ACTA CYBERNETICA

FORUM CENTRALE PUBLICATIONUM CYBERNETICARUM HUNGARICUN

FUNDAVIT: L. KALMÅR

REDIGIT: F. GÉCSEG

COMMISSIO REDACTORUM
A. $\AA \bar{D} \AA \mathrm{~A} M$
F. OBÅL
M. ARATÓ
F. PAPP
S. CSIBI
A. PRÉKOPA
B. DÖMÖLKI
J. SZELEZSÁN
B. KREKO
J. SZENTÁGOTHAI
Á. MAKAY
S. SZÉKELY
D. MUSZKA
J. SZÉP
ZS. NÁRAY
L. VARGA
T. VÁMOS

SECRETARIUS COMMISSIONIS
J. CSIRIK

Szeged, 1987
Curat: Universitas Szegediensis de Attila József nominata

ACTA CYBERNETICA

A HAZAI KIBERNETIKAI KUTATÁSOK KÖZPONTI PUBLIKÁCIÓS FORUMA

ALAPÍtOTTA: KALMÁR LÁSZLÓ

FŐSZERKESZTŐ: GÉCSEG FERENC
A SZERKESZTÓ BIZOTTSÁG TAGJAI

ÁDÁM ANDRÁS
ARATÓ MÁTYÁS
CSIBI SÁNDOR
DÖMÖLKI BÁLINT KREKÓ BÉLA MAKAY ÁRPÁD MUSZKA DÁNIEL NÁRAY ZSOLT

OBÁL FERENC
PAPP FERENC
PRÉKOPA ANDRÁS
SZELEZSÁN JÁNOS
SZENTÁGOTHAI JÁNOS
SZEKELY SÁNDOR
SZEP JENÓ
varga lászló
VÁMOS TIBOR

A SZERKESZTÓ bIZOTTSÁG TITKARA
CSIRIK JÁNOS

Szeged, 1987. július
A Szegedi József Attila Tudományegyetem gondozásában

On isomorphic realization of automata with α_{0}-products

Z. Ésik

1. Notions and notations

In this section we give a brief summary of some basic concepts to be used in the sequel.

An automaton is a triplet $\mathbf{A}=(A, X, \delta)$ with finite state set A, finite input set X and transition $\delta: A \times X \rightarrow A$. The sets A and X are nonempty. The transition is also treated in the extended sense, i.e., as a mapping $A \times X^{*} \rightarrow A$, where X^{*} is the free monoid generated by X. Take a word $p \in X^{*}$. The transition induced by p is the state map $\delta_{p}: A \rightarrow A$ with $\delta_{p}(a)=\delta(a, p)(a \in A)$. The collection of these transitions forms a monoid $S(\mathbf{A})$ under composition of mappings. We call $S(\mathbf{A})$ the characteristic monoid of \mathbf{A}.

The concepts as subautomaton, homomorphism, congruence relation and isomorphism are used with their usual meaning. Given an automaton $\mathrm{A}=(A, X, \delta)$ and a state $a \in A$, the subautomaton generated by a has state set $\left\{\delta(a, p) \mid p \in X^{*}\right\}$. An automaton (B, Y, δ^{\prime}) is an X-subautomaton of an automaton (A, X, δ) if $B \subseteq A$, $Y \subseteq X$ and δ^{\prime} is the restriction of δ to $B \times Y$. The factor automaton of an automaton \mathbf{A} with respect to a congruence relation θ of \mathbf{A} is denoted \mathbf{A} / θ. We write $\theta_{1}<\theta_{2}$ to mean that θ_{1} is a refinement of θ_{2} and $\theta_{1} \neq \theta_{2}$. An automaton is called simple if it has only the trivial congruence relations ω (identity relation) and t (total relation). Thus trivial (i.e., one-state) automata are simple.

Let $\mathrm{A}_{i}=\left(A_{i}, X_{i}, \delta_{i}\right)(i=1, \ldots, n, n \geqq 0)$ be automata. Take a finite nonempty set X and a family of feedback functions $\varphi_{i}: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{i}(i=1, \ldots, n)$. By the product $\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}[X, \varphi]$ we mean the automaton $\left(A_{1} \times \ldots \times A_{n}, X, \delta\right)$, where

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \ldots, \delta_{n}\left(a_{n}, x_{n}\right)\right)
$$

with

$$
x_{i}=\varphi_{i}\left(a_{1}, \ldots, a_{n}, x\right) \quad(i=1, \ldots, n)
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $x \in X$. The integer n is referred to as the length of the product. If, for every i, φ_{i} is independent of the state variables a_{i}, \ldots, a_{n}, we speak about an α_{0}-product. In an α_{0}-product a feedback function φ_{i} is alternatively treated as a mapping $A_{1} \times \ldots \times A_{i-1} \times X \rightarrow X_{i}$: Moreover, φ_{i} extends to a mapping $A_{1} \times \ldots \times A_{i-1} \times X^{*} \rightarrow X_{i}^{*}$ in a natural way.

Let \mathscr{K} be a (possibly empty) class of automata. We will use the following notations:
$\mathbf{P}_{a_{0}}(\mathscr{K}):=$ all α_{0}-products of automata from \mathscr{K};
$\mathbf{P}_{\mathbf{1 z}_{0}}(\mathscr{K}):=$ all α_{0}-products with length at most 1 of automata from \mathscr{K};
$\mathbf{S}(\mathscr{K}):=$ all subautomata of automata from \mathscr{K};
$\mathbf{H}(\mathscr{K}):=$ all homomorphic images of automata from \mathscr{K};
$\mathbf{I}(\mathscr{K}):=$ all isomorphic images of automata from \mathscr{K};
$\mathscr{K}^{*}:=$ the collection of all automata $\mathrm{A}=(A, X, \delta)$ such that there is an automaton $\mathbf{B}=\left(A, Y, \delta^{\prime}\right) \in \mathscr{K}$ with the following properties: (i) \mathbf{B} is an X-subautomaton of \mathbf{A}; (ii) for every sign $x \in X$ there is a word $p \in Y^{*}$ inducing the same transition as p, i.e., $\delta_{p}^{\prime}=\delta_{x}$. (Note that we have $S(\mathbf{A})=S(B)$.)

We call a class \mathscr{K} of automata an α_{0}-variety if it is closed under \mathbf{H}, \mathbf{S} and $\mathbf{P}_{\alpha_{0}}$. An α_{0}-variety is never empty. An α_{0}^{*}-variety is an α_{0}-variety \mathscr{K} with $\mathscr{K}^{*} \subseteq \mathscr{K}$. For later use we note that $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})\left(\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}^{*}\right)\right)$ is the smallest α_{0}-variety ($\overline{\left.\alpha_{0}^{*}-v a r i e t y\right)}$ containing a class \mathscr{K}. Similarly, ISP $_{\alpha_{0}}(\mathscr{K})$ is the smallest class containing \mathscr{K} and closed under \mathbf{I}, \mathbf{S} and $\mathbf{P}_{a_{0}}$. It is worth noting that $\mathbf{S P}_{\mathbf{1 a x}_{0}}(\mathscr{K})$ contains all \bar{X}-subautomata of automata in \mathscr{K}.

A class \mathscr{K}_{0} is said to be isomorphically α_{0}-complete for \mathscr{K} if $\mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. The following statement is a direct consequence of results in [5] (see also [3], [4]):

Proposition 1.1. If $\mathscr{K}_{\mathbf{0}}$ is isomorphically α_{0}-complete for \mathscr{K} and $\mathbf{A} \in \mathscr{K}$ is a simple automaton then $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1} \alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Thus, any isomorphically α_{0}-complete class for \mathscr{K} must "essentially" contain all simple automata in \mathscr{K}. The converse fails in general, yet it holds for some important classes: the class of all automata and the classes of permutation automata, monotone automata and definite automata are equally good examples (see [2], [3], [6], [7], [9]). Isomorphically α_{0}-complete classes for the class of all commutative automata essentially consist of automata very close to simple commutative automata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton. On the other hand no finite subclass of nilpotent automata is isomorphically α_{0}-complete for the class of all nilpotent automata. Thus, the class of nilpotent automata is a counterexample. Isomorphically α_{0}-complete classes for nilpotent automata are studied in [8].

Some more notation. The cardinality of a set A is denoted $|A|$. The symbol \mathbf{E} denotes the automaton $\left(\{0,1\},\left\{x_{0}, x_{1}\right\}, \delta\right)$ with $\delta\left(0, x_{0}\right)=0, \delta\left(0, x_{1}\right)=\delta\left(1, x_{0}\right)=$ $=\delta\left(1, x_{1}\right)=1$. We call \mathbf{E} the elevator.

The relation of the α_{0}-product to other product concepts is explained in [3]. The Krohn-Rhodes Decomposition Theorem gives a basis for studying α_{0}-products. For this, see [1], [3], [4].

2. Preliminary results

Let $\mathbf{A}=(A, X, \delta)$ be an automaton. As usual, we say that \mathbf{A} is strongly connected if it is generated by any state $a \in A$. Further, \mathbf{A} is called a cone if there is a state $a_{0} \in A$ with the following properties:
(i) $\delta\left(a_{0}, x\right)=a_{0}$, for all $x \in X$,
(ii) $A-\left\{a_{0}\right\}$ is nonempty and every state $a \in A-\left\{a_{0}\right\}$ generates \mathbf{A}.

Obviously, the state a_{0} with the above properties is unique, whence it will be referred to as the apex of \mathbf{A}. The set $A-\left\{a_{0}\right\}$ constitutes the base of \mathbf{A}. It should be noted that every simple automaton is either a strongly connected automaton or a cone or an automaton $\left(\left\{a_{1}, a_{2}\right\}, X, \delta\right)$ with $\delta\left(a_{i}, x\right)=a_{i}, i=1,2, x \in X$.

Theorem 2.1. Let \mathscr{K} be a class of automata with $\mathbf{H}(\mathscr{K}) \subseteq \mathscr{K}, \mathbf{S}(\mathscr{K}) \subseteq \mathscr{K}$ and $\mathscr{K}^{*} \subseteq \mathscr{K}$. If $\mathrm{E} \in \mathscr{K}$ then for an arbitrary class $\mathscr{K}_{0}, \mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ if and only if every strongly connected automaton and every cone belonging to \mathscr{K} is in ISP $_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Proof. The necessity of the statement is trivial. For the sufficiency let $\mathbf{A}=(A, X, \delta)$ be an automaton in \mathscr{K}. We are going to apply induction on $|A|$ to show that $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Since $\mathscr{K}^{*} \sqsubseteq \mathscr{K}$ and $\mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ is closed under X-subautomata, it can be assumed that for every word $p \in X^{*}$ there is a sign $\bar{p} \in X$ inducing the same transition as p, i.e., $\delta(a, \bar{p})=\delta(a, p)$ for all $a \in A$.

If $|A|=1$ then \mathbf{A} is strongly connected and $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Suppose that $|A|>1$. If \mathbf{A} is strongly connected or a cone then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ by assumption. Otherwise two cases arise.

Case 1: A contains a nontrivial proper subautomaton $\mathbf{B}=(B, X, \delta)$ generated by a state $b_{0} \in B$. Let $\varrho \subseteq A \times A$ be the relation defined by $a \varrho b$ if and only if $a=b$ or $a, b \in B$. A straightforward computation proves that ϱ is a congruence relation of \mathbf{A}. For every state $b \in B$ fix an $x_{b} \in X$ with $\delta\left(b_{0}, x_{b}\right)=b$. Take the α_{0}-product

$$
\mathbf{C}=\left(C, X, \delta^{\prime}\right)=\mathbf{A} / \varrho \times \mathbf{B}[X, \varphi],
$$

where $\varphi_{1}(x)=x$,

$$
\varphi_{2}(\{a\}, x)=\left\{\begin{array}{lll}
x_{b_{0}} & \text { if } & \delta(a, x) \notin B \\
x_{b} & \text { if } & \delta(a, x)=b \in B
\end{array}\right.
$$

and $\varphi_{2}(B, x)=x$ for every $x \in X$ and $a \in A-B$. Set

$$
C^{\prime}=\left\{\left(\{a\}, b_{0}\right) \mid a \in A-B\right\} \cup\{(B, b) \mid b \in B\} .
$$

It is immediately seen that $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime}\right)$ is a subautomaton of \mathbf{C} isomorphic to \mathbf{A}. Since both \mathbf{A} / ϱ and \mathbf{B} are in \mathscr{K} and have fewer states than \mathbf{A}, we have \mathbf{A} / ϱ, $\mathbf{B} \in \operatorname{ISP}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ from the induction hypothesis. The result follows by the fact that $\mathbf{I S P}_{\alpha_{0}}\left(\mathscr{\mathscr { H }}_{0}\right)$ is closed under I, S and $\mathbf{P}_{\alpha_{0}}$.

Case 2: There are distinct states $a_{1}, a_{2} \in A$ with $\delta\left(a_{i}, x\right)=a_{i}, i=1,2, x \in X$. Define $\varrho \subseteq A \times A$ by $a \varrho b$ if and only if $a=b$ or $a, b \in\left\{a_{1}, a_{2}\right\}$: Again, ϱ is a congruence relation of \mathbf{A}. Let

$$
\mathbf{C}=\left(C, X, \delta^{\prime}\right)=\mathbf{A} / \varrho \times \mathbf{E}[X, \varphi]
$$

be the α_{0}-product with $\varphi_{1}(x)=x$,

$$
\varphi_{2}(\{a\}, x)= \begin{cases}x_{1} & \text { if } \delta(a, x)=a_{2}, \\ x_{0} & \text { otherwise }\end{cases}
$$

and $\varphi_{2}\left(\left\{a_{1}, a_{2}\right\}, x\right)=x_{0}$, where $x \in X$ and $a \in A-\left\{a_{1}, a_{2}\right\}$. It follows that $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime}\right)$ with

$$
C^{\prime}=\left\{(\{a\}, 0) \mid a \in A-\left\{a_{1}, a_{2}\right\}\right\} \cup\left\{\left(\left\{a_{1}, a_{2}\right\}, 0\right),\left(\left\{a_{1}, a_{2}\right\}, 1\right)\right\}
$$

is a subautomaton of \mathbf{C} isomorphic to \mathbf{A}. Since \mathscr{K} is closed under homomorphic images and \mathbf{A} / ϱ has fewer states than \mathbf{A} we have $\mathbf{A} / \varrho \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ from the induction hypothesis. On the other hand, $\mathbf{E} \in \mathscr{H}$ and \mathbf{E} is a cone. Thus $\mathbf{E} \in \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ and we conclude $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Remark. Let \mathscr{K} be a class as in Theorem 2.1, i.e. $\mathscr{K}^{*} \subseteq \mathscr{K}, \mathbf{H}(\mathscr{K}) \subseteq \mathscr{K}$ and $\mathbf{S}(\mathscr{K}) \subseteq \mathscr{K}$. Assuming $\mathbf{E} \notin \mathscr{K}$ it follows that \mathscr{K} consists of permutation automata. (See the last section for the definition of permutation automata.) Every permutation automaton is the disjoint sum of strongly connected permutation automata. Now obviously, if \mathscr{K} contains a nontrivial strongly connected automaton then $\mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ for a class \mathscr{K}_{0} if and only if $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ for every strongly connected permutation automaton $\mathbf{A} \in \mathscr{K}$. (Or even, the same holds if α_{0}-product is replaced by the so-called quasi-direct product.) If in addition \mathscr{K} is closed under X-subautomata then, as we shall see later, $\mathscr{K} \cong \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ if and only if every simple strongly connected permutation automaton in \mathscr{K} is already contained by ISP $_{1 \bar{m}_{i}}\left(\mathscr{K}_{0}\right)$. Suppose now that every strongly connected automaton in \mathscr{K} is trivial. Then, if \mathscr{K} contains a nontrivial automaton, we have $\mathscr{K} \subseteq$ ISP $_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ if and only if $(\{0,1\},\{x\}, \delta) \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$ with $\delta(0, x)=0$ and $\delta(1, x)=\overline{1}$. Further, $\mathscr{K} \subseteq \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ holds for every \mathscr{K}_{0} if \mathscr{K} consists of trivial automata.

The following two lemmas establish some simple facts about homomorphic realization of cones and strongly connected automata in the presence of \mathbf{E}.

Lemma 2.2. Let $\mathbf{A}=(A, X, \delta)$ be a cone in $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K} \cup\{\mathbf{E}\})$. There exist an automaton $\mathbf{D} \in \mathbf{P}_{\alpha_{0}}(\mathscr{K})$ and an α_{0}-product $\mathbf{D} \times \mathbf{E}[X, \varphi]$ containing a subautomaton that can be mapped homomorphically onto A.

Proof. Let $\mathbf{B}=\left(B, X, \delta^{\prime}\right)=\mathbf{B}_{1} \times \ldots \times \mathbf{B}_{n}[X, \psi]$ be an α_{0}-product with $\mathbf{B}_{t} \in \mathscr{K} \cup$ $\cup\{\mathbf{E}\}, t=1, \ldots, n$. Let $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ be a subautomaton of \mathbf{B} and $h: C \rightarrow A$ a homomorphism of \mathbf{C} onto \mathbf{A}. We may assume \mathbf{C} to be in a sense minimal: no proper subautomaton of \mathbf{C} is mapped homomorphically onto \mathbf{A}.

Denote by a_{0} the apex and by A_{0} the base of A. Set $C_{0}=h^{-1}\left(A_{0}\right), C_{1}=h^{-1}\left(\left\{a_{0}\right\}\right)$. Clearly then $\mathbf{C}_{1}=\left(C, X, \delta^{\prime}\right)$ is a subautomaton of \mathbf{C}, and \mathbf{C} is generated by any state $a \in C_{0}$.

Let $1 \leqq i_{1}<\ldots<i_{r} \leqq n$ be all the indices $t=1, \ldots, n$ with $\mathbf{B}_{t} \in \mathscr{K}$. If $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in C_{0}$, we have $a_{t}=b_{t}$ whenever $t \ddagger\left\{i_{1}, \ldots, i_{r}\right\}$ for otherwise C would not be generated by every state in C_{0}. Let $j_{1}, \ldots, j_{s} \in\{1, \ldots, n\}-\left\{i_{1}, \ldots, i_{r}\right\}$ be those indices t such that for any $\left(a_{1}, \ldots, a_{n}\right) \in C_{0}, a_{t}=0$ if and only if $t \in\left\{j_{1}, \ldots, j_{s}\right\}$. For every $a=\left(a_{1}, \ldots, a_{r}\right) \in B_{i_{1}} \times \ldots \times B_{i_{r}}$ put $\bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in B$ with $\bar{a}_{i_{1}}=a_{1}, \ldots, \bar{a}_{i_{r}}=$ $=a_{r}, \bar{a}_{j_{1}}=\ldots=\bar{a}_{j_{s}}=0$ and $\bar{a}_{t}=1$ otherwise.

To end the proof we give an α_{0}-product $\mathbf{B}^{\prime}=\mathbf{B}_{i_{1}} \times \ldots \times \mathbf{B}_{i_{r}} \times \mathbf{E}\left[X, \psi^{\prime}\right]$ and a subautomaton $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime \prime}\right)$ of \mathbf{B}^{\prime} such that \mathbf{A} is a homomorphic image of \mathbf{C}^{\prime}. For every $a \in B_{i_{1}} \times \ldots \times B_{i_{r}}, i=0,1, x \in X$ and $j=1, \ldots, r$, define

$$
\begin{gathered}
\psi_{j}^{\prime}(a, i, x)=\psi_{i_{j}}(\bar{a}, x), \\
\psi_{r+1}^{\prime}(a, i, x)= \begin{cases}x_{1} & \text { if } \delta^{\prime}(\bar{a}, x) \in C_{1}, \\
x_{0} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Let \mathbf{C}^{\prime} be the subautomaton generated by the set

$$
C_{0}^{\prime}=\left\{(a, 0) \mid a \in B_{i_{1}} \times \ldots \times B_{i_{r}}, \bar{a} \in C_{0}\right\} .
$$

Set $C_{1}^{\prime}=C^{\prime}-C_{0}^{\prime}$. It is clear from the construction that states in C_{1}^{\prime} have 1 as their last components. Therefore, C_{1}^{\prime} is the state set of a subautomaton of \mathbf{C}^{\prime}. Moreover, for every $(a, 0),(b, 0) \in C_{0}^{\prime}$ and $x \in X$ we have $\delta^{\prime \prime}((a, 0), x)=(b, 0)$ if and only if $\delta^{\prime}(\bar{a}, x)=\bar{b}$, while $\delta^{\prime \prime}((a, 0), x) \in C_{1}^{\prime}$ if and only if $\delta^{\prime}(\bar{a}, x) \in C_{1}$. It follows that \mathbf{A} is a homomorphic image of \mathbf{C}^{\prime}, a homomorphism being the map that takes each state in C_{1}^{\prime} to a_{0} and each state $(a, 0) \in C_{0}^{\prime}$ to $h(\bar{a})$.

If \mathbf{A} were strongly connected we would not need the last factor of the α_{0}-product \mathbf{B}^{\prime} either. This gives the following:

Lemma 2.3. Every strongly connected automaton in $\mathbf{H S P}_{a_{0}}(\mathscr{K} \cup\{\mathbf{E}\})$ is contained in $\mathbf{H S P}_{a_{0}}(\mathscr{K})$.

Let $\mathbf{A}=(A, X, \delta)$ be a cone with apex a_{0} and base A_{0}. Suppose that the relation $\varrho \subseteq A \times A$ defined by $a \varrho b$ if and only if $a=b=a_{0}$ or $a, b \in A_{0}$ is a congruence relation of \mathbf{A}, which is to say that for every $x \in X$ either $\delta\left(A_{0}, x\right) \cong A_{0}$ or $\delta\left(A_{0}, x\right)=$ $=\left\{a_{0}\right\}$. Set $X_{0}=\left\{x \in X \mid \delta\left(A_{0}, x\right) \subseteq A_{0}\right\}$. Assuming $X_{0} \neq \emptyset$, the automaton $\mathbf{A}_{0}=$ $=\left(A_{0}, X_{0}, \delta\right)$ is a strongly connected X-subautomaton of A , which is guaranteed if $\left|A_{0}\right|>1$. By definition, we call A a 0 -simple cone if and only if $X_{0} \neq \emptyset$ and \mathbf{A}_{0} is simple. Thus, \mathbf{E} is both a simple cone and a 0 -simple cone. Given a strongly connected automaton $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$, there is a natural way to imbed \mathbf{A}_{0} into a 0 -simple cone \mathbf{A}_{0}^{c} : define $\mathbf{A}_{0}^{c}=\left(A \cup\left\{a_{0}\right\}, X_{0} \cup\left\{x_{0}\right\}, \delta\right)$ where $a_{0} \notin A_{0}, x_{0} \notin X_{0}, \delta\left(a, x_{0}\right)=a_{0}$ for every $a \in A_{0} \cup\left\{a_{0}\right\}$ and $\delta\left(a_{0}, x\right)=a_{0}, \delta(a, x)=\delta_{0}(a, x)$ if $a \in A_{0}, x \in X_{0}$. Obviously, \mathbf{A}_{0}^{c} is 0 -simple if and only if \mathbf{A}_{0} is simple.

If \mathbf{A} is a simple cone (i.e., a simple automaton that is a cone) then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ for a class \mathscr{K} if and only if $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1 \alpha}_{0}}(\mathscr{K})$. In the next statement we investigate what can be said about \mathscr{K} if $\operatorname{ISP}_{\alpha_{0}}(\mathscr{K})$ contains a 0 -simple cone.

Lemma 2.4. If a 0 -simple cone $\mathbf{A}=\mathbf{A}_{0}^{c}$ is in $\mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ then either $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$ or $\mathbf{E} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$ and there is an automaton $\mathbf{D} \in \mathscr{K}^{\alpha_{0}}$ such that \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{D}.

Proof. Let $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$ and $\mathbf{A}=(A, X, \delta)$ so that $A=A_{0} \cup\left\{a_{0}\right\}, X=X_{0} \cup$ $\cup\left\{x_{0}\right\}$ where $a_{0} \notin A_{0}, x_{0} \notin X_{0}, \delta\left(a, x_{0}\right)=a_{0}(a \in A), \delta\left(a_{0}, x\right)=a_{0}$ and $\delta(a, x)=\delta_{0}(a, x)$ $\left(a \in A_{0}, x \in X_{0}\right)$. Since $\mathbf{A} \in \mathbf{I S} \mathbf{P}_{\alpha_{0}}(\mathscr{K})$ there exist an α_{0}-product $\mathbf{B}=\left(B, X, \delta^{\prime}\right)=$ $=\mathbf{B}_{1} \times \ldots \times \mathbf{B}_{n}[X, \varphi]\left(\mathbf{B}_{t} \in \mathscr{K}, t=1, \ldots, n\right)$ and a subautomaton $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ of \mathbf{B} such that \mathbf{A} is isomorphic to \mathbf{C} under a mapping $h: A \rightarrow C$. We may assume that n is minimal, i.e., whenever an α_{0}-product of automata from \mathscr{K} contains a subautomaton isomorphic to \mathbf{A}, the length of that product is at least n.

Suppose that $\mathbf{A} \notin \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$. We then have $n>1$. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be arbitrary states in C. For every $t=1, \ldots, n$, put $a \theta_{t} b$ if and only if $a_{1}=b_{1}, \ldots, a_{t}=b_{t}$. Further, let $a \varrho b$ if and only if $a=b=h\left(a_{0}\right)$ or $a, b \in h\left(A_{0}\right)$. Each of these relations is a congruence relation of \mathbf{C}, and since n is minimal, $\theta_{1}>\ldots>\theta_{n}(=\omega)$ and $\theta_{1} \neq l$. Since \mathbf{A} is 0 -simple this leaves $n=2, \theta_{1}=\varrho$ and $\theta_{2}=\omega$. It then follows that \mathbf{E} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{B}_{1} with a single factor and \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}_{2}.

Let $\mathbf{A}_{0}^{\boldsymbol{c}}=\left(A_{0} \cup\left\{a_{0}\right\}, X_{0} \cup\left\{x_{0}\right\}, \delta\right)$ be a 0 -simple cone with $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$, and take an arbitrary automaton $\mathrm{B}=\left(B, Y, \delta^{\prime}\right)$. It is not difficult to give a necessary and sufficient condition ensuring that \mathbf{A}_{0}^{c} is isomorphic to an α_{0}-product of \mathbf{E} with \mathbf{B}. Clearly this can happen if and only if there are a pair of functions $h: A_{0} \rightarrow B$, $\varphi: X_{0} \rightarrow Y$, a state $b_{0} \in B$ and two not necessarily distinct signs $y_{0}, y_{1} \in Y$ such that:
(i) h is injective;
(ii) for every $a_{1}, a_{2} \in A_{0}$ and $x \in X_{0}$ we have $\delta_{0}\left(a_{1}, x\right)=a_{2}$ if and only if $\delta^{\prime}\left(h\left(a_{1}\right), \varphi(x)\right)=h\left(a_{2}\right)$;
(iii) $\delta^{\prime}\left(h\left(A_{0}\right), y_{0}\right)=\left\{b_{0}\right\}, \delta^{\prime}\left(b_{0}, y_{1}\right)=b_{0}$.

If also $b_{0} \notin h\left(A_{0}\right)$ and $y_{0}=y_{1}$ then $\mathbf{A}_{0}^{\boldsymbol{c}}$ is isomorphic to an α_{0}-product of \mathbf{B} with a single factor.

3. The main result

An automaton $\mathrm{A}=(A, X, \delta)$ is called permutation automaton if δ_{x} is a permutation of the state set for every $x \in X$. This is equivalent to saying that δ_{p} is a permutation for every $p \in X^{*}$ or that $S(\mathbf{A})$ is a group. Let \mathscr{K}_{p} denote the class of all permutation automata. It is known that \mathscr{K}_{p} is an α_{0}^{*}-variety, see [1]. Moreover, from the Krohn-Rhodes Decomposition Theorem we have $\mathscr{K}_{p}=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G$ is a simple group $\}$) where the group-like automaton $\mathbf{A}(G)$ on a (finite) group G is defined to be the automaton (G, G, δ) with $\delta(g, h)=g h, g, h \in G$.

Another class of automata we shall be dealing with is the class \mathscr{K}_{m} of all monotone automata. By definition, an automaton $\mathbf{A}=(A, X, \delta)$ is monotone if $\delta(a, p q)=a$ implies $\delta(a, p)=a$, for all $a \in A$ and $p, q \in X^{*}$. This is equivalent to requiring the existence of an ordering \leqq on A such that $a \leqq \delta(a, p)$ for all $a \in A$ and $p \in X^{*}$ (or $a \leqq \delta(a, x)$ for all $a \in A$ and $x \in X$). The class \mathscr{K}_{m} is known to be an α_{0}^{*}-variety. Further, it is the α_{0}-variety generated by \mathbf{E}, i.e. $\mathscr{K}_{m}=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{E}\})$ (see [1], [10], [11]).

Having defined the classes \mathscr{K}_{p} and \mathscr{K}_{m}, put $\mathscr{K}_{p m}=\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}_{p} \cup \mathscr{K}_{m}\right)=$ $=\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}_{p} \cup\{\mathbf{E}\}\right)=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G$ is a simple group $\} \cup\{\mathbf{E}\})$. It follows from Stiffler's switching rules that $\mathbf{A} \in \mathscr{K}_{p m}$ if and only if there is an α_{0}-product \mathbf{B} of a permutation automaton with a monotone automaton such that $\mathbf{A} \in \mathbf{H S}(\{\mathbf{B}\})$. For this and other characterizations of the class $\mathscr{K}_{p m}$, see [1] and [10]. It is immediate from our definition that $\mathscr{K}_{p m}$ is an α_{0}-variety. Or even, it is an α_{0}^{*}-variety.

Lemma 3.1. Let \mathbf{A} be a strongly connected automaton. Then $\mathbf{A} \in \mathscr{K}_{p m}$ if and only if $\mathbf{A} \in \mathscr{K}_{\boldsymbol{p}}$.

Proof. Use Lemma 2.3.

Corollary. If $\mathbf{A}=\mathbf{A}_{\mathbf{0}}^{\boldsymbol{c}}$ is a cone in $\mathscr{K}_{p m}$ then \mathbf{A}_{0} a strongly connected permutation automaton.

Lemma 3.2. Let $\mathrm{A}=(A, X, \delta) \in \mathscr{K}_{p m}$ be a cone with apex a_{0} and base A_{0}. If $\delta(a, p)=\delta(b, p) \in A_{0}$ holds for some $a, b \in A_{0}$ and $p \in X^{*}$ then $a=b$.

Proof. From Lemma 2.2 it follows that \mathbf{A} is a homomorphic image of a subautomaton $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ of an α_{0}-product $\mathbf{B} \times \mathbf{E}[X, \varphi]$ where \mathbf{B} is a permutation
automaton, say $\mathbf{B}=\left(B, X_{1}, \delta_{1}\right)$. Denote by h an onto homomorphism $\mathbf{C} \rightarrow \mathbf{A}$. Set $C_{0}=h^{-1}\left(A_{0}\right)$. We may assume that every state in C_{0} is a generator of C. Each state in C_{0} must have 0 as its second component since otherwise we would have $C \subseteq B \times\{1\}$, and this would yield that \mathbf{C} and \mathbf{A} are permutation automata.

Let $\left(a_{1}, 0\right),\left(b_{1}, 0\right) \in C_{0}$ with $h\left(a_{1}, 0\right)=a, h\left(b_{1}, 0\right)=b$. Take a word $q \in X^{*}$ with $\delta(a, p q)=a$. We have $\delta\left(a,(p q)^{n}\right)=\delta\left(b,(p q)^{n}\right)=a$, and hence $\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)$, $\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right) \in C_{0}$, for all $n \geqq 1$. Define $r=\varphi_{1}(p q)$. For every integer $n \geqq 1$ we have $\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)=\left(\delta_{1}\left(a_{1}, r^{n}\right), 0\right)$ and $\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right)=\left(\delta_{1}\left(b_{1}, r^{n}\right), 0\right)$, Since B is a permutation automaton, there is an $n \geqq 1$ with $a_{1}=\delta_{1}\left(a_{1}, r^{n}\right)$ and $b_{1}=\delta_{1}\left(b_{1}, r^{n}\right)$. Thus we obtain $a=h\left(a_{1}, 0\right)=h\left(\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)\right)=h\left(\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right)\right)=h\left(b_{1}, 0\right)=b$.

Theorem 3.3. Let $\mathscr{K} \cong \mathscr{K}_{p m}$ be a class containing \mathbf{E}, closed under X-subautomata and homomorphic images and such that $\mathscr{K}^{*} \subseteq \mathscr{K}$. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K} if and only if the following conditions hold:
(i) every simple cone and every simple strongly connected permutation automaton belonging to \mathscr{K} is in $\operatorname{ISP}_{1_{\alpha_{0}}}\left(\mathscr{K}_{0}\right)$,
(ii) for every 0 -simple cone $\mathbf{A}_{0}^{c} \in \mathscr{K}$ there is a $\mathbf{B} \in \mathscr{K}_{0}$ such that \mathbf{A}_{0}^{c} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}.

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary in virtue of Lemma 2.4.

For the converse recall that \mathscr{K} satisfies the assumptions of Theorem 2.1. Therefore, by Theorem 2.1, it suffices to show that every strongly connected automaton and every cone belonging to \mathscr{K} is contained by $\mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$.

Let $\mathbf{A}=(A, X, \delta) \in \mathscr{K}$ be a cone with base A_{0} and apex a_{0}. Since $\mathscr{K}^{*} \subseteq \mathscr{K}$ and $\operatorname{ISP}_{a_{0}}\left(\mathscr{K}_{0}\right)$ is closed under X-subautomata, we may assume that for every $p \in X^{*}$ there is a $\bar{p} \in X$ inducing the same transition as p. If \mathbf{A} is simple then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ by (i). If \mathbf{A} is 0 -simple then \mathbf{A} is isomorphic to an α_{0}-product $\mathbf{A}_{0}^{\epsilon}[X, \varphi]$ with a single factor where $\mathbf{A}_{0}^{c} \in \mathscr{K}$ is a 0 -simple cone. (Recall that \mathscr{K} is closed under X-subautomata.) Therefore, we may assume that \mathbf{A} is of the form \mathbf{A}_{0}^{c}. Now, by (ii), \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B} where $\mathbf{B} \in \mathscr{K}_{0}$. Since \mathbf{E} is a simple cone we have $\mathbf{E} \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$. It follows that $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Suppose that \mathbf{A} is neither simple nor 0 -simple. We proceed by induction on $|A|$. If $|A|=2$ our statement holds vacantly. Let $|A|>2$. There exists a congruence relation $\theta \neq \omega$ of A such that $a \theta b$ implies $a=b$ or $a, b \in A_{0}$, and such that A_{0} contains at least two blocks of the partition induced by θ.

Let $C_{0}=\left\{a_{0}\right\}, C_{1}, \ldots, C_{n}\left(n \geqq 2,\left|C_{1}\right|>1\right)$ be the blocks of θ. Since \mathbf{A} is generated by any state in A_{0}, from Lemma 3.2 we have the following: for every $i, j \in\{1, \ldots, n\}$ there exists a word $p \in X^{*}$ with $\delta\left(C_{i}, p\right)=C_{j}$. Consequently, for every $i \in\{1, \ldots, n\}$ there is a pair of words $\left(p_{i}, q_{i}\right)$ with $\delta\left(C_{1}, p_{i}\right)=C_{i}, \delta\left(C_{i}, q_{i}\right)=C_{1}$ and such that $p_{i} q_{i}$ induces the identity map on C_{1} while $q_{i} p_{i}$ induces the identity map on C_{i}.

