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On isomorphic realization of automata with a0-products 

Z. ESIK 

1. Notions and notations 

In this section we give a brief summary of some basic concepts to be used in 
the sequel. 

An automaton is a triplet A—(A, X, 5) with finite state set A, finite input set 
X and transition 5: AxX-»A. The sets A and X are nonempty. The transition is 
also treated in the extended sense, i.e., as a mapping AxX*—A, where X* is the 
free monoid generated by X. Take a word p£X*. The transition induced by p is 
the state map <5p: A—A with 6p(a)=5(a, p) (a£A). The collection of these transi-
tions forms a monoid S(A) under composition of mappings. We call S(A) the char-
acteristic monoid of A. 

The concepts as subautomaton, homomorphism, congruence relation and iso-
morphism are used with their usual meaning. Given an automaton A = { A , X , S ) 
and a state ad A, the subautomaton generated by a has state set {8(a, p)\pdX*}. 
An automaton (B, Y, 5') is an X-subautomaton of an automaton (A, X, S) if BQA, 
YQ.X and 6' is the restriction of 5 to BXY. The factor automaton of an automaton 
A with respect to a congruence relation 6 of A is denoted A/0. We write 0!<02 
to mean that is a refinement of 02 and 01^d2. An automaton is called simple 
if it has only the trivial congruence relations m (identity relation) and i (total rela-
tion). Thus trivial (i.e., one-state) automata are simple. 

Let Ai=(A;,Xi>Si)(i=l,...,n, nsO) be automata. Take a finite nonempty set 
X and a family of feedback functions (pt: AxX ...XA„XX-+Xt (i— 1, ..., n). By 
the product AxX ...XA„[Z, cp] we mean the automaton (AtX ...XA„, X, S), where 

S((au ..., an), x) = (<5i(ai, xj,..., 8n(an, xn)) 
with 

Xi = ( p ^ , ...,an,x) (i = 1, ..., li) 

for all (alt ..., an)£A1X...XAtt and x£X. The integer n is referred to as the length 
of the product. If, for every i, <pt is independent of the state variables ah ..., an, 
we speak about an a0-product. In an a0-product a feedback function (pt is alternatively 
treated as a mapping A1X...XAi_jXZ—Zj. Moreover, <pt extends to a mapping 
^ . . . X ^ I - I X I * - ! * in a natural way. 

1 Acta Cybernetica VIII/2 



120 Z. £sik 

Let Jf be a (possibly empty) class of automata. We will use the following 
notations: 

P a o ( j f ) :=al l a0-products of automata from X ; 
P l a o ( j f ) :=al l a0-products with length at most 1 of automata from 

S(Jf) :=al l subautomata of automata from Jf"; 
H(Jf ) :=a l l homomorphic images of automata from 
I(Jf) :=al l isomorphic images of automata from X 

Jf*:=the collection of all automata A—(A, X, <5) such that there is an 
automaton B=(A, Y, with the following properties: (i) B is an Z-subauto-
maton of A; (ii) for every sign x£X there is a word Y* inducing the same 
transition as p, i.e., S'P=5X. (Note that we have S'(A)=5(B).) 

We call a class J f of automata an a0-variety if it is closed under H, S and Pao. 
An a0-variety is never empty. An ofi-variety is an a0-variety ¿fwith . For 
later use we note that HSPao(jT) (HSPao(jr*)) is the smallest a0-variety (ao-variety) 
containing a class J f \ Similarly, ISPao(jT) is the smallest class containing X and 
closed under I, S and Pao. It is worth noting that SFlao(J^") contains all A-sub-
automata of automata in J f . 

A class is said to be isomorphically a0-complete for ¿f if 
The following statement is a direct consequence of results in [5] (see also [3], [4]): 

Proposition 1.1. If ¿f0 is isomorphically a0-complete for X and A£.3f is a 
simple automaton then AelSP l c t0(jQ. 

Thus, any isomorphically a0-complete class for J f must "essentially" contain 
all simple automata in j f . The converse fails in general, yet it holds for some impor-
tant classes: the class of all automata and the classes of permutation automata, 
monotone automata and definite automata are equally good examples (see [2], [3], 
[6]. [7], [9]). Isomorphically a„ -complete classes for the class of all commutative 
automata essentially consist of automata very close to simple commutative auto-
mata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton. 
On the other hand no finite subclass of nilpotent automata is isomorphically a0-com-
plete for the class of all nilpotent automata. Thus, the class of nilpotent automata 
is a counterexample. Isomorphically a0 -complete classes for nilpotent automata are 
studied in [8]. 

Some more notation. The cardinality of a set A is denoted \A\. The symbol E 
denotes the automaton ({0, 1}, {*„, jeJ, S) with ¿(0, x0)=0, <5(0, x^—Sil, x0)= 
=<5(1, *i)= 1. We call E the elevator. 

The relation of the a0-product to other product concepts is explained in 
[3]. The Krohn—Rhodes Decomposition Theorem gives a basis for studying 
a0 -products. For this, see [1], [3], [4]. 

2. Preliminary results 

Let A—(A, X, <5) be an automaton. As usual, we say that A is strongly con-
nected ii it is generated by any state a€A. Further, A is called a cone if there is a 
state a0£A with the following properties: 

(i) d(a0,x)=aa, for all x£X, 
(ii) A— {a0} is nonempty and every state a£A — {a0} generates A. 
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Obviously, the state a0 with the above properties is unique, whence it will be 
referred to as the apex of A. The set A— {a0} constitutes the base of A. It should 
be noted that every simple automaton is either a strongly connected automaton or 
a cone or an automaton ({a1; a2}, X, 8) with 8(ah x)—ah i— 1, 2, x£X. 

Theorem 2.1. Let JT be a class of automata with and 
j f * c J f . if EgJf then for an arbitrary class JT0) j f gISPao(Jf0) if and only 
if every strongly connected automaton and every cone belonging to J f is in 

Proof. The necessity of the statement is trivial. For the sufficiency let 
A=(A, X, <5) be an automaton in J f . We are going to apply induction on Ml to 
show that AiISPao(JT„). Since j f * g j f and ISPao(^f0) is closed under X-sub-
automata, it can be assumed that for every word p£X* there is a sign p£X inducing 
the same transition as p, i.e., S(a, p)—S(a, p) for all a£A. 

If \A\=l then A is strongly connected and A ^ I S P ^ j Q . Suppose that 
\A\>~ 1. If A is strongly connected or a cone then A€lSPao(.3Q by assumption. 
Otherwise two cases arise. 

Case 1: A contains a nontrivial proper subautomaton B=(B, X, 8) generated 
by a state b0£B. Let qQAxA be the relation defined by agb if and only if a—b 
or a, b£B. A straightforward computation proves that g is a congruence relation 
of A. For every state b£B fix an xb£X with 5(b0,xt)—b. Take the a0-product 

C = (C, X, 5') = A/eXB[I , <p], 
where (p1(x)^x, 

9A\ai> x) - [Xb if d(a,x) = b(LB 

and q>z{B, for every x£X and a£A—B. Set 

C' = {({a}, b)\b£B}. 

It is immediately seen that C'=(C', X, 8') is a subautomaton of C isomorphic 
to A. Since both A¡q and B are in X and have fewer states than A, we have A/q, 
BgISP a o (^) from the induction hypothesis. The result follows by the fact that 
ISPao(X0) is closed under I, S and Pao. 

Case 2: There are distinct states a1}a^A with 8(at,x)—ai, ¿=1,2, x£X. 
Define qQAxA by agb if and only if a=b or a, b£ {a1, a2}. Again, q is a con-
gruence relation of A. Let 

C = (C,X,<5') = AlQXE[X,(p] 

be the a0-product with cp1(x)=x, 

otherwise 

and <p2({ai,a2}> x)=*o> where and a(:A—{a1,a^. It follows that C'—(C, X, 8') 
with 

C ' = {({a}, 0)| a€A - {a,, a2}} U { ( K , a2}, 0), ({al5 a2}, 1)} 

1« 
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is a subautomaton of C isomorphic to A. Since Jf is closed under homomorphic 
images and A/q has fewer states than A we have A / g G l S P ^ j Q from the induc-
tion hypothesis. On the other hand, E € X and E is a cone. Thus E g l S P ^ j Q 
and we conclude A ^ I S P ^ J Q . 

Remark. Let ¿f be a class as in Theorem 2.1, i.e. J f , and 
Assuming E$ J f it follows that J f consists of permutation automata. 

(See the last section for the definition of permutation automata.) Every permuta-
tion automaton is the disjoint sum of strongly connected permutation automata. 
Now obviously, if jJf contains a nontrivial strongly connected automaton then 
Jf gISP a o(J^) for a class Jf0 if and only if A £ l S P a o p Q for every strongly con-
nected permutation automaton (Or even, the same holds if a0-product is 
replaced by the so-called quasi-direct product.) If in addition Jf is closed under 
Z-subautomata then, as we shall see later, j f Q ISP a o ( jQ if and only if every 
simple strongly connected permutation automaton in is already contained by 
ISP,-0 Suppose now that every strongly connected automaton in X is trivial. 
Then, if i f contains a nontrivial automaton, we have Jf Q I S P ^ j Q if and only if 
({0, 1}, {x}, 5)e iSP U o ( jQ with ¿(0, x )=0 and <5(l,x)=l. Further, s t QlSP a o ( sQ 
holds for every if ¿f consists of trivial automata. 

The following two lemmas establish some simple facts about homomorphic 
realization of cones and strongly connected automata in the presence of E. 

Lemma 2.2. Let A=(A, X, S) be a cone in HSP a o( jf U{E}). There exist an 
automaton DiP a o (^f ) and an a0-product DXE[X, <p] containing a subautomaton 
that can be mapped homomorphically onto A. 

Proof. Let B=CB, X, < 5 ' ) = B i X . . . X B n p f , b e a n a0-product with B ,6J iU 
U{E}, t=l,...,n. Let C—(C, X, S') be a subautomaton of B and h: C-»A a 
homomorphism of C onto A. We may assume C to be in a sense minimal: no proper 
subautomaton of C is mapped homomorphically onto A. 

Denote by aQ the apex and by A0 the base of A. Set C0=h~1(A0), C1=/i~1({a0}). 
Clearly then Cx=(C, X, ¿') is a subautomaton of C, and C is generated by any 
state a£C0. 

Let be all the indices t=l,...,n with B,£.3f. If 
(«!, ..., an), (blt ..., b„)£C0, we have a,= b, whenever /(f{/i, ..., i,} for otherwise 
C would not be generated by every state in C„. Let j\, {1, ..., n}— {/ls ..., ir} 
be those indices/such that for any (a1} ..., a„)€C0, at—0 i fandonlyif {j\, ...,js}. 
For every a=(alt ..., a^B^X ...XB,r put a=(au ..., an)£B with a^a^ ...,air= 
=a„ d j . . . = a}= 0 and a,= 1 otherwise. 

To end the proof we give an a0-product B'=Bj1X ...XBfrXE[Ar, \j/'] and a 
subautomaton C '=(C ' , X, 6") of B' such that A is a homomorphic image of C'. 
For every a€BhX ...XBlr, i= 0,1, x£X and j=l,...,r, define 

ipjia, i, x) = il/h(a, x), 

' l x 0 o t h e r w i s e . 
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Let C' be the subautomaton generated by the set 

{(a,0)\a£BtiX...XBir, a£C0}. 

Set C'x—C—Co. It is clear from the construction that states in C[ have 1 as their 
last components. Therefore, C[ is the state set of a subautomaton of C'. Moreover, 
for every (a, 0), (b, 0)eCi and x£X we have d"((a, 0), x)=(b, 0) if and only if 
5'(a, x)=B, while 8"{{a, 0), if and only if 8'{a, JC^CJ. It follows that A is 
a homomorphic image of C', a homomorphism being the map that takes each state 
in C[ to a0 and each state (a, 0)£C'0 to h(a). 

If A were strongly connected we would not need the last factor of the a0 -product 
B' either. This gives the following: 

Lemma 2.3. Every strongly connected automaton in HSPa o(jf U {E}) is con-
tained in HSPao(Jf). 

Let A= (A, X, 8) be a cone with apex a0 and base A0. Suppose that the rela-
tion q^AXA defined by aqb if and only if a—b=a0 or a,b£A0 is a congruence 
relation of A, which is to say that for every x€X either 8(A0, x)QA0 or 8(A0, x)= 
= {a0}. Set XQ— {x^|<5OI0, Assuming X^d, the automaton A„= 
— (A0, X0, 8) is a strongly connected X-subautomaton of A, which is guaranteed if 
\A0\=>-1. By definition, we call A a 0-simple cone if and only if Xo?£0 and A0 is 
simple. Thus, E is both a simple cone and a 0-simple cone. Given a strongly con-
nected automaton A0=(A0, X0, 80), there is a natural way to imbed A„ into a 
0-simple cone Ag: define Ag=(AU {a0}> X0U {x0}, <$) wherea0$A0> x0$X„, 8(a, x0)=a0 
for every a£A0{J{a0} and 8(a0, x)=a0, 8(a, x)=S0(a, x) if a£A0, xZX0. Obvi-
ously, Ag is 0-simple if and only if A0 is simple. 

If A is a simple cone (i.e., a simple automaton that is a cone) then A€lSP a o ( j f ) 
for a class Jf if and only if A£lSP lcI0(Jf). In the next statement we investigate 
what can be said about j f if ISP I 0 ( j f ) contains a 0-simple cone. 

Lemma 2.4. If a 0-simple cone A=Ag is in I S P ^ J f ) then either A£lSP l a o(Jf) 
or E€lSP lc (0(Jf) and there is an automaton D€ & such that A is isomorphic to 
a subautomaton of an a0-product of E with D. 

Proof. Let A0—(A0, X0, <50) and A = ( A , X , 5 ) so that A=A0U {a0}, X= X0\J 
U{x0} where a0$A0, X0, 5(a, x0)=a0 (a£A), 8(a0, x)=a0 and 8(a, x)=80(a, x) 
(a£A0,x£Xo). Since A e l S P ^ X ) there exist an a0-product B=(£ , X, <5')= 
=B1X...XB„[Ar, <p] (B,€JT, t= 1, ..., n) and a subautomaton C=(C, X, 8') of B 
such that A is isomorphic to C under a mapping h: A—C. We may assume that n 
is minimal, i.e., whenever an a„-product of automata from X contains a subauto-
maton isomorphic to A, the length of that product is at least n. 

Suppose that A$ISP l t (0(^f). We then have w>l. Let a=(a1) ..., a„) and 
b=(bx, ..., bn) be arbitrary states in C. For every t~ 1, ..., n, put ad,b if and only 
if a,=bt. Further, let agb if and only if a=b=h(a0) or a, b£h(A0). 
Each of these relations is a congruence relation of C, and since n is minimal, 
01>.. .^0„(=co) and O^i. Since A is 0-simple this leaves n=2, g and 62=co. 
It then follows that E is isomorphic to a subautomaton of an a0-product of Bi 
with a single factor and A is isomorphic to a subautomaton of an a0-product of E 
with B2. 
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Let Ag=(/40U{a0}, Z0U {x0}> 5) be a O-simple cone with Aa={Aa, X0, 60), 
and take an arbitrary automaton B= {B, Y, 8'). It is not difficult to give a necessary 
and sufficient condition ensuring that Ag is isomorphic to an a0 -product of E with B. 
Clearly this can happen if and only if there are a pair of functions h: A0—B, 
<p: X0—Y, a state b0£B and two not necessarily distinct signs ^ ( [ F such that: 

(i) h is injective; 
(ii) for every a1, a2£A0 and x£X0 we have 80(a1,x)=ai if and only if 

5'(h(pJ, (p(x))=h(a2); 
(iii) 8'(h(A0),y0)={b0}, 5'(b0,yi)=b0. 

If also b0$h(A0) and y0=yi then Ag is isomorphic to an a0-product of B with a 
single factor. 

3. The main result 

An automaton A=(A, X, 8) is called permutation automaton if Sx is a permuta-
tion of the state set for every x£X. This is equivalent to saying that dp is a permuta-
tion for every p£X* or that S(A) is a group. Let Jfp denote the class of all permuta-
tion automata. It is known that JfTp is an aj-variety, see [1]. Moreover, from the 
Krohn—Rhodes Decomposition Theorem we have ^ = H S P c t 0 ({A (G) | G is a simple 
group}) where the group-like automaton A(G) on a (finite) group G is defined 
to be the automaton (G, G, 8) with <5(g, h)—gh, g, h$G. 

Another class of automata we shall be dealing with is the class of all 
monotone automata. By definition, an automaton A = (A,X,8) is monotone if 
<5(a,pq)=a implies 8(a,p)—a, for all a£A and p,q£X*. This is equivalent to 
requiring the existence of an ordering S on A such that a^5(a, p) for all a£A 
and X* (or a^8(a, x) for all a£A and The class Jfm is known to be 
an ao-variety. Further, it is the a0-variety generated by E, i.e. J^,=HSPao({E}) 
(see [1], [10], [11]). 

Having defined the classes Jfp and Jfm , put J f p m =HSP^ (JiTp U J Q = 
=HSPao(^"pU{E})=HSPao({A(G)|G is a simple group}U{E}). It follows from 
Stiffler's switching rules that A€$Tpm if and only if there is an a0 -product B of a 
permutation automaton with a monotone automaton such that A£HS({B}). For 
this and other characterizations of the class $Tpm, see [1] and [10]. It is immediate 
from our definition that Xvm is an a0-variety. Or even, it is an oco-variety. 

Lemma 3.1. Let A be a strongly connected automaton. Then A€Jfp m if and 
only if Ae j r p . 

Proof. Use Lemma 2.3. 

Corollary. If A=Ag is a cone in C/fpm then A0 a strongly connected permuta-
tion automaton. 

Lemma 3.2. Let A=(A, X, 8)€JTpm be a cone with apex a0 and base A0. If 
8(a,p)=8(b,p)£A0 holds for some a, b£A0 and pdX* then a=b. 

Proof. From Lemma 2.2 it follows that A is a homomorphic image of a sub-
automaton C=(C, X, 8') of an a0-product BXE[Z, (p] where B is a permutation 
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automaton, say B=(j3, X1; 8J. Denote by h an onto homomorphism C--A. Set 
C0=/i_1(y40). We may assume that every state in C0 is a generator of C. Each state 
in C0 must have 0 as its second component since otherwise we would have CQBX {1}, 
and this would yield that C and A are permutation automata. 

Let (oj, 0), (bx, 0)eC0 with h(a1} 0)=a, /i(&i> 0)=b. Take a word q£X* with 
8{a,pq)=a. We have ¿(a, (pqf) = <5(6, (pq)") = a, and hence 8'({ax, 0), (pqf), 
8' ((¿i, 0), (/>?)")£C0, for all MS 1. Define r = <p1(pq). For every integer n g l w e have 
8'((au0), (pc/y) = (81(a1, r»),0) and <5'((Z>i,0), (/><?)") = (¿a (fca,/*),0), Since B is a 
permutation automaton, there is an n^ 1 with at = ¿i(fli, r") and b1 = 81(b1, r"). Thus 
we obtain a = h{a1, 0) — h(8' ({a,, 0), (pq)")) = h(8'((bu 0), (pq)")) = h(bu 0) = b. 

Theorem 3.3. Let Jf Q Jfpm be a class containing E, closed under X-subauto-
mata and homomorphic images and such that .Jf * <= JiT. A class is isomor-
phically a„-complete for j f if and only if the following conditions hold: 

(i) every simple cone and every simple strongly connected permutation auto-
maton belonging to X is in ISP l a o (^ ) , 

(ii) for every 0-simple cone A t h e r e is a B£JF0 such that Ag is isomorphic 
to a subautomaton of an a0-product of E with B. 

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary 
in virtue of Lemma 2.4. 

For the converse recall that Jf satisfies the assumptions of Theorem 2.1. There-
fore, by Theorem 2.1, it suffices to show that every strongly connected automaton 
and every cone belonging to Jf is contained by ISP0o(.3Q. 

Let A=(A, X, 8)€Jf be a cone with base A0 and apex a0. Since 
and ISPao(J^) is closed under X-subautomata, we may assume that for every p^X* 
there is a p£X inducing the same transition as p. If A is simple then A£lSP a o (^ ) 
by (i). If A is 0-simple then A is isomorphic to an a0-product Ag[X, cp] with a single 
factor where Ag£.3f is a 0-simple cone. (Recall that J f is closed under X-sub-
automata.) Therefore, we may assume that A is of the form Ag. Now, by (ii), A is 
isomorphic to a subautomaton of an a0-product of E with B where B£Jf0. Since 
E is a simple cone we have E£lSP l a o (^ ) . It follows that APlSPao(J^). Suppose 
that A is neither simple nor 0-simple. We proceed by induction on \A\. If \A\—2 
our statement holds vacantly. Let \A\>2. There exists a congruence relation ¿Meo 
of A such that aOb implies a=b or a,b£A0, and such that A0 contains at least 
two blocks of the partition induced by 0. 

Let C0—{a0}, Cx, ...,C„ (nS2, |Ci |> l ) be the blocks of 6. Since A is gen-
erated by any state in A0, from Lemma 3.2 we have the following: for every 

1, ..,«} there exists a word p€X* with 8(Ch p)=Cj. Consequently, for 
every /€ {1, ..., n} there is a pair of words (pt, q¡) with ¿(C1,/> ;)=C i, 8(Ch qd—Cx 
and such that ptqi induces the identity map on Cx while qtpi induces the identity 
map on Ct. 

Set X'={x£X\8(C,,x)QCnUC1}, C=(C 0 UC,, X', 8'), where 8'(c, x)=8(c, x) 
for all c£C0UCi and x£X'. Obviously, both A/0 and C are cones in J f . Fix a 
sign x0£X' with 8'(C1, x0)—C0. Take the a0-product 

B = (B, X, 8") = A/0XC[X, <p] 
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where cp1(x)=x and 

o ( c x ) - ( x o ^ 5(C„*) = C„ <РАЧ, x) - if 5(Ci,x) = Cj and i . j ^ O . 

It is easy to check that B'=(.B', X, <5") is a subautomaton of В where 

B ' = {(Q, a0)}U{(С,-, a) | i = 1, .. . ,n, a€C t}. 
Further, the map (C0, a0)^a0, (С„а)<->-5(а,рй ( i = l , ..., n, a€Cj) is an isomor-
phism of B' onto A. Hence the result follows from the induction hypothesis. 

Suppose now that A=(A , X, is a strongly connected automaton. From 
Lemma 3.1 we know that A is a permutation automaton. Just as before, we may 
assume that for every pdX* there is a sign p£X with dp—Sp. If A is simple then 
A6lSP l t [0(X) £ ISP a o ( j f ) . Otherwise let в be a congruence relation of A different 
from со and i. Denote by C l 5 C„ (n~2, |Ci |> 1) the blocks of the partition 
induced by Q. Set X'— {x£X\S(£i, JC)=CJ}. One shows that A is isomorphic to an 
a0-product of А/в with C, where С =(С1,Х',д'), 5'(c, х)=ё(с, x) (с$_Сг, x£X'). 

We note that a substantial part of the above proof as well as the proofs of 
Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]). 

Corollary. Let be closed under X-subautomata and homomorphic 
images and suppose that If Ж contains a nontrivial strongly connected 
automaton then a class Jf0 is isomorphically a0 -complete for Ж if and only if 
A€lSP l a o(X) holds for every simple strongly connected automaton A in Ж. 

Let f be a nonempty class of (finite) simple groups closed under division. 
(Recall that Gy divides G2 for groups Gt and G2, written GX\G2, if and only if Gt 
is a homomorphic image of a subgroup of G2.) Denote by X(<3) the class 
HSPao({A(G)|G£^}); is an aj-variety contained in Xp. It follows from the 
Krohn—Rhodes Decomposition Theorem that every ao-variety of permutation auto-
mata is of the form J f ( ^ ) except for the aj-variety consisting of all automata (A, X, <5) 
such that dx is the identity map for each x£X. Moreover, if ^ contains a nontrivial 
simple group then for every permutation automaton A we have if and 
only if G|S(A) implies for simple groups G. Since also 
Xm(&)=HSPao(X(&)UЖт)ЯЖрт. We obviously have 

jrm(30 = HSPao(X(^)U{E}) = HSPao({A(G)|G€^}U{E}). 
Thus, is an a0-variety in Жрт, or even, it is an aj-variety. 

Corollary. j f m ( ^ ) g i S P I o ( j f ) if and only if the following hold: 

(i) for every simple cone A€Jfm(^) we have A£ISP l c I0(jQ, 
(ii) for every 0-simple cone AS6Xm(&) there is а B£X0 such that Ag is iso-

morphic to a subautomaton of an a0-product of E with B. 
Proof. Use Theorem 3.3 and the following fact: every simple strongly con-

nected (permutation) automaton in ЖтСЗ) is isomorphic to an X-subautomaton of 
a 0-simple cone Ag in 

Corollary [2]. A class X0 is isomorphically a0-complete for Xm if and only 
if E€lSP l a opf0). 
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Proof. Let 0 be the class of trivial groups. We have On the 
other hand, every cone in is similar to E. More exactly, if A£ is a cone then 
A is isomorphic to an a0-product in Plao({E}). 

An automaton A=(J, X, <5) is called commutative if ő(a, xy)=ö(a,yx) for 
all a£A and x,y£X, i.e., if S(A) is commutative. Denote by Jf the class of all 
commutative automata; Jf is closed under X-subautomata and homomorphic 
images. Moreover, Jf and XQJiTpm. For a prime p> 1 let Cp be a fixed 
automaton of the form A (Zp)c, where Zp is the cyclic group of order p. Every simple 
commutative automaton is in the class ISP l t [0({Cp |p> 1 is a prime}), and every 
0-simple commutative cone is in ISP1I0({C£|/>>1 is a prime}). 

Corollary [7]. A class is isomorphically a0-complete for the class of all com-
mutative automata if and only if the following hold : 

(i) E€HSP l ao(jf0), 

(ii) for every prime p> 1 there is an A£JfT0 such that Cp is isomorphic to a 
subautomaton of an a0-product of E with A. 

Abstract 

Every isomorphically a„ -complete class for a class Jf"of automata must essentially contain all 
simple automata belonging to In this paper we present some classes Jf"for which also the con-
verse is true, or isomorphically a0-complete classes can be characterized by means of automata 
in close to simple automata. 
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On metric equivalence of vrproducts 

F . GECSEG a n d B . IMREH 

In [7] it is shown that the v3-product is metrically equivalent to the product. 
Here we strengthen this result by proving that already the vx-product is metrically 
equivalent to the general product. It is also obtained that, if a class X of auto-
mata is not metrically complete for the product, then HSP9 (X)=HSPVl (X). 

In this paper by an automaton we mean a finite automaton. The only excep-
tions are varieties of automata; they may contain automata with infinite state-
sets. For all notions and notations not defined here, see [1], [7], [8] and [9]. 

We start with 

Lemma 1. If a finite class X of automata is not metrically complete for the 
product, then every finitely generated automaton 2I=(X, A, 5) from HSPPV l ( j f ) 
is in HSPVl(X). 

Proof. First let us note that the concept of the vx-product can be generalized 
in a natural way to products with infinitely many factors, and every automaton 
in PPVl(X) is a Vi-product with possibly infinitely many factors. Thus, take a 
Vi-product 

® = (X, B, 5') = n 9, y] 

with \X\ = m and %=(Xi, Ait SJZX (i€I). Let {alt ..., an} be a generating set 
of 91. Suppose that a subautomaton of © can be mapped homomorphically onto 
91, and let b; be a counter image of at (z'= 1, ..., n) under this homomorphism. 
Denote by iB'=(X, B', S") the subautomaton of S generated by {bls ..., b„}. 
Moreover, set w=max {\Ai\ /£/} and v—\X\. Let k^O be a fixed integer such 
that, for arbitrary C ^ Z e , C, Se)£X, c£C, p£Xt with \p\^k and xlt x2£Xe, 
cpx1=cpx2. (Since X is not metrically complete, there exists such a k.) We shall 
show the existence of a vx-product S = ( Z , B, 5) of automata from {9Ij|/€/} with 

mk+1— 1 
a number of factors not exceeding vu"', where t = — if 1, and t=k+1 

m— 1 
for m= 1, such that a subautomaton W=(X, B\ 5') of S is isomorphic to S ' . 

Define the binary relation g on / in the following way: i=j(g) (i, j € I ) if and 
only if 2Ij— % and ¿¡(pr; (br), <Pi(br, p))=5j(prj (br), (pj(br, p)) hold for arbi-
trary r (1 S r S n ) and p£X* with \p\^k. By the choice of A:, ¿¡(pr^b,.), <Pi(br, q))= 
= ^(pry- (b,), (pj(br, q)) is valid for any r (1 S r S n ) and q£X*. Moreover, since 



130 F. Gecseg and B. Imreh 

t is the number of words over X with length less than or equal to k, we have at most 
w/" ^-classes. From every g-class take exactly one element, and let {/'j, ..., /",} be 
their set. Form the -product 

» = (X, B, S) = IJ(%\j = 1,.... <?>', y'] 
in the following way: 

(i) For every j (1 y'(i,.)=0 if y(iy)=0, and /(/,-)= {iyi} (¿€{1, ...,/}) 
if ?(«/)={M and ih=h(o). 

