]).

Let Z, 2%, ..., Z*¥ be ranked alphabets of rank type R, and consider the
Zialgebras o=(4;, ) (i=1, ..., k). Furthermore, let

U ={Yn: A3 X...XAXZ, -~ ZLX...XZE|mER}

be a family of mappings. Then by the product of &, ..., o Wwith respect to ¥
we mean the Z-algebra Y (s, ..., o, D)=L =(4,2) with A=A4,X...X4,
and for arbitrary meR, ¢€Z,, and acA

g¥(a) = ((prl (o (pry (a))), ..., pry (6*(pry (2)))), ...
o> (PTy (0 (PT1 (), - » PIy (6% (Py (2)))))s

where (o4, ..., 0,)=V,(a, ¢) and pr;(a) (1=i=k) denotes the i component of a.

To define special types of products let us write y,, inthe form y,, =@, ..., y¥)
where for arbitrary ac4 and ¢€ZX,, y,(a, o)=(yP(a, o), ...,y ¥(a,0)). We say
that o/ is an o;-product (i=0,1, ...) if for arbitrary j(1=j=k) and m€R, ¢
is independent of its #™ component if i+j=u=k. If Z'=..=2*=Y and
V.(a, 6)=(o, ...,6) for arbitrary m€R,0€Z, and a€A then &/ is the direct
product of oy, ..., &,. In the case of an «;-product in ¥’ we shall indicate only
those variables on which ¥¢’ may depend. '

One can see easily that the formation of the product, a,-product and direct
product is associative. (This is not true for the «;-product with i=0.)

Let A=(2,X,,4,2,Y,,a,,P) and B=(3,X,,B, Q2,Y,,b,, P’) be two

transducers and m=0 an integer. We write 1q= 1y if tq(p)=14(p) for every
PEFP(X,), where FP(X,) denotes the set of all trees from Fy(X,) with height
less than or equal to m.

Take a class K of algebras of rank type R. We say that K is metrically
complete (m-complete, for short) with respect to the product (x;-product) if for
arbitrary transducer U=(2, X,, 4, Q, Y,, a;, P) and integer m=0 there exist
a product (a;-product) #=(B, X) of algebras from K, an element b,€B and

a vector b€ P(B)* such that 74 = 14 for some Betr (B), where B=(4, b,, X, b).

Let &/=(4, X) be an arbitrary algebra from K(R). We correspond to <
a semiautomaton s(&)=(I,, 4,0,), where I,=U(Z) and for arbitrary ac4
and (o,i)€ly, 64(a, (o, i))=pri(c¥(a)). .

4
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Take a Z-algebra & =(4, £)€K(R), an element a€A and an integer m=0.
We say that the system (&, a) is m-free if the initial semiautomaton s(«, a)=
=(I4, A, a,6,4) is m-free. (For the definition of m-free semiautomata, see [I).
In (1] initial semiautomata are called initial automata. Moreover, here it is not
supposed that s(s/,a) is connected.)

For the system (&, a) and integer m=0 set A ={04(a, p)lp€lY, |p|=m),
where |p| denotes the length of p. Moreover, 64(a, ©)=a and d64(a, p(o,i))=
=0.4(d4(a, p), (O'a’)) (pelk, (o, 1)Ely).

Let (&/,a) and (&,b) be two systems with & =(4, 2), B=(B, 2)¢K(R).
A mapping ¢ of A™ onto B{™ is an m-homomorphism of (&, a) onto (%, b)
if it satisfies the following conditions:

1) ¢
2 qo(od(a))—aﬂ(q)(a’)) (@€dimY,6€Z, 1=0).

If the above ¢ Iis also one-to-one then we speak about an m-isomorphism:
and say that (o, a) and (%, b) are m-isomorphic. In notation, (&, a) = (4, b).
One can easily prove the following statements.

Statement 2. Let o/ =(4, X), #=(B, £)cK(R) and a€ 4, beB be arbitrary. For
an integer m=0, (#,b) is an m-homomorphic image of (&,a) if and only if
s(4#, b) is an m-homomorphic image of s(«, a).

Statement 3. Let (<, a) and (%, b) be the systems of Statement 2. For ar-
bitrary m=0,

(1) if (,a) is m-free then (%,b) is an m-homomorphic image of (<, a),

2) if (,a) is m-free and m-isomorphic to. (#,b) then (%,b) is also
m-free, and

(3) if both («,a) and (&, b) are m-free then they are m-isomorphic.

The next statement is also obvious.

Statement 4. Take two systems (&, a) and (4, b) (.sf (4, %), B=(B, 2)EK(R),
aEA bEB) Moreover, let m=0 be an integer. If (%, b) is an m-homomorphic
image of (&, a) then for arbitrary u=0, b€ P(B)*, B=(%,b, X,,b) and B=
=(2,X,,B,9,7,,b, P)ctr (B) there exist an aEP(A)“ an A=(.sz¢, a, X,, a)

and an U=(2, X,, 4, Q, Y,, a, P)ctr (A) such that rm— Tg.

Let (&, a) be a system with & =(4, 2)€K(R) and ac¢A an element. We say
that for an integer m=0 the algebra #=(B, X) m-isomorphically represents (o4, a)
if there exists a b€ B such that (&, d) < (%, b).

The «;-product and the o;-product (j, j=0) will be called metrically equivalent
(m-equivalent) provided that a system of algebras is m-complete with respect to the

o;-product if and only if it is m-complete with respect to the o;-product. The m-
equivalence between an a;-product and the product is defined s1m11arly

Finally, we shall suppose that every finite index set I={i, ..., 4} is given
together with a (fixed) ordering of its elements. Furthermore, for arbitrary system
{a;li;e1}, (a;)li;€1) is the vector (ay, dy, ..., @) if iy<iy<...<iy is the ordering
of 1.

For terminology not defined here, see {2] and {3].
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2. Metrically complete systems

In this section we give necessary and sufficient conditions for a system of
ascending algebras to be m-complete with respect to the ai-products (i =0,1, ...)
and the product. We shall see that the a;-products are m-equivalent to each other
and they are m-equivalent to the product.

We start with

Theorem 1. A system KCK(R) is m-complete with respect to the product
(o;-product) if and only if for every m=0 each m-free system (&, a) with "/ € K(R)
can be represented m-isomorphically by a product («;-product) of algebras from K.

/ Proof. The sufficiency is obvious by Statements 3 and 4.

To prove the necessity take an arbitrary m-free system (&, q,) with &=
=(4, 2)€K(R). Consider the transducer N =(Z, X,, 4, Q, AXX,, ay, P), where
n=1 1is an arbitrary natural number, ,=4XZ, (I=0) and P consists of the
following productions: :

(1) axi_’(a> xi) (aeAs xiEXn),
(2) aO'—>(d, O') (aléls AR al&l) (aEA, O'EZ, l>0’ O'd(a):(al’ ceey a,)).

Let #=(B, ) be a product («;-product) of algebras from K such that for

aB=(Z, X,, B, Q, AXX,, by, P")¢ctr (B) we have 1y =14, where B=(4%, by, X,, b)
(bo€ B, bEP(B)) We show that (%, b,) is m-free. This, by Statement 3, will
imply that (o, a)) = (4, b,).

First of all obsetve that A is a totally defined, linear, nondeleting transducer
inducing a one-to-one transformation. Moreover, in a tree to(p) with A(p)=m

no subtree occurs more than once. Therefore, by TQI Tq, all productions occur-
ring in a derivation bop=*gq (p€F5(X,), g€ Fo(X,X A)) with h(p)=m are linear
and nondeleting. Thus, we have the following relation between derivations in
A and B. Let ucpt (R) beapathwith |uj=m. Takea tree pEF;( ) with A(p)=m,
and assume that u(p) is defined, it ends in p at the node d, p” is the subtree of
p at d, p(¢;) is obtained from p by replacing the occurrence of p” at d by
&, 6 J,.,(ao, u(p))=a and S&g(b,, u(p))=>b. Then the following derivations are valid:

; aop = aop(p) =a qi(ap) 24 n(g) =¢q
an .
bop = byp(p") =5 q:(bp") =54.(9") =g,

where  aop(&;) =4 ¢:(al)), bop(&,) =& qu(bE)) (g1, g€ Fo(AX X, U&l)) and ap’=qq’,
bp'=8q" (', q"€ Fo(AX X, ) (Observe that &, occurs exactly oncein ¢, and g,.)
Furthermore, if v,€pt (R) is the path such that v,(g;) ends in g, at the node
labelled by &, and v,€pt (R) 1s the path for which vy(g,) ends in g, at the node
labelled by &; then wvy(g,) is a subword of v,(gy). '

Now assume that (4, by) is not m-free, that is there are two distinct words
u, vel% (=1} such that |u, [vj=m and 5@(170, u)=0g4 (by, v)=b. Let @, D€Pt(R)
be paths and p,, p,€ F5(X,) trees such that @(p)=u, 5(p;)=v, h(p,), h(pz) m,
u endsin p, atthenode d, and v endsin p, atthe node ds. Replace in p, and
p, the subtrees at d; resp. d, by x,,-and denote by p, resp. p, the resulting
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trees. Moreover, let 6,(a,, u)=a, and 064(a,, v)=a,. (Note that a,a, since
u#v and (&,a,) is m-free)) Then, by the choice of U, if g, g€ Fo(4XX,)
are obtained by the derivations a,p,=¢ ¢, and a,p.=4 4. then #(q,) ends in ¢,
at a node labelled by (a,, x,) and #(g,) ends in ¢, at a node labelled by (a,, x,).
Moreover, by Tméfg, bopr=54q, and byps=¢ g, hold also. From this, taking
into consideration our observation concerning the relation between derivations
in 2 and B, we get that at the ends of ii(q,) and #(g,) the same label should
occur which is a contradiction.

The next theorem gives necessary conditions for a system of ascending algebras
to be m-complete with respect to the product.

Theorem 2. Let KC K(R) be a system which is m-complete with respect to the
product. Then the following conditions are satisfied:

(i) for arbitrary integer m=0, path uecpt(R) with |i#|=m,rank/€R and
natural number 1=i=/ there exist an & =(4, X)€K, an aq,€A4,0,,05€ %] and
a u€ii(Fy(Xy) such that 8,(aq, u(o,, ) %6 4(ay, u(os, 1)),

(i1) for arbitrary integer m=0, path#€pt(R) with |a]=m, rank I€R (I>1)
and integers 1=i<j=/ there exist an & =(4, 2)€K, an a,cA4,a ¢€ZX, and a
ucii(Fy(X,)) such that &,(a,, u(o, {))5d4(ay, u(o, j)).

Proof. We start with the necessity of (). Assume that there are m=0, u¢pt(R)
with [i|=m, € R and 1=i =/ such that for arbitrary &/ =(4, 2)€K, a,€ A4, 6,,6,€ 2]
and u€ii(Fy(X,)) the equation &4(dy, u(oy, i))=04(ay, u(o,, i) holds. Take
a ranked alphabet X of rank type R such that X, contains two distinct elements
o and o’. Moreover, consider a product B=(B, L)=Y(s,, ..., &, 2) (=
=(4;, )€K, i=1, .., k) and an element by€ B. We show that the system (2, b)
is not (m+1)-free.

First of all let us introduce a notation. Consider the above product # and
define the mappings ¥': BX Fy(X,)~Fu(X,) (i=1, ..., k; n=0) in the following
way: for arbitrary b€B and pe€ Fy(X,)

(1) if p=x; (1=j=n) then ¥'(b, p)=x;, . .
) if p=o(py, ..., p) then Yi(b, p)=0;(Y!(by, py), ..., ¥ (b, pp)), where
(G1s s 0)=V(b, 6) and (by, ..., b)=0%(b).

One can see easily that for arbitrary b¢ B, p€ Fy(X,) and #¢pt(R) the equation
553(b’ a(p)):(édl(prl (b)’ ﬁ(lpl(b, p)))a R 5dk(prk (b)9 ﬁ(‘abk (b9 p)))) holds.

Now take two trees p, g€ Fx(X;) such that (@(/, i))(p)=u(o, i) and (a(l, )))(g)=
=u(¢’,i). For every j(=1,..,k) let (a(l,))(¥/(by, p))=uc,i) and
(@, D))(Wi(by, g))=v(3D, {). By the definition of the product, the equations
u;=v; (j=1,...,k) obviously hold. Moreover, ’

,6.%(b0a u(a, l)) = (54#1 (prl (bo), Uy (0-(1), l)), sy 6dk(prk (bO), u, (a(k)’ l)))

593("0’ u(o’, 1)) = (5.d1(pr1 (bg), u (G, 1)), ..., 5.dk(prk (bo), u, (W, l)))
But, by our assumptions, &, (pr;(by), u (6", i))=84 (pr;(by), u (¢, 7)) for
every j(1=j=k), ie., 0dg(by, u(c,1))=0a(by, u(c’, 7)). Therefore, (&, b, is
not (m+ 1)-free which, by Theorem 1, implies that X is not m-complete with
respect to the product.

and



Deterministic uniform root-to-frontier tree transformations 179

The necessity of (ii) can be shown in a similar way.

Theorem 3. If a system KC K(R) satisfies the conclusions of Theorem 2 the
K is m-complete with respect to the oy-product. :

Proof. Let X be a fixed ranked alphabet of rank type R. We shall show by
induction on m that for every integer m=0 there are an ay-product #=(B, X)
of algebras from K and an element b€B such that (#,b) is m-free. This, by
Theorem 1, will end the proof of Theorem 3.

If m=0 then our claim is obviously valid. Let us suppose that our statement
has been proved for an m=0, and take a product & =(4, X) of algebras from
K and an element @€ A such that (&, @) is m-free. By our assumption, for every
a=i, (I, i) (1, €pt(R), [€R, 1=i=I) there are an FD=(4D, Z@)cK, an a@cAD,
two operators oy, 0,€ 2{® and a u, €iy(Fx(X,)) such that §,@(a®, u(o,, 1))
#0 4@(a®, uy(0z, 1)). Moreover, for arbitrary u=iu,(l, i), 5=i(,j) (4 €pt(R),
I€R, =1, 1=i<j=I) there are an "F@D=(4E?), @) an gD @D,
a u; €ii,(F5(Xy)) and a 6€ 2 such that 8 ,@0(a® ), uy(G, i) #6 4@ n(a®?, u,(5, j)).
Consider an 1ndex set I consisting of all pairs (u, v) where u, v€ U(2)*, u=v,
lul=m+1 and |v|=m+1. For the pair (u,v) with w=u'(c,)cu(Fx(X;)) and
v=0'(c%,j) if ¥'#v or ox#¢* lake the ay-product LWV=yWo)(of, @ F)=
=(4®"), %), where y®" is defined in the following way. For every s¢R, y#»®
is the identity mapping on Z;. If w=w,(0’, j) (¢'€Z,) is a proper subword of
u and w =w;(¢”, j) is the subword of u, with |w’|=|w| then let

l//,?" v) (2) (5d(a; W1), O") — U”.