Set $X^{\prime}=\left\{x \in X \mid \delta\left(C_{1}, x\right) \subseteq C_{0} \cup C_{1}\right\}, \mathbf{C}=\left(C_{0} \cup C_{1}, X^{\prime}, \delta^{\prime}\right)$, where $\delta^{\prime}(c, x)=\delta(c, x)$ for all $c \in C_{0} \cup C_{1}$ and $x \in X^{\prime}$. Obviously, both A / θ and \mathbf{C} are cones in \mathscr{K}. Fix a sign $x_{0} \in X^{\prime}$ with $\delta^{\prime}\left(C_{1}, x_{0}\right)=C_{0}$. Take the α_{0}-product

$$
\mathbf{B}=\left(B, X, \delta^{\prime \prime}\right)=\mathbf{A} / \theta \times \mathbf{C}[X, \varphi]
$$

where $\varphi_{1}(x)=x$ and

$$
\varphi_{2}\left(C_{i}, x\right)=\left\{\begin{array}{lll}
x_{0} & \text { if } \delta\left(C_{i}, x\right)=C_{0} \\
\bar{p}_{i} x q_{j} & \text { if } \delta\left(C_{i}, x\right)=C_{j}
\end{array} \text { and } \quad i, j \neq 0\right.
$$

It is easy to check that $\mathbf{B}^{\prime}=\left(B^{\prime}, X, \delta^{\prime \prime}\right)$ is a subautomaton of \mathbf{B} where

$$
B^{\prime}=\left\{\left(C_{0}, a_{0}\right)\right\} \cup\left\{\left(C_{i}, a\right) \mid i=1, \ldots, n, a \in C_{1}\right\}
$$

Further, the map $\left(C_{0}, a_{0}\right) \mapsto a_{0},\left(C_{i}, a\right) \mapsto \delta\left(a, p_{i}\right)\left(i=1, \ldots, n, a \in C_{1}\right)$ is an isomorphism of \mathbf{B}^{\prime} onto \mathbf{A}. Hence the result follows from the induction hypothesis.

Suppose now that $\mathrm{A}=(A, X, \delta) \in \mathscr{K}$ is a strongly connected automaton. From Lemma 3.1 we know that A is a permutation automaton. Just as before, we may assume that for every $p \in X^{*}$ there is a sign $\bar{p} \in X$ with $\delta_{p}=\delta_{\bar{p}}$. If \mathbf{A} is simple then $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K}) \subseteq \mathbf{I S P}_{a_{0}}(\mathscr{K})$. Otherwise let θ be a congruence relation of \mathbf{A} different from ω and i. Denote by $C_{1}, \ldots, C_{n}\left(n \geqq 2,\left|C_{1}\right|>1\right)$ the blocks of the partition induced by θ. Set $X^{\prime}=\left\{x \in X \mid \delta\left(C_{1}, x\right)=C_{1}\right\}$. One shows that A is isomorphic to an α_{0}-product of \mathbf{A} / θ with \mathbf{C}, where $\mathbf{C}=\left(C_{1}, X^{\prime}, \delta^{\prime}\right), \delta^{\prime}(c, x)=\delta(c, x)\left(c \in C_{1}, x \in X^{\prime}\right)$.

We note that a substantial part of the above proof as well as the proofs of Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]).

Corollary. Let $\mathscr{K} \subseteq \mathscr{K}_{p}$ be closed under X-subautomata and homomorphic images and suppose that $\mathscr{K}^{*} \subseteq \mathscr{K}$. If \mathscr{K} contains a nontrivial strongly connected automaton then a class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K} if and only if $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1 \alpha}_{0}}(\mathscr{K})$ holds for every simple strongly connected automaton \mathbf{A} in \mathscr{K}.

Let \mathscr{G} be a nonempty class of (finite) simple groups closed under division. (Recall that G_{1} divides G_{2} for groups G_{1} and G_{2}, written $G_{1} \mid G_{2}$, if and only if G_{1} is a homomorphic image of a subgroup of G_{2}.) Denote by $\mathscr{K}(\mathscr{G})$ the class $\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G \in \mathscr{G}\}) ; \mathscr{K}(\mathscr{G})$ is an α_{0}^{*}-variety contained in \mathscr{K}_{p}. It follows from the Krohn—Rhodes Decomposition Theorem that every α_{0}^{*}-variety of permutation automata is of the form $\mathscr{K}(\mathscr{G})$ except for the α_{0}^{*}-variety consisting of all automata (A, X, δ) such that δ_{x} is the identity map for each $x \in X$. Moreover, if \mathscr{G} contains a nontrivial simple group then for every permutation automaton \mathbf{A} we have $\mathbf{A} \in \mathscr{K}(\mathscr{G})$ if and only if $G \mid S(\mathbf{A})$ implies $G \in \mathscr{G}$ for simple groups G. Since $\mathscr{K}(\mathscr{G}) \subseteq \mathscr{K}_{p}$, also $\mathscr{K}_{m}(\mathscr{G})=\mathbf{H S P}_{a_{0}}\left(\mathscr{K}(\mathscr{G}) \cup \mathscr{K}_{m}\right) \subseteq \mathscr{K}_{p m}$. We obviously have

$$
\mathscr{K}_{m}(\mathscr{G})=\mathbf{H S P}_{a_{0}}(\mathscr{K}(\mathscr{G}) \cup\{\mathbf{E}\})=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G \in \mathscr{G}\} \cup\{\mathbf{E}\}) .
$$

Thus, $\mathscr{K}_{m}(\mathscr{G})$ is an α_{0}-variety in $\mathscr{K}_{p m}$, or even, it is an α_{0}^{*}-variety.
Corollary. $\mathscr{K}_{m}(\mathscr{G}) \subseteq \mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ if and only if the following hold:
(i) for every simple cone $\mathbf{A} \in \mathscr{K}_{m}(\mathscr{G})$ we have $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$,
(ii) for every 0 -simple cone $\mathbf{A}_{0}^{c} \in \mathscr{K}_{m}(\mathscr{G})$ there is a $\mathbf{B} \in \mathscr{K}_{0}$ such that $\mathbf{A}_{0}^{\boldsymbol{c}}$ is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}.

Proof. Use Theorem 3.3 and the following fact: every simple strongly connected (permutation) automaton in $\mathscr{K}_{\mathrm{m}}(\mathscr{G})$ is isomorphic to an X-subautomaton of a 0 -simple cone A_{0}^{c} in $\mathscr{K}_{m}(\mathscr{G})$.

Corollary [2]. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K}_{m} if and only if $\mathrm{E} \in \mathrm{ISP}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Proof. Let \mathscr{G} be the class of trivial groups. We have $\mathscr{K}_{m}=\mathscr{K}_{m}(\mathscr{G})$. On the other hand, every cone in \mathscr{K}_{m} is similar to \mathbf{E}. More exactly, if $\mathbf{A} \in \mathscr{K}_{m}$ is a cone then A is isomorphic to an α_{0}-product in $\mathbf{P}_{1 \alpha_{0}}(\{\mathbf{E}\})$.

An automaton $\mathrm{A}=(A, X, \delta)$ is called commutative if $\delta(a, x y)=\delta(a, y x)$ for all $a \in A$ and $x, y \in X$, i.e., if $S(\mathbf{A})$ is commutative. Denote by \mathscr{K} the class of all commutative automata; \mathscr{K} is closed under X-subautomata and homomorphic images. Moreover, $\mathscr{K}^{*} \subseteq \mathscr{K}$ and $\mathscr{K} \subseteq \mathscr{K}_{p m}$. For a prime $p>1$ let \mathbf{C}_{p} be a fixed
 commutative automaton is in the class $\operatorname{ISP}_{1 \alpha_{0}}\left(\left\{\mathbf{C}_{p} \mid p>1\right.\right.$ is a prime $\left.\}\right)$, and every 0 -simple commutative cone is in $\mathbf{I S P}_{1_{\alpha_{0}}}\left(\left\{\mathbf{C}_{p}^{c} \mid p>1\right.\right.$ is a prime $\left.\}\right)$.

Corollary [7]. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for the class of all commutative automata if and only if the following hold:
(i) $\mathbf{E} \in \mathbf{H S} \mathbf{P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$,
(ii) for every prime $p>1$ there is an $\mathbf{A} \in \mathscr{K}_{0}$ such that \mathbf{C}_{p}^{c} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{A}.

Abstract

Every isomorphically α_{0}-complete class for a class \mathscr{K} of automata must essentially contain all simple automata belonging to \mathscr{K}. In this paper we present some classes \mathscr{K} for which also the converse is true, or isomorphically α_{0}-complete classes can be characterized by means of automata in \mathscr{K} close to simple automata.

BOLYAI INSTITUTE
A. JOZZSEF UNIVERSITY

ARADI VÉRTANUUK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Eilenberg, S., Automata, languages, and machines, v. B, Academic Press, New York, 1976.
[2] Gécseg, F., On products of abstract automata, Acta Sci. Math, 38 (1976), 21-43.
[3] Gécseg, F., Products of automata, Springer, Berlin, 1986.
[4] Ginzburg, A., Algebraic theory of automata, Academic Press, New York, 1968.
[5] Hartmanis, J. and R. E. Stearns, Algebraic structure theory of sequential machines, PrenticeHall, 1966.
[6] Imreh, B., On α_{0}-products of automata, Acta Cybernet., 3 (1978), 301-307.
[7] Imreh, B., On isomorphic representations of commutative automata with respect to α_{0}-products, Acta Cybernet., 5 (1980), 21-32.
[8] Imreh, B., On finite nilpotent automata, Acta Cybernet., 5 (1981), 281-293.
[9] Імreh, B., On finite definite automata, Acta Cybernet., 7 (1985), 61-65.
[10] Stiffler, P., Extension of the fundamental theorem of finite semigroups, Advances in Mathematics, 11 (1973), 159-209.
[11] Brzozowski, J. A. and F. E. Fich, Languages of \mathscr{R}-trivial monoids, J. of Computer and System Sciences, 20 (1980), 32-49.

On metric equivalence of $\boldsymbol{v}_{\boldsymbol{i}}$-products

F. Gécseg and B. Imreh

In [7] it is shown that the v_{3}-product is metrically equivalent to the product. Here we strengthen this result by proving that already the v_{1}-product is metrically equivalent to the general product. It is also obtained that, if a class \mathscr{K} of automata is not metrically complete for the product, then $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathbf{v}_{1}}(\mathscr{K})$.

In this paper by an automaton we mean a finite automaton. The only exceptions are varieties of automata; they may contain automata with infinite statesets. For all notions and notations not defined here, see [1], [7], [8] and [9].

We start with
Lemma 1. If a finite class \mathscr{K} of automata is not metrically complete for the product, then every finitely generated automaton $\mathfrak{H}=(X, A, \delta)$ from $\operatorname{HSPP}_{v_{1}}(\mathscr{K})$ is in $\mathbf{H S P}_{\mathrm{v}_{1}}(\mathscr{K})$.

Proof. First let us note that the concept of the ν_{1}-product can be generalized in a natural way to products with infinitely many factors, and every automaton in $\mathbf{P P}_{v_{1}}(\mathscr{K})$ is a v_{1}-product with possibly infinitely many factors. Thus, take a v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\Pi\left(\mathfrak{H}_{i} \mid i \in I\right)[X, \varphi, \gamma]
$$

with $|X|=m$ and $\mathscr{H}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right) \in \mathscr{K}(i \in I)$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a generating set of \mathfrak{A}. Suppose that a subautomaton of \mathfrak{B} can be mapped homomorphically onto \mathfrak{G}, and let b_{i} be a counter image of $a_{i}(i=1, \ldots, n)$ under this homomorphism. Denote by $\mathfrak{B}^{\prime}=\left(X, B^{\prime}, \delta^{\prime \prime}\right)$ the subautomaton of \mathfrak{B} generated by $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Moreover, set $u=\max \left\{\left|A_{i}\right| i \in I\right\}$ and $v=|\mathscr{K}|$. Let $k \geqq 0$ be a fixed integer such that, for arbitrary $\mathbb{C}=\left(X_{\mathscr{C}}, C, \delta_{\mathbb{C}}\right) \in \mathscr{K}, c \in C, p \in X_{\mathscr{E}}^{*}$ with $|p| \geqq k$ and $x_{1}, x_{2} \in X_{\mathscr{E}}$, $c p x_{1}=c p x_{2}$. (Since \mathscr{K} is not metrically complete, there exists such a k.) We shall show the existence of a v_{1}-product $\overline{\mathfrak{B}}=(X, \bar{B}, \bar{\delta})$ of automata from $\left\{\mathscr{A}_{i} \mid i \in I\right\}$ with a number of factors not exceeding $v u^{n t}$, where $t=\frac{m^{k+1}-1}{m-1}$ if $m>1$, and $t=k+1$ for $m=1$, such that a subautomaton $\overline{\mathfrak{B}}^{\prime}=\left(X, \bar{B}^{\prime}, \bar{\delta}^{\prime}\right)$ of $\overline{\mathfrak{B}}$ is isomorphic to \mathfrak{B}^{\prime}.

Define the binary relation ϱ on I in the following way: $i \equiv j(\varrho)(i, j \in I)$ if and only if $\mathfrak{A}_{i}=\mathfrak{A}_{j}$ and $\delta_{i}\left(\mathrm{pr}_{i}\left(\mathbf{b}_{r}\right), \varphi_{i}\left(\mathbf{b}_{r}, p\right)\right)=\delta_{j}\left(\mathrm{pr}_{j}\left(\mathbf{b}_{r}\right), \varphi_{j}\left(\mathbf{b}_{r}, p\right)\right)$ hold for arbi$\operatorname{trary} r(1 \leqq r \leqq n)$ and $p \in X^{*}$ with $|p| \leqq k$. By the choice of $k, \delta_{i}\left(\operatorname{pr}_{i}\left(\mathbf{b}_{r}\right), \varphi_{i}\left(\mathbf{b}_{r}, q\right)\right)=$ $=\delta_{j}\left(\operatorname{pr}_{j}\left(\mathbf{b}_{r}\right), \varphi_{j}\left(\mathbf{b}_{r}, q\right)\right)$ is valid for any $r(1 \leqq r \leqq n)$ and $q \in X^{*}$. Moreover, since
t is the number of words over X with length less than or equal to k, we have at most $v u^{n t} \varrho$-classes. From every ϱ-class take exactly one element, and let $\left\{i_{1}, \ldots, i_{l}\right\}$ be their set. Form the v_{1}-product

$$
\overline{\mathfrak{B}}=(X, \bar{B}, \bar{\delta})=\Pi\left(\mathfrak{H}_{i j} \mid j=1, \ldots, l\right)\left[X, \varphi^{\prime}, \gamma^{\prime}\right]
$$

in the following way:
(i) For every $j\left(1 \leqq j \leqq l, \gamma^{\prime}\left(i_{j}\right)=\emptyset\right.$ if $\gamma\left(i_{j}\right)=\emptyset$, and $\gamma^{\prime}\left(i_{j}\right)=\left\{i_{j_{1}}\right\}\left(j_{1} \in\{1, \ldots, l\}\right)$ if $\gamma\left(i_{j}\right)=\left\{j_{2}\right\}$ and $i_{j_{1}} \equiv j_{2}(\varrho)$.
(ii) For every j ($1 \leqq j \leqq l$) and $x \in X, \varphi_{i j}^{\prime}(x)=\varphi_{i,}(x)$ if $\gamma^{\prime}\left(i_{j}\right)=\emptyset$.
(iii) For every $j(1 \leqq j \leqq l)$, if $\gamma^{\prime}\left(i_{j}\right)=\left\{i_{j_{1}}\right\}$, then $\varphi_{i j}^{\prime}(a, x)=\varphi_{i_{j}}(a, x)\left(a \in A_{i_{j_{1}}}\right.$, $x \in X$).

Moreover, let $\mathrm{K}_{i}(i=1, \ldots, n)$ be those states of $\overline{\mathcal{B}}$ which, for every $j(=1, \ldots, l)$, satisfy the equality $\mathrm{pr}_{i_{j}}\left(\overline{\mathrm{~b}}_{i}\right)=\mathrm{pr}_{i_{j}}\left(\mathbf{b}_{i}\right)$. Denote by $\overline{\mathfrak{B}}^{\prime}=\left(X, \bar{B}^{\prime}, \bar{\delta}^{\prime}\right)$ the subautomaton of $\overline{\mathfrak{B}}$ generated by $\left\{\bar{b}_{1}, \ldots, \overline{\mathrm{~b}}_{n}\right\}$. Moreover, consider the mapping $\psi: \bar{B}^{\prime} \rightarrow \bar{B}^{\prime}$ given by $\psi\left(\mathbf{b}_{i} p\right)=\bar{b}_{i} p\left(p \in X^{*}, i=1, \ldots, n\right)$. Clearly, ψ is an isomorphism of \mathfrak{B}^{\prime} onto $\overline{\mathfrak{B}}^{\prime}$.

Lemma 2. If a finite class \mathscr{K} of automata is not metrically complete for the product, then the equality $\mathbf{H S P P}_{g}(\mathscr{K})=\operatorname{HSPP}_{\mathrm{v}_{1}}(\mathscr{K})$ holds.

Proof. Obviously, $\mathbf{H S P P}_{\mathbf{v}_{1}}(\mathscr{K}) \subseteq \mathbf{H S P P}_{g}(\mathscr{K})$. Thus, it is enough to show $\operatorname{HSPP}_{g}(\mathscr{K}) \subseteq \operatorname{HSPP}_{v_{1}}(\mathscr{K})$. This latter inclusion holds if and only if $\mathbf{H S P P}_{g}(\mathscr{K}) \cap$ $\cap \mathscr{K}_{X} \subseteq \mathbf{H S P P}_{v_{1}}(\mathscr{K}) \cap \mathscr{K}_{x}$ for all input alphabet X, where \mathscr{K}_{X} is the similarity class of all automata with input alphabet X. Since automata identities have at most two variables, $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}=\operatorname{HSP}\left(\left\{\mathfrak{Q}_{2}\right\}\right)$, where \mathfrak{N}_{2} is a free automaton of the variety HSPP $_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ generated by two elements. Let \mathfrak{A}_{1} be a free automaton in $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ generated by a single element. One can show that every finitely generated automaton in $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ is in $\mathbf{H S P}_{g}(\mathscr{K}), \mathfrak{A}_{2}$ can be represented homomorphically by a quasi-direct square of \mathfrak{A}_{1}, or by a quasi-direct product of \mathfrak{M}_{1} by a two-state discrete automaton with a single input signal depending on the forms of the p-identities holding in \mathscr{H}_{2} (see the Theorem in [3] and the proof of Theorem 2.1 from [5]). Since every finitely generated automaton from $\operatorname{HSPP}_{a_{0}}(\mathscr{K})$ is in $\operatorname{HSP}_{\alpha_{0}}(\mathscr{K})$, by the Theorem of [3] and Proposition 12 from [4], if a two-state discrete automaton is in $\operatorname{HSPP}_{g}(\mathscr{K})$ then it is in $\operatorname{HSQ}(\mathscr{K})$, where \mathbf{Q} is the quasidirect product operator. Therefore, to prove $\mathbf{H S P P}_{g}(\mathscr{K}) \subseteq \operatorname{HSPP}_{v_{2}}(\mathscr{K})$ it is sufficient to show that $\mathfrak{A}_{1} \in \mathbf{H S P P}_{v_{1}}(\mathscr{K})$ for an arbitrary input alphabet X. By the proof of Theorem 2 of [7], we may suppose that there is a largest positive integer t such that for an automaton $\mathbb{C}=\left(X, C, \delta_{C}\right)$ in \mathscr{K}, a state $c \in C$ and a word $r \in X^{*}$ with $|r|=t-1$ the state $c r$ is ambiguous.

Assume that the identity $z p=z q\left(p, q \in X^{*}\right)$ does not hold in \mathfrak{Y}_{1}, where z is a variable, $p=x_{1} \ldots x_{k} x_{k+1} \ldots x_{m}, q=x_{1} \ldots x_{k} y_{k+1} \ldots y_{n}$, and $x_{k+1} \neq y_{k+1}$ if $m, n>k$: If $m, n \leqq t$, or $m<t$ and $n \geqq t$, then by the proof of Theorem 2 in [7], $z p=z q$ is not satisfied by $\mathbf{P}_{v_{1}}(\mathscr{K})$. Thus, we may assume that $m, n \geqq t$.

Since $\mathscr{A}_{1} \in \mathbf{H S P P} \mathbf{S}_{g}(\mathscr{K})$, there are an automaton $\mathfrak{V}=(\bar{X}, A, \delta)$ in \mathscr{K}, a state $a_{0} \in A$ and two words $p^{\prime}=x_{1}^{\prime} \ldots x_{l}^{\prime} x_{l+1}^{\prime} \ldots x_{m}^{\prime}, q^{\prime}=x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime}$ in \bar{X}^{*} such that $a_{0} p^{\prime} \neq a_{0} q^{\prime}, l \geqq k$ and $x_{l_{+1}^{\prime}}^{\prime} \neq y_{l+1}^{\prime}$ if $m, n>l$. We shall suppose that there are no words $\bar{p}=\bar{x}_{1} \ldots \bar{x}_{r} \bar{x}_{r+1} \ldots \bar{x}_{m}$ and $\bar{q}=\bar{x}_{1} \ldots \bar{x}_{r} \bar{y}_{r+1} \ldots \bar{y}_{n}$ in \bar{X}^{*} with $a_{0} \bar{p} \neq a_{0} \bar{q}$ and $r>l$.

Let $a_{i}=a_{0} x_{1}^{\prime} \ldots x_{i}^{\prime}(i=1, \ldots, m)$ and

$$
b_{i}=\left\{\begin{array}{l}
a_{0} x_{1}^{\prime} \ldots x_{i}^{\prime} \quad \text { if } \quad 1 \leqq i \leqq l, \\
a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{+1}^{\prime} \ldots y_{i}^{\prime} \text { if } l<i \leqq n
\end{array}\right.
$$

In the sequel we can confine ourselves to the case $m, n>l$. Assume to the contrary, say $m=l$. Consider the v_{1}-product $\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]$ with $\gamma(1)=\{1\}$,

$$
\begin{array}{ll}
\varphi\left(b_{i}, x_{i+1}\right)=x_{i+1}^{\prime} & (i=0, \ldots, \min \{m-1, u\}) \\
\varphi\left(b_{i}, y_{i+1}\right)=y_{i+1}^{\prime} & (i=l, \ldots, \min \{n-1, u\})
\end{array}
$$

where u is the largest index for which the states b_{0}, \ldots, b_{n} are pairwise distinct, and φ is given arbitrarily in all other cases. Observe that if $b_{i}=b_{j}$ for $0 \leqq i<j \leqq n$ then $\delta\left(b_{r}, x^{\prime}\right)=\delta\left(b_{r}, y^{\prime}\right)$ for arbitrary $r \geqq i$ and $x^{\prime}, y^{\prime} \in X$; otherwise \mathscr{K} would be metrically complete for the product. (This observation will be used silently throughout the paper.) By the construction of $\mathfrak{B}, a_{0} p_{\mathfrak{B}}=a_{0} p_{\mathfrak{A}}^{\prime}$ and $a_{0} q_{\mathfrak{B}}=a_{0} q_{\mathfrak{Q}}^{\prime}$. Therefore, $a_{0} p_{\mathfrak{B}} \neq a_{0} q_{\mathfrak{B}}$.

We say that a_{m} and b_{n} induce disjoint cycles, if the subautomata generated by a_{m} and b_{n} are disjoint. Otherwise they induce the same cycle.

Let us distinguish the following cases.
Case 1. The states a_{m} and b_{n} induce disjoint cycles. By our assumptions on p^{\prime} and $q^{\prime} ;\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{m}\right\}=\emptyset$. Let $u_{1}\left(0 \leqq u_{1}<m\right)$ be the largest index such that the elements $a_{0}, a_{1}, \ldots, a_{u_{1}}$ are pairwise distinct. The number $u_{2}\left(0 \leqq u_{2}<n\right)$ has the same meaning for $b_{0}, b_{1}, \ldots, b_{u_{2}}$.

Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} \quad\left(0 \leqq i \leqq u_{1}+k-l\right), \\
\varphi\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} \quad\left(0 \leqq i \leqq u_{2}-l\right)
\end{gathered}
$$

and in all other cases φ is given arbitrarily. Take $\mathbf{b}=\left(a_{l-k}\right)$. Then $\mathbf{b} p=$ $=\left(a_{l-k} x_{l-k+1}^{\prime} \ldots x_{m}^{\prime} \bar{x}^{l-k}\right)$ and $\mathbf{b} q=\left(a_{l-k} x_{l-k+1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime} \bar{x}^{l-k}\right)$, where $\bar{x} \in \bar{X}$ is arbitrary. (Remember that $m, n \geqq t$.) Therefore, $\mathbf{b} p \neq \mathbf{b} q$.

Case 2. The states a_{m} and b_{n} induce the same cycle, i.e., in the intersection of the subautomata generated by a_{m} and b_{n} there is a cycle C of length w. We distinguish some subcases.

Case 2.1. $m \neq n(\bmod w)$. Then $w>1$. Take an arbitrary v_{1}-product $\mathfrak{B}=\left(X, A, \delta^{\prime}\right)$ of \mathfrak{H} with a single factor. In \mathfrak{B}, for any $c \in C$, we have $c p \neq c q$.

Case 2.2. $m \equiv n(\bmod w)$. Some further subcases are needed.
Case 2.2.1. $a_{m}, b_{n} \in C$ or $m=n$.
If $\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{n}\right\}=\emptyset$, then let $u_{1}\left(0 \leqq u_{1}<m\right)$ be the largest
index such that the elements $a_{0}, a_{1}, \ldots, a_{u_{1}}$ are pairwise distinct. The number u_{2} ($0 \leqq u_{2}<n$) has the same meaning for $b_{0}, b_{1}, \ldots, b_{u_{2}}$.

Take the v_{1}-product
where

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\underbrace{(\mathfrak{H} \times \ldots \times \mathfrak{H})}_{l-k+1 \text { times }}[X, \varphi, \gamma]
$$

$$
\begin{array}{cl}
\gamma(1)=\{1\} ; \quad \gamma(i)=\{i-1\} & (i=2, \ldots, l-k+1) \\
\varphi_{1}\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} & \left(0 \leqq i \leqq u_{1}+k-l\right) \\
\varphi_{1}\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} & \left(0 \leqq i \leqq u_{2}-l\right)
\end{array}
$$

and for every $j(=2, \ldots, l-k+1)$,

$$
\begin{aligned}
& \varphi_{j}\left(a_{l-k-(j-2)+i}, x_{i+1}\right)=x_{l-k-(j-2)+i}^{\prime} \quad\left(0 \leqq i \leqq u_{1}-l+k+j-2\right), \\
& \varphi_{j}\left(b_{l-(j-2)+i}, y_{k+i+1}\right)=\left\{\begin{array}{lll}
x_{i-(j-2)+i}^{\prime} & \text { if } 0 \leqq i \leqq j-2 \\
y_{l-(j-2)+i}^{\prime} & \text { if } \quad j-2<i \leqq u_{2}-l+j-2,
\end{array}\right.
\end{aligned}
$$

and in all other cases φ is given arbitrarily in accordance with the definition of the ν_{1}-product.

Take $\mathbf{b}=\left(a_{l-k}, a_{l-k-1}, \ldots, a_{0}\right)$. Then $\mathbf{b} p=\left(a_{l-k} p_{0}, a_{l-k-1} p_{1}, \ldots, a_{0} p_{l-k}\right)$ and $\mathbf{b} q=\left(a_{l-k} q_{0}, a_{l-k-1} q_{1}, \ldots, a_{0} q_{l-k}\right)$ where, for every $j(=0, \ldots, l-k), p_{j}=x_{l-k-j+1}^{\prime} \ldots$ $\ldots x_{m}^{\prime} \bar{x}^{l-k-j}$ and $q_{j}=x_{l-k-j+1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime} \bar{x}^{l-k-j}$, and $\bar{x} \in \bar{X}$ is arbitrary. Thus $p_{l-k}=p^{\prime}$ and $q_{l-k}=q^{\prime}$, implying $\mathbf{b} p \neq \mathbf{b} q$.

If $\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{n}\right\} \neq \emptyset$, then let $r(l+1 \leqq r \leqq m)$ be the least index for which there is a b_{j} with $a_{r}=b_{j}$. Moreover, let $s(l+1 \leqq s \leqq n)$ be the least index such that $b_{s}=a_{r}$. Then $r \neq s$, since in the opposite case $\bar{p}=x_{1}^{\prime} \ldots x_{r}^{\prime} x_{r+1}^{\prime} \ldots x_{m}^{\prime}$ and $\bar{q}=x_{1}^{\prime} \ldots x_{r}^{\prime} y_{r+1}^{\prime} \ldots y_{n}^{\prime}$ would contradict the choice of p^{\prime} and q^{\prime}. Assume that $r<s$. Let $u(0 \leqq u<m)$ be the largest index for which the states a_{0}, \ldots, a_{u} are pairwise distinct. Take the v_{1}-product
where

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=(\underbrace{(\mathfrak{H} \times \ldots \times \mathfrak{H})}_{l-k+1 \text { times }}[X, \varphi, \gamma]
$$

$$
\begin{array}{cl}
\gamma(1)=\{1\} ; \quad \gamma(i)=\{i-1\} & (2 \leqq i \leqq l-k+1), \\
\varphi_{1}\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} & (0 \leqq i \leqq u+k-l), \\
\varphi_{1}\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} & (0 \leqq i \leqq r-l),
\end{array}
$$

and for every $j(=2, \ldots, l-k+1)$,

$$
\begin{gathered}
\varphi_{j}\left(a_{l-k-(j-2)+i}, x_{i+1)}=x_{l-k-(j-2)+i}^{\prime} \quad(0 \leqq i \leqq u-l+k+j-2),\right. \\
\varphi_{j}\left(b_{l-(j-2)+i}, y_{k+i+1}\right)= \begin{cases}x_{l-(j-2)+i}^{\prime} & \text { if } 0 \leqq i \leqq j-2, \\
y_{l-(j-2)+i}^{\prime} & \text { if } j-2<i \leqq r-l+j-2,\end{cases}
\end{gathered}
$$

and in all other cases φ is given arbitrarily. Take the state

$$
\mathrm{b}=\left(a_{l-k}, a_{l-k-1}, \ldots, a_{0}\right) \in B
$$

Then $\mathbf{b} p=\left(b_{1}^{\prime}, \ldots, b_{l-k}^{\prime}, a_{0} p^{\prime}\right)$ and $\mathbf{b} q=\left(b_{1}^{\prime \prime}, \ldots, b_{l-k}^{\prime \prime}, a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}\right)$ where $\bar{q} \in \bar{X}^{*}$ satisfies the equality $|\bar{q}|=n-r$. One can easily check that $a_{0} p^{\prime} \neq a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}$. Indeed, in the opposite case let \bar{q}^{\prime} be the initial segment of \bar{q} with length $m-r$ if $m \leqq n$, and otherwise let $\bar{q}^{\prime}=\bar{q} \bar{q}$, where $\overline{\bar{q}} \in \bar{X}^{*}$ is arbitrary with $|\bar{q} \bar{q}|=m-r$. From our assumptions it follows that $a_{0} x_{1}^{\prime} \ldots x_{1}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}^{\prime} \neq a_{0} q^{\prime}$. Therefore, by $r>l$; the pair $x_{1}^{\prime} \ldots x_{1}^{\prime} y_{1+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}^{\prime}, q^{\prime}$ contradicts the choice of p^{\prime} and q^{\prime}.

Case 2.2.2. $m \neq n$ and at least one of a_{m} and b_{n} is not in C.
Case 2.2.2.1. None of a_{m} and b_{n} is in C and $m<n$. Then the states b_{0}, \ldots, b_{n} are pairwise distinct. Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(b_{i}, x_{i+1}\right)=\left\{\begin{array}{lll}
x_{i+1}^{\prime} & \text { if } & 0 \leqq i<l, \\
y_{i+1}^{\prime} & \text { if } & l \leqq i<m,
\end{array}\right. \\
\varphi\left(b_{i}, y_{i+1}\right)=\left\{\begin{array}{lll}
x_{i+1}^{\prime} & \text { if } & k \leqq i<l, \\
y_{i+1}^{\prime} & \text { if } & l \leqq i<n,
\end{array}\right.
\end{gathered}
$$

and φ is given arbitrarily in all other cases. Taking $\mathbf{b}=\left(b_{0}\right)$ we obtain $\mathbf{b} p=\left(b_{m}\right)$ and $\mathbf{b} q=\left(b_{n}\right)$.

Case 2.2.2.2. $a_{m} \notin C, b_{n} \in C$ and $n>m$; or $a_{m} \notin C, b_{n} \in C$ and $n<m$. The states $a_{0}, a_{1}, \ldots, a_{m}$ are pairwise distinct. Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{H}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(a_{i}, x_{i+1}\right)=x_{i+1}^{\prime} \quad(0 \leqq i<m) \\
\varphi\left(a_{i}, y_{i+1}\right)=x_{i+1}^{\prime} \quad(k \leqq i<\min \{m, n\}),
\end{gathered}
$$

and φ is given arbitrarily in the remaining cases. Let $\mathbf{b}=\left(a_{0}\right)$. If $n>m$, then $\mathbf{b} p=\left(a_{m}\right)$ and $\mathbf{b} q=\left(a_{m} \bar{x}^{n-m}\right)$, where $\bar{x} \in \bar{X}$ is arbitrary. Obviously, $a_{m} \neq a_{m} \bar{x}^{n-m}$, since in the opposite case $a_{m} \in C$. If $n<m$, then $\mathbf{b} p=\left(a_{m}\right)$ and $\mathbf{b} q=\left(a_{n}\right)$.

Remark. Let \mathscr{K} be an arbitrary class of automata. In [3] it is shown that if an identity does not hold in an infinite product of automata from \mathscr{K}, then there is a finite product of automata from \mathscr{K} which does not satisfy the given identity either. (See also [2], where this result is generalized to automata with infinite input alphabets.) Moreover, by Theorem 1 of [7], the v_{1}-product is equivalent to the product as regards metric completeness. Therefore, if \mathscr{K} is metrically complete for the product, then none of the nontrivial p-identities holds in $\mathbf{H S P P}_{\mathbf{v}_{1}}(\mathscr{K})$. Thus, using Lemma 2, we obtain that $\mathbf{H S P P}_{g}(\mathscr{K})=\operatorname{HSPP}_{v_{1}}(\mathscr{K})$ for arbitrary class of automata. However, Lemma 2 will be sufficient to prove our main result.

By Lemmas 1 and 2, we obtain
Corollary 3. If a class \mathscr{K} of automata is not metrically complete for the product, then $\operatorname{HSP}_{g}(\mathscr{K})=\mathbf{H S P}_{v_{1}}(\mathscr{K})$.

Proof. The inclusion $\operatorname{HSP}_{v_{1}}(\mathscr{K}) \cong \operatorname{HSP}_{g}(\mathscr{K})$ is obvious. If $\mathfrak{A} \in \mathbf{H S P}_{g}(\mathscr{K})$, then there exists a finite subset $\overline{\mathscr{K}}$ such that $\mathscr{M}_{\in} \mathbf{H S P}_{g}(\overline{\mathscr{K}})$. Therefore, by Lemmas 1 and $2, \mathfrak{U} \in \mathbf{H S P}_{\mathbf{v}_{1}}(\overline{\mathscr{K}})$.

Let us note that by the proof of the Theorem in [6], $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})=\mathbf{H S P}_{\boldsymbol{g}}(\mathscr{K})$ if \mathscr{K} is not metrically complete for the product. Thus, for such classes \mathscr{K}, the equality $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})=\mathbf{H S P}_{v_{1}}(\mathscr{K})$ holds, too.