(ii) For every j ( 1 ^ / ) and x€X, <p'h(x)=<ph(x) if y'(i,) = 0. 
(iii) For every j (1=§ /==/), if y'(ij)= {/jJ, then (p'^a, x)=q>i.(a, x) (a£At. , 

xZX). 
Moreover, let B,- (i— 1, ..., n) be those states of S which, for every j{= 1, ...,/), 

satisfy the equality pr f j (B,)=pr;^ (b,). Denote by B', 5') the subautomaton 
of ® generated by {b1; ..., b„}. Moreover, consider the mapping rp: B'-*B' given 
by \p(bip)~hip (pdX*, i= 1, ..., «). Clearly, ij/ is an isomorphism of SB' onto S ' . • 

Lemma 2. If a finite class X of automata is not metrically complete for the 
product, then the equality HSPPa (X)=HSPPV l (Jf) holds. 

Proof. Obviously, HSPP n (^f ) g HSPP9(Jf). Thus, it is enough to show 
HSPP f l(Jf) iHSPPV l(^f) . This latter inclusion holds if and only if H S P P 9 ( X ) n 
r\Jfx gHSPPVl for all input alphabet X, where J f x is the similarity class 
of all automata with input alphabet X. Since automata identities have at most two 
variables, HSPP9 (X)C\X x =HSP ({3t2}), where 2I2 is a free automaton of the 
variety HSPP9 ( j f ) Pi generated by two elements. Let 2Ii be a free automaton in 
HSPP g (Jf) r \Jf x generated by a single element. One can show that every finitely 
generated automaton in HSPPg(jf)f)Jfx is in HSP9(Jf), 3I2 can be represented 
homomorphically by a quasi-direct square of or by a quasi-direct product of 
SIj by a two-state discrete automaton with a single input signal depending on the 
forms of the ^-identities holding in 3I2 (see the Theorem in [3] and the proof of 
Theorem 2.1 from [5]). Since every finitely generated automaton from HSPPO0(JT) 
is in HSPO0(JT), by the Theorem of [3] and Proposition 12 from [4], if a two-state 
discrete automaton is in HSPP9(Jf) then it is in HSQ(j f ) , where Q is the quasi-
direct product operator. Therefore, to prove HSPP ? (Jf)Q HSPPVl(Jf) it is suffi-
cient to show that 3lj£HSPPVl(jf) for an arbitrary input alphabet X. By the proof 
of Theorem 2 of [7], we may suppose that there is a largest positive integer t such 
that for an automaton (£=(X, C, <5C) in J f , a state c£C and a word r£X* with 
\r\ = t— 1 the state cr is ambiguous. 

Assume that the identity zp=zq (p, qdX*) does not hold in 0ll5 where z is a 
variable, p=x1...xkxk+1...xm, q=x1...xkyk+1...yn, and xk+1^yk+1 if m,n>k. 
If m,n^t, or m<t and nSi , then by the proof of Theorem 2 in [7], zp=zq is 
not satisfied by PV l(jf) . Thus, we may assume that m, n^t._ 

Since «TjeHSPP^X), there are an automaton 91=(X, A, 5) in J , a state 
a0£A and two words p'—x'i...x[x'i^1...x'm, q'=x1...x'iyi+1...y'„ in X* such that 
a0p'7±a0q', l^k and xl+1?±yi+1 if m, n>l. We shall_suppose that there are no 
words p=x1 . . .x ,x r + 1 . . .xm and q=x1 . . .x ry r + 1 . . .y„ inX*with a 0p^a 0q and r ^ l . 
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Let ai=a0x'1...x'i (i=\, ...,iri) a n d 

... x'i if 1 S i ^ l , 
,a0xi ... x',yi+1 ...y'i if 

In the sequel we can confine ourselves to the case m, n>l. Assume to the contra-
ry, say m=/. Consider the vt-product S = B, <5')=9I[Ar, <p, y] with y(!)={!}, 

where u is the largest index for which the states b0, ...,b„ are pairwise distinct, 
and (p is given arbitrarily in all other cases. Observe that if b—bj for 0 S i < j S n 
then 5(br, x')=5(br, y') for arbitrary r^i and x, y'dX; otherwise Jf would 
be metrically complete for the product. (This observation will be used silently through-
out the paper.) By the construction of ffi, a0p<B=a0p'm and a0q<s=a0q^. Therefore, 
floPsB^flo?®-

We say that am and b„ induce disjoint cycles, if the subautomata generated by 
am and bn are disjoint. Otherwise they induce the same cycle. 

Let us distinguish the following cases. 
Case 1. The states am and bn induce disjoint cycles. By our assumptions on p' 

and q', {al+1, ..., ..., fcm}=0. Let ux ( 0 S u ^ r n ) be the largest index 
such that the elements a0,a 1; ..., aui are pairwise distinct. The number w2 (0^«2<w) 
has the same meaning for b0, bly ..., bU2. 

Take the v2-product 

and in all other cases (p is given arbitrarily. Take b=(a i_ i). Then bp= 
= (ai-kxi_k+1...x'mxl-k) and bq=(a l .kx' l_k + 1 . . .x' l y'i+1...y'nxl~k), where x£X is 
arbitrary. (Remember that m , n ^ t . ) Therefore, bp^bq. 

Case 2. The states am and bn induce the same cycle, i.e., in the intersection of 
the subautomata generated by am and bn there is a cycle C of length w. We distinguish 
some subcases. 

Case 2.1. m ^ n (mod w). Then w> 1. Take an arbitrary vx-product 
23 = (X, A, 5') of 21 with a single factor. In ©, for any c£C, we have cp^cq. 

Case 2.2. m=n (mod w). Some further subcases are needed. 

Case 2.2.1. am,b„£C or m—n. 

If {fli+i, ..., flm}n{fc/+i, ..., b„}=&, then let ux ( O ^ u ^ m ) be the largest 

(pQ>l,xi+1) = x'i+1 (i = 0, ..., min {m-1, «}), 

(P(bi,yi+1) = y'i+1 (i = I, . . . , min { « - 1 , u}) 

where 
© = (X, B, 5') = 91 [X, <p, y] 

7(1) = {1}, 
cp(a^k+i, xi+1) = xl_k+l+1 (O^iS Ui+fe-Z), 

<P(bl+i,yk+i+1) = y[+i+1 (O^iS m2-0, 
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index such that the elements a0, alt ..., aUl are pairwise distinct. The number u2 
(0SM2</I) has the same meaning for b0,b1, ..., but. 

Take the -product 

S = (X, B, ¿0 = (MX...XM) [X , cp, y] 
l—k +1 times 

where 
7(1) = {1}; 7(0 = 0-1} 0 = 2, ..., l — k+1), 

<Pi("i-k+i, *,+i) = (0 S i g Ux + k — I), 

<Pi(bi+i, yk+i+1) = yi+t+1 (0 S i S i / 2 - 0 , 

and for every j(=2, ..., l—k+1), 

Vjfai-k-u-v+i, *.+i) = >+i (0 S i s th-l+k+j-2), 

w(b v i Lf O ^ i ^ j - 2 ^fc+i+l) ~ tj;/_(j._2) + . if j — 2 < i S U2 — l+j —2, 

and in all other cases <p is given arbitrarily in accordance with the definition of the 
Vj-product. 

Take b=(a,_i)a,-k_1, ..., a0). Then bp=(a,_kp0, ..., a0p^k) and 
tfi-*-i<7i> • aoh-k) where, for every j(=0, .„, l-k), Pj=x',_k_J+1... 

...x'mxl~k~3 and qj=xi_k_j+1...x'iyi+1...y'„xl-k-J, and x£X is arbitrary. Thus 
Pi-k-/ and qi-k=<l', implying bp^bq. 

If {a l+1, ..., am}n{fc /+i, ..., then let r ( / + l S r S w ) be the least index 
for which there is a bj with ar=bj. Moreover, let s ( /+ l S J S n ) be the least index 
such that bs=ar. Then r?±s, since in the opposite case p—x'1...x'rx'r+1...x'm and 
q=x'1...x'ry'r+1...y'n would contradict the choice of p' and q'. Assume that r<s. 
Let u ( 0 s « < m ) be the largest index for which the states a0, ..., au are pairwise 
distinct. Take the vx-product 

» = (X, B, 5') = (gtx...XM)[JT, cp, y] 
l—k+1 times 

where 
7(1) = {1}; y(0 = 0 - l } ( 2 S i S / - f e + 1 ) , 

<Pi(a,-k+t. * i + i ) = x!-k+l+1 (0 S i S u+k-t), 

<PiQ>i+i, yk+i+1) = yi+t+i (0 S i S r-T), 

and for every j ( = 2 , ...,/—fc+1), 

<Pj(ai-k-u-2)+i> xt+i) = )+« (0 s i s u-l+k+j-2), 

a (h v \-ix'-U-»+t i f O S i S j - 2 , 
l^i-0-2)+i 11 J r — l+J—2, 

and in all other cases <¡9 is given arbitrarily. Take the state 

b = (a<-*> ai-k-1» ..., 
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Then b . . . , b ' i _ k l a0p') and bq=(b'{, ..., b"_k, a0x'1...xiy'i+1...y'rq) where q£X* 
satisfies the equality [q\=n—r. One can easily check that a0p' ^a0x[...x'iy'i+1...y'rq. 
Indeed, in the opposite case let q' be thejnitial segment of q with length m— r if 
m^n, and otherwise let q'—qq, where q£X* is arbitrary with \qq\=m—r. From 
our assumptions it follows that a0x'1...xiyi+1...y'rq/9ia0q'. Therefore, by r > / , 
the pair x'i...x[y'i+i...y'rq', q' contradicts the choice o f p ' and q'. 

Case 2.2.2. m?±n and at least one of am and b„ is not in C. 

Case 2.2.2.1. None of am and b„ is in C and m-<n. Then the states b0, ..., b„ 
are pairwise distinct. Take the V!-product 

SS = {X)B,8') = yi[X,<piy] 
where 

7d ) = 0 ) , 

tu \ fxt+i if 0 = * < 
l j i + 1 it l s i < m, 

ru \ ixUi i f fc ^ i < 
l-j. + l II » = I < n, 

and (p is given arbitrarily in all other cases. Taking b=(Z?„) we obtain bp=(bm) 
and bq={b„). 

Case 2.2.2.2. am$C, b„£C and n > m ; or am$C, b„£C and n-^m. The states 
ag, alt ..., am are pairwise distinct. Take the -product 

® = (X,B,5') = M[X>(p,y] 
where 

7(1) = {1}, 

<7>0;, * i + i ) = *i'+i (0 = i < m), 

Ji+i) = x',+l (k ^ i < min {m, n}), 
and (p is given arbitrarily in theremaining cases. Let b=(a0). If n>m, then bp=(am) 
and bq—{amxn-m), where x£X is arbitrary. Obviously, am9iamxn~m, since in the 
opposite case flm6C. If n<m, then bp=(am) and bq=(a„). • 

Remark. Let X be an arbitrary class of automata. In [3] it is shown that if 
an identity does not hold in an infinite product of automata from X , then there 
is a finite product of automata from JT which does not satisfy the given identity 
either. (See also [2], where this result is generalized to automata with infinite input 
alphabets.) Moreover, by Theorem 1 of [7], the vx-product is equivalent to the 
product as regards metric completeness. Therefore, if X is metrically complete 
for the product, then none of the nontrivial p-identities holds in HSPPV1(JT). Thus, 
using Lemma 2, we obtain that HSPP9 ( J f )=HSPPV l (X) for arbitrary class of 
automata. However, Lemma 2 will be sufficient to prove our main result. 

By Lemmas 1 and 2, we obtain 

Corollary 3. If a class c/C of automata is not metrically complete for the product, 
then HSP 8 (J f )=HSP V l ( j r ) . 
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Proof. The inclusion HSP ? 1 ( . j r )gHSP 9 pf ) is_obvious. If Ui<EHSP9(X), 
then there exists a finite subset Jfsuch that 9lCHSPfl(JT). Therefore, by Lemmas 1 
and 2, 9l£HSPVl(X). • 

Let us note that by the proof of the Theorem in [6], H S P I 0 ( J f ) = H S P 9 ( j f ) 
if J f is not metrically complete for the product. Thus, for such classes J f , the equality 
HSP a o (X)=HSP V l (X) holds, too. 

Now we are ready to state and prove the main result of the paper. 

Theorem 4. The vx-product is metrically equivalent to the general product. 

Proof Let Jf be an arbitrary class of automata. If J f is metrically complete 
for the product, then by Theorem 1 in [7], X is metrically complete with respect 
to the vx-product. If X is not metrically complete, then HSPg (X)=HSP V l (Jf) , as 
it is stated in Corollary 3. • 
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On arproduct of tree automata 

F . G^CSEG a n d B . IMREH 

In the theory of finite automata it is a central problem to represent a given 
automaton by composition of — possibly simpler — automata. The composition 
of tree automata has received little attention. Namely, the cascade product of tree 
automata was studied in [4] and the work [5] contains the investigation of the gen-
eral product of tree automata (see also [1]). In this paper generalizing the notion of 
a rproduct (cf. [2]), we introduce the af-product of tree automata, and using the 
idea in [3] give necessary and sufficient conditions for a system of tree automata 
to be isomorphically complete with respect to the arproduct. From the charac-
terizations of complete systems we obtain the a,-products constitute a proper hier-
archy. 

1. Definitions 

By a set of operational symbols we mean the nonempty union X = J 0 U i i U . . . 
of pairwise disjoint sets of symbols, and for any nonnegative integer m, Zm is called 
the set of m-ary operational symbols. It is said that the rank or arity of a symbol 
o£Z is m if <r€£m. Now let a set Z of operational symbols be given. A set R of 
nonnegative. integers is called the rank-type of Z if for any m, 2'mT£0 if and only 
if m^R. Next we shall work always under a fixed rank-type R. 

Let Z be a set of operational symbols with rank-type R. Then by a Z-algebra 
si we mean a pair consisting of a nonempty set A (of elements of si) and a mapping 
that assigns to every operational symbol o£Z an m-ary operation Am—A, 
where the arity of a is m. The operation a* is called the realization of a in si. The 
mapping <r-«-ffj/ will not be mentioned explicitly, but we write sf=(A, Z). The 
Z-algebra si is finite if A is finite, and it is of finite type if Z is finite. By a tree auto-
maton we mean a finite algebra of finite type. We say that the rank-type of a tree 
automaton si=(A, Z) is R if the rank-type of Z is R. Let us denote by the class 
of all tree automata with rank-type R. 

Now let i be a fixed nonnegative integer, and let 

= lR, sij = (Aj,Z%ZtR ( j = 1,..., fc). 

Moreover, take a family \j/ of mappings 

ijfmJ: (A1X...XAk)mXZm - Zi, m£R, 1 ^ j S k. 

2 Acta Cyberaetica Vm/2 
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It is said that the tree automaton si is the a rproduct of (j= 1, ..., k) with 
respect to ф if the following conditions are satisfied: 

(1) A — П At, 
«=i 

(2) for any m£R, j£{l,...,k), 

((au, ...,au), ...,(aml, ..., amk))e(A1X...XAk)m 

the mapping ij/mJ is independent of elements o„ ( l S r S m , j+ i^s), 

(3) for any m£R, o£Im, ( (аи , ...,alk), ...,(aml,..., атк))е(А1Х...ХАк)т, 

ff*((an, ..., a u ) , ..., (aml,..., О ) = К Ч Й Ц , • О . <^кк(а1к, ..., атк)), 

where 
"J = Ymjiio 11, •••» fll*). •••> («ml. flj. ff) ( j = 1. ••-. к). 

к 
For the above product we shall use the notation ] J ф) and sometimes 

j=i 
we shall write only those variables of i¡/m, on which ф т ] depends. 

i _ i _ 
Finally, we shall denote by [yn ] the largest integer less than or equal to ^n . 

2. Completeness 

Let i be a fixed nonnegative integer and 93g9IK . S is called isomorphically 
complete for 9lK with respect- to the a rproduct if any tree automaton from 9IR 
can be embedded isomorphically into an a rproduct of tree automata from 83. 
Furthermore, SB is called minimal isomorphically complete system if 93 is isomor-
phically complete and for arbitrary 93, is not isomorphically complete. 

For any natural number n>0 let us denote by á?„=({0,..., n— 1}, 0") the 
tree automaton where for every m-ary operation q: {0,...,«—l}m—{0,...,«—1} 
there exists exactly one o£0"m with aprovided that m£R. 

The following statement is obvious. 

Lemma. If 9ÍR ( / = 1, 2, 3) and si} can be embedded isomorphically into 
and arproduct of with a single factor (j= 1, 2) then can be embedded 
isomorphically into an cerproduct of «s/3 with a single factor. 

First we consider the special case R= {0}. Then the following statement is 
obvious. 

Theorem 1. 93 Q 91* is isomorphically complete for 91* with respect to the 
a rproduct if and only if there exists an 33 such that 382 can be embedded iso-
morphically into an a¡-product of si with a single factor. 

Now let us suppose i? {0}. Then the results of completeness is based on 
the following Theorem. 

Theorem 2. If the tree automaton 38„ (n=>l) can be embedded isomorphically 
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k 
into an a rproduct ]J sij{d", t/0 of the tree automata s i j £ ( j = 1, ...,k) then 

7=1 

^[i»^-] 0311 be embedded isomorphically into an a rproduct of si} with a single factor 
for some {1, k), where i*—i if 0 and i * = l else. 

Proof. If k= 1 then the statement is obvious. Now let 1. Assume that 
k 

3§„ can be embedded isomorphically into the a,-procut si= J] sij(8n, \j/) and let 
j=i 

H denote a suitable isomorphism. Let n(t)=(atl, ..., atk) ( /=0, ..., n — 1). We may 
suppose that there exist natural numbers u ^ o (Osh, » s n - 1 ) such that 
since otherwise 38 n can be embedded isomorphically into an a rproduct of si, 
(j— 2, ..., k). Now assume that there exist natural numbers p^q (O^p, q^n—1) 
with aps—aqs 0 = 1 , ..., /*). For any t (O^t^n— 1) let us denote by of? the m-ary 
operation of 38 n for which a%"(0, .... 0,p)=t and opt"(0,..., 0, q)=q, for some 
m^R. Such operations exist since R^ {0}. Then for any {0, ..., n— 1} 

(aa, ..., a,k) = K') = *i(<#(0, 0,pj) = aft(n(0),..., „(0), n(p)) = 

= ( f f 1 («01. • • • > «01. aPi)> «rfs («02 > • • • > «02. ap2), • • •, ok
k (aok, ..., a0k, apk)) 

holds, and so an=afl(a01, ...,a01,apl) where 

= 'Ami((«01 ? •••> a0k)> •••> («01» •••> «0k)> («pi. •••> «P*)> <rPt) ~ 
= ^mifaoi» •••,aoi*,apl,..., api*, <rpt) if ¿ > 0 

and <Ti—ipmx(Cp() if i=0. In the same way we obtain the equality 

«,1 = fff'(«01> •••,«01>«9l) 
where 

= («019 •••> «oi*s «gi» •••» ««¡*> °pt) if » > 0 
and 

¿1 = <Ami(<v) if * = 0-
Since aps=ais (s= 1, ..., ¡*) we obtain that Ci=oi which implies the equality 
atl=aql for any i£{0,...,«— 1}. This contradicts our assumption aul^avl, there-
fore the elements (aa atl*) (OSi^n— 1) are pairwise different. Now we shall 
show that in this case 38„ can be embedded isomorphically into an a rproduct 

_ i* 
si— ¡J s/j(d", (p). Indeed, let us define the family cp of mappings as follows: for 

any m€2?,y€{l, «*}> ((«1, • af) , • K , .... <©)€ IJ A, <r€0n elements 

(1) if i > 0 then 
1> •••» « « , * ) . •••» («ttmi» • • • » aBmfc). tf) 

if there exist ultum£{0,..., n — 1} 
such that a j = aUtt(t = 1,..., i*, s = 1,..., m), 
arbitrary operational symbol from 
Pm otherwise, 

<Pm){(ai. •••> «D, •••, (aL • ••» «£)> <0 = < 

2* 
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(2) if / = 0 then <pmj(a)=4,m}(a). 
It is clear that <pmJ is well defined. On the other hand, it is easy to see that 

the mapping v(f)=(fla> •••> a(,-*) ( i=0, ..., n—1) is an isomorphism of 38 „ into s4. 
Using this isomorphism v we prove that ^[i*^] c a n be embedded isomorphically 
into an a.-product of with a single factor for some {1, ..., i*}. If i = 0 or 
J'= 1 then this statement obviously holds. Now assume that 1. Since the elements 
(a(J, ..., a„t) (t=0,..., n— 1) are pairwise different, there exists an {1,..., i*} 
such that the number of pairwise different elements among • • •, is 
greater than or equal to v= [ '*/«]. Without loos of generality we may assume that 
a0s, ..., av_ l s are pairwise different elements of sis. For any m£R, a(LQv

m let us denote 
by 5 an operational symbol from Qn

m for which ..., »-i}m}=oa"- Now let us 
define the a rproduct s/„(8v, <p) as follows: for any mk.R, (aUlS, ..., aUinS)£Am

s 

<Pm(?*ulS> •••> a s, a) — 
<Pms{(<iUl 1» aUii*), ..., (aUml, ..., aUmi*), a) if 
0 s U | s s - l ( / = l , . . . , m), 
arbitrary operational symbol from Is

m otherwise. 

It can be easily see that the correspondence v': t^»ats (t=0,..., v— 1) is an iso-
morphism of 88v into sis(Q", <p), which completes the proof of Theorem 2. 

Theorem 3. 23 Q 91* is isomorphically complete for 91* with respect to the 
a0-product if and only if for any natural number 1 there exists an SB such 
that 38„ can be embedded isomorphically into an a0-product of s4 with a single 
factor. 

Proof. The necessity follows from Theorem 2. To prove the sufficiency let us 
observe that any tree automaton .a/£91* with \A\=n can be embedded isomor-
phically into an a0-product of 38„ with a single factor. From this fact, by our Lemma, 
we obtain the completeness of SB. 

Now let i > 0 be a fixed nonnegative integer. Then in a similar way as above 
we obtain the following result. 

Theorem4. 91* is isomorphically complete for 91* with respect to the 
arproduct if and only if for any natural number 1 there exists an SB such 
that 38n can be embedded isomorphically into an a rproduct of si with a single 
factor. 

Since an af-product with a single factor is an ai-product with a single factor, 
by Theorem 4, we get the next corollary. 

Corollary 1. S Q 91* is isomorphically complete for 91* with respect to the 
a t-product if and only if SB is isomorphically complete for 91* with respect to the 
aj-product. 

Now let i be a nonnegative integer. Then we have the following result for the 
minimal isomorphically complete systems in the case R ^ {0}. 

Theorem 5. There exists no system SB Q 91* which is isomorphically complete 
for 91* with respect to the a rproduct and minimal. 
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Proof. Let 93g2lR be isomorphically complete for with respect to the 
a rproduct. Moreover, let si£ S with \A\—n. It is obvious that si can be embedded 
isomorphically into an a(-product of 28s with a single factor if s ^ n . Take a natural 
number j > n . By Theorem 3 and Theorem 4, there exists an si£f8 such that 
3Ss can be embedded isomorphically into an a,-product of si with a single factor. 
Therefore, by our Lemma, si can be embedded isomorphically into an ^¡-product 
of si with a single factor. From this it follows that is isomorphically 
complete for with respect to the a rproduct, showing that S is not minimal. 

3. The hierarchy of a,-products 

Let 0} be a fixed rank-type. Take a nonempty set MQ^LR, and let z 
be an arbitrary nonnegative integer. Let a ;(M) denote the class of all tree auto-
mata from which can be embedded isomorphically into an a rproduct of tree 
automata from M. It is said that the a rproduct is isomorphically more general 
than the a,--product if for any set M Q the relation aJ ( M ) ^ a i ( M ) holds 
and_there exists at least one set MQ such that a.j{M) is a proper subclass of 
otj(M). This notion was introduced in [2]. 

As far as the hierarchy of the a rproducts is concerned, we have the following 
Theorem. 

Theorem 6. For any i,j 0,1, . . .}) the arproduct is isomorphically more 
general than the olj product if i. 

Proof. We shall prove that the a2-product is isomorphically more general than 
the a0-product and the a i+i-product is isomorphically more general than the 
arproduct if i s 1. 

First let M= where si2=({ 1,2}, U {aml> cm2}) and the operations of 

si2 are defined as follows: for any 0?±m, mdR, (a1; ..., am)£{1, 2}m 

a i , „ J1 if am = 2, 

0*2 (ai, •••, am) = am, 

and <r£' = 1, = 2 if 06.R. 

Now let us denote by sis=({l, 2, 3}, T) the tree automaton where for any 
O^mtR aeZ'm, (au ..., a j £ { l , 2, 3}m 

-Mr1 i 
and 5s*3 = 1 if 0£R and d£Z'0. 

It is easy to see that si3^a0(M) and si^a^M) which yields the required 
inclusion a0(M)cax(M). 
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Now let te 1 and M= {88t}. Then, by the proof of Theorem 2, we obtain 
that 8S2<+i$ofj(M). On the other hand, we shall show that á?2<+>€ <xi+1(M) which 
yields the required inclusion cxi(M)<^ai+1(M): To prove the above statement it 
is enough to show that SS2^a,(M) if is-l . Indeed, let us take the a rproduct 

si= /7 where the family ^ of mappings is defined as follows: for any 

(Mm, 
((«ii, •», «1«). («mi, •••> O ) € ( { 0 , l}1)™ 

if 

s % i ( 2 •••> i «m.2'-') = w = i aw f2 i _ t and <r*»(a„, •••> amJ) = aw , 
1=1 «= i 1=1 

then 
^ m ; ( ( « 11, • • • , « 1 . ) , • • • , ( « m l , • • • , Ami), <0 = 

In the case a^Oo if a®'1 = ^ avt • 2'~! and gss-=üvJ then ~<l/mJ(a)= a. 
(=i 

It is easy to see that 88 n can be embedded isomorphically into si under 
r 

the isomorphism n defined as follows: if w= ^ a,2 i _ t then n(w)=(a1, ..., at) 

( w = 0 , ..., 2'— 1). 

4. A decidability result 

In this section we show that it is decidable if an algebra can be represented 
isomorphically by an «¡-product of algebras from a given finite set. 

Theorem 7. For any nonnegative integer i, and finite set lR 
it can be decided whether or not ¡(M). 

Proof. Let us suppose that si with A={a1, ...,ak} can be embedded iso-
5 

morphically into an a rproduct 8S— ]J sij(S, cp) of tree automata from M. Let 
j=i 

V=max{\A,\: si£M} and let (aul, ..., am) denote the image of au under a suitable 
isomorphism /i (u= 1, ..., k). We define an equivalence relation n on the set of 
indices of the af-product 88 as follows: for any I, n (1 Inn holds if and 
only if sit=sin and aa=a,„ for all t=l,...,k. 

It is easy to see that the partition corresponding to n has at most \M\ • Vk 

blocks. Since /¿(A) is a subalgebra of 88, if atl=atn (/=1, ..., k) then the /-th and 
n-th components of n(a(,ax, ..., am))are equal, where m£R, aJ£A ( j = 1, ..., m). 
F"om this it follows that si can be embedded isomorphically into an af-product 
Gi tree automata from M with at most \M\-Vk factors. 
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On a problem of Ádám concerning precodes assigned 
to finite Moore automata 

MASASHI KATSURA 

To investigate the structure of finite Moore automata, the concepts of code, 
precode and complexity are introduced by Ádám [1] and investigated in [1—8]. 
Main motivation is the following. 

Basic Problem [1]. For arbitrary finite X, let a constructive description of 
all reduced finite Moore automata, whose input set equals to X, be given. 

Relating to this problem Ádám raised four open problems, one of which is the 
following. 

Problem 3 [1]. Consider all pairs (D, D') of precodes with finite com-
plexity such that D<D' holds. Either determine the maximal value of fi (£>')— 
— Q(D) (as a function of the cardinality of input set) or prove that the set of 
these differences is unbounded. 

In autonomous case, this problem is solved in [8]. The answer is that the difference 
is unbounded. However, we show in [8] that the quotient Q(D')jfí(D) 

(D < D', Q(D) * 0, £2(2)') < 

is bounded by 2. In this note, it is shown that, in multiple-input case, not only the 
difference but also the quotient is unbounded. 

For the background and fundamental facts concerning codes, precodes and 
complexity, see [1] and [2]. 

1. 

N and N0 mean the sets of positive integers and of nonnegative integers, respec-
tively. For t, &€N0, we denote [í:A:]=(i€N0|í^i'sfe). For n, m£N, we write 
X(n)=(xi,..., x„y and I'(m)=(>'1 ym). A partial automaton is a 5-tuple 
A=([1: v], XM, Y(m), <5, A) where: 

(1) v, n and m are positive integers. [1 :i>], X(n) and Y(m) are called the state set, 
the input set and the output set of A, respectively. 
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(2) 5 is a partial mapping of [1 rwlXA ,̂,) into [1 :v] called a state transition func-
tion (5 is extended as usual to a partial mapping of [1: v]X(A'(n))* into [1:«]). 

(3) X is a mapping of [1 :o] onto F(m) called an output function. 
(4) For any a£[l:v] there exists a p£X* such that 5{\,p)=a. 

If 5 is defined for any element of [1: u]X X(n), then A is said to be an (initially 
connected finite) Moore automaton. 

Let A=([l:v], XM, Y(m), S, X) be a Moore automaton. If X (a, p)) ^ X (S (b, p)) 
holds for a, ¿€[1:»] and pkx*, then we say that p distinguishes between a and b. 
co(a, b) is the minimal length of p which distinguishes between a and b. If there 
is no word which distinguishes between a and b, then we denote to (a, b)= <=°. Espe-
cially, a=b implies co(a, b)= The complexity Q(A) of A is defined by 

£2(A) = min(co(a, b)\a, b£[l:v],a ^ b). 