In all other cases, except Y@, (a,u’), 6), Y@ (s€R) is given arbitrarily
in accordance with the definition of the ag-product. Since u’#v” or o=¢* and
(4, a) is m-free &, 0((a, a®), v) is defined. Now let

. oy if G un) ((a, a®), U) = (a1, ay)
Y@ (§ (a, v), 0) =1 and O,@ (a®@, u(ay, 1) # a,
o5 otherwise.

Obviously, (™, a®?) with a®*?=(aq, a®) is m-free and &y w (@™, u)=
# 0 _yu, ) (@™, v).

Now assume that «'=v’ and o=¢*; that is u=u'(s, i)€i(Fs(Xy) and v=
=u'(s, j)€0(Fs(X;)). Take the oy -product &®=y®) (o, f @9, F)=(4®"), X),
where y® is given as follows. Again for every s¢R, yv® js the identity
mapping on ZX,. If w=wy(c’,t)(c’€Z,) is a proper subword of ¥ and w'=
=wi(c”, t) is the subword of u, with [w’|=|w| then let Y5, (a, wy), ¢")=
=g¢”. Moreover, Y™I®(5,(a, u),0)=6. In any other cases Y™ (s€R)
is given arbitrarily in accordance with the definition of the ay-product. Since (&, a)
is m-free ™" is well defined. Again, (™9, a®?) with a®*=(aq, a®?) is
m-free and & i, (@™ ?, u)# 6 4w ) (a®™?, v).

Finally, take the direct product #=(B, X)=II(&#“"|(u, v)€]) and the vector
b=(a™"|(u, v)€I). Then (&,b) is (m+1)-free. Indeed, for two different words
u, veU(D)* if |ul, v]<m+1 then Jg(b, u)2d4(b, v) since they differ in all of
their components, and if |u/=m+1 and [v|=m+1 then Jg(b,u) and J4(b,v)
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are different at least in their (u, v)® components. Since the direct product is a
special ay-product and the formation of the ay-product is associative # is an
ap-product of algebras from K.

From Theorems 2 and 3 we get

Corollary 4. For arbitrary 1, j=0 the o;-product and the «;-product are
m-equivalent to each other and they are m-equivalent to the product.

We now give an algorithm to decide for a finite KS K(R) whether K is m-
complete with respect to the product.

Take an algebra &/ =(4, 2)€K. For arbitrary /€R and 1=i=l set A¢:9=
={a€Apr;(c¥(a))#=pri(cf(a)) for some o,,0,€Z;}. Moreover, for every acA
let L9 be the language recognized by the automaton "= (Iy, A4, a, 6,4, A"Y).
Furthermore, let L&V=U(L{¢"a€d) and LE9=U(L%Y|#€K). For ar-
bitrary leR (I>1) and l=i<j=! define L*%) in a similar way with 4®&)=
={ac A|pr;(c7(a))#pr; (67 (a)) for some o€ X} instead of A" 9. Finally, denote
by Z the union of all ranked alphabets belonging to algebras from K, and take
the language homomorphism ¢: U(Z)*—~U(R)* given by ¢(o, H)=(k, i) (c€Z, r(c)=
=k), where r(c) denotes the rank of ¢. Then, by Theorems 2 and 3, X is m-
complete with respect to the product if and only if

(1) for arbitrary /€R and 1=i=/, o(L*D)=U(R)*,
(2) for arbitrary I€R (I=1) and 1=i<j=l, o(L*4N)=U(R)*.

The validity of these equations is decidable effectively.

Finally, for a given rank type R we give a one-element system which is m-

complete with respect to the product. Let X be a ranked alphabet of rank type
R such that for every /€R, Z;={c{", 6{}. Assume that the greatest natural number
in R is n. Take the Z-algebra «/=(4, X), where A={a,, ..., a,}, oc’(@)=
: =(ai+1(modn+1)’ cres ai+1(modn+1)) (IER’ l=0, 1, seey n)a Gél)(an)=(am Ap_15 -5 an—l+l)
(I€R) and for arbitrary /€¢R and a; with is#n, o{"(a;) is defined arbitrarily.
(i+1 (mod n+1) denotes the least residue of i+1 modulo n+1.) One can see
easily that the system K={«/} satisfies the conclusions of Theorem 2.
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On cofinal and definite automata

By M. Ito* and J. DUSKE**

1. Introduction

Cofinal or directable automata were introduced in [1] and further investigated
in[2,7,8,9]. Cofinal automata are automata whose states can be directed to a single
state by a suitable input word. We will call a cofinal automaton definite if there is
an integer n such that all input words of length greater than or equal » direct
the state set to a single state. Perles et al. [10] investigated definite events and definite
automata. In particular they used shift registers, a special type of definite automata,
in their discussion of the synthesis problem. Moreover, Stoklosa [12, 13] investigated
these automata from an algebraic point of view. In section 2 of this paper we will
prove a graph theoretic property of shift registers, namely that the transition diagram
of a shift register contains a hamiltonian circle. In section 3 we apply this result
in order to investigate the determination whether an arbitrary automaton is cofinal
or not. In section 4 we determine the structure of all strongly definite automata
with the aid of shift registers. Finally, in section 5, we characterize the general
structure of definite automata. Let us give precise definitions first.

Definition 1.1. An automaton (more exactly, an X-automaton) A, denoted by
A=(S, X), consists of the following data: (i) S is a nonempty finite set of states.
(ii) X is a nonempty finite set of inputs. (iil) There exists a function M, of SXX*
into S, called a state transition function, such that M (s, pg)=M ,(M (s, p), q)
and M, (s,e)=s for all s€S and all p,qcX* where X* is the free monoid
over X and e is its identity.

Note that in the following sp4 will often be used to denote M 4(s, p).

Definition 1.2. An automaton A4=(S, X) is said to be cofinal (or directable
in [1, 2]) if there exists peX* such that Sp*={sp?|s€ S} is a singleton.

Definition 1.3. An automaton A=(S, X) is called a definite automaton if
there exists an integer n=0 such that [Sp4|=1 holds for all pcX* with |p|=n.
If A is a definite automaton, then the least integer n such that the above condition
holds is called the degree of A and denoted by d(4).

A definite automaton is cofinal. The class of definite automata 4 with d(4)=0
is exactly the class of all one-state automata. Furthermore, if d(4)=nz=1 for
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a definite automaton A, then there exists a g€ X* with |g|=n—1 and |Sg%|>1.
A definite automaton A=(S, X) is called a strongly definite automaton if it is
strongly connected, i.e., if for all s,s"€S there exists pcX* such that spi=s’
holds. If |X|=1 for a strongly definite automaton, then |S|=1 holds too.

Definition 1.4. Let n be a nonnegative integer, X a finite set and X" the set
of all words over X of length n. Then the automaton A(n)=(X",X) whose
state transition function is defined by (yp)x*®™=px for all (y, p, x)EXXX""1XX
if n=1 and ex4™=e¢ forall x¢X if n=0 is called an n-stage shift register without
Sfeedback (or briefly an nSR).

Obviously, n-stage shift registers are strongly definite automata.

2. A graph theoretic property of nSR’s

The purpose of this section is to prove the following theorem. (For the notion
of a hamiltonian circle in a directed graph see [5].)

Theorem 2.1. There exists a hamiltonian circle in the state transition diagram
of an nSR.

Note that the state transition diagram of an nSR is the directed graph whose
vertices are states and where there is a directed edge from p to ¢, labelled by x,
iff px4™=g for (p,x,q)€X"XXXX" If n=0, the theorem holds trivially.
Therefore we assume n=1 for the rest of this section. Before proving the theorem,
we need the following definition.

Definition 2.1. Let r=1. A sequence p,, ps, ..., p, of distinct elements of
X" with p,xf®W=p;,, with x;€X for 1=i=r—1 is called a chain of length
r—1 and denoted by p,— po— s s Peas T Pr (or briefly p,—

P2 P3P D)
Now we first provide some lemmata.

Lemma 2.1. Let p,—p,—...—>p, with p,=y;q;, (y;, g)€XX X"}, for 1=i=r,
be a chain of length r—1. Then there exists a pc X" such that p,—p,—...»p,_,—~
—p,—~p iff there exists an x€X such that ¢,x¢ {py, Pss -..» Pr_1, Pr)-

The proof is easy and thus omitted.

Lemma 2.2. Let p,—»p,—...—p,. If there is no p€X" such that P1—P2—
..~p,_1~p,~p holds, then there exists some x€X such that p,— p,, i.c., we

have a circle {p,, ps, ..., pr—1, P,» In the state transition diagram of A(n).

Proof. Let p,=y;q; with (y;,q)eXxX"' for 1=i=r and Pi5> i
for 1=i=r—1. By Lemma 2.1, we-have q,x¢{p, pe, ..., p,} for all xeX This
means that ¢.X= {g.x|x¢X}& {p;, D2, --» P} Let Xq,={xq,|x€X}. It is obvious
that |g,X|=|Xgq,|=|X| holds. Now assume p,=y9,4¢,X. This implies ¢q,XES
€ {p;; ..., p,}. Furthermore we have p,=y,q:€q, X iff p,_,=y;_1q;_,€Xq, for all i
with 2=i=r. Therefore the set {p,, ps, ..., p,_1} contains [¢,X| elements of
Xq,. Together with p,cXgq, we obtain |Xg,|=|q,X|+!1 in contradiction to the
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fact |Xq,|=|q, X|. Hence p,€q,X. Since p,=y,q,, there exists some x€X such
that p, — p, .

Lemma 2.3. Let P1—~P2—...~p, and {py, ps, ..., p,}# X" Then there exists
a pi=pi—~...~p;~pi+y such that {p,, ps, ..., p}S{pi, ps, ..., P, Dlsa})-

Proof. If we have p,—»p,—~...—>p,_,—~p,—~p for some peX", there is nothing
to do. Now, assume that there does not exist such p€X". By Lemma 2.2, we have
a circle {py, pg, ..., p,y in the state transition diagram of A(n). Let pecX"—
—{p1> P25 ..., p,}- Then it is easy to see that pp{!”=p,. From this it can easily
be shown that there exist some p’,p”€X* x¢X and ¢ with 1=i=r such that
p=p'xp”, pp’A™cX"—{p., ps, ..., ,} and (pp"*M)xA™M=p.. Tt is obvious that
in this case we have pp ™ op~p 1—>...~p =Ps—>...~>pi_o—p;_, and
{p1s P2y - BYEA{PP™*™, iy Pis1s -5 P15 P2y --s Piza). This completes the proof
of the lemma.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let p,—ps—...—p, be one of the longest chains in the
transition diagram of A(n). Then, by Lemma 2.3, we have X"={p,, ps, ..., P}
Moreover, by Lemma 2.2, {p;, ps, ..., p,} forms a circle {py, ps, ..., Pr1> Pry>
1.e., the state transition diagram of A(n) has a hamiltonian circle.

Remark 2.1. Note that the previous results provide an algorithm for obtaining
a hamiltonian circle in the state transition diagram of an nSR.

3. Cofinal automata and cofinal congruences

We will now apply the foregoing theorem to investigate the determination
whether an arbitrary automaton is cofinal or not and to give a characterization of the
minimal cofinal congruence of an arbitrary automaton. In this section all automata
are assumed to be automata over a fixed alphabet X. Let us first give

Definition 3.1. Let n be a positive integer and (n)={4=(S, X)||S|=n
and A is cofinal}. Then by 6(n) we denote the value Argg)((ﬂ)min{lﬂ);;g x*
and |Sp?|=1}. '

In {1, 11}, 8(n) is investigated. Cerny et al. [1] conjectured that S(n)=(n—1)2
However at present only (n—1)?2=0d(n)=0(n®) is known. The following result
is obvious.

Proposition 3.1. Let A=(S, X) be an automaton such that |S|=n. Then
A s cofinal iff there exists a p€X°™ such that {Sp4|=1. (X°™ is the set of all
words over X with length 6(n).) '

To test whether or not an automaton A=(S, X) with » states is cofinal,
we have to check whether or not Sp4 is a singleton for each p€X?™, Another
more economical method would be to merge all pcX%™ in a single word w and
to check the property “cofinal’” with this word w. We first introduce some notions.
Let w, weX*. u is called a subword of w iff w=u"uu” for some u’, u’€X*.
Now let weX* such that every u€X?" is a subword of w. Then w is called a
merged word of X°™ [3]. Obviously we have:
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Proposition 3.2. Let A=(S, X) be an’automaton with |S|=n. Then A4 is
cofinal iff [Sw4|=1, where w is a merged word of X%,

It can easily be seen that the length of a merged word of X%® is greater than
or equal to [X[*™45(n)—1. Moreover, with the aid of Theorem 2.1, we can show:

Lemma 3.1. There exists a merged word w of X*™ such that |w|=[X[%"4
+8(n)—1.

Proof. By Theorem 2.1, the state transition diagram of A(8(n))=(X*", X)
has a hamiltonian circle {p,, p,, ..., p,» With r—le"(") Let py == po > Pam -
Sl S and put w=p;x,X;...X,_3X,_;. This proves the lemma.

Now we can state the following:
Theorem 3.1. There exists a w¢X™* satisfying the following conditions:

(@) |wi=|X"™+6(n)—1.
(i) For each automaton A4=(S, X) with |S|=n, A is cofinal iff |Sw4|=1.

Remark 3.1. In [3], D6mési discussed a general method to obtain the shortest
merged word w of L, where L is a finite subset of X*.