Now we are ready to state and prove the main result of the paper.
Theorem 4. The v_{1}-product is metrically equivalent to the general product.
Proof. Let \mathscr{K} be an arbitrary class of automata. If \mathscr{K} is metrically complete for the product, then by Theorem 1 in [7], \mathscr{K} is metrically complete with respect to the v_{1}-product. If \mathscr{K} is not metrically complete, then $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathbf{v}_{1}}(\mathscr{K})$, as it is stated in Corollary 3.

DEPT. OF COMPUTER SCIENCE

A. JOZZSEF UNIVERSITY

ARADI VÉRTANÚK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Dömösi, P., B. Imreh, On v_{i}-products of automata, Acta Cybernet., v. VII. 2, 1983, pp. 149162.
[2] Ésik, Z., On identities preserved by general products of algebras, Acta Cybernet., v. VI. 3, 1983, pp. 285-289.
[3] Ésik, Z., F. Gécseg, General products and equational classes of automata, Acta Cybernet., VI. 3, 1983, pp. 281-284.
[4] Esik, Z., F. Gécseg, On a representation of tree automata, Theorical Computer Science, to appear.
[5] EsIk, Z., F. GÉCseg, A decidability result for homomorphic representation of automata by α_{0}-products, Acta Mathematica Hungarica, submitted for publication.
[6] Esik, Z., Gy. Horváth, The α_{2}-product is homomorphically general, Papers on Automata Theory V, no. DM 83-3, pp. 49-62, Karl Marx University of Economics, Department of Mathematics, Budapest (1983).
[7] Gécseg, F., Metric representations by v_{i}-products, Acta Cybernet., v. VII. 2, 1985, pp. 203209.
[8] Gécseg, F., Products of automata, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
[9] Gécseg, F., B. Imreh, A comparison of α_{i}-products and v_{i}-products, Foundations of Control Engineering, submitted for publication.
(Received Sept. 12, 1986)

On α_{i}-product of tree automata

F. Gécseg and B. Imreh

In the theory of finite automata it is a central problem to represent a given automaton by composition of - possibly simpler - automata. The composition of tree automata has received little attention. Namely, the cascade product of tree automata was studied in [4] and the work [5] contains the investigation of the general product of tree automata (see also [1]). In this paper generalizing the notion of α_{i}-product (cf. [2]), we introduce the α_{i}-product of tree automata, and using the idea in [3] give necessary and sufficient conditions for a system of tree automata to be isomorphically complete with respect to the α_{i}-product. From the characterizations of complete systems we obtain the α_{i}-products constitute a proper hierarchy.

1. Definitions

By a set of operational symbols we mean the nonempty union $\Sigma=\Sigma_{0} \cup \Sigma_{1} \cup \ldots$ of pairwise disjoint sets of symbols, and for any nonnegative integer m, Σ_{m} is called the set of m-ary operational symbols. It is said that the rank or arity of a symbol $\sigma \in \Sigma$ is m if $\sigma \in \Sigma_{m}$. Now let a set Σ of operational symbols be given. A set R of nonnegative integers is called the rank-type of Σ if for any $m, \Sigma_{m} \neq \emptyset$ if and only if $m \in R$. Next we shall work always under a fixed rank-type R.

Let Σ be a set of operational symbols with rank-type R. Then by a Σ-algebra \mathscr{A} we mean a pair consisting of a nonempty set A (of elements of \mathscr{A}) and a mapping that assigns to every operational symbol $\sigma \in \Sigma$ an m-ary operation $\sigma^{\alpha d}: A^{m} \rightarrow A$, where the arity of σ is m. The operation $\sigma^{\mathscr{A}}$ is called the realization of σ in \mathscr{A}. The mapping $\sigma \rightarrow \sigma^{\mathscr{\infty}}$ will not be mentioned explicitly, but we write $\mathscr{A}=(A, \Sigma)$. The Σ-algebra \mathscr{A} is finite if A is finite, and it is of finite type if Σ is finite. By a tree automaton we mean a finite algebra of finite type. We say that the rank-type of a tree automaton $\mathscr{A}=(A, \Sigma)$ is R if the rank-type of Σ is R. Let us denote by \mathfrak{A}_{R} the class of all tree automata with rank-type R.

Now let i be a fixed nonnegative integer, and let

$$
\mathscr{A}=(A, \Sigma) \in \mathfrak{N}_{R}, \quad \mathscr{A}_{j}=\left(A_{j}, \Sigma \mathfrak{J}\right) \in \mathfrak{H}_{R} \quad(j \doteq 1, \ldots, k)
$$

Moreover, take a family ψ of mappings

$$
\psi_{m j}:\left(A_{1} \times \ldots \times A_{k}\right)^{m} \times \Sigma_{m} \rightarrow \Sigma_{m}^{j}, \quad m \in R, 1 \leqq j \leqq k
$$

It is said that the tree automaton \mathscr{A} is the α_{i}-product of $\mathscr{A}_{j}(j=1, \ldots, k)$ with respect to ψ if the following conditions are satisfied:
(1) $A=\prod_{t=1}^{k} A_{t}$,
(2) for any $m \in R, j \in\{1, \ldots, k\}$,

$$
\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right) \in\left(A_{1} \times \ldots \times A_{k}\right)^{m}
$$

the mapping $\psi_{m J}$ is independent of elements $a_{r s}(1 \leqq r \leqq m, j+i \leqq s)$,

$$
\begin{aligned}
& \text { (3) for any } m \in R, \quad \sigma \in \Sigma_{m},\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right) \in\left(A_{1} \times \ldots \times A_{k}\right)^{m} \\
& \sigma^{\infty 1}\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right)=\left(\sigma_{1}^{\Omega_{1}}\left(a_{11}, \ldots, a_{m 1}\right), \ldots, \sigma_{k}^{\delta \delta_{k}}\left(a_{1 k}, \ldots, a_{m k}\right)\right),
\end{aligned}
$$

where

$$
\sigma_{j}=\psi_{m j}\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m \bar{k}}\right), \sigma\right) \quad(j=1, \ldots, k)
$$

For the above product we shall use the notation $\prod_{j=1}^{k} \mathscr{A}_{j}(\Sigma, \psi)$ and sometimes we shall write only those variables of $\psi_{m j}$ on which $\psi_{m j}$ depends.

Finally, we shall denote by $[\sqrt[1]{n}]$ the largest integer less than or equal to $\sqrt[1]{n}$.

2. Completeness

Let i be a fixed nonnegative integer and $\mathfrak{B} \subseteq \mathfrak{A}_{R} . \mathfrak{B}$ is called isomorphically complete for \mathfrak{A}_{R} with respect to the $\alpha_{\boldsymbol{\sigma}}$-product if any tree automaton from \mathfrak{A}_{R} can be embedded isomorphically into an α_{i}-product of tree automata from \mathfrak{B}. Furthermore, \mathfrak{B} is called minimal isomorphically complete system if \mathfrak{B} is isomorphically complete and for arbitrary $\mathscr{A} \in \mathfrak{B}, \mathfrak{B} \backslash\{\mathscr{A}\}$ is not isomorphically complete.

For any natural number $n>0$ let us denote by $\mathscr{B}_{n}=\left(\{0, \ldots, n-1\}, \theta^{n}\right)$ the tree automaton where for every m-ary operation $\varrho:\{0, \ldots, n-1\}^{m} \rightarrow\{0, \ldots, n-1\}$ there exists exactly one $\sigma \in \theta_{m}^{n}$ with $\sigma^{\mathscr{O}_{n}}=\varrho$ provided that $m \in R$.

The following statement is obvious.
Lemma. If $\mathscr{A}_{j} \in \mathfrak{A}_{R}(j=1,2,3)$ and \mathscr{A}_{j} can be embedded isomorphically into and α_{i}-product of \mathscr{A}_{j+1} with a single factor $(j=1,2)$ then \mathscr{A}_{1} can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{3} with a single factor.

First we consider the special case $R=\{0\}$. Then the following statement is obvious.

Theorem 1. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i} product if and only if there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_{2} can be embedded isomorphically into an α_{i}-product of \mathscr{A} with a single factor.

Now let us suppose $R \neq\{0\}$. Then the results of completeness is based on the following Theorem:

Theorem 2. If the tree automaton $\mathscr{B}_{n}(n>1)$ can be embedded isomorphically
into an α_{i}-product $\prod_{j=1}^{k} \mathscr{A}_{j}\left(\theta^{n}, \psi\right)$ of the tree automata $\mathscr{A}_{j} \in \mathfrak{H}_{R}(j=1, \ldots, k)$ then $\mathscr{B}_{\left[{ }^{[}{ }^{*} \sqrt{n}\right]}$ can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} with a single factor for some $j \in\{1, \ldots, k\}$, where $i^{*}=i$ if $i>0$ and $i^{*}=1$ else.

Proof. If $k=1$ then the statement is obvious. Now let $k>1$. Assume that \mathscr{B}_{n} can be embedded isomorphically into the α_{i}-procut $\mathscr{A}=\prod_{j=1}^{k} \mathscr{A}_{j}\left(\theta^{n}, \psi\right)$ and let μ denote a suitable isomorphism. Let $\mu(t)=\left(a_{t 1}, \ldots, a_{t k}\right)(t=0, \ldots, n-1)$. We may suppose that there exist natural numbers $u \neq v(0 \leqq u, v \leqq n-1)$ such that $a_{u 1} \neq a_{v 1}$ since otherwise \mathscr{B}_{n} can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} $(j=2, \ldots, k)$. Now assume that there exist natural numbers $p \neq q(0 \leqq p, q \leqq n-1)$ with $a_{p s}=a_{q s}\left(s=1, \ldots, i^{*}\right)$. For any $t(0 \leqq t \leqq n-1)$ let us denote by $\sigma_{p t}^{\mathscr{B}_{n}}$ the m-ary operation of \mathscr{B}_{n} for which $\sigma_{p t}^{\mathscr{F}_{n}}(0, \ldots 0, p)=t$ and $\sigma_{p t}^{\mathscr{P}_{n}}(0, \ldots, 0, q)=q$, for some $m \in R$. Such operations exist since $R \neq\{0\}$. Then for any $t \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& \left(a_{t 1}, \ldots, a_{t k}\right)=\mu(t)=\mu\left(\sigma_{p t}^{\mathscr{S}_{n}}(0, \ldots, 0, p)\right)=\sigma_{p t}^{\mathscr{L}}(\mu(0), \ldots, \mu(0), \mu(p))= \\
& =\left(\sigma_{1}^{\mathscr{A _ { 1 }}}\left(a_{01}, \ldots, a_{01}, a_{p 1}\right), \sigma_{2}^{\mathscr{A}_{2}}\left(a_{02}, \ldots, a_{02}, a_{p 2}\right), \ldots, \sigma_{k}^{\mathscr{\mathscr { L } _ { k }}}\left(a_{0 k}, \ldots, a_{0 k}, a_{p k}\right)\right)
\end{aligned}
$$

holds, and so $a_{t 1}=\sigma_{1}^{\alpha 1_{1}}\left(a_{01}, \ldots, a_{01}, a_{p 1}\right)$ where

$$
\begin{gathered}
\sigma_{1}=\psi_{m 1}\left(\left(a_{01}, \ldots, a_{0 k}\right), \ldots,\left(a_{01}, \ldots, a_{0 k}\right),\left(a_{p 1}, \ldots, a_{p k}\right), \sigma_{p t}\right)= \\
=\psi_{m 1}\left(a_{01}, \ldots, a_{0 i^{*}}, a_{p 1}, \ldots, a_{p i^{*}}, \sigma_{p t}\right) \text { if } i>0
\end{gathered}
$$

and $\sigma_{1}=\psi_{m 1}\left(\sigma_{p r}\right)$ if $i=0$. In the same way we obtain the equality
where

$$
a_{q 1}=\bar{\sigma}_{1}^{\mathscr{A}}\left(a_{01}, \ldots, a_{01}, a_{q 1}\right)
$$

and

$$
\bar{\sigma}_{1}=\psi_{m 1}\left(a_{01}, \ldots, a_{0 i^{*}}, a_{q 1}, \ldots, a_{q i^{*}}, \sigma_{p t}\right) \quad \text { if } \quad i>0
$$

$$
\bar{\sigma}_{1}=\psi_{m 1}\left(\sigma_{p t}\right) \quad \text { if } \quad i=0
$$

Since $a_{p s}=a_{q s}\left(s=1, \ldots, i^{*}\right)$ we obtain that $\sigma_{1}=\bar{\sigma}_{1}$ which implies the equality $a_{n 1}=a_{q 1}$ for any $t \in\{0, \ldots, n-1\}$. This contradicts our assumption $a_{u 1} \neq a_{v 1}$, therefore the elements ($a_{t 1}, \ldots, a_{i^{*}}$) $(0 \leqq t \leqq n-1)$ are pairwise different. Now we shall show that in this case \mathscr{B}_{n} can be embedded isomorphically into an α_{i}-product $\overline{\mathscr{A}}=\prod_{j=1}^{i^{*}} \mathscr{A}_{j}\left(\theta^{n}, \varphi\right)$. Indeed, let us define the family φ of mappings as follows: for any $m \in R, j \in\left\{1, \ldots, i^{*}\right\},\left(\left(a_{1}^{1}, \ldots, a_{1}^{i^{*}}\right), \ldots,\left(a_{m}^{1}, \ldots, a_{m}^{i^{*}}\right)\right) \in \prod_{j=1}^{i^{*}} A_{j}, \sigma \in \theta^{n}$ elements
(1) if $i>0$ then
$\varphi_{m j}\left(\left(a_{1}^{1}, \ldots, a_{1}^{i *}\right), \ldots,\left(a_{m}^{1}, \ldots, a_{m}^{i *}\right), \sigma\right)=\left\{\begin{array}{l}\psi_{m j}\left(\left(a_{u_{1} 1}, \ldots, a_{u_{1} k}\right), \ldots,\left(a_{u_{m} 1}, \ldots, a_{u_{m} k}\right), \sigma\right) \\ \text { if there exist } u_{1}, \ldots, u_{m} \in\{0, \ldots, n-1\} \\ \text { such that } a_{s}^{r}=a_{u_{t} t}\left(t=1, \ldots, i^{*}, s=1, \ldots, m\right), \\ \text { arbitrary operational symbol from } \\ \Sigma_{m}^{j} \text { otherwise, }\end{array}\right.$
(2) if $i=0$ then $\varphi_{m j}(\sigma)=\psi_{m j}(\sigma)$.

It is clear that $\varphi_{m j}$ is well defined. On the other hand, it is easy to see that the mapping $v(t)=\left(a_{t 1}, \ldots, a_{t i}\right)(t=0, \ldots, n-1)$ is an isomorphism of \mathscr{B}_{n} into $\mathscr{\mathscr { A }}$. Using this isomorphism v we prove that $\mathscr{\mathscr { B }}_{\left[{ }^{[*} \sqrt{n}\right]}$ can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} with a single factor for some $j \in\left\{1, \ldots, i^{*}\right\}$. If $i=0$ or $i=1$ then this statement obviously holds. Now assume that $i>1$. Since the elements $\left(a_{n}, \ldots, a_{t^{*}}\right)(t=0, \ldots, n-1)$ are pairwise different, there exists an $s \in\left\{1, \ldots, i^{*}\right\}$ such that the number of pairwise different elements among $a_{0 s}, a_{1 s}, \ldots, a_{n-1 s}$ is greater than or equal to $v=\left[i^{*} \sqrt{n}\right]$. Without loos of generality we may assume that $a_{0 s}, \ldots, a_{v-1 s}$ are pairwise different elements of \mathscr{A}_{s}. For any $m \in R, \sigma \in \theta_{m}^{v}$ let us denote by $\bar{\sigma}$ an operational symbol from θ_{m}^{n} for which $\left.\sigma^{\mathscr{m}_{n}}\right|_{\left.0, \ldots, v-1\}^{m}\right\}}=\sigma^{\mathscr{A}_{v}}$. Now let us define the α_{i}-product $\mathscr{A}_{s}\left(\theta^{v}, \bar{\varphi}\right)$ as follows: for any $m \in R, \sigma \in \theta_{m}^{v},\left(a_{u_{1} s}, \ldots, a_{u_{m} s}\right) \in A_{s}^{m}$

$$
\bar{\varphi}_{m}\left(a_{u_{1} s}, \ldots, a_{u_{m} s}, \sigma\right)=\left\{\begin{array}{l}
\varphi_{m s}\left(\left(a_{u_{1} 1}, \ldots, a_{u_{1} i^{*}}\right), \ldots,\left(a_{u_{m} 1}, \ldots, a_{u_{m} i^{*}}\right), \bar{\sigma}\right) \text { if } \\
0 \leqq u_{t} \leqq v-1(t=1, \ldots, m), \\
\text { arbitrary operational symbol from } \Sigma_{m}^{s} \text { otherwise. }
\end{array}\right.
$$

It can be easily see that the correspondence $v^{\prime}: t \rightarrow a_{t s}(t=0, \ldots, v-1)$ is an isomorphism of \mathscr{B}_{v} into $\mathscr{A}_{s}\left(\theta^{v}, \bar{\varphi}\right)$, which completes the proof of Theorem 2.

Theorem 3. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for $\mathfrak{\mathscr { A }}_{R}$ with respect to the α_{0}-product if and only if for any natural number $n>1$ there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_{n} can be embedded isomorphically into an α_{0}-product of \mathscr{A} with a single factor.

Proof. The necessity follows from Theorem 2 . To prove the sufficiency let us observe that any tree automaton $\mathscr{A} \in \mathfrak{A}_{R}$ with $|A|=n$ can be embedded isomorphically into an α_{0}-product of \mathscr{B}_{n} with a single factor. From this fact, by our Lemma, we obtain the completeness of \mathfrak{B}.

Now let $i>0$ be a fixed nonnegative integer. Then in a similar way as above we obtain the following result.

Theorem 4. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{r}-product if and only if for any natural number $n>1$ there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{F}_{n} can be embedded isomorphically into an α_{i}-product of \mathscr{A} with a single factor.

Since an α_{i}-product with a single factor is an α_{1}-product with a single factor, by Theorem 4, we get the next corollary.

Corollary 1. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{1}-product if and only if \mathfrak{B} is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product.

Now let i be a nonnegative integer. Then we have the following result for the minimal isomorphically complete systems in the case $R \neq\{0\}$.

Theorem 5. There exists no system $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ which is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product and minimal.

Proof. Let $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ be isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product. Moreover, let $\mathscr{A} \in \mathfrak{B}$ with $|A|=n$. It is obvious that \mathscr{A} can be embedded isomorphically into an α_{i}-product of \mathscr{B}_{s} with a single factor if $s \geqq n$. Take a natural number $s>n$. By Theorem 3 and Theorem 4, there exists an $\overline{\mathscr{A}} \in \mathfrak{B}$ such that \mathscr{B}_{s} can be embedded isomorphically into an α_{i}-product of $\overline{\mathscr{A}}$ with a single factor. Therefore, by our Lemma, \mathscr{A} can be embedded isomorphically into an α_{i}-product of $\overline{\mathscr{A}}$ with a single factor. From this it follows that $\mathfrak{B} \backslash\{\mathscr{A}\}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product, showing that \mathfrak{B} is not minimal.

3. The hierarchy of α_{i}-products

Let $R: \nexists\{0\}$ be a fixed rank-type. Take a nonempty set $M \subseteq \mathfrak{A}_{R}$, and let i be an arbitrary nonnegative integer. Let $\alpha_{i}(M)$ denote the class of all tree automata from \mathfrak{U}_{R} which can be embedded isomorphically into an α_{i}-product of tree automata from M. It is said that the α_{i}-product is isomorphically more general than the α_{j}-product if for any set $M \subseteq \mathfrak{V}_{R}$ the relation $\alpha_{j}(M) \subseteq \alpha_{i}(M)$ holds and there exists at least one set $\bar{M} \subseteq \mathfrak{U}_{R}$ such that $\alpha_{j}(\bar{M})$ is a proper subclass of $\alpha_{i}(\bar{M})$. This notion was introduced in [2].

As far as the hierarchy of the α_{i}-products is concerned, we have the following Theorem.

Theorem 6. For any $i, j(i, j \in\{0,1, \ldots\})$ the α_{i}-product is isomorphically more general than the α_{j} product if $j<i$.

Proof. We shall prove that the α_{1}-product is isomorphically more general than the α_{0}-product and the α_{i+1}-product is isomorphically more general than the α_{i}-product if $i \geqq 1$.

First let $M=\left\{\mathscr{A}_{2}\right\}$, where $\mathscr{A}_{2}=\left(\{1,2\}, \bigcup_{m \in R}\left\{\sigma_{m 1}, \sigma_{m 2}\right\}\right)$ and the operations of \mathscr{A}_{2} are defined as follows: for any $0 \neq m, m \in R,\left(a_{1}, \ldots, a_{m}\right) \in\{1,2\}^{m}$

$$
\begin{gathered}
\sigma_{m 1}^{\mathscr{A}_{2}}\left(a_{1}, \ldots, a_{m}\right)=\left\{\begin{array}{lll}
1 & \text { if } & a_{m}=2, \\
2 & \text { if } & a_{m}=1,
\end{array}\right. \\
\sigma_{m 2}^{\mathscr{A}_{2}}\left(a_{1}, \ldots, a_{m}\right)=a_{m},
\end{gathered}
$$

and $\sigma_{01}^{\mathscr{A}}=1, \sigma_{02}^{\mathscr{A}_{2}^{2}}=2$ if $0 \in R$.
Now let us denote by $\mathscr{A}_{3}=\left(\{1,2,3\}, \Sigma^{\prime}\right)$ the tree automaton where for any $0 \neq m \in R \quad \sigma \in \Sigma_{m}^{\prime},\left(a_{1}, \ldots, a_{m}\right) \in\{1,2,3\}^{m}$

$$
\sigma^{\mathscr{A}_{3}}\left(a_{1}, \ldots, a_{m}\right)=\left\{\begin{array}{lll}
a_{m}+1 & \text { if } & a_{m}<3 \\
3 & \text { if } & a_{m}=3
\end{array}\right.
$$

and $\bar{\sigma}^{\mathscr{A}_{3}}=1$ if $0 \in R$ and $\bar{\sigma} \in \Sigma_{0}^{\prime}$.
It is easy to see that $\mathscr{A}_{3} \ddagger \alpha_{0}(M)$ and $\mathscr{A}_{3} \in \alpha_{1}(M)$ which yields the required inclusion $\alpha_{0}(M) \subset \alpha_{1}(M)$.

Now let $i \geqq 1$ and $M=\left\{\mathscr{B}_{2}\right\}$. Then, by the proof of Theorem 2, we obtain that $\mathscr{B}_{2^{i+1}} \ddagger \alpha_{i}(M)$. On the other hand, we shall show that $\mathscr{B}_{2^{i+1}} \in \alpha_{i+1}(M)$ which yields the required inclusion $\alpha_{i}(M) \subset \alpha_{i+1}(M)$: To prove the above statement it is enough to show that $\mathscr{B}_{2} \in \alpha_{i}(M)$ if $i>1$. Indeed, let us take the α_{i}-product $\mathscr{A}=\prod_{j=1}^{i} \mathscr{B}_{2}\left(\theta^{2^{t}}, \psi\right)$ where the family ψ of mappings is defined as follows: for any $0 \neq m, \sigma \in \theta_{m}^{2 t}$,

$$
\left(\left(a_{11}, \ldots, a_{1 i}\right), \ldots,\left(a_{m 1}, \ldots, a_{m i}\right)\right) \in(\{0,1\})^{m}
$$

if

$$
\sigma^{\mathscr{B}_{1} i}\left(\sum_{t=1}^{i} a_{1 t} 2^{i-t}, \ldots, \sum_{t=1}^{i} a_{m t} 2^{i-t}\right)=w=\sum_{t=1}^{i} a_{w t} 2^{i-t} \quad \text { and } \quad \bar{\sigma}^{\mathscr{D}_{2}}\left(a_{1 j}, \ldots, a_{m j}\right)=a_{w j}
$$

then

$$
\psi_{m j}\left(\left(a_{11}, \ldots, a_{1 i}\right), \ldots,\left(a_{m 1}, \ldots, a_{m i}\right), \sigma\right)=\bar{\sigma}
$$

In the case $\sigma \in \theta_{0}^{2^{t}}$ if $\sigma^{\mathscr{x}_{i^{t}}}=\sum_{t=1}^{i} a_{v t} \cdot 2^{i-t}$ and $\bar{\sigma}^{\mathscr{P}_{2}}=\bar{u}_{v j}$ then $\dot{\psi}_{m j}(\sigma)=\bar{\sigma}$.
It is easy to see that $\mathscr{B}_{2^{t}}$ can be embedded isomorphically into \mathscr{A} under the isomorphism μ defined as follows: if $w=\sum_{t=1}^{i} a_{i} 2^{i-t}$ then $\mu(w)=\left(a_{1}, \ldots, a_{i}\right)$ ($w=0, \ldots, 2^{i}-1$).

4. A decidability result

In this section we show that it is decidable if an algebra can be represented isomorphically by an α_{i}-product of algebras from a given finite set.

Theorem 7. For any nonnegative integer $i, \mathscr{A} \in \mathfrak{H}_{R}$ and finite set $M \subseteq \mathfrak{H}_{R}$ it can be decided whether or not $\mathscr{A} \in \alpha_{i}(M)$.

Proof. Let us suppose that \mathscr{A} with $A=\left\{a_{1}, \ldots, a_{k}\right\}$ can be embedded isomorphically into an α_{i}-product $\mathscr{B}=\prod_{j=1}^{s} \mathscr{A}_{j}(\Sigma, \varphi)$ of tree automata from M. Let $V=\max \left\{\left|A_{t}\right|: \mathscr{A}_{t} \in M\right\}$ and let $\left(a_{u 1}, \ldots, a_{u s}\right)$ denote the image of a_{u} under a suitable isomorphism $\mu \quad(u=1, \ldots, k)$. We define an equivalence relation π on the set of indices of the α_{i}-product \mathscr{B} as follows: for any $l, n(1 \leqq l, n \leqq s), l \pi n$ holds if and only if $\mathscr{A}_{t}=\mathscr{A}_{n}$ and $a_{t l}=a_{t n}$ for all $t=1, \ldots, k$.

It is easy to see that the partition corresponding to π has at most $|M| \cdot V^{k}$ blocks. Since $\mu(A)$ is a subalgebra of \mathscr{B}, if $a_{t l}=a_{t n}(t=1, \ldots, k)$ then the l-th and n-th components of $\mu\left(\sigma\left(a^{1}, \ldots, a^{m}\right)\right)$ are equal, where $m \in R, \sigma \in \Sigma_{m}, a^{J} \in A(j=1, \ldots, m)$. \vec{F}-om this it follows that \mathscr{A} can be embedded isomorphically into an α_{i}-product of tree automata from M with at most $|M| \cdot V^{k}$ factors.

References

[1] Ésik, Z., On identities preserved by general products of algebras, Acta Cybernet., v. 6, 1983, pp. 285-289.
[2] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, v. 14, pp. 351-363.
[3] Imreh, B., On α_{1}-products of automata, Acta Cybernet., v. 3, 1978, pp. 301-307.
[4] RICCI, G., Cascades of tree automata and computation in universal algebras, Mathematical System Theory, 7, 1973, pp. 201-218.
[5] Sternby, M., On the structure and realizations of tree automata, Second Coll. sur les Arbres en Algebre et en Programmation, Lille, 1977, pp. 235-248.
(Received Aug. 22, 1986)

On a problem of Ádám concerning precodes assigned to finite Moore automata

Masashi Katsura

To investigate the structure of finite Moore automata, the concepts of code, precode and complexity are introduced by Ádám [1] and investigated in [1-8]. Main motivation is the following.

Basic Problem [1]. For arbitrary finite X, let a constructive description of all reduced finite Moore automata, whose input set equals to X, be given.

Relating to this problem Ádám raised four open problems, one of which is the following.

Problem 3 [1]. Consider all pairs (D, D^{\prime}) of precodes with finite complexity such that $D \prec D^{\prime}$ holds. Either determine the maximal value of $\Omega\left(D^{\prime}\right)$ -$-\Omega(D)$ (as a function of the cardinality of input set) or prove that the set of these differences is unbounded.

In autonomous case, this problem is solved in [8]. The answer is that the difference is unbounded. However, we show in [8] that the quotient $\Omega\left(D^{\prime}\right) / \Omega(D)$

$$
\left(D \prec D^{\prime}, \Omega(D) \neq 0, \Omega\left(D^{\prime}\right)<\infty\right)
$$

is bounded by 2 . In this note, it is shown that, in multiple-input case, not only the difference but also the quotient is unbounded.

For the background and fundamental facts concerning codes, precodes and complexity, see [1] and [2].

1.

\mathbf{N} and \mathbf{N}_{0} mean the sets of positive integers and of nonnegative integers, respectively. For $t, k \in \mathbf{N}_{0}$, we denote $[t: k]=\left\langle i \in \mathbf{N}_{0} \mid t \leqq i \leqq k\right\rangle$. For $n, m \in \mathbf{N}$, we write $X_{(n)}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $Y_{(m)}=\left\langle y_{1}, \ldots, y_{m}\right\rangle$. A partial automaton is a 5-tuple $A=\left([1: v], X_{(n)}, Y_{(m)}, \delta, \lambda\right)$ where:
(1) v, n and m are positive integers. [1:v], $X_{(n)}$ and $Y_{(m)}$ are called the state set, the input set and the output set of A, respectively.
(2) δ is a partial mapping of $[1: v] \times X_{(n)}$ into $[1: v]$ called a state transition function (δ is extended as usual to a partial mapping of $[1: v] \times\left(X_{(n)}\right)^{*}$ into $\left.[1: v]\right)$:
(3) λ is a mapping of $[1: v]$ onto $Y_{(m)}$ called an output function.
(4) For any $a \in[1: v]$ there exists a $p \in X^{*}$ such that $\delta(1, p)=a$.

If δ is defined for any element of $[1: v] \times X_{(n)}$, then A is said to be an (initially connected finite) Moore automaton.

Let $A=\left([1: v], X_{(n)}, Y_{(m)}, \delta, \lambda\right)$ be a Moore automaton. If $\lambda(\delta(a, p)) \neq \lambda(\delta(b, p))$ holds for $a, b \in[1: v]$ and $p \in X^{*}$, then we say that p distinguishes between a and b. $\omega(a, b)$ is the minimal length of p which distinguishes between a and b. If there is no word which distinguishes between a and b, then we denote $\omega(a, b)=\infty$. Especially, $a=b$ implies $\omega(a, b)=\infty$. The complexity $\Omega(A)$ of A is defined by

$$
\Omega(A)=\min \langle\omega(a, b) \mid a, b \in[1: v], a \neq b\rangle
$$

If $v=1$ then $\Omega(A)=0$.
The notions of codes and precodes were introduced in [1] as tools to describe Moore automata constructively. The following definition is from [6, 7]. It is of course essentially equivalent to Ádám's definition in [1].

Let $n \in \mathbf{N}$. A 6-tuple $D=(r, s, \beta, \gamma, \varphi, \mu)$ is said to be an n-input precode if the following eight postulates are fulfilled:
(A) r, s are nonnegative integers.
(B) β and φ are mappings of $[2: r+s+1]$ into $[1: r+1]$.
γ is a mapping of $[2: r+s+1]$ into $[1: n]$.
μ is a mapping of $[1: r+1]$ into \mathbf{N}.
(C) $\beta(a)<a$ for any $a \in[2: r+1]$.
(D) For $a, b \in[2: r+1]$, if $a<b$ then $(\beta(a), \gamma(a))<(\beta(b), \gamma(b))$ in the lexicographic order.
(E) For $a \in[r+2: r+s+1],(\beta(a), \gamma(a))$ is the lexicographically smallest element in $([1: r+1] \times[1: n])-\langle(\beta(b), \gamma(b)) \mid b \in[2: a-1]\rangle$.
(F) For $a \in[2: r+1], \varphi(a)=a$.
(G) For $a \in[r+2: r+s+1], \varphi(a)=1$ or $(\beta(\varphi(a)), \gamma(\varphi(a)))<(\beta(a), \gamma(a))$ in the lexicographic order.
(H) $\mu(a) \in\langle 1\rangle \cup\langle\mu(b)+1 \mid b \in[1: a-1]\rangle$.

We denote $\mu(D)=\max \langle\mu(a) \mid a \in[1: r+1]\rangle$. If $m=\mu(D)$ then D is said to be an m-output precode.

It can be easily be seen that $r+s \leqq n(r+1)$ i.e., $s \leqq n r+n-r$. If $s=n r+n-r$, then the precode is said to be a code.

Let $D=(r, s, \beta, \gamma, \varphi, \mu)$ and $D^{\prime}=\left(r^{\prime}, s^{\prime}, \beta^{\prime}, \gamma^{\prime}, \varphi^{\prime}, \mu^{\prime}\right)$ be n-input precodes. If $r+s \leqq r^{\prime}+s^{\prime}$ and $\beta^{\prime}, \gamma^{\prime}, \varphi^{\prime}, \mu^{\prime}$ are extensions of $\beta, \gamma, \varphi, \mu$ then we denote $D \leqq D^{\prime}$. We denote $D<D^{\prime}$ if $D \leqq D^{\prime}$ and $r+s<r^{\prime}+s^{\prime}$. If $D<D^{\prime}$ and $r^{\prime}+s^{\prime}=r+s+1$ then we write $D \prec D^{\prime}$.

It can easily be seen that, for any precode D, there exists a code C such that $D \leqq C$.

Let $D=(r, s, \beta, \gamma, \varphi, \mu)$ be an n-input m-output precode. Define a partial mapping δ_{D} of $[1: r+1] \times X_{(n)}$ into [1:r+1] by

$$
\delta_{D}\left(\beta(a), x_{\gamma(a)}\right)=\varphi(a) \text { for any } a \in[2: r+s+1]
$$

Define a mapping λ_{D} of $[1: r+1]$ onto $Y_{(m)}$ by

$$
\lambda_{D}(a)=y_{\mu(a)} \text { for any } a \in[1: r+1] .
$$

Then it is easy to verify that $\Psi(D)=\left([1: r+1], X_{(n)}, Y_{(m)}, \delta_{D}, \lambda_{D}\right)$ is a partial automaton. $\Psi(D)$ is an automaton iff D is a code.

The complexity $\Omega(D)$ of a precode D is defined by $\Omega(D)=\min \langle\Omega(\Psi(C))| C$ is a code such that $D \leqq C\rangle$.

2.

Let n, w, t be positive integers such that $n \geqq 2$ and $w \geqq 2$. Define an n-input precode $D=(r, s, \beta, \gamma, \varphi, \mu)$ as follows:
(1) $r=4 t+4 w-2$ and $s=n r+n-r-1$.
(2) $(\beta(2 b), \gamma(2 b), \varphi(2 b))=(b, 1,2 b)$ and $(\beta(2 b+1), \gamma(2 b+1), \varphi(2 b+1))=$ $=(b, n, 2 b+1)$ for any $b \in[1: 2 t+2 w-1]$.
(3) $\mu(a)=a$ for any $a \in[1: 3 t+3 w-1]$.
$\mu(a)=a-w-t$ for any $a \in[3 t+3 w: 4 t+4 w-1]$.
(4) For each $a \in[r+2: r+s+1]$, the a-th row is determined as follows:
(a) $\beta(a), \gamma(a)$ are determined uniquely by Postulate (E).
(b) If $\beta(a) \in[2 t+2 w: 3 t+3 w-2] \cup[3 t+3 w: 4 t+4 w-2]$ and $\gamma(a)=1$ then $\varphi(a)=a+1$.
If $(\beta(a), \gamma(a))=(3 t+3 w-1,1)$ then $\varphi(a)=2 t+2 w$.
If $(\beta(a), \gamma(a))=(4 t+4 w-1,1)$ then $\varphi(a)=3 t+3 w$.
(c) If $\beta(a) \in[2 t+2 w: 3 t+2 w-1]$ and $\gamma(a)=n$ then $\varphi(a)=3 t+$ $+3 w-1$.