If v=l then £2(A)=0. 
The notions of codes and precoaes were introduced in [1] as tools to describe 

Moore automata constructively. The following definition is from [6, 7]. It is of 
course essentially equivalent to Ad&m's definition in [1]. 

Let w£N. A 6-tuple D—(r, s, ft, y, <p, n) is said to be an n-input precode if 
the following eight postulates are fulfilled: 

(A) r, s are nonnegative integers. 
(B) P and <p are mappings of [2:r+s+l] into [1 :r+1]. 

y is a mapping of [ 2 : r + j + l ] into [1:«]. 
p. is a mapping of [ l : r + l ] into N. 

(C) P(a)<a for any ai[2:r+Y], 
(D) For: a,b£[2:r+l], if a<b then (P(a),y(a))^(P(b),y(b)) in the lexicographic 

order. 
(E) For a£[r+2:r+s+1], (0(a), y(a)) is the lexicographically smallest element in 

([l:r+l]X[l:n])-<(/i(6),y(i)) |6€[2:fl-l]>. 
(F) For a€[2:r+l] , (p{a)=a. 
(G) For o € [ r + 2 : r + j + l ] , (p(a)=\ or (<?(«))> y{cp(a)))<(P(a), y(a)) in the lexi-

cographic order. 
(H) ^(f l )6<l)U0i(b)+l |b6[ l :a- l ]>. 

We denote /i(D)=max (//(a)la€[l :r+1]). If m=fi(D) then D is said to be an 
m-output precode. 

It can be easily be seen that 1) i.e., s^nr+n—r. If s=nr+n—r, 
then the precode is said to be a code. 

Let D=(r,s,fi,y,(p,p) and D'=(r', s', y', cp', / / ) be «-input precodes. If 
r+s^r'+s' and /?', y', (p\ p.' are extensions of ¡¡, y, cp, p. then we denote D S D ' . 
We denote D<Z>' if D^D' and r+s^r'+s'. If D < D ' and r ' + i ' = r + J + l 
then we write D<D'. 

It can easily be seen that, for any precode D, there exists a code C such that 
D^C. 

Let D= (r, s, P, y, <p, fi) be an n-input m-output precode. Define a partial 
mapping SD of [ l : r+l]XA( n ) into [ l : r + l ] by 

$D{P(a)> Xy{a)) = <p(fl) for any a e [ 2 : r + s + l ] . 
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Define a mapping XD of [ l : r + l ] onto Y(m) by 

¿D( a) = y^a) for any a€ [ l : r + l]. 
Then it is easy to verify that f (D)=([l :r+1], XM, Y(m), SD, 1D) is a partial auto-
maton. f (£>) is an automaton iff D is a code. 

The complexity Q(D) of a precode D is defined by 

Q(D) = min ^ ( ^ ( C ) ) ^ is a code such that D s C>. 

2. 

Let n, w, t be positive integers such that n S 2 and wS2. Define an n-input 
precode D—(r, s, f j , y, q>, ¡i) as follows: 

(1) r = 4t+4w—2 and s = nr+n—r — 1. 

(2) (fl(2b),y(2b),cp{2b)) = (b,\,2b) and (p(2b + l),y(2b+l), <p(2b + l)) = 

= (b,n, 26 + 1) for any be[l:2t+2w~l], 

(3) v(a) = a for any a £ [ l : 3 i + 3 w - l ] . 

n(a) = a — w — t for any a£[3i+3w:4i+4w — 1]. 

(4) For each a£[r+2:r+s+1], the a-th row is determined as follows: 

(a) p(a), y(a) are determined uniquely by Postulate (E). 

(b) If /? (a)€[2i+2w:3i+3w-2]U[3/+3w:4i+4w-2] and y(a) = 1 then 

q>(a) = a + l. 

If (jS(a),y(a)) = ( 3 / + 3 w - l , 1) then <p(a) = 2t+2w. 

If (0(a), y(a)) = (4i+4w — 1, 1) then <p(a) = 3i+3w. 

(c) If /?(a)£[2i+2w:3i+2w — 1] and y(a) = n then <p(a) =3t+ 

+ 3w —1. 

If J?(a)£[3i+3w:4i+3w-2] and y(a) = n then (p(a) = 4t+ 

+4w —1. 

(d) Otherwise, <p(a)— 1. 

It is easy to verify that D satisfies Postulates (A)—(H). 

The state transition function and the output function of the partial automa-
ton !P(D)=([1:4/+4H'— 1], Xw, Y(m), SD, XD) is shown in the following table: 
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a 8D{a, xx) Srfja, xj) SD(a, x„) >•»(0) ( /€[2: n - 1 ] ) 
SD(a, x„) >•»(0) 

1 2 1 3 1 
2 4 1 5 2 
3 6 1 7 3 

2 / + 2 W - 2 4/ + 4w —4 i 4 / + 4 W - 3 2 / + 2 w - 2 
2 / + 2 w - l 4 / + 4 w - 2 1 4/+4h> —1 2/+2w— 1 

2t+2w 2/+2n>+l 1 3 / + 3 W - 1 2t+2w 
2t+2w+\ 2/+2h>+2 1 3 / + 3 w - l 2t+2w+ 1 

3t+2w—2 3/+2H> — 1 i 3/ + 3h> —1 3 /+2w —2 
3/+2H> —1 3/+2w 1 3/+3h>-1 3 /+2w —1 

3i+2w 3 f + 2 w + 1 1 1 3t+2w 
3 / + 2 w + l 3 / + 2 w + 2 1 1 3t+2w+1 

3/ + 2 w - 2 3/+3w —1 i i 3 / + 3 w - 2 
3 /+3w —1 2t+2w 1 1 3/+3H—1 

3 /+3w 3/+3M>+1 1 4/+4>v —1 2t+2w 
3/ + 3 w + l 3 i + 3 w + 2 1 4/+4w —1 2t+2w + l 

4 / + 3 w - 2 4 / + 3 w - l i 4 /+4w —1 3t+2w-2 
4 / + 3 w - l 4f+3h> 1 1 3t+2w-l 

4 /+3w 4* + 3M>+1 1 1 3t+2w 
4/+3W+1 4/+3w>+2 1 1 3 /+2w + l 

4 i + 4 w - 2 4 / + 4 w - l i i 3 /+3w—2 
4/ + 4H> — 1 3t+3w 1 — 3 / + 3 w - l 

Let D'= (r, 1, fi, y, q>, fx) be a precode such that D<D'. Then D' is a code, 
i.e., T(D') is a Moore automaton. We have (p(r+s+ 2), y ( r + 5+ 2) )= (4 / + 4w-1 , n) 
and D' is determined only by the value <p(r+s+2). It can easily be seen that arbi-
trary choice of <p(r+j+2)€[l:4w+4i— 1] makes D' to satisfy the postulates for 
codes. We shall show that <p(r+J+2)^l implies Q(D')=w, and <p(r+.y+2)= 1 
implies Q{D')=t+w. 

Case I: (p(r+s+2)^1, i.e., <5D.(4f+4w-l, 
Let a, &£[l:4f+4w—1] such that a<b. We have co(a, iff XD,(a)= 

= XD'(b) iS a=2t+2w+i,b=3t+3w+ifor some i ' e [0 : i+w- l ] . Let i € [ 0 : i + w - l ] . 
Since 

XD.(2t+2w+i) = XD.(3t+3w + i), 

SD.(2t+2w+i, Xj) = V ( 3 ' + 3 w + i , X ]) for any je[2:n-l], 



On a problem of Ad&m concerning precodes assigned to finite Moore automata 147 

we have 
<o(2t+2w+i, 3 i+3w+i) = 

= min (co(dD. (2t+2w+i, Xl), SD,(3f+3w + i, x j ) +1, 

co(5D>(2t+2w + i, xn), 6D.(3t+3w+i, xn))+l). 

Thus we have 

a>(3t+2w — l, 4f+3w —1) = 

= min(co(3i+2w, 4t+3w) + l, G)(3i+3w— 1, 1) + 1 ) = 1. 

co(3i-|-3w —1, 4i+4w —1) = 

= min(e>(2i+2w, 3i+3w) + l, co( 1, 5 D , ( 4 /+4w- l , x„))+l> = 1. 

For i£[0:i—2], 

ct)(2i+2w+i, 3/+3w + i) = 

= min<oj(2i+2w+i + l, 3f+3w + i + l ) + l , co(3 i+3w- l , 4 i + 4 w - l ) + l > = 2. 

For i£[0:w—2], 
fi)(3i+2w + i, 4/+3w + i) = co(3t+2w + i+l, 4 i + 3 w + i +1 )+1 . 

Hence, 

co(3i+3w-2, 4i+4w—2) = 2, 

co(3i+3w-3,4i+4w—3) = 3, 

co(3i+2w, 4i+3w) = w. 

Consequently, i2(X>')=rnax <0, 1, 2, ..., w)=w. 

Case 2: (p(r+s+ 2)=\, i.e., ¿ D . ( 4 i + 4 w - l , x„)=l . 

Let a, ¿€[1:4i+4w— 1] such that a<b. Just as in Case 1, we have 

(o(a,b)r± 0 iff a = 2t+2w+i, b = 3t+3w+i for some i e [ 0 : i + w - l ] . 

co(3t+2w — l, 4t+3w-l) = min(a)(3i+2w, 4i+3w) + l, eo(3i+2w-l , 1)+1> = 1. 

co(3t+2w+i, 4i-f 3w-H) = <B(3i+2w + i+1 , 4/ + 3w-f i + 1 ) + 1 for any ¿6[0:w-2]. 
We have 

co(3i+3w —1,4i-f 4w —1) = 0)(2t+2w, 3 i+3w)+ l . 

For /e[0:i—2], 

co(2t+2w+i, 3 i+3w+i) = 

= min(ft)(2i+2w-f i +1, 3i+3w + i + l ) + l , ( » ( 3 i + 3 w - l , 4 / + 4 w - l ) + l ) = 

= min(ca(2i+2w + i-f 1, 3i+3w + i + l ) + l , <o(2t+2w, 3i+3w)+2>. 



148 M. Katsura 

It follows that 

<a(3/+2w —1, 4 / + 3 w - l ) = 1, 

cű(3Í+2W-2, 4 / + 3 w - 2 ) = 2, 

cű(3/+2W—3, 4/+3w —3) = 3, 

£ö(2/+2W, 3í+3w) = 

(ü(3í+3w —1, 4í+4w — 1) = t+1, 

co(3t+3w—2, 4 / + 4 w - 2 ) = t+2, 

co(3/+2w, 4<+3w) = t+w. 

Consequently, Í2(i)')=max <0, 1, 2, ..., í + w ) = f + w . 
We have shown that q>(r+s+ 2 ) ^ 1 implies Q(D')=w and q>(r+s+2)= i 

implies Q(D')=w+t. It follows that Í2(Z))= min (w, w+/)=vv. We have shown 
the following. 

Theorem 1. For any n, w, with n^2 and there exist /l-input pre-
codes D and D' such that D<D', Q{D)=w and Q(D')=t+w. • 

In autonomous case, Problem 3 of Ádám is solved in [8] as follows: 

Proposition 1. The set 

(QiD^-QiD^D and D' are 1-input precodes such that D<D' and Í2(Z)')<°°> 

coincides with all nonnegative integers. • 

In multiple-input case, we have the following similar result which is an immediate 
consequence of Theorem 1. 

Corollary 1. For any w£N with ws2, the set 

(Q(D')-Q(D)\D and D' are «-input precodes such that D<D' and fí(D')<«>) 

coincides with all nonnegative integers. • 

Consider the quotient Q(D')/Q(D) instead of the difference Q(D')-Q(D). 
In autonomous case, we have the following result [8]. 

Proposition 2. The set 

(Q(DyQ(D)\D and D' are 1-input precodes such that D<D\ and 

fl(Z>')<00) 

coincides with all rational numbers between 1 and 2. • 

Though the quotient is bounded in autonomous case, it is unbounded in multi-
ple-input case. The following is also immediate from Theorem 1. 
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Corollary 2. For any n£N with n s 2 , the set 

(Q(D')/Q(D)\D and D' are n-input precodes such that D<D', 0 and 

0(2)0^ °°> 
coincides with all rational numbers not less than 1. • 

Contrary to expectation, the solution of the problem does not contribute to 
our investigation, especially to the Basic Problem. If we wish to proceed further in 
this line, we should make refinements of the problem, e.g., not only n but also r, s 
and/or m should be taken into account. 

3. 

In this section, we consider a modification of our problem in the sense that, 
instead of the cardinality n of the input set, the cardinality m of the output set is 
taken into account. Analogous to Theorem 1, we have the following result: 

Theorem 2. For any m, w, N with m S 2 and there exist m-output 
precodes D and D' such that D<D', Q(D)=w, Q(D')=t+w. 

Proof. Define a (2i+2w)-input precode D=(r, s, /?, y, cp, /i) as follows: 

(1) r = 2t+2w+m-2 and s = ( 2 i + 2 w ) r + ( 2 i + 2 w ) - r - l . 

(2) (P(a), y(a), <p(a)) = (a — 1, 1, a) for any a€[2:m- l ] , 

(3) (j?(a), y(a), (p(a)) = (m —1, a —m + 1, a) for any ai[m:2t+2w+m-l]. 

(4) fi(a) = a for any a£[l:m — 1]. 

n(a) = m for any a^[m:2t+2w + m — 1]. 

(5) For each a£[r->c2, r + j + 1 ] , the a-th row is determined as follows: 

(a) (1(a), y(a) are determined uniquely by Postulate (E). 

(b) If /? (a) £ [m: /+w + m—2] U [f + w+m: 2i + 2w + 7M — 2] and 

y(a) = 1 then (p(a) = a +1. 

If (P(a), y(a)) = (i+w + m - 1 , 1) then cp(a) = m. 

If (/?(a),y(a)) = ( 2 i + 2 w + m - l , 1) then cp(a) = t+w+m. 

(c) If J5(fl)-(m-2) = y(a)€[2:/+w + l] then <p(a) = p(a). 

If P(a)—(t+w+m—2) = y(a)6[2: /+w+l] then q>(a) = P(a). 

(d) If P(a)£[m:t+m — l] and y(a) = 2t+2w then (p(a) = t+w 

+ m-1. 

If P(a)£[t+w+m:2t+w+m—2] and y(a) = 2t+2w then 

<p(a) = 2 i + 2 w + m - 1 . 
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(e) Otherwise, <p(a)= 1. 
Let D'=(r, 1, P, y, q>, //) be a precode such that D<D'. Let 

a, ¿>6[1:2f+2w+m— 1] 

such that If a£[l :m— 1] then and thus co(a,b)=0. If 
a€[/H:2/+2M>+m-l] then there exist /,./£[0: i + w - 1 ] such that 

a = m + i or a = f + w + m + i, 

b = m + j or b = t+w+m+j. 

If jV j then AD.(a)=wj=Afl.(t) and 

XD,(8D.(a, xi+2)) = Aj>,(a) = m ^ 1 = XD.(\) = XD'(8D.(b, x1+2)). 

Hence (o(a,b)= 1. Consequently co(a,b)^2 implies that a=m+i and b=t+ 
+w+m+i. 

Similarly as in Theorem 1, we have, for any i£[0:f+H>— 1], 

co(m + i, /+w+m + i) -

= min <co(5d,(m + i, x j , dD.(t+w+m + i, Xl)) +1, 

co(SD.(m+i, xn), dD.(t+w+m+i, * n ) )+l ) . 

Since 8jy(t+m~ \,x2t+Zv)=t+w+m— 1 and 8iy(t+w+m— 1, x2i+2w)= 1> we have 
co(i+/M—1, t+w+m— 1)= 1. In a similar way as in Theorem 1, we can verify the 
following: 

If <p(r+s+2) 1 then i2(D0 = co(/+m, 2t+w+m) = w. 

If <p(r+s+2) = l then Q(D') = co(t+m, 2t+w + m) — t+w. • 

The followings results are immediate from the above theorem. 

Corollary 3. For any with mS2, the set 

(Q(DR)—Q(D)\D andD' are m-output precodes such tha tDxD' and i2(ZX)< «,) 

coincides with all nonnegative integers. • 

Corollary 4. For any m£N with m£2, the set 

{Q(DR)JQ(D)\D and D' are m-output precodes such that D<D', Q(D)^0 and 

coincides with all rational numbers not less than 1. • 
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An infinite hierarchy of tree transformations 
in the class 

S. VÀGVÔLGYI a n d Z . FULÔP 

Introduction 

Let S = {Q>&1, jVSuM, <£Jf®0l, J i f f } where 9M is the class 
of all deterministic root-to-frontier tree transformations, J f is the class of all homo-
morphism tree transformations, moreover, for both Q>01 and their linear, non-
deleting and linear-nondeleting subclasses are denoted by prefixing them by J f 
and , respectively. Let [S] be the set of classes of tree transformations gen-
erated by S with composition o: [S]={X1o...oXn\n'^\, XfcS, lS /Sn} . The set 
[S] was introduced and examined in [1] where several equalities and inclusions were 
obtained with respect to elements of [5]. However, the question that whether [S] 
is a finite or an infinite set was only raised and not answered. 

In Section 2 of this paper we show that, in fact, [S] is infinite by proving that 
for each m S l . This infinite proper hier-

archy was already suggested by Theorem 12 of [1]. 
It is well known that JfQ>0l is closed under composition (proof, for example, 

in [1]). Thus we have JfQlSko J i for each m £ l . In the second half 
oo 

of Section 2 we show that the stronger proper inclusion U { <£№¿¡91 o Jr3V)mcz 
m=1 

c / M is also valid. 
The paper, apart from some simple reference to [1], is self-containing. Both 

in [1] and this paper, most of the notions and notations are adopted from [2]. 

1. Notions and notations 

For an arbitrary set Y, we denote by 7* the free monoid generated by Y, with 
empty word L The prefix ordering ^ in Y* is meant as usual: for any a, /?€ Y*, 
aSJ? if and only if a is a prefix of /?, that is, there exists a }>€ Y* such that p=<xy. 
The relation a-= fi is defined by aS/? and a^/?. 
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The set of nonnegative integers is denoted by N. For each n£N, [n] denotes 
the set {1,..., n). Thus [O]=0. 

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set 
and v: F—N is the arity function. Elements of F are called function symbols, 
more exactly, if / £ F and v ( / ) = n t h e n / i s an w-ary function symbol. For any 
n£N we put F„= {/£F|v(/)=w}. Hence, for any ranked alphabet (F, v), we 
have the equivalent notation F= (J F„, where F„ are pairwise disjoint finite sets. 

new 
Let F= | J F* be a ranked alphabet and Y be a set, disjoint with F. Then 

n€W 
the set of all terms or trees over Y of type F is defined as the smallest set TF(Y) 
satisfying: 

(a) ygTV(T) and 
( b ) f ( p 1 , . . . , p n ) £ T F ( Y ) whenever fiFn and Pl, ...,p„£TF(Y). 
For / ( ) we write/. If 7 = 0 then TF(Y) is written as TF. 
We shall need a few of the usual functions on the elements of TF(Y): for any 

p£TF(Y) the frontier fr (/?)£ 7*, the set of subtrees or subterms sub (p))=TF(Y), 
the paths path ( p ) ^ N * and for each mdN the m-rank rnm (p)dN o f p are defined 
by induction as follows: 

(a) if p£Y then 

f r O ) = p, sub(>) = {p}, path (p) = {A} and rnm(p) = 0; 

(b) if p =f(pi, -;Pn) forsome n£N, f£F„ and . . . , p n i T P ( Y ) then 

fr(p) = fr(^) ... fr (/>„)> 

sub (p) = ( U subOf))U{p}, 
< 6 in] 

path (p) — {A}U {ia|i£[/i], a6path(#)} and 

m m(p) = 
2 mm(Pi) if n^m 

1 + 2 Tam(Pi) if n = m. 
¡ew 

We mention that rnm (p) means the number of occurrences of the m-ary function 
symbols in p. Moreover we define rn (p)= 2 TDm (JP)• 

miN 
Now let p£TF(Y) and a£path(/?). We introduce the notion of the subtree 

str (p, a) and the symbol lab (p, a) of p determined by a, moreover, the two length 
|a|2 of a in p in the following way: 

(a) if . pe r then 
str (p, a) = p, lab ( p , a ) = p and |a|2 = 0; 

(b) if p=f(pi, ...,p„) for some n£N, f£F„ and Pl, ...,pn£TF(Y) then a 
is either A or of the form /a' forsome i€[n] and a'£ path (/>,). Thus 

3* 
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we define 

S t r ( ' ft, 

L 

p if a = X 
str (/>,-, ar) if a = ia', 

lab (Pi, a') if a = ia', 
/ if a = X 

0 if a = X and n -= 2, 
1 if a = 2 and n S 2 , 
|a'|2 if a = ia,' and « 2, 
l + |a'|2 if a = ia' and « S 2. 

0 

We note that in this latter definition |a'|a is meant in pt. We mention what the 
above three functions informally mean. It is well known that p can be considered 
as an ordered tree labelled by elements of FU Y, moreover a can be thought of as a 
path leading from the root to a node x of p. Now, str (p, a) is the subtree of p 
the root of which is x, lab (p, a) is the symbol in FU Y x is labelled by, finally 
|a|2 is the number of the occurrences of function symbols with arity m S 2 along 
the path a. We also note that a may be in path (q) for some q^p and |a|2 in p 
may differ from |a2| in q. However it will always be clear from the context in what 
p |a|2 is meant. 

The countably infinite set X— {xx, x2, ...} of variable symbols will be kept 
fix throughout this paper. The set of the first m elements xu ..., xm of Z i s denoted 
by Xm. The set TF{XJ will be written as TF m. 

fFi„ is the linear-nondeleting subset of TFtm: for p£TFi„, pdfF,m iff each 
xt appears exactly once in p (i£[m]). 

For p,q£TFim and i€[m], by the i product p • ¡q ofpbyq we mean the tree 
obtained from p by substituting each occurrence of x( in p by q. 

Let p£TP<m and ...,ym£Y. We denote by p(y}, . . . ,ym) the tree obtained 
from p by substituting each occurrence of xt in p by yt for each i£[m}. Of course we 
have p(y1} ...,ym)£TF(Y). 

We introduce one more definition concerning TF>m. For p£TFm and i6[m], 
the set of i paths pathj (p) of p is given as follows: 

(a) if p=Xj for some j(i[m] then 

It is clear that pathj(/>)gpath(p), moreover pathj(/>) consists of all the ele-
ments of path (p) leading from the root to a terminal node of p labelled by xt. 

A tree transformation x is defined as a subset of TFX TG where F and G are 
arbitrary ranked alphabets. In this way, r can alternatively be considered as a rela-
tion from TF to TG. 

For the sake of convenient proofs, we introduce the concept of the extended 
tree transformation. It is a subset i of TF(X)XTG(X). 

(b) if p=f{p1, ...,pn) for some « ^ 0 , fdFn and px,...,}\£TF<m then 
pathj (p) = {j<x\j€[n], aCpathj(p7)}. 

• J 
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Since (extended) tree transformations are in fact relations, for any (extended) 
tree transformations x and a, the domain dom x and the composition TO a of x 
and a are defined as it is usual for relations. Moreover, for any two classes and 

of tree transformations we put: 

= {T1OT2|T1€^ and x2£Jf2} and 

f ^ if » = 1 
1 bfi"-1«)*; if « > i . 

We are interested only in tree transformations which can be induced by deter-
ministic root-to-frontier tree transducers. 

A deterministic root-to-frontier tree transducer (DR transducer in the sequel) 
is a system 

91 = (F, A, G, P, a0) where (1) 
(a) F and G are ranked alphabets; 
(b) A, the state set of 91, is a ranked alphabet consisting of 1-ary function 

symbols, disjoint with F, G and X; 
(c) a0, the initial state of 91, is a distinguished element of A; 
(d) P is a finite set of so called rewriting rules (or simply rules) of the form 

af(x1, ..., xn) - q (2) 

where ad A, n s 0, feFn and q£TG(AXn); 
(e) different rules of P have different left-hand sides. 

We mention that above and in what follows we use the following notations. If A 
is the state set of a DR transducer and Tis a set of terms then AT= {a(t)\a^A, t€_T}. 
Moreover, for any a£A and t£T, a(t) is written as at. 

Then it is clear that each rule (2) of P can also be written in both of the fol-
lowing two forms: 

•••, *„) ¿/OiX.v amxim) (3) 
for some mSO, qifG,m, afiA and xh£Xn (;€[m]); 

xn, ...,a„m x„) (4) 

where m^O, a^A (/'€[«],/ClmJ) and q£fG,m (m-m^ ... + m„). 
Next we show how 91 can be used to rewrite (or transform) terms of TF to 

terms of TG. To this end, we define the relation =>• called direct derivation on the 
set TG{ATF(X)) in the following manner: for p, q£TG(ATF(X)), q if and only 
if q can be obtained from p by replacing an occurrence of a subtree of the form 
af(p1, ...,pn) in p by the tree qfap^, ..., ampin) and the rule (3) is in P. The reflex-
ve-transitive closure of is denoted by =>• and called derivation. The tree trans-
formation induced by 91 with the state a£A is introduced as 

*«(„) = {0> q)\p£TF, qeTG and ap^> q), 

moreover, the tree transformation XM induced by 91 is meant TA I ( A O ): 

Tsn = {(/>. q)\p£TF, qiTG and a0p q). 
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Now we define the extended tree transformation induced by 81. To this end, 
we need the following concept. Let q'£TG(AX). We say that q£TG(X) belongs 
to q' if it satisfies the following conditions: 

(a) if q'=axi for some a£A and i£N then q= 
(b) if q'=g(qi,...,q'„) for some n^O, geG„ and q[, ...,q&T0(AX) then 

q=g(<li> •••» in) where qj belongs to q] for each j£[n\. 
Informally, we say that q belongs to q' if and only if q can be obtained from q' by 
substituting each subtree of the form axt of q' by xt. 

The extended tree transformation Tai(„) induced by 91 with the state a£A is 
given as follows: for any p£TF(X) and q£TG(X), {p, if and only if 

TC(AX) such that ap^ q' and q belongs to q'. The extended tree transforma-
a 

tion Tai induced by 91 is defined as Tat ( i,o). 
We say that a tree transformation r can be induced by some DR transducer 

91 if t=Ta holds. 
The tree transformations which can be induced by DR transducers are in 

fact partial mappings. This follows from (e) of the definition of the DR transducer. 
Next we introduce some restrictions on DR transducers. We say that a DR 

transducer (1) is 
(a) totally defined if for each ad A and /€JF there is a rule (2) in P; 
(b) linear (L) if for each rule (4) of P and /£[«], m^l; 
(c) nondeleting (N) if for each rule (4) of P and /€[«], 1; 
(d) linear-nondeleting (LN) if it is linear and nondeleting; 
(e) uniform (U) if for each rule (4) of P and [n], ah—...=ain^. 
It is obvious that if a DR transducer (1) is a UDR transducer then each rule 

of P can also be written in the form af{xi, ...,x^—q{aixi, ...,anx„) for some 
q_dTG n and a1} ..., a„£A. Any LDR transducer is a UDR transducer, too. 

A DR transducer (1) is an H transducer if it is totally defined and has only 
one state, i.e., A={a0} holds. The LH, NH and LNH subclasses of the class of 
H transducers are defined in a natural way. Each H transducer is a UDR trans-
ducer, by definition. 

The class of all tree transformations which can be induced by K transducers 
is denoted by X where K stands for any of DR, LDR, NDR, LNDR, UDR, H, 
LH, NH and LNH. 

2. The problems and the solutions 

Following [1], let S consist of $>91, X and their linear, nondeleting and linear non-
deleting subclasses, that is, let S= {3s&t, <£3)01, Jf2>9l, <gJfQl9l, tf, <£&e, JfJP}. 
Moreover, define [S] as the set of all the classes of tree transformations which can be 
obtained as compositions of elements of S: [S]= 1, S, l^isn}. 

In [1], it was raised the problem that whether [S] is an infinite set. We shall prove 
that [S] is infinite by showing that [S] contains an infinite proper hierarchy of classes 
of tree transformations. Namely, we prove, in Theorem 3, that {Z£JfQ)0lo jVyf)mcz 
<z( <ej r^3io^ rJif)m + x for each m S l . 

In connection with this hierarchy one more problem can be raised. By defini-
tion, i f Jf3>0l and J f$e are subclasses of JJ"2s9l, moreover it is not difficult to 
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see that JiQlSk is closed under composition (a proof is given, e.g., in [1]). These, 
together with the infinite proper hierarchy mentioned above yield the proper inclusion 
( 2 31OjrxeyaJfSi&t. for each m £ l . In the second half of this section we 

oo 

show that the proper inclusion U o j f j f f c JfS)$/t also holds. Namely, 
m = l 

in Lemma 17, we give an NDR transducer 91 for which there does not exist m 
with 

We set out to solve the first problem. 
First we make a trivial observation on UNDR transducers. Let 21= 

= (F, A, G, P, a0) be a UNDR transducer and the rule af(x x, ..., x„)--q(a1x1, ...,a„x„) 
in P. Then for each j(L[«] and y£pathj(g) the condition 

if n > 1 then |y|2 = 1 

holds, since from |y|2=0 it would follow that 21 is a deleting DR transducer. Our 
•fircfr T p r r i t n g t c P C C P t i t i a l l T / o p / i n c p n i i P n p A n f t l n i e n K c p n i o t i n t i U * UV l ^ V I I I I I i f l 1 J v O j f l i V i U U j U W U h l W « J a v i i V v UX «• > ' " » V k/JWi T m.A\S±Xt 

Lemma 1. Let 2I=(F, A, G, P, a0) be a UNDR transducer, moreover, mSO, 
ptTF,m, giTGim and afA be such that (p, Then 

(a) for each [m] and a£pathj(j>) there exists a /?£pathj (q) for which 
№ 1 1 1 , and 

(b) for each /€[m] and a£path j (q) there exists a /?€path }(p) with |/?|2= 
— Ial2-

Proof. We prove only the part (a) of our statement since (b), as a converse 
of (a), can be shown in a similar way. We follow an induction on p. 