’ We will now use Lemma 3.1 to characterize the minimal cofinal congruence
of an arbitrary automaton. To this end, we first recall the following notions. Let
A=(S, X) be an automaton. An equivalence relation ¢ on S is called congruence
on A if (s,s)€o implies (sx4, s’x%)€o for all s,5'¢S and x€X. Let g, 0 be
congruences on A. Then gAg’ and ¢V, the product and sum of ¢ and g,
are defined as usual (see e.g. [6]). R(A), the set of all congruences on A, forms
a lattice w.r.t. A and V. We now define:

Definition 3.2. Let A=(S, X) be an automaton. A congruence ¢ on A is
said to be cofinal if for all s,5'¢ S there exists a p€X* such that (sp4, s’pH)e€p
holds.

Let 7, denote the partition of S induced by ¢ and =,(s) the block of =,
containing s¢S. We have:

Lemma 3.2. Let A=(S, X) be an automaton and ¢ a congruence on A.
Then g is cofinal iff there exist a p€X™ and an s,€S with SpASm,(s).

Proof. The “if part” is obvious. Conversely, let ¢ be cofinal and T a maximal
subset of S such that there exista p€X™ and an s,€S with Tp"r T, (So). Assume
T#S and let s€S—T. Then we have (sp4, sp)¢ 0. Since o is coﬁnal there exists
a p’€X* such that (spip™4, sop’4)€0. Since ¢ is a congruence, we have
(TU{sH(pp) A En(sop’®). This contradicts the minimality of 7, hence S=T.

By R.(4) we denote the set of all cofinal congruences on 4. Let g, 0" € R(A).
By Lemma 3.2, there exist p, p’€ X* such that (sp?, s'’p?)€o and (sp’4, s’p"4)€co’
for all s,s'€S. This implies (s(pp)?, s'(pp’ )")Eo/\g for all s,s’¢S. Therefore,
oMo’ eRcf(A) oVo' €R(4) can be shown in a similar way. Thus Rcf(A) forms
a-sublattice of R(4). We now give

Definition 3.3. Let A=(S,X) be an automaton. The minimal element of
R(A4), denoted by g, is called the minimal cofinal congruence on A.
Now we will characterize g.
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Theorem 3.2. Let 4=(S, X) be an automaton with |S|=n and ¢ a con-
gruence on A. Let w be a merged word of X%™. Then g=g. iff ¢ is the mini-
mal congruence on 4 such that Sw4Sn(s,) for some s50€S.

Proof. The assertion follows from Proposition 3.2 and the fact that ¢ is
cofinal iff the quotient automaton A/g is cofinal.

Remark 3.2. We can develop further properties of cofinal congruences and
their quotient automata along the line of [4], where similar notions for commutative
congruences were introduced.

4, The structure of strongly definite automata

in this section we consider homomorphic images of nSR’s in order to charac-
terize strongly definite automata. We have:

Theorem 4.1. Let A=(S, X) be an automaton and let » be a positive integer.
Then A is a strongly definite automaton with d(A)=n iff A is a homomorphic
image of A(m)=(X™, X) for all integers m with m=n.

Proof. It is easy to see that A(m) 1is a strongly definite automaton of degree m. -
Let A be a homomorphic image of A(m). Then A is a strongly definite automaton
with d(4)=d(A(m))=m. This completes the proof of the “if” part. Now let A4 be
a strongly definite automaton with degree d(4)=n and m=n. Let A be the
following mapping of X™ into S:h(p)=Sp* for all peX™ Since d(A)=m,
this mapping is well defined. Note that a singleton Sp# is considered as an element
of S. We prove that A is surjective. Let s¢S and p’¢X™. Since A is strongly
connected, there exists a g€X™* such that (Sp™4)gi=s. Let p'g=p"p with pcX™.
Then we have s=S(p’ ¢9)4=S(p"p)*=(Sp"4)p*=Sp4. Finally, we prove that
h is a homomorphism of A(m) onto A. Let p=x"p” with x"€X,p’¢X™1 and
x€X. Then we have h(px*t™)=h((x'p)x*™)=h(p’x)=S(p'x)*=Sx"(p'x)*=
=S p)ixt=(SpY)xA=h(p)x4. This completes the proof of the “only if” part.

Remark 4.1. We can prove that the homomorphism 4 in the above proof is
the unique homomorphism of A(m) onto A. In general, if there exists a homo-
morphism of a strongly cofinal automaton onto another automaton, it is uniquely
determined. For this, see [8].

The following corollary is obvious. Note that the inequality |S|z=d(4)+1
follows directly from Theorem 7 of [10]. )

Corollary 4.1. Let A be a strongly definite automaton. Then we
have |X|*“z=|S|=d(A4)+]1. Moreover, |X|*®=|S| iff A is iso-
morphic to A(d(4)).

Example 4.1. Let A be given by the diagram of Fig. 1. If 4 Fig. 1
is a strongly definite automaton, then 2*%=3=d(4)+1, hence
d(4)=2. On the other hand, we have {l,2,3}(xx)1=3,{l,2, 3}(xy)=
=1,{1, 2, 3}(yx)4=2 and {1, 2, 3}(yy)4=1. This shows that 4 is really a strongly
definite automaton with degree 2. Furthermore, A4 is not isomorphic to A(2).
Finally, the homomorphism % of A(2) onto A is given as follows: h(xx)=3,
h(x»)=1, h(yx)=2 and Ah(yy)=1.
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Remark 4.2. In Theorem 2.1 we proved that the state transition diagram of
a shift register has a hamiltonian circle. Moreover, in Theorem 4.1 we proved that
the set of all homomorphic images of shift registers coincide with the set of all
strongly definite automata. It seems to be interesting to consider the following
problem: Under what conditions may the state diagram of a strongly definite auto-
maton have a hamiltonian circle?

5. The structure of definite automata

In [10], Perles et al. discussed the synthesis problem of definite automata.
In this section we will also deal with this problem. Strongly definite automata are
given as homomorphic images of shift registers, and a method to obtain all homo-
morphic images of a given automaton is well known [6]. Therefore it remains to
determine the structure of definite automata which are not necessarily strongly
connected. Let us first give

Definition 5.1. Let A=(S, X) be a definite automaton. Then the subset
U={Sp|pe X} of S is called the core of S.

Lemma 5.1. For all x¢X we have Ux4CU.

Proof. The lemma obviously holds for d(4)=0. Assume d(4)=1 and let
s€U. Then there exists a pc X4 such that s=Sp4 Let p=x’p’ with x'¢X
and p €X4®-1 Then, for all xcX, we have sxi=(Sph)xi=(Sx"4p"x4=
=(Sx"N(p’'x)4=8S(p'x)4, where p’xcX94. Consequently, we have sx4¢U.

Lemma 5.2. Let C=(U, X), where sx¢=sx% for all (s, x)€UXX. Then
C is a strongly definite automaton and d(C)=d(A4).

, Proof. Let scU. There exists a peX?“4 such that s=Sp4. Therefore s=
=SpA=Up*=UpC€. This shows that C is a strongly connected automaton. Ob-
viously, C is definite with d(C)=d(A).

Definition 5.2. C=(U, X) is called the core of A. Moreover, d(C) is the
radius of the core and denoted by r(A4).

Definition 5.3. Let 4=(S, X) be a definite automaton and C=(U, X) its
core. Then S—U is called the shell of S. Moreover, max {Ipxl}sé S—U, peX*,
x€X,sp*€S—U and s(px)*€U} is called the thickness of the shell and denoted by
t5(A4).

The following result is obvious.

Proposition 5.1. 1(4A)=d(A)=t(A)+r(4) and r(A4)=d(A).

We characterize definite automata by means of r(4) and t(A).

Let A=(S, X) be a definite automaton and C=(U, X) its core. Let T,=U
and T,={s€S|sx1¢T, for all xcX}. We have:

Lemma 5.3. T,& 7, and if S— U0 then T,—T,=0.

Proof. T, T, is obvious. Suppose that for all s€¢S—U we have s¢T,.
Then for all s€ S—U there exists some x,€X such that sx{{¢ T,=U. Since
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sxA¢S—U, by the same reason as above, there exists some x,€X such that
(sxf)x# ¢ T,= U. By continuing this procedure, we have an infinite sequence x,, X,, ...
<osy Xg, ... Of elements of X such that s(x;x, ... x,)?¢ U for any positive integer k.
This contradicts the definiteness of 4. Hence T;—T,#0.

Now suppose that T; is defined and 7;_,CT;. Set T ,={scS|sx*€T;
for all x¢X}. Then, by the same way as in the proof of the above lemma, we obtain:

Lemma 5.4. T;,E7;,, and if S—T;#0 then T, ,—T;#0.

It is obvious that there exists some positive integer i such that T;,=T;,,
and T,=T, for all k=i. This means that in the case S— U0 there exists a mini-
mal positive integer n such that T,cT)cT,c..cT, ,cT,=T,,;=... and
S=T,.

Definition 5.4. Let A=(S, X) be a definite automaton and {7;[0=i=n}
the set defined as above. Let L,=T;—T;_; for all i with [=i=n. Then
{L;j1=i=n} is called the set of layers of the shell.

Lemma 5.5. The number of layers coincides with #,(4).

Proof. Let s€S—U. Then there exists some i with 1=i=n such that s€L;.
It is obvious that spA€ U holds for all p€X’ This means that r{4)=n. Now let
s€L,. Then, by the definition of L,, there exists some x,€X such that sxA¢L,_,.
By the same way as above, there exists some x,_,€X such that (sx2)x2,€L,_,.
By the same procedure, we have a sequence X,, X,_1, X,_s, -.., Xs, X; of elements
in X such that s(x,X,_1X,_3 ... X431%)¢ U for 2=k=n and s(x,... xyx)€U.
Consequently we have t,(A)=n. Thus t,(4d)=n.

Now we are ready to prove the following theorem.

Theorem 5.1. Let A=(S, X) be a definite automaton with (r.(4), t,(4))=
=(r,1). Then S can be partitioned in {U(=L,), L;j]1 =i=t} such that:

(i) C=(U, X) is a strongly definite automaton with degree r, where sx€=sx"

for all (s, x)€eUXX.
(i) sx2cUUL,UL,U...UL,_, for all (s, xX)CL;XX with I=i=t.
(iii) For all s¢L; with 1=i=t there exists an x;€X such that sxfcL,_,.

Conversely, let C=(U, X) be a strongly definite automaton with degree r and
let {U(=Ly), L;|1=i=t} be a partition of a finite set S. Then each automaton
A=(S, X) whose state transition function satisfies the above conditions (i)—(iii)
is a definite automaton with (r/4), t(4))=(, ).

Proof. Let C=(U, X) be the core of 4 and {L;|1=i=¢} the set of layers
fo the shell. The first part of the theorem is now obvious. The second part is
obvious too.

In Proposition 5.1 inequalities were given. We show that there is no relation-
ship among d(A), r{(4) and t(A4) beside these inequalities.

Proposition 5.2. Let d,r and ¢ be nonnegative integers such that t=d=r+r
and r=d. Then for all alphabets X with [X[=2 there exists a definite automaton
A=(S, X) such that d=d(A), r=r(A) and 1=t(A).
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Proof. Let S be the disjoint union S=VUVOU. . UroOU{s,1,, ..., 1,}.
Here V=X", VO={v®|veV} are copies of V for 1=i=t and ¢, ..., ¢, are
n=d—r additional states. Choose x,€X and define the state transition function
of A as follows:

(@) For all (v, X)EVXX=X"XX set vx*=vx10,
(i) For all x€X and 2=i=n set f;x*=¢,_, and furthermore set r,x4=
=x{=Xxp ... Xg€X".
(iii) For all (v, x)€VXX and 2=i=t set vWxA=(vx4")~1D and further-
more set vMx4=px4¢),

This situation is depicted in Fig. 2. Obviously, A is a definite automaton. Let us
first show d=d(A4). The case d=0 is trivial. Let d=1. If now r=0, then
V={e}, n=t=d and d=d(4). If now ¢=0, then
r=d, n=0 and d=d(4). Hence we can assume 7, d,
r=1. If now n=0, then d=r. Since |X|=2, we have
d=d(A). Let now n=1 and p=p’xcX" with p’€X",
x€X and x=x,. Then there exists a p”¢X"! such
that ({,}JUX")pA2 {x;}U{p"x}. It is easy to see that
({xe3U{p"xPg?|=1 for all geX"~. Consequently,
|S(pg)4|=1. This means that d(4)=|pgl=n+r—1=
=d--1. Now let peX? Then p=pp” with p'cX"
and p”€X". From this ({t;, 25, ..., t,}UV)pA S Vp"4=p”
follows.. On the other hand, since d=t, we have
V@pi=ppa=p” for all i with 1=i=t. Therefore
SpA=p”. This means that d(4)=d. Hence d(4)=d.
The core of A coincides with A(r), hence r(4)=r,
and since n=d—r=¢, we have t,(4)=t.
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Basic theoretical treatment of fuzzy connectives

By J. DoMBI* and Z. Vas**

Introduction

One of the most interesting problems in the theory of fuzzy sets is the choice
of the fuzzy connective operations, i.e. the union and the intersection.

Definition 1. The fuzzy set p is an arbitrary function
X —[0,1] _ 1)

interpreted on the non-empty universal discourse X.

In such a sense, the characteristic function of the common sets is a special
fuzzy set.

Zadeh (1965) [24] extended the intersection and union of the subsets of the
common sets in the following way

Raup(®) = max (p,(x), pp(x)) for all x€X and

Rang(x) = min (ﬂA(x)a #B(x)) for all x€X, (2)

where u,,p and uy,np are the fuzzy sets corresponding to AUB and ANB,
respectively.

Below we shall survey in broad outlines the development of the views relating
to fuzzy operations. Historical survey of fuzzy operations:

Besides operatlons (1), others also have been proposed for the generahzatlon
of the operations in set theory [24], [17]. Some examples are

Bans(*) = pa(x) - pp(x) and

HauB(X) = (%) + pp(x) — py (%) - pp(x) €)
or -
‘#Am;(x) = max (HA (*)+pp(x)—1,0) and

Hayp(x) = min (,uA (%) + pp(x), 1). C))

All this reveals the arbitrary nature of the definitions. This arbitrariness can be
resolved with a basis on the axiom system general in mathematics. Strivings in this
direction were first made in defence of the min and max operations-[3], [12], [9]-

5%
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In effect, this merely involved the characterization of operations (1) with other
properties.