If $\beta(a) \in[3 t+3 w: 4 t+3 w-2]$ and $\gamma(a)=n$ then $\varphi(a)=4 t+$ $+4 w-1$.
(d) Otherwise, $\varphi(a)=1$:

It is easy to verify that D satisfies Postulates (A)-(H).
The state transition function and the output function of the partial automaton $\Psi(D)=\left([1: 4 t+4 w-1], X_{(n)}, Y_{(m)}, \delta_{D}, \lambda_{D}\right)$ is shown in the following table:

a	$\delta_{D}\left(a, x_{2}\right)$	$\begin{gathered} \delta_{D}\left(a, x_{j}\right) \\ (j \in[2: n-1]) \end{gathered}$	$\delta_{D}\left(a, x_{n}\right)$	$\lambda_{\text {d }}\left({ }^{(a)}\right.$
$\begin{gathered} 1 \\ 2 \\ 3 \\ \vdots \\ 2 t+2 w-2 \\ 2 t+2 w-1 \end{gathered}$	$\begin{gathered} 2 \\ 4 \\ 6 \\ \vdots \\ 4 t+\dot{4} w-4 \\ 4 t+4 w-2 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \vdots \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 7 \\ \vdots \\ 4 t+4 w-3 \\ 4 t+4 w-1 \end{gathered}$	$\begin{gathered} 1 \\ 2 \\ 3 \\ \vdots \\ 2 t+2 w-2 \\ 2 t+2 w-1 \end{gathered}$
$\begin{aligned} & 2 t+2 w \\ & 2 t+2 w+1 \\ & \vdots \\ & 3 t+2 w-2 \\ & 3 t+2 w-1 \end{aligned}$	$\begin{gathered} 2 t+2 w+1 \\ 2 t+2 w+2 \\ \vdots \\ 3 t+2 w-1 \\ 3 t+2 w \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} 3 t+3 w-1 \\ 3 t+3 w-1 \\ \vdots \\ 3 t+3 w-1 \\ 3 t+3 w-1 \end{gathered}$	$\begin{gathered} 2 t+2 w \\ 2 t+2 w+1 \\ \vdots \\ 3 t+2 w-2 \\ 3 t+2 w-1 \end{gathered}$
$\begin{aligned} & 3 t+2 w \\ & 3 t+2 w+1 \\ & \vdots \\ & 3 t+2 w-2 \\ & 3 t+3 w-1 \end{aligned}$	$\begin{gathered} 3 t+2 w+1 \\ 3 t+2 w+2 \\ \vdots \\ 3 t+3 w-1 \\ 2 t+2 w \end{gathered}$	1 1 \vdots 1 1	1 1 \vdots 1 1	$\begin{aligned} & 3 t+2 w \\ & 3 t+2 w+1 \\ & \vdots \\ & 3 t+3 w-2 \\ & 3 t+3 w-1 \end{aligned}$
$\begin{aligned} & 3 t+3 w \\ & 3 t+3 w+1 \\ & \vdots \\ & 4 t+3 w-2 \\ & 4 t+3 w-1 \end{aligned}$	$\begin{gathered} 3 t+3 w+1 \\ 3 t+3 w+2 \\ \vdots \\ 4 t+3 w-1 \\ 4 t+3 w \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & \vdots \\ & \vdots \\ & 1 \end{aligned}$	$\begin{gathered} 4 t+4 w-1 \\ 4 t+4 w-1 \\ \vdots \\ 4 t+4 w-1 \\ 1 \end{gathered}$	$\begin{gathered} 2 t+2 w \\ 2 t+2 w+1 \\ \vdots \\ 3 t+2 w-2 \\ 3 t+2 w-1 \end{gathered}$
$\begin{aligned} & 4 t+3 w \\ & 4 t+3 w+1 \\ & \vdots \\ & \vdots t+4 w-2 \\ & 4 t+4 w-1 \end{aligned}$	$\begin{aligned} & 4 t+3 w+1 \\ & 4 t+3 w+2 \\ & \vdots \\ & 4 t+4 w-1 \\ & 3 t+3 w \end{aligned}$	1 1 \vdots 1 1	$\begin{gathered} 1 \\ 1 \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & 3 t+2 w \\ & 3 t+2 w+1 \\ & \vdots \\ & 3 t+3 w-2 \\ & 3 t+3 w-1 \end{aligned}$

Let $D^{\prime}=(r, s+1, \beta, \gamma, \varphi, \mu)$ be a precode such that $D<D^{\prime}$. Then D^{\prime} is a code, i.e., $\Psi\left(D^{\prime}\right)$ is a Moore automaton. We have $(\beta(r+s+2), \gamma(r+s+2))=(4 t+4 w-1, n)$ and D^{\prime} is determined only by the value $\varphi(r+s+2)$. It can easily be seen that arbitrary choice of $\varphi(r+s+2) \in[1: 4 w+4 t-1]$ makes D^{\prime} to satisfy the postulates for codes. We shall show that $\varphi(r+s+2) \neq 1$ implies $\Omega\left(D^{\prime}\right)=w$, and $\varphi(r+s+2)=1$ implies $\Omega\left(D^{\prime}\right)=t+w$.

Case 1: $\varphi(r+s+2) \neq 1$, i.e., $\delta_{D^{\prime}}\left(4 t+4 w-1, x_{n}\right) \neq 1$.
Let $a, b \in[1: 4 t+4 w-1]$ such that $a<b$. We have $\omega(a, b) \neq 0$ iff $\lambda_{D^{\prime}}(a)=$ $=\lambda_{D^{\prime}}(b)$ iff $a=2 t+2 w+i, b=3 t+3 w+i$ for some $i \in[0: t+w-1]$. Let $i \in[0: t+w-1]$. Since

$$
\begin{gathered}
\lambda_{D^{\prime}}(2 t+2 w+i)=\lambda_{D^{\prime}}(3 t+3 w+i), \\
\delta_{D^{\prime}}\left(2 t+2 w+i, x_{j}\right)=\delta_{D^{\prime}}\left(3 t+3 w+i, x_{j}\right) \text { for any } j \in[2: n-1],
\end{gathered}
$$

we have

$$
\begin{gathered}
\omega(2 t+2 w+i, 3 t+3 w+i)= \\
=\min \left\langle\omega\left(\delta_{D^{\prime}}\left(2 t+2 w+i, x_{1}\right), \delta_{D^{\prime}}\left(3 t+3 w+i, x_{1}\right)\right)+1,\right. \\
\left.\omega\left(\delta_{D^{\prime}}\left(2 t+2 w+i, x_{n}\right), \delta_{D^{\prime}}\left(3 t+3 w+i, x_{n}\right)\right)+1\right\rangle .
\end{gathered}
$$

Thus we have

$$
\begin{gathered}
\omega(3 t+2 w-1,4 t+3 w-1)= \\
=\min \langle\omega(3 t+2 w, 4 t+3 w)+1, \omega(3 t+3 w-1,1)+1\rangle=1 \\
\omega(3 t+3 w-1,4 t+4 w-1)= \\
=\min \left\langle\omega(2 t+2 w, 3 t+3 w)+1, \omega\left(1, \delta_{D^{\prime}}\left(4 t+4 w-1, x_{n}\right)\right)+1\right\rangle=1 .
\end{gathered}
$$

For $i \in[0: t-2]$,

$$
\begin{gathered}
\omega(2 t+2 w+i, 3 t+3 w+i)= \\
=\min \langle\omega(2 t+2 w+i+1,3 t+3 w+i+1)+1, \omega(3 t+3 w-1,4 t+4 w-1)+1\rangle=2
\end{gathered}
$$

For $i \in[0: w-2]$,

$$
\omega(3 t+2 w+i, 4 t+3 w+i)=\omega(3 t+2 w+i+1,4 t+3 w+i+1)+1 .
$$

Hence,

$$
\begin{gathered}
\omega(3 t+3 w-2,4 t+4 w-2)=2, \\
\omega(3 t+3 w-3,4 t+4 w-3)=3, \\
\cdots \\
\omega(3 t+2 w, 4 t+3 w)=w
\end{gathered}
$$

Consequently, $\Omega\left(D^{\prime}\right)=\max \langle 0,1,2, \ldots, w\rangle=w$.
Case 2: $\varphi(r+s+2)=1$, i.e., $\delta_{D^{\prime}}\left(4 t+4 w-1, x_{n}\right)=1$.
Let $a, b \in[1: 4 t+4 w-1]$ such that $a<b$. Just as in Case 1, we have

$$
\begin{gathered}
\omega(a, b) \neq 0 \quad \text { iff } \quad a=2 t+2 w+i, \quad b=3 t+3 w+i \text { for some } i \in[0: t+w-1] \\
\omega(3 t+2 w-1,4 t+3 w-1)=\min \langle\omega(3 t+2 w, 4 t+3 w)+1, \omega(3 t+2 w-1,1)+1\rangle=1 . \\
\omega(3 t+2 w+i, 4 t+3 w+i)=\omega(3 t+2 w+i+1,4 t+3 w+i+1)+1 \text { for any } i \in[0: w-2] .
\end{gathered}
$$

We have

$$
\omega(3 t+3 w-1,4 t+4 w-1)=\omega(2 t+2 w, 3 t+3 w)+1
$$

For $i \in[0: t-2]$,

$$
\omega(2 t+2 w+i, 3 t+3 w+i)=
$$

$$
\begin{gathered}
=\min \langle\omega(2 t+2 w+i+1,3 t+3 w+i+1)+1, \omega(3 t+3 w-1,4 t+4 w-1)+1\rangle= \\
=\min \langle\omega(2 t+2 w+i+1,3 t+3 w+i+1)+1, \omega(2 t+2 w, 3 t+3 w)+2\rangle
\end{gathered}
$$

It follows that

$$
\begin{gathered}
\omega(3 t+2 w-1,4 t+3 w-1)=1 \\
\omega(3 t+2 w-2,4 t+3 w-2)=2 \\
\omega(3 t+2 w-3,4 t+3 w-3)=3 \\
\cdots \\
\omega(2 t+2 w, 3 t+3 w)=t \\
\omega(3 t+3 w-1,4 t+4 w-1)=t+1 \\
\omega(3 t+3 w-2,4 t+4 w-2)=t+2, \\
\cdots \\
\omega(3 t+2 w, 4 t+3 w)=t+w
\end{gathered}
$$

Consequently, $\Omega\left(D^{\prime}\right)=\max \langle 0,1,2, \ldots, t+w\rangle=t+w$.
We have shown that $\varphi(r+s+2) \neq 1$ implies $\Omega\left(D^{\prime}\right)=w$ and $\varphi(r+s+2)=1$ implies $\Omega\left(D^{\prime}\right)=w+t$. It follows that $\Omega(D)=\min \langle w, w+t\rangle=w$. We have shown the following.

Theorem 1. For any $n, w, t \in \mathbf{N}$ with $n \geqq 2$ and $w \geqq 2$, there exist n-input precodes D and D^{\prime} such that $D \prec D^{\prime}, \Omega(D)=w$ and $\Omega\left(D^{\prime}\right)=t+w$.

In autonomous case, Problem 3 of Ádám is solved in [8] as follows:
Proposition 1. The set
$\left\langle\Omega\left(D^{\prime}\right)-\Omega(D)\right| D$ and D^{\prime} are 1 -input precodes such that $D-D^{\prime}$ and $\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle$ coincides with all nonnegative integers.

In multiple-input case, we have the following similar result which is an immediate consequence of Theorem 1.

Corollary 1. For any $n \in \mathbf{N}$ with $n \geqq 2$, the set
$\left\langle\Omega\left(D^{\prime}\right)-\Omega(D)\right| D$ and D^{\prime} are n-input precodes such that $D<D^{\prime}$ and $\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle$ coincides with all nonnegative integers.

Consider the quotient $\Omega\left(D^{\prime}\right) / \Omega(D)$ instead of the difference $\Omega\left(D^{\prime}\right)-\Omega(D)$. In autonomous case, we have the following result [8].

Proposition 2. The set
$\left\langle\Omega\left(D^{\prime}\right)\right| \Omega(D) \mid D$ and D^{\prime} are 1 -input precodes such that $D<D^{\prime}, \Omega(D) \neq 0$ and

$$
\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle
$$

coincides with all rational numbers between 1 and 2 .
Though the quotient is bounded in autonomous case, it is unbounded in multi-ple-input case. The following is also immediate from Theorem 1.

Corollary 2. For any $n \in \mathbf{N}$ with $n \geqq 2$, the set
$\left\langle\Omega\left(D^{\prime}\right) / \Omega(D)\right| D$ and D^{\prime} are n-input precodes such that $D-<D^{\prime}, \Omega(D) \neq 0$ and

$$
\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle
$$

coincides with all rational numbers not less than 1.
Contrary to expectation, the solution of the problem does not contribute to our investigation, especially to the Basic Problem. If we wish to proceed further in this line, we should make refinements of the problem, e.g., not only n but also r, s and/or m should be taken into account.

3.

In this section, we consider a modification of our problem in the sense that, instead of the cardinality n of the input set, the cardinality m of the output set is taken into account. Analogous to Theorem 1, we have the following result:

Theorem 2. For any $m, w, t \in \mathbf{N}$ with $m \geqq 2$ and $w \geqq 2$, there exist m-output precodes D and D^{\prime} such that $D \prec D^{\prime}, \Omega(D)=w, \Omega\left(D^{\prime}\right)=t+w$.

Proof. Define a $(2 t+2 w)$-input precode $D=(r, s, \beta, \gamma, \varphi, \mu)$ as follows:

$$
\begin{equation*}
r=2 t+2 w+m-2 \quad \text { and } \quad s=(2 t+2 w) r+(2 t+2 w)-r-1 \tag{1}
\end{equation*}
$$

(2) $(\beta(a), \gamma(a), \varphi(a))=(a-1,1, a)$ for any $a \in[2: m-1]$.
(3) $\quad(\beta(a), \gamma(a), \varphi(a))=(m-1, a-m+1, a)$ for any $a \in[m: 2 t+2 w+m-1]$.
(4) $\mu(a)=a$ for any $a \in[1: m-1]$.
$\mu(a)=m \quad$ for any $a \in[m: 2 t+2 w+m-1]$.
(5) For each $a \in[r+2, r+s+1]$, the a-th row is determined as follows:
(a) $\beta(a), \gamma(a)$ are determined uniquely by Postulate (E).
(b) If $\beta(a) \in[m: t+w+m-2] \cup[t+w+m: 2 t+2 w+m-2]$ and $\gamma(a)=1$ then $\varphi(a)=a+1$.
If $\quad(\beta(a), \gamma(a))=(t+w+m-1,1)$ then $\varphi(a)=m$.
If $(\beta(a), \gamma(a))=(2 t+2 w+m-1,1)$ then $\varphi(a)=t+w+m$.
(c) If $\beta(a)-(m-2)=\gamma(a) \in[2: t+w+1]$ then $\varphi(a)=\beta(a)$.

If $\beta(a)-(t+w+m-2)=\gamma(a) \in[2: t+w+1]$ then $\varphi(a)=\beta(a)$.
(d) If $\beta(a) \in[m: t+m-1]$ and $\gamma(a)=2 t+2 w$ then $\varphi(a)=t+w$ $+m-1$.

If $\beta(a) \in[t+w+m: 2 t+w+m-2]$ and $\gamma(a)=2 t+2 w$ then $\varphi(a)=2 t+2 w+m-1$.
(e) Otherwise, $\varphi(a)=1$.

Let $D^{\prime}=(r, s+1, \beta, \gamma, \varphi, \mu)$ be a precode such that $D<D^{\prime}$. Let

$$
a, b \in[1: 2 t+2 w+m-1]
$$

such that $a<b$. If $a \in[1: m-1]$ then $\lambda_{D^{D}}(a) \neq \lambda_{D^{\prime}}(b)$ and thus $\omega(a, b)=0$. If $a \in[m: 2 t+2 w+m-1]$ then there exist $i, j \in[0: t+w-1]$ such that

$$
\begin{array}{ll}
a=m+i & \text { or } \\
b=m+j=t+m+i, \\
b=m+j & \text { or } \\
b=t+w+m+j .
\end{array}
$$

If $i \neq j$ then $\lambda_{D^{\prime}}(a)=m=\lambda_{D^{\prime}}(b)$ and

$$
\lambda_{D^{\prime}}\left(\delta_{D^{\prime}}\left(a, x_{i+2}\right)\right)=\lambda_{D^{\prime}}(a)=m \neq 1=\lambda_{D^{\prime}}(1)=\lambda_{D^{\prime}}\left(\delta_{D^{\prime}}\left(b, x_{i+2}\right)\right) .
$$

Hence $\omega(a, b)=1$. Consequently $\omega(a, b) \geqq 2$ implies that $a=m+i$ and $b=t+$ $+w+m+i$.

Similarly as in Theorem 1, we have, for any $i \in[0: t+w-1]$,

$$
\begin{gathered}
\omega(m+i, t+w+m+i)= \\
=\min \left\langle\omega\left(\delta_{D^{\prime}}\left(m+i, x_{1}\right), \delta_{D^{\prime}}\left(t+w+m+i, x_{1}\right)\right)+1,\right. \\
\left.\omega\left(\delta_{D^{\prime}}\left(m+i, x_{n}\right), \delta_{D^{\prime}}\left(t+w+m+i, x_{n}\right)\right)+1\right\rangle .
\end{gathered}
$$

Since $\delta_{D^{\prime}}\left(t+m-1, x_{2 t+2 w}\right)=t+w+m-1$ and $\delta_{D^{\prime}}\left(t+w+m-1, x_{2 t+2 w}\right)=1$, we have $\omega(t+m-1, t+w+m-1)=1$. In a similar way as in Theorem 1, we can verify the following:

If $\varphi(r+s+2) \neq 1$ then $\Omega\left(D^{\prime}\right)=\omega(t+m, 2 t+w+m)=w$.
If $\varphi(r+s+2)=1$ then $\Omega\left(D^{\prime}\right)=\omega(t+m, 2 t+w+m)=t+w$.
The followings results are immediate from the above theorem.
Corollary 3. For any $m \in \mathbf{N}$ with $m \geqq 2$, the set $\left\langle\Omega\left(D^{\prime}\right)-\Omega(D)\right| D$ and D^{\prime} are m-output precodes such that $D \prec D^{\prime}$ and $\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle$
coincides with all nonnegative integers.
Corollary 4. For any $m \in \mathbf{N}$ with $m \geqq 2$, the set
$\left\langle\Omega\left(D^{\prime}\right) / \Omega(D)\right| D$ and D^{\prime} are m-output precodes such that $D \prec D^{\prime}, \Omega(D) \neq 0$ and

$$
\left.\Omega\left(D^{\prime}\right)<\infty\right\rangle
$$

coincides with all rational numbers not less than 1 .

References

[1] ÁdÁM, A., On the question of description of the behavior of finite automata, Studia Sci. Math. Hungar. 13 (1978), 105-124.
[2] Ádám, A., On the complexity of codes and pre-codes assigned to finite Moore automata, Acta Cybernet. 5 (1981), 117-133.
[3] ÁdÁM, A., On the simplicity of finite autonomous Moore automata, Studia Sci. Math. Hungar., 16 (1981), 427-436.
[4] ÁdÁM, A., On certain partitions of finite directed graphs and of finite automata, Acta Cybernet. 6 (1984), 331-346.
[5] Katsura, M., On complexity of finite Moore automata, Acta Cybernet. 7 (1986), 281-292.
[6] Katsura, M., Finiteness of complexity for precodes assigned to finite Moore automata, Topics in the Theoretical Bases and Applications of Computer Sci. (Proc. Conf., Győr, July 1985), Akadémiai Kiadó, Budapest, 1986; 91-102.
[7] Katsura, M., Leaves of precodes assigned to finite Moore automata, Studia Sci. Math. Hungar. (To appear)
[81 Katsura, M., On the complexity of finite autonomous Moore automata. Periodica Math. Hungar. (To'appear)
(Received June 8, 1986)

An infinite hierarchy of tree transformations in the class $\mathcal{N O \mathscr { R }}$

S. VÁgVölgyi and Z. Fülöp

Introduction

Let $S=\{\mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{H}, \mathscr{L} \mathscr{H}, \mathscr{N} \mathscr{H}\}$ where $\mathscr{D} \mathscr{R}$ is the class of all deterministic root-to-frontier tree transformations, \mathscr{H} is the class of all homomorphism tree transformations, moreover, for both $\mathscr{D} \mathscr{R}$ and \mathscr{H}, their linear, nondeleting and linear-nondeleting subclasses are denoted by prefixing them by \mathscr{L}, \mathscr{N} and $\mathscr{L} \mathscr{N}$, respectively. Let [S] be the set of classes of tree transformations generated by S with composition $\circ:[S]=\left\{\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n} \mid n \geqq 1, \mathscr{K}_{i} \in S, 1 \leqq i \leqq n\right\}$. The set [S] was introduced and examined in [1] where several equalities and inclusions were obtained with respect to elements of [S]. However, the question that whether [S] is a finite or an infinite set was only raised and not answered.

In Section 2 of this paper we show that, in fact, [S] is infinite by proving that $(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m+1}$ for each $m \geqq 1$. This infinite proper hierarchy was already suggested by Theorem 12 of [1].

It is well known that $\mathscr{N} \mathscr{D} \mathscr{R}$ is closed under composition (proof, for example, in [1]). Thus we have ($\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset \mathscr{N} \mathscr{D} \mathscr{R}$ for each $m \geqq 1$. In the second half of Section 2 we show that the stronger proper inclusion $\bigcup_{m=1}^{\infty}(\mathscr{L} \mathscr{N O} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset$ $\subset \mathscr{N} \mathscr{D} \mathscr{R}$ is also valid.

The paper, apart from some simple reference to [1], is self-containing. Both in [1] and this paper, most of the notions and notations are adopted from [2].

1. Notions and notations

For an arbitrary set Y, we denote by Y^{*} the free monoid generated by Y, with empty word λ. The prefix ordering \leqq in Y^{*} is meant as usual: for any $\alpha, \beta \in Y^{*}$, $\alpha \leqq \beta$ if and only if α is a prefix of β, that is, there exists a $\gamma \in Y^{*}$ such that $\beta=\alpha \gamma$. The relation $\alpha<\beta$ is defined by $\alpha \leqq \beta$ and $\alpha \neq \beta$.

The set of nonnegative integers is denoted by N. For each $n \in N$, [n] denotes the set $\{1, \ldots, n\}$. Thus $[0]=\emptyset$.

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set and $v: F \rightarrow N$ is the arity function. Elements of F are called function symbols, more exactly, if $f \in F$ and $v(f)=n$ then f is an n-ary function symbol. For any $n \in N$ we put $F_{n}=\{f \in F \mid v(f)=n\}$. Hence, for any ranked alphabet (F, v), we have the equivalent notation $F=\bigcup_{n \in N} F_{n}$, where F_{n} are pairwise disjoint finite sets.

Let $F=\bigcup_{n \in N} F_{n}$ be a ranked alphabet and Y be a set, disjoint with F. Then the set of all terms or trees over Y of type F is defined as the smallest set $T_{F}(Y)$ satisfying:
(a) $Y \subseteq T_{F}(Y)$ and
(b) $f\left(p_{1}, \ldots, p_{n}\right) \in T_{F}(Y)$ whenever $f \in F_{n}$ and $p_{1}, \ldots, p_{n} \in T_{F}(Y)$.

For $f()$ we write f. If $Y=\emptyset$ then $T_{F}(Y)$ is written as T_{F}.
We shall need a few of the usual functions on the elements of $T_{F}(Y)$: for any $p \in T_{F}(Y)$ the frontier $\operatorname{fr}(p) \in \bar{Y}^{*}$, the set of subtrees or subterms sub $(p) \subseteq T_{F}(Y)$, the paths path $(p) \subseteq N^{*}$ and for each $m \in N$ the m-rank $\mathrm{rn}_{m}(p) \in N$ of p are defined by induction as follows:
(a) if $p \in Y$ then

$$
\operatorname{fr}(p)=p, \quad \operatorname{sub}(p)=\{p\}, \quad \text { path }(p)=\{\lambda\} \quad \text { and } \quad \mathrm{rn}_{m}(p)=0 ;
$$

(b) if $p=f\left(p_{1}, \ldots, p_{n}\right)$ for some $n \in N, f \in F_{n}$ and $p_{1}, \ldots, p_{n} \in T_{F}(Y)$ then

$$
\mathrm{fr}(p)=\mathrm{fr}\left(p_{1}\right) \ldots \mathrm{fr}\left(p_{n}\right)
$$

$$
\operatorname{sub}(p)=\left(\bigcup_{i \in[n]} \operatorname{sub}\left(p_{i}\right)\right) \cup\{p\}
$$

$$
\text { path }(p)=\{\lambda\} \cup\left\{i \alpha \mid i \in[n], \alpha \in \operatorname{path}\left(p_{i}\right)\right\} \quad \text { and }
$$

$$
\mathrm{rn}_{m}(p)= \begin{cases}\sum_{i \in[n]} \mathrm{mn}_{m}\left(p_{i}\right) & \text { if } \quad n \neq m \\ 1+\sum_{i \in[n]} \mathrm{rn}_{m}\left(p_{i}\right) & \text { if } \quad n=m\end{cases}
$$

We mention that $\mathrm{rn}_{m}(p)$ means the number of occurrences of the m-ary function symbols in p. Moreover we define $\mathrm{rn}(p)=\sum_{m \in N} \mathrm{rn}_{m}(p)$.

Now let $p \in T_{F}(Y)$ and $\alpha \in$ path (p). We introduce the notion of the subtree str (p, α) and the symbol lab (p, α) of p determined by α, moreover, the two length $|\alpha|_{2}$ of α in p in the following way:
(a) if $p \in Y$ then

$$
\operatorname{str}(p, \alpha)=p, \quad \operatorname{lab}(p, \alpha)=p \quad \text { and } \quad|\alpha|_{2}=0
$$

(b) if $p=f\left(p_{1}, \ldots, p_{n}\right)$ for some $n \in N, f \in F_{n}$ and $p_{1}, \ldots, p_{n} \in T_{F}(Y)$ then α is either λ or of the form $i \alpha^{\prime}$ for some $i \in[n]$ and $\alpha^{\prime} \in$ path $\left(p_{i}\right)$. Thus
we define

$$
\begin{gathered}
\operatorname{str}(p, \alpha)= \begin{cases}p & \text { if } \alpha=\lambda \\
\operatorname{str}\left(p_{i}, \alpha^{\prime}\right) & \text { if } \alpha=i \alpha^{\prime},\end{cases} \\
\operatorname{lab}(p, \alpha)= \begin{cases}f & \text { if } \alpha=\lambda \\
\operatorname{lab}\left(p_{i}, \alpha^{\prime}\right) & \text { if } \alpha=i \alpha^{\prime},\end{cases} \\
|\alpha|_{2}=\left\{\begin{array}{lll}
0 & \text { if } \alpha=\lambda & \text { and } n<2, \\
1 & \text { if } \alpha=\lambda & \text { and } n \geqq 2, \\
\left|\alpha^{\prime}\right|_{2} & \text { if } \alpha=i \alpha^{\prime} & \text { and } n<2, \\
1+\left|\alpha^{\prime}\right|_{2} & \text { if } \alpha=i \alpha^{\prime} & \text { and } n \geqq 2 .
\end{array}\right.
\end{gathered}
$$

We note that in this latter definition $\left|\alpha^{\prime}\right|_{2}$ is meant in p_{i}. We mention what the above three functions informally mean. It is well known that p can be considered as an ordered tree labelled by elements of $F \cup Y$, moreover α can be thought of as a path leading from the root to a node x of p. Now, $\operatorname{str}(p, \alpha)$ is the subtree of p the root of which is $x, \operatorname{lab}(p, \alpha)$ is the symbol in $F \cup Y x$ is labelled by, finally $|\alpha|_{2}$ is the number of the occurrences of function symbols with arity $m \geqq 2$ along the path α. We also note that α may be in path (q) for some $q \neq p$ and $|\alpha|_{2}$ in p may differ from $\left|\alpha_{2}\right|$ in q. However it will always be clear from the context in what $p|\alpha|_{2}$ is meant.

The countably infinite set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of variable symbols will be kept fix throughout this paper. The set of the first m elements x_{1}, \ldots, x_{m} of X is denoted by X_{m}. The set $T_{F}\left(X_{m}\right)$ will be written as $T_{F, m}$.
$\widehat{T}_{F, m}$ is the linear-nondeleting subset of $T_{F, m}$: for $p \in T_{F, m}, p \in \hat{T}_{F, m}$ iff each x_{i} appears exactly once in $p(i \in[m])$.

For $p, \dot{q} \in T_{F, m}$ and $i \in[m]$, by the i product $p \cdot{ }_{i} q$ of p by q we mean the tree obtained from p by substituting each occurrence of x_{i} in p by q.

Let $p \in T_{F, m}$ and $y_{1}, \ldots, y_{m} \in Y$. We denote by $p\left(y_{1}, \ldots, y_{m}\right)$ the tree obtained from p by substituting each occurrence of x_{i} in p by y_{i} for each $i \in[m]$. Of course we have $p\left(y_{1}, \ldots, y_{m}\right) \in T_{F}(Y)$.

We introduce one more definition concerning $T_{F, m}$. For $p \in T_{F, m}$ and $i \in[m]$, the set of i paths path $_{i}(p)$ of p is given as follows:
(a) if $p=x_{j}$ for some $j \in[m]$ then

$$
\operatorname{path}_{i}(p)=\left\{\begin{array}{clc}
\{\lambda\} & \text { if } & i=j \\
\emptyset & \text { if } & i \neq j
\end{array}\right.
$$

(b) if $p=f\left(p_{1}, \ldots, p_{n}\right)$ for some $n \geqq 0, f \in F_{n}$ and $p_{1}, \ldots, p_{n} \in T_{F, m}$ then

$$
\operatorname{path}_{i}(p)=\left\{j \alpha \mid j \in[n], \alpha \in \operatorname{path}_{i}\left(p_{j}\right)\right\}
$$

It is clear that $\operatorname{path}_{i}(p) \subseteq \operatorname{path}(p)$, moreover $\operatorname{path}_{i}(p)$ consists of all the elements of path (p) leading from the root to a terminal node of p labelled by x_{i}.

A tree transformation τ is defined as a subset of $T_{\boldsymbol{F}} \times T_{\boldsymbol{G}}$ where F and G are arbitrary ranked alphabets. In this way, τ can alternatively be considered as a relation from T_{F} to T_{G}.

For the sake of convenient proofs, we introduce the concept of the extended tree transformation. It is a subset τ of $T_{P}(X) \times T_{G}(X)$.

Since (extended) tree transformations are in fact relations, for any (extended) tree transformations τ and σ, the domain $\operatorname{dom} \tau$ and the composition $\tau \circ \sigma$ of τ and σ are defined as it is usual for relations. Moreover, for any two classes \mathscr{K}_{1} and \mathscr{K}_{2} of tree transformations we put:

$$
\begin{gathered}
\mathscr{K}_{1} \circ \mathscr{K}_{2}=\left\{\tau_{1} \circ \tau_{2} \mid \tau_{1} \in \mathscr{K}_{1} \quad\right. \text { and } \\
\left.\tau_{2} \in \mathscr{K}_{2}\right\} \quad \text { and } \\
\mathscr{K}_{1}^{n}=\left\{\begin{array}{lll}
\mathscr{K}_{1} & \text { if } & n=1 \\
\mathscr{K}_{1}^{n-1} \circ \mathscr{K}_{1} & \text { if } & n>1 .
\end{array}\right.
\end{gathered}
$$

We are interested only in tree transformations which can be induced by deterministic root-to-frontier tree transducers.

A deterministic root-to-frontier tree transducer (DR transducer in the sequel) is a system

$$
\begin{equation*}
\mathfrak{A}=\left(F, A, G, P, a_{0}\right) \quad \text { where } \tag{1}
\end{equation*}
$$

(a) F and G are ranked alphabets;
(b) A, the state set of \mathfrak{H}, is a ranked alphabet consisting of 1-ary function symbols, disjoint with F, G and X;
(c) a_{0}, the initial state of \mathfrak{N}, is a distinguished element of A;
(d) P is a finite set of so called rewriting rules (or simply rules) of the form

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q \tag{2}
\end{equation*}
$$

where $a \in A, n \geqq 0, f \in F_{n}$ and $q \in T_{G}\left(A X_{n}\right)$;
(e) different rules of P have different left-hand sides.

We mention that above and in what follows we use the following notations. If A is the state set of a DR transducer and T is a set of terms then $A T=\{a(t) \mid a \in A, t \in T\}$. Moreover, for any $a \in A$ and $t \in T, a(t)$ is written as $a t$.

Then it is clear that each rule (2) of P can also be written in both of the following two forms:

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow \bar{q}\left(a_{1} x_{i_{1}}, \ldots, a_{m} x_{i_{m}}\right) \tag{3}
\end{equation*}
$$

for some $m \geqq 0, \bar{q} \in \hat{T}_{G, m}, a_{j} \in A$ and $x_{i} \in X_{n}(j \in[m])$;

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow \bar{q}\left(a_{1_{1}} x_{1}, \ldots, a_{1_{m_{1}}} x_{1}, \ldots, \dot{a}_{n_{1}} x_{n}, \ldots, a_{n_{m_{n}}} x_{n}\right) \tag{4}
\end{equation*}
$$

where $m_{i} \geqq 0, a_{i j} \in A\left(i \in[n], j \in\left[m_{i}\right]\right)$ and $\bar{q} \in \hat{T}_{G, m}\left(m=m_{1}+\ldots+m_{n}\right)$.
Next we show how 9 can be used to rewrite (or transform) terms of T_{F} to terms of T_{G}. To this end, we define the relation $\Rightarrow \vec{\Omega}$ called direct derivation on the set $T_{G}\left(A T_{F}(X)\right)$ in the following manner: for $p, q \in T_{G}\left(A T_{F}(X)\right), p \underset{\overrightarrow{\mathrm{a}}}{ } q$ if and only if q can be obtained from p by replacing an occurrence of a subtree of the form $a f\left(p_{1}, \ldots, p_{n}\right)$ in p by the tree $\bar{q}\left(a_{1} p_{i_{1}}, \ldots, a_{m} p_{i_{m}}\right)$ and the rule (3) is in P. The reflex-ve-transitive closure of $\underset{\mathfrak{v}}{\Rightarrow}$ is denoted by $\stackrel{*}{\stackrel{\rightharpoonup}{\boldsymbol{R}}}$ and called derivation. The tree transformation induced by \mathfrak{A} with the state $a \in A$ is introduced as

$$
\tau_{\mathbb{Q}(a)}=\left\{(p, q) \mid p \in T_{F}, q \in T_{G} \quad \text { and } \quad a p \stackrel{*}{\Rightarrow} q\right\}
$$

moreover, the tree transformation $\tau_{\mathfrak{g}}$ induced by \mathfrak{H} is meant $\tau_{\mathscr{V}\left(a_{0}\right)}$:

$$
\tau_{\mathfrak{I}}=\left\{(p, q) \mid p \in T_{F}, q \in T_{G} \quad \text { and } \quad a_{0} p \stackrel{*}{\Rightarrow} q\right\} .
$$

Now we define the extended tree transformation induced by \mathfrak{A}. To this end, we need the following concept. Let $q^{\prime} \in T_{G}(A X)$. We say that $q \in T_{G}(X)$ belongs to q^{\prime} if it satisfies the following conditions:
(a) if $q^{\prime}=a x_{i}$ for some $a \in A$ and $i \in N$ then $q=x_{i}$,
(b) if $q^{\prime}=g\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ for some $n \geqq 0, g \in G_{n}$ and $q_{1}^{\prime}, \ldots, q_{n}^{\prime} \in T_{G}(A X)$ then $q=g\left(q_{1}, \ldots, q_{n}\right)$ where q_{j} belongs to q_{j}^{\prime} for each $j \in[n]$.
Informally, we say that q belongs to q^{\prime} if and only if q can be obtained from q^{\prime} by substituting each subtree of the form $a x_{i}$ of q^{\prime} by x_{i}.