If p—Xi for some z'£[m] then q—xt hence (a) trivially holds. 
Now let p=f(j>i, ..;Pn) for some nSO, f£Fn and px, ...,pn£TPim. By our 

supposition, there exists a rule af(xx, ..., x^)—-q(a1x1, ..., anxn) in P and there 
are qlt ..., q„£TG>m for which (p„ q^x'm^ («'€[«]) and q=q(q1; ..., qn). Since 
the case n=0 is again trivial we may suppose that n^l. Then a = ia' for some 
if [ri\ and a 'gpa th j (p t ) . 

Let y be an arbitrary element of path( (q), which is not empty since 21 is non-
deleting, and let 0'€pathj(qi) be such that |a' |2s|j3' |2. Put P=yP'. We mention 
that P' exists because of the induction hypothesis and, obviously, jS^pathy (q). 
Now we distinguish the cases « = 1 and w> 1. 

If n = l then 

|a|, = |,VI, = |«'|, == \p\ S \y\2 + \P% = \yp\ = \p\2. 

On the other hand, in the case n > 1, by our above note on |y|2 we have 

|«|2 = |ia'|2 = 1 + |a'|2 S |y|2 + \P'\2 = \yp% = \p\2. 

The proof is complete. • 

Now we recall what we mean by the syntactic composition of two DR trans-
ducers. The exact definition can be found in [1]. 

Let <H1=(F°,A1,F1,P1,a1) and %=(F\ A2, Fz, P2, a2) be two arbitrary 
DR transducers. Their syntactic composition is the DR transducer 2t1o2I2= 
—AxXAs, F2, P, (alt a2)) where P is constructed in the following way. When-
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ever bf(xlt ..., x„)-*q(biXil, ...,bmxin) is a rule in Px and it holds that cq=> 
^•q{cllx1,...,civx1,...,cmixm,...,cmvjcj we put the rule (b, c)f(xlt ..., 

c^Xii (¿i, clv)xh,..., (bm,cmi)xim,..., (bm, cmv)xim) in P. It is well known 
that this construction yields the application of 3I2 after in a "step 
by step" way. A very useful property of the syntactic composition is the 
following: if 9I2 is an NDR transducer then ^»JI^T^OT^ (for a proof, see 
Lemma 3 in [1]). 

We shall need the generalisation of the syntactic composition and the above 
equality for any m£2 . Therefore we make the following definition. 

Definition 1. Let m £ 2 and let 2lj be a DR transducer for each id[m]. By the 
syntactic composition of Sli, ..., 9Im we mean the DR transducer defined above if 
m=2 and the D R transducer (2I1o...o9iIB_1)o2I„ if m>2. 

Then, using Lemma 3 of [1] as a basis, the following statement can be verified 
by an induction on m: if 9I2, ..., 5Im are NDR transducers then Tgji0...o<Hm= 
= TaiO...OTg|m. 

The next lemma says that this equality is also valid for extended tree trans-
formations. 

Lemma 2. Let m S 2 and let 9 i ;= (F _ 1 , At, F\ Pt, a^ be a DR transducer 
for each z'€[m] such that 9I2, ..., 2Im are NDR transducers. Then Tajl0...0aim= 
= T«1O ...oTaim. 

Proof. Induction on m. For m=2 it is enough to show that for each nS0 , 
p£TF0>„, qdTF2_n, bxdAx and b2dA2 the following equivalence holds: 

(P»9)eTi loa1(ci1, i l))o(3r6rJF..fB)((p,r)€Ti l№i) and (r, q)dx'Mi(bd). 

This can be verified by an induction on p. The detailed proof is omitted. 
Finally, the induction step of m is shown by the following computation 

Ta,o...o9im = T(al°...oam_1)°am = Ta1o...°9im_l°Tam — Ta,0---0 'ram . • 

At this point we declare our main theorem. 

Theorem 3. For any m S 2 and 1 {SeJTSi^o jV3tff<z{<ejf®g/lo 

Proof. Because the complete proof is rather long we structured it in the fol-
lowing way. First we give a tree transformation xm which is in (¿£ ¥3!0to Jf W)m• 
Then we present Lemma 4 which concers any transducer which induces xm. 
After this we suppose that Jf2>S^o J/" X f for some k ^ m and, during a 
series of lemmas from 5 to 14, show, in Lemma 14, that k ^ m is impossible. 

Take an arbitrary integer m S 2 and keep it fixed in the rest of the proof of 
this theorem. To define rm we introduce an LNDR transducer 91 and an NH trans-
ducer S as follows. 

Let the LNDR transducer 2l=(F, {a, d}, F', P, a) be determined by the fol-
lowing conditions: 

(a) F=F0{JF2UF3, F2={f2} and f 3 ={g 3 }; 
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(b) F' = Fq\JF'2{JF'z, FQ = {#}, F^ = {/2,/2 '} and F^={g3}; 

(c) P consists of the rules (i)—(vi) listed below 

(i) a# - # 

(ii) af2 , x2) -~/2' (dx1, dx2) 

(iii) ag3(*i, x2, x3)-»g3(dxl5 ax2, dx3) 

' (iv) - # 

(v) df2 (xL, x2) -/2 (dxi, dx2) 

(vi) dg3 (*!, x2, x3) - g3 (dXj, dx2, dx3). 

Moreover, introduce the NH transducer SB=(F'. {/>}. F. P ' ; b) with P ' con-
taining the following rules: 

(i) - # 

(ii) 6/2' (*!, x2) - g3 (6*!, bxx, 6x2) 

(iii) b / i f o , x2)"f2(bx1, bx2) 

(iv) bg3(Xi, x2, x3)-*g3(bxl5 bx2, bx3). 

It is not difficult to see how 91 and after that SB works on a tree p£TF. First 
91, with its state a£A, searches for the first occurrence o f / 2 on the path of p leading 
along the "middle branches" of a (possibly empty) sequence of ^ ' s and if it is found 
then rewrites it to / 2 producing a tree p'f TF.. Any other symbol of p stays as it 
was. Then SB looks for this / 2 in p' and duplicates the subtree on the first branch of 
/2' by substituting /2" by g3. The other symbols of p' remain unchanged. 

We put T m = ( T S H o T S ) m . Of course, 
Now, for each / S i , we define a pair of trees Ph Qi^TPti+1 recursively as 

follows: 

(a) Pt = f2(x2,x 1), Q1 = g3(x2, x2, xx), 

(b) Pi —f2 (F , -I (X 2 , ..., X I + 1 ) , Xx), Qi = g3(P¡-i(x2,..., X 1 + 1 ) , Qi-i(x2,..., X I + I ) , 

if i > l . 

To make it clearer, Pm and Qm are visualized in Fig. 1. 
Let us introduce the notation T'm—(ziior'<B)m. By the definitions of Sil and SB, 

it can easily be verified that (Pm, Qm)€i'm moreover, that for each tlt ..., tm+1^TF 
it holds 

(Pm(tlt ..., tm+1), Qm(tlt ..., /m+1))€rm . (5) 

Lemma 4. Let £ = ( F , C, F, P", c0) be an NDR transducer with T £ =r m . Then 
we have (Fm, QmXt's>. 
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Figure 1. 

Proof. First we note that Pm€dorn té since, among others, 

Pm( # , . . . , # ) £ d o m t m = domzj. 

thus (Pm, Rm) must be in z'a for some Rm£TF-n+1. It is obvious that Rm can be 
Hj times nm + i times 

written in the form Rm(x...,x1,...,xm+1, ...,xm+1) for some n^ 1 (i£[m+1]), 
Rmdfr,n where n=n1+ ...+nm+1. Then it follows_that for each / l5 ..., tm+1£TF the 
tree Tc(Pm(A,...,im+1)) can be written in the form Rm(tlv ...,ti„r..,tm+ll,...,tm+inm+i) 
where for each i€[m+l] and jd[«¡] ¿;,)£?i>(c; ) for some c,,£C. Using these 
notations we have that for each ..., tm + 1dTF 

QmQ 19 •••» *m + l ) — Rm(tli» "-9 h„ 9 •••> m̂ + li9 -"9 tm +, ). 
" 1 m + 1 

We shall use this equality under different choices of i l 5 . . . , tm+1 in the sequel of 
this proof. 

Now suppose that Qm^Rm- This means that for some a£path (Qm)D 
flpath (Rm), lab(<2m, a) lab (R„, a). Then four different cases are possible, each 
of which yields a contradiction : 
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(a) lab(gm , a)—f, lab(J?m, a)=g for some / , g£F such that f ^ g . But then 

/ = l a b ( g m , a ) = l a b ( 2 m ( # , ..., # ) , a ) = l a b ( R m ( # l l , # v # m + l l , ... 

*m+i„m+i)>a) = lab(i? r a ,a)=g 

which is impossible. 

(b) lab(gm , lab(i?m, a )=g for some t£[m + l] and gfF. Now, on 

the one hand g = # , by # = l a b ( 0 m ( # , ..., # ) , a)=lab(!?„(#!, , . . . , ..., 

#»•+1!» •••» #m+inmti), a)=lab (Rm, a)=g. On the other hand, for any tfTF 

¡ - t h 

t — l a b ( 2 m ( # , •••, t,..., #) , a) = 

= lab( i? m (# l l , ..., #1( i i , ..., th, ..., t„t,..., # m + l l , ..., #m+i,,m+i), a) = 

= lab (Rm, a) = g = # , a contradiction. 
(c) lab (Qm, <*)=/, lab (Rm, oc)—Xi for some f f F and if[m+1]. Then it can 

be seen from the definition of Qm (see Fig. 1) that in this case str (Qm, a) contains 
at least one Xj with j^i whatever i be. But then for any tfTF it holds that t is a 

7 - t h 
subtree of str (Qm(#,..., t, . . . , # ) , a). It also holds that 

;-th 

str(0m , ( # , . . . , r,..., # ) , « ) = 

= ®tr (Rm (# i j , ..., # i n i , ..., th, ..., tj ,..., # m + i j , . . . , #m + i„m + i), a) = #,-, 
for .some /£[«,]. Contradiction since # ( l does not depend on t chosen arbitrarily. 

(d) lab (Qm, a)=xh lab (Rm, oi)=Xj for some i,jf[m+1] such that iVy. Let 
t be an arbitrary element of TF with rn (/)>0. We have that 

y—th 

# = l a b ( £ m ( # , ...,/, ..., #),<*) = 

= l a b ^ i * ^ , ..., #1(ii, ..., th, ..., tJnj, ..., #„+! , , ..., #m + in m + i) , a) = th 

for some If[nj, moreover (t, for some ch£C. Bu t2 is an NDR trans-
ducer hence rn( i 7 l )>0 which is again impossible. • 

Let i S m and assume that xmf (£?Jr@gto This means in a more detailed 
form that for each if [2k] there exists a DR transducer 9 i i =(F i - 1 , Ah F\ Pha¡) 
such that the following conditions hold 

(a) F « = f 2 t = F , 
(b) if i is odd then 91; is an LNDR transducer (6) 
(c) if i is even then 9lj is an NH transducer 
( d ) r « 1 ° . . . o T 3 i I k = T m . 
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Since each 21/ is an NDR transducer too, combining Lemmas 2 and 4 we 
have that 

or in other words, for each id[2k] there exists a pair of trees 7^1-1, m + i and 
r£TF,im+1 for which r0=Pm, r2k= Qm and (r,_i, OCTM,. In fact, (7) is'the rela-
tion which leads us to a contradiction in Lemma 14. 

Lemma 5. For each i'£[2&] it holds that rn0(r i_1)=0, that is, /-¡_i does not 
contain any symbol of arity 0. 

Proof. We observe that if rn0 (r^J^O then rn0 (rJ^O since 2 i s an NDR 
transducer. Now if for some id [2k] rn0 (r.-O^O then we obtain that rn0 (r2k)^0 
which, by the definition of r2k, is a contradiction. • 

Next we make a remark on the paths of r0 and r2k leading to x'jS (jd[m+1]). 
Namely, we observe that whenever jd[m+1] and a is an element of either pathj- (r0) 
or pathj- (r2k), by the definition of r0 and r2k, we have 

This can easily be read from Figure 1. 

Lemma 6. For each i£[2/c], j '€[m+l] and adpathj (>¡-1), |a|2 is the same 
as in (8). 

Proof By part (a) of Lemma 1, for each aÇpathj (rf_x) there exists a 
/Apathy (r,) with |a | 2^ |/?|2. Hence, if for some id[2k] jd[m+1] and aÇpathy (/V-iX 
|a|2>7 when jd[m] and |a|2=»m when j=m+1 holds then we obtain that for 
some /?£pathy (r2k), \fi\2>j if jd[m\ and |jS|2>m if j=m+1. This, however, 
contradicts (8). 

In a similar way, using part (b) of Lemma 1, the condition |a|2</' if jd[m] 
and |a|2<m if j=m+1 yields the existence of a /JÇpath,- (r0) with the same prop-
erty as a has, contradicting again (8). • 

Lemma 7. Let id[2&] and r'idTFi(AiXm+1) be such that 

Suppose that the rule cf(xlt..., x„)-+q(clXl,..., cnxn) was applied in the above 
derivation, where f d F j r 1 for some n s l , c, c l 5 . . . , cndA-t and qdTFi„. Then for 
each jd [n] and y£path j (q) it holds 

(We mention that rt belongs to r[) 

Proof. By the conditions of our lemma, there exist the terms •5,
i_1ç7Y<-iim+2, 

tu ..., tndTFi->,m+i, s£TFi,m+2 and qlt ..., qnd.TFitm+1 such that each of the fol-
lowing conditions is satisfied. 

(7) 

(8) 
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(a) contains exactly one occurrence of xm+2, 

(b) r^x = f(tu ..., t„), 

(c) rt = srm+2q(<h, •••,?„)> 

(d) i . s , ) ^ , (lj,qj)e*ml(cj) (./€[«])• 

Let us suppose that for some [n] and y€path j (q) |y|2 violates the condi-
tion stated by our lemma. By Lemma 5 and (a) we can choose an K[m+1] such 
that for some a£path, (rt-x) a can be written in the form a=a1ja2 where 
a 1 £ p a t h m + 2 ( a n d a26path( (/j). Moreover, by Lemma 1, there exist /31€pathm+2(j i) 
and P2epath, (qj) with l a ^ S l / ? ^ and | a 2 | 2 S | /y 2 . Letting P=PiyP2 we obvi-
ously have that /?£path, (rt). 

First consider the case n— 1. By our indirect assumption, |y|2>0, from which 
we have 

i«ia = WijZzii = l«i|2+ |a2i2 ¡Ai2+iyi2 + |p2i2 = \P1yP2\2 = \Ph 

contradicting Lemma 6. 
Now assume that 1. In this case |y |2=0 is impossible by our observa-

tion made at the beginning of this section hence the indirect assumption is |y|2> 1. 
But then 

M2 = l«i№l2 = |aila+l + l«il« < \Pi\t+\v\t+\Pt\% = \Pi7Pt\t = Ilia, 

a contradiction. • 

Lemma 8. For each if [2k] and «S4 , rn„ (r i_1)=0. 

Proof. Suppose it does not hold. Let if [2k] be the greatest integer for which 
rn„ (/•,_!)>() for some n£4 . Then in the derivation airi_1^>ri(rl£TFt(AiXm+1)) 
it has to be applied at least one rule cf(x1,..., x„)-+q(cx1,..., cxn) for which n £ 4 
and rn, (q)=0 for each / s 4 . Since is an NDR transducer it can be possible 
only if |y | 2 >l for some jf[«] and y£path¡(q). This is a contradiction, by 
Lemma 7. • 

At this point of the proof we can declare that for each if [2k], every function 
symbol of is in Fi~1Ui r

2~1UF^"1. 

Lemma 9. Let and r,'fTF,(AiXm+1) be such that 

Suppose that in the above derivation it was applied a rule cf(xlt ...,xn)-*q where 
n s l , c€A, and q£TFI(AtX„). Then n£[3] and q can be written in one of 

the following three forms, for some.suitable u0, uu u2, u3fTF,x cu c2, c3fAh gfF£ 
and /i€F3': 

(a) if n = 1 then q = u0(ci*i), 

(b) if n = 2 then either 
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q = «„(gOiCc^), u2(c2xit))) where {¿1,i2} = [2] or (9) 

q = u^hiuxicxxj, u2(c2xit), u3(c3xia))) where 

{¿i. k , h } = [2], 

(c) if « = 3 then 

q = M0(ft(M1(c1xil), u2(c2xh), w3(c3 *,-,))) with 

i2, i3} = [3]. 

(We note that in the notation TF1 _ 1, F[ is considered a ranked alphabet. Thus the con-
dition U j r means that every function symbol of Uj is in F j (7=0,1,2,3).) 

Proof. Immediate from Lemmas 5, 7, 8 and from the fact that 91, is an NDR 
transducer. • 

Definition. We say that for some K [2k] has property (10) if 

(a) for some / S F j - 1 and Pi ,P2 ,P3£T F , - i m t i , f (p 1 ,p 2 ,p 3 )£svb(r i - 1 ) 

and (10) 

(b) for each ;'€[3], t i j > 0 where rij = max {|a|2|a6path,(py), Z£[m + 1]}. 

Lemma 10. There exists no j£ [2k] for which r^ has property (10). 

Proof. It is enough to show that whenever has property (10) then so does rt. 
This proves our lemma since r2k, by its definition, does not have property (10). 

To this end, let us suppose that r ^ has property (10) (/£ [2/c]). Then, from 
Lemma 9, it follows that for some suitable si_1dTFt-iim+2, si£TF,_m+i, 

"o> «i> "2» >c> ci> c2> c3dAi and qx, q2, q3dTFtim+1 the following rela-
tions hold: 

(a) r,_! = Sj_1 • m+2/(^1, p2, p3), 

(b) r, = "i • m+2 
(c) c/(xx, x2, x3) - M0(/i(w1(c1xil), w2(c2X;,), «3(c3^8)))£Fi, {¡1, i2, i3}=[3], 

(d) (Sj.i, s^iTffl,, (J>h, qj)£*vl(cj) for each j£[3]. 

Moreover, for each y'£[3], there exist /j£[m+1] and oij€path;j (p^) with \ctj\2=nir 

By Lemma 1, there exist fijdpath,, {q}) such that \ot,j\2^\f}j\2. 1ms shows that rt 
has property (10) with /1(1^ (ft), u2(q2), u3(q3)). • 

Definition. Let i€[2£], We say that r ^ has property (11) if 
(a) for some f c F f 1 and Pi,p2,p3£TF,-lim+1, f(px, p2, p3)£sub (r,^) 

and (11) 
(b) there exists exactly one y£[3] with 0 where rij is the same as in the 

definition of property (10). 

Lemma 11. There exist no i£[2fc] such that r{_x has property (11). 
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Proof. Since r^ does not have property (11), we can use the same technique 
as in the proof of Lemma 10. Assume that rt_t has property (11). Then, using the 
notations of Lemma 10, we again have (a)—(d) as in Lemma 10 and, without loss of 
generality, may suppose that laJj^O, |a2 |2= |a3 |2=0 or, in other words, 

Hence, from Lemmas 1 and 9 it follows that |0i|2>O and 
I2, <Ha€Tftitm+2 meaning that r, has property (11). • 

We shall need one further property. 

Definition. We say that for some if [2k], rt^ has property (12) if there exist 
a, 0£path (r,_i) satisfying the following conditions: 

(a) a $ p and p a, 

(b) str (r ;_1; a) =f(p1,p2,p3) for some ffFi^1, 

Pi>P2,Ps€TF
t-\m,.1, (12) 

(c) s t r ( r l _ 1 , / 0= / ' ( p i , / i , / »D for s o m e f ' £ F L - \ 

P'l,P2,P&TF>-l<m + 1 . 

Lemma 12. There exist no if [2k] for which rt_x has property (12). 

Proof. If has property (12) then, by Lemma 9, so does rf. This proves our 
lemma since r2k does not have property (12). • 

Lemma 13. Let i£[2A:] be an odd integer. Then rn3 (r i_1)=rn3 (r,). 

Proof. It obviously follows from Lemma 9 that rn3 (/-¡.^snia (r,). Let us 
assume that rn3 (r,_1)<rn3 (r,). Then in the derivation a(/•,_!=> r,' (rl€Tr,(AiAr

m+1)) 
it has to be applied at least one rule of the form (9). However, this is impossible 
since, for odd /, 91, is an LNDR transducer. • 

Lemma 14. k=m. 

Proof On the contrary, assume that k<m. Then, since rn 3 ( r 0 )=0 and 
rn3 (r2k)=m, it follows from Lemma 13 that for some even integer if [2k], rn3 
Srn 3 (r,)— 2. It means that there exist a, /?£path (r.-.i) such that a ^ p , str (r.-x, a )= 
= / O i , M st r (r i_ 1 ,p)=f ' (p ' 1 ,p ' 2 ) for some f f ' f F i f 1 , pj,pfj£T„-iwm+1 (jf[2]) 
moreover, in the derivation at r^^ r[ (r[fTFi(AiXm+^)) both / and / ' were Si 
rewritten by applying a rule of the form (9). 

First we claim that either a </? or /?< a. Really, from a < 0 , 0 <fr a and 
it would follow that r, has property (12) contradicting Lemma 12. 

Suppose that a < 0 and that the rule (9) was applied to rewrite/in the deriva-* 
tion a-, r,_i=> r[. Then, without loss of generality, we may assume that the fol-ai 
lowing relations hold for some suitable i,_1€7Vi-i>m+2, s^T F ( m + 2 and 

, m + l * 
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(a) ri-l — m + zfiPliPd' 

(b) Px = ii-l • m + 2 f'(p'l,p'i), 

(c) rt = Si • m + 2u0(h(u1(q1), u2(q2), u3(q3))), 

(d) ( s ^ s i ) ^ , (Pi,, q j e ^ c c j ) for each j€[3]. 

Let us introduce the following notations: 

rrij = max {|a|2|a6path,(p,) for some l£[m+l]} (/€[2]), 

rij — max {|a|2 |a6path,(^) for some Ze[m+1]} (j€[3]). 

We know, by (b), that Wi>0. Moreover m2—0 since from w 2 >0 it would 
follow, by (d) and Lemma 1, that «i>0, n 2 >0 and n3>0. This, however would 
mean that rt has property (10) which is impossible by Lemma 10. Hence we have 

We also know, by (9), that {/ls /2, z3}=[2] which means that 2l4 duplicates 
either px or p2. We show that both cases are impossible. 

First let us suppose that 1 appears once and 2 appears twice in the sequence 
iu i2, i3. Then we obtain, by Lemmas 1 and 9, that for exactly one y'£[3], «^>0, 
contradicting Lemma 11. 

Next assume that 1 appears twice and 2 appears once in the sequence ilt i2, i3. 
But then, s ince/ ' was also rewritten by a rule of type (9) we have that r ; has prop-
erty (12) yielding again a contradiction, by Lemma 12. 

Hence we have k=m. • 

With this we also completed the proof of Theorem 3. • 

Now we present Theorem 3 in an alternative form. It is not difficult to see that 
<ejf®0lojn?e=qur3)0l. Really, for any LNDR transducer 91 and NH trans-

ducer 23, by Lemma 3 of [1], T9Ios='r«HOTs and it can easily be verified that in this 
case 21 o 23 is a UNDR transducer. Conversely, given a UNDR transducer fi, 
with the help of the usual relabeling technique (see, for example, Lemma 3.1 in [2], 
pp. 155) we can construct an LNDR transducer 91 and an NH transducer 23 with 
xc=T3,oTi8. Thus Theorem 3 can be given in the following form as well 

Theorem 15. For any m S l , aUJf9)0lm<^(!lU/'Q>8ft,m+x. 
The first problem, presented at the beginning of this section is answered by 

Theorem 16. [S] is an infinite set. 

Proof. Immediately follows from Theorem 3. • 
Now we deal with the second problem. The following lemma can be proved. 

Lemma 17. There exists an NDR transducer 91=(F, {a, b), F\ P, a) such that 
for any km\. 

4 Acta Cybernetica Vffl/2 
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Proof. Let 91 be determined by the following conditions: 
(a) F= F0UF2, F0 = {#}, F2 = {/2}, 
(b) F ' = f í U f í U r „ F'0 = {#}, F'z = {/,}, F'3 = {g3}, 
(c) P is the set of the rules : 

( i ) Ű # - # , £ > # - * - # , 

( i i ) ö / ü C * ! , Xs) - g 3 ( b x l 5 flXx, bx2), bf2(xx, x 2 ) -+f2(bx1,bx2). 
Let Pm and g m be defined in the same way as in the proof of Theorem 3. It is 

not difficult to verify that for each m ^ l , (Pm, 
Moreover, let Qm be written in the form 

m+1 times _ ' 

Qm(x!,x2,x2, ...,xm+1, ...,xm+1) where QmffF,n (n = l + 2 + . . . + m + l). 

Then we can say that for any r l 5 . . . , tm+1fTF m times 

i p m i t 1 , •••> 'm + l ) , Q m ( ' l , ' 2 , h i •••> 'm + l , •••> 'm + l> 'm + l ) ) £ T 2 l 

holds where t'm¥1=r<a(tm+1). Using this notation, the following lemma can be 
proved in a similar way as Lemma 4. Therefore we omit the proof. 

Lemma 18. If 2 is an NDR transducer with T9i=Tfl then for each m S l 
(Pm, Qm)£?'e holds. • 

Now we can complete the proof of Lemma 17. Suppose that 
x^X^jV^SAoJÍXf 

for some k^l. Then for each if [2k] there exists a DR transducer 91— 
=(F'~1, A{, F', Pit at) with properties (a)—(c) of (6) and T ^ T ^ O ...oTffljlt. Let 
m be chosen such that k<m. It follows from Lemmas 2 and 18 that 
(Pm, őm)íTá1° However, if we follow the proof of Theorem 3 from (7) 
then we see in Lemma 14 that this is a contradiction. This ends the proof of 
Lemma 17. • 

The last theorem is an immediate consequence of Lemma 17. 
eo 

Theorem 19. U {J^JfQStoJfXf^JfQ» . 
t=i 

RESEARCH GROUP ON THEORY OF AUTOMATA 
HUNGARIAN ACADEMY OF SCIENCES 
SOMOGYI B. U. 7. 
SZEGED, HUNGARY 
H—6720 

References 

[1] FÜLÖP, Z. and S. VÁGVÖLGYI, Results on compositions of deterministic root-to-frontier tree 
transformations, Acta Cybernetica, v. 8, f. 1,1987, 49—61. 

[2] GÉCSEG, F. and M. STEINBY, Tree Automata, Akadémiai Kiadó, Budapest, 1984. 

(Received Sept. 28,1986) 



Evaluated grammars 

ALEXANDR MEDUNA 

1. Introduction 
I 

Mechanisms which regulate the application of the rules belong to the most 
important devices in order to enlarge the generative capacity of context free gram-
mars. A common idea is that not every derivation leading from the start symbol 
to a terminal word is acceptable, but there is a control device which lets through 
acceptable derivations only. For instance, an application of some production deter-
mines which productions are applicable in the next step (this is called a programmed 
grammar), or some productions can never be applied if any other applicable (an 
ordered grammar). In a matrix grammar one has to apply only certain previously 
specified strings of productions or, more generally, the string of productions cor-
responding to a derivation must belong to a set of previously specified strings (a 
grammar with a control set) — see [3]. 

In this paper, the notion of evaluated grammar is introduced. The derivation 
process in this generative mechanism is regulated by a certain evaluation of some 
symbols occurring in sentential forms. 

We believe that the introduction of the new type of grammar with a restric-
tion in derivation introduced here is very useful because of three reasons : 

(i) evaluated grammars represent a simple and very natural extension of con-
text-free grammars ; 

(ii) evaluated grammars are considerably more powerful than context-free 
grammars ; 

(iii) some classes of languages generated by parallel rewriting systems (e.g. 
E O L languages) can be characterized by evaluated grammars in a natural way. 

2. Preliminaries 

We introduce here only briefly the notions needed in this paper. For a more 
detailed discussion, as well as for background material and motivation, the reader 
is referred to [2, 3]. 

4* 
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Let a be a word over an alphabet Z. The alphabet of a, alph a, is the set of all 
symbols (from I ) that appear at least once in a. 

A context free grammar is quadruple G=(E, P, S, A) where, as usual, I is a 
finite alphabet, A QI is the terminal alphabet and Z\A is the nonterminal alpha-
bet, PQ(Z\A)XE* is a finite set of productions, where a production (A, a) is 
usually written as A— a, and S in Z\A is the start symbol. For arbitrary words 
x, y£Z* and production A—a. we write xAy =>xay, and denote the reflexive, 
transitive closure of => by =•*. The language generated by G, denoted L(G), 
is defined by L(G)={x£A*: S =•**}. 