Subsequently, other axiom systems were created [11], [12], [14], which were not
represented by operations (1); there were publications in which algebraic structures
were investigated without representation [2], [13], [15]. Here the emphasis was on
the rational establishment of the axioms.

A whole series of axiomatic examinations arose for the most varied operations;
however, these were unable to unify the views relating to the operations, but rather
made the problem more ramified. Study of the mutual interrelations between the
axiom systems might have led to a solution, but very great difficulty was caused by
the fact that it was impossible to compare the axioms. Only one such study has
been made [10].

One possibility was to return to the bases, i.e. to base the rational nature of the
axioms not on opinions, but on empirical examinations. The first such examina-
tion did not relate exactly to this, but to the question of whether the created opera-
tions correspond to practice [21]. The result was that they do not.

Further, it is not advisable to make a mathematical theory dependent on narrow
empirical examinations; rather, operation classes must be produced from which
the appropriate operation can be selected in a manner adequate to the practical
requirements.

The operations should if possible be made flexible. Parameter-dependent opera-
tion series were produced by Yager {23] and by Hamacher [11], but these were as
individual as the earlier operations. Although operation classes were defined,
a practical interpretation of the parameters did not materialize.

The next perlod was characterized by the appearance of monographs on opera-
tions and axiom systems [6], [22].

These works ensured a possibility for the discovery of the common properties
of operations and axiom systems and for the selection of a minimal axiom system [4].
However, only a narrow range of the examined operations could be characterized
with these axiom systems.

The axioms of this minimal system are the strict monotonity of the operations,
the holding of the correspondence principle, associativity and continuity. The
adoption of these axioms can be based rationally in the following way:

The correspondence principle is satisfied by all fuzzy operations, i.e. their
restriction to the characteristic function is a classical set-theory operation. The
associativity holds for every operation examined so far, and in addition a possibility
is created for the extension of two-variant operations to multi-variant ones. The
lack of continuity terminates the homogeneous effect of the operation.

Strict monotonity is not satisfied by every operation; its condition rather served
the realization of the representation. However, the condition of monotonity exists
for all operatlons

Thus, it is advisable to carry out an examination of not strictly monotonous
operations. Hence, we must obtain, for example, (4) and (1).

The main result in the paper is the giving of representations of all operations
of such type, as functions of various conditions.

The study relies on the theory of ordered semigroups [8], [20] and the associative
function equations [1].
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1. Fuzzy algebra

Let I be the closed interval [0, 1] of the real numbers. This notation partly
serves to simplify the description, and partly refers to the generalizability of the
theorems and definitions.

The set of all the fuzzy sets (1) is

FX) = {ulp: X~ 1) O

(we shall denote F(X) briefly by F). Let Ch be a set of common characteristic
functions.

Definition 2. The fuzzy sets y and v are said to be equal if
w(x)=v(x) for all xeX. 6)
The fuzzy set u precedes the fuzzy set v if
u(x) =v(x) for all xeX. @)

Theorem 1. The relation = is a partial ordering on F. Let us consider an
n-ary algebraic operation. .
*: F">F (n=1,2,..) ®)

on the set F of fuzzy sets.

Definition 3. The operation * is isotonic (antitonic) if it follows from the
inequalities
ﬂiévi (i=1, 2,..., n)
that
Uik, = vk kv, (% %, = v %, %V,) C)]

for all (uy, ..., 4), (v1, ..., v,)€ F". The isotonic and antitonic operations together
are said to be monotonic.

The ordering relation = interpreted on the fuzzy sets is a generalization of the
partial ordering defined by the entailment interpreted on the common sets.

Definition 4. By fuzzy algebra [5] (the algebra of fuzzy sets) we understand all
those algebraic structures interpreted on F for which it holds that

(A1) all of its operations are monotonic. :

Fuzzy algebra is said to be “ordinary” if the following condition also holds:

(A2) the restriction of all of its algebraic operations to Ch agrees with some
set-theory operation with the same number of variables.

In our work we shall examine those ordinary fuzzy algebras (F, *> (in the
following simply fuzzy algebra) which satisfy the following conditions:

~ (F1) % is a binary connective operation, i.e. its restriction to Ch is either inter-

section interpreted on the normal sets, or union.

Let us consider those fuzzy algebraic operatlons for which there is a function
f i IXI—~I such that

(u*v)(x) =‘f(y(x), v(x)) for all x€X. 10

The attribution * —f is mutually unambiguous. Let us denote the set of fuzzy al-
gebraic operations with this property by Z.
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(F2) Let * be an operation belonging to Z.

~ Theorem 2. Let x: FXF—F be an operation in Z. The algebraic structure
{F, *) satisfying condition F1 is fuzzy algebra if, and only if, it holds for the func-
tion f ascribed to # that

(i) f is monotonic in the sense agreeing with *;

@i1) £(0,0)=0, (1, 1)=1, and further, if the restriction of the operation # to
Ch is intersection (union); then f(0, 1)=f(1,0)=0(f(0, D=/(1,0)=1).

Proof. Let (F, %) be the fuzzy algebra satisfying condition F1.
(i) Let us assume that * is isotonic. Let x, Xy, yy, y2€J, so that x;=x,
and y,=y,. Let us consider the fuzzy sets

m(X) = X1, pa(X) = Xy, vi(X) = yy, vo(x) = yo for every x€X.

For these it holds that
M =u, and vy = v,

1t follows from the isotonity of operation * that

. . . . Hi %V = Up % V.
Taking F2 into consideration:

f(lh (), () éf(ﬂz (x), va(x)) for all xeX.

It therefore follows from x,=x,and y,=y, that

S (X1, y0) = f(x2, ¥9),

i.e. f is isotonic. The postulate can be demonstrated similarly for the antitonic case.
(if) The postulate arises simply from consideration of A2 or Fl and F2.

- Proof of the inverse of the postulate is likewise simple.

Consequence: with the operation f ascribed to * I is an ordered algebraic
structure.

Theorem 2 ensures that study of the representations of the algebraic structure
determined by the operation f ascribed to the operation x is sufficient for examina-
tion of the representations of the fuzzy algebras (F, %) satisfying conditions F1
and F2.

As concerns f, let us assume that

(F3) f is associative;

(F4) f is continuous on IX/.

It can readily be seen that the operation * determined by such f is associative
and continuous from point to point, i.e. if the series of fuzzy sets {u,} and {v,}
converge from point to point to the fuzzy sets g and v, then the series of fuzzy
sets {u,*v,} converges from point to point to the fuzzy set uxv.

In the following section postulates will be given for the case when the restriction
to Ch of the operation % determined by f Is the normal set-theory intersection.
In this case we denote the determining function by ¢. The function corresponding
to the union is denoted by d. The postulates for ¢ and their proofs can be applied
appropriately to 4.
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2. Representation theorem

Let us first summarize the properties having by the function c¢: IXI—1I defined
in section 2.

(T1) ¢ is monotonous;

(T2) <(0,0)=0, (1, 1)=1, ¢(0, 1)=c(1, 0)=0;

(T3) c is associative;

(T4) ¢ is continuous.

Theorem 3. If T1 and T3 hold for ¢, then
(T1’) c is isotonic [8].
Thus, the set I forms a semigroup completely ordered with operation c.

Definition 5. The function % is said to be Archimedean in the interval [a, b] if
h(x,x)<x for all x&(a,b). - (11

The representation theorem relating to the Archimedean case was proved by
Ling [16] by means of elementary analysis. The theorem can be derived from the
earlier result of Mostert and Shields [18].

We shall make use of this theorem in the following.

Theorem 4. Let J be a closed interval [a, b] of real numbers, and A the func-
tion h:JXJ—J. h has the properties that

(i) A is monotonous;

(ii) & is associative;

(iti) % is continuous;

(v) h(a, d)=a, h(b, b)=b, h(b, x)=h(x, b)=x (x€X); 12)

(v) h is Archimedean
it'and only if there exists a continuous, strictly monotonously decreasing function g,
mapping the interval [a b] into the interval [0, =] for which g(b)= 0 such that
h may be represented in the form _

h(x,y) = g“"(g(x)+g(y)) | 3
where g{(~V is the pseudo-inverse of g

g7i(x) if g =x=ga),

a if g(a) =x, (14)

g(—l) (x) = {
where g1 is the normal inverse of function g in [g(b), g(a)].

Function g is termed the additive generator of the Archimedean operation 4,
and g is unambiguously determined apart from a positive constant, i.e. a-g (x=>0)
likewise generates A.

It should be noted that the theorem can also be stated in such a way that the
generator function g” maps the interval [¢, b] into [—<o, 0], it increases strictly
* monotonously, and g(b)=0. In this case the definition of the pseudo-inverse is
modified appropriately.

Function ¢ with properties T1—T4 satisfies conditions (i)—(iv) of Theorem 4.
In the following we shall not restrict our considerations to the Archimedean case.
Mostert and Shields have carried out similar examinations relating to semigroups [18]. .
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Let us consider the set of the idempotent points of the interval 7
N = {x|x€1l, c(x,x)=x}. (15)
Theorem 5. N is a closed set.

Proof. We see that N contains every accumulation point. Let x, be an
optional accumulation point of N. A point series x, may then be selected from
N such that

lim x, = x,.

n—+~co

Since x,€N for every n, we have ¢(x,, x,)=x,, and c is continuous (T4), so that

c(xy, Xg) = xli_{l;l‘ c(x,, x,) = lim x, = X,
n 0 0

and thus x,€N. )
Let M=I\N. M is a restricted and open point set. Let us assume that M is
not empty.

Theorem 6. M can be constructed as the combination of a finite or infinitely
large number of open intervals, not projecting into one another in pairs, the end-
points of which do not belong to M [21].

Therefore - M has the form '
M=UM, - (16)
icP

where P is a finite or an infinite index set and M;=(a;, b;), for which, if x¢(a;, b)),
c(x, x) # x, an

while C(ai, ai)=a,~ and C(bi, bi)=bi'

Let us select an optional region [a;, b]X[a;, b;]. In this region it holds too
that ¢ -is isotonic (T1’), associative (T3) and continuous (T4). For determination
of the properties corresponding to T2, let us consider the following theorems:

Theorem 7. For every x€|a;, b;]:

@ c(a;, x) = c(x, a;) = a;, (18)
(ii) c(b;, x) = c(x, b)) = x. 19
Proof. First, we see that

c,x)=c(x,1)=x for all x€I- 20)

On the basis of (T2), ¢(0,1)=0 and. c(1, 1)=1, and with consideration of the
continuity (T4) the function c¢(x, 1) therefore maps I on I. Then, for any y¢l
there exists an x€ 7 such that ¢(x, 1)=y. Utilizing this fact and the associativity (T3).

cy, D) =clc(x, D), 1)=c(x,c(1, 1)) =c(x,1) =y for all y€l
Part (i) of the theorem is a simple consequence of the isotonity (T1’) and (20)
a;=c(a;,a) = c(x,a) =c(l,a) = a;.

The proof of part (ii) is the application.of that of (20) to [a;, ;).
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Theorem 8. For every x¢(a;, b)), c(x, x)<x.
Proof. As a consequence of the isotonity (T1) and (19)
c(x, x) =c(b;,x) =x for all x€[a;, b}
If x€(a;, by), then c(x, x)#x, so that
c(x,x) <x for all x€(a;,b)).
‘Theorem 9. For every (x, y)€[a;, b;]X[a;, b;]
c(x, y) = min (x, y). (21)

Proof. As a consequence of (19)

cx,y)=clx, b)=x and c(x,y)=cb,y)=y
therefore, . :
c(x, y) = min (x, ).

Theorem 10. Let H =72\ |J M? Then

icP
¢(x, y) = min (x, y) for all (x, y)€H. 22)

Proof. Let us assume that x=y. Let (x, y)€H.

(i) If x¢N and ycl, then
x=c(x,x)<c(x,y)<c(x 1) =x.

(11) If x€(a;, b)S M and y{§(a;, b;), then

x=clx,b)=clx,y)=cl1)==x.

In both cases c¢(x, yy=x=min (x, y).

Let ¢; be the restriction of the function ¢ to the region [a;, b;]X][a;, b;]-
As a consequence of the equalities c(a;, @))=a; and c(b;, b)=>b; as well as the
isotonity (T1") and continuity (T4) of ¢, ¢; maps the region [g;, b;]X[a;, b;] on

[a;, b;.
To summarize, ¢; satisfies condltlons TV, T3, T4 and T2'
(T2 c;(a;, a;) = a;, ci(b;, b) = by,

ci(a;, by) = ¢;(by, a) = a;
and by Theorem 8 it is Archimedean. From the Ling theorem, therefore, for every
i€P there exists a generator function g; additive in [a;, b;] to c;.
Thus, the following theorem holds for ¢:

Theorem 11. Let ¢ be the function ¢: IXI—I. c¢ satisfies conditions T1—T4
if and only if ¢ has the form

g V(gD +&(), if (x)EME = (a;, b)* i€P

c("? y) = {min (x, y), if (e, Y)EINU M? (23
iepP
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where {M};cp is the sum of a finite or infinitely large number of open intervals
belonging to I, not projecting into one another in pairs. g; is a function mapping
the closed interval [a;, b;] into the interval [0, =], which is a continuous, strictly
monotonously decreasing function, and g;(b;)=0. g{~ is the pseudo-inverse of g;.
(It should be noted that P may be empty.)

Proof. (i) Let us assume that T1—T4 hold for the function ¢: IX7—1. If every
point of I is idempotent, i.e. 7=N, then on the basis of Theorem 10, c(x, y)=
=min (x, y) for all (x, y)€I2. If NcI, then as a consequence of Theorems 5
and 6 in I? there are regions [a;, b;]X[a;, b;] not projecting into one another in
pairs, in which the functions c¢; satisfy the conditions of Theorem 4 (Ling) by
Theorems 7—10. In the given region, therefore, there exist generator functions
g: additive for ¢;-s. Outside such regions, from Theorem 10: ¢(x, y)=min (x, ).

(ii) Let us assume that the function c¢:IXI—I exists in the form (23). If
P is empty, then c¢(x, y)=min (x, y) for all (x, y)¢I% Therefore TI—T4 hold.

If P is not empty, then by Theorem 4 (Ling) the function ¢ is isotonic, as-
sociative and continuous separately both in the regions {M?} (i¢P) and outside
these regions.