The extended tree transformation $\tau_{\mathfrak{g}_{(a)}}$ induced by \mathscr{A} with the state $a \in A$ is given as follows: for any $p \in T_{F}(X)$ and $q \in T_{G}(X),(p, q) \in \tau_{2 i(a)}^{\prime}$ if and only if $\exists q^{\prime} \in T_{G}(A X)$ such that $a \rho_{\overrightarrow{\mathfrak{I}}}^{\stackrel{*}{*}} q^{\prime}$ and q belongs to q^{\prime}. The extended tree transformation $\tau_{\mathfrak{U}}^{\prime}$ induced by \mathfrak{H} is defined as $\tau_{\mathfrak{U}}^{\left(a_{0}\right)}$.

We say that a tree transformation τ can be induced by some DR transducer \mathfrak{H} if $\tau=\tau_{\mathfrak{q}}$ holds.

The tree transformations which can be induced by DR transducers are in fact partial mappings. This follows from (e) of the definition of the DR transducer.

Next we introduce some restrictions on DR transducers. We say that a DR transducer (1) is
(a) totally defined if for each $a \in A$ and $f \in F$ there is a rule (2) in P;
(b) linear (L) if for each rule (4) of P and $i \in[n], m_{l} \leqq 1$;
(c) nondeleting (N) if for each rule (4) of P and $i \in[n], m_{i} \geqq 1$;
(d) linear-nondeleting (LN) if it is linear and nondeleting;
(e) uniform (U) if for each rule (4) of P and $i \in[n], a_{i_{1}}=\ldots=a_{i_{m_{i}}}$.

It is obvious that if a DR transducer (1) is a UDR transducer then each rule of P can also be written in the form $a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow \bar{q}\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ for some $\bar{q} \in T_{G, n}$ and $a_{1}, \ldots, a_{n} \in A$. Any LDR transducer is a UDR transducer, too.

A DR transducer (1) is an H transducer if it is totally defined and has only one state, i.e., $A=\left\{a_{0}\right\}$ holds. The LH, NH and LNH subclasses of the class of H transducers are defined in a natural way. Each H transducer is a UDR transducer, by definition.

The class of all tree transformations which can be induced by K transducers is denoted by \mathscr{K} where K stands for any of DR, LDR, NDR, LNDR, UDR, H, LH, NH and LNH.

2. The problems and the solutions

Following [1], let S consist of $\mathscr{D} \mathscr{R}, \mathscr{H}$ and their linear, nondeleting and linear nondeleting subclasses, that is, let $S=\{\mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{H}, \mathscr{L} \mathscr{H}, \mathscr{N} \mathscr{H}\}$. Moreover, define [S] as the set of all the classes of tree transformations which can be obtained as compositions of elements of $S:[S]=\left\{\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n} \mid n \geqq 1, \mathscr{K}_{i} \in S, 1 \leqq i \leqq n\right\}$.

In [1], it was raised the problem that whether [S] is an infinite set. We shall prove that $[S]$ is infinite by showing that [S] contains an infinite proper hierarchy of classes of tree transformations. Namely, we prove, in Theorem 3, that $(\mathscr{L} \mathscr{N} \mathscr{T} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset$ $\subset(\mathscr{L} \mathcal{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m+1}$ for each $m \geqq 1$.

In connection with this hierarchy one more problem can be raised. By definition, $\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}$ and $\mathscr{N} \mathscr{H}$ are subclasses of $\mathscr{N} \mathscr{D} \mathscr{R}$, moreover it is not difficult to
see that $\mathscr{N} \mathscr{D} \mathscr{R}$ is closed under composition (a proof is given, e.g., in [1]). These, together with the infinite proper hierarchy mentioned above yield the proper inclusion $(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset \mathscr{N} \mathscr{D} \mathscr{R}$ for each $m \geqq 1$. In the second half of this section we show that the proper inclusion $\bigcup_{m=1}^{\infty}(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m} \subset \mathscr{N} \mathscr{D} \mathscr{R}$ also holds. Namely, in Lemma 17; we give an NDR transducer \mathfrak{A} for which there does not exist m with $\left.\tau_{\mathfrak{I} \in} \in \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H}\right)^{m}$.

We set out to solve the first problem.
First we make a trivial observation on UNDR transducers. Let $\mathfrak{A}=$ $=\left(F, A, G, P, a_{0}\right)$ be a UNDR transducer and the rule $a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ in P. Then for each $j \in[n]$ and $\gamma \in \operatorname{path}_{j}(q)$ the condition

$$
\text { if } n>1 \text { then }|\gamma|_{2} \geqq 1
$$

holds, since from $|\gamma|_{2}=0$ it would follow that \mathfrak{A} is a deleting DR transducer. Our first Lemma is essentially a consequence of this observation.

Lemma 1. Let $\mathfrak{H}=\left(F, A, G, P, a_{0}\right)$ be a UNDR transducer, moreover, $m \geqq 0$, $p \in T_{F, m}, q \in T_{G, m}$ and $a \in A$ be such that $(p, q) \in \tau_{\mathfrak{g}(a)}^{\prime}$. Then
(a) for each $j \in[m]$ and $\alpha \in \operatorname{path}_{j}(p)$ there exists a $\beta \in \operatorname{path}_{j}(q)$ for which $|\alpha|_{2} \leqq|\beta|_{2}$ and
(b) for each $j \in[m]$ and $\alpha \in \operatorname{path}_{j}(q)$ there exists a $\beta \in \operatorname{path}_{j}(p)$ with $|\beta|_{2} \leqq$ $\leqq|\alpha|_{2}$.

Proof. We prove only the part (a) of our statement since (b), as a converse of (a), can be shown in a similar way. We follow an induction on p.

If $p=x_{i}$ for some $i \in[m]$ then $q=x_{i}$ hence (a) trivially holds.
Now let $p=f\left(p_{1}, \ldots, p_{n}\right)$ for some $n \geqq 0, f \in F_{n}$ and $p_{1}, \ldots, p_{n} \in T_{F, m}$. By our supposition, there exists a rule $a f\left(x_{1}, \ldots, x_{n}\right) \rightarrow \bar{q}\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ in P and there are $q_{1}, \ldots, q_{n} \in T_{G, m}$ for which $\left.\left(p_{i}, q_{i}\right) \in \tau_{\underline{g}\left(a_{i}\right)}^{\prime}\right)(i \in[n])$ and $q=\bar{q}\left(q_{1}, \ldots, q_{n}\right)$. Since the case $n=0$ is again trivial we may suppose that $n \geqq 1$. Then $\alpha=i \alpha^{\prime}$ for some $i \in[n]$ and $\alpha^{\prime} \in \operatorname{path}_{j}\left(p_{i}\right)$.

Let γ be an arbitrary element of path $_{i}(\bar{q})$, which is not empty since \mathfrak{H} is nondeleting, and let $\beta^{\prime} \in \operatorname{path}_{j}\left(q_{i}\right)$ be such that $\left|\alpha^{\prime}\right|_{2} \leqq\left|\beta^{\prime}\right|_{2}$. Put $\beta=\gamma \beta^{\prime}$. We mention that β^{\prime} exists because of the induction hypothesis and, obviously, $\quad \beta \in \operatorname{path}_{j}(q)$. Now we distinguish the cases $n=1$ and $n>1$.

If $n=1$ then

$$
|\alpha|_{2}=\left|i \alpha^{\prime}\right|_{2}=\left|\alpha^{\prime}\right|_{2} \leqq\left|\beta^{\prime}\right|_{2} \leqq|\gamma|_{2}+\left|\beta^{\prime}\right|_{2}=\left|\gamma \beta^{\prime}\right|_{2}=|\beta|_{2}
$$

On the other hand, in the case $n>1$, by our above note on $|\gamma|_{2}$ we have

$$
|\alpha|_{2}=\left|i \alpha^{\prime}\right|_{2}=1+\left|\alpha^{\prime}\right|_{2} \leqq|\gamma|_{2}+\left|\beta^{\prime}\right|_{2}=\left|\gamma \beta^{\prime}\right|_{2}=|\beta|_{2}
$$

The proof is complete.
Now we recall what we mean by the syntactic composition of two DR transducers. The exact definition can be found in [1].

Let $\mathfrak{H}_{1}=\left(F^{0}, A_{1}, F^{1}, P_{1}, a_{1}\right)$ and $\mathfrak{H}_{2}=\left(F^{1}, A_{2}, F^{2}, P_{2}, a_{2}\right)$ be two arbitrary DR transducers. Their syntactic composition is the DR transducer $\mathfrak{H}_{1} \circ \mathfrak{A}_{2}=$ $=\left(F^{0} ; A_{1} \times A_{2}, F^{2}, P,\left(a_{1}, a_{2}\right)\right)$ where P is constructed in the following way. When-
$\underset{*}{\text { ever }} b f\left(x_{1}, \ldots, x_{n}\right) \rightarrow \bar{q}\left(b_{1} x_{i_{1}}, \ldots, b_{m} x_{i_{m}}\right)$ is a rule in P_{1} and it holds that $c \bar{q} \bar{q}_{\mathfrak{A}_{2}}^{*}$ $\stackrel{\dot{\underline{q}}_{2}}{*} q\left(c_{1_{1}} x_{1}, \ldots, c_{1_{v_{1}}} x_{1}, \ldots, c_{m_{1}} x_{m}, \ldots, c_{m_{v_{m}}} x_{m}\right)$ we put the rule $(b, c) f\left(x_{1}, \ldots, x_{n}\right) \rightarrow$ $\xrightarrow{\rightarrow} q\left(\left(b_{1}, c_{1_{1}}\right) x_{i_{1}}, \ldots,\left(b_{1}, c_{1_{v_{1}}}\right) x_{i_{1}}, \ldots,\left(b_{m}, c_{m_{1}}\right) x_{i_{m}}, \ldots,\left(b_{m}, c_{m_{v_{m}}}\right) x_{i_{m}}\right)$ in P. It is well known that this construction yields the application of \mathfrak{H}_{2} after \mathfrak{N}_{1} in a "step by step" way. A very useful property of the syntactic composition is the following: if \mathfrak{A}_{2} is an NDR transducer then $\tau_{\mathfrak{I r}_{1} \circ \mathscr{I}_{2}}=\tau_{\mathfrak{H}_{1}} \circ \tau_{\mathfrak{H I}_{2}}$ (for a proof, see Lemma 3 in [1]).

We shall need the generalisation of the syntactic composition and the above equality for any $m \geqq 2$. Therefore we make the following definition.

Definition 1. Let $m \geqq 2$ and let \mathfrak{N}_{i} be a DR transducer for each $i \in[m]$. By the syntactic composition of $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{m}$ we mean the DR transducer defined above if $m=2$ and the DR transducer $\left(\mathfrak{Q}_{1} \circ \ldots \circ \mathfrak{A}_{m-1}\right) \circ \mathfrak{A}_{m}$ if $m>2$.

Then, using Lemma 3 of [1] as a basis, the following statement can be verified by an induction on m : if $\mathfrak{H}_{2}, \ldots, \mathfrak{X}_{m}$ are NDR transducers then $\tau_{\mathfrak{H}_{1} \circ \ldots \circ \mathfrak{U}_{m}}=$ $=\tau_{\mathfrak{I r}_{1}} \circ \ldots \circ \tau_{\mathfrak{I}_{m}}$.

The next lemma says that this equality is also valid for extended tree transformations.

Lemma 2. Let $m \geqq 2$ and let $\mathfrak{A}_{i}=\left(F^{i-1}, A_{i}, F^{i}, P_{i}, a_{i}\right)$ be a DR transducer for each $i \in[m]$ such that $\mathfrak{A}_{2}, \ldots, \mathfrak{X}_{m}$ are NDR transducers. Then $\tau_{\mathfrak{M}_{1} \circ \ldots \circ \mathfrak{A}_{m}}^{\prime}=$ $=\tau_{\mathfrak{M}_{1}}^{\prime} \circ \ldots \circ \tau_{\mathscr{M}_{m}}^{\prime}$.

Proof. Induction on m. For $m=2$ it is enough to show that for each $n \geqq 0$, $p \in T_{F_{0}, n}, q \in T_{F^{2}, n}, b_{1} \in A_{1}$ and $b_{2} \in A_{2}$ the following equivalence holds:

$$
(p, q) \in \tau_{\mathfrak{I}_{1} \circ \mathfrak{M 1}_{2}\left(\left(b_{1}, b_{2}\right)\right)}^{\prime} \Leftrightarrow\left(\exists r \in T_{F^{1}, n}\right)\left((p, r) \in \tau_{\mathscr{I}_{1}\left(b_{1}\right)}^{\prime} \quad \text { and } \quad(r, q) \in \tau_{{\mathscr{q _ { 2 }}}_{2}\left(b_{2}\right)}^{\prime}\right) .
$$

This can be verified by an induction on p. The detailed proof is omitted.
Finally, the induction step of m is shown by the following computation

At this point we declare our main theorem.
Theorem 3. For any $m \geqq 2$ and $1 \leqq k<m(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{k} \subset(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{m}$.
Proof. Because the complete proof is rather long we structured it in the following way. First we give a tree transformation τ_{m} which is in ($\left.\mathscr{C} \mathscr{P} \mathscr{R} \circ \mathscr{N} \mathscr{H}\right)^{m}$. Then we present Lemma 4 which concers any $\mathcal{N} \mathscr{D} \mathscr{R}$ transducer which induces τ_{m}. After this we suppose that $\tau_{m} \in(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{k}$ for some $k \leqq m$ and, during a series of lemmas from 5 to 14 , show, in Lemma 14, that $k<m$ is impossible.

Take an arbitrary integer $m \geqq 2$ and keep it fixed in the rest of the proof of this theorem. To define τ_{m} we introduce an LNDR transducer \mathfrak{A} and an NH transducer \mathfrak{B} as follows.

Let the LNDR transducer $\mathfrak{U}=\left(F,\{a, d\}, F^{\prime}, P, a\right)$ be determined by the following conditions:
(a)
$F=F_{0} \cup F_{2} \cup F_{3}, F_{0}=\{\#\}, F_{2}=\left\{f_{2}\right\}$ and $F_{3}=\left\{g_{3}\right\} ;$
(b) $F^{\prime}=F_{0}^{\prime} \cup F_{2}^{\prime} \cup F_{3}^{\prime}, F_{0}^{\prime}=\{\#\}, F_{2}^{\prime}=\left\{f_{2}, f_{2}^{\prime}\right\}$ and $F_{3}^{\prime}=\left\{g_{3}\right\} ;$
(c) P consists of the rules (i)-(vi) listed below
(i) $a \# \rightarrow \#$
(ii) $a f_{2}\left(x_{1}, x_{2}\right) \rightarrow f_{2}^{\prime}\left(d x_{1}, d x_{2}\right)$
(iii) $a g_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow g_{3}\left(d x_{1}, a x_{2}, d x_{3}\right)$
(iv) $d \# \rightarrow \#$
(v) $d f_{2}\left(x_{1}, x_{2}\right) \rightarrow f_{2}\left(d x_{1}, d x_{2}\right)$
(vi) $d g_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow g_{3}\left(d x_{1}, d x_{2}, d x_{3}\right)$.

Moreover, introduce the NH transducer $\mathfrak{B}=\left(F^{\prime},\{b\}, F, P^{\prime} ; b\right)$ with P^{\prime} containing the following rules:
(i) $b \# \rightarrow$ \#
(ii) $b f_{2}^{\prime}\left(x_{1}, x_{2}\right) \rightarrow g_{3}\left(b x_{1}, b x_{1}, b x_{2}\right)$
(iii) $b f_{2}\left(x_{1}, x_{2}\right) \rightarrow f_{2}\left(b x_{1}, b x_{2}\right)$
(iv) $b g_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow g_{3}\left(b x_{1}, b x_{2}, b x_{3}\right)$.

It is not difficult to see how \mathfrak{A} and after that \mathfrak{B} works on a tree $p \in T_{F}$. First \mathfrak{U}, with its state $a \in A$, searches for the first occurrence of f_{2} on the path of p leading along the "middle branches" of a (possibly empty) sequence of $g_{3}{ }^{3}$ s and if it is found then rewrites it to f_{2}^{\prime} producing a tree $p^{\prime} \in T_{F^{\prime}}$. Any other symbol of p stays as it was. Then \mathfrak{B} looks for this f_{2}^{\prime} in p^{\prime} and duplicates the subtree on the first branch of f_{2}^{\prime} by substituting f_{2}^{\prime} by g_{3}. The other symbols of p^{\prime} remain unchanged.

We put $\tau_{m}=\left(\tau_{\mathfrak{H}} \circ \tau_{\mathfrak{B}}\right)^{m}$. Of course, $\tau_{m} \in(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathcal{N} \mathscr{H})^{m}$.
Now, for each $i \geqq 1$, we define a pair of trees $P_{i}, Q_{i} \in T_{F, i+1}$ recursively as follows:
(a) $P_{1}=f_{2}\left(x_{2}, x_{1}\right), Q_{1}=g_{3}\left(x_{2}, x_{2}, x_{1}\right)$,
(b) $P_{i}=f_{2}\left(P_{i-1}\left(x_{2}, \ldots, x_{i+1}\right), x_{1}\right), Q_{i}=g_{3}\left(P_{i-1}\left(x_{2}, \ldots, x_{i+1}\right), Q_{i-1}\left(x_{2}, \ldots, x_{i+1}\right)\right.$, x_{1}) if $i>1$.

To make it clearer, P_{m} and Q_{m} are visualized in Fig. 1.
Let us introduce the notation $\tau_{m}^{\prime}=\left(\tau_{\mathscr{1}}^{\prime} \tau_{\mathfrak{B}}^{\prime}\right)^{m}$. By the definitions of \mathfrak{A} and \mathfrak{B}, it can easily be verified that $\left(P_{m}, Q_{m}\right) \in \tau_{m}^{\prime}$ moreover, that for each $t_{1}, \ldots, t_{m+1} \in T_{F}$ it holds

$$
\begin{equation*}
\left(P_{m}\left(t_{1}, \ldots, t_{m+1}\right), Q_{m}\left(t_{1}, \ldots, t_{m+1}\right)\right) \in \tau_{m} \tag{5}
\end{equation*}
$$

Lemma 4. Let $\mathcal{E}=\left(F, C, F, P^{\prime \prime}, c_{0}\right)$ be an NDR transducer with $\tau_{\mathfrak{R}}=\tau_{m}$. Then we have $\left(P_{m}, Q_{m}\right) \in \tau_{\mathfrak{l}}^{\prime}$.

Figure 1.
Proof. First we note that $P_{m} \in$ dom $\tau_{\mathfrak{s}}^{\prime}$ since, among others,

$$
P_{m}(\#, \ldots, \#) \in \operatorname{dom} \tau_{m}=\operatorname{dom} \tau_{\mathfrak{L}}
$$

thus (P_{m}, R_{m}) must be in $\tau_{\mathfrak{g}}^{\prime}$ for some $R_{m} \in T_{F, m+1}$. It is obvious that R_{m} can be written in the form $\bar{R}_{m} \overbrace{\left(x_{1}, \ldots, x_{1}\right.}^{n_{1} \text { times }}, \ldots, \overbrace{\left.x_{m+1}, \ldots, x_{m+1}\right)}^{n_{m+1}}$ for some $n_{i} \geqq 1(i \in[m+1])$, $\bar{R}_{m} \in \hat{T}_{F, n}$ where $n=n_{1}+\ldots+n_{m+1}$. Then it follows that for each $t_{1}, \ldots, t_{m+1} \in T_{F}$ the tree $\tau_{\mathfrak{L}}\left(P_{m}\left(t_{1}, \ldots, t_{m+1}\right)\right)$ can be written in the form $\bar{R}_{m}\left(t_{1_{1}}, \ldots, t_{1_{1}}, \ldots, t_{m+1_{1}}, \ldots, t_{m+1} n_{n_{m+1}}\right)$ where for each $i \in[m+1]$ and $j \in\left[n_{i}\right]\left(t_{i} t_{i j}\right) \in \tau_{\mathfrak{L}\left(c_{i j}\right)}$ for some $c_{i}, \in C$. Using these notations we have that for each $t_{1}, \ldots, t_{m+1} \in T_{F}$

$$
Q_{m}\left(t_{1}, \ldots, t_{m+1}\right)=\bar{R}_{m}\left(t_{1_{1}}, \ldots, t_{1_{n_{1}}}, \ldots, t_{m+1_{1}}, \ldots, t_{m+1_{n_{m+1}}}\right)
$$

We shall use this equality under different choices of t_{1}, \ldots, t_{m+1} in the sequel of this proof.

Now suppose that $Q_{m} \neq R_{m}$. This means that for some $\alpha \in \operatorname{path}\left(Q_{m}\right) \cap$ กpath $\left(R_{m}\right), \operatorname{lab}\left(Q_{m}, \alpha\right) \neq \operatorname{lab}\left(R_{m}, \alpha\right)$. Then four different cases are possible, each of which yields a contradiction:
(a) $\operatorname{lab}\left(Q_{m}, \alpha\right)=f, \operatorname{lab}\left(R_{m}, \alpha\right)=g$ for some $f, g \in F$ such that $f \neq g$. But then

$$
\begin{gathered}
f=\operatorname{lab}\left(Q_{m}, \alpha\right)=\operatorname{lab}\left(Q_{m}(\#, \ldots, \#), \alpha\right)=\operatorname{lab}\left(\overline { R } _ { m } \left(\#_{1_{1}}, \ldots, \#_{1_{n_{1}}}, \ldots ; \#_{m+1_{1}}, \ldots\right.\right. \\
\left.\left.\ldots, \#_{m+1_{n_{m+1}}}\right), \alpha\right)=\operatorname{lab}\left(R_{m}, \alpha\right)=g
\end{gathered}
$$

which is impossible.
(b) lab $\left(Q_{m}, \alpha\right)=x_{i}, \operatorname{lab}\left(R_{m}, \alpha\right)=g$ for some $i \in[m+1]$ and $g \in F$. Now, on the one hand $g=\#$, by $\#=\operatorname{lab}\left(Q_{m}(\#, \ldots, \#), \alpha\right)=\operatorname{lab}\left(\bar{R}_{m}\left(\#_{1_{1}}, \ldots, \#_{1_{n_{1}}}, \ldots\right.\right.$, $\left.\left.\#_{m+1_{1}}, \ldots, \#_{m+1_{n_{m+1}}}\right), \alpha\right)=\operatorname{lab}\left(R_{m}, \alpha\right)=g$. On the other hand, for any $t \in T_{F}$

$$
\begin{gathered}
t=\operatorname{lab}\left(Q_{m}(\#, \ldots, t, \ldots, \#), \alpha\right)= \\
=\operatorname{lab}\left(\bar{R}_{m}\left(\#_{1_{1}}, \ldots, \#_{1_{n_{1}}}, \ldots, t_{i_{1}}, \ldots, t_{n_{i}}, \ldots, \#_{m+1_{1}}, \ldots, \#_{m+1_{n_{m+1}}}\right), \alpha\right)= \\
=\operatorname{lab}\left(R_{m}, \alpha\right)=g=\#
\end{gathered}
$$

a contradiction.
(c) $\operatorname{lab}\left(Q_{m}, \alpha\right)=f, \operatorname{lab}\left(R_{m}, \alpha\right)=x_{i}$ for some $f \in F$ and $i \in[m+1]$. Then it can be seen from the definition of Q_{m} (see Fig. 1) that in this case $\operatorname{str}\left(Q_{m}, \alpha\right)$ contains at least one x_{j} with $j \neq i$ whatever i be. But then for any $t \in T_{F}$ it holds that t is a subtree of $\operatorname{str}\left(Q_{m}(\#, \ldots, \stackrel{j-\text { th }}{t, \ldots, \#} \#), \alpha\right)$. It also holds that

$$
\begin{gathered}
\operatorname{str}\left(Q_{m},(\#, \ldots, t, \ldots, \#), \alpha\right)= \\
=\operatorname{str}\left(\bar{R}_{m}\left(\#_{1_{1}}, \ldots, \#_{1_{n_{1}}}, \ldots, t_{j_{1}}, \ldots, t_{j_{n_{j}}}, \ldots, \#_{m+1_{1}}, \ldots, \#_{m+1_{n_{m+1}}}\right), \alpha\right)=\#_{i_{1}}
\end{gathered}
$$

for some $l \in\left[n_{i}\right]$. Contradiction since $\#_{i_{1}}$ does not depend on t chosen arbitrarily.
(d) lab $\left(Q_{m}, \alpha\right)=x_{i}, \operatorname{lab}\left(R_{m}, \alpha\right)=x_{j}$ for some $i, j \in[m+1]$ such that $i \neq j$. Let t be an arbitrary element of T_{F} with $\mathrm{rn}(t)>0$. We have that

$$
\begin{gathered}
\#=\operatorname{lab}\left(Q_{m}(\#, \ldots, t, \ldots, \#), \alpha\right)= \\
=\operatorname{lab}\left(\bar{R}_{m}\left(\#_{1_{1}}, \ldots, \#_{1_{n_{1}}}, \ldots, t_{j_{1}}, \ldots, t_{j_{n_{j}}}, \ldots, \#_{m+1_{1}}, \ldots, \#_{m+1_{n_{m+1}}}\right), \alpha\right)=t_{j_{l}}
\end{gathered}
$$

for some $l \in\left[n_{j}\right]$, moreover $\left(t, t_{j_{1}}\right) \in \tau_{\mathcal{E}\left(c_{j_{i}}\right)}$ for some $c_{j_{1}} \in C$. But \mathcal{I} is an NDR transducer hence $\mathrm{rn}\left(t_{j_{1}}\right)>0$ which is again impossible.

Let $k \leqq m$ and assume that $\tau_{m} \in(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{k}$. This means in a more detailed form that for each $i \in[2 k]$ there exists a DR transducer $\mathfrak{A}_{i}=\left(F^{i-1}, A_{i}, F^{i}, P_{i}, a_{i}\right)$ such that the following conditions hold
(a) $F^{0}=F^{2 k}=F$,
(b) if i is odd then \mathfrak{A}_{i} is an LNDR transducer
(c) if i is even then \mathfrak{Q}_{i} is an NH transducer
(d) $\tau_{\mathrm{Ir}_{1}} \circ \ldots \circ \tau_{\mathrm{II}_{2_{k}}}=\tau_{m}$.

Since each \mathfrak{K}_{i} is an NDR transducer too, combining Lemmas 2 and 4 we have that

$$
\begin{equation*}
\left(P_{m}, Q_{m}\right) \in \tau_{\mathfrak{q}_{1}}^{\prime} \circ \ldots \circ \tau_{\mathfrak{m}_{2 k}}^{\prime}, \tag{7}
\end{equation*}
$$

or in other words, for each $i \in[2 k]$ there exists a pair of trees $r_{i-1} \in T_{F^{t-1}, m+1}$ and $r_{i} \in T_{F^{t}, m+1}$ for which $r_{0}=P_{m}, r_{2 k}=Q_{m}$ and $\left(r_{i-1}, r_{i}\right) \in \tau_{q_{i}}^{\prime}$. In fact, (7) is the relation which leads us to a contradiction in Lemma 14.

Lemma 5. For each $i \in[2 k]$ it holds that $\mathrm{rn}_{0}\left(r_{i-1}\right)=0$, that is, r_{i-1} does not contain any symbol of arity 0 .

Proof. We observe that if $\mathrm{rn}_{0}\left(r_{i-1}\right) \neq 0$ then $\mathrm{rn}_{0}\left(r_{i}\right) \neq 0$ since \mathfrak{Q}_{i} is an NDR transducer. Now if for some $i \in[2 k] \mathrm{rn}_{0}\left(r_{i-1}\right) \neq 0$ then we obtain that $\mathrm{rn}_{0}\left(r_{2 k}\right) \neq 0$ which, by the definition of $r_{2 k}$, is a contradiction.

Next we make a remark on the paths of r_{0} and $r_{2 k}$ leading to $x_{j}^{\prime} \mathrm{s}(j \in[m+1])$. Namely, we observe that whenever $j \in[m+1]$ and α is an element of either path ${ }_{j}\left(r_{0}\right)$ or path ${ }_{j}\left(r_{2 k}\right)$, by the definition of r_{0} and $r_{2 k}$, we have

$$
|\alpha|_{2}=\left\{\begin{array}{lll}
j & \text { if } & j \in[m] \tag{8}\\
m & \text { if } & j=m+1
\end{array}\right.
$$

This can easily be read from Figure 1.
Lemma 6. For each $i \in[2 k], j \in[m+1]$ and $\alpha \in \operatorname{path}_{j}\left(r_{i-1}\right),|\alpha|_{2}$ is the same as in (8).

Proof. By part (a) of Lemma 1, for each $\alpha \in \operatorname{path}_{j}\left(r_{i-1}\right)$ there exists a $\beta \in$ path $_{j}\left(r_{i}\right)$ with $|\alpha|_{2} \leqq|\beta|_{2}$. Hence, if for some $i \in[2 k] j \in[m+1]$ and $\alpha \in \operatorname{path}_{j}\left(r_{i-1}\right)$, $|\alpha|_{2}>j$ when $j \in[m]$ and $|\alpha|_{2}>m$ when $j=m+1$ holds then we obtain that for some $\beta \in$ path $_{j}\left(r_{2 k}\right),|\beta|_{2}>j$ if $j \in[m]$ and $|\beta|_{2}>m$ if $j=m+1$. This, however, contradicts (8).

In a similar way, using part (b) of Lemma 1, the condition $|\alpha|_{2}<j$ if $j \in[m]$ and $|\alpha|_{2}<m$ if $j=m+1$ yields the existence of a $\beta \in \operatorname{path}_{j}\left(r_{0}\right)$ with the same property as α has, contradicting again (8).

Lemma 7. Let $i \in[2 k]$ and $r_{i}^{\prime} \in T_{F^{i}}\left(A_{i} X_{m+1}\right)$ be such that

$$
a_{i} r_{i-1} \stackrel{*}{\underset{\mathfrak{q}_{i}}{\Rightarrow}} r_{i}^{\prime}
$$

Suppose that the rule $c f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q\left(c_{1} x_{1}, \ldots, c_{n} x_{n}\right)$ was applied in the above derivation, where $f \in F_{n}^{i-1}$ for some $n \geqq 1, c, c_{1}, \ldots, c_{n} \in A_{i}$ and $q \in T_{F^{i}, n}$. Then for each $j \in[n]$ and $\gamma \in \operatorname{path}_{j}(q)$ it holds

$$
|\gamma|_{2}=\left\{\begin{array}{lll}
0 & \text { if } & n=1 \\
1 & \text { if } & n>1
\end{array}\right.
$$

(We mention that r_{i} belongs to r_{i}^{\prime}.)
Proof. By the conditions of our lemma, there exist the terms $s_{i-1} \in T_{F^{i-1}, m+2}$, $t_{1}, \ldots, t_{n} \in T_{F^{t-1}, m+1}, s_{i} \in T_{F^{t}, m+2}$ and $q_{1}, \ldots, q_{n} \in T_{F^{t}, m+1}$ such that each of the following conditions is satisfied.
(a) s_{i-1} contains exactly one occurrence of x_{m+2},
(b) $r_{i-1}=s_{i-1} \cdot{ }_{m+2} f\left(t_{1}, \ldots, t_{n}\right)$,
(c) $r_{i}=s_{i} \cdot{ }_{m+2} q\left(q_{1}, \ldots, q_{n}\right)$,
(d) $\left(s_{t-1}, s_{j}\right) \in \tau_{\mathfrak{q}_{i}}^{\prime}, \quad\left(t_{j}, q_{j}\right) \in \tau_{\tilde{u}_{t}\left(c_{j}\right)}^{\prime} \quad(j \in[n])$.

Let us suppose that for some $j \in[n]$ and $\gamma \in \operatorname{path}_{j}(q)|\gamma|_{2}$ violates the condition stated by our lemma. By Lemma 5 and (a) we can choose an $l \in[m+1]$ such that for some $\alpha \in \operatorname{path}_{1}\left(r_{i-1}\right) \alpha$ can be written in the form $\alpha=\alpha_{1} j \alpha_{2}$ where $\alpha_{1} \in$ path $_{m+2}\left(s_{i-1}\right)$ and $\alpha_{2} \in \operatorname{path}_{l}\left(t_{j}\right)$. Moreover, by Lemma 1, there exist $\beta_{1} \in$ path $_{m+2}\left(s_{i}\right)$ and $\beta_{2} \in \operatorname{path}_{l}\left(q_{j}\right)$ with $\left|\alpha_{1}\right|_{2} \leqq\left|\beta_{1}\right|_{2}$ and $\left|\alpha_{2}\right|_{2} \leqq\left|\beta_{2}\right|_{2}$. Letting $\beta=\beta_{1} \gamma \beta_{2}$ we obviously have that $\beta \in \operatorname{path}_{l}\left(r_{i}\right)$.

First consider the case $n=1$. By our indirect assumption, $|\gamma|_{2}>0$, from which we have

$$
|\alpha|_{2}=\left|\alpha_{1} j \alpha_{2}\right|_{2}=\left|\alpha_{1}\right|_{2}+\left|\alpha_{2}\right|_{2}<\left|\beta_{1}\right|_{2}+|\gamma|_{2}+\left|\hat{\rho}_{2}\right|_{2}=\left|\hat{\beta}_{1} \gamma \beta_{2}\right|_{2}=|\beta|_{2}
$$

contradicting Lemma 6.
Now assume that $n>1$. In this case $|\gamma|_{2}=0$ is impossible by our observation made at the beginning of this section hence the indirect assumption is $|\gamma|_{2}>1$. But then

$$
|\alpha|_{2}=\left|\alpha_{1} j \alpha_{2}\right|_{2}=\left|\alpha_{1}\right|_{2}+1+\left|\alpha_{2}\right|_{2}<\left|\beta_{1}\right|_{2}+|\gamma|_{2}+\left|\beta_{2}\right|_{2}=\left|\beta_{1} \gamma \beta_{2}\right|_{2}=|\beta|_{2},
$$

a contradiction.
Lemma 8. For each $i \in[2 k]$ and $n \geqq 4, \mathrm{~m}_{n}\left(r_{i-1}\right)=0$.
Proof. Suppose it does not hold. Let $i \in[2 k]$ be the greatest integer for which $\mathrm{rn}_{n}\left(r_{i-1}\right)>0$ for some $n \geqq 4$. Then in the derivation $a_{i} r_{i-1} \stackrel{*}{\stackrel{*}{u_{i}}} r_{i}^{\prime}\left(r_{i}^{\prime} \in T_{F^{i}}\left(A_{i} X_{m+1}\right)\right)$ it has to be applied at least one rule $c f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q\left(c x_{1}, \ldots, c x_{n}\right)$ for which $n \geqq 4$ and $\mathrm{rn}_{l}(q)=0$ for each $l \geqq 4$. Since \mathfrak{M}_{i} is an NDR transducer it can be possible only if $|\gamma|_{2}>1$ for some $j \in[n]$ and $\gamma \in \operatorname{path}_{j}(q)$. This is a contradiction, by Lemma 7.

At this point of the proof we can declare that for each $i \in[2 k]$, every function symbol of r_{i-1} is in $F_{1}^{i-1} \cup F_{2}^{i-1} \cup F_{3}^{i-1}$.