A context free grammar G—{I, P, S, A) is called regular if every production 
A—a from P satisfies 

An ETOL system G consits of m + 3 ( m £ l ) components G—(I, P 1 ; . . . , Pm, S, A) 
where Z, A, S are defined identically as for context free grammars, and where every 
Pt is a finite subset of Zx X* such that for every a£Z at least one pair (a, a) 
occurs in P:. The pairs in P, are again called productions and usually written as 
a—a. For an arbitrary word x=a1a2...ak, a£Z, and productions ¿jj—al9 ...,ak^ak 
of the same set P j we write a1a2...ak=>a1a2...ak and denote the reflexive, tran-
sitive closure of => by =>•*. The language generated by G, L(G), is defined by L(G)= 
= {x£A*: S=>-*x}. An ETOL system with a single set of productions is called EOL 
system. 

For « > 0 , an «-parallel right linear grammar (see [1]) is a quintuple 
G=(Z, P, S, A, n) where I , A, S are defined identically as for context free grammars, 
and PQ(Z\(AU{S}))x(A^r\{A{J{S}))UA+)[J{S}X(A*U(Z\(A{J{S}))n) is a 
finite set of rules, where a production (A, a) is usually written as A—a. The yield 
relation is defined as follows: for x,y£Z*, x=>y if and only if either 
x=S and 5—y£P or x=y1X1...ynXn and y=yiX1...y„x„, where y^A*, X& 
6<d*(F\({S}LM))LM+, ZiCXX-d and X ^ x ^ P , l ^ i ^ n . The relation => can 
be extended to give as above. The notion of the language generated by G 
can be introduced just as for context free grammars. (An «-parallel right linear 
grammar G is in normal form if 

G = (JUAiU... Ui^U {S}, P, S, A, n), 

S is not in Ki are mutually disjoint nonterminal sets, if 
S^X1...Xn£P and X1...Xn£(K1{J...(JKn)* then X&Ki, l ^ i ^ n , and if X,-~yYj£P, 
X£Ki and Y j t K j then i=j.) 

The families of languages generated by context free, regular and «-parallel 
right linear grammars are denoted by i?(CF), i f (RG) and if(«— PRL), respec-

oo 
tively. Let i f (PRL)= | J i f (/-PRL). Families of languages generated by ETOL 

i=l 
systems, ETOL systems of finite index (see [2]) and EOL systems are denoted by 
i f (ETOL), i f F|N (ETOL) and i f (EOL), respectively. 

3. Definition of evaluated grammars 

Intuitively, an evaluated grammar is very much like a context free grammar. 
However, some symbols (including terminals) in a given sentential form of an eval-
uated grammar can have a certain value associated (a non-negative integer). In 
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one derivation step either a nonterminal without associated value in a usual "con-
text free" way or a nonterminal with the least value that occurs in the given sen-
tential form is rewritten. In the latter case the nonterminal is rewritten again in a 
usual way but, in addition new evaluation is assigned to apriori specified (on the 
right side of the rule applied) symbols. 

Formally, let N be the set of non-negative integers and let I be an alphabet. 
We denote members of V—IXN by a(i) where a is in I and i is in N, then in a 
natural way we can define V*. Define the letter-to-letter homomorphism v: (VUi)*— 

by v(a(i))=a for all a ( 0 in V and v(a)=a for all a f l . An evaluated grammar, 
EG, is a construct G=(X, P, S, A) where AQI is a terminal alphabet, P^(I\A)X 
X(FU Z)* is a finite set of productions, where (A,a)£P is usually written as 
A-*a, and S£E\A is a start symbol. For all a, /?£(FUI)* we write a=g-/? 
(or simply a=>/j if G is understood) if 0=a1}'a2 for some alt a2d(V{JZ)* and 
either a.—a.xAn2 and A-+y£P or a=a1A(i)a2 for some A^V, 

y = 5oBm+k/x • • • Bm+K)5»>AS0BHk )S,...B„ikJ5niP 
where 5^1*, Bj(k)j, Bj{.+k^V (i.e. Bj£Z, i, k^N), 0 s j ^ n for some n^O 
(where n= 0 implies y=S0 and A-*S0£P) and z'Sm for every X(m)£alph 
a^OV. The language generated by G, L(G), is defined by L(G)= {f(x): v(x){_A* 
and S(0)=**x} where =>* is the transitive,reflexive closure of =>. 

Now we introduce some special cases of evaluated grammars. Let G—(I,P S, A ) 
be an EG and let n be a positive integer. We say that G is «-regular if it has the fol-
lowing properties: 

(1) if S^a£P then v(a) = Xx ... Xn 

with X£Z\(A\J{S}), 1 S i S « ; 

(2) if A - aeP and A ^ S then 

We say that the EG G is regular, R.GEG, if it is «-regular for some positive integer n. 
We say that an EG G is binary, BEG, if 

P g ( 2 V ) X ((4 X {0}) U ( ( I V ) X {1}) u A)*. 
A binary regular EG (i.e. an EG which is as regular, as binary) will be denoted by 
BRGEG. 

We use ¿f(E), <£?(RGE), i f (BE) and ^f(BRGE) to denote the families of 
languages generated by evaluated, regular evaluated, binary evaluated and binary 
regular evaluated grammars, respectively. 

4. Examples 

We now consider some examples to give insight into evaluated grammars. We 
usually define evaluated grammars by simply listing their productions in Backus-
Naur form. In this case we use S to denote the start symbol, early upper case Roman 
letters to denote nonterminals and early lower case Roman letters to denote ter-
minals. 
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Example 1. Let 

Gx: S — AwBmCm; A — aAm\aw; 

B — bBm\bi0)-, C — cC ( 1 ) | c ( 0 ) 

be a BRGEG. Then, e.g., for the word aabbcc there exists a derivation in G: 

S(o) => A(1yB(1) C ( i ) => <J/J(2)5(1) C ( 1 ) => aA(2)bB(z) C ( 1 ) => 

=• fl/i(2) f>-6(2) CC(2) => «/1(2) CC W => 

=> a/i(2) bb m CC(2) => a a (2) b b ^ cc(2) 
and thus we get 

v(aa(2)bb^cc(^) = aabbcc. 

Clearly, G generates a well-known context-sensitive language: 

¿(Gj) = {ijnbBcn: n ^ 1}. 

Example 2. Consider the RGEG 

G2: S — — av4(2)|a(1); 

FC£(2)|F>(0)C|Z>(0); C - I C | F > . 

The reader can easily check that 

Z,(G2) = { a W : I 1}. 

It is well-known (see [2]) that L(G2) is not an EOL language. 

Example 3. Let 

G3: S S'(1j5,(1)|ii(0) 

L ( G 3 ) = K : n ^ l } 
be a BEG. It is not difficult to show that which is not an ETOL language of finite 
index (see [2]). 

5. Generating power of evaluated grammars 

From the definition of an EG it is easy to see that every context free language 
can be obtained as the language of some EG. Moreover, from examples in the pre-
vious section it follows that the class of context free languages is properly con-
tained in i f (E). The purpose of this section is to show that i f (E) is included in 
Se (ETOL). 

Theorem 1. i f (E )g i f (ETOL). 
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Proof. Let 
G = (27, P, S, A) 

be an EG and let k be an arbitrary but fixed non-negative integer such that for every 
production A-*a1B(0cc2£P, where A^X\Alf ^ ^ ( F U Z ) * , B(i)£V, it-holds that 

k. Consider a new alphabet 1= {[A, z]: E and z's k} and let F be a 
new "block" symbol. Let A = {[a,i]: a£A and O^Mk}; clearly AQE. Now we 
define four new tables of productions P i ; as follows: 

Pi = {[A, 0] - Xq\B\, K]Xl ...[Bn, kn]xn: 
A - x0B1(ki)Xl ... Bn(kjXn£P, 

Xjil*, BJikj)£V, 

0 ^ j = n for some n & 0} U 

X£2;U{F}U{[a,0]: a£A}U{[A,i]: A£Z and 1 

Pi = {[A,i] -* A£Z and 1 S i fc}U 

U p , 0 ] - F : A Z I ) U { Z - Z : X€ZU{F}}; 

P3 = {A - a: A - <x£P and a € l + } U { X - X: Z £ l U { F } U r } 
and 

P4 = {X-F: Zel\JUr\2U{F}}U{a-a: a£A}U 

U {[a, i] - a: [a, i]£A(a^A, 0 ^ i fe)}. 

Consider the ETOL system 

G = ( r U £ U {F}, Fi , Pt, P3, P4 , [S, 0], J, A). 

From the construction it is clear that L(G)=L(G); hence the theorem holds. • 

In the end we want to mention that it is not known whether or not the inclusion 
i f (E)g i?(ETOL) is proper. 

6. Subfamilies of <£ (E) 

In this section we prove a few results about some special cases of evaluated 
grammars which were defined in Section 3. 

Theorem 2. i?(EOL)=i?(BE). 

Proof. 1. iP(EOL)cjS?(BE): Let 

G = (I,P,S,A) 



174 A. Meduna: Evaluated grammars 

be an EOL system. Define a new alphabet 3= {a: a^A} and a coding 

h:2*^((Z\AX {1})U(ZX {1}))* defined by 

(i) h(X) = Xw for all 

(ii) h(X) =X(1) for all X£A. 

We define a new set of productions 

P = {h(A) - h(a): A - a£P}U{5(1) - am: a£A(a£A)}. 

Consider the BEG 
G = ( I U 4 , P, S, A). 

Clearly L(G)=L(G) and thus i f (EOL) g i f (BV). 
2. i f (EOL) 5 i f (BE): Let 

G = (I, P, S, A) 

be a BEG and, clearly, we may assume without loss of generality that every non-
terminal in G is useful i.e. that for every there exists a word 
a€(((2Vl)X{l})U(idX{0})LM)* such that A-a£P. Define a new alphabet 
I'={A': A£Z} and a new "block" symbol F. We define the substitution 

g: (A U((2V1)X {1})U(J X {0}))* - (J UI')* 
by 

(i) g(.a) = {a',a} for all a£A; 

(") g(Am) = A' f o r all ^ ( 1 ) €( I \ J )X{1} ; 

(iii) g(a(0)) = a for all a ( o )eJx{0}. 
Let 

U{a' - a', a ' - a, a - F: 

U { F - F } . 
Now, let 

G' = (Z'VA\3{F},P',S', A) 

be an EOL system, then, clearly, L(G)=L(G') and thus i f (EOL)i? i f (BE). Hence, 
we have i f (EOL)= i f (BE) and the theorem holds. • 

From this proof we obtain: 

Corollary 1. For every i f (BE) there exists a BEG G=(£, P, S, A) such 
that L(G)=L and Pg(2^1)X( (z lX {0})U((r \J)X {1}))*. 

It is a straightforward to prove the following four lemmas. 

Lemma 1. i f (BE) c i f (E). 

Proof. The inclusion i f (BE) g i f (E) is an immediate consequence of the 
definitions of BEG and EG. That the inclusion is strict follows from Example 2 in 
Section 4 and Theorem 2. • 
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Lemma 2. if(BE)ctif(RGE). 

Proof. From the construction in the proof of Theorem 1 follows that i f (RGE) ^ 
g ifF,N(ETOL). On the other hand, L(G3)eif (BE) / i f FIN(ETOL); see Example 3 
in Sect. 4. Hence, the lemma holds. • 

Lemma 3. i f (RGE)<t i f (BE). 

Proof It is an immediate consequence of Example 2 in Sect. 4 and Theo-
rem 2. • 

Lemma 4. i f (RGE)c i f (E). 

Proof. Clear. • 

It is quite clear that i f (RG)c i f (BRGE); see the definition and Example 1 
in Sect. 4. We now prove this result: 

Lemma 5. i f (BRGE)g if(PRL). 

Proof. Let 
G = (E,P,S,A) 

be «-regular BRGEG for some 1. 
From the definition of BRGEG it follows that in any sentential form (except the 

last one) of a derivation of any word from L(G), no symbol a(0), a6JX{0}, is con-
tained. Thus, we can construct the following «—parallel right linear grammar: 

G = (ZUZ, P, S,A) 
where 

A = {a: a£A} 
and 

P = {S^X1...Xn:S^ Xlw... Z„(1)€P, Xkl¿Z\(A U {S})x {1}, 1 S ¿ á «, « > 0 } U 

U { A ^ a B : A — aBm£P, adA, U {S}), J? ( 1 ) e((r \ (4U{S»)x{l})}U 

— a: A — amZP, A€E\(A U {S}), a<i(A X{0})}U 

U {A^a, A^a, a - a, a - a : A^a£P, ¿(EZ\(¿U{S}), a£A}. 
Clearly L(G)=L(G). The lemma is proved. • « 

Lemma 6. i f (CF) and i f (BRGE) are incomparable but not disjoint. 

Proof. The lemma is a direct consequence of Example 1 (see Sect. 4), Lemma 5 
and a diagram from Sect. 6 in [1]. • 

Lemma 7. i f (CF)ct i f (RGE). 

Proof. By proof of Lemma 2, i f (RGE) Q i f F,N(ETOL). But it is well-known 
that i f (CF)ct i f FIN (ETOL) (see, e.g., [2]). Thus the lemma holds. • 

Lemma 8. i f (BRG E) ^ if (BE) D i f (RG E). 

Proof. From definition. • 
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7. The relationship diagram 

The aim of this section is to establish the relationship diagram among various 
classes of languages considered in this paper. We get the following theorem. 

Theorem 3. 

(If there is a directed chain of edges in the diagram leading from a class X to a class 
Y then Xc Y, an undirected chain means that we do not know whether the inclusion 
is proper. Otherwise X and Y are incomparable but not disjoint.) 

Proof. From the results of Sect. 5 and 6 together with the fact that i f (RG)c: 
c i f ( C F ) c i f (EOL) — see [2]. • 

Evaluated grammars are based on context free grammars but the derivation process in these 
grammars is regulated by a certain evaluation of some symbols occurring in their sentential forms. 

Fundamental properties of the family of languages generated by evaluated grammars are 
investigated. This family of languages is contained in the family of ETOL languages and properly 
contains the family of EOL languages. 

In addition, we propose and study some special cases of evaluated grammars. 
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EBE: a language for specifying the expected behavior 
of programs during debugging 

NGUYEN H U U CHIEN 

1. Introduction 

In [1] Bruegge B. and Hibbard P. used GPEs (Generalized Path Expression) 
for specifying expected behavior of programs. GPEs are slightly extended version 
of a BPE (Basic Path Expression) with predicates and counters. 

A BPE is a regular expression with operators sequencing(;), exclusive selec-
t i o n ^ ) and repetition(*). The operands, called PFs (Path Function), are the names 
of statements or groups of statements defined in the source program. For each 
PF two counters are defined: the counters ACT and TERM. These represent the 
activation and termination number of a PF respectively. Predicate is a logical 
expression involving the counters and the variables of the program and debugger. 
BPE is extended by associating predicates with PFs. 

In this paper we extended GPE by adding the operator shuffle (A). This does 
not increase the power of GPEs, but we can describe the expected behavior of a 
program in a simpler way. In the next sections we define the syntax and semantics 
of the extended GPEs, called EBEs (Expected Behavior Expression). The purpose 
of EBEs is to specify the order of execution of PFs, the semantics of EBEs there-
fore can be defined by specifying a set of actual behaviors that are valid with respect 
to a given EBE. In section IV we discuss some properties of EBEs. According to the 
syntax and semantics we introduce the syntactical and semantical equivalence of 
EBEs. A sufficient condition for the semantical equivalence of two EBEs is given. 
It is shown that the syntactical equivalence is more powerful than the semantical 
equivalence. It is also proved that EBEs are not more powerful than GPEs. In 
section V we present an implementation of EBEs. The implementation is formally 
defined omitting details of actual implementation, and then its semantics is also 
defined similarly to that of EBEs, that is, by specifying a set of actual behaviors 
that are valid with respect to a given implementation. Correctness of the implementa-
tion is proved by showing a given EBE and its implementation recognize the same 
set of actual behaviors. 

In order to make an implementation effective it is necessary to reduce EBEs. 
We give some rules for reducing EBEs in section VI. 
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II. The syntax of EBEs 

Assume that the notions {identifier), {integer number) and {arithmetic expres-
sion) are known. The other notions are defined in terms of the above ones. 

{path function): := {procedure name) 
{procedure name) {identifier) 
{counter)::=ACT((j>rocedure name)) | TERM {{procedure name)) 
{counter exp)::={counter)\{integer variable)| 

{integer constant)\({counter exp))| 
{counter exp) {binary op) {counter exp) 

{binary op): := +1 — | X 
{integer variable) {identifier) 
{integer constant) ::={integer number) 
{counter rel) {counter exp) {rel) {counter exp) 
{arithmetic rel) ::={arithmetic expression) {rel) 

{arithmetic expression) 

(predicate)::={counter rel)\{arithmetic rel)\({predicate))\ 
(predicate){logic op){predicate)\~\{predicate) 

{logic op)::= A | v | — 
(operand): :={path function)\{path function)\_(predicate)~\ 
{EBE): (operand)\((EBE))\{EBE); {EBE)\ {EBE)+ {EBE)\ 

{.EBE>*\{EBE)A{EBE) 

Let E be an EBE, we define the language L{E) as follows: 
If E=o, where o an operand, then L{E)={o). Let L\ = L{E\), L2= 

= L{E2), then 

L(El; E2) = LIL2, L(El +E2) = LI +L2, L(El *) = LI*, 

L(E\AE2) = L1AL2 = {o1o'1...ono'^o1...on£L\ ando'1...o'„^L2, it may happen 

that ot and o'j are e}. 

Now we give some examples of EBEs. 

Example. 

Initstack; (Push [TERM {Push) - TERM {Pop) 
Pop [TERM {Push)—TERM {Pop) o]+ 
Top [ TERM {Push) — TERM{Pop)> o]) *. 

This EBE specifies an expected behavior of the program which states the operational 
constraints on a bounded stack of length N: first the procedure Initstack has to 
be called. One of the following can then happen: either procedure Push can be called 
if the size of the stack is smaller than N, or Top or Pop can be called if the size of 
the stack is larger than o. 

Example. The EBE 
(p; q)A{r; s) 
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is used to look for activation of the procedure p when p has been called 5 times and 
the value of the variable A is 4. 

Example. The EBE 
p;qAr;s 

permits possible sequences of the execution of the procedures p, q, r and s as follows: 

pqrs, prqs, prsq, rpsq, rpqs, rspq. 

m . The semantics of EBEs 

First we define some notions. 
Let OB be an arbitrary set (representing a set of all data objects), P a finite set 

of procedures, and P'cP. 
A state is a pair (S,cou), where SczOB, and cou= {ap, tp\p£P'}(zN+ = 

= {0,1,2,. . .} (the numbers ap and tp represent the activation and termination 
number of the procedure p), and the "COM" is called counter-state. 

A concrete (actual) event is an activation of the procedure p at a state (S, cou). 
We denote it by ec— (p, S, cou). 

A concrete behavior B is a sequence of concrete events e\... e?c. Let B be the set 
of all concrete behaviors. 

A computational system is a 5-tuple {OB, P, P',fa,ft), where fa and / , are 
maps: B->-{g|g is function, g: P'-*N+} which are defined as follows: 

The definition of fa: fa(0)(p)=O for all p£P', 
fa(B(p,S,cou))(p')=fa(B)(p) +1 if p'=p 

= fa(B)(p') otherwise, p'^P', BeB. 
The definition o f f : ft(Q)(p)=0 for all p£P', 

ft{B(p,S,cou))(p')=ft(B)(p)+l if p' = p 
—f,(B)(p') otherwise, p'£P', B£B (0 is the empty sequence). 

Let E be an EBE, then 
PE — {P\P is a P a th function in £}, 
VE = {D|O is variable in E, and v ^ ACT and v ^ TERM}, 
CE ={c\c is constant in E}, assume that CE<zOB, 
ATE = {ACT(p), TERM(p)\peP'}, 
QE — {L\L is predicate in E}. 

An abstract event ea is a 4-tuple (p, q, VE, ATE), where p£PE, qdQE-
An abstract event expression Ea of E is an expression obtained as follows. All 

operands p[q] or p in E are substituted by abstract events ea= (p, q, VE, ATE) or 
ea=(p, true, VE, ATE) respectively. 

Let ec= (p, s, cou), then the counter-state "cou" and the maps fa and f , match 
under a concrete behavior B, if ap=fa(Bec)(p), ap,—fa{B)(p'), p'£PE\{p), and 
tp,=ft(B)(p'), p'£PE. This fact is denoted by Matchs(cou, fa,f„ B). 
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An Interpretation is a function I: VE\JCE\JATE-~OB{JN+ suchthat I(v)£OB 
for V£VE, I(C)£OB for c£CE , I(v)£N+ for v£ATB and I preserves constants 
and usual arithmetic operators, that is 

(1) /(c) = c for all c€C£ , 

(2) I(expl op expl) = I(expl) op I(exp2), where op£{+, - , X , / , t}. 

A concrete event ec=(p, S, cou> and an abstract event ea=(p', q, VE, ATE) 
match under an interpretation/, if p=p' and {/(u)|u€FE}cS and I(ACT(p'))—ap., 
I(TERM(p'j)=t„. for all p'€PE- This is denoted by Matche(ec, ea, I). 

Now we introduce the sets R, BE and EN for Ea. First we supply the abstract 
events of Ea with indexes 1,2, ... continuously, in such a manner that any ea should 
receive different indexes at different occurrences. If the index of ea is /, then ea(i) 
denotes an indexed event of ea, and the resulting expression is called an indexed 
expression of Ea and denoted £. Then the sets R(£), BE(£) and EN(£) are defined 
as follows. 

(1) If £ = ea(k) then R(E) = 0, BE(E) = EN(£) = {ea(k)}. 

(2) Assume that Ri = R(Ei), BEi = BE(£i) and ENi = EN(Ei), ¿ = 1,2, 

then 

R(EUE2) = RlUR2\J(ENlXBE2)- BE(EUE2) = BEI, 

BE(E\*^E2) = BE 1U BE2, 

EN(EUE,2) = EN2, EN(EUE2 * ) = EN 1U EN 2, 

R(El+E2) = /?1 UR2, BE(E\+E2) = BEI \JBE2, 

EN(E1+E2) = ENI UEN2, 

R(E1*) = RIU(ENIXBEI), BE (El*) = BEI, EN (El*) = ENI, 

R(EIAE2) = RlUR2U(RlXR2)U(R2XRl) 

where R=RUR, and # = {a|(a ' ,a)£R} and R= {a|(a, a')€/?}, 

££(£1AE2) = BEWBE2, EN(E1AE2) = ENWEN2. 
In the following if (ea(i), e'a(k))^R(E), then it is written ea(i)>e'a(k). 
Let Exp (£)= {ea(i)\ea(i) is an indexed event in £}. 
Let ea(;)£Exp (£) and AfcExp (E), then e0(/)= ¥a(k)\ea(i)>e'a(k)}, and 

M = U e0(i). 
e„€M 
From the construction of the sets R(£), EN(E) and BE(E) it is easy to see the 

following properties. 
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Statement 1. 
a) е0(к)£ВЕ(Ё) iff there is а и such that еа(к)и£Ь(Ё), 

ea(k)£EN(E) iff there is а и such that uea(k)dL(E), 
ea(k)>e'a(n) iff there are u, v such that uett(k)e'a(ri)v£L(£), 

b) е'Лкг )>...>e"a(kn), е1
а(к1)^ВЕ(Ё) iff there is и such that 

el(kl)...e»a(kn)u<iL(£). 
Example. Let E((p[q]+g[r]);f*)*. Then 

Ea = ((el+e%); el*)*, 

£ = Ш)+е1(2));е№)*)*, 

ВЕ(Ё) = {e\(\), el(2)}, EN(Ё) = K ( l ) , ej(2), ea
3(3)}, 

R(E) = {(el( 1), 4(3)), (el(2), e3
a(3)), (e\(3), e*a(3)), (e\(\), e\(\)), 

(ej(2), el(2j), (e3
a(3), (^(3), e\(2)), (еЦ2), ej(l>), (ej(l), e»(2))}, 

where e\= (p, q, VE, ATE), e*= (g, r, VE, ATE) e\= </, true, VE, ATE). 
Definition. Let R—{OB,P,P',fa,ft> be a computational system and E an 

EBE such that P'= PE. The semantics of E is defined by the predicate ValidE: В-» 
-•{true, false} with the partial map NextE: B^{M\MczExp (£)}, in such a way 
that NextE(B) is defined iff ValidE(B)=true. The ValidE and NextE are defined 
recursively as follows. 

(1) Let ec= (p, S, cou), then ValidE{ec)—Matchs{cou,/„,/,, 0)&M^0, where 

M = {ea{i)\ea{i)dBE{2)h.ea = (p, q, VEATE)& (3 /)(Matche(ec, ea, I)hSat(q, I)) 

= true} (Sat is defined later). And NextE(ec) is defined iff ValidE(ec) =true, 

and then NextE(ec) — M. 

(2) Let ec-(p, S,cou) and B£B, then 

ValidE(Bec) = ValidE(B)&NextE(B) = N&Matchs(cou,fa, f „ B)&M И 0, where 

M = {ea(i)\ea(i)dN &ea = (p, q, VE, ATE)&(3I)(Matche(ec, ea, I)&Sat(q, I)) = true}. 

And NextE(Bec) is defined iff ValidE(Bec) =true, and then NextE(Bec)=M. 

The definition of the predicate Sat. Sat(q, I) is defined according to the syntax 
of the predicate q. 

Sat ({counter exp) {rel) {counter exp), I) = 

= ¡((counter exp)) {rel) ¡({counter exp)) 

Sat((arithmetic exp) (rel) (arithmetic exp), I) = 
= /«Iarithmetic exp)) (rel) ¡({arithmetic exp)) 

Sat ({predicate) {logic op) (predicate), I) = 
= Sat({predicate), / ) {logic op) Sat ({predicate), / ) 

Sat(~\(predicate), / ) = Sat({predicate), I). 
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Let and ValidE(B)=true}. 

From the definition of the semantics of EBEs it is easy to see the following 

fact. 

Fact 1. Let Bn=el
c...e"c, el

c—(j>i, Sh cout), i= 1, ..., n, then 

ValidE(Bn) = true iff 

Matchs(coui,/„,/,, i?,-i), i — 1, n, Ba = 0, and there is a sequence {Afi}"=1 

such that 

= (Pt, g, VE, ATE)&3¡(Matched, ea, I)&Sat(q, / ) = true} ^ 0, 

and NextE(Bi) = Mi, i = \,...,n, Mo = BE(E). 

IV. Some properties of EBE 

Definition. Two EBEs E and E' are syntactically equivalent iff L(E)=L(E'). 

Definition. Two EBEs E and E' are semantically equivalent iff B(£')=B(£"). 

Theorem 1. If E and E' are EBEs such that L(E)<zL(E') and for all 
u£L(E')\L(E) there are v£L(E) and w for which v=uw then E and E' 
semantically equivalent. 

Proof. According to the construction of Ea we can identify Ea with E, thus 
L{Ea) with L{E). First we prove the following facts. 

For any E and Bn=e\...e"c, e j . — S h cout). 

Fact 2. If there is a sequence {Mi}"=1 such that 

M i = {e 0 ( fe ) | e a ( /c )6M i _ 1 &e a = 

= (Pi, q,VE,ATE)h3l{Matche(jc, ea, I)hSat(q, /)) = true} ^ 0, 

i=l,...,n, Mo = E(BE), 

then there is a sequence {ej, (&,)}?=i> e'a= (pt, qh VE, ATE), for which e'a(ki)£Mi, 
i = l , ...,n and (kn). 

The existence of the desired sequence is shown by induction as follows. 
Since Mn^Q, thus there is an e"a(kn)£Mn, e"a-(pn, q„,VE, ATE). From the 

definition of Mn there is an en
a~1(k„_l)^Mn_1 for which i)>e2(fc„), e2 _ 1 = 

= (Pn-I> <ln-I> vE, ATE). Assume that the sequence {eJ
a(kj)}"=i, />1 , is con-

structed. Then from the definition of Mi there is an ei~1(ki_1)£Mi_1 for which 
So we get the desired sequence. 
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Fact 3. If there is a sequence {4(&;)}"= i> ea=(Pi> <7;> VE, ATE), such that 
there is a u for which el(kx) ...e"(kn)u£L(E), and for each Mn there is an I for 
which Matche(el

c, e'a, I) and Sat(qh / )= t rue , then el
a(k^Mi, i = l , ..., n (Mi is 

defined in Fact 2, /=1 , ..., n). 

This can easily be proved by induction on / S n (using Statement 1). 
Now we prove Theorem 1. 
We have to prove that B(£)=B(£")-
From Fact 1 it is sufficient to prove that for any Bn—e\...en

c, e[— (ph S,-, COM,), 
i= 1, ..., n, the following holds. 

Matchs(coUi, fa, ft, J9,_i), i = 1, ..., n, Bo = 0, and there is 
a sequence {Mi}"=1 such that 

( + )<Mi = {ea(fe)|ea(/c)€Mi-1&ea = (Pi, q, VE, ATE)&3l(Matche(e{, ea, /)& 
Sat(q, /)) =_true} ^ 0, _ _ 

and NextE(Bi) = Mi, i= 1, ..., n, Mo = BE(E). 
iff 

Matchs(couhfa, f „ .8j_i), i = 1, ..., n, Bo = 0, and there is 
a sequence {№}"=i such that 

(+ = { e a ( l ) \ e a ( l = (Pi, q, VE.,ATE.)&3¡(Matched, ea, /)& 
Sat(q, /)) = taie} =¿0, __ 

and NextE,(Bi) = Ni, i = 1, ..., n, No = BE(E'). 