Because of (12), at the limit of the regions M2, c¢(x, y)=min (x, y), and
¢ therefore has no breakpoint. Thus, ¢ is continuous (T4) in 72. T2 similarly
follows from these arguments.

The proof of the isotonity (T1") and the associativity (T3) is lengthy, and ac-
cordingly we do not present it here.

Without proof, we list some of the consequences of Theorem 11.

Theorem 12. Every function c¢:IXI-I satisfying conditions TI1—T4 is
commutative. . '

Definition 6. The function ¢: IXI—1 is said to be a + norm [19] if
@) 2(0,0)=0, t(x, D=t(1, x)=x for all x¢I,

(ii) ¢ is isotonic,

(iti) ¢ is commutative, and

(iv) t is associative.

Definition 7. The function z: IXI—1 is said to be a strict ¢ norm if (i) and
(iv) hold, and

(v) t is continuous, and

(vi) t is strictly isotonic, i.e.

t(xla )’) = t(X2, J’) if 0= Xy < X = 1,
t(x, y1)<t(x,y2) if 0<y,<py,=1

Theorem 13. Every function c¢: IXI-I satisfying conditions T1—T4 is
a continuous ¢ norm.

If we assume strict monotonity instead of T1 for function ¢, then it is a strict
t norm and Archimedean in 1. '

Studies relating to continuous ¢ norms have been performed by Schweizer and
Sklar [19], [20]. |

Finally, let us examine the possibility of constructing the min (x, y) function
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.. by means of a generator function. By Theorem 4 (Ling) there is no additive generator
of form (13), as it is not Archimedean. Ling studied this problem in some detail [16].

Theorem 14. Let J be the closed interval [a, 5] of the real number straight
line. If ¢(x, y)=min (x, y) for all (x, y)¢[a, b]X[a, b], then there does not exist
a continuous function g: [a, b)) ~[0, =] such that ¢ can be represented in the form

min (x, ) = g*(g(x)+g(») (24)
where it holds for (the not unconditionally continuous) g* that g*(g(x))=x
for all x€[a, b}.

Theorem 15. Assume that J and c¢ satisfy the conditions of Theorem 14.

Then, there does not exist a strictly monotonously decreasing function g:[a, b]~
—[0, «] such that ¢ can be represented in the form

min (x, y) = g*(g(x)+g(»))

where g* is the function defined in Theorem 14.
A connection may be created between the generator functions and min (x, y)
from another aspect. Let g(x) be the additive generator function of c(x, y).

Theorem 16. g*(x) (1=>0) also has the properties of the generator functions.

Theorem 17. If c,(x, y) is an operation determined by the generator function
g*(x), then
lim ¢;(x, y) = min (x, y).

Theorems 16 and 17 for strictly monotonous functions c(x, y) have been
proved by Dombi [4].

3. Examples
(i) Zadeh [24)
¢(x, y) = min (x, y),
(c(x, x) = x, x€1I).
(ii) Lukasievicz [17]
¢(x,y) =max (x+y—1,0)
1—x, if x=1,
X =10, if x=1

(not strictly monotonous, Archimedean).

(iii) [24]
cx,p)=x-y,
gx)=—logx
(strictly monotonous).
(iv) Dubois [7]
x-y AP AT A=x,,

c(x’ y) = —— e —
A . i
max (x’ y’ ) min (x, y), otherWlSC,

g(x) = —log%, if x=0,
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(v) Hamacher [12]
},.x.y
1-(1-4)-(x+y—x-p)°

c(x, y)=

Aex
g0 =—loe gy

(vi) Yager [23]

{ 1I—(Q—x*+A—pPP4, if 1-x)*+0-y)* <1,
cx, y) = 0, otherwise,
{(l—x)", if x<1,
g =1, if x=1.
(vii)) Dombi [4]
1
c(x, y) =

T
)

4. Conclusion

The objective outlined in the Introduction has been attained. The square
resolution existing in the general case is based on the non-Archimedean nature.
If we do not desire such a resolution, then the operations must be restricted to the
Archimedean case. i

Modification of other conditions means the possibility of a further step in the
investigations. An example is the study of the non-continuous case, €.g.

x, if y=1,
tx, ) =1y, if x=1,
0, if x1 and y#=1,

which otherwise satisfies T1-—T3.

Setting out from the generator functions, another research area is the charac-
terization of the possible operation classes, or the study of the connection between
various operations, e.g. generalization of the DeMorgan laws.

The question still remains of what connection exists between the empirical
examinations and the fuzzy algebraic operations. The research up to date has not
provided a satisfactory answer to this.
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Run length control in simulations and performance
evaluation and elementary Gaussian processes

By M. ArAT4!

1. Introduction

This paper discusses some statistical problems which arise in analyzing the
results of experiments involving the measurement evaluation and comparison of
the performance of computing systems, and simulation of such processes, as well.
These sequences are generally correlated and in most cases contain a portion which
is nonstationary. It is widely accepted that a computer system is operating under
a stochastic load and generates stochastic response sequences which are assumed
stationary. Such sequences include system response times, utilizations, throughputs
(measured e.g. in transactions/sec.), device waiting times, etc. The properties of
these output sequences are unknown and the system is being measured in order to
estimate characteristics of the specific sequences. As an example the experimenter
might be interested in the mean, covariance function of the response times (or even
in the response time distribution) and in the utilizations of the major system com-
ponents (CPU, memory, disks, etc.). Furthermore, the experimenter is often interested
in estimating the above quantities as a function of some input parameter such as
the number of terminals or transaction rate and in comparing these estimated func-
tions for alternative system configurations. The output sequences are correlated
(often strongly) and hence the usual statistical procedures which assume independent
observations do not apply. -

. Let us consider a database system (see e.g. [8], [9]), where transaction response
time and transaction rate are particularly important. These have been chosen as
the major criteria for evaluating an alternative system. There were made modi-
fications to the operating system so that certain supervisory functions which account
for a substantial amount of processor utilization are executed on a separate processor.

A typical time series of transaction response times and its sample correlation
function is given in Figure 1.

1 Visiting Professor, System Science Department, University of California, Los Angeles.
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Fig. 1
Sample covariance function of transaction response time

The problem of getting confidence intervals for the mean of a stationary output
sequence from a discrete event simulation has an upgrowmg literature and program
packages (see e.g. [9], [10], [12] and [14]). This problem is connected with a run
length control procedure which is designed to terminate the simulation when a
confidence interval of a prespecified relative width has been generated or to continue
the run to a maximum length.

This paper is concerned with the above mentioned problems for the following
practical point of view. Instead of using the spectral analysis techniques, which
assume indirectly the asymptotic normality, we are using the stochastic difference
and differential equation method, which enables us to calculate the confidence
limits in advance, to get exact results in the Gaussian case and, at the same time,
good approximations for non-Gaussian sequences.

The results are in good agreement with those of the simulation (see [9], [10]),
though the calculations can be carried out on a small calculator, using the tables
of the known exact distribution of the maximum likelihood estimator of the damping
parameter of an autoregressive (AR) process.

There exist many approaches to the problem of generating confidence intervals
for the mean of dependent sequences of random variables and for determining
the length of a steady-state simulation. In our method we get the same results
by simple calculations based on the concept of sufficient statistics and on the approxi-
mation of discrete time process by continuous time process. It is remarkable that
explicit results can be gotten and carried out only in the continuous time case.

The main novelty in our method is not only its simplicity, but in the direct
estimation of the correlation and giving sufficient statistics. Indeed, instead of the
tedious calculations of spectral densities we are using only the first covariances and
the boundary random variables which keep the storage requirements of the method
extremely low.

Using two estimates

y - _ X+ X,
;’ X 12 N (1)
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for the unknown mean p=FEX; in the correlated case it is not known which of
them is better. Let, for simplicity, X; be the following time series X;=y;+u,
where '

Yi=Qyi-1t¢&;, (Esi =0,02= (1—92)0'5)- )]

Then Xy is not uniformly, in O<g=<1, a better estimate than X,, in the sense
that Var Xy=Var X, if o~1 (see [3], [4]) and compare with (10) below.

Finally, let us point out that in constructing confidence bounds by the spectral
method and by the normal approximation, one can find a gap in the earlier proofs,
because the authors do not care about the question of uniform (in 0<f,(0)<-o,
where f.(4) is the spectral density of process x) normal approximation when the
number of observations N-—<o. Nevertheless, it can easily be seen that uniform
approximation does not hold even in the above mentioned special case (2), if
0=¢g<1 (see [2], [4]).

2. Preliminary results

The sample covariance functions of waiting time and response time experiments
show an exponentially decaying and never an oscillating character, which allows
us not to be interested in checking hidden periodicities. In this case, all the roots
of the characteristic equation of a higher order AR process are real and negative
(in the continuous time case), or less than, in moduli, 1 (in the discrete time case).

This makes possible to assume that the process or one of his derivatives has
a simple structure. Our method can be-used for higher order autoregressive schemes
too, after simple transformations and assuming that the roots of the characteristic
polynomial are real. ,

On the basis of the sample covariance function we may assume that the sequence
of observations X(1), X(2), ... forms a realization of a one dimensional stationary,
Markovian and Gaussian process &(n) (called elementary Gaussian), with unknown
parameters u=E¢(n), ci=D*(n)=Var {(n) and

corr (£(n), E(n—1)) = o, ie,
(€M —p) = o(E(n—1)~p)+&(n), 3
where &(n) is a Gaussian white noise with Ee(n)=0, 62 =(1 —¢%o%.

We are interested for instance in the construction of confidence limits for the
parameter u, or if we denote the process of the base system by ¢y (n) and the
alternative system, after certain functional redistribution by &,(n) then the main
question is that whether the difference of sample means

Xna—Xn,2

differs significantly from O or not. N is the sample size and

Xy:= ~ ZN'X,(n), i=1,2. -4

6 Acta Cybernetica VIj2
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Let us recall the following results (see e.g. [4] or [13]). The spectral density
function, f.(1), of the process &(n) has the form

1 ol _ (1—-0%0} 1
feA) = 21 [1—ge B2 — 2n (1—gcos A)2+g?sin2 )’ ®)
1
,2(0)_2 %Z 0=g<l.
If ¢ and ¢} are known the maximum likelihood estimator of u is the following
N
[where Xl;XN , > X; form a system of sufficient statistics),
1
N-1
x+xy+(l—0) > x;
2
= , 6
A 24+(1—o}(N-2) ©)
which is normally distributed with parameters
1+o )
s 7
[" I TA—o(N=D) ™

Assuming that &(n) is the discrete variant of the continuous process &(r) with
the differential '
di(t) =—2(t)dt+o,-dw(D), o=e 4, (8)

where w(t) isthe standard Wiener process, then it is known that o,, can be estimated
exactly and 24c}=0%,. The damping (or decaying) parameter A (and so g, too)
can be estimated poorly and this is the reason why g has fairly wide confidence
intervals. The maximum likelihood estimator of A is approximately normally
distributed if A7=21000. Tables of the distribution of the maximum likelihood
estimator of the parameter A can be found in [4], or [5], [6]. In the continuous
time case the sufficient statistics of the unknown parameter p are &(0)+&(T),

T
f &(t)dt and the maximum likelihood estimator has the form
0

EO+EM+L [ e |
A= — 2+/1T > )

w1th variance 20%/(2+AT). Note that for T=1,6%=1 we have

0 1+e~ s N
Dz(f()-zi-ﬁ(l))= te <D2(0f€(t)dt)=_i"1Ti, if A<2 (10)

i.e., depending on AT the mean of two observations can be a better estimate for

" .u than 1 f £(r)dt, and of course better than 1 ZN' ¢ (2)
K T ; s N+1 2 N
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The sufficient statistics for 1 are

.~ 1 1 T
§=F RO+ d= [ e0d, -y
and the maximum likelihood estimator has the form (¢%=1)

—[s2—T/2)+V[sE—T/2P +Tst
2Ts2 )

l= ' (15)

3. Confidence interval construction

Using advantage of the table given in [5] (or [6]) and the approximate variance

of fi getting from (7)
. oil+o

Ni g’ , (13)

the following approximate confidence intervals can be used for p/o,, having the.
upper 9.o; and lower §.,; confidence bounds for g at the levels 0.95 and 0.05
1+ - p 4 1+9 .
—e £ _£ 645 —1 % — .9),
N(i-2) < o os 516 5 NA—B) 64(-9) (14)
and G40.9) we call the half confidence interval width at the level p=0.9.
Table 1 contains the lower and upper estimates of ¢ for different sample size
and the half confidence interval width at level p=0.9 and for all the values g, §.g5, 0:¢5-
From Table 1, one can get estimation for the run length control too, in the
sense that the required half-width is attained or not. At given ¢ and ¢ (half-width)
with ¢.5; one can get the maximum value N(g) for which :

15720
1.645 | —————— <¢, 15
V Fa—oy <o - | (13

1+6.45
T A T =6&
N(L1—@.95)

e.g.-for Q=.99=1——1% and £=0.33 (when N =5000) one can get

—1.645

and the minimal value N(o)

1.645 (16)

L
100

Note that in the case when g, 6, m are all unknown, it does not exist such
a statistic with known distribution as Student’s ¢ in the independent observation
case. With this respect we recall the following results (see [2], [3], [4)).

Let us assume for simlicity that 7=1 and o,=1. Let us take a positive func-
tional %(£) for the lower confidence limit of A, and j(¢), u(€) real-valued func-

tionals as upper and lower confidence limits for u. We assume that all these func-:

1 - —_—
WO—) = 7680.