Lemma 9. Let $i \in[2 k]$ and $r_{i}^{\prime} \in T_{F^{i}}\left(A_{i} X_{m+1}\right)$ be such that

$$
a_{i} r_{i-1} \stackrel{*}{\underset{\mathfrak{q}_{l}}{\Rightarrow} r_{i}^{\prime} .}
$$

Suppose that in the above derivation it was applied a rule $c f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q$ where $f \in F_{n}^{i-1}, n \geqq 1, c \in A_{i}$ and $q \in T_{F^{i}}\left(A_{i} X_{n}\right)$. Then $n \in[3]$ and q can be written in one of the following three forms, for some suitable $u_{0}, u_{1}, u_{2}, u_{3} \in T_{F_{1}^{\prime}, 1} c_{1}, c_{2}, c_{3} \in A_{i}, g \in F_{2}^{i}$ and $h \in F_{3}^{i}$:
(a) if $n=1$ then $q=u_{0}\left(c_{1} x_{1}\right)$,
(b) if $n=2$ then either

$$
\begin{align*}
& q=u_{0}\left(g\left(u_{1}\left(c_{1} x_{i_{1}}\right), u_{2}\left(c_{2} x_{i_{2}}\right)\right)\right) \text { where }\left\{i_{1}, i_{2}\right\}=[2] \text { or } \tag{9}\\
& q=u_{0}\left(h\left(u_{1}\left(c_{1} x_{i_{1}}\right), u_{2}\left(c_{2} x_{i_{2}}\right), u_{3}\left(c_{3} x_{i_{3}}\right)\right)\right) \text { where } \\
& \left\{i_{1}, i_{2}, i_{3}\right\}=[2],
\end{align*}
$$

(c) if $n=3$ then

$$
\begin{aligned}
& q=u_{0}\left(h\left(u_{1}\left(c_{1} x_{i_{1}}\right), u_{2}\left(c_{2} x_{i_{3}}\right), u_{3}\left(c_{3} x_{i_{3}}\right)\right)\right) \quad \text { with } \\
& \left\{i_{1}, i_{2}, i_{3}\right\}=[3] .
\end{aligned}
$$

(We note that in the notation $T_{F_{1}^{\prime}, 1}, F_{i}^{i}$ is considered a ranked alphabet. Thus the condition $u_{j} \in T_{F_{1}^{\prime}, 1}$ means that every function symbol of u_{j} is in $F_{1}^{i}(j=0,1,2,3)$.)

Proof. Immediate from Lemmas 5, 7, 8 and from the fact that \mathscr{U}_{i} is an NDR transducer.

Definition. We say that for some $i \in[2 k] r_{i-1}$ has property (10) if
(a) for some $f \in F_{3}^{i-1}$ and $p_{1}, p_{2}, p_{3} \in T_{F^{i-1}, m+1}, f\left(p_{1}, p_{2}, p_{3}\right) \in \operatorname{sub}\left(r_{i-1}\right)$
and
(b) for each $j \in[3], n_{j}>0$ where $n_{j}=\max \left\{|\alpha|_{2} \mid \alpha \in \operatorname{path}_{l}\left(p_{j}\right), l \in[m+1]\right\}$.

Lemma 10. There exists no $i \in[2 k]$ for which r_{i-1} has property (10).
Proof. It is enough to show that whenever r_{i-1} has property (10) then so does r_{i}. This proves our lemma since $r_{2 k}$, by its definition, does not have property (10).

To this end, let us suppose that r_{i-1} has property (10) ($i \in[2 k]$). Then, from Lemma 9, it follows that for some suitable $s_{i-1} \in T_{F^{i-1}, m+2}, s_{i} \in T_{F^{i}, m+2}$, $u_{0}, u_{1}, u_{2}, u_{3} \in T_{F_{1}^{t}, 1}, c, c_{1}, c_{2}, c_{3} \in A_{i}$ and $q_{1}, q_{2}, q_{3} \in T_{F^{t}, m+1}$ the following relations hold:
(a) $r_{i-1}=s_{i-1} \cdot{ }_{m+2} f\left(p_{1}, p_{2}, p_{3}\right)$,
(b) $r_{i}=s_{i} \cdot{ }_{m+2} u_{0}\left(h\left(u_{1}\left(q_{1}\right), u_{2}\left(q_{2}\right), u_{3}\left(q_{3}\right)\right)\right)$,
(c) $c f\left(x_{1}, x_{2}, x_{3}\right) \rightarrow u_{0}\left(h\left(u_{1}\left(c_{1} x_{i_{1}}\right), u_{2}\left(c_{2} x_{i_{2}}\right), u_{3}\left(c_{3} x_{i_{8}}\right)\right)\right) \in P_{i}, \quad\left\{i_{1}, i_{2}, i_{3}\right\}=[3]$,
(d) $\left(s_{i-1}, s_{i}\right) \in \tau_{\mathfrak{u}_{i}}^{\prime},\left(p_{i j}, q_{j}\right) \in \tau_{\mathfrak{u}_{i}\left(c_{j}\right)}^{\prime} \quad$ for each $j \in[3]$.

Moreover, for each $j \in[3]$, there exist $l_{j} \in[m+1]$ and $\alpha_{j} \in \operatorname{path}_{l_{j}}\left(p_{i j}\right)$ with $\left|\alpha_{j}\right|_{2}=n_{i j}$. By Lemma 1, there exist $\beta_{j} \in \operatorname{path}_{i_{j}}\left(q_{j}\right)$ such that $\left|\alpha_{j}\right|_{2} \leqq\left|\beta_{j}\right|_{2}$. This shows that r_{i} has property (10) with $h\left(u_{1}\left(q_{1}\right), u_{2}\left(q_{2}\right), u_{3}\left(q_{3}\right)\right)$.

Definition. Let $i \in[2 k]$. We say that r_{i-1} has property (11) if
(a) for some $f \in F_{3}^{i-1}$ and $p_{1}, p_{2}, p_{3} \in T_{F^{i-1}, m+1}, f\left(p_{1}, p_{2}, p_{3}\right) \in \operatorname{sub}\left(r_{i-1}\right)$
and
(b) there exists exactly one $j \in[3]$ with $n_{j}>0$ where n_{j} is the same as in the definition of property (10).

Lemma 11. There exist no $i \in[2 k]$ such that r_{i-1} has property (11).

Proof. Since $r_{2 k}$ does not have property (11), we can use the same technique as in the proof of Lemma 10. Assume that r_{i-1} has property (11). Then, using the notations of Lemma 10, we again have (a)-(d) as in Lemma 10 and, without loss of generality, may suppose that $\left|\alpha_{1}\right|_{2}>0,\left|\alpha_{2}\right|_{2}=\left|\alpha_{3}\right|_{2}=0$ or, in other words, $p_{i_{2}}, p_{i_{3}} \in T_{F_{1}^{\prime-1}, m+1}$. Hence, from Lemmas 1 and 9 it follows that $\left|\beta_{1}\right|_{2}>0$ and $q_{2}, q_{3} \in T_{F_{1}, m+2}$ meaning that r_{i} has property (11).

We shall need one further property.
Definition. We say that for some $i \in[2 k], r_{i-1}$ has property (12) if there exist $\alpha, \beta \in$ path (r_{i-1}) satisfying the following conditions:
(a) α 事 β and β 事 α,
(b) $\operatorname{str}\left(r_{i-1}, \alpha\right)=f\left(p_{1}, p_{2}, p_{3}\right)$ for some $f \in F_{3}^{i-1}$,

$$
\begin{equation*}
p_{1}, p_{2}, p_{3} \in T_{F^{t-1}, m+1} \tag{12}
\end{equation*}
$$

(c) $\operatorname{str}\left(r_{i-1}, \beta\right)=f^{\prime}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right)$ for some $f^{\prime} \in F_{3}^{i-1}$,

$$
p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime} \in T_{F^{t-1}, m+1}
$$

Lemma 12. There exist no $i \in[2 k]$ for which r_{i-1} has property (12).
Proof. If r_{i-1} has property (12) then, by Lemma 9, so does r_{i}. This proves our lemma since $r_{2 k}$ does not have property (12).

Lemma 13. Let $i \in[2 k]$ be an odd integer. Then $\mathrm{rn}_{3}\left(r_{i-1}\right)=\mathrm{rn}_{3}\left(r_{i}\right)$.
Proof. It obviously follows from Lemma 9 that $\mathrm{rn}_{3}\left(r_{i-1}\right) \leqq \mathrm{rn}_{3}\left(r_{i}\right)$. Let us assume that $\mathrm{rn}_{3}\left(r_{i-1}\right)<\mathrm{rn}_{3}\left(r_{i}\right)$. Then in the derivation $a_{i} r_{i-1} \stackrel{*}{\Rightarrow} r_{i}^{\prime}\left(r_{i}^{\prime} \in T_{F^{\prime}}\left(A_{i} X_{m+1}\right)\right)$ it has to be applied at least one rule of the form (9). However, this is impossible since, for odd i, \mathfrak{M}_{i} is an LNDR transducer.

Lemma 14. $k=m$.

Proof. On the contrary; assume that $k<m$: Then, since $\mathrm{rn}_{3}\left(r_{0}\right)=0$ and $\mathrm{rn}_{3}\left(r_{2 k}\right)=m$, it follows from Lemma 13 that for some even integer $i \in[2 k], \mathrm{rn}_{3}\left(r_{i-1}\right) \leqq$ $\leqq \mathrm{rn}_{3}\left(r_{i}\right)-2$. It means that there exist $\alpha, \beta \in \operatorname{path}\left(r_{i-1}\right)$ such that $\alpha \neq \beta$, str $\left(r_{i-1}, \alpha\right)=$ $=f\left(p_{1}, p_{2}\right)$, $\operatorname{str}\left(r_{i-1}, \beta\right)=f^{\prime}\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$ for some $f, f^{\prime} \in F_{2}^{i-1}, p_{j}, p_{j}^{\prime} \in T_{F^{i-1, m+1}}(j \in[2])$ moreover, in the derivation $a_{i} r_{i-1} \stackrel{*}{\Rightarrow} r_{i}^{\prime}\left(r_{i}^{\prime} \in T_{F^{\prime}}\left(A_{i} X_{m+1}\right)\right)$ both f and f^{\prime} were rewritten by applying a rule of the form (9).

First we claim that either $\alpha<\beta$ or $\beta<\alpha$. Really, from $\alpha \nless \beta ; \beta \nless \alpha$ and $\alpha \neq \beta$ it would follow that r_{i} has property (12) contradicting Lemma 12.

Suppose that $\alpha<\beta$ and that the rule (9) was applied to rewrite f in the derivation $a_{i} r_{i-1} \stackrel{*}{\stackrel{\text { gi }}{i}} r_{i}^{\prime}$. Then, without loss of generality, we may assume that the following relations hold for some suitable $s_{i-1}, t_{i-1} \in T_{F^{i-1, m+2}}, s_{i} \in T_{F^{1}, m+2}$ and $q_{1}, q_{2}, q_{3} \in T_{F^{\prime}, m+1}$:
(a) $r_{i-1}=s_{i-1} \cdot{ }_{m+2} f\left(p_{1}, p_{2}\right)$,
(b) $p_{1}=t_{i-1} \cdot{ }_{m+2} f^{\prime}\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$,
(c) $r_{i}=s_{i}{ }^{m+2}{ }^{2} u_{0}\left(h\left(u_{1}\left(q_{1}\right), u_{2}\left(q_{2}\right), u_{3}\left(q_{3}\right)\right)\right.$,
(d) $\left(s_{i-1}, s_{i}\right) \in \tau_{\mathscr{U}_{i}}^{\prime},\left(p_{i j}, q_{j}\right) \in \tau_{\mathscr{I}_{i}\left(c_{j}\right)}^{\prime}$ for each $j \in[3]$.

Let us introduce the following notations:

$$
\begin{aligned}
m_{j} & =\max \left\{|\alpha|_{2} \mid \alpha \in \operatorname{path}_{l}\left(p_{j}\right) \text { for some } l \in[m+1]\right\} \\
n_{j} & =\max \left\{|\alpha|_{2} \mid \alpha \in \operatorname{path}_{l}\left(q_{j}\right) \text { for some } l \in[m+1]\right\}
\end{aligned}(j \in[3]) .
$$

We know, by (b), that $m_{1}>0$. Moreover $m_{2}=0$ since from $m_{2}>0$ it would follow, by (d) and Lemma 1, that $n_{1}>0, n_{2}>0$ and $n_{3}>0$. This, however would mean that r_{i} has property (10) which is impossible by Lemma 10 . Hence we have $p_{2} \in T_{F_{1}^{\prime-1}, m+1}$.

We also know, by (9), that $\left\{i_{1}, i_{2}, i_{3}\right\}=[2]$ which means that \mathscr{M}_{i} duplicates either p_{1} or p_{2}. We show that both cases are impossible.

First let us suppose that 1 appears once and 2 appears twice in the sequence i_{1}, i_{2}, i_{3}. Then we obtain, by Lemmas 1 and 9, that for exactly one $j \in[3], n_{j}>0$, contradicting Lemma 11.

Next assume that 1 appears twice and 2 appears once in the sequence i_{1}, i_{2}, i_{3}. But then, since f^{\prime} was also rewritten by a rule of type (9) we have that r_{i} has property (12) yielding again a contradiction, by Lemma 12.

Hence we have $k=m$.
With this we also completed the proof of Theorem 3.
Now we present Theorem 3 in an alternative form. It is not difficult to see that $\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H}=\mathscr{U} \mathscr{N} \mathscr{D} \mathscr{R}$. Really, for any LNDR transducer \mathfrak{A} and NH transducer \mathfrak{B}, by Lemma 3 of [1], $\tau_{\mathfrak{H} \circ \mathfrak{B}}=\tau_{\mathfrak{H}} \circ \tau_{\mathfrak{B}}$ and it can easily be verified that in this case $\mathfrak{A} \circ \mathfrak{B}$ is a UNDR transducer. Conversely, given a UNDR transducer \mathcal{E}, with the help of the usual relabeling technique (see, for example, Lemma 3.1 in [2], pp. 155) we can construct an LNDR transducer \mathfrak{A} and an NH transducer \mathfrak{B} with $\tau_{\mathfrak{2}}=\tau_{\mathfrak{1}} \circ \tau_{\mathfrak{B}}$. Thus Theorem 3 can be given in the following form as well

Theorem 15. For any $m \geqq 1, \mathscr{U} \mathscr{N} \mathscr{D} \mathscr{R}^{m} \subset \mathscr{U} \mathscr{N} \mathscr{D} \mathscr{R}^{m+1}$.
The first problem, presented at the beginning of this section is answered by
Theorem 16. [S] is an infinite set.
Proof. Immediately follows from Theorem 3.
Now we deal with the second problem. The following lemma can be proved.
Lemma 17. There exists an NDR transducer $\mathfrak{\Re}=\left(F,\{a, b\}, F^{\prime}, P, \dot{a}\right)$ such that $\tau_{21} \notin(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{k}$ for any $k \geqq 1$.

Proof. Let \mathfrak{H} be determined by the following conditions:
(a) $F=F_{0} \cup F_{2}, F_{0}=\{\#\}, F_{2}=\left\{f_{2}\right\}$,
(b) $F^{\prime}=F_{0}^{\prime} \cup F_{2}^{\prime} \cup F_{3}^{\prime}, F_{0}^{\prime}=\{\#\}, F_{2}^{\prime}=\left\{f_{2}\right\}, F_{3}^{\prime}=\left\{g_{3}\right\}$,
(c) P is the set of the rules:
(i) $a \# \rightarrow \#, b \# \rightarrow \#$,
(ii) $a f_{2}\left(x_{1}, x_{2}\right) \rightarrow g_{3}\left(b x_{1}, a x_{1}, b x_{2}\right), b f_{2}\left(x_{1}, x_{2}\right) \rightarrow f_{2}\left(b x_{1}, b x_{2}\right)$.

Let P_{m} and Q_{m} be defined in the same way as in the proof of Theorem 3. It is not difficult to verify that for each $m \geqq 1,\left(P_{m}, Q_{m}\right) \in \tau_{\mathfrak{I}}^{\prime}$.

Moreover, let Q_{m} be written in the form
$\bar{Q}_{m}(x_{1}, x_{2}, x_{2}, \ldots, \overbrace{x_{m+1}, \ldots, x_{m+1}}^{m+1})$ where $\quad \bar{Q}_{m} \in \hat{T}_{F, n} \quad(n=1+2+\ldots+m+1)$.
Then we can say that for any $t_{1}, \ldots, t_{m+1} \in T_{F}$

$$
(P_{m}\left(t_{1}, \ldots, t_{m+1}\right), \bar{Q}_{m}(t_{1}, t_{2}, t_{2}, \ldots, \overbrace{t_{m+1}, \ldots, t_{m+1}}^{m \text { times }}, t_{m+1}^{\prime})) \in \tau_{Q 1}
$$

holds where $t_{m+1}^{\prime}=\tau_{\mathfrak{q}}\left(t_{m+1}\right)$. Using this notation, the following lemma can be proved in a similar way as Lemma 4. Therefore we omit the proof.

Lemma 18. If \mathfrak{L} is an NDR transducer with $\tau_{\mathfrak{g}}=\tau_{\mathfrak{l}}$ then for each $m \geqq 1$ $\left(P_{m}, Q_{m}\right) \in \tau_{\mathfrak{L}}^{\prime}$ holds.

Now we can complete the proof of Lemma 17. Suppose that

$$
\tau_{\mathfrak{R}} \in(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H})^{k}
$$

for some $k \geqq 1$. Then for each $i \in[2 k]$ there exists a DR transducer $\mathfrak{M}_{i}=$ $=\left(F^{i-1}, A_{i}, F^{i}, P_{i}, a_{i}\right)$ with properties (a)-(c) of (6) and $\tau_{\mathfrak{M}}=\tau_{\mathfrak{I}_{1}} \circ \ldots \circ \tau_{\mathfrak{M}_{2 k}}$. Let m be chosen such that $k<m$. It follows from Lemmas 2 and 18 that $\left(P_{m}, Q_{m}\right) \in \tau_{M_{1}}^{\prime} \circ \ldots \circ \tau_{M_{2 k}}^{\prime}$. However, if we follow the proof of Theorem 3 from (7) then we see in Lemma 14 that this is a contradiction. This ends the proof of Lemma 17.

The last theorem is an immediate consequence of Lemma 17.
Theorem 19. $\bigcup_{k=1}^{\infty}(\mathscr{L} \mathscr{N} \mathscr{P} \mathscr{R} \circ \mathcal{N} \mathscr{H})^{k} \subset \mathscr{N} \mathscr{D} \mathscr{R}$.
RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI B. U. 7.
SZEGED, HUNGARY
H-6720

References

[1] FÜlöp, Z. and S. VÁGvölgy, Results on compositions of deterministic root-to-frontier tree transformations, Acta Cybernetica, v. 8, f. 1, 1987, 49-61.
[2] Gécseg, F. and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.

Evaluated grammars

Alexandr Meduna

1. Introduction

Mechanisms which regulate the application of the rules belong to the most important devices in order to enlarge the generative capacity of context free grammars. A common idea is that not every derivation leading from the start symbol to a terminal word is acceptable, but there is a control device which lets through acceptable derivations only. For instance, an application of some production determines which productions are applicable in the next step (this is called a programmed grammar), or some productions can never be applied if any other applicable (an ordered grammar). In a matrix grammar one has to apply only certain previously specified strings of productions or, more generally, the string of productions corresponding to a derivation must belong to a set of previously specified strings (a grammar with a control set) - see [3].

In this paper, the notion of evaluated grammar is introduced. The derivation process in this generative mechanism is regulated by a certain evaluation of some symbols occurring in sentential forms.

We believe that the introduction of the new type of grammar with a restriction in derivation introduced here is very useful because of three reasons:
(i) evaluated grammars represent a simple and very natural extension of con-text-free grammars;
(ii) evaluated grammars are considerably more powerful than context-free grammars;
(iii) some classes of languages generated by parallel rewriting systems (e.g. EOL languages) can be characterized by evaluated grammars in a natural way.

2. Preliminaries

We introduce here only briefly the notions needed in this paper. For a more detailed discussion, as well as for background material and motivation, the reader is referred to $[2,3]$.

Let α be a word over an alphabet Σ. The alphabet of α, alph α, is the set of all symbols (from Σ) that appear at least once in α.

A context free grammar is quadruple $G=(\Sigma, P, S, \Delta)$ where, as usual, Σ is a finite alphabet, $\Delta \subseteq \Sigma$ is the terminal alphabet and $\Sigma \backslash \Delta$ is the nonterminal alphabet, $P \subseteq(\Sigma \backslash \Delta) \times \bar{\Sigma}^{*}$ is a finite set of productions, where a production (A, α) is usually written as $A \rightarrow \alpha$, and S in $\Sigma \backslash \Delta$ is the start symbol. For arbitrary words $x, y \in \Sigma^{*}$ and production $A \rightarrow \alpha$ we write $x A y \Rightarrow x \alpha y$, and denote the reflexive, transitive closure of \Rightarrow by \Rightarrow^{*}. The language generated by G, denoted $L(G)$, is defined by $L(G)=\left\{x \in \Delta^{*}: S \Rightarrow^{*} x\right\}$.

A context free grammar $G=(\Sigma, P, S, \Delta)$ is called regular if every production $A \rightarrow \alpha$ from P satisfies $\alpha \in \Delta(\Sigma \backslash \Delta) \cup \Delta$.

An ETOL system G consits of $m+3(m \geqq 1)$ components $G=\left(\Sigma, P_{1}, \ldots, P_{m}, S, \Delta\right)$ where Σ, Δ, S are defined identically as for context free grammars, and where every P_{i} is a finite subset of $\Sigma \times \Sigma^{*}$ such that for every $a \in \Sigma$ at least one pair (a, α) occurs in P_{i}. The pairs in P_{i} are again called productions and usually written as $a \rightarrow \alpha$. For an arbitrary word $x=a_{1} a_{2} \ldots a_{k}, a_{i} \in \Sigma$, and productions $a_{1} \rightarrow \alpha_{1}, \ldots, a_{k} \rightarrow \alpha_{k}$ of the same set P_{j} we write $a_{1} a_{2} \ldots a_{k} \Rightarrow \alpha_{1} \alpha_{2} \ldots \alpha_{k}$ and denote the reflexive, transitive closure of \Rightarrow by \Rightarrow^{*}. The language generated by $G, L(G)$, is defined by $L(G)=$ $=\left\{x \in \Delta^{*}: S \Rightarrow^{*} x\right\}$. An ETOL system with a single set of productions is called EOL system.

For $n>0$, an n-parallel right linear grammar (see [1]) is a quintuple $G=(\Sigma, P, S, \Delta, n)$ where Σ, Δ, S are defined identically as for context free grammars, and $P \cong(\Sigma \backslash(\Delta \cup\{S\})) \times\left(\Delta^{*}(\Sigma \backslash(\Delta \cup\{S\})) \cup \Delta^{+}\right) \cup\{S\} \times\left(\Delta^{*} \cup(\Sigma \backslash(\Delta \cup\{S\}))^{n}\right)$ is a finite set of rules, where a production (A, α) is usually written as $A \rightarrow \alpha$. The yield relation is defined as follows: for $x, y \in \Sigma^{*}, x \Rightarrow y$ if and only if either $x=S$ and $S \rightarrow y \in P$ or $x=y_{1} X_{1} \ldots y_{n} X_{n}$ and $y=y_{1} x_{1} \ldots y_{n} x_{n}$, where $y_{i} \in \Delta^{*}, x_{i} \in$ $\in \Delta^{*}(\Sigma \backslash(\{S\} \cup \Delta)) \cup \Delta^{+}, X_{i} \in \Sigma \backslash \Delta$ and $X_{i} \rightarrow x_{i} \in P, 1 \leqq i \leqq n$. The relation \Rightarrow can be extended to give \Rightarrow^{*} as above. The notion of the language generated by G can be introduced just as for context free grammars. (An n-parallel right linear grammar G is in normal form if

$$
G=\left(\Delta \cup K_{1} \cup \ldots \cup K_{n} \cup\{S\}, P, S, \Delta, n\right),
$$

S is not in $\Delta \cup K_{1} \cup \ldots \cup K_{n}, K_{i}$ are mutually disjoint nonterminal sets, if $S \rightarrow X_{1} \ldots X_{n} \in P$ and $X_{1} \ldots X_{n} \in\left(K_{1} \cup \ldots \cup K_{n}\right)^{*}$ then $X_{i} \in K_{i}, l \leqq i \leqq n$, and if $X_{i} \rightarrow y Y_{j} \in P$, $X_{i} \in K_{i}$ and $Y_{j} \in K_{j}$ then $i=j$.)

The families of languages generated by context free, regular and n-parallel right linear grammars are denoted by $\mathscr{L}(\mathrm{CF}), \mathscr{L}(\mathrm{RG})$ and $\mathscr{L}(n-\mathrm{PRL})$, respectively. Let $\mathscr{L}(\mathrm{PRL})=\bigcup_{i=1}^{\infty} \mathscr{L}(i-\mathrm{PRL})$. Families of languages generated by ETOL systems, ETOL systems of finite index (see [2]) and EOL systems are denoted by $\mathscr{L}(\mathrm{ETOL}), \mathscr{L}_{\mathrm{FIN}}(\mathrm{ETOL})$ and $\mathscr{L}(\mathrm{EOL})$, respectively.

3. Definition of evaluated grammars

Intuitively, an evaluated grammar is very much like a context free grammar. However, some symbols (including terminals) in a given sentential form of an evaluated grammar can have a certain value associated (a non-negative integer). In
one derivation step either a nonterminal without associated value in a usual "context free" way or a nonterminal with the least value that occurs in the given sentential form is rewritten. In the latter case the nonterminal is rewritten again in a usual way but, in addition new evaluation is assigned to apriori specified (on the right side of the rule applied) symbols.

Formally, let N be the set of non-negative integers and let Σ be an alphabet. We denote members of $V=\Sigma \times N$ by $a_{(i)}$ where a is in Σ and i is in N, then in a natural way we can define V^{*}. Define the letter-to-letter homomorphism $v:(V \cup \Sigma)^{*} \rightarrow$ $\rightarrow \Sigma^{*}$ by $v\left(a_{(i)}\right)=a$ for all $a_{(i)}$ in V and $v(a)=a$ for all $a \in \Sigma$. An evaluated grammar, EG, is a construct $G=(\Sigma, P, S, \Delta)$ where $\Delta \subseteq \Sigma$ is a terminal alphabet, $P \subseteq(\Sigma \backslash \Delta) \times$ $X(V \cup \Sigma)^{*}$ is a finite set of productions, where $(A, \alpha) \in P$ is usually written as $A \rightarrow \alpha$, and $S \in \Sigma \backslash \Delta$ is a start symbol. For all $\alpha, \beta \in(V \cup \Sigma)^{*}$ we write $\alpha \Rightarrow \underset{G}{\Rightarrow} \beta$ (or simply $\alpha \Rightarrow \beta$ if G is understood) if $\beta=\alpha_{1} \gamma \alpha_{2}$ for some $\alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*}$ and either $\gamma \in \Sigma^{*}, \alpha=\alpha_{1} A \alpha_{2}$ and $A \rightarrow \gamma \in P$ or $\alpha=\alpha_{1} A_{(i)} \alpha_{2}$ for some $A_{(i)} \in V$,

$$
\gamma=\delta_{0} B_{1_{\left(i+k_{1}\right)}} \delta_{1} \ldots B_{n_{\left(i+k_{n}\right)}} \delta_{n}, A \rightarrow \delta_{0} B_{1_{\left(k_{1}\right)}} \delta_{1} \ldots B_{n_{\left(k_{n}\right)}} \delta_{n} \in P
$$

where $\delta_{j} \in \Sigma^{*}, B_{j(k),}, B_{j\left(i+k_{j}\right)} \in V$ (i.e. $\left.B_{j} \in \Sigma, i, k_{j} \in N\right), 0 \leqq j \leqq n$ for some $n \geqq 0$ (where $n=0$ implies $\gamma=\delta_{0}$ and $A \rightarrow \delta_{0} \in P$) and $i \leqq m$ for every $X_{(m)} \in$ alph $\alpha_{1} \alpha_{2} \cap V$. The language generated by $G, L(G)$, is defined by $L(G)=\left\{v(x): v(x) \in \Delta^{*}\right.$ and $S_{(0)} \Rightarrow^{*} x$ \} where \Rightarrow^{*} is the transitive, reflexive closure of \Rightarrow.

Now we introduce some special cases of evaluated grammars. Let $G=(\Sigma, P S, \Delta)$ be an EG and let n be a positive integer. We say that G is n-regular if it has the following properties:
(1) if $S \rightarrow \alpha \in P$ then $v(\alpha)=X_{1} \ldots X_{n}$
with $X_{i} \in \Sigma \backslash(\Delta \cup\{S\}), \quad 1 \leqq i \leqq n ;$
(2) if $A \rightarrow \alpha \in P$ and $A \neq S$ then

$$
v(\alpha) \in \Delta(\Sigma \backslash(\Delta \cup\{S\})) \cup \Delta
$$

We say that the EG G is regular, RGEG, if it is n-regular for some positive integer n.
We say that an EG G is binary, $B E G$, if

$$
P \cong(\Sigma \backslash \Delta) \times((\Delta \times\{0\}) \cup((\Sigma \backslash \Delta) \times\{1\}) \cup \Delta)^{*} .
$$

A binary regular EG (i.e. an EG which is as regular, as binary) will be denoted by BRGEG.

We use $\mathscr{L}(E), \mathscr{L}($ RGE $), \mathscr{L}(\mathrm{BE})$ and $\mathscr{L}(\mathrm{BRGE})$ to denote the families of languages generated by evaluated, regular evaluated, binary evaluated and binary regular evaluated grammars, respectively.

4. Examples

We now consider some examples to give insight into evaluated grammars. We usually define evaluated grammars by simply listing their productions in BackusNaur form. In this case we use S to denote the start symbol, early upper case Roman letters to denote nonterminals and early lower case Roman letters to denote terminals.

Example 1. Let

$$
\begin{aligned}
G_{1}: & S \rightarrow A_{(1)} B_{(1)} C_{(1)} ; & A \rightarrow a A_{(1)} \mid a_{(0)} \\
& B \rightarrow b B_{(1)} \mid b_{(0)} ; & C \rightarrow c C_{(1)} \mid c_{(0)}
\end{aligned}
$$

be a BRGEG. Then, e.g., for the word aabbcc there exists a derivation in G :

$$
\begin{gathered}
S_{(0)} \Rightarrow A_{(1)} B_{(1)} C_{(1)} \Rightarrow a A_{(2)} B_{(1)} C_{(1)} \Rightarrow a A_{(2)} b B_{(2)} C_{(1)} \Rightarrow \\
\Rightarrow a A_{(2)} b B_{(2)} c C_{(2)} \Rightarrow a A_{(2)} b b_{(2)} c C_{(2)} \Rightarrow \\
\Rightarrow a A_{(2)} b b_{(2)} c c_{(2)} \Rightarrow a a_{(2)} b b_{(2)} c c_{(2)}
\end{gathered}
$$

and thus we get

$$
v\left(a a_{(2)} b b_{(2)} c c_{(2)}\right)=a a b b c c
$$

Clearly, G generates a well-known context-sensitive language:

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n} c^{n}: n \geqq 1\right\} .
$$

Example 2. Consider the RGEG

$$
\begin{aligned}
G_{2}: & S \rightarrow A_{(0)} B_{(1)} A_{(0)} ; \quad A \rightarrow a A_{(2)} \mid a_{(1)} \\
B & \rightarrow b B_{(2)}\left|b_{(0)} C\right| b_{(0)} ; \quad C \rightarrow b c \mid b
\end{aligned}
$$

The reader can easily check that

$$
L\left(G_{2}\right)=\left\{a^{k} b^{l} a^{k}: l \geqq k \geqq 1\right\} .
$$

It is well-known (see [2]) that $L\left(G_{2}\right)$ is not an EOL language.
Example 3: Let

$$
\begin{gathered}
G_{3}: S \rightarrow S_{(1)} S_{(1)} \mid a_{(0)} \\
L\left(G_{3}\right)=\left\{a^{2 n}: n \geqq 1\right\}
\end{gathered}
$$

be a BEG. It is not difficult to show that which is not an ETOL language of finite index (see [2]).

5. Generating power of evaluated grammars

From the definition of an EG it is easy to see that every context free language can be obtained as the language of some EG. Moreover, from examples in the previous section it follows that the class of context free languages is properly contained in $\mathscr{L}(\mathrm{E})$. The purpose of this section is to show that $\mathscr{L}(\mathrm{E})$ is included in \mathscr{L} (ETOL).

Theorem 1. $\mathscr{L}(E) \subseteq \mathscr{L}(E T O L)$.

Proof. Let

$$
G=(\Sigma, P, S, \Delta)
$$

be an EG and let k be an arbitrary but fixed non-negative integer such that for every production $A \rightarrow \alpha_{1} B_{(i)} \alpha_{2} \in P$, where $A \in \Sigma \backslash \Delta_{1}, \alpha_{1} \alpha_{2} \in(V \cup \Sigma)^{*}, B_{(i)} \in V$, it holds that $i \leqq k$. Consider a new alphabet $\bar{\Sigma}=\{[A, i]: A \in \Sigma$ and $0 \leqq i \leqq k\}$ and let F be a new "block" symbol. Let $\bar{\Delta}=\{[a, i]: a \in \Delta$ and $0 \leqq i \leqq k\}$; clearly $\bar{\Delta} \subseteq \bar{\Sigma}$. Now we define four new tables of productions $P_{i}, 1 \leqq i \leqq 4$, as follows:

$$
\begin{aligned}
P_{1}=\{ & {[A, 0] \rightarrow x_{0}\left[B_{1}, k_{1}\right] x_{1} \ldots\left[B_{n}, k_{n}\right] x_{n}: } \\
& A \rightarrow x_{0} B_{1\left(k_{1}\right)} x_{1} \ldots B_{n\left(k_{n}\right)} x_{n} \in P, \\
& A \in \Sigma \backslash \Delta, x_{j} \in \Sigma^{*}, B_{j\left(k_{j}\right)} \in V, \\
& 0 \leqq j \leqq n \text { for some } n \geqq 0\} \cup \\
\cup & \{X \rightarrow X: X \in \Sigma \cup\{F\} \cup\{[a, 0]: a \in \Delta\} \cup\{[A, i]: A \in \Sigma \text { and } 1 \leqq i \leqq k\}\} \cup \\
& \cup\{[A, 0] \rightarrow F: A \in \Sigma \backslash \Delta\} ; \\
P_{2}= & \{[A, i] \rightarrow[A, i-1]: A \in \Sigma \text { and } 1 \leqq i \leqq k\} \cup \\
& \cup\{[A, 0] \rightarrow F: A \in \Sigma\} \cup\{X \rightarrow X: X \in \Sigma \cup\{F\}\} ; \\
P_{3}= & \left\{A \rightarrow \alpha: A \rightarrow \alpha \in P \text { and } \alpha \in \Sigma^{*}\right\} \cup\{X \rightarrow X: X \in \Sigma \cup\{F\} \cup \Sigma\}
\end{aligned}
$$

and

$$
\begin{aligned}
P_{4}= & \{X \rightarrow F: X \in \Sigma \backslash \Delta \cup \bar{\Sigma} \backslash \bar{U} \cup\{F\}\} \cup\{a \rightarrow a: a \in \Delta\} \cup \\
& \cup\{[a, i] \rightarrow a:[a, i] \in \bar{\Delta}(a \in \Delta, 0 \leqq i \leqq k)\} .
\end{aligned}
$$

Consider the ETOL system

$$
\bar{G}=\left(\bar{\Sigma} \cup \Sigma \cup\{F\}, P_{1}, P_{2}, P_{3}, P_{4},[S, 0], J, \Delta\right)
$$

From the construction it is clear that $L(G)=L(\bar{G})$; hence the theorem holds.
In the end we want to mention that it is not known whether or not the inclusion $\mathscr{L}(\mathrm{E}) \subseteq \mathscr{L}(\mathrm{ETOL})$ is proper.