This is shown by induction on n. 
1) It is easy to show that the statement holds for n= 1. 
2) Assume that the statement holds for n. Now we prove that the statement 

holds for n+1 too. 
( + ) = > ( + + ) . Assume that ( + ) holds for n+1. Then ( + + ) holds for n. 

We have yet to prove that N„+1?zQ and NextE,(Bn+1)=N„+1. 
According to Fact 2 there is a sequence e'a= {Pi, qi, VE, ATE), for 

which ei(ki)£Mi, i = l , . . . ,«+1 , and eKkJ^ ...>e"a
+1(kn+1). Since el(k^BE(E), 

thus, by Statement 1, there is a u for which eKkJ ...e"~1(kn+l)u£L(E) which 
implies that there is a v for which el...en

a
+1v^L(Ea). Since L(Ea)(zL(E' a), 

thus el...el+1v(LL(E'a) which implies that there are a sequence {/¡}"=i and a u' 
for which e1

a(l1)...en
a
+1(ln+1)u'£L(E'). Then, by Fact 3, we have ej,(/f)£M, 

i = l , . . . , n+1 . So Nn+1^9. Since ( + + ) holds for n, thus NextE.(Bn)=N„ and, 
by Fact 1, ValidE,(Bn)=true, therefore ValidE.(Bn+1)—true (by the definition of 
Semantics of EBEs) which implies NextE,(Bn+1) is defined and is N„+1. 

(++)=>•(+). Assume that ( + + ) holds for n+\u Then ( + ) holds for n. We 
have yet to prove that M^^d and NextE(Bn+1)=Mn+1. Similarly to the above 
argument we have the sequence {4(&;)}?= 4 = (Pi, <7i, VE>, ATE,), for which 
el

a(k^Ni, ¿=1, . . . , n + l , and there is a v such that e\...en
a
+1v£L(E'a). We have 

two cases: 

either el ... e%+1v£L(Ea) 

or el ...<?+xv£L(E'a)\L(Ea). 
5 Acta Cybernetics VIII/2 
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In the second case there is a v' for which el...e%+1vv'£L(Ea). So in both cases we 
have that there are a sequence {/¡}"ii and w for which el(l1)...e^+1(ln+1)w^L(£). 
Therefore by Fact3 e^il^Mi, i= 1, ..., n+1. So Again by the same 
argument seen above we get that NextE(Bn+1)=Mn+l. 

Theorem 2. a) if E and E' are syntactically equivalent then they are seman-
tically equivalent too. 

b) There exist two EBEs E and E' which are semantically equivalent but not 
syntactically equivalent. 

Proof, a) It is a corollary of Theorem 1. 
b) In order to prove this we give an example. 

Let E=p1+(pi',p2) and E'=px \p2, it is clear that £ and E' satisfy Theorem 1, 
therefore E and E' are semantically equivalent but not syntactically equivalent 
because L(E)^L(E'). 

An EBE is a GPE (Generalised Path Expression) if the operator A does not 
occur in it. 

Theorem 3. For every EBE E there exists a GPE E' such that E and E' are 
semantically equivalent. 

Proof. First we construct an automaton M for which L(M)=L(E). In order 
to do this we define the sets R(E), BE(£) and EN(E) similarly to those of Section 
III. The automaton M—(E, St, s0,8, F) is then constructed as follows. Let 
E= {ea\ea is in Ea}={el, ..., ety. Let s0 be an arbitrary symbol. Then S(s0,e'a)= 
= {ei

a(/c)lei
a(k)^BE(E)j=si. So we have defined states s0, si, sf, ..., ^ of Si. Sup-

pose that a state s of St is defined, then 

S(s, e'a) = {eUk)\3ei(m)(4(m)£s& ^(m) > e'a(k)) = true}, i = 1, 2, ..., n. 

Finally let 

F' = {S\SC\EN(£) 0} and F = F ' U { s 0 } if e£L(Ea) = F, 

and F—F', otherwise. 
It is easy to see that L(M)=L(Ea). It is known that there is a regular expression 
E' over E for which L(M) = L(E'). Thus we have L(Ea) = L(E'). From the con-
struction of Ea we can identify Ea with E, thus L(Ea) with L(E). Therefore, by 
Theorem 2, E and E' are semantically equivalent. 

V. Implementation of EBE 

The implementation of EBE is defined using the concept of automaton. 
Let R=(OB, P, P',fa,ft,) be a computational system. Let Q={q\g is predicate, 

q-.OB' x{fa(B)(p)\B^,p^PTx{ft(B)(p)\B^,p^P'Y-{^, false}, 

and M=(E, St, s0,5, F) a deterministic finite automaton, where EczP'xQ. For 
all p£P' the set Condition (p)= {(.?, (p, q)) is defined} is called condition 
of the procedure p. 
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Definition. An Implementation is a set I(M)= {(/>, Condition(p))\p£ P'}. For 
simplicity we often omit the argument M. 

Restriction. 
It is assumed about the automaton M that if sl=d(si-1,b),bi=(pi,qi), 

bi=(Pi,qt), i= 1. 2, ..., n, then there is a u such that b1b2-.-bnu£L(M). 
Now we define the semantics of Implementations. 

Definition. Let I be an Implementation. The semantics of I is defined by the 
predicate Validj with the partial map Next!, where Valid¡: B— {true, false} and 
iNfoci,: B--2 s t , in such a way that Next¡(B) is defined iff Validt(B)=true. The ValidI 
and Next! are defined recursively as follows. 

(1) Let ec=(p, S, cou) be an actual event, then 

Valid¡(e^ = Matchs(cou, fa, ft, 0)&3(so, q)((s0, q)^Condition(p)& Sat(q, ec, 0)), 

(Sat is defined later). 
Next[(ec) is defined iff Validi(ec)=true, and then 

Nexti(ec) = { j | j€Si & 3q(q£Q & s=5(s0,(p, q))8iSat(q, ec, 0))=true}. 
(2) Let ec=(p,S,cou) and B£ B, then 

Validi(Bec) = Valid,(B)& Nextj(B) = 

= G&Matchs(cou, fa, ft, £)&3s3?(s<EG& q£Q&(s, q)£Condition(p)&. 

Sat((q, ec, B)). 

Nextt(Bec) is defined iff Validj(Bec)—true, and then Nexti(Bec)=H, where 
H={s\s£St & 3s' 3q(s'£G & q£Q & s=8(s', (p, q)) & Sat(q,e,B))=true}. 

The definition of Sat. Sat(q, ec, B) is defined simply as follows. 

Sat(<7, ec, B) = q{S,fa(Bec)(p), {fa(B)(p')\p'£P'\{p}}, {f,(B)(p')\p'eP'}). 

Similarly to Fact 1 it is easy to see the following fact (from the definition of 
the semantics of Implementation). 

Fact 4. For any Bn=e1
c...en

c, e'c= (pt, Sh cout), Validi(Bn)=true, iff 

Matchs(coUi, fa, f „ J5i_x), i— 1, ..., n, Bo=0, and there is a sequence {//¡}"=1 
so that 

Hi = {s |3s '3?(s '€.Hi-i&?€2&s = <5(s', (p„ ? »&Sa t ($ , 4 , B-^)) = true} ^ 0, 

and Nexti(Bi)=Hi, i= 1, . . . ,«, i fo={i 0 }. 
Let B ( / ) = { 5 | 5 € B and Validi(B)=true}. 

Definition. An Implementation of an EBE E is an Implementation 

I = {{p, Condition(p))\p£P'} such that P' = PE and B ( I ) = B ( E ) . 

Now we give an algorithm for transforming an EBE E to its Implementation. 

5« 
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Algorithm. 

1. Transforming E to the following: we substitute all operands p[q\ or p of E 
by e=(p,q) or e—(p, true) respectively. The resulting expression is denoted 
by Ee. 

2. From Ee constructing an automaton M=(I, St, s0, <5, F ) as that of Theo-
rem 3, where 1= {e\e is in Ee). 

3. For all p£PE constructing the set Condition(p), obtaining 

/ = {{P, Condition (p))\p£PE}. 

Theorem 4. I is an Implementation of E. 

Proof. First we prove the following facts. For any implementation / and actual 
behavior Bn—e\...e^c, e[={ph Sh couj) 

C Tf -if n r o o i i o n f i / i l l fTl/VU +Vinf 

r u l i «-»• xx i-iiviv u a l>Cv[uv1ivv j i j i — i buv i i m a x 

Hi = {sl3s'3?(s'6// i_1& qeQ&s = 8(s', (Pi, q))h^t(q, e'c, B^)) = true} ^ 0, 

i = l, ..., w, Ho = {s0}, 
then there are sequences {i,}"=o and {e,}"=1, e'= (ph qt), for which s£Hi, si=S(si_1, <?') 
and Sat(qi, e'c, B^)—true, i= 1, ..., n. 

This can be proved by induction as follows. Since Hn^Q, there is an s„£Hn. 
From the definition of Hn there are i„_1€//„_1 and en=(p„, q„) for which 
•yn = <5(j„-i, e") and Sat(q„, e", Bn-1) = tme. Assume that the sequences {jj}"=j and 
{eJ}j=i+1, are constructed. Then from the definition of Hi there are s^^H^ 
and el={pi, qt), for which si=8(si_1, e')> and Sat(qh e'c, ^¡_1) = true. So we get 
the desired sequences. 

Fact 6. If there are sequences {J,}?=0 and {<?'}"= i, <?'=(/>;, qi), for which 
•$•¡=¿(>¡-1, e*) and Sat(qh e\ 5 i_ 1)=true, i= 1, ..., n, then s£Hi, i= 0, 1, ..., n 
(Hi is defined in Fact 5). 

This can easily be proved by induction on z's n. 
Now we prove the Theorem. It is easy to see that: 
1. The automaton M satisfies the Restriction. . 
2. L(M)=L(Ee). 
Now we show that B(F)=B( / ) . By Fact 1 and Fact 4 it is sufficient to prove 

that for any EBE E and Implementation I if Bn—el...e"c, e[= (ph Sh cou^), 
i= 1, 2, ..., n, then 

Matchs (coui, fa, ft, Bt-]), i = 1, ..., n, Bo = 0, and there is a 
sequence {Mi}"=1 such that 
Mi = {ea(k)\ea(k)iMi_1&ei

a = (p(, q, VE, ATE)&3 interpretation I 
(Matche(ei

c, e„,J)&Sat(q, I)) = true} ^ 0, and NextE(Bi) = Mi, 
i=l, ...,«, Mo = BE(E) 
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iff 
Matchs(cou^ fa, f , , .5;-i), i — I, •••, n, and there is a 
sequence {i/i}?=i s u c h that 
Hi = {s | s6St&3s '3i (s '€f l i - i&i€f i&s = <5(s\ <Pi, q))&Sat(q, 4 ,!»,_,)) 

= true} ^ 0, and Nextj(Bi) = Hi, i = 1, ..., n, Ho = {s0}. 

From the construction of Ea and Ee we can identify Ea with Ee and therefore 
L(Ea) with L(Ee) too, so L(Ea)—L(Ee)=L(M). 

Now we prove that ( *) iff ( * * ) for any Bn. This is shown by induction on n. 
(1) It is easy to see that the statement holds for «=1. 
(2) Assume that the statement holds for n. 
(*)=>(* *). Suppose that (* ) holds for n+1. Then ( * * ) holds for n. We 

have yet to prove that Hn+^0, and Next,(Bn+1)=Hn+1. 
By Fact 2 we have a sequence {4(^i)}?ii> e'a=(p, qhVE, ATE), such that 

eKkJ^-...>-e"a
+1 (k„+1), and el

a(k^Mi, i= 1, ..., n+1. Therefore according to 
Statement 1 there is a u for which eKky)...e"+1(k„+1)u£L(E) which implies that 
there is a v such that e\...e"a

+1v^L(Ea). Since L(Ea)=L(M) thus there exists a 
sequence such that i — 5 e ' ) , where e'=(pi,qi), i= 1, .... n+1. It is 
easy to see that for all i^n+l, Sat(qh e'c, 5,_1)=true (from the definition of 
Matche, Matchs, interpretation I, Sat(q, I) and Sat(q, ec, By). So by Fact 6 we have 
sfcHi, i= 1, ..., n+1, that is //„+1^0. Since (* *) holds for n thus Next,(Bn)—Hn 
and, by Fact 4, Valid,(Bn)=true. Therefore from the definition of the Semantics 
of Implementation Valid,(Bn+j)=true which implies that Next,(Bn+1) is defined 
and is Hn+1. 

(**)=>(*) . Assume that (* *) holds for n+l .^Then (* ) holds for n. We 
have yet to prove that Mn+l^Q and NextE(Bn+1)—Mn+1. 

According to Fact 5 we have the sequence {j;}"^ and {e'}"^1 for which st£Hi, 
s~5(si_1,ei), Sat(qi,ei

c,Bi_1)=tTue, and e'=(pi, qi), i= 1, n+1. Then, by 
Restriction, there is a u for which e1...en+1u£L(M)=L(Ea) which implies that 
there are a v and a sequence {/c;}"±J for which el(kj) ...en

a
+1(kn+1)v£L(£), el

a= 
— {PU 1H VE, ATE). It is easy to see that for each I^N+L there is an interpreta-
tion I for which Matche (e[, el

a, I) and Sat(qh / )= t rue (again from the defini-
tion of Matche, Matchs, Interpretation I, Sat(q,I) and Sat(q,ec, B)). Therefere, 
by Fact3, el

a(k^Mi, i=\, ..., n+l. So Since (*) holds for n, thus 
NextE(Bn)=Mn and, by Fact 1, ValidE(Bri)=true, therefore according to the defini-
tion of semantics o^EBEs we have ValidE(Bn+=true which implies that Next,(Bn+1) 
is defined and is M„+1. 
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VI. Reduction of EBEs 

Now we give some rules for reducing EBEs. 

Statement 2. Let El, E2 and E3 be EBEs. Then 

(1) El+El^El 

(2) EI+E2 ^ E2+EI 

(3) (El+E2)+E3 % El+(E2+E3) 

(4) (El;E2); E3 ^ El; (E2;E3) 

(5) El;(E2+E3) « El; E2+EI; E3 

(6) (¿T1+.E2); E3^El; E3+E2: E3 

(7) EIAE2 « E2AEI 

(8) (EIAE2)AE3 « EIA(E2AE3) 

(9) EIA(E2+E3) % EIAE2+EIAE3 

(io) a Pi[qi] « 2 (PiMik •••; PiMd) 
i=l i,...i„ is 

permutation 
of{ l n} 

where " « " means semantical equivalence. This is followed from Theorem 2. 
Similarly to EBEs we also define the syntactical and semantical equivalence of 

Implementions. 
Definition. Two Implementations I(M) and I'(M') are syntactically equivalent 

if L(M)=L(M'), and semantically equivalent if B(7)=B(7'). 

Definition. An Implementation I{M) is minimal if the automaton M has a 
minimum number of states. 

Theorem 5. There exists an algorithm by means of which we can transform 
any Implementation I(M) to a minimal Implementation I'(M') so that I(M) and 
I'(M') are semantically equivalent. 

Proof. It is known that there is an algorithm by means of which we can reduce 
any automaton M to a minimal automaton M' such that L(M)=L(M'). The 
semantical equivalence of I(M) and I'(M') is then followed from the following 
statement. 

Statement 3. If I(M) and I'(M') are Implementations such that L(M)<zL(M'), 
and for any u£L(M')\L(M) there are v(LL(M) and w for which v=uw, then 
I(M) and I'{M') are semantically equivalent. 

Proof. Let M=(Z, St, s0, 8, F) and M'=(Z', St', s'0, 8', F'). 
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(1) 

iff 

By Fact 4 it is sufficient to prove that for any Bn—el...e^ the following holds: 
Matchs(coUi, /„ , ft, Bi-x), i = 1, . . . , n, and there is a 
sequence {Hi}"=1 such that 
Hi = {s |3i '3?(s '£ JH i-i& q£Q&s = <5(s', (Pi, q))hSat(q, e'c, = true} * 0, 
and Nexti(Bi) = Hi, i = 1 «, Ho = {s„}. 

(2) 

Matchs (cou„ fa, f , Bi-i), i = 1, ..., n, and there is a sequence {i/'i}"=1 

such that 
Hi = {s\3s'3q{s'eHU&q£Q&s = <5'(V, (pt, q))bSat(q, e[,B^) = true} ^ 0, 
and Nextr(Bi) = Hi, i = 1, ..., n, H'o = {SQ}. 
This is proved by induction on n. 
1) It is easy to see that the statement holds for « = 1. 
2) Assume that the statement holds for n, we prove that it holds for n+1 , too. 
(1)=>(2). Suppose that (1) holds for n+1. Then (2) holds for n. We have yet 

to prove that and Nextr(Bn+1)—H'n+1. By Fact 5 we have the sequences 
{stf+l and {e'lJil for which s£Hi, e% Sat(qh e\., Bt_i)=true, e'= 
= {Pi, qt), i= 1, . . . , «+1 . Then according to Restriction there is a u for which 
e'...e"+1u£L(M). Since L(M)cL(M') thus there is a sequence {¿,'}"io for which 

So by Fact 6 s'^H'i, i'=0, . . . , «+1 , that is Since (2) 
holds for n, thus Nextr(Bri)=H'n and, by Fact 4, Valid,. (Bn)=true, so Validr(B„+1)= 
true (according to the definition of the semantics of Implementation) which implies 
that Nextr(Bn+1) is defined and is H'n+1. 

(2)=>(1). Suppose that (2) holds for n+1. Then (1) holds for n. We have yet 
to prove that H„+19i& and Nextj(Bn+1)=Hn+1. 

By Fact 5 we have the sequences {J,}"^1 and { ^ ¡ ¿ i for whichs fcH' i , s~ <5'(J,, e'), 
Sat(qh e[, 5 i _ 1 )=true , ex— (ph qi), i= 1, ..., «4-1. Then according to Restriction 
there is a u for which e1...en+1u£L(M'). We have two cases: 

either e1... eT+1u£L(M) 
or e1 . . . ^+1u£L(M')\L(M). 

In the second case there is u' for which e1...en+1uu'£L(M). So in both cases, we 
have the sequence {jj'}"io f ° r which s! = S(si=l, e1), i= 1, . . . , «+1 . Therefore, by 
Fact 6, s '^Hi, /=0 , 1, ..., n+1, that is //„+1T£0. Now by the same argument seen 
above we get Next!(Bn + 1)=H„+ 1 . 

Abstract 
A language, called EBE, for specifying the expected behavior of programs during debugging 

is presented. EBE is an extended version of GPE (Generalized Path Expressions) [1] with the operator 
shuffle. The syntax and semantics of EBE is formally defined. Some properties of EBEs are dis-
cussed. Then an implementation of EBE is presented. Correctness of implementation is also proved. 
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Some remarks on the algorithm of Lucchesi and Osborn 

H o THUAN 

Let S=(Q, F) be a relation scheme, where Q—{A1,A2, ..., A„} is the uni-
verse of attributes and 

F = {Li - Rt\Li, Rt g Q, i = 1, 2,..., m} 

is the set of functional dependencies. In [2] C. L. Lucchesi and S. L. Osborn provided 
a very interesting algorithm to determine the set of all keys for any relation scheme 
S= (Q, F>. Following our notation, the algorithm has time complexity 

0 ( | F | № | | i 3 | ( № | + |i3|)), 

i.e. its running time is bounded by a polynomial of |i2|, |F | and \Jfs\, where 

|F | is the cardinality of F, and 

is the set of all keys for S. 

We reproduce here this algorithm with some modifications in accordance with our 
notation. 

Algorithm OL1. Set of all keys for S=<i2,F>; 

Comment. is the set of keys being accumulated in a sequence which can 
be scanned in the order in which the keys are entered; 

3STs*- {Key (Q, F, £>)};1 

for each K in do 

for each FD(Lt Ri) in F do 

T - LiUif^R,)-

test -«- true; 

for each J in J f s do 

1 Let Key (Q, F, X) be the algorithm Minimal Key in [2], which determines a key for S that is 
a subset of a specified superkey X. 
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if T includes J then test — false; 

if test then J f s - j f s U{Key (£2, F, T)} 

end 

end; 

return 

The following simple remarks, in some cases can be used to improve the per-
formance of the algorithm of Lucchesi and Osborn. 

m m 
Remark 1. Let L, R, H be defined as: R= (J L= U U H= (J K}. 

¡=1 i=l 
To find the first key for S = (£2, F) , instead of £2 it is better to use the superkey 
(i2\R)U(LDR) and Algorithm 1 in [1], and instead of the algorithm Key (£2, F, T) 
it is better to use Algorithm 2 in [1] for finding one key for S included in a given 
superkey T. 

Remark 2. In [1] it is shown that 

R\L Q Q\H, 

i.e. R\L consists only of non-prime attributes. Therefore, if Rt ^ R\L then 
Rif]K=0, \/K£jfs, and LtUiKXRJ^K. That means, when computing T=LtU 
U ( K \ R i ) , we can neglect all FDs (L^Ri) with R¡QR\L for every K e X s . 

Let us denote 

F = F\{LJ - Rj\Lj - RJ£ F and RJ Q R\L}. 

Remark 3. With a fixed A: in J f s , it is clear that if ^n¿? ¡=0 then L¡{J(K\R¡)^K. 
In that case, it is not necessary to continue to check whether T includes J for each 
J in So, it is better to compute T by the following order 

T = (tfVyUA. 
Remark 4. The algorithm of Lucchesi and Osborn is particularly effective when 

the number of keys for S= (Q, F) is small. But on what basis can we conclude 
that the number of keys for S is small? There is no general answer for all cases, 
and it is shown in [3] that the number of keys for a relation scheme (£2, F ) 
can be factorial in |F | or exponential in |Í2|, and that both of these upper bounds 
are attainable. However, it is shown in ([1], Corollary 1) that 

№1 ^ c r 
where h is the cardinality of Lf]R. Thus, if LOR has a few elements only, then 
it is a good criterion for saying that S has a small number of keys. In the 
case LC\R=0, Q\R is the unique key for S= (fí, F) as pointed out in ([1], Corol-
lary 4). 

Example. We take up the example in [2], Appendix 1): 

Q= {a, b, c,d, e,f,g,h}, 

F — {a — b, c d, e - / , g - h}. 
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It is clear that for this relation scheme 

LOR = 0, 

and it has exactly one key, namely Q\R—aceg. 
Taking Remarks 1—3 into account, the algorithm of Lucchesi and Osborn 

now can be presented as follows : 

Algorithm OL2. Set of all keys for S=(Q, F>; 

Xs - {Algo. 1 (Q, F, (Q\R) U (£ D R))} ;2 

for each K in do 

for each FD(Lf - Rt) in F such that K\Rt ^¿K do 

T - (KXRdULr, 

test -«- true; 

for each J in do 

if T includes / then test false; 

if test then - j f s U {Algo. 2(Q, F, T)} 

end 

end; 

return 

Remark 5. The time complexity of Algorithm OL2 is 

0(|Jfs||i2|(|Jfs||F|-HF||Ln/î|)). 

Abstract 

In [1] we have proposed two algorithms (Algorithm 1 and Algorithm 2) for finding one key 
of the relation scheme S=(Q, F) included in a given superkey. In this paper, we show that, using 
these algorithms and some simple remarks, the performance of the algorithm of Lucchesi and 
Osborn [2], in general, can be improved. 
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Strong dependencies and s-semilattices 

Vu Due THI 

1. Introduction 

The full family of functional dependencies was first axiomatized by W. W. Arm-
strong [1]. Different kinds of functional dependencies have also been investigated 
in relational data base theory. The full family of strong dependencies has been 
introduced and axiomatized [2], [3], [4]. 

In this paper j-semilattices and strong operations are defined. We investigate 
connections between full families of strong dependencies, j-semilattices and strong 
operations. We prove that there are one-to-one correspondences between them, 
and j-semilattices completely determine both full families of strong dependencies 
and strong operations. We give a necessary and sufficient condition for an arbitrary 
family of sets to be a full family of strong dependencies. A necessary and sufficient 
condition for a relation to represent a given full family of strong dependencies 
is also given. Finally, we show that for a given j-semilattice /, we can construct a 
concrete relation R, the full family of strong dependencies of which is deter-
mined by I. 

We start with some necessary definitions formulated in [3]. 

Definition 1.1. Let R— {ht, ..., hm) be a relation over the finite set of attributes 
Q, and A, BQQ. We say that B strongly depends on A in R (denoted A~*B) iff 

(Vfc„ h ^ R ^ a i A ) ^ (a) = fc») - (V € ¿ 0 ( ^ 0 0 = W ) ) -

Let SR=((A, B): A-^-B}. SR is called the full family of strong dependencies of R. 

Definition 1.2. Let Q be a finite set, and denote by P(£2) its power set. Let 
YQ F(£2)X P(£2). We say that Y is a full family of strong dependencies over Q if 
for all A, B, C,DQQ, a£Q, 
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51 (W,{a})<Er; 

52 {A,B)ZY, (B,C)£Y, B ^ 0 — (A, C)€Y; 

53 (A, B)€Y, CQA, D Q B — (C, D)£Y; 

54 (A, B)£Y, (C, D)£Y -+ (A UC, BDD)eY; 

55 (A, B)£Y, (C, D)£Y (AHC, BUD)£Y. 

Definition 1.3. Let IQP(Q). We say that I is a fl-semilattice over ß if 
and A,B£I^ACiBa. Let MQP(Q). Denote by M+ the set {DM' : M'QM). 
Then we say M generates I if M+—I. 

J. Demetrovics in [3] showed that for a given fl-semilattice I, there is exactly 
one family N which generates I and has minimal cardinality. 

Lemma 1.4. ([3]). Let IQP(Q) be a fl-semilattice over Q. Let 

N = {A£I: \/B, Ca: A = BC\C - A = B or A = C). 

Then N generates I and if N' generates /, then NQN'. N is called the minimal 
generator of I. (It is obvious that Q^N.) 

It can be seen that if (N2) is the minimal generator of (/2) and l ^ h , 
then N ^ N a holds. 

2. The results 

Definition 2.1. Let / g P(Q). We say that I is an A-semilattice over ß if / 
satisfies 

(1) lis a fl-semilattice, 

(2) for all A£N\Q 

(3a£A)((VB€N\Q)(A et B) -

where N is the minimal generator of I. 

Definition 2.2. The mapping F: P(ß)-»P(Q) is called a strong operation over 
ß if for every a,b£ß and A^P(Q), the following properties hold: 

(1) F(0) = ß , 

(2) a € F ( M ) , 

(3) btF({a})~F({b})QF({a}), 

(4) F(A)= f l 
a£A 

It is easy to see that the set {F({a}): a £ ß } determines the set {F(A): A^P(Q)}. 
The following theorem shows that there is an one-to-one correspondence between 

j-semilattices and strong operations. 
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Theorem 2.3. Let F be a strong operation over £2. Let IP={F(A): A£P(£2)}. 
Then IF is an j-semilattice over £2. Conversely, if I is an j-semilattice over £2, then 
there is exactly one strong operation F so that IF=I, where F(0)=i2, and for 
all a££2, 

f l Ai if 3Af: a^A-XN is the minimal generator of I ) , 
a£A, A,eN\S2 

£2 otherwise. 

Proof. It is clear that for arbitrary strong operation F 

VA, BeP(Q): F(Al)B) = F{A) DF(B) , F(0) £2 

and AQB-*F(B)Q F(A). Consequently, / F = {F(A): A£P(Q)} is a D-semilattice 
over £2. Denote by NF the minimal generator of IF. For all A£NF\£2 if there is no 
attribute a such that F({a})—A, then if A=F(B)(]B]^2) holds, then, according 
to the definition of strong operation, A= f ) F({6,}). This contradicts the defini-

tion of minimal generator. Consequently, there is an attribute a££2 so that 
F({a})=A. It is obvious that a£A. It is clear that A,B£NP implies A?±B, and 
by (3) in the definition of strong operation, for all A£NF\Q: 

(3a£A)((V-B€ NF\£2)(A <t B) - a$B). 

Consequently, IF is an j-semilattice over £2. 
Conversely, we now suppose that I is an ¿-semilattice over £2. Denote by N 

the minimal generator of I. We define the following operation F: 

and for all b, 

F({b}) = 

F(0) = fl, 

n A, if 3A,: b£A„ 
bZA, AtiN\S) 

£2 otherwise. 

It can be seen that for all A£N\£2, where 3a£A: A£N\£2 and ActAf* 
•—a^Ai, we have F({a})=A For all different elements A(A£N\£2) it is easy to see 
that there is an a£A so that F({a})~A. Consequently, \/A£N\£2: 3a££2: F({a})=A. 
We now show that F is a strong operation over £2. It can be seen that b^F({b}\ 
and if there is an A£N\£2 such that b£Ah then F({b})eN+. If a^F({b}) 
holds, then 

F({a»= fl AtQ n ^ = 
aZA, b£At At£N\S} Ai£N\(l 

On the other hand, it can be seen that the set {F({Z>}): b££2} determines the set 
{F(A): A£P(£2)}. Consequently, F is a strong operation over £2. It is easy to see 
that I={F(A): A£P(£2)}. If we suppose that there is a strong operation F' such 
that IF,^I then for all a££2 3b££2: F({a})=F'({fc}). It obvious that a€F'({6}). 
Consequently, F'({a})QF({a}). On the other hand, there is an attribute c so that 
F'({a})=F({c}). Clearly, F({a})QF'({a}) by a£F({c}). Consequently, for all 
A€P(£2), F'{A)— F{A). The proof is complete. 
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Based on Theorem 2.3, it is easy to see that j-semilattices determine the strong 
operations, and for arbitrary i-semilattice I over Q, |7V| in not greater than |£2| +1 . Cle-
arly, there is an algorithm to decide for a given family of sets Ng P(Q) whether N is 
the minimal generator of some i-semilattice or not. The following theorem gives 
necessary and sufficient conditions for an arbitrary family of sets to be a full family 
of strong dependencies over Q. 