N1

) — 4320, N[l—-

6*
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Table 1
N 100 500 1000 5000 10000 50000
0=0.98
A 2.020 10.101 20.203 101.014 202.03 . 1010.14
B.os 0.9996 0.995 0.991 0.985 0.984 0.981
B.05 0.956 0.969 0.971 0.976 0.977 0.979
&.0(0) 1.673 0.732 0.518 0.231 0.164 0.979
&.9(0.05) 11.630 1.469 0.774 0.268 0.183 0.075
8 5(6.05) 1.097 0.586 0.429 0.211 0.153 0.071
0=0.99
i 1.010 5.025 10.050 50.252 100.50 502.52
O.05 0.9999* 0.9993 0.9976 9.9934 0.9924 0.9911
O.05 0.9750 0.9816 0.9841 0.9869 0.9879 0.9891
8,500 2.321 1.038 0.734 0.328 0.232 0.104
8.9(.95) 23.263% 3.032 1.501 0.404 0.266 0.110
&.5(0.05) 1.426 0.763 0.581 0.287 0.211 0.099
¢=0.995
A 0.5012 2.506 5.013 25,063 50.125 250.63
B.05 0.9999* 0.9999 0.9996 0.9973 0.9967 0.9959
B.05 0.9852 0.9893 0.9908 0.9928 0.9934 0.9942
8.4(0) 3.286 1.469 1.039 0.465 0.329 0.147
8.0(0.55) 23.263* 23.263 3.678 0.633 0.405 0.162
6.9(0.05) 1.905 1.003 0.765 0.387 0.286 0.136
0=0.998
A 0.202 1.001 2.002 10.010 20.020 100.10
b.05 0.9999* 0.9999* 0.9999 0.9995 0.9991 0.9985
b.05 0.9925 0.9950 0.9955 0.9968 0.9971 0.9975
8.4(0) 5.199 2.325 1.644 0.735 0.520 0.233
8.9(0.05) 23.263* 23.263* 23.263 1.471 0.775 0.269
G .5(0.05) 2.681 1.469 1.095 0.581 0.432 0.208
0=0.999
i 0.100 ~0.500 1.001 5.003 10.005 50.03
005 0.99999* 0.99999* 0.99999* 0.99993 0.99976 0.99933
D05 . 0.99700 0.99710 0.99748 0.99815 0.99840 0.99869
8.4(0) 7.35 3.289 2.326 1.040 0.735 0.329
&.5(8.0s) 73.566* 73.566* 73.566* - 3.932 1.502 0.402
8.4(0.05) 4.244 1.931 1.410 0.765 - 0.581 0.287

The half confidence interval width &,(g)=1.645V(1+0)/{N(1—¢) at level p for pfos- 05
means the f level confidence bound of g, g=e~*¥, 1= —Nlog g, N is the sample size.

* Inthe cases marked by * the upper conﬁdence bound for ¢ is equal to 1 and the confidence
interval width is = (see section 4).
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tionals are continuous on R, -in the C[0, 1] metric, but 7 and p may assume
values + o and — . The continuity of functionals assuming infinite values is to be
understood as continuity induced by the topology of the real line, closed by points
—oo and . First we have the following assertion, which says that no nonzero
lower limit can be constructed for the parameter 4 with any degree of confidence.

Theorem 1. Let B0, and let x(&) be a positive functional defined in the space
R: and continuous in the C[0,1] metric, with the property that x(§)— if
sup |E(¢)| > oo. Let it satisfy for any p and ) the condition P{i=x»(£)}>p. Then

P{x ()= 0} = g(4 B) 17

where the positive function g(-) does not depend on the choice of functional and
g, B—~1 as A-0.

For parameter u the following statement says that if p, A are unknown it is
impossible to construct finite confidence intervals using continuous functions.
We assume that 7 and g has the property that for a real value ¢

AC+O) = BO+e, pE+O) = p@+c. (18)

Theorem 2. Let f>1/2, and let p(&), i(&) be real valued functionals (which

may assume values —eoo or + o) on the space R;, which are continuous in the
C[0, 1] metric and which satisfy the conditions

Plu=p@®} =8,
_ a9
Plu< g(©)} =B,
for any p and M —oo<pu<oo, A=>0). Then i )
P{a¢) = =} =f( B),
(20)

P{u(®) =—=} = f(4 B),

where f(, B) does not depend on the choice of these functionals, and f(A, §)—~1/2
as 2-0.

Simulation results were given in [6] to illustrate the situation and to have a
picture on the function g(4, ), where the following estimators (T=1, 0%=1)
were taken:

. 1 & 1
m1=]_v'?éi’ 11-:—-——,

2 K
w ? (&i—my)?
7y, X, the maximum likelihood estimators,

2

_EO+EW) 4 _
N ORI O),

iy =2 A
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where &;=¢(i/N), (i=1,2, ..., N), £,=£(0). N was taken between 60 and 100
and n (the number of samples) was 1000. We have the following approximations:

g(2,0.05) ~ 1 if 1<0.5, (i.e., P(x(&)=0)=1 if 1=0.5 onlevel #=0.05),
2(1,0.05 ~1 if 1<4,
g(1,09) ~1 if 1<9,
g(4,095 ~1 if i<l12.

It seems that
g4, B) =~ e=* when i -0,

but this statement is not proved.

Theorem 2 can be reworded as follows: When the parameters p and i of
a stationary Gaussian Markov process are unknown, it is impossible to construct
finite confidence intervals for p using continuous functionals.

From the proof provided in [2] it can be seen that for any &=0 there exists
a A(e) such that for small values of A

sup P, (&) = pu}=1/2+4. 24P -5
A<dgp

4. Run length control and sequential estimation

Running a simulation less than its length would not provide the information
needed, while running it longer would be a waste of time, so it has great practical
meaning for the experimenter to have some preliminary estimation about the
accuracy requirements. We shall assume further, that this accuracy requirement
is specified by the half-width of the.confidence interval of the mean value, pu,
devided by the standard deviation, o,, of the process (7). In this section we will
describe the incorporation of the method of sections 2 and 3 into a sequential esti-
mation procedure. We shall show that one possible approach is that, when using
the approximation with continuous time we estimate the decay parameter 1 (and
so g¢) by given accuracy. This procedure uses the same amount of storage required
earlier but uses some new random time moments (the Markov moments) and
requires only a small amount of computing per output element.

Let us denote by ¢ the required relative half-width of the ratio u/o,, and by

=1—p the given confidence level, and X, _ s, the 1—(f/2)-quantile of the Gaussian
dlstrlbutlon

For given o, where 1 —a means the confidence level for g, to make small

the difference
X1—(8/2) [V1+ O1-@a V 140, ] -g 21)
V—ﬁ 1=, (@/2) 1— @alz _l, (

we shall take advantage of sequential estimation of ¢. For given a and ¢ let us
take H in such a way that (x, denotes the « quantile of normal distribution).

H ¢ (22)

< ——_——_—2 .
(xl—(a/Z)— a/2)
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Further, let us denote by

©(H) = inf{z: f E2(s)ds = H e, oc)}, 23)
the Markov moment and take °
=(H) 2
AH) = ——f £ dE() = _&(H)-&(0)— T(H) 4
2 f e dt

Then the following statement is true (see LIPTSER, SHIRYAEV [13], ARATO [4]).

Theorem 3. The sequential estimator MH) is normally distributed with
parameters

E i(H) =), DA(H))= % (25)

and it is efficient, i.e., it has minimal variance.
The calculated H depends on C, « and from the realization getting t(H)
for given ¢, f it is possible to check (compare with (21)).

5[/ Elan /] _,, oo
V(H) 1= 01— ) 1 =0y
where g=e=%4N, ], _ 0 =A(H)+x,._ (a,z)/]/— H. After the fulfilment of (26) one can
construct conﬁdence limits for the unknown mean pu.
To get some approximations for 7(H) one has to turn to the papers of Novikov

[151—{17] (see also LiPTSER—SHIRYAEV [13]).
Theorem 3 remains valid (under some natural conditions on a(t f)) if we

regard the process
dé(t) = Aa(t, EQ))dt+dw(D),

(see LIPTSER—SHIRYAEV [13] § 17.5).

A natural question arises whether the advantages of sequential estimators are
consequences of a rather long mean observation time E,;(t(H)). For general a(t, ¢)
this question is unsolved. The following statement is true (see Novikov [17]).

Theorem 4. For A=0 as T oo,

H\" JH T® iT
P(t(H) = T) 4[ T2] exp {_T—@+T} (1+0(D)), V1)
E,l‘t(H) =2[AH+2VH]+V8(A*H2+4)H)+2H. (28)
Further, if A*H oo, then
1 2 .
E,t1(H) = 2/1H[1+4/12H+o (/1211) ] (29)

and if 22H-0, then
E;t(H) = HY?[2.09+0.856.HY2+ 0 (A2H)]. (30)
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Note that remarkable fact that these results are in good agreement of those
simulation results which are published in HEIDELBERGER, WELCH {9}, [10] or
HEIDELBERGER [8].

Tables based on Theorems 3 and 4, one can construct easily.

Abstract

This paper intends to show that the method proposed by Kolmogorov in constructing confi-
dence limits for diffusion type processes gives a more simple and straightforward tool in run length
control of output sequences of stationary series than the spectral method. There exists an upgrowing
literature of the spectral method for construction confidence limits (see . g. the survey paper HEIDEL-
BERGER, WELCH [9]), and even software program packages were constructed on this basis. We show
that the Gaussian processes, when the computational requirements and storage remain low, can be
used as good approximations with the advantage that instead of simulation one can get exact formu-
las. The connection between run length control and sequential estimation methods are found and
some results of Novikov can be used. '
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A Theory of Finite Functions, Part I.
On finite trees associated to certain finite functions

By P. Ecsep1-TOTH

1. Introduction

1.1. Let A be a set of cardinality /, /cw, [=2. For n,mcw we set O®m =
={f|f: A"~A"} and O{" =) OP™. Certain subsets of OY™, in particular,

I neEow
of O, are interesting for the very different mathematical theories of algebra,
logic and computer science. For example, the celebrated result of I. Rosenberg
picks up some subsets when enumerating maximal closed classes of O [9]. Several
special types of functions such as monotone (unate) and symmetric ones play a role
in the theory of logic design [10], and in other applications of finite functions (cf.
e.g. Dedekind’s problem on freely generated lattices generated by finitely many
generators). In the common part of logic and computer science, e.g. in the theory
of theorem-proving and of semantics for programming languages, certain restric-
tions to logical formulae with prescribed forms seem to help in increasing efficiency [8].

1.2. One possible method for investigation the properties of these subsets is
to associate special finite algebras (or more precisely finite graphs and trees) to the
elements of OY™. There is a very common way of doing this: let the ““parse tree”
be associated to each function. By this correspondence several remarkable results
have been established. The parse tree, however, mirrors mostly the syntactical
features of the function at hand and very little can be learnt about the ‘‘semantics”
of the mapping by the parse tree only. Here we suggest another tree-representation
of finite functions — the valuation tree — and show the use by examples. Valuation
trees are compressed forms of valuation tables (generalized truth tables) of functions
(for /=2, see [5]). It should be mentioned that a more compact representation in
graph forms can also be given, cf. [1] for /=2. Trees, however, seem to be more
tractable in spite of or thanks to their redundancies. Clearly, valuation trees are
completely semantically oriented and designed to contain all information about
the action of a function.

1.3. The natural question arises' what kinds of trees are associated to certain
interesting subsets of OY™. Our main contribution in this first part of a series of
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papers Is to present a uniform graphical property, the level-homogenity, to answer
this question. As an illustration we apply the method for three well-known pre-
primal subsets of O(Q). In this paper we do not assume any algebraic structure
on A except the ordering relation. From the second part, however, we shall endow
some more operations to A, in fact, we suppose that A is a Post-algebra of order
! and apply the results obtained in Part I to this case. Actually, we shall develop
some optimization techniques for synthesizing Post formulae. Later parts are
devoted partly to complexity questions where several estimates are established
concerning the methods of Patt T and 11, and partly to different problems concerning
finite functions.

1.4. The organization of this paper is as follows. In Section 2, we overview
the notations used in this series of papers. In Section 3 we deal with trees and intro-
duce several notions and notations concerning them. Some notions of this section
will be used only in later parts, but is presented here for the sake of uniformity. Key
notion of these considerations, the level-homogeneous tree, will be introduced in
Section 4. This section deals with some auxiliary concepts, too. Finite functions
enter in Section 5 where, after a general representation theorem, we investigate
degenerate, order-preserving, value-preserving and permutation-preserving functions
in terms of trees.

We note that this paper is selfcontained, 1.e. no preliminary knowledge is assumed.

2. Preliminaires

2.1. Let o be the set of finite ordinals, @ is the empty set. If m€w, then we
make use of the following notations: {m}={0,1,...,m—1}, [m]={L,2, ..., m},
[01=0, [w]={1,2, ...}. Weshallfix 2=/<w;n, m€w and theset 4 of cardinality /.
Since A is finite, it can be identified with {/}. We shall usually use this identification.
From now on, the letters /, m, n, A will always refer to these fixed sets. Let < be -
the well-known total ordering on {/} (and thus on 4). We extend < to the elements
" of {I}" (henceto A") componentwise. The elements of the set O™ ={f|f: A"~ A"}
will be called n-ary 4-functions with m output. We make this concept independent
of arity by setting O§” =) O™, If f€0Y, then

neEo
= s f) where fi€0L for all i€[m]; ie. O =OPY™ (1)

If g40¢Y and g is a function (a meta-function) of n arguments, then
e,e, ... e,g will denote the application of g to the arguments e, e,, ..., e,. This
is to be distinguished from any application of a function f€0¢" which will be
displayed as fe, ... e,.

Let feO®Y. By f(x;/x) we mean a function in O$~%Y which is obtained
from f by substituting o for each occurrence of x; provided x; occurs in f,
otherwise let f(x;/a)=f, (and hence in OY{Y). f*(x,/ay, ..., X,/a,) denotes the
value of f under substituting its variables x,, ..., x, by «, ...,a, In due course.
In Part I we shall give a more detailed method for computing this value (by assuming
that 4 is a Post algebra).
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Af feO¢™, then we always assume that an ordering of variables occurring
in f, say xi, X, ..., X,, 1S fixed. This convention will be essential from Section 5.

Let feO$™. Then, for every n;>n, f can be considered as a function of
n, variables, i.e. f€O¢r™ (cf. subsection 5.2).

The cardinality of a set H is denoted by card H. ‘#H is the powerset of H.
If £ is a function defined on H and H’cCH, then f}H’ is the restriction of f
onto H’. Rangef and Domf denote the range and domain of the function f,
respectively.

We shall omit all indices without any remark unless confusion can occur. In this
paper O§"™ will be denoted by Of*™ to emphasize that no algebraic operations
are present on A4. All considerations apply for arbitrary m=0, however, for the
sake of simplicity, we often give definitions and assertions in the case m=1, only.
If generalization for larger m is not straightforward then we shall explicitly discuss it.