6. Subfamilies of $\mathscr{L}(\mathrm{E})$

In this section we prove a few results about some special cases of evaluated grammars which were defined in Section 3.

Theorem 2. $\mathscr{L}(\mathrm{EOL})=\mathscr{L}(\mathrm{BE})$.
Proof. 1. $\mathscr{L}(\mathrm{EOL}) \subseteq \mathscr{L}(\mathrm{BE}):$ Let

$$
G=(\Sigma, P, S, \Delta)
$$

be an EOL system. Define a new alphabet $\bar{\Delta}=\{\bar{a}: a \in \Delta\}$ and a coding $h: \Sigma^{*} \rightarrow((\Sigma \backslash \Delta \times\{1\}) \cup(\bar{\Delta} \times\{1\}))^{*}$ defined by
(i) $h(X)=X_{(1)}$ for all $X \in \Sigma \backslash \Delta$;
(ii) $h(X)=\bar{X}_{(1)}$ for all $X \in \Delta$.

We define a new set of productions

$$
\bar{P}=\{h(A) \rightarrow h(\alpha): A \rightarrow \alpha \in P\} \cup\left\{\bar{a}_{(1)} \rightarrow a_{(0)}: a \in \Delta(\bar{a} \in \bar{d})\right\} .
$$

Consider the BEG

$$
\bar{G}=(\Sigma \cup \bar{\Delta}, \bar{P}, S, \Delta) .
$$

Clearly $L(G)=L(\bar{G})$ and thus $\mathscr{L}(\mathrm{EOL}) \subseteq \mathscr{L}(\mathrm{BV})$.
2. $\mathscr{L}(\mathrm{EOL}) \supseteqq \mathscr{L}(\mathrm{BE}):$ Let

$$
G=(\Sigma, P, S ; \Delta)
$$

be a BEG and, clearly, we may assume without loss of generality that every nonterminal in G is useful i.e. that for every $A \in \Sigma \backslash \Delta$ there exists a word $\alpha \in(((\Sigma \backslash \Delta) \times\{1\}) \cup(\Delta \times\{0\}) \cup \Delta)^{*}$ such that $A \rightarrow \alpha \in P$. Define a new alphabet $\Sigma^{\prime}=\left\{A^{\prime}: A \in \Sigma\right\}$ and a new "block" symbol F. We define the substitution

$$
g:(\Delta \cup((\Sigma \backslash \Delta) \times\{1\}) \cup(\Delta \times\{0\}))^{*} \rightarrow\left(\Delta \cup \Sigma^{\prime}\right)^{*}
$$

by
(i) $g(a)=\left\{a^{\prime}, a\right\}$ for all $a \in \Delta$;
(ii) $g\left(A_{(1)}\right)=A^{\prime}$ for all $A_{(1)} \in(\Sigma \backslash \Delta) \times\{1\}$;
(iii) $g\left(a_{(0)}\right)=a \quad$ for all $a_{(0)} \in \Delta \times\{0\}$.

Let

Now, let

$$
\begin{aligned}
P^{\prime} & =\left\{A^{\prime} \rightarrow g(\alpha): A \rightarrow \alpha \in P\right\} \cup \\
& \cup\left\{a^{\prime} \rightarrow a^{\prime}, a^{\prime} \rightarrow a, a \rightarrow F: a \in \Delta\right\} \cup \\
& \cup\{F \rightarrow F\} .
\end{aligned}
$$

$$
G^{\prime}=\left(\Sigma^{\prime} \cup \Delta \cup\{F\}, P^{\prime}, S^{\prime}, \Delta\right)
$$

be an EOL system, then, clearly, $L(G)=L\left(G^{\prime}\right)$ and thus $\mathscr{L}(\mathrm{EOL}) \supseteqq \mathscr{L}(\mathrm{BE})$. Hence, we have $\mathscr{L}(\mathrm{EOL})=\mathscr{L}(\mathrm{BE})$ and the theorem holds.

From this proof we obtain:
Corollary 1. For every $L \in \mathscr{L}(\mathrm{BE})$ there exists a BEG $G=(\Sigma, P, S, \Delta)$ such that $L(G)=L$ and $P \subseteq(\Sigma \backslash \Delta) \times((\Delta \times\{0\}) \cup((\Sigma \backslash \Delta) \times\{1\}))^{*}$.

It is a straightforward to prove the following four lemmas.
Lemma 1. $\mathscr{L}(\mathrm{BE}) \subset \mathscr{L}(\mathrm{E})$.
Proof. The inclusion $\mathscr{L}(\mathrm{BE}) \subseteq \mathscr{L}(\mathrm{E})$ is an immediate consequence of the definitions of BEG and EG. That the inclusion is strict follows from Example 2 in Section 4 and Theorem 2.

Lemma 2. $\mathscr{L}(\mathrm{BE}) \nsubseteq \mathscr{L}(\mathrm{RGE})$.
Proof. From the construction in the proof of Theorem 1 follows that $\mathscr{L}($ RGE $) \subseteq$ $\subseteq \mathscr{L}_{\mathrm{FIN}}(\mathrm{ETOL})$. On the other hand, $L\left(G_{3}\right) \in \mathscr{L}(\mathrm{BE}) / \mathscr{L}_{\mathrm{FIN}}(\mathrm{ETOL})$; see Example 3 in Sect. 4. Hence, the lemma holds.

Lemma 3. $\mathscr{L}(\mathrm{RGE}) \nsubseteq \mathscr{L}(\mathrm{BE})$.
Proof. It is an immediate consequence of Example 2 in Sect. 4 and Theorem 2.

Lemma 4. $\mathscr{L}(\mathrm{RGE}) \subset \mathscr{L}(\mathrm{E})$.
Proof. Clear.
It is quite clear that $\mathscr{L}(\mathrm{RG}) \subset \mathscr{L}(\mathrm{BRGE})$; see the definition and Example 1 in Sect. 4. We now prove this result:

Lemma 5. $\mathscr{L}(\mathrm{BRGE}) \subseteq \mathscr{L}(\mathrm{PRL})$.
Proof. Let

$$
G=(\Sigma, P, S, \Delta)
$$

be n-regular $B R G E G$ for some $n \geqq 1$.
From the definition of BRGEG it follows that in any sentential form (except the last one) of a derivation of any word from $L(G)$, no symbol $a_{(0)}, a \in \Delta \times\{0\}$, is contained. Thus, we can construct the following n-parallel right linear grammar:

$$
\bar{G}=(\Sigma \cup \bar{\Delta}, \bar{P}, S, \Delta)
$$

where

$$
\bar{\Delta}=\{\bar{a}: a \in \Delta\}
$$

and

$$
\begin{aligned}
\bar{P} & =\left\{S \rightarrow X_{1} \ldots X_{n}: S \rightarrow X_{1_{(1)}} \ldots X_{n_{(1)}} \in P, X_{i_{(1)}} \in \Sigma \backslash(\Delta \cup\{S\}) \times\{1\}, 1 \leqq i \leqq n, n>0\right\} \cup \\
& \cup\left\{A \rightarrow a B: A \rightarrow a B_{(1)} \in P, a \in \Delta, A \in \Sigma \backslash(\Delta \cup\{S\}), B_{(1)} \in((\Sigma \backslash(\Delta \cup\{S\})) \times\{1\})\right\} \cup \\
& \cup\left\{A \rightarrow a: A \rightarrow a_{(0)} \in P, A \in \Sigma \backslash(\Delta \cup\{S\}), a \in(\Delta \times\{0\})\right\} \cup \\
& \cup\{A \rightarrow a, A \rightarrow \bar{a}, \bar{a} \rightarrow \bar{a}, \bar{a} \rightarrow a: A \rightarrow a \in P, A \in \Sigma \backslash(\Delta \cup\{S\}), a \in \Delta\} .
\end{aligned}
$$

Clearly $L(G)=L(\bar{G})$. The lemma is proved.
Lemma 6. $\mathscr{L}(\mathrm{CF})$ and $\mathscr{L}($ BRGE $)$ are incomparable but not disjoint.
Proof. The lemma is a direct consequence of Example 1 (see Sect. 4), Lemma 5 and a diagram from Sect. 6 in [1].

Lemma 7. $\mathscr{L}(\mathrm{CF}) \nsubseteq \mathscr{L}($ RGE $)$.
Proof. By proof of Lemma 2, $\mathscr{L}(\mathrm{RGE}) \subseteq \mathscr{L}_{\text {FIN }}(\mathrm{ETOL})$. But it is well-known that $\mathscr{L}(\mathrm{CF}) \nsubseteq \mathscr{L}_{\text {FIN }}$ (ETOL) (see, e.g., [2]). Thus the lemma holds.

Lemma 8. $\mathscr{L}(\mathrm{BRGE}) \subseteq \mathscr{L}(\mathrm{BE}) \cap \mathscr{L}(\mathrm{RGE})$.
Proof. From definition.

7. The relationship diagram

The aim of this section is to establish the relationship diagram among various classes of languages considered in this paper. We get the following theorem.

Theorem 3.

(If there is a directed chain of edges in the diagram leading from a class X to a class Y then $X \subset Y$, an undirected chain means that we do not know whether the inclusion is proper. Otherwise X and Y are incomparable but not disjoint.)

Proof. From the results of Sect. 5 and 6 together with the fact that $\mathscr{L}($ RG $) \subset$ $\subset \mathscr{L}(\mathrm{CF}) \subset \mathscr{L}(\mathrm{EOL})$ - see [2].

Abstract

Evaluated grammars are based on context free grammars but the derivation process in these grammars is regulated by a certain evaluation of some symbols occurring in their sentential forms.

Fundamental properties of the family of languages generated by evaluated grammars are investigated. This family of languages is contained in the family of ETOL languages and properly contains the family of EOL languages.

In addition, we propose and study some special cases of evaluated grammars.

COMPUTING CENTRE

TECHNICAL UNIVERSITY BRNO
OBRANCU゚ MIRU 21
BRNO, CZECHOSLOVAKIA

References

[1] Rosebrugh, R. D., Wood, D., Restricted parallelism and right linear grammars. Utilitas Mathematica 7, 151—186, 1975.
[2] Rozenberg, G., Salomaa, A., The Mathematical Theory of L Systems, New York: Academic Press, 1980.
[3] Salomat, A., Formal Languages, New York: Academic Press, 1973.

EBE: a language for specifying the expected behavior of programs during debugging

Nguyen Huu Chien

1. Introduction

In [1] Bruegge B. and Hibbard P. used GPEs (Generalized Path Expression) for specifying expected behavior of programs. GPEs are slightly extended version of a BPE (Basic Path Expression) with predicates and counters.

A $B P E$ is a regular expression with operators sequencing(;), exclusive selection(+) and repetition($*$). The operands, called PFs (Path Function), are the names of statements or groups of statements defined in the source program. For each $P F$ two counters are defined: the counters $A C T$ and TERM. These represent the activation and termination number of a $P F$ respectively. Predicate is a logical expression involving the counters and the variables of the program and debugger. $B P E$ is extended by associating predicates with $P F$ s.

In this paper we extended GPE by adding the operator shuffle (4). This does not increase the power of GPEs, but we can describe the expected behavior of a program in a simpler way. In the next sections we define the syntax and semantics of the extended GPEs, called EBEs (Expected Behavior Expression). The purpose of $E B E$ s is to specify the order of execution of $P F \mathrm{~s}$, the semantics of $E B E \mathrm{~s}$ therefore can be defined by specifying a set of actual behaviors that are valid with respect to a given $E B E$. In section IV we discuss some properties of $E B E s$. According to the syntax and semantics we introduce the syntactical and semantical equivalence of $E B E$ s. A sufficient condition for the semantical equivalence of two $E B E s$ is given. It is shown that the syntactical equivalence is more powerful than the semantical equivalence. It is also proved that EBEs are not more powerful than GPEs. In section V we present an implementation of $E B E$. The implementation is formally defined omitting details of actual implementation, and then its semantics is also defined similarly to that of $E B E$ s, that is, by specifying a set of actual behaviors that are valid with respect to a given implementation. Correctness of the implementation is proved by showing a given $E B E$ and its implementation recognize the same set of actual behaviors.

In order to make an implementation effective it is necessary to reduce EBEs. We give some rules for reducing $E B E$ s in section VI.

II．The syntax of EBEs

Assume that the notions〈identifier〉，〈integer number〉 and 〈arithmetic expres－ sion are known．The other notions are defined in terms of the above ones．
＜path function＞：：＝〈procedure name〉

```
〈procedure name)::=<identifier〉
\(\langle\) counter \(\rangle::=A C T(\langle\) procedure name \(\rangle) \mid T E R M(\langle\) procedure name \(\rangle)\)
\(\langle\) counter exp \(\rangle::=\langle\) counter \() \mid\langle\) integer variable \(\rangle \mid\)
                                    <integer constant \(\rangle \mid(\langle\) counter exp \(\rangle) \mid\)
                                    \(\langle\) counter exp \(\rangle\langle\) binary op \(\rangle\langle\) counter exp \(\rangle\)
\(\langle\) binary op \(\rangle::=+|-| \times\)
(integer variable)::=〈identifier〉
\(\langle\) integer constant \(\rangle::=\langle\) integer number〉
\(\langle\) counter rel \(\rangle::=\langle\) counter exp \(\rangle\langle\) rel \(\rangle\langle\) counter exp \(\rangle\)
\(\langle\) arithmetic rel \(\rangle::=\langle\) arithmetic expression \(\rangle\langle r e l\rangle\)
                                    (arithmetic expression)
\(\langle\) rel \(\rangle::=<|>|=|\leqq| \geqq\)
\(\langle\) predicate \(\rangle::=\langle\) counter rel \(\rangle\langle\langle\) arithmetic rel \(\rangle\rangle(\langle\) predicate \(\rangle) \mid\)
                                    \(\langle\) predicate \(\rangle\langle\) logic op \(\rangle\langle\) predicate \(\rangle \mid\urcorner\langle\) predicate \(\rangle\)
\(\langle\) logic op \(\rangle:=\wedge|\vee| \rightarrow\)
\(\langle\) operand \(\rangle::=\langle\) path function \(\rangle\langle\) path function \(\rangle[\langle\) predicate \(\rangle]\)
\(\langle E B E\rangle:==\begin{aligned} & \text { operand }\rangle|(\langle E B E\rangle)|\langle E B E\rangle ;\langle E B E\rangle|\langle E B E\rangle+\langle E B E\rangle| \\ & E B E\rangle * \mid\langle E B E\rangle \Delta\langle E B E\rangle\end{aligned}\)
```

Let E be an $E B E$ ，we define the language $L(E)$ as follows：
If $E=o$ ，where o an operand，then $L(E)=\{o\}$ ．Let $L 1=L(E 1), L 2=$ $=L(E 2)$ ，then
$L(E 1 ; E 2)=L 1 L 2, L(E 1+E 2)=L 1+L 2, L(E 1 *)=L 1 *$,
$L(E 1 \Delta E 2)=L 1 \Delta L 2=\left\{o_{1} o_{1}^{\prime} \ldots o_{n} o_{n}^{\prime} \mid o_{1} \ldots o_{n} \in L 1\right.$ and $o_{1}^{\prime} \ldots o_{n}^{\prime} \in L 2$ ，it may happen that o_{i} and o_{j}^{\prime} are $\left.\varepsilon\right\}$ ．
Now we give some examples of $E B E s$ ．

Example．

Initstack；（Push［TERM（Push）－TERM（Pop）＜N］＋
Pop $[$ TERM $($ Push $)-$ TERM $($ Pop $)>0]+$
Top $[$ TERM $($ Push $)-T E R M(P o p)>o]) *$ ．
This $E B E$ specifies an expected behavior of the program which states the operational constraints on a bounded stack of length N ：first the procedure Initstack has to be called．One of the following can then happen ：either procedure Push can be called if the size of the stack is smaller than N ，or Top or Pop can be called if the size of the stack is larger than o ．

Example．The $E B E$

$$
(p ; q) \Delta(r ; s)
$$

is used to look for activation of the procedure p when p has been called 5 times and the value of the variable A is 4 .

Example. The $E B E$

$$
p ; q \Delta r ; s
$$

permits possible sequences of the execution of the procedures p, q, r and s as follows:
pqrs, prqs, prsq, rpsq, rpqs, rspq.

III. The semantics of EBEs

First we define some notions.
Let $O B$ be an arbitrary set (representing a set of all data objects), P a finite set of procedures, and $P^{\prime} \subset P$.

A state is a pair $\langle S, c o u\rangle$, where $S \subset O B$, and $c o u=\left\{a_{p}, t_{p} \mid p \in P^{\prime}\right\} \subset N+=$ $=\{0,1,2, \ldots\}$ (the numbers a_{p} and t_{p} represent the activation and termination number of the procedure p), and the "cou" is called counter-state.

A concrete (actual) event is an activation of the procedure p at a state $\langle S, c o u\rangle$. We denote it by $e_{c}=\langle p, S, c o u\rangle$.

A concrete behavior B is a sequence of concrete events $e_{c}^{1} \ldots e_{c}^{n}$. Let \mathbf{B} be the set of all concrete behaviors.

A computational system is a 5-tuple $\left\langle O B, P, P^{\prime}, f_{a}, f_{t}\right\rangle$, where f_{a} and f_{t} are maps: $\mathbf{B} \rightarrow\left\{g \mid g\right.$ is function, $\left.g: P^{\prime} \rightarrow N+\right\}$ which are defined as follows:

The definition of $f_{a}: f_{a}(\emptyset)(p)=0$ for all $p \in P^{\prime}$,

$$
\begin{aligned}
f_{a}(B\langle p, S, \operatorname{cou}\rangle)\left(p^{\prime}\right) & =f_{a}(B)(p)+1 \quad \text { if } \quad p^{\prime}=p \\
& =f_{a}(B)\left(p^{\prime}\right) \text { otherwise, } p^{\prime} \in P^{\prime}, B \in \mathbf{B} .
\end{aligned}
$$

The definition of $f_{t}: f_{t}(\emptyset)(p)=0$ for all $p \in P^{\prime}$,

$$
\begin{aligned}
f_{t}(B\langle p, S, \operatorname{cou}\rangle)\left(p^{\prime}\right) & =f_{t}(B)(p)+1 \quad \text { if } \quad p^{\prime}=p \\
& =f_{t}(B)\left(p^{\prime}\right) \text { otherwise, } p^{\prime} \in P^{\prime}, B \in \mathbf{B} \quad(\emptyset \text { is the empty sequence }) .
\end{aligned}
$$

Let E be an $E B E$, then
$P_{E}=\{p \mid p$ is a path function in $E\}$,
$V_{E}=\{v \mid v$ is variable in E, and $v \neq A C T$ and $v \neq T E R M\}$,
$C_{E}=\{c \mid c$ is constant in $E\}$, assume that $C_{E} \subset O B$,
$A T_{E}=\left\{A C T(p), T E R M(p) \mid p \in P^{\prime}\right\}$,
$Q_{E}=\{q \mid q$ is predicate in $E\}$.
An abstract event e_{a} is a 4-tuple $\left\langle p, q, V_{E}, A T_{E}\right\rangle$, where $p \in P_{E}, q \in Q_{E}$.
An abstract event expression $E a$ of E is an expression obtained as follows. All operands $p[q]$ or p in E are substituted by abstract events $e_{a}=\left\langle p, q, V_{E}, A T_{E}\right\rangle$ or $e_{a}=\left\langle p\right.$, true $\left., V_{E}, A T_{E}\right\rangle$ respectively.

Let $e_{c}=\langle p, s, c o u\rangle$, then the counter-state "cou" and the maps f_{a} and f_{t} match under a concrete behavior B, if $a_{p}=f_{a}\left(B e_{c}\right)(p), a_{p^{\prime}}=f_{a}(B)\left(p^{\prime}\right), p^{\prime} \in P_{E} \backslash\{p\}$, and $t_{p^{\prime}}=f_{t}(B)\left(p^{\prime}\right), p^{\prime} \in P_{E}$. This fact is denoted by Matchs $\left(\right.$ cou, $\left.f_{a}, f_{t}, B\right)$.

An Interpretation is a function $I: V_{E} \cup C_{E} \cup A T_{E} \rightarrow O B \cup N+$ such that $I(v) \in O B$ for $v \in V_{E}, I(c) \in O B$ for $c \in C_{E}, I(v) \in N+$ for $v \in A T_{E}$ and I preserves constants and usual arithmetic operators, that is
(1) $I(c)=c$ for all $c \in C_{E}$,
(2) $I(\exp 1$ op $\exp 2)=I(\exp 1)$ op $I(\exp 2)$, where $o p \in\{+,-, \times, /, \uparrow\}$.

A concrete event $e_{c}=\langle p, S, c o u\rangle$ and an abstract event $e_{a}=\left\langle p^{\prime}, q, V_{E}, A T_{E}\right\rangle$ match under an interpretation I, if $p=p^{\prime}$ and $\left\{I(v) \mid v \in V_{E}\right\} \subset S$ and $I\left(A C T\left(p^{\prime}\right)\right)=a_{p^{\prime}}$, $I\left(T E R M\left(p^{\prime}\right)\right)=t_{p^{\prime}}$ for all $p^{\prime} \in P_{E}$. This is denoted by Matche $\left(e_{c}, e_{a}, I\right)$.

Now we introduce the sets $R, B E$ and $E N$ for $E a$. First we supply the abstract events of $E a$ with indexes $1,2, \ldots$ continuously, in such a manner that any e_{a} should receive different indexes at different occurrences. If the index of e_{a} is i, then $e_{a}(i)$ denotes an indexed event of e_{a}, and the resulting expression is called an indexed expression of $E a$ and denoted \hat{E}. Then the sets $R(\hat{E}), B E(\hat{E})$ and $E N(\hat{E})$ are defined as follows.
(1) If $\hat{E}=e_{a}(k)$ then $R(\hat{E})=\emptyset, B E(\hat{E})=E N(\hat{E})=\left\{e_{a}(k)\right\}$.
(2) Assume that $R i=R(\hat{E} i), B E i=B E(\hat{E} i)$ and $E N i=E N(\widehat{E i}), i=1,2$, then

$$
\begin{aligned}
& R(\widehat{E 1 ; E 2})=R 1 \cup R 2 \cup(E N 1 \times B E 2) ; \quad B E(\widehat{E 1 ; E 2})=B E 1, \\
& B E(\widehat{E 1 * ; E 2})=B E 1 \cup B E 2,
\end{aligned}
$$

$E N(\widehat{E 1 ; E 2})=E N 2$,
$\widehat{R(E 1+E 2)}=R 1 \cup R 2$,

$$
E N(\widehat{E 1 ; E 2} *)=E N 1 \cup E N 2
$$

$$
B E(\widehat{(E 1+E 2)}=B E 1 \cup B E 2
$$

$$
E N(\widehat{(E 1+E 2)}=E N 1 \cup E N 2
$$

$$
\begin{aligned}
& R(\widehat{(E 1 *})=R 1 \cup(E N 1 \times B E 1), \quad B E(\widehat{E 1 *})=B E 1, \quad E N(\widehat{E 1 *})=E N 1, \\
& R \widehat{(E 1 \Delta E 2)}=R 1 \cup R 2 \cup(\bar{R} 1 \times \bar{R} 2) \cup(\bar{R} 2 \times \bar{R} 1)
\end{aligned}
$$

where $\vec{R}=\vec{R} \cup \vec{R}$, and $\vec{R}=\left\{a \mid\left(a^{\prime}, a\right) \in R\right\}$ and $\vec{R}=\left\{a \mid\left(a, a^{\prime}\right) \in R\right\}$,

In the following if $\left(e_{a}(i), e_{a}^{\prime}(k)\right) \in R(\hat{E})$, then it is written $e_{a}(i)>e_{a}^{\prime}(k)$.
Let $\operatorname{Exp}(\hat{E})=\left\{e_{a}(i) \mid e_{a}(i)\right.$ is an indexed event in $\left.\hat{E}\right\}$.
Let $e_{a}(i) \in \operatorname{Exp}(\hat{E})$ and $M \subset \operatorname{Exp}(\hat{E})$, then $\dot{e}_{a}(i)=\left\{e_{a}^{\prime}(k) \mid e_{a}(i)>e_{a}^{\prime}(k)\right\}$, and $\vec{M}=\bigcup_{e_{a} \in M} \dot{\vec{e}}_{a}(i)$.

From the construction of the sets $R(\hat{E}), E N(\hat{E})$ and $B E(\hat{E})$ it is easy to see the following properties.

Statement 1.

a) $e_{a}(k) \in B E(\hat{E})$ iff there is a u such that $e_{a}(k) u \in L(\hat{E})$, $e_{a}(k) \in E N(\hat{E})$ iff there is a u such that $u e_{a}(k) \in L(\hat{E})$,
$e_{a}(k)>e_{a}^{\prime}(n)$ iff there are u, v such that $u e_{a}(k) e_{a}^{\prime}(n) v \in L(\hat{E})$,
b) $e_{a}^{\prime}\left(k_{1}\right)>\ldots>e_{a}^{n}\left(k_{n}\right), e_{a}^{1}\left(k_{1}\right) \in B E(\hat{E})$ iff there is u such that $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n}\left(k_{n}\right) u \in L(\hat{E})$.
Example. Let $E((p[q]+g[r]) ; f *) *$. Then

$$
\begin{aligned}
& E a=\left(\left(e_{a}^{1}+e_{a}^{2}\right) ; e_{a}^{3} *\right) * \\
& \hat{E}=\left(\left(e_{a}^{1}(1)+e_{a}^{2}(2)\right) ; e_{a}^{3}(3) *\right) * \\
& B E(\hat{E})=\left\{e_{a}^{1}(1), e_{a}^{2}(2)\right\}, \quad E N(\hat{E})=\left\{e_{a}^{1}(1), e_{a}^{2}(2), e_{a}^{3}(3)\right\}, \\
& R(\hat{E})=\left\{\left(e_{a}^{1}(1), e_{a}^{3}(3)\right),\left(e_{a}^{2}(2), e_{a}^{3}(3)\right),\left(e_{a}^{3}(3), e_{a}^{3}(3)\right),\left(e_{a}^{1}(1), e_{a}^{1}(1)\right),\right. \\
& \left.\quad\left(e_{a}^{2}(2), e_{a}^{2}(2)\right),\left(e_{a}^{3}(3), e_{a}^{1}(1)\right),\left(e_{a}^{3}(3), e_{a}^{2}(2)\right),\left(e_{a}^{2}(2), e_{a}^{1}(1)\right),\left(e_{a}^{1}(1), e_{a}^{2}(2)\right)\right\},
\end{aligned}
$$

where $e_{a}^{1}=\left\langle p, q, V_{E}, A T_{E}\right\rangle, e_{a}^{2}=\left\langle g, r, V_{E}, A T_{E}\right\rangle e_{a}^{3}=\left\langle f\right.$, true, $\left.V_{E}, A T_{E}\right\rangle$.
Definition. Let $R=\left\langle O B, P, P^{\prime}, f_{a}, f_{t}\right\rangle$ be a computational system and E an $E B E$ such that $P^{\prime}=P_{E}$. The semantics of E is defined by the predicate Valid $: \mathbf{B} \rightarrow$ $\rightarrow\{$ true, false $\}$ with the partial map $\operatorname{Next}_{E}: \mathbf{B} \rightarrow\{\vec{M} \mid M \subset \operatorname{Exp}(\hat{E})\}$, in such a way that $\operatorname{Next}_{E}(B)$ is defined iff $\operatorname{Valid}_{E}(B)=$ true. The Valid_{E} and Next_{E} are defined recursively as follows.
(1) Let $e_{c}=\langle p, S$, cou \rangle, then $\operatorname{Valid}_{E}\left(e_{c}\right)=\operatorname{Matchs}\left(\operatorname{cou}, f_{a}, f_{t}, \emptyset\right) \& M \neq \emptyset$, where $M=\left\{e_{a}(i) \mid e_{a}(i) \in B E(\hat{E}) \& e_{a}=\left\langle p, q, V_{E} A T_{E}\right\rangle \&(\exists I)\left(\operatorname{Matche}\left(e_{c}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)\right.$
$=t r u e\}$ (Sat is defined later). And $\operatorname{Next}_{E}\left(e_{c}\right)$ is defined iff $\operatorname{Valid}_{E}\left(e_{c}\right)=$ true, and then $\operatorname{Next}_{E}\left(e_{c}\right)=\bar{M}$.
(2) Let $e_{C}=\langle p, S$, cou \rangle and $B \in \mathbf{B}$, then
$\operatorname{Valid}_{E}\left(B e_{c}\right)=\operatorname{Valid}_{E}(B) \& \operatorname{Next}_{E}(B)=\vec{N} \& M a t c h s\left(c o u, f_{a}, f_{t}, B\right) \& M \neq \emptyset$, where $M=\left\{e_{a}(i) \mid e_{a}(i) \in \vec{N} \& e_{a}=\left\langle p, q, V_{E}, A T_{E}\right\rangle \&(\exists I)\left(\operatorname{Matche}\left(e_{c}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\}$. And $\operatorname{Next}_{E}\left(B e_{c}\right)$ is defined iff $\operatorname{Valid}_{E}\left(B e_{c}\right)=$ true, and then $\operatorname{Next}_{E}\left(B e_{c}\right)=\vec{M}$.

The definition of the predicate Sat. $\operatorname{Sat}(q, I)$ is defined according to the syntax of the predicate q.

$$
\begin{aligned}
& \text { Sat }(\langle\text { counter exp }\rangle\langle\text { rel }\rangle\langle\text { counter exp }\rangle, I)= \\
& \quad=I(\langle\text { counter exp }\rangle)\langle\text { rel }\rangle I(\langle\text { counter exp }\rangle) \\
& \text { Sat }(\langle\text { arithmetic exp }\rangle\langle\text { rel }\rangle\langle\text { arithmetic exp }\rangle, I)= \\
& \quad=I(\langle\text { arithmetic exp }\rangle)\langle\text { rel }\rangle I(\langle\text { arithmetic exp }\rangle) \\
& \text { Sat }(\langle\text { predicate }\rangle\langle\text { logic op }\rangle\langle\text { predicate }\rangle, I)= \\
& \quad=\text { Sat }(\langle\text { predicate }\rangle, I)\langle\text { logic op }\rangle \text { Sat }(\langle\text { predicate }\rangle, I) \\
& \text { Sat }(7\langle\text { predicate }\rangle, I)=\rceil \text { Sat }(\langle\text { predicate }\rangle, I) .
\end{aligned}
$$

Let $\mathbf{B}(E)=\left\{B \mid B \in \mathbf{B}\right.$ and $\operatorname{Valid}_{E}(B)=$ true $\}$.
From the definition of the semantics of $E B E$ s it is easy to see the following fact.

Fact 1. Let $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, c o u_{i}\right\rangle, i=1, \ldots, n$, then
$\operatorname{Valid}_{E}(B n)=$ true iff
$\operatorname{Matchs}\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B_{0}=\emptyset$, and there is a sequence $\{M i\}_{i=1}^{n}$ such that

$$
\begin{aligned}
& \text { Mi } \begin{aligned}
& \left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\right. \\
& =\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)=\operatorname{true}\right\} \neq \emptyset, \\
\text { and } & \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, i=1, \ldots, n, \overrightarrow{M O}=B E(\hat{E}) .
\end{aligned} .
\end{aligned}
$$

IV. Some properties of EBE

Definition. Two $E B E s E$ and E^{\prime} are syntactically equivalent iff $L(E)=L\left(E^{\prime}\right)$.
Definition. Two $E B E S$, E and E^{\prime} are semantically equivalent iff $\mathbf{B}(E)=\mathbf{B}\left(E^{\prime}\right)$.
Theorem 1. If E and E^{\prime} are $E B E$ such that $L(E) \subset L\left(E^{\prime}\right)$ and for all $u \in L\left(E^{\prime}\right) \backslash L(E)$ there are $v \in L(E)$ and w for which $v=u w$ then E and E^{\prime} semantically equivalent.

Proof. According to the construction of $E a$ we can identify $E a$ with E, thus $L(E a)$ with $L(E)$. First we prove the following facts.

For any E and $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle$.
Fact 2. If there is a sequence $\{M i\}_{i=1}^{n}$ such that

$$
\begin{gathered}
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\right. \\
\left.=\left\langle p_{i}, q, \dot{V}_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\} \neq \emptyset \\
i=1, \ldots, n, \overrightarrow{M O}=E(B \hat{E}),
\end{gathered}
$$

then there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in M i$, $i=1, \ldots, n$ and $e_{a}^{i}\left(k_{1}\right)>\ldots>e_{a}^{n}\left(k_{n}\right)$.

The existence of the desired sequence is shown by induction as follows.
Since $M n \neq \emptyset$, thus there is an $e_{a}^{n}\left(k_{n}\right) \in M n, e_{a}^{n}=\left\langle p_{n}, q_{n}, V_{E}, A T_{E}\right\rangle$. From the definition of $M n$ there is an $e_{a}^{n-1}\left(k_{n-1}\right) \in M_{n-1}$ for which $e_{a}^{n-1}\left(k_{n-1}\right)>e_{a}^{n}\left(k_{n}\right), e_{a}^{n-1}=$ $=\left\langle p_{n-1}, q_{n-1}, V_{E}, A T_{E}\right\rangle$. Assume that the sequence $\left\{e_{a}^{j}\left(k_{j}\right)\right\}_{j=i}^{n}, i>1$, is constructed. Then from the definition of $M i$ there is an $e_{a}^{i-1}\left(k_{i-1}\right) \in M_{i-1}$ for which $e_{a}^{i-1}\left(k_{i-1}\right)>e_{a}^{i}\left(k_{i}\right)$. So we get the desired sequence.

Fact 3. If there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, such that there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n}\left(k_{n}\right) u \in L(\hat{E})$, and for each $i \leqq n$ there is an I for which Matche $\left(e_{c}^{i}, e_{a}^{i}, I\right)$ and $\operatorname{Sat}\left(q_{i}, I\right)=$ true, then $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n$ (Mi is defined in Fact $2, i=1, \ldots, n$).

This can easily be proved by induction on $i \leqq n$ (using Statement 1).
Now we prove Theorem 1.
We have to prove that $\mathbf{B}(E)=\mathbf{B}\left(E^{\prime}\right)$.
From Fact 1 it is sufficient to prove that for any $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, c o u_{i}\right\rangle$, $i=1, \ldots, n$, the following holds.

$$
(+)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is } \\
\text { a sequence }\{M i\}_{i=1}^{n} \text { such that } \\
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \&\right.\right. \\
\quad \operatorname{Sat}(q, I))=\operatorname{true}\} \neq \emptyset, \\
\text { and } \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, i=1, \ldots, n, \overrightarrow{M O}=B E(\hat{E}) .
\end{array}\right.
$$

iff

$$
(++)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is } \\
\text { a sequence }\{N i\}_{i=1}^{n} \text { such that } \\
N i=\left\{e_{a}(1) \mid e_{a}(1) \in \vec{N}_{i-1} \& e_{a}=\left\langle p_{i}, q, V_{E^{\prime}}, A T_{E^{\prime}}\right\rangle \& \exists I\left(\text { Matche }\left(e_{c}^{i}, e_{a}, I\right) \&\right.\right. \\
\quad \operatorname{Sat}(q, I))=\text { true }\} \neq \emptyset, \\
\text { and } N \operatorname{Next}_{E^{\prime}}(B i)=\overrightarrow{N i}, i=1, \ldots, n, \overrightarrow{N \mathrm{No}}=B E\left(\hat{E}^{\prime}\right) .
\end{array}\right.
$$

This is shown by induction on n.