Theorem 2.4. Let YQ P(Q)X P(Q). Y is a full family of strong dependencies 
i 

over Q if and only if there is a family {E^: i— 1, ..., 1; (J E~ i2} of subsets of Q 
¡=i 

such that 

(i) for all A g Q, (0, A)£Y, 

(ii) for any A,B<g (J Ei - (A, B)£ Y, E,RIA*0 

(iii) ((C,D)£Y, CCiEt 0 ) - Z ) g Et. 
Proof. First we suppose that Y is a full family of strong dependencies over £2. 

Then by (SI), (S3), (S5) for each a£Q we can construct an Et (£; g Q) so that 
({a}, £•,•)€Y, and VE': EczE' imphes ({a},E')$Y. It is obvious that a£Eh and we 

n 
obtain n such .E/s, where n=\Q\. Thus, we have the set E—{Ei:i= 1, . . . ,«; i2}. 

¡=i 
It is easy to see that for all AQQ we have (0, Y. We now assume that 
A={al; ..., ak:aj£Q,j= 1, ..., and is a set such that (A, BJe Y, \/B2 :B1czB2 
implies (A, B2)$ Y. According to the construction of E, it is clear that for each a, 

k k 
there is an E,£E so that ({a,-},£)(Y. By (S4) we have ( U aj, H Eh)= 

j=i j=i 
k k 

= (A, H Ei^Y. By the definition of B1 we obtain f ) Eij<^B1. On the other 
hand/by (A, Bj£Y and by (S3), we have ({a^B^Y for all j (j=i, ..., k). 

k k 
Consequently, 5 x g f | Ei} holds, i.e. Bt= f | Etj. It is obvious that f | £<g 

J=1 j=1 Etr\A^0 

f ) E, . Thus, for all B(Bg f ) E): B^B^ Hence (A, B)£ Y holds. If (C, £>)£ Y, 
j=1 EiViA^et 
CHE^Q, then we assume that a^COEi. On the other hand, suppose that a 
is an attribute such that ({a},E,)£Y, and VE': E^E' imphes ({a},E')<{Y. By 
a^Ei and by (S3), ({a}, ( a j j e Y holds. By (S3) and a^C we obtain ({a j , Y. 
Consequently, by (S2), ({a}, D)£Y holds. According to the definition of E we 
have D<gEt. 

The proof of the reverse direction is easy, and so it is omitted. The proof is 
complete. 

Based on Theorem 2.4 we prove the following result, which shows that between 
full families of strong dependencies and strong operations there exists a one-to-one 
correspondence. 

Theorem 2.5. Let Y be a full family of strong dependencies over Q. We define 
the mapping FY: P(Q)-*P(Q) as follows: 
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Ft{A)={a£Q:(A,{a})£Y}. 

Then FY is a strong operation over Q. Conversely, if F is an arbitrary strong 
operation over £2, then there is exactly one full family of strong dependencies Y so 
that FY—F, where 

Y = {(A, B): A, B£P(Q): B £ F(A)}. 

Proof. Suppose that Y is a full family of strong dependencies over £2. It is 
obvious that Vo£i2: a£FY({a}). By Theorem 2.4 we have (C, D)e Y, CD£'i^0 
imply DQEt. It can be seen that in Theorem 2.4, for any a£Q, 

Fr({a})€{Et: i = 1,...,«; \Q\ = n; U E , = £2}. 
¡=1 

Consequently, ({&}, FY({b}))£Y, b£FY({a}), i.e. bf]FY({A})^0 implies Fr({b})Q 
c f r ( { a } ) . By (iii) in Theorem 2.4 we obtain (A, FY(A))£Y, W€A:ANFY({A})^0 
imply FYG4)gFy({a}). Thus, FY(A)Q f ) M M ) - On the other hand, by (S5) 

aiA 
in the definition of full family of strong dependencies we have \/a£A: ({a}, Fy({a}))£ Y 
implies (A, f | Fy({a}))€F, i.e. f ) F,({a})gFr(A). Consequently, FY(A)= 

= H FY({AJ) holds. Conversely, assume that F is a strong operation over £2, and 

Y= {(A, B): B g F(A)}. We have to show that 7 is a full family of strong 
dependencies. By Theorem 2.4 we set E = {F({a}): a£ £2, |£2|= }. By the 
definition of Y and by P| F({a} = F(A), it is obvious that BQ 

g f ) implies (A,B)£Y. On the other hand, if (C, Z>)6 Y and 

CnF({a})^0 , then we assume that b£Cil F({a}), hence by (iii) in the definition 
of strong operation b£F({a}) implies F({b})QF({a}). It is obvious that DQ 
CF(C)=f)F({d}). By beC, and f l F({d})QF({b}) we obtain DQF({a}). 

He dec 
It is clear that \/AQQ: (0, A), (A, 0)£Y. It can be seen that F=FY. Now, we 
suppose that there is a full family of strong dependencies Y' so that F r = F. By 
the definition of Y and F we obtain Y' QY. If (A, B)£ Y holds, then BQF(A) = 
= Fr(A) holds. By the definition of Fr we have (A, B)£Y'. Consequently, Y'= Y 
holds. The proof is complete. 

Remark 2.6. Clearly, if F1 and F2 are strong operations over £2 ( F ^ F2), then 
Y1^Y2, where Y,= {(A,B): B<^Fi{A)},i= 1,2. 

Based on Theorem 2.3 and Theorem 2.5 the next corollary is obvious. 

Corollary 2.7. Let Y be a full family of strong dependencies over £2. We define 
the mapping F : F(£2)—F(£2) as follows: 

Fy(A): {a€£2: (A, M ) € 7 } . 

Let IY~{Fy(A): A^P(Q)}. Then IY is an j-semilattice over £2. Conversely, if I is 
an arbitrary ¿-semilattice over £2, then there is exactly "one full family of strong 

6 Acta Cybernetica VIH/2 
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dependencies Y such that 1Y=I, where 

Y = {(A,B): A,B<iP(Q),A * Q,3A£N\£2: A,HA * 0,BQ f | , N is the 
A,nA*0 
A,ZN\SI 

minimalgenerator of / }U 

U {(/4, B): A = 0 or 3A£N\Q: A,f)A * 0, B£P(£2)). 

Corollary 2.7 shows that between full families of strong dependencies and 
i-semilattices there is a one-to-one correspondence and the j-semilattices determine 
the full families of strong dependencies. 

It is proved (see [2], [3], [4]) that if Y is a full family of strong dependencies over 
Q, then there exists a relation R over £2 so that SR= Y. 

With the aid of the concept of j-semilattice we can construct for a given full 
family of strong dependencies Y a simple concrete relation R such that SR=Y. 

The equality sets of the relation are defined in [4] as follows: 

Definition 2.8. Let R= {h1} ..., hm} be a relation over £2. For 1 s k y g m 
denote by Ei} the set {a£Q: hl(a)=hJ(a)}. 

Definition 2.9. Let Y be a full family of strong dependencies over £2. We say 
that a relation R represents Y iff SR= Y. 

We now prove the following theorem which gives a necessary and sufficient 
condition for a relation to represent a given full family of strong dependencies. 

Theorem 2.10. Let Y be a full family of strong dependencies, and R= {h1, ..., hm} 
be a relation over £2. Then R represents Y iff for each ad £2, 

FY({a}) = 
n Eu if 3EU: adEtj, 

ae BtJ 

£2 otherwise, 
(1) 

where FY(A)={a£Q: (A, {a})sEF}, and Eu is the equality set of R. 

Proof. By Theorem 2.5, SR—Y if and only if FSR=F holds. Consequently, 
first we show that FS r ({«})= Ei} if 3i?y; a€EtJ, and in other case FSjl({a})=i2 

a 6 Eiz 

holds. Clearly, FSB({a})={fc£i2: {a}-̂ — {6}}. According to the definition of strong 
dependency we know that for any £2, 

where a ̂ 0 , and {a}^*B denotes that B functionally depends on {a} in R, i.e. 

(Vft„ hj€R)(hi(a) = hj(a) - (VbZB)(ht{b) - hj(b))) 

(see [4]). Let us denote by T the set {Eu: a£EtJ}. It is obvious that if T=0 , then 
{a}-^£2, i.e. FSjl({a})= £2 holds. If 7V0 holds, then we set A= f ) EtJ. 
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If T=E (E is the set of all equality sets of R), then it is obvious that 
If TcE then for Eu: E^$T we obtain A,(a) /»>(«)• Consequently, we have 
also A. Denote by A' the set with the following properties: 

It can be seen that A'=A. According to the definition of FSR, we obtain FSil({a})= 
= H EIJ. Thus, if SR=Y then we have (1). Conversely, if FY satisfies (1), then 

a£Etj 
according to the above considerations, for any a££2 we have Fj.({a})= FSjt({a}). 
Because FY and FSR are strong operations over £2, and by Theorem 2.5 we obtain 
YAQQ: FSJA)= FSY,(A). Consequently, FY= FSR holds. The proof is complete. 

Definition 2.11. Let R be a relation, and F a strong operation over £2. We say 
that the relation R represents F iff FSR=F. 

By Theorem 2.10 the next corollary is obvious. 

Corollary 2.12. Let F be a strong operation and R a relation over £2. Then R 
represents F iff for all a£ £2, 

Clearly, from a relation R we can construct the set of all equality sets of R. Con-
sequently, the following corollary is also obvious. 

Corollary 2.13. Let R be a relation and F a strong operation over Q. Then 
there is an algorithm which decides whether R represents F or not. This algorithm 
requires time polynomial in the number of rows and columns of R. 

Based on Theorem 2.10 the next proposition is straightforward and so its proof 
will be omitted. 

Proposition 2.14. Let Y be a full family of strong dependencies over £2. Denote 
N the minimal generator of j-semilattice IY. 

Suppose that N-Q={B1, ...,£,}. We set 
R= {h0, hi, ..., ht} as follows: 

(0 M f A ' > 

(ii) A'a A" implies {a} A", i.e. A" does not functionally depend on {a}. 

n Eu if 3EU: aeEu, A£ E,J 

£2 otherwise. 

for all a££2: h0(a) = 0, 

Then SR=Y holds. 

6» 
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Clearly, Proposition 2.14 shows that from a given i-semi lattice I we can con-
struct a simple concrete relation R such that / = / S j l . Because between D-semi-
lattices and minimal generators there is a one-to-one correspondence, it can be 
seen that (based on Theorem 2.3, Corollary 2.7, and Proposition 2.14) from the 
minimal generators of 5-semilattices we can construct suitable full families of strong 
dependencies, strong operations, and relations. 
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A finite axiomatization of flowchart schemes 

M . BARTHA 

1. Introduction 

An equational axiomatization of flowchart schemes and their behaviours, being 
the syntax and semantics of flowchart algorithms, was given by Bloom and Esik 
in [B—Es]. This paper is another approach toward the same goal, characterizing 
the algebra of schemes with a different set of operations. We use separated sum 
and a constant s instead of the pairing operation, and replace iteration by an opera-
tion called the feedback. The advantage of using this operation is that vector itera-
tion can be done simply by a repeated application of the feedback. This advantage 
comes out apparently in the form of the axioms that are much simpler than those 
listed in [B—Es]. 

Since the algebra of flowchart schemes is sorted by the infinite set NX N (N 
denotes the set of all nonnegative integers), to describe our system of axioms we 
use a scheme of axioms rather than a set of ordinary equational axioms where 
both sides of the equations are terms built up from constants and variable symbols 
of fixed sort with the given operations. In our sense such a scheme consists of equa-
tion patterns of the following form. The terms on the left and right side are built 
up from variables of variable sort and subterms denoting algebraic constants. These 
subterms, however, are allowed to depend on the sort of the variables so that they 
are uniquely determined by a fixed choice of the sorts of the variables occuring in 
the whole term. A scheme of axioms is called finite if the number of equation pat-
terns is finite. In this sense the scheme of axioms developed in [B—Es] is infinite. 
It turns out, however, that a more careful treatment of algebraic constants yields a 
finite scheme. 

As the scheme algebra operations of Bloom and Esik are easy to derive from 
our ones (and vice versa), it is possible to approve our scheme of axioms by proving 
the equivalence of the two axiom systems remaining strictly within the framework 
of equational logic. This, however, would require a tremendous amount of com-
putation. Instead, we follow the way of constructing suitable normal forms of 
terms (as it was done also in [B—Es]), which is easy to illustrate by schematic proof-
diagrams. 
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2. The axiomatization of flowchart schemes 

We shall consider three classes of (NX AO-sorted algebras, called P, M and 
S-algebras, respectively. If A is such an algebra, then A(p,q) denotes the under-
lying set of A corresponding to sort (p, q). The notation / : p-*q is introduced with 
the meaning f£A(p, q) if A is understood. 

A P-algebra is an (NX iV)-sorted algebra equipped with the following opera-
tions and constants. 

Composition: a binary operation which maps A(p, q)XA(q, r) into A(p,r) 
for each triple p, q, r£N. Composition is usually denoted by juxtaposition or • if 
it is intended to be emphasized. Composition is in fact a collection of binary opera-
tions • (p>i,r), but the subscript (p, q, r) is omitted for simplicity. 

Separated sum: also a binary operation mapping A(plf q^~><A(p2, q2) into 
A(p\P2, q i + q d for each choice pt, q±, p2, q2 of nonnegative integers. Separated 
sum is denoted by + . 

There are three constants: 16.4(1, 1), 06.4(0, 0) and x£A(2,2). 
Terms constructed from these constants with the above operations are called 

base P-terms. Clearly, every base P-term is of sort (p,p) for some p£N. For 
each n£N let t(n) denote the base jP-term defined recursively as follows. 

(i) if n = 0 or n = 1, then t(n) — n, 

(ii) t(n+\) = t(ri)+l if n fcl. 
However, we shall write n instead of t(n) if there is no danger of confusion. 

Definition 1. A permutation algebra is a P-algebra satisfying the following 
equational axioms: 

P l ; / - ( g - / i ) = ( / -g ) - / i for all f : p - q , g : ? - r , / j : r - s ; 

P 2 : f+(g+h) = (f+g)+h for all / : px - qx, g: p2 - q2, h:p3-*q3; 

P3: p-f=f and f-q=f for all / : p - q; 

P4: f+0 = f and 0 + / = / for all / : p - q; 

P5: (A • gi)+(/a• g2) = (A+/a) • (gi+g2) for all /¡: Pi-~ qit g;". q-, - rt, 
i = 1,2; 

P6*: x-x = 2; 

PI*: (1 +*)(*+1)(1 +x) = (x+1)(1 +Ar)(x+1).1 

For each pair (p,q)£NxN let Tl(p,q) denote the set of all p-ary permuta-
tions if p=q, else let II (p, q)— 0 . Define composition and separated sum over 
the sets II (p, q) in the usual way, and let 1 and 0 be the unique elements of 11(1, 1) 
and /7(0, 0), respectively. Interpreting jc as the transposition 2—2 we get a P-algebra 
II, which is clearly a permutation algebra. 

1 P6* and PI* will be replaced by a single axiom called the block permutation axiom. In fact 
P6* and PI* are the weakest special cases of this axiom that are enough to prove that the /"-algebra 
of all permutations is the initial permutation algebra. 
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A base P-term is called simple if it is equal to k for some k£N, or it is of the 
form (i— l )+x+(n— i) for some h S 1, «'€[«]={ 1,2, ...,«}. (In the latter case if 
(/—1) or (n—i) is 0, then it is omitted according to PA.) The term (i— l ) + x + ( n — i ) 
will be denoted by x„(i). Let P denote the collection of axioms PI , ..., Pi. The 
following remark can be easily proved using only the "magmoid identities" (cf. 
[AD]) PI , ..., P5. 

Remark. For every base P-term t there exists a base P-term t' which is the 
composite of a number of simple base P-terms (called the factors of t') and P\-t=t', 
i.e. the identity t=t' is provable from P. t' is said to be in split normal form (s.n.f. 
for short). 

Lemma 1. Let n ^ l and i£[n-1] ([O]=0). Then 

*„0)*,,(2)-... -x„(n)x„(i) = x„(i + l)x„(l)x„(2)-... -xn(n) 

is provable from P. 

Proof. (See also Fig. 1 for the case n=3, i=l.) 

x„(l)Xn(2)-...-xn(n)xn(i) = x„(l)-...-xn(i)xn(i + l)x„(i)xn(i+2)-...-xn(n) = 

= (by P7) = x„(l) . . . . - ( i - ( i + 1 ) x „ ( i ) ( i +1) • . . . •*„(«) = 

= x„( i+l)xB ( l ) - . . . -x n (n) . 

Fig. I. Proof of Lemma 1 on an example 

In two steps of the above derivation we used the obvious identity x„(k)xn(l)= 
=x„(l)x„(k), where l < n . 

For a base P-term t let \t\ denote the value of t in II. (In other words | | is the 
unique homomorphism of the initial P-algebra into II.) Since every permutation is 
expressible as a composite of permutations of the form |x„(z')|, the following prop-
osition says that the initial permutation algebra is II. 

Proposition 1. Let t and t' be base P-terms. If |i| = |i'|, then P\-t-t'. 

Proof. By the Remark we can assume that t and t' are both in s.n.f. Listing 
the factors of t in reverse order we get a term t - 1 such that P\-t~1t=n for appro-
priate n£N. If we can prove t't~1=n, then we get the required proof: t'= 
= t'{t~1t)—{t't~1)t—t. Hence it is enough to show that if |i | = |w| for some base 
P-term t in s.n.f., then P\-t=n. We follow an induction on n. If « s i , then the 
statement is trivial. Let If none of the factors of t is equal to xn_i(l), then 
t=\ + t', and the induction hypothesis works for t'. If x„_i(l) occurs in t, then 
assume indirectly that P\/-t=n, and the length of t (i.e. the number of the factors 
of t) is minimal. Split /=axn_!(l)/? so that ^ „ ^ ( l ) should not occur in a. By 
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Lemma 1 and the assumption that the length of t is minimal we get that 
PH-xB-i(l)i?=yxB-i(l)*„-i(2)-. . .-x ( I_10") for some j£[n-1], where ^ „ ^ ( l ) does 
not occur even in y. We conclude that P\-t=ayx„_1(l)...x„_1(j) which is a con-
tradiction, since in this case | i | ( l )=y '+1>1. 

Corollary 1. The initial permutation algebra is II. 
In the light of Proposition 1, when working in permutation algebras we identify 

a base P-term t with the permutation |/|. 
The following definition is adopted from [B—Es]. Let i be a finite sequence 

(«!, ...,nr) of nonnegative integers and suppose that a: /•—r is a permutation. 
Let n be the sum of the numbers nt. 

Definition 2. a # j : n^-n is the permutation which takes a number in [«] of 
the form 

where Jc[/i t+1], to the number y+j, where y is the sum of all numbers nt such that 
a (0<a( fe+ l ) . 

From now on we drop the axioms P6* and PI*, replacing them by the stronger 
block permutation axiom of [ES]: 

P6; f i +f2 = x # (A,p2) • (/a + / 0 # (q2, qx) for all 

fi '• Pi <7i> i = 1, 2. 

Assume that x # ( a , Pi) a n d x#(q2, qj are represented in P6 by base P-terms 
in a minimal length s.n.f. Then we see that P6* and PI* are indeed consequences 
of P6. (Take fi=f2= 1 in the case of P6, and f=x, f2= 1 for PI.) Since P6 is 
also valid in II, II remains initial. Now the following lemma is true in every permuta-
tion algebra. 

Lemma 2. Let a: r—r be a permutation and f : p^qi for each i€[r]. Then 

2f> = (a"1 #si) • ( 2 •/.(•)) • (« 
i=l ¡=1 

where ...,pr) and s2=(qail), ..., qair)). 

Proof. Easy induction on the length of a base P-term in s.n.f. representing a. 
An M-algebra is an (NX Assorted algebra having all the operations and con-

stants of P-algebras and two further constats: e of sort (2, 1) and Oj of sort (0, 1). 
As in the case of P-algebras, base M-terms are those built up from the constants 
using the given operations. Define base M-terms e„ and 0„ for each n^N as follows. 

(i) £0 = 015 £j = 1, £2 = 8, 0o = 0, 02 = Oi+Oj; 

(ii) if B £ 2 then e„+1 = (e„ + l)-e, 0 t + 1 = 0 . + ^ . 

Definition 3. A mapping algebra is an M-algebra satisfying the identities belong-
ing to P and the following ones. 



A finite axioma tiza tion of flowchart schemes 207 

M l : (e+1) • e = (1 +e) • e; 

M 2: x-s = e; 

M 3 : ( l + 0 i ) - 8 = 1. 

For (p, q)£NXN let 0(p, q) be the set of all mappings of [p] into [q]. Let 
0i and e be the unique elements of 0(0, 1) and 0(2, 1), respectively, and interpret 
the P-algebra operations and constants over the sets 9(p, q) as an obvious extension 
of their interpretation in II. In this way we get the M-algebra 0, which is clearly a 
mapping algebra as well. 

A base M-term is called simple if it is a simple base P-term, or it is one of the 
forms 

(i) (i —l)+01+(w —0, or 

(ii) ( i - l ) + £ + ( « - i ) 

for some 1, /£["]. Let M denote the collection of axioms M l , M2, M3. As in 
the case of base P-terms, for every base M-term t these exists a base M-term t' such 
that t' is the composite of simple base M-terms and P\-t=t'. Moreover, by P6 
it is possible to rearrange the factors of t' in such a way that P U M | - t'—ap, where 
a is a base P-term in s.n.f., but none of the factors of jS is a simple base P-term (exept 
when fi=k for some k£N). But then P U M f - / i = e i l + ... + eJm for some non-
negative integers m, j\, ...,jm. 

For a base M-term t let |f| denote the value of t in 0. The above reasoning 
together with Proposition 1 yields the following result. 

Proposition 2. Let t and t' be base M-terms. If |/ | = |/' |, then P(JM{-t=t'. 
Equivalently, the initial mapping algebra is 0. 

As in the case of permutation algebras, when working in mapping algebras 
we identify a base M-term t with the mapping \t\. 

Let a: p-*q be a mapping and B^.[q], We say that a is onto B if a""1(y')7i0 
for any /£B. If Pi~*q, i= 1,2 are mappings, then define their pairing 
<«!, <x2>: P i + P ^ q as 

i « i ( 0 if ¿€t/»i] 
^'"»W-ta, {i-pd if ii[Pl+P2\-[Pl]. 

An 5-algebra has one further unary operation beyond the M-algebra opera-
tions and constants. This operation will be called the feedback and denoted by |. 
In an 5-algebra the feedback maps A(\+p,\+q) into A(p,q) for each pair 
(p,'q)£NXN. 

Let I be a doubly ranked set. (Recall from [B—Es] that 

I = {!(/>, q)\(p, q)£NXN}, 
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where the sets I(j>, q) are pairwise disjoint.) A Z-flowchart scheme with p begins 
and q exist consists of: 

(i) A finite nonempty set V of labelled vertices, where the labels belong to the 
union of four, pairwise disjoint sets: 

( U D U i b . l i i b l J U i e x y l K M J U i x } . 

For each i£[p) and [q] there exists exactly one vertex labelled by bh called the 
i-th begin vertex, and exactly one vertex labelled by ex,-, they'-th exit vertex. More-
over, exactly one vertex, the loop vertex is labelled by _L. For each v£ V denote viD and 
t>om the following sets of so called "signed vertices". Leta be the label of v. If a €Z(r, s), 
then 

»in = {(«, OI»'€[r]} and ®out = {(v,j)\j€[s]}. 

If a = e x j or a = _L, then u in= {(i;, 1)} and t>out=0, else (i.e. if a=fcf) u i n=0 
and vout= {(y, 1)}. Signed vertices belonging to begin, exit and loop vertices will be 
identified with their label. 

(ii) A mapping E of Vout= U(uout|t>€K) into Vin= U(t>J»€F). E represents 
the edges of the scheme, and in this sense we consider 27-flowchart schemes as 
directed graphs. 

Define the S-algebra operations on ^-schemes as follows. 
— The composition of schemes F: p-»q and G: q-*r is constructed in 

three steps. 
1) Take the disjoint union of the graphs of F and G. 
2) Direct each edge of F ending in any exit vertex of F, say cxj to the signed 

vertex pointed by E(bj) in G. 
3) Identify the lopp vertices of F and G, and delete the exists of F as well as 

the begins of G (together with all the incoming and outgoing edges, of course). 
— The sum of schemes Fx: p^qi and F2: p2-*q2 is taken as follows. 
1) Take the disjoint union of Fx and F2. 
2) Relabel each begin vertex of F2 from bL to bPl+i and each exit vertex of F2 

from exj to ex„1+> ( ^ [ p j , 
3) Identify their loop vertices. 
— If F is a scheme l + ^ - ^ l + f̂, then \F is constructed as follows. 
1) Direct each edge of F ending in exx to E(bi) if ¿^(¿J^ex!, else to J_. 
2) Delete vertices bx and exx, and relabel b,+1 and ex J + 1 as bt (resp. exj) for 

KM, M<tl 
— The interpretation of the constants is shown by Fig. 2. 

Fig. 2. Interpretation of the constants as schemes 
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The loop vertex is omitted 011 the figure (exept for 0). 

Definition 4. A scheme algebra is an S-algebra satisfying the identities P\JM 
and the following ones (the collection of these identities will be denoted by, PMS). 

S I : t ( / i+/ 2 ) = t / i+ / 2 for A: l + > i - l + ?i, / , : / > , - f t ; 

S2: it((x+p)f) = tt ( / (*+?) ) for f : 2+p-2 + q\ .. 

S3: t ( f l l + g)) = (tf)g for / : l+p^l + q, g: 

S4: t((l + g)/) = g - t / for / : .l + i -*-. 1+r , g: p q \ 

S 5 ' : t l = 0 and e - _ L = ± + J _ , where ± = 

S6:\x=\. ' ' .. 

It is easy to see that T-schemes together with the operations and constants 
defined above form a scheme algebra, which will be denoted by Sch (I). 

Lemma 3. If a : l +p-*l+q is a mapping with a(1)^1, then there exists 
a mapping /?: p-*q such that PMS\-ia=¡¡. 

Proof. Split a into the form 

(1+&)(* + r ) ( l + f t ) , 

where px: p-^l + r and p2: 1 + r--q are appropriate mappings. Then 

ioc = (by S3 and S4) = &• \(x+r)p2 = (by SI and S6) = pij32. 

Claim. The following identities are valid in every scheme algebra. 

SI*: t ' ( / i+ / 2 ) = t ' /1+/2 for f1:l+Pl^l+q1, /2: Pi~- #2-

(t' denotes the Z-fold application of t.) 

S3*: t ' ( / 0 + g)) - (t ' /)- g for / : l+p - l + q, g: q - r. 

S4*: t,((I + g ) / ) = g - t ' / for f:l+q^l + r, g \ p q . 

Proof. Trivial. 

XI: \l((a+p)f(a-1 + q)) = \'f for / : l+p - l+q and permutation a. 

Proof Put a into s.n.f., and apply S2 with S3* and S4* repeatedly. 

X2: t'«+'»((/i+* *(k,Pi)+P2)(fi+f2)(li+x h)+q2)) = 

= t'*A+tV. for /«: Ji+7»i-Ji + ?i,i = 1,2. 
Proo/. A schematic derivation is shown by Fig. 3. 
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lL h Pi Pt 

Fig. 3- Schematic proof of X2 

The same proof formally: 

t'i+,»((/i+x *(k,Pi)+P2)(fi+A)(h+x #(<?x, h) + q2)) = 

= H\^((h + x Hh,Pi)+Pz)((fi+A)(h+x #(<?!, h)+q2)))) = (S4*) 

= *«•((* #(/„/>1)+/»,) • W i f i + f j i h + x #(<?i, IJ + q*))) = (S3*) 

= t'<(* #(h,Pi)+P2)-t'>(/i+/2)(x h) + q2.)) = (S I * ) 

= t'«((x # ( / 2 , p 1 ) + p 2 ) ( ^ f 1 + f 2 ) ( x #(9l, h) + q2j) = (P6) 

= i'.((/2+x HPx,P2))(f2+Wi)(h+x #(? 2, q i ) ) ) = (S4*, 53*, S I * ) 

= (* #(A, J P2)) ( t , ' /2 + l , ' / i ) ( ^ #(<72, ft)) = (P6) = t'-A + t ' / a . 

In the sequel we shall omit the tedious formal proofs restricting ourselves to the 
corresponding schematic ones. 

X3a: \q(x#(p,q)+l)(f+g)) = (f+l)g for 

/: P- 9, g : 9+1 - r, 

X3b: \q((g+f)(.xMr,q) + l))=f(g+l) for 

f:p-*q+l, g:q-*r. 

Proof. Both cases a and b can be proved in a similar way, so we only prove 
Z3a. (Dotted lines indicate composition in Fig. 4.) 

X4: t ( f ( e + q)) = \%e+p)f): for f i l+p-»2 + q. 

Proof. See Fig. 5. 
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9 P 1 

' 1 
if r 

S3* 

t« 

Si* 
Lemma 3 

Ffc. Proof of X3a 

r»--(V m)« ••( a 7l) = * / X3u 

F&. 5. Proof of X4 
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Lemma 4. Let a: r—l+p and /?: 1 + i be mappings, f : p—q. In every 
scheme algebra we have 

a) if a ( l ) = l and then 

t (a( l+/) j?) = «'(!+/>/?'; 

b) if j?( l )=l and «(1)^1, then 

\{*(\+f)P) = t(a"/n; 

c) if <x(l)=0(l)=l, then 

t ( « ( ! + / ) / ? ) = \(<x'"(±. +f)Pm) 

for appropriate mappings a', a", a'", /?', /?", /?"'; moreover a"'(l)=l. 