3. Trees

3.1. Let ¥V be an arbitrary set and ¢: ¥V —~{/+1}. The pair (V, ¢) is called
an l-ary pretree (ranked set). We set Ey ,={(v, i){veV Ai€[vg]}. The function
¢ is the rank function of the pregraph; ve is the rank of v in (V, ¢) provided
veV. Ey , is the set of edges. ,

The triplet T=((V, 0), 3, (¢1, .., &) is an m-rooted l-ary tree if and only if
(¥, 0) is an l-ary pretree; ¢: E~V;¢,...,8,6V and the following (Peano-like)
conditions are satisfied:

(i) o is a bijection.
(i) Range ¢ {e;li€[m]}=0.
(i) If ¥’V issuchthat {glic[m]}cV’ and [V'],CV, where V1. denotes
the closure of ¥’ under o, then ¥V’ =V.
The elements-of ¥ are called points of T; the point & (i€[m]) is the i-th root
and o is the successor function of T.

Note, that m=0 implies ¥ =@. We shall use the name leaf for an element
of 0¢~! (of a given tree), where ag~' denotes the total inverse of ¢ on a.
Clearly, card Vé[w] entails 0Op~*>0. From now on, we always assume that
card V€[w] and m#0.

We remark, that m-rooted trees are usually defined in a dlﬁ'erent way (cf. [2D).
The definition presented here is originated from C. C. Elgot et al. and is proved
equivalent to the more common one used in the literature in [6].

3.2. We define the immediate successors vD% and the successors vDp of
v in T as follows:

: D} = {v'|v€VAZi(i€[ve] Av' = (v, o)} @
an .
oDy = {v'|v'eVA@n€w, 3f: [n+1] ~V)(1f = vA(n+1) f = v'A
AV jED((+D) € (i) DD)}- ©)

In particular, v€vDy, ie. gD;#P provided i¢[m], and for all vcV, there exists
a unique i€[m] such that v€e;Dyr. The following assertion is immediate by defini-
tions.
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Lemma 1. Lei T be a tree and g€V, ic[m), furthermore assume that v€&Dy.
Then, there exist exactly one n (n€w) and exactly one f such that

1Lf = e A(n+1)f = s A(Yjeln]) ((+1) fe(if) DE) )
holds. .

If the conditions of Lemma 1 are fulfilled for v, then n and f, determined
uniquely by (4) and the remark preceeding the assertion, are called the level of v
and the derivation function of v, respectively. We shall use the notations, viy for
the level of v and vdy for the sequence (1f,2f, ..., (n+1)f), the derivation of
v in T. By a path we mean a derivation of a leaf v€0¢~. We shall denote the
set of all paths of T by Py. Clearly, card Py=card Og~'. Foreach p=(1f, 2f, ...
..y (n+1)f)€Py, there exist a unique i and a sequence (ky, ..., k,) such that 1f=g,
and for all j€[n], (jf, k)o=(j+1)f, hence we can use the pair (i, (k,, ..., k,))
to identify paths. Note, that the set of paths in T completely determines T, thus
P; and T can be identified and is actually done at several points of this paper.

3.3. We define T4, fthe level of T, as follows:
Th = n e (V€0 H)((vAr = n)A(3v€00 ™) (vAr = n))

i.e.,, TA is the least element of w such that every leaf of T has level less than
or equal to n. The tree T is exactly of level » if and only if

(V€0 ) (vAir = n).

3.4. The m-rooted i-ary tree T exactly of level n is complete if and only if
(YveV)(ve=I). It follows that in an m-rooted l-ary complete tree T,

card Pr=m-I"
The following observation is trivial but- very useful. !

Lemma 2. Let T, and T, be arbitrary m-rooted I-ary complete trees of level n.
Then T, and T, are isomorphic.

Let T be an m-rooted l-ary tree of level n and let h¢[n]. We say that T is
complete on level k if and only if (Vo€V ) (vi=h=vo=I).

3.5. Let 7, and T, be two m-rooted l-ary trees exactly of level n. We say
T, isasubtree of T, ifand onlyif Py, C Py, andforall p=(1f£, 2f, ..., n+1)f)€Py,,
if for some i€[m), (n+1)f€e;Dr,, then (n+1)f€e;Dr,. Note, that if T; is a sub-
tree of T,, then it may well happen that T, is not a subalgebra of T,, and vica
versa. If there is a subtree T’ in T, such that T’ is isomorphic to T, then we
say T, is embeddable in T,. Obviously, every m-rooted /-ary tree exactly of level
n is embeddable in an (m-rooted /-ary) complete tree. The embedding is, up to -
isomorphism, unique by definition and Lemma 2.

3.6. Let T be an m-rooted /-ary tree exactly of level n and let PcPy. P de-
fines, in the natural way, an m-rooted /-ary tree exactly of level n which is a subtree
of T, the subtree of T determined by P. This subtree is unique and we denote it .
by Toe.
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Let T be an m-rooted [-ary tree exactly of level n. Let p=(i, (k,, ..., k,))€ Pr,
q=(j, (s, ..., h,))EPr. We let p~ge(Vsc[n]) (k,=h). Clearly, ~ is an equi-
valence relation. Set p={qlg¢ PrAp~q} and Pr={p|p€P;}. The l-rooted l-ary
tree exactly of level n determined by P; is named the compressed form of T and
is denoted by T°. Let PC Py, then the subtree T§ of T determined by P is
called the compressed-subtree of T determined by P. Note, however, that this name
is a somewhat misleading: T§ is not a subtree of T in the very sense of 3.5.

3.7. Let T=((V, 0), 0, (&1, .-, £&,)) be an m-rooted l-ary tree of level n, v€0p 2.
Let us suppose that vA;=h, h<n. Let ¥, be a set of new points with cardinality

> I The tree TE=((VUV4, ), 0", (&1, --., &) is defined as follows: oV =g,
ig¢n—h]
and for all weV,, wo'=l; 6''V=0¢ and o is extended to ¥, in such a way that

TE is a tree (ftH denotes the restriction of the function of f to the set H).
Roughly speaking, the tree TF is obtained from 7 by identifying the root of
a l-rooted [-ary complete tree of level n—h to v. Let {v,,...,vC00~" be that
set of leaves, the level of which is strictly less than n. Let Ty=T and for every
relsl, T,=(T,_,)E. Then, T, is unique up to isomorphism and is called the extended
form of T, in notation TE. Clearly, TE is an m-rooted l-ary tree exactly of level n.

3.8. Let T be a complete m-rooted Il-ary tree of level n and define the index
Sunction 6: Pr—~{ml"} by the formula P
pd=(@{-DI"+ 3 k;- 1" ) &)

jeln]

where p is determined by the pair (i, (ky, ..., k,)). Clearly, & is a bijection, hence
for each k€{m-I"}, there exists p¢Pr such that pd=k. If p is determined by
the pair (i, (k, ..., k,)) then we shall make use of the following notations p=£kd 1,
(i, (ky, ..., kK))A=k, kA"1=(i, (ky, ks, ..., k,)). We use also the compressed index
Junction 6°: Pr—{I"} defined by

ps* = 3 k;In. (6)
Jj€ln) : i :

If ‘T is not complete but is exactly of level n, then 6=6P,, where & is the
index function defined on the complete tree in which T is embeddable. It is obvious,
that P; determines a unique subset of {m-I"}; the notations introduced above
apply in the natural way. If T is of level n but is not exactly of level n, then we
extend & as follows: 6F: Pr—~P{mi"}; for p=(1f,2f, ..., (h+1)f)ePr, let
poE={p’d|p’ € Pr=N\p'=(sy, Sp, ..., 5,41) such that for all je[h+1],5;=jf} It
follows, that if A=n, then péf=ps. :

SE, the extended index function, is well defined since & is a bijection. It follows
that 8% is injective as well and thus we can employ the natural generalizations of
(65)71, 474, 4 to those k which are in the range of §F.

3.9. Let T be an m-rooted /-ary tree. The pair (T, 1) is calied a terminated
(m-rooted, l-ary) tree if and only if =: Pp—{/}.

3.10. Let us define the following function é®: w--w'~1; for kéw let kEW=
=D, ED, .., ED,) where &0, i€[I—1] is the number of occurrences of i in
the /-ary expansion of k. Let T be an m-rooted l-ary tree exactly of level n. The
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pair (T, &) is called a é-augmented (m-rooted, l-ary) tree if and only if &: Pp—ow'™?
is defined by pé=(pds)E®. The following assertion can be proved by an easy
induction.

Lemma 3. Let (T, &) be a é-augmented m-rooted l-ary tree, p= Sl £+ D)f)e
€P; and pE=(¢Y, ..., EP). Then, for all sc[l—1), card {(jf, s)|jc(nIA(f, s)o=
=@+ 1)f}=¢€9. In other words, if p=(i, (ky, ..., k,)), then ¢& gives the number
of k; such that k;=s.

4. Homogeneous trees

4.1. Let T be a l-rooted l-ary tree exactly of level n; j€[n}. T is called
A-homogeneous (to shorten the term level-homogeneous) on level j if and only if

(Voy, 0,6V, Yh, ke[ID((14 = 0,4 = jAv, # vaA(vy, H)EE) =
= ((v5, )EE = k = h)). 0]
An equivalent formalization of (7) is the following
(Vo1, 026V, YERE[MN((nA = 024 = jAv, 5 vy) =
= (01, K)CE & (vp, K)EE)). (3)

T is A-homogeneous if and only if, for all j¢[n], T is A-homogeneous on level j.
Clearly, any path p€ P, considered as a tree, any complete tree and any tree exactly
of level 1 is A-homogeneous.

Let r bea binary relation on {/} and T a l-rooted l-ary tree exactly of level n.
We can extend r to paths of T by defining (p, q)€r« for all j€ln), (p;, g))€r,
where P=(pl: ---9pn)’ q=(ql’ sees qn)EPT

The following assertion, although it is trivial, gives some insight into the very
nature of A-homogeneous trees.

Lemma 4. Let r be an arbitrary binary relation on {l}, let T be a 1-rooted
l-ary tree exacily of level n, and let F denote the extension of r to Py defined
as above. Then for every pe€Py, the set {p’|p’€ PrA\(p, p"YEF} uniquely determines
a A-homogeneous subtree of T.

Proof. Tt follows that {p’|p’€P+A(p,p’)€F} defines a unique subtree of T;
let T, , denote this subtree, and let p=(k,, ..., k,). Letussuppose, that v;, 0,6V,
such that v,#v, and v,A=v,A=h for some h€[n]. Then, v,0=v,0 and for all
jelviel, (01, )EEU, kp)ere (s, HEE. But then ((vy, EE=(v,, JEE) (), kper,
hence T, , is A-homogeneous on level h. Being h arbitrary, we have that T, ,
is A-homogeneous.

If r is nonempty and total (i.e. Vx3y((x, y)€r)), then T, , is not empty.
We also note, that the converse of the lemma is not true; more precisely, if T, is
a A-homogeneous subtree of 7T, then it may well happen that there is no binary
relation r on {/} such that T;=T, , foran appropriate p€Pr.

In particular, if r is a partial ordering or is a non-trivial equivalence or
r={(x, nx)|xc{I}} where n is a permutation of {/} with I/g cycles of the same
prime length ¢, then T, , is A-homogeneous by Lemma 4. All of these relations
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are total so if r=@, then T,,=0 for any p€P;. This observation establishes
some links between A-homogeneous trees and (three) types of maximal closed classes
exhibited by Rosenterg’s completeness theorem. The main interest of this paper
is, however, to use A-homogeneous subtrees of a tree to portrait some elementary
properties of the function to which the tree at hand is associated by Theorem 13
below, hence we do not provide similar results for the other (three) types of maximal
closed classes. Instead, we-study fuirther A-homogeneous trees. The following
lemmata are immediate.

Lemma 5. Let T be a l-rooted l-ary tree exactly of level n. If T, is a A-homo-
geneous subtree of T, then there exists a maximal A-homogeneous subtree T, of
T containing Ty; i.e. Py CPp,C Py and T, is not a subtree of any A-homogeneous
subtree of T containing T, other than T,.

Note, that T, is not unique in general.

Lemma 6. Let T be a l-rooted l-ary tree exactly of level n, let r be a non-
empty reflexive binary relation on {l}. Then, for every pcPy, the tree T, , is the
unique maximal A-homogeneous subtree of T which contains p.

Proof. Since r is reflexive, p€Py,_ . ,1 homogenity and uniqueness follow
from Lemma 4. It remains to prove that’ is maximal. It is, however, trivial
by definition since if for some p’€ Py, (p, p )Er then p'€Py, ,, henceno A-homoge-
neous subtree of T exists which contains p and 7,, properly

4.2. Let T be a terminated m-rooted /-ary tree and let tc{l/}. T issaid'to be
t-homogeneous with respect to (in short w.r.t.) ¢ if and only if (VpePq)(pret).
T is called guasi T-homogeneous w.r.t.- ¢t if and only if

BprePr)(prd NV P EPD(p'Tdt = p = p')).

In particular, if t€{l/}, then T is t-homogeneous w.r.t. ¢ if and only if (Vp€&Pr)
(pr=t) and T is quasi t-homogeneous w.r.t. ¢ if and only if for all but one p in
Pr, pt=t.

Let T be a terminated m-rooted l-ary tree and let r be a partial ordering on
{I}; F is the expansion of r to Pr. T is t-increasing w.r.t. r if and only if

(Vp, p)((p, P)EF = (p1, P'1)ET).

Lemma 7. Let T be a 1-rooted l-ary terminated tree exactly of level n. Let
T, be a A-homogeneous subtree of T which is t-homogeneous w.r.t. some tC{l}.
Then there exists a maximal A-homogeneous subtree of T which contains T, and
is t-homogeneous w.r.t. t.

Lemma 8. Let T be a l-rooted l-ary terminated tree exactly of level n; let
r be a partial ordering on {l}. Then, for every p€P;, there exists a maximal
A-homogeneous subtree T, of T such that

(l) pEPTICPT,. CPT,

(i) 7 is 1—mcreasmg w.r.t. r.

Lemma 9. Let T be a l-rooted terminated l-ary tree exactly of level n; let
r be a nonirivial equivalence relation on {l}. Then, for every pEPy, there exists
a maximal -homogeneous subtree T, of T such that
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)] PEPTICPT CPT, .
(i) T, is r-homogeneous wr.t. r; ie (Vp, P'EPT,)((- p, peF=(pr, p"t)Er).