Proof. 
Case a: By assumption a can be written in the form a=(\ + (x')(e+p). Then 

«(!+/)/? = (l+a')(s+p)(l+f)P = ( l+a ' ) (2+ / ) (£ + ?)/? = 
, -(l+a'O +f))(s + q)P. 

Hence by 54 : 
t(<x(l+/)/?) = *'(l+f)-t((e+?)/0. 

Since f}(l)?±l, Lemma 3 says that +q)0)=P' for some mapping /}'. 

Case b: In this case /? can be written in the form 
/? = (1+/}")(£ + S - 1 ) , 

so 
t(a(l +f)fS) = t ( ( a ( l+ /»S" (e+ S - l ) ) = (by X4) 

= t 2 ( ( e + r - l ) a ( l + / } ( l + n ) = t ( t ( ( £ + r - l ) a ( l . + / 0 ) = (by 53) 
= t (t ((e+r — 1)a)//T) = (by Lemma3) = t(a"/^")-

Case c: As in the previous case we have 
t ( a O + / ) / 0 — t( t ( (e + r — l)a)/]S") 

but now 
(e + r—l)a = (e + r - l ) ( l + a')(£-hp) = (l + r)(2 + a')(e3+/>); 

t ( (e+r —l)a) = (by 54) = (1 +a')Ke3+/>) = ( l+a ' ) (e- J. +/>) = 
= ( l + o O ( 6 + / » ) ( ± + / » ) . 

Putting am=(l + a')(e+p) and we get: 

H ;• t ( « ( l + m t(a'"( _L +PW") = t(«"'( L +/)/?"')• • , -

We call r-terms those 5-terms that are built up from the elements of I con-
sidered as atomic terms (recall that I is a doubly ranked alphabet) and from the 
constants, using the given operations. Since the 5-algebra of T-terms is freely ..gen-
erated by I , each homomorphism of it into the algebra Sch(i) is uniquely deter-
mined by its restristion to I . Let | | be the homomorphism determined by thé mapping 
shown by Fig. 6. 
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Fig. 6. <T£Z(P, q) as an atomic scheme 

A r-term t is said to be in weak normal form (w.n.f.) if 
t = \l(a(ai+...+an)P), 

where 
(i) a^I or a~ 1 or at= J. for each i'£[n], 

and there exists at least one [«] such that a}= J_. 
(ii) a and P are mappings of appropriate sort. 
Lemma 5. For each T-term t there exists a Z-term t' in w.n.f. such that t=t' 

is provable from PMS. 

Proof. Induction on the structure of t. If t is a constant, then its simplest w.n.f. 
is one of the following: 1 = (1 + 0!)(1+ ±) , O^O^ x=(x+0 1 ) (2+ J_), 0X= 
= 0j • J_ • Oj, E=(E+01)(1 + J_). These identities are easy to prove. If t=a£I(p, q), 
then its w.n.f. is (p+01)(o-+ ±) . Let tx opi 2 , where op= + or •, and let ii 
and t'2 be some w.n.f.-s of /i and t2, respectively. If o p = + , then we get a w.n.f. 
of t by applying X2 for f—and f2=t2. If op= •, then apply X3 with / = 0 
(both cases a and b are appropriate), and then X2 together with S3* or S4* to get 
the required w.n.f. of t. For t—\t' the induction step is trivial. 

Definition 5. A T-term t: p^-q is said to be in normal form (n.f.) if 

t = t ' « a i + 0 f c + 1 , a 2 > - ( J ± +k)-(p2,0l+Pi)), 
i-1 

where 

(i) «^0 , (7^1 (^ ,5 ; ) for each i€[n], 
ft tl 

2rt = r, 2st — s> 
¡=i ¡=i 

(ii) ax, a2, Pi and P2 are mappings such that 
ax: l—r+l and px: k -*• q are injective and monotonic, 

a2: P — r+l + k is onto [ r + l + fc]—[r+1]; 
p2: s — l+q is onto [/]. 

Lemma 6. For each T-term /: p--q there exists a Z-term t' in n.f. such that 
t=t' is provable from PMS. 



214 M. Bartha 

Proof. By Lemma 5 we can assume that t is in w.n.f., i.e. t=\l(ct(a1+ ...+am)ft). 
Moreover, by P6 and S5 we can assume that for some n<m we have: a^I if 
»€["], on+1— _L and aj= 1 for each n+l^j^m. Let k=m—n—\. We prove by 
induction on the number k+l. If k+l= 0, then we have nothing to prove. For 
£ + / > 0 we distinguish two cases. By assumption, a: l+p^r+l+k and fi:s + k — 
-*l+q for some r,s£N. 

Case a: / > 0 and one of conditions (*), ( * * ) or (* * *) below is satisfied. 
Suppose that for some [&] 

( a - H r + l + ;)Uj?Cy+j))n[Z]7i0. ( * ) 
By P6 and XI 

/ = \,(<x'(l+a1+...+aj-1+aJ+1 + ...+am)p') 

is provable for some a ' and P' such that a ' ( l )= 1 or P'(l)= 1. Using Lemma 4 
we obtain a simpler w.n.f. of t by decreasing the number k or /, which makes the 
induction hypothesis applicable. If this type of reduction cannot be applied, i.e. 
condition (*) does not holds for any n + l ^ j ^ m , then a and P can be written in 
the form 

« = <ai+0*+i,«2> and P = </?2, <),+&>, 
where ct^. l—r+1, a2: p—r+ 1+A;, j8x: k—q and /?2: J—1+q are appropriate 
mappings. Now suppose that there are distinct integers 

1 ^ I'i < /2 ^ I such that ^ ( i j ) = a1(/2). ( * *) 

By XI we can assume that ^ = 1 and i2=2. Using X4 we can decrease / making 
the induction hypothesis applicable. In this way ax can be made injective. It is also 
easy to see that if 

Pz is not onto [Z], ( * * *) 
then the feedback counter / can be decreased again. 

Case b: 1=0 or none of (*), (* *) and (* * *) is satisfied. 
In this case if a2 were not onto [ r + l + fcj—[i—h 1], then k could be decreased 

trivially, moreover any duplication of P± could be "lifted" to a2 causing again the 
number k to be decreased. 

Thus, we have seen that in any case when the induction hypothesis cannot be 
applied we have all the conditions of the n.f. satisfied, except monotonicity of a2 
and ft. However, this can also be adjusted by the application of XI and P6, so the 
proof is complete. 

Theorem 1. Let t and t' be Z-terms. If |i | = |<'|, then t— t' is provable from 
PMS. 

Proof. By Lemma 6 we can assume that t and t' are in n.f. Normal form of 
Z-terms was defined in such a way that if t and t' were not identical, then the only 
difference between them should appear in the order of the atomic terms occuring 

n 
in the sum 2 this case, however, an application of Lemma 2 with an appro-

i = 1 
priate permutation a will make them identical. 
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This theorem and the following corollary are the main results of the paper. 

Corollary 2. Sch(I) is the free scheme algebra generated by I . 

3. Connections to the same result of [B—Es] 

In [B—Es] schemes are axiomatized as algebras equipped with the following 
operations and constants. 

Composition, • : A(n,p)xA(p, q) A(n, q); 

Pairing, (, >: A(n, q)XA(p, q)-A(n+p, q); 

Iteration, t: A (n, n+p) -+• A («, p); 

7tj,£yi(l,/0 for each p£N, i£[p]; 

0p£A(0,p) for each p£N. 

Let us call algebras of hist type 55-algebras, and to make a temporary distinction call 
the BS-type scheme algebras of [B—Es] 2?-scheme algebras. 

In an arbitrary scheme algebra A we can introduce the ¿?S-algebra operations 
as derived ones in the following way. 

Composition: adopted as a basic operation; 
Pairing: for / : n->-q and g: p^-q let 

</> g> = ( / + g) • w2(q), 
where wk(q): kq—q is the mapping which takes (_/— l)q+i to i for each y'Cffc], 
iiiq]; 

Iteration: for / : n^-n+p let 
f t = t"(w2 («)/); 

jcj, = Oj- i+l+Op-; and 0P is adopted. 

It is straightforward to check that if A is a free scheme algebra, then the above 
derived interpretation of the BS-algebra operations coincides with their original 
interpretation considering A as a free fi-scheme algebra. From well-known results 
of universal algebra it follows that every scheme algebra equipped with these BS-
algebra operations becomes a jB-scheme algebra. 

Now let A be a 5-scheme algebra. We can derive the S-algebra operations in 
A as follows. 

1 = n{; x — {n\, 7i|); E—(nl,nl); ( ^ a d o p t e d ; 
Composition: adopted; 
Sum: for f : p^q^, / 2 : p2-~q2 let 

fi+A = </i«+4i, -,*£+„>,/.<«£:&, 
Feedback: for / : \+p-*\ + q let 

t/"=(Qi+P)C/Kl+0,+?))t. 

7 Acta Cybernetica VUI/2 
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Repeating the previous argument for free algebras we can see that A equipped 
with the above defined S-algebra operations becomes a scheme algebra. Thus, we 
can state 

Theorem 2. The equational class of all scheme algebras is equivalent to that 
of all 5-scheme algebras. 

4. Algebraic and iteration theories 

Roughly speaking an algebraic theory (theory for short) is a PS-algebra without 
iteration satisfying the following equational axioms. 

THl: f-(g-h) = (f-g)-h for all / : n + p, g: p - q, h: q - r, 

TH2: p-f - f = f • a for all / : p — q (p denotes the term (rcj,, n f j ) , 

TH3: « / , g), h) = </, <g, ft» for all / : m - q, g:n^q, h: p - q, 

TH4: (/ , 09) = / = <09,/> for all f : p ^ q, 

TH5: ...,/p> =ft for all / l 5 . . . , /p : 1 - q, i€[p], 

TH6: (n\f,..., n"pf) = / for all f: p ^ q. 

We would like to extend our system of axioms PMS in such a way that in the cor-
responding smaller equational class each algebra should derive a ¿-scheme algebra 
which is a theory. We claim that the following two axioms are sufficient. 

Thl: 01-f=0q for all / : 1 - q, 

Thl: wp(p) •/ = ( ¿ / ) • wp(q) for all f : p + q 
¡=i 

(recall that wp(q): pq^-q takes (j—\)q+i to i for each j£[p], if,[(/]). Indeed, 
the derived correspondents of THl—77/4 follows already from P(jM, so we 
only have to prove TH5 and TH6. The derived form of 77/5 in S-algebras in the 
following: 

(0;-i+1 +0p-;)(/i+ ••• +/p) wp(q) = fit. 

By Thl the left-hand side reduces to 
(0(i -1)9 +fi+0(p - i)g) wp (q), 

which is clearly equal to /¡. 
Concerning TH6 we have to prove that 

( ( 1 + 0 p - ! ) / + . . . + ( 0 P _ 1 + l ) / )wp(<7) = / . 
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Manipulating the left-hand side using Th2 we obtain: 

( 2 ( ( O 1 - 1 + : 1 + o P - i ) f ) ) w „ ( q ) = (2(0,-1+i+oP-iM 2 / > p ( < 7 ) = 
¡=1 ¡ = 1 ¡=1 

~ ( 2 1+0p-i))wp(/7)/=/. 
i = l 

Unfortunately I did not succeed in an essential simplification of Ésik's "com-
mutativity" axioms (cf. [Es]) for iteration theories: 

IT: (NLQF(EI+P),..., Kef(eN+P))f - e(f(e+p))\ 

where / : n-*m+p, Q: m-»n is a surjective mapping and m—m are also 
mappings satisfying QIQ—Q. In our sense IT is an infinite scheme of axioms, more-
over, Ésik has proved that it cannot be replaced by any finite scheme, see [Esl]. 
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О ВЕРОЯТНОСТНЫХ МЕТОДАХ ОПТИМИЗАЦИИ 
НА ДИСКРЕТНЫХ МНОЖЕСТВАХ 

С. В. Яковлев 

Пусть X дискретное множество, на котором определен функционал 

х: X—R1. Требуется найти 
= arg mm х (х) (1) 

Рандомизируем задачу (1). Отождествим пространство элементарных собы-
тий с X. Пусть 28х — с-алгебра подмножеств X (в частности возможно 3$Х=2Х), 
а Рх—вероятностная мера на ¡Мх. Тогда х(х) есть случайная величина на 
вероятностном пространстве (X, 38х, Рх). 

В данной статье предлагаются методы статистической оптимизации, осно-
ванные на использовании свойств случайной величины х(х) для исследования 
поведения минимизируемого функционала на множестве X и его подмно-
жествах. В дальнейшем, чтобы отличать, идет речь о функционале или о слу-
чайной величине, будем использовать соответственно обозначения х(х) и 
х(х): хб Y, указывая тем самым множество, на котором задана вероятност-
ная мера. 

Пусть г — {Fj}, г = 1, и — 1, j= 1, щ такая система множеств, что 

y j c и П = Х, ni = l, card 7 j > card Y[+1, \/j,k, 
ni 

где n , j = {n¥, ...,nlJu} — такие подмножества множества JVj = {1, 2, ..., £ пц}> что 
j=i 

и ntJ = N„ ntJ ПП№ = 0 V/, к = 
J=i 

Для определенности занумеруем, например, множества системы т так, чтобы 

У]с U 
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где 
к 

«о = 0. <4 = 2пij> к =!, " f 
i=1 

Ясно, что для построения т достаточно, например, осуществить разбиение 
исходного множества X на подмножества, затем каждое из подмножеств снова 
разбить на подмножества и т. д. Однако заметим, что условие попарного 
непересечения множеств с одинаковым верхним индексом не является обяза-
тельным. 

На подмножествах системы т будем задавать вероятностную меру. Тем 
самым получим совокупность случайных величин х(х): х€ Т£т. Одной из важ-
нейших характеристик случайной величины является функция ее распределе-
ния. Идеи использования функции распределения случайной величины для 
оптимизации детерминированного функционала рассматривались, например, в 
работах [1,2]. Заметим, что в общем случае вид функции распределения 
F(v) случайной величины х(х): x£Y не известен. Однако можно утверждать 
следующее. 

Во-первых, (**))=0, а для любого £>0: F(x(x*)+e) >0. 
Во-вторых, если множество X конечно, а N(s) есть множество тех значе-

ний х£Х, для которых х(х)<х(х*)+е, то 

• *ч \ card N(e) F(x(x*)+e) = 

В-третьих, функция F(v) ступенчатая. Вместе с тем ее можно аппрокси-
мировать непрерывной функцией, воспользовавшись, в частности, разложе-
нием F(v) в ряд по нормальным распределениям. При разложении необходимо 
знать моменты случайной величины. Для этого можно предложить их вы-
борочные оценки. Однако оценки моментов высоких порядков порождают боль-
шие погрешйости. Поэтому такой подход целесообразен, когда F(v) хорошо 
приближается 2—3 членами ряда в разложении. 

Для некоторых классов функционалов дискретный характер множества X 
позволяет получать точные значения моментов. В частности, для задачи назна-
чения в работе [3] получены точные среднее и дисперсия, как определенные 
функции от элементов матрицы стоимости (эти результаты можно перенести 
на моменты более высоких порядков). Кроме того, сам вид минимизируемого 
функционала х(х) иногда позволяет говорить о функции распределения 

т 
х(х): x£Y. Так, если х(х)= 2 с1хь то при выполнении достаточно общих 

¡=i 
условий случайная величина х(х): x£Y асимптотически (/я->-°°) нормальна. 
Функцию распределения можно также оценивать с помощью критериев согла-
сия и т. д. 

В дальнейшем будем предполагать, что вид функции распределения F(v) 
известен с точностью до параметров в и пользоваться обозначением F(v, в). 

Назовем испытанием генерацию точки Х из множества Y£T. Для оценки 
вектора параметров 9(Y) функции распределения F(v, 0(У)) случайной вели-
чины х(х): x(iY произведем серию испытаний (т.е. сформируем выборку 

(xj), . . . , x(;ts)}, x£Y, i = l , i . Наименьшее выборочное значение при этом 
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можно рассматривать как приближение к оптимуму функционала х(х). Зная 
функцию распределения и экстремальное выборочное значение, можно оцени-
вать вероятность генерации точек х, которым соответствуют значения функ-
ционала меньшие, чем получены ранее. Тем самым можно осуществлять такой 
направленный перебор точек множества X, при котором вероятность умень-
шения значений функционала растет. 

Следующий алгоритм основан на указанных выше соображениях. Пола-
гается, что для оценки параметров функции распределения и экстремального 
выборочного значения производится серия из я испытаний, а суммарное число 
испытаний ограничено и равно 5. 

Алгоритм 1 

Шаг 1. Полагаем 1=]— 1 5 = 5 — / | = а £ _ 1 , р = 1,п —1, #=1, пр. Генерируем 
точки х1; ..., х5 из множества X. По выборке х(х1), ..., х(х5) опре-
деляем и ( х ° ) = т т {х(хД ...,%(х5)} и оцениваем параметры 0(У}) 
функции распределения случайной величины х(х): Перехо-
дим к шагу 2. 

Шаг 2. Если г'^и, переходим к шагу 6; иначе — к шагу 3. 

Шаг 3. Полагаем /]=/] +1, к=/]. Если к>а), переходим к шагу 6; иначе 
— к шагу 4. 

Шаг 4. Генерируем точки х1, . . . ,х8 из множества У'к+1. Вычисляем %(х°)= 
= т т {х(х°), х(х1), ..., %(ха)} и оцениваем параметры 0(У[+1) функ-
ции распределения случайной величины х(х): х£ У'к+1. 

Шаг 5. Определяем такие р и для которых значение /*(х(х°), 0(У£)) наи-
большее из всех рассмотренных множеств У£. Полагаем ¡=р, /=д, 
5=5—5 и переходим к шагу 2. 

Шаг 6. Генерируем точки хх, . . . ,х5 из множества У]. Точку х° и вели-
чину х(х°)—тт {х(х°), х(х1),..., х(х5)} принимаем за приближе-
ние к оптимуму. 

Сделаем некоторые замечания. Алгоритм допускает несложные преобра-
зования в случае если число испытаний .у (объем выборки) на каждом шаге 
различное. Если суммарное число испытаний 5 не фиксировано, то в качестве 
5 можно взять достаточно большое число. В этом случае, если будет получено 
уменьшение значения функционала х(х°) (шаг 6), следует вернуться к шагу 5 
и алгоритм продолжит работу. 

Согласно алгоритма после каждой серии испытаний необходимо пересчи-
тывать величины Р(х(х°), О (У])) для всех рассмотренных ранее множеств. Но 
если значение х(х°) не изменилось, указанные величины также остануться 
преждними, т. е. вычислять Р(х(х°), в (У])) требуется только для нового сфор-
мированного множества. 

Обобщением предложенного алгоритма можно считать алгоритмы, в кото-
рых на каждом шаге вероятностная мера задается не на У], а на всем X. При 
этом структура вероятностной меры такова, что вероятность генерации точек, 
„близких" к рекордной, увеличивается. 
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При реализации алгоритма 1 вид функции распределения случалйных вели-
чин х(х): х€У) задается априорно или оценивается. Кроме того необходимо 
получать выборочные оценки параметров функций распределения. Все это 
порождает определенные погрешности вероятностной модели. 

Следующий алгоритм основан на непараметрическом подходе к оценке 
вероятности улучшений и построен с использованием схемы независимых испы-
таний (схема Бернулли). 

Предположим, что к началу очередной серии испытаний рекордное зна-
чение функционала равно х(х°). Пусть ^-случайное событие, состоящее в гене-
рации точки х£У), такой что х(х)-=х(х°). Положим, что вероятность собы-
тия А равна р. Рассмотрим сложное испытание, состоящее в т-кратном повто-
рении простого испытания (генерации точки из У)). Число Я появлений события 
А при ш-кратном повторении независимых простых испытаний подчиняется 
биномиальному закону распределения вероятностей 

,. (т\ ., _ Р{л = т) = ух)р"\У-рГ-'. (2) 

Итак, величина р — это вероятность улучшений. Если в серии из 5 испыта-
ний получено / улучшений, то р состоятельно оценивается отношением //5. 
В частности, если улучшение (событие А) произошло на к-м испытании, то 
р=1/к. Зная оценку р, а также значения Я и Р{Х=т), из выражения (2) не-
сложно оценить длину серии испытаний до получения X улучшений (успехов). 

Алгоритм 2 

Шаг 1. Полагаем /=_/=/= 1, vl)—v* = lOlв. Задаем (или оцениваем) длину 
серии испытаний 5 и величину ожидаемых успешных испытаний Я. 

Шаг 2. Формируем множество У/ и задаем вероятностное распределение 
на нем. Полагаем к~0,т=0. Переходим к шагу 3. 

Шаг 3. Полагаем к=к+\. Если к >5, переходим к шагу 8; иначе — 
к шагу 4. 

Шаг 4. Генерируем точку У/ и вычисляем х(х). Если х(х)<щ, пола-
гаем ^0=х(л:0). Переходим к шагу 5. 

Шаг 5. Если х(х)<у*, полагаем т—т + 1. Если т <Я, переходим к 
шагу 3; иначе- полагаем v*=v0 и переходим к шагу 6. 

Шаг 6. Полагаем j=l, / = а ] + 1 + 1 и переходим к шагу 7. 

Шаг 7. Полагаем / = / + 1 . Если г<л, переходим к шагу 2; иначе — 
к шагу 9. 

Шаг 8. Если /<а ] , полагаем / = / + 1 и переходим к шагу 2; иначе — 
переходим к шагу 6. 

Шаг 9. Точку и величину у.(х°) принимаем за приближение к опти-
муму. 
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В рамках приведенного алгоритма можно варьировать числом ожидае-
мых успешных испытаний, уменьшая Я при уменьшении card Y{. Тот факт, 
что на начальных этапах число Я целесообразно брать большим, объясняется 
необходимостью более тщательного „просмотра" множества Yj для опреде-
ления перспективного направления дальнейшего поиска. 

Заметим, что как в первом, так и во втором алгоритмах важное значение 
имеет правило выбора нового множества Г/. Естественно это множество вы-
бирать так, чтобы рекордная точка ему принадлежала. Если такое мно-
жество уже рассмотрено, выбирается множество, которому принадлежит бли-
жайшая (по значению функционала) точка и т. д. В приведенных алгоритмах 
указанный шаг опущен в целях простоты изложения, но такая процедура 
легко реализуется путем соответствующей перенумерации множеств системы т. 

В задачах оптимизации важное значение имеет поведение функционала 
х(х) в окрестности глобального экстремума. В терминах вероятностной модели 
это соответствует поведению функции распределения F(v) случайной величины 
х(х): x£Y на „хвостах". Поскольку функционал х(х) ограничен на Г снизу, 
то положив 

иу = inf х (х), 

можно утверждать, что 

F(>jr) = 0, F(t]y+S) jt- О V<5 > 0 . (3) 

Зададимся числом е >0 . Поставим функции распределения F(v), удовлет-
воряющей условию (3), в соответствие функцию распределения F*(v) такую, что 
для некоторого числа //у имеет место: 

F*№) = 0, F*(r,$+,5)^0 V < 5 > 0 , 

Тогда параметр rjy является статистической оценкой оптимума функционала 
х(х) на Y. В качестве F*(v) могут выступать предельное распределение слу-
чайной величины х(х): х£ Y, а также предельное распределение ее экстре-
мальных значений. В последнем случае точный вид исходного распределе-
ния F(v) нас не интересует. Важно, чтобы оно удовлетворяло постулату устой-
чивости [4]. 

При статистической оценке оптимума можно использовать и непарамет-
рический подход, в основу которого положены элементы теории порядковых 
статистик. Рассмотрим независимые реализации x(xj, ...,x(xs) случайной 
величины х(х): Y. Обозначим через i / ( 1 ) п о р я д к о в ы е статистики, 
соответствующие данной выборке. Выберем к крайних порядковых статистик 
и рассмотрим величину 

W ) = 2<*iiw i=l 

Правило выбора к и значения коэффициентов ah i=l,k приведены в [2,5]. 
Заметим, что величина fj(Y) состоятельно оценивает Цу- Возможность ста-
тистического оценивания оптимума функционала х(х) на множествах Yj поз-
воляет предложить группу алгоритмов, построенных аналогично методу вет-
вей и границ. 
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Алгоритм 3. 

Шаг 1. Полагаем i=j= 1, г?0=1016, / р=1, р=0,п. Задаемся допустимой 
погрешностью оценки £ >0. 

Шаг 2. Генерируем точки хг, ..., ИЗ множества У]. Полагаем г;0= 
min •••,x(xs)}. Вычисляем статистическую оценку опти-
мума fj(Yj). Если fKYj)>x(x°)—i, переходим к шагу 4; иначе — 
к шагу 3. 

Шаг 3. Полагаем j=at\l-í, / = / + 1 . Если z >л, переходим к шагу 5; иначе 
— к шагу 4. 

Шаг А. Полагаем 7=7+1, / , = / Если у ' ё п е р е х о д и м к шагу 2; иначе 
— к шагу 5. 

Шаг 5. Полагаем i=i—1, j—li- Если г'^1, переходим к шагу 7; иначе — 
к шагу 6. 

Шаг 6. Если fj(Yj)>-x(x0)—s, переходим к шагу 5; иначе — к шагу 4. 

Шаг 7. Точку х° и величину х(х°) принимаем за проближение к оптимуму. 

Как видно из приведенного алгоритма, он состоит из прямого хода, когда 
вычисляются статистические оценки, и обратного хода, когда эти оценки 
используются для отсечений. Прямой ход определяется шагами 2—4, а обрат-
ный — шагами 5, 6. Погрешность ё оценки может задаваться априорно, что 
будет соответствовать некоторому уровню вероятности, либо вычисляться с 
учетом функции распределения случайной величины fj(Yj). 

Заметим, что необходимость многократной статистической оценки опти-
мума на подмножествах Y) увеличивает вероятность утери множества Y", кото-
рому принадлежит глобальный экстремум. Однако можно использовать допол-
нительные средства в процессе поиска. 

Имеется в виду следующее. Если У2
 с > т о 

min х(х) ё min х(х). 
х(.У1 х£Уг 

Таким образом вместо непосредственной оценки ^ (FJ и fj(Y2) можно прове-
рить гипотезу Н0: ^(Тг) —^(Ti)=£ при альтернативе Нг\ fl(.Y2)—fj(Y1)^e. 
Другими словами, проверяется гипотеза, принадлежит ли искомое приближе-
ние к оптимуму подмножеству множества, содержащего это приближение. 

Алгоритм 4. 

Шаг 1. Полагаем i=j=l, v0=101G. Задаемся погрешностью £>0 . 

Шаг 2. Генерируем точки хг, ..., xs(EY{. Вычисляем 
r}°=flÍYl), fl0=min К . k(*I)> * (*»)}• 

Шаг 3. Полагаем j=a\i_l, i=i+1. Если />л , переходим к шагу 8; иначе 
— к шагу 4. 
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Шаг 4. Генерируем точки х1з ..., х56У]. Вычисляем статистическую 
оценку оптимума(Г] ) и г> 0=тт {«„, х(хг), ..., и(х5)}. 

Шаг 5. Проверяем гипотезу Я„: ?/°^ёпри альтернативе ^(7]) — 
—г]° >6. Если гипотеза принимается, переходим к шагу 3; иначе — 
к шагу 6. 

Шаг 6. Полагаем /¡=/. Если переходим к шагу 4; иначе 
— к шагу 7. 

Шаг 7. Полагаем г = г — 1, Если гё1 , переходим к шагу 4; иначе — 
к шагу 8. 

Шаг 8. Точку х° и величину х(х°) принимаем за начальное приближение 
к оптимуму. Если г >и, дальнейший поиск осуществляется на мно-
жестве 7(

п 

к 
Заметим, что при отсутствии погрешностей вычисления, если 7 с и У,-, 

г=1 
то существует такое 7=1, к, что ^у=т]уг Однако вероятностный характер 
оценок <Н7г) может привести к тому, что для всех У=1 ,к: ^ (7 )>ё . 
Поэтому на шаге 7 алгоритма по-существу осуществляется возврат к уже 
рассмотренному ранее множеству и пересчет оценки 

Сравнение статистических оценок оптимумов может осуществляться не 
только относительно исходного множества X, а и относительно множества, 
полученного на предыдущем этапе. В этом случае проверяется гипотеза 

Во всех приведенных в статье алгоритмах общим является использова-
ние статистических свойств функционала х(х) на подмножествах множества 
X для определения направления поиска оптимума. Эти алгоритмы могут быть 
так Или иначе модифицированы применительно к конкретно решаемому классу 
задач. В частности, особенности применения алгоритмов в задачах размеще-
ния, квадратичного назначения, компоновки, балансировки и т. д. рассмот-
рены в [6—10]. Обширный вычислительный эксперимент описан в [2]. 

В заключение отметим, что класс предложенных алгоритмов объединен 
общим названием — метод последовательной статистической оптимизации [2]. 
Начало разработкам положено членом-корреспондентом АЙ УССР, профес-
сором Ю. Г. Стояном [11]. Теоретические аспекты обоснования метода нашли 
отражение в [2, 12]. Более подробную библиографию также можно найти в [2]. 

Автор выражает благодарность Ю. Г. Стояну за постоянное внимание и 
помощь в работе. 
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