Note, that T, is not unique in general in either of the above three lemmata.
Proofs are immediate by finiteness of trees.

Lemma 10. Let T be a 1-rooted l-ary terminated tree exactly of level n. Let
T, be a J-homogeneous subtree of T which is t-homogéneous w.r.t. some t€{l},
and assume that for some v€Vy, , vAi=j and for kl, ko€{l}, ky#=ky, we have both
(v, k1)€E11 and (v, k))€Er,. Let p=(by,....b; 1, k1, 054155 b,) and gq=
=(bls cery b_’—-l’ kz, bl+19 ey n) Then’ pEPTlﬁqEPTl

Proof. Let wvy,0,€Vy,0h=v,d=h. Let p=(1f,2f,..,(n+1)f), g=
=(1g, 2g, ..., (n+1)g). Let us suppose that, hf =v,, hg=v,. Let the root of the
tree be &. Then 1f=¢=1g, moreover for h<j, hf =hg by simple induction.
For h=j, we have v,=v, and (v;, k))€Et,, (v, k)€Ey, by assumption. For
h>j, we have (v, b,)€Er,<(vy, b)€Ey, by A-homogenity.

Lemma 11. Let T be a 1-rooted I-ary terminated tree exactly of level n. Let
T, be a i-homogeneous subiree of T which is t-homogeneous w.r.t. some t€{l}
and is complete on level j for some j€[n]. Then every path of the form (by, ..., b;_,,
k,bjir,....b,) with fixed by, ..,bj_1,b;.1,...,b,€{l} and arbitrary kc{l} is
in Pr,.

Proof. 1t follows from Lemma 10 by an easy mductlon

Let tc{/} and define r, by

(VI LE(ID ((h, 1)er, < LEtALer).
Clearly, r, is an equivalence relation. The following assertion is immediate.

Lemma 12. Let T be a l-rooted I-ar)} tree exactly of level n. Let us fix tc{l}
and let p€ Py, qcPr. Then T, ,=T, ,(p,q)Er,.

It follows from Lemmata 4,5, 12, that r, determines a unique max1malr
A-homogeneous subtree of 7. We shall denote it by T,,.

4.3. Let T be a terminated £-augmented m-rooted l-ary tree. T is E-homo-

geneous if and only if
(Vaco' ) (Ire{IP(attciz™?).

4.4. Some further considerations concerning different types of homogenity will
appear in later parts. In particular, the notions of anti-A-homogeneous trees and
of combs will be introduced and investigated.

5. Representation of finite functions by terminated trees

5.1. Let f€O™™ and let T be an m-rooted l-ary complete tree of level n.
We define a terminated tree for f, T,=(T, 1), as follows. Let ke{mi"} be
arbitrary and k4-'=(i, (ky, ..., k,)). Then, let

(ko™ 1)T =f*Galkys s Xalkr). ®



On finite trees associated to certain finite functions 221

By Lemmata 1, 2, the definition (9) is correct.

Theorem 13. Let fcO{™»™. Then every m-rooted l-ary complete terminated
;;eeoil‘ fl)_(T 7); for f is isomorphic to a terminated tree T{=(T’,v), with
C n

Proof. 1t follows from Lemma 2 that any two m-rooted /-ary complete termi-
nated trees of level n for f are isomorphic. It is sufficient therefore to prove that
there exists a terminated tree (77, t"), for f with VO™V, which is m-rooted,
l-ary, complete and of level n. We define (77, 1) by recurrence. Let i€[m] and
&;=fi(xy, ..., x,) where f; is the i-th component of f. If g(x,/ky, ..., Xp_1/kn_1)Xs
Xpy1 ... X, is defined as a point of V' Neg; Dy on level £, then let

8lxi/ky, ...y xh—l/kh—l)xhxhji-l . xpe=l and gl/ky, ..., Xp—a/kn-D)XXnsr.. . Xu D=
= {g(xr/ky, s Xp_rfKn—1s Xu/K)Xp 41 - Xa|KE{}}
and for all ke{/},
(g(xl/kla coes Xy /Kh—) XpXpgq oo Xns k)a = g0aafky, ooy Xu/k) Xpsr - Xy

We stop this recursion on level n, where no point depends on any variables; i.e.
evely points on level n is of the form g(x,/k,, ..., x,/k,). The leaves of the tree
obtained are the points on level n. If p is a path in this tree, then pt” is defined
by (9). It is not hard to see that ¥ hence T'=((V, g), 0, (¢, ..., &,)) are well
defined. Clearly, T’ is m-rooted, l-ary complete tree of level n, and (T7,7’) is
for f.

The terminated tree 7/, defined uniquely up to isomorphism by Theorem 13
is called the tree associated to f (recall that T is defined after fixing an ordering
of the variables of f it is clear that T, depends heavily on this ordering). In the
sequel we simply write T, to denote the tree associated to f.

From now on in this section we shall assume that m=1. The general case can be
treated in a similar way at the expense of some complication of technical details.

5.2. Let feO™"V. fx,...x;...x, is partially degenerate in x; if and only if
for arbitrary bl, ...,bj_l,bj_H,.. b,e{l}, there exist k,, k,e{l}, k,#k;, such
that f*b;...b;_1kibjyy ... by=1" b1 b1k, b,+l .b,. If for all kl,kze{l}
this equatlon holds then f is called degenerate in x;. Let PD{Y and DY
denote the sets of functions (in Of~V) partially degenerate and degenerate in x
respectively. The set of nondegenerate functions is defined by ND™D=0{)—

U DJ(" ,1)
jelnl

Theorem 14. Let fcO™Y and let (T, ©)=T,. Then, the following two assertions
are equivalent. For jc[n], :

(@) fePD{™Y.

(i) For every maximal A-homogeneous subtree T, of T, which is t-homogeneous

w.r.t. some t€{l}, there exist ky, ky€{l}, ky#ky such that T, contains

. the edges (v, k) and (v, ky) for all veVy,, vl =J.

Proof. Let fePD{™Y and assume that 7, is a maximal A-homogeneous
subtree of T, which is 7-homogeneous w.r.t. some t€{/}. By definition, for all

7 Acta Cybernetica VI/2
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p,P'€Pr,, we have [*(p)= fA(p). Let p=(by, ..., b;,...,b)EPr,. Since f is
partially degenerate in x; and 7, is maximal, there ‘exists an ac{l} such that
a=b; and p'=(b,,...,aq, ..., b)EPy,. Let kl—b ky=a. Then we obtain, that

for some v on level j, (v, k,) and (v, k,) are in ET1 T, is A-homogeneous, hence
for all v'€Vy,v'A=j we have (v, k,)€Er, and (v, k))€ET,.

Conversely, assume that for every maximal A-homogeneous subtree 7; of
T which is t-homogeneous w.r.t. some t€{/}, there exist k,, k,€{/} such that
k,#k, and Er, contains (v, k,) and (v, k,) for all v€Vy, on level j. Let p=
=(b1, ..., b;, ..., b)EPr, be arbltrary By Lemma 7, there exists a maximal A-homo-
geneous subtree T, of T which is t-homogeneous w.r.t. pr. By assumption, there
exist kl,k2€{1} such that &k, #kg and (u k))€Er,, (v, k))€EEy, for all veVoq,
on level j. By Lemma 10, p’'= (bl,... ,...,b,,) and p”=(b1,...,k2,...,b,,)
arein Pr,. Then, by t-homogenity, f*b,...k,...b,=f*b,...k,...b,, hence fePD{"b.

Theorem 15. Let f€ O™V andlet (T,1)=T,. Then, the following two assertions
are equivalent. For j€[n],
(i) feD{™Y.
(ii) Every maximal A-homogeneous subtree Ty of T which is t-homogeneous
w.r.t. some t€{l} is complete on level j.

Proof. Let feD{™Y. Then, by definition, for arbitrary fixed by, ...,b;_,,
bjyis - be{l}, and for all kl,k e{l}, k1¢k we have f*b,...k;...b,=f*b,...k,...b,.
Consider all paths of the form (b,, ..., %, ...,b,) where k varies over {/}. It is
easily seen, that these paths gives rise to a )u-homogeneous subtree 7, of T which
is complete on level j. Clearly, any maximal A-homogeneous subtree T, of T
containing 7, is again complete on level j, hence those maximal A-homogeneous
subtrees of T which are t-homogeneous w.rt. some ¢{/}, namely w.r.t.
f*by..ky...b, and contain T, are complete on level j. Since by, b,,...,b;_4,
bji1, ..., b, are chosen arbitrarily, it follows that every maximal A-homogeneous
subtree 7, of T which is --homogeneous w.r.t. some ¢€{/} is complete on level ;.

Conversely, assume that every maximal A-homogeneous subtree 7; of T
which is 7-homogeneous w.r.t. some, t€{/} is complete on level j. Consider all
paths of the form (b, ..., k, ..., b,) for fixed by, ..., b;_1,b;,4, ..., b E{l} ‘and for
all ke{/}. These paths forma i- homogeneous subtree T, of T whxch is complete
on level j. But T is contained in a maximal A-homogeneous subtree of 7' which
is t-homogeneous w.r.t. some ¢ and complete on level.; by Lemma 11. It follows,
that f*b,..b;_,kb;,...b,=t for all ke{l}. '

Corollary 16. Ler f€O{™" and let (T,1)=T;. Then, the following two asser-
tions are equivalent:
(i) feND™D,
(ii) No naximal A-homogeneous subtree T, of T exists such that T, is t-homo-
geneous w.r.t. some t€{l} and complete on some level j, j€[n).

Degenerate and partially degenerate functions will be investigated further in the
next part [3].

5.3. Let f€O{™"Y. Let r be a partial ordering on {/}. fx;...x;...x, Is
r-preserving in x; if and only if for arbitrary by, ...,0; 1, 58,4, .. b E{l} and
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for all ky, k,€{l}, (ky, k2)€r entails
(f*by ... bj_ykibjyq ... by, f¥by .. b kobjyy ... b )ET.

It Xc{xy, ..., x,}, then we say that f is r-preserving in X if and only if f is
r-preserving in x; for all x;€X. f is called r-preserving if and only if fis r-preserving
in {xy, ..., x,}. We shall denote by MY, MP, M™D, the sets of functions

which are r-preserving in Xx;, in X and in X1s oees Xps respectively.

Theorem 17. Let fcO™V and let r be a partial ordering on {l}. Then, the
following two assertions are equivalent. For j€[n],
(l) feM(n 1
(i) For every p= (pl,. s Pjs s PR)€Pr,, the subtree generated by {qlg=
=(p1s o Qjs - PNy, q)Er Nq;€{1}} is t-increasing w.r.t. r.

Proof. Trivial.

Theorem 18. Ler fcO™Y, XC{xy, ..., x,}, X={x;,....x;} and let r be

a partial ordering on {l}. The following two assertions are equwalent

(1) fEM(”'l)
(“) FOI‘ every p= (pls . aph 1s pjl’p“’+1, ' ’pjk.—l’ pjk’p_[k+l, . 5pn)EPTf’ he
subtreegenerated by {gla=(p1, ..., pj,- ~1> Gju> Pjywts oo Pim1s Qino> D 15+

o PG, o 45, YNV sE[KD) ((p,s g, )€r)} is t-increasing w.r.t. r.
Proof. 1t follows from Theorem 17, by easy induction.

Theorem 19. Let f€O/™Y and let r be a partial ordering on {I}. Then, the
Sfollowing two assertions are equivalent:
(@) feMi»n. ‘
(i) For every p¢Pr,, the (unique) maximal A-homogeneous subtree of T,
generated by p and r is t-increasing w.r.f. r.

Proof. By Lemma 4, T,, is A-homogeneous and is obv1ously maximal.
Taking X ={x, ..., x,}, Theorem 19 follows from Theorem 18 since if p=

=(p15 cre pn), then T:, {qlq (ql, A qn)/\(VIE[n]) (ql {l}/\(pn I)Er) .
This characterization of r-preserving functions will be used later to estimate

the cardinality of M™% [4].
5.4. Let tc{/} and define \
D = {fIfeOf"V ANV a)(f*ac) (10)
the set of r-valued functions. We have immediately:

Theorem 20. Let fcO{™Y, tc{l}. Then, the following two assertions are
equivalent:

@) fer».

(i) T, is T-homogeneous w.r.t. t.

Theorem 20 will be used in later parts to establish strong decidability of some
finite-valued sentential calculi in which the elements of ¢ are designated and, using
some additional arguments, to prove the strong completeness of some finite-valued
predicate logics. )

7*
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Let tc{/}, and define
0/ = {f1/€0 DA€ {Y)(fad DAY b (f*bé 1 = b = a)}

the set of quasi t-valued functions. Elements of Q™" are natural generalizations
of functions associated to conditional sentences (Horn sentences, or quasi-equations)
of the two-valued propositional logic. They have almost all of the nice properties
of the two-valued functions associated to Horn sentences and hence it is of some
interest to characterize them by trees. We have immediately

Theorem 21. Let f€O{™Y and tc{l}. Then, the following two assertions are
equivalent:

(@) feQib.

(i) T, is quasi t-homogeneous w.r.t. r.

Let tc{/} and r, be the equivalence relation generated by 7. We set

Pt("'I) = {f|f€01("'1)/\(va: bE{l}")((a, b)er, '_"(f*a’ f*b)ert)}’

the set of t-preserving functions. The following claim is trivial.

Theorem 22. Let f€Of™Y and tc{l}). Then, the following two assertions are
equivalent:

(i) fepi™D. '

(ii) T,,, the subtree of T, determined by r, is 1-homogeneous w.r.t. r,.

55. Let feO™Y and n be a permutation of the set [n). f preserves m if
and only if for all ay, ..., a,€{l}, we have f*a,...a,=f%a,qy ... Gy Let
Seb={f|feofv and f preserves all permutations = of the set [n]}.

Theorem 23. Let f€O™V and let (T, 1) be a terminated ¢-augmented 1-rooted
l-ary tree associated to f. Then the following two assertions are equivalent:

(i) fes™b.

(i) (T, 7) is E-homogeneous.

Proof. The theorem follows immediately from the well-known fact [7], that
fES™Y o (Vacw'™L, Vp,, ps€a& = (py1 = pp1).
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