1) It is easy to show that the statement holds for $n=1$.
2) Assume that the statement holds for n. Now we prove that the statement holds for $n+1$ too.
$(+) \Rightarrow(++)$. Assume that $(+)$ holds for $n+1$. Then $(++)$ holds for n. We have yet to prove that $N_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E^{\prime}}\left(B_{n+1}\right)=\vec{N}_{n+1}$.

According to Fact 2 there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$, and $e_{a}^{1}\left(k_{1}\right)>\ldots>e_{a}^{n+1}\left(k_{n+1}\right)$. Since $e_{a}^{1}\left(k_{1}\right) \in B E(\hat{E})$, thus, by Statement 1 , there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n-1}\left(k_{n+1}\right) u \in L(\hat{E})$ which implies that there is a v for which $e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a)$. Since $L(E a) \subset L\left(E^{\prime} a\right)$, thus $e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right)$ which implies that there are a sequence $\left\{l_{i}\right\}_{i=1}^{n+1}$ and a u^{\prime} for which $e_{a}^{1}\left(l_{1}\right) \ldots e_{a}^{n+1}\left(l_{n+1}\right) u^{\prime} \in L\left(\hat{E}^{\prime}\right)$. Then, by Fact 3 , we have $e_{a}^{i}\left(l_{i}\right) \in N i$, $i=1, \ldots, n+1$. So $N_{n+1} \neq \emptyset$. Since (++) holds for n, thus $\operatorname{Next}_{E^{\prime}}(B n)=N_{n}$ and, by Fact 1, $\operatorname{Valid}_{E^{\prime}}(B n)=$ true, therefore $\operatorname{Valid}_{E^{\prime}}\left(B_{n+1}\right)=$ true (by the definition of Semantics of EBEs) which implies $\operatorname{Next}_{E^{\prime}}\left(B_{n+1}\right)$ is defined and is \vec{N}_{n+1}.
$(++) \Rightarrow(+)$. Assume that $(++)$ holds for $n+1$. Then $(+)$ holds for n. We have yet to prove that $M_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E}\left(B_{n+1}\right)=\dot{\vec{M}}_{n+1}$. Similarly to the above argument we have the sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E^{\prime}}, A T_{E^{\prime}}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in N i, i=1, \ldots, n+1$, and there is a v such that $e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right)$. We have two cases:

$$
\begin{array}{ll}
\text { either } & e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a) \\
\text { or } & e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right) \backslash L(E a) .
\end{array}
$$

In the second case there is a v^{\prime} for which $e_{a}^{1} \ldots e_{a}^{n+1} v v^{\prime} \in L(E a)$. So in both cases we have that there are a sequence $\left\{l_{i}\right\}_{i=1}^{M+1}$ and w for which $e_{a}^{1}\left(l_{1}\right) \ldots e_{a}^{n+1}\left(l_{n+1}\right) w \in L(\hat{E})$. Therefore by Fact $3 e_{a}^{i}\left(l_{i}\right) \in M i, i=1, \ldots, n+1$. So $M_{n+1} \neq \emptyset$. Again by the same argument seen above we get that $\operatorname{Next}_{E}\left(B_{n+1}\right)=\vec{M}_{n+1}$.

Theorem 2. a) if E and E^{\prime} are syntactically equivalent then they are semantically equivalent too.
b) There exist two $E B E S E$ and E^{\prime} which are semantically equivalent but not syntactically equivalent.

Proof. a) It is a corollary of Theorem 1.
b) In order to prove this we give an example.

Let $E=p_{1}+\left(p_{1} ; p_{2}\right)$ and $E^{\prime}=p_{1} ; p_{2}$, it is clear that E and E^{\prime} satisfy Theorem 1, therefore E and E^{\prime} are semantically equivalent but not syntactically equivalent because $L(E) \neq L\left(E^{\prime}\right)$.

An EBE is a GPE (Generalised Path Expression) if the operator Δ does not occur in it.

Theorem 3. For every $E B E E$ there exists a $G P E E^{\prime}$ such that E and E^{\prime} are semantically equivalent.

Proof. First we construct an automaton M for which $L(M)=L(E)$. In order to do this we define the sets $R(\hat{E}), B E(\hat{E})$ and $E N(\hat{E})$ similarly to those of Section III. The automaton $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ is then constructed as follows. Let $\Sigma=\left\{e_{a} \mid e_{a}\right.$ is in $\left.E a\right\}=\left\{e_{a}^{1}, \ldots, e_{a}^{n}\right\}$. Let s_{0} be an arbitrary symbol. Then $\delta\left(s_{0}, e_{a}^{i}\right)=$ $=\left\{e_{a}^{i}(k) \mid e_{a}^{i}(k) \in B E(\hat{E})\right\}=s_{1}^{i}$. So we have defined states $s_{0}, s_{1}^{1}, s_{1}^{2}, \ldots, s_{1}^{n}$ of St. Suppose that a state s of $S t$ is defined, then

$$
\delta\left(s, e_{a}^{i}\right)=\left\{e_{a}^{i}(k) \mid \exists e_{a}^{j}(m)\left(e_{a}^{j}(m) \in s \& e_{a}^{j}(m)>e_{a}^{i}(k)\right)=\text { true }\right\}, \quad i=1,2, \ldots, n .
$$

Finally let

$$
F^{\prime}=\{s \mid s \cap E N(\hat{E}) \neq \emptyset\} \text { and } F=F^{\prime} \cup\left\{s_{0}\right\} \text { if } \varepsilon \in L(E a)=F,
$$

and $F=F^{\prime}$, otherwise.
It is easy to see that $L(M)=L(E a)$. It is known that there is a regular expression E^{\prime} over Σ for which $L(M)=L\left(E^{\prime}\right)$. Thus we have $L(E a)=L\left(E^{\prime}\right)$. From the construction of $E a$ we can identify $E a$ with E, thus $L(E a)$ with $L(E)$. Therefore, by Theorem 2, E and E^{\prime} are semantically equivalent.

V. Implementation of EBE

The implementation of $E B E$ is defined using the concept of automaton.
Let $R=\left\langle O B, P, P^{\prime}, f_{a}, f_{t},\right\rangle$ be a computational system. Let $Q=\{q \mid q$ is predicate, $q: O B^{\prime} \times\left\{f_{a}(B)(p) \mid B \in \mathbf{B}, p \in P^{\prime}\right\}^{m} \times\left\{f_{t}(B)(p) \mid B \in \mathbf{B}, p \in P^{\prime}\right\}^{n} \rightarrow\{$ true, false $\}$, and $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ a deterministic finite automaton, where $\Sigma \subset P^{\prime} \times Q$. For all $p \in P^{\prime}$ the set Condition $(p)=\{\langle s, q\rangle\rangle \delta(s,\langle p, q\rangle)$ is defined $\}$ is called condition of the procedure p.

Definition. An Implementation is a set $I(M)=\left\{\langle p\right.$, Condition $\left.(p)\rangle \mid p \in P^{\prime}\right\}$. For simplicity we often omit the argument M.

Restriction.

It is assumed about the automaton M that if $s_{i}=\delta\left(s_{i-1}, b\right), b_{i}=\left\langle p_{i}, q_{i}\right\rangle$, $b_{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1,2, \ldots, n$, then there is a u such that $b_{1} b_{2} \ldots b_{n} u \in L(M)$.

Now we define the semantics of Implementations.
Definition. Let I be an Implementation. The semantics of I is defined by the predicate Valid $_{I}$ with the partial map Next $_{I}$, where Valid $_{I}: \mathbf{B} \rightarrow\{$ true, false $\}$ and $\operatorname{Next}_{I}: \mathbf{B} \rightarrow 2^{\text {St }}$, in such a way that $\operatorname{Next}_{I}(B)$ is defined iff Valid $_{I}(B)=$ true. The Valid ${ }_{I}$ and $N e x t_{I}$ are defined recursively as follows.
(1) Let $e_{c}=\langle p, S, c o u\rangle$ be an actual event, then
$\operatorname{Valid}_{I}\left(e_{c}\right)=\operatorname{Matchs}\left(c o u, f_{a}, f_{t}, \emptyset\right) \& \exists\left\langle s_{0}, q\right\rangle\left(\left\langle s_{0}, q\right\rangle \in \operatorname{Condition}(p) \& \operatorname{Sat}\left(q, e_{c}, \emptyset\right)\right)$,
(Sat is defined later).
$\operatorname{Next}_{I}\left(e_{c}\right)$ is defined iff $\operatorname{Valid}_{I}\left(e_{c}\right)=$ true, and then
$\operatorname{Next}_{I}\left(e_{c}\right)=\left\{s \mid s \in S t \& \exists q\left(q \in Q \& s=\delta\left(s_{0},\langle p, q\rangle\right) \& S a t\left(q, e_{c}, \emptyset\right)\right)=\right.$ true $\}$.
(2) Let $e_{c}=\langle p, S, c o u\rangle$ and $B \in B$, then

$$
\operatorname{Valid}_{I}\left(B e_{c}\right)=\operatorname{Valid}_{I}(B) \& \operatorname{Next}_{I}(B)=
$$

$=G \& M a t c h s\left(c o u, f_{a}, f_{i}, B\right) \& \exists s \exists q(s \in G \& q \in Q \&\langle s, q\rangle \in \operatorname{Condition}(p) \&$

$$
\operatorname{Sat}\left(\left(q, e_{c}, B\right)\right)
$$

$\operatorname{Next}_{I}\left(B e_{c}\right)$ is defined iff $\operatorname{Valid}_{I}\left(B e_{c}\right)=$ true, and then $\operatorname{Next}_{I}\left(B e_{c}\right)=H$, where $H=\left\{s \mid s \in S t \quad \& \exists s^{\prime} \exists q\left(s^{\prime} \in G \& q \in Q \& s=\delta\left(s^{\prime},\langle p, q\rangle\right) \& \operatorname{Sat}(q, e, B)\right)=\right.$ true $\}$.

The definition of Sat. $\operatorname{Sat}\left(q, e_{c}, B\right)$ is defined simply as follows.
$\operatorname{Sat}\left(q, e_{c}, B\right)=q\left(S, f_{a}\left(B e_{c}\right)(p),\left\{f_{a}(B)\left(p^{\prime}\right) \mid p^{\prime} \in P^{\prime} \backslash\{p\}\right\},\left\{f_{t}(B)\left(p^{\prime}\right) \mid p^{\prime} \in P^{\prime}\right\}\right)$.
Similarly to Fact 1 it is easy to see the following fact (from the definition of the semantics of Implementation).

Fact 4. For any $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle, \operatorname{Valid}_{I}(B n)=$ true iff
$\operatorname{Matchs}\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset$, and there is a sequence $\left\{H_{i}\right\}_{i=1}^{n}$ so that

$$
H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)=\operatorname{true}\right\} \neq \emptyset
$$

and $\operatorname{Next}_{I}(B i)=H i, i=1, \ldots, n, H o=\left\{s_{0}\right\}$.
Let $\mathbf{B}(I)=\left\{B \mid B \in \mathbf{B}\right.$ and $\operatorname{Valid}_{1}(B)=$ true $\}$.
Definition. An Implementation of an $E B E E$ is an Implementation

$$
I=\left\{\langle p, \text { Condition }(p)\rangle \mid p \in P^{\prime}\right\} \text { such that } P^{\prime}=P_{E} \quad \text { and } \quad \mathbf{B}(I)=\mathbf{B}(E)
$$

Now we give an algorithm for transforming an $E B E E$ to its Implementation:

Algorithm.

1. Transforming E to the following: we substitute all operands $p[q]$ or p of E by $e=\langle p, q\rangle$ or $e=\langle p$, true \rangle respectively. The resulting expression is denoted by $E e$.
2. From $E e$ constructing an automaton $M=\left\langle\Sigma, S t, s_{0}, \delta, F\right\rangle$ as that of Theorem 3, where $\Sigma=\{e \mid e$ is in $E e\}$.
3. For all $p \in P_{E}$ constructing the set Condition (p), obtaining

$$
I=\left\{\langle P, \text { Condition }(p)\rangle \mid p \in P_{E}\right\} .
$$

Theorem 4. I is an Implementation of E.
Proof. First we prove the following facts. For any implementation I and actual behavior $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle$

Fact 5. If there is a sequence $\{H i\}_{i=1}^{n}$ such that

$$
\begin{gathered}
H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)=\operatorname{true}\right\} \neq \emptyset, \\
i=1, \ldots, n, \quad H o=\left\{s_{0}\right\},
\end{gathered}
$$

then there are sequences $\left\{s_{i}\right\}_{i=0}^{n}$ and $\left\{e_{i}\right\}_{i=1}^{n}, e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i} \in H i, s_{i}=\delta\left(s_{i-1}, e^{i}\right)$ and $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}, i=1, \ldots, n$.

This can be proved by induction as follows. Since $H n \neq \emptyset$, there is an $s_{n} \in H n$. From the definition of $H n$ there are $s_{n-1} \in H_{n-1}$ and $e^{n}=\left\langle p_{n}, q_{n}\right\rangle$ for which $s_{n}=\delta\left(s_{n-1}, e^{n}\right)$ and $\operatorname{Sat}\left(q_{n}, e^{n}, B_{n-1}\right)=$ true. Assume that the sequences $\left\{s_{j}\right\}_{j=i}^{n}$ and $\left\{e^{j}\right\}_{j=i+1}^{n}$, are constructed. Then from the definition of Hi there are $s_{i-1} \in H_{i-1}$ and $e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, and $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true. So we get the desired sequences.

Fact 6. If there are sequences $\left\{s_{i}\right\}_{i=0}^{n}$ and $\left\{e^{i}\right\}_{i=1}^{n}, e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$ and $\operatorname{Sat}\left(q_{i}, e^{i}, B_{i-1}\right)=\operatorname{true}, i=1, \ldots, n$, then $s_{i} \in H i, i=0,1, \ldots, n$ (Hi is defined in Fact 5).

This can easily be proved by induction on $i \leqq n$.
Now we prove the Theorem. It is easy to see that:

1. The automaton M satisfies the Restriction.
2. $L(M)=L(E e)$.

Now we show that $\mathbf{B}(E)=\mathbf{B}(I)$. By Fact 1 and Fact 4 it is sufficient to prove that for any $E B E E$ and Implementation I if $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}\right\rangle_{i}$, $i=1,2, \ldots, n$, then

$$
(*)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is a } \\
\text { sequence }\{M i\}_{i=1}^{n} \text { such that } \\
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}^{i}=\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists \text { interpretation } I\right. \\
\left.\left(M a t c h e\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\} \neq \emptyset, \text { and } \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, \\
i=1, \ldots, n, \overrightarrow{M 0}=B E(\hat{E})
\end{array}\right.
$$

iff

$$
\text { (**) }\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a } \\
\text { sequence }\{H i\}_{i=1}^{\}_{i=1}} \text { such that } \\
H i=\left\{s \mid s \in S t \& \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)\right. \\
=\operatorname{true}\} \neq \emptyset, \text { and } N e x t_{I}(B i)=H i, \quad i=1, \ldots, n, \quad H o=\left\{s_{0}\right\} .
\end{array}\right.
$$

From the construction of $E a$ and $E e$ we can identify $E a$ with $E e$ and therefore $L(E a)$ with $L(E e)$ too, so $L(E a)=L(E e)=L(M)$.

Now we prove that ($*$) iff $(* *)$ for any $B n$. This is shown by induction on n.
(1) It is easy to see that the statement holds for $n=1$.
(2) Assume that the statement holds for n.
$(*) \Rightarrow(* *)$. Suppose that (*) holds for $n+1$. Then ($*^{*}$) holds for n. We have yet to prove that $H_{n+1} \neq \emptyset$, and $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

By Fact 2 we have a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p, q_{i}, V_{E}, A T_{E}\right\rangle$, such that $e_{a}^{1}\left(k_{1}\right)>\ldots>e_{a}^{n+1}\left(k_{n+1}\right)$, and $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$. Therefore according to Statement 1 there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n+1}\left(k_{n+1}\right) u \in L(\hat{E})$ which implies that there is a v such that $e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a)$. Since $L(E a)=L(M)$ thus there exists a sequence $\left\{s_{i}\right\rangle_{i=0}^{n+1}$ such that $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, where $e^{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots n+1$. It is easy to see that for all $i \leqq n+1, \operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true (from the definition of Matche, Matchs, interpretation $I, \operatorname{Sat}(q, I)$ and $\operatorname{Sat}\left(q, e_{c}, B\right)$). So by Fact 6 we have $s_{i} \in H i, i=1, \ldots, n+1$, that is $H_{n+1} \neq \emptyset$. Since (**) holds for n thus $N e x t_{I}(B n)=H n$ and, by Fact 4, Valid $(B n)=$ true. Therefore from the definition of the Semantics of Implementation $\operatorname{Valid}_{I}\left(B_{n+1}\right)=$ true which implies that $\operatorname{Next}_{I}\left(B_{n+1}\right)$ is defined and is H_{n+1}.
($*^{*}$) $\Rightarrow(*)$. Assume that (**) holds for $n+1$. Then (*) holds for n. We have yet to prove that $M_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E}\left(B_{n+1}\right)=\vec{M}_{n+1}$.

According to Fact 5 we have the sequence $\left\{s_{i}\right\}_{i=0}^{n+1}$ and $\left\{e^{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H i$, $s_{i}=\delta\left(s_{i-1}, e^{i}\right), \operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}$, and $e^{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots, n+1$. Then, by Restriction, there is a u for which $e^{1} \ldots e^{n+1} u \in L(M)=L(E a)$ which implies that there are a v and a sequence $\left\{k_{i}\right\}_{i=1}^{n+1}$ for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n+1}\left(k_{n+1}\right) v \in L(\hat{E}), e_{a}^{i}=$ $=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$. It is easy to see that for each $i \leqq n+1$ there is an interpretation I for which $\operatorname{Matche}\left(e_{e}^{i}, e_{a}^{i}, I\right)$ and $\operatorname{Sat}\left(q_{i}, I\right)=$ true (again from the definition of Matche, Matchs, Interpretation I, $\operatorname{Sat}(q, I)$ and $\left.\operatorname{Sat}\left(q, e_{c}, B\right)\right)$. Therefere, by Fact 3, $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$. So $M_{n+1} \neq \emptyset$. Since (*) holds for n, thus $\operatorname{Next}_{E}(B n)=M n$ and, by Fact 1, $\operatorname{Valid}_{E}(B n)=$ true, therefore according to the definition of semantics of $E B E$ s we have $\operatorname{Valid}_{E}\left(B_{n+1}\right)=$ true which implies that $\operatorname{Next}_{I}\left(B_{n+1}\right)$ is defined and is \vec{M}_{n+1}.

VI. Reduction of EBEs

Now we give some rules for reducing EBEs.
Statement 2. Let $E 1, E 2$ and $E 3$ be $E B E$ s. Then
(1) $E 1+E 1 \approx E 1$
(2) $E 1+E 2 \approx E 2+E 1$
(3) $(E 1+E 2)+E 3 \approx E 1+(E 2+E 3)$
(4) $(E 1 ; E 2) ; \quad E 3 \approx E 1 ;(E 2 ; E 3)$
(5) $E 1 ;(E 2+E 3) \approx E 1 ; \quad E 2+E 1 ; \quad E 3$
(6) $(E 1+E 2) ; \quad E 3 \approx E 1 ; \quad E 3+E 2 ; \quad E 3$
(7) $E 1 \Delta E 2 \approx E 2 \Delta E 1$
(8) $(E 1 \Delta E 2) \Delta E 3 \approx E 1 \Delta(E 2 \Delta E 3)$
(9) $E 1 \Delta(E 2+E 3) \approx E 1 \Delta E 2+E 1 \Delta E 3$

where " \approx " means semantical equivalence. This is followed from Theorem 2.
Similarly to EBEs we also define the syntactical and semantical equivalence of Implementions.

Definition. Two Implementations $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are syntactically equivalent if $L(M)=L\left(M^{\prime}\right)$, and semantically equivalent if $\mathbf{B}(I)=\mathbf{B}\left(I^{\prime}\right)$.

Definition. An Implementation $I(M)$ is minimal if the automaton M has a minimum number of states.

Theorem 5. There exists an algorithm by means of which we can transform any Implementation $I(M)$ to a minimal Implementation $I^{\prime}\left(M^{\prime}\right)$ so that $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are semantically equivalent.

Proof. It is known that there is an algorithm by means of which we can reduce any automaton M to a minimal automaton M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$. The semantical equivalence of $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ is then followed from the following statement.

Statement 3. If $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are Implementations such that $L(M) \subset L\left(M^{\prime}\right)$, and for any $u \in L\left(M^{\prime}\right) \backslash L(M)$ there are $v \in L(M)$ and w for which $v=u w$, then $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are semantically equivalent.

Proof. Let $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ and $M^{\prime}=\left(\Sigma^{\prime}, S t^{\prime}, s_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$.

By Fact 4 it is sufficient to prove that for any $B n=e_{c}^{1} \ldots e_{c}^{n}$ the following holds:
$\left\{\begin{array}{l}\text { Matchs }\left(\text { cou }_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a } \\ \text { sequence }\{H i\}_{i=1}^{n} \text { such that } \\ H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)=\text { true }\right\} \neq \emptyset,\right. \\ \text { and Next } I_{I}(B i)=H i, \quad i=1, \ldots, n, H o=\left\{s_{0}\right\} .\end{array}\right.$
iff
(2)
$\left\{\begin{array}{l}\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a sequence }\left\{H^{\prime} i\right\}_{i=1}^{n} \\ \text { such that }\end{array}\right.$
$\left\{\begin{array}{l}H_{i}^{\prime}=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1}^{\prime} \& q \in Q \& s=\delta^{\prime}\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}\right\} \neq \emptyset,\right. \\ \text { and } \operatorname{Next}_{I^{\prime}}(B i)=H i, i=1, \ldots, n, H^{\prime} \mathrm{o}=\left\{s_{0}^{\prime}\right\} .\end{array}\right.$
This is proved by induction on n.

1) It is easy to see that the statement holds for $n=1$.
2) Assume that the statement holds for n, we prove that it holds for $n+1$, too.
$(1) \Rightarrow(2)$. Suppose that (1) holds for $n+1$. Then (2) holds for n. We have yet to prove that $H_{n+1}^{\prime} \neq \emptyset$ and $\operatorname{Next}_{I^{\prime}}\left(B_{n+1}\right)=H_{n+1}^{\prime}$. By Fact 5 we have the sequences $\left\{s_{i}\right\}_{i=1}^{n+1}$ and $\left\{e^{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H i, s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true, $e^{i}=$ $=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots, n+1$. Then according to Restriction there is a u for which $e^{\prime} \ldots e^{n+1} u \in L(M)$. Since $L(M) \subset L\left(M^{\prime}\right)$ thus there is a sequence $\left\{s_{i}^{\prime}\right\}_{i=0}^{n+1}$ for which $s_{i}^{\prime}=\delta^{\prime}\left(s_{i-1}^{\prime}, e^{i}\right)$. So by Fact $6 s_{i}^{\prime} \in H^{\prime} i, i=0, \ldots, n+1$, that is $H_{n+1}^{\prime} \neq \emptyset$. Since (2) holds for n, thus $\operatorname{Next}_{I^{\prime}}(B n)=H^{\prime} n$ and, by Fact 4, $\operatorname{Valid}_{I^{\prime}}(B n)=$ true, so $\operatorname{Valid}_{I^{\prime}}\left(B_{n+1}\right)=$ true (according to the definition of the semantics of Implementation) which implies that $N e x t_{I^{\prime}}\left(B_{n+1}\right)$ is defined and is H_{n+1}^{\prime}.
$(2) \Rightarrow(1)$. Suppose that (2) holds for $n+1$. Then (1) holds for n. We have yet to prove that $H_{n+1} \neq \emptyset$ and $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

By Fact 5 we have the sequences $\left\{s_{i}\right\}_{i=0}^{n+1}$ and $\left\{e_{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H^{\prime} i, s_{i}=\delta^{\prime}\left(s_{i}, e^{i}\right)$, $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true, $e^{i}=\left\langle p_{i}, q_{t}\right\rangle, i=1, \ldots, n+1$. Then according to Restriction there is a u for which $e^{1} \ldots e^{n+1} u \in L\left(M^{\prime}\right)$. We have two cases:

$$
\begin{array}{ll}
\text { either } & e^{1} \ldots e^{n+1} u \in L(M) \\
\text { or } & e^{1} \ldots e^{n+1} u \in L\left(M^{\prime}\right) \backslash L(M) .
\end{array}
$$

In the second case there is u^{\prime} for which $e^{1} \ldots e^{n+1} u u^{\prime} \in L(M)$. So in both cases, we have the sequence $\left\{s_{i}^{\prime}\right\}_{i=0}^{n+1}$ for which $s_{i}^{\prime}=\delta\left(s_{i=1}^{\prime}, e^{i}\right), i=1, \ldots, n+1$. Therefore, by Fact $6, s_{i}^{\prime} \in H i, i=0,1, \ldots, n+1$, that is $H_{n+1} \neq \emptyset$. Now by the same argument seen above we get $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

Abstract

A language, called $E B E$, for specifying the expected behavior of programs during debugging is presented. EBE is an extended version of GPE (Generalized Path Expressions) [1] with the operator shuffle. The syntax and semantics of $E B E$ is formally defined. Some properties of EBEs are discussed. Then an implementation of $E B E$ is presented. Correctness of implementation is also proved.

References

[1] Bruegge, B. and Hibbard, P., Generalized Path Expressions: A High-Level Debugging Mechanism, The J. of Sys. and Soft. 3, 256-276 (1983).
[2] Laventhal, M. S., Synthesis of synchronization code for data abstractions, M.I.T. Laboratory for Comp. Sci., 1978:
[3] Varga, L., Rendszerprogramok elmélete és gyakorlata. Akadémiai Kiadó, Budapest 1978 (in Hungarian).
[4] Gécseg, F. and Peák, I., Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
[5] Nguyen Huu Chien, Sequential program debugging with Path Expressions, conference on Automata, Languages and Programming Systems, Salgotarján, May 1986 (Hungary).
[6] Nguyen Huu chien, EBE: A Language for Specifying the Expected Behavior of Programs in Debugging, 2nd conference of Program Designers, Budapest, L. Eötvös University, July, 1986.
(Received Sept. 3, 1986)

Some remarks on the algorithm of Lucchesi and Osborn

Ho Thuan

Let $S=\langle\Omega, F\rangle$ be a relation scheme, where $\Omega=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is the universe of attributes and

$$
F=\left\{L_{i} \rightarrow R_{i} \mid L_{i}, R_{i} \subseteq \Omega, i=1,2, \ldots, m\right\}
$$

is the set of functional dependencies. In [2] C. L. Lucchesi and S. L. Osborn provided a very interesting algorithm to determine the set of all keys for any relation scheme $S=\langle\Omega, F\rangle$. Following our notation, the algorithm has time complexity

$$
O\left(|F|\left|\mathscr{K}_{s}\right||\Omega|\left(\left|\mathscr{K}_{s}\right|+|\Omega|\right)\right)
$$

i.e. its running time is bounded by a polynomial of $|\Omega|,|F|$ and $\left|\mathscr{K}_{S}\right|$, where
$|F|$ is the cardinality of F, and
\mathscr{K}_{S} is the set of all keys for S.
We reproduce here this algorithm with some modifications in accordance with our notation.

Algorithm OL1. Set of all keys for $S=\langle\Omega, F\rangle$;
Comment. \mathscr{K}_{S} is the set of keys being accumulated in a sequence which can be scanned in the order in which the keys are entered;

$$
\mathscr{K}_{S} \leftarrow\{\operatorname{Key}(\Omega, F, \Omega)\} ;^{1}
$$

for each K in \mathscr{K}_{S} do

$$
\begin{aligned}
& \text { for each } F D\left(L_{i} \rightarrow R_{i}\right) \text { in } F \text { do } \\
& \quad T \leftarrow L_{i} \cup\left(K \backslash R_{i}\right) ; \\
& \text { test } \leftarrow \text { true; } \\
& \text { for each } J \text { in } \mathscr{K}_{S} \text { do }
\end{aligned}
$$

[^0]if T includes J then test \leftarrow false;
if test then $\mathscr{K}_{S} \leftarrow \mathscr{K}_{S} \cup\{\operatorname{Key}(\Omega, F, T)\}$
end
end;
return \mathscr{K}_{S}
The following simple remarks, in some cases can be used to improve the performance of the algorithm of Lucchesi and Osborn.

Remark 1. Let L, R, H be defined as: $R=\bigcup_{i=1}^{m} R_{i}, L=\bigcup_{i=1}^{m} L_{i} H=\bigcup_{K_{j} \in \mathscr{X}_{s}} K_{j}$. To find the first key for $S=\langle\Omega, F\rangle$, instead of Ω it is better to use the superkey $(\Omega \backslash R) \cup(L \cap R)$ and Algorithm 1 in [1], and instead of the algorithm Key (Ω, F, T) it is better to use Algorithm 2 in [1] for finding one key for S included in a given superkey T.

Remark 2. In [1] it is shown that

$$
R \backslash L \subseteq \Omega \backslash H
$$

i.e. $R \backslash L$ consists only of non-prime attributes. Therefore, if $R_{i} \subseteq R \backslash L$ then $R_{i} \cap K=\emptyset, \forall K \in \mathscr{K}_{S}$, and $L_{i} \cup\left(K \backslash R_{i}\right) \supseteq K$. That means, when computing $T=L_{i} \cup$ $\cup\left(K \backslash R_{i}\right)$, we can neglect all $F D \mathrm{~s}\left(L_{i} \rightarrow R_{i}\right)$ with $R_{i} \subseteq R \backslash L$ for every $K \in \mathscr{K}_{S}$.

Let us denote

$$
\bar{F}=F \backslash\left\{L_{j} \rightarrow R_{j} \mid L_{j} \rightarrow R_{j} \in F \quad \text { and } \quad R_{j} \subseteq R \backslash L\right\} .
$$

Remark 3. With a fixed K in \mathscr{K}_{S}, it is clear that if $K \cap R_{i}=\emptyset$ then $L_{i} \cup\left(K \backslash R_{i}\right) \supseteqq K$. In that case, it is not necessary to continue to check whether T includes J for each J in $\mathscr{K}_{\mathbf{s}}$. So, it is better to compute T by the following order

$$
T=\left(K \backslash R_{i}\right) \cup L_{i}
$$

Remark 4. The algorithm of Lucchesi and Osborn is particularly effective when the number of keys for $S=\langle\Omega, F\rangle$ is small. But on what basis can we conclude that the number of keys for S is small? There is no general answer for all cases, and it is shown in [3] that the number of keys for a relation scheme $S=\langle\Omega, F\rangle$ can be factorial in $|F|$ or exponential in $|\Omega|$, and that both of these upper bounds are attainable. However, it is shown in ([1], Corollary 1) that

$$
\left|\mathscr{K}_{s}\right| \leqq C_{h}^{[h / 2]}
$$

where h is the cardinality of $L \cap R$. Thus, if $L \cap R$ has a few elements only, then it is a good criterion for saying that S has a small number of keys. In the case $L \cap R=\emptyset, \Omega \backslash R$ is the unique key for $S=\langle\Omega, F\rangle$ as pointed out in ([1], Corollary 4).

Example. We take up the example in [2], Appendix 1):

$$
\begin{aligned}
& \Omega=\{a, b, c, d, e, f, g, h\} \\
& F=\{a \rightarrow b, c \rightarrow d, e \rightarrow f, g \rightarrow h\}
\end{aligned}
$$

It is clear that for this relation scheme

$$
L \cap R=\emptyset
$$

and it has exactly one key, namely $\Omega \backslash R=$ aceg.
Taking Remarks 1-3 into account, the algorithm of Lucchesi and Osborn now can be presented as follows:

Algorithm OL2. Set of all keys for $S=\langle\Omega, F\rangle$;

$$
\mathscr{K}_{S} \leftarrow\{\text { Algo. } 1(\Omega, F,(\Omega \backslash R) \cup(L \cap R))\} ;^{2}
$$

for each K in \mathscr{K}_{s} do
for each $F D\left(L_{i} \rightarrow R_{i}\right)$ in \bar{F} such that $K \backslash R_{i} \neq K$ do
$T \leftarrow\left(K \backslash R_{i}\right) \cup L_{i} ;$
test \leftarrow true;
for each J in \mathscr{K}_{S} do
if T includes J then test \leftarrow false;
if test then $\mathscr{K}_{S} \leftarrow \mathscr{K}_{S} \cup\{$ Algo. $2(\Omega, F, T)\}$
end
end;
return $\mathscr{K}_{\boldsymbol{s}}$.
Remark 5. The time complexity of Algorithm OL2 is

$$
0\left(\left|\mathscr{K}_{S}\right||\Omega|\left(\left|\mathscr{K}_{S}\right||\bar{F}|+|F||L \cap R|\right)\right)
$$

Abstract

In [1] we have proposed two algorithms (Algorithm 1 and Algorithm 2) for finding one key of the relation scheme $S=\langle\Omega, F\rangle$ included in a given superkey. In this paper, we show that, using these algorithms and some simple remarks, the performance of the algorithm of Lucchesi and Osborn [2], in general, can be improved.

\section*{References} [1] Ho Thuan and Le van Bao, Some results about keys of relational schemes, Acta Cybernetica Tom. 7, Fasc. 1, Szeged, 1985, 99-113. [2] Lucchesi, C. L. and Osborn, S. L., Candidate keys for relations, J. of Computer and System Sciences, 17, 1978, 270-279. [3] Osborn, S. L., Normal forms for relational databases, Ph. D. Dissertation, University of Waterloo, 1977.

(Received Oct. 27, 1986)

[^1]
Strong dependencies and s-semilattices

Vu Duc Thi

1. Introduction

The full family of functional dependencies was first axiomatized by W. W. Armstrong [1]. Different kinds of functional dependencies have also been investigated in relational data base theory. The full family of strong dependencies has been introduced and axiomatized [2], [3], [4].

In this paper s-semilattices and strong operations are defined. We investigate connections between full families of strong dependencies, s-semilattices and strong operations. We prove that there are one-to-one correspondences between them, and s-semilattices completely determine both full families of strong dependencies and strong operations. We give a necessary and sufficient condition for an arbitrary family of sets to be a full family of strong dependencies. A necessary and sufficient condition for a relation to represent a given full family of strong dependencies is also given. Finally, we show that for a given s-semilattice I, we can construct a concrete relation R, the full family of strong dependencies of which is determined by I.

We start with some necessary definitions formulated in [3].
Definition 1.1. Let $R=\left\{h_{1}, \ldots, h_{m}\right\}$ be a relation over the finite set of attributes Ω, and $A, B \subseteq \Omega$. We say that B strongly depends on A in R (denoted $A \stackrel{s}{R} B$) iff

$$
\left(\forall h_{i}, h_{j} \in R\right)\left((\exists a \in A)\left(h_{i}(a)=h_{j}(a)\right) \rightarrow(\forall \in B)\left(h_{i}(b)=h_{j}(b)\right)\right) .
$$

Let $S_{R}=\{(A, B): A \underset{R}{s} B\} . \quad S_{R}$ is called the full family of strong dependencies of R.
Definition 1.2. Let Ω be a finite set, and denote by $P(\Omega)$ its power set. Let $Y \subseteq P(\Omega) \times P(\Omega)$. We say that Y is a full family of strong dependencies over Ω if for all $A, B, C, D \subseteq \Omega, a \in \Omega$,

S1 $\quad(\{a\},\{a\}) \in Y$;
S2 $(A, B) \in Y, \quad(B, C) \in Y, \quad B \neq \emptyset \rightarrow(A, C) \in Y$;
S3 $(A, B) \in Y, \quad C \cong A, D \cong B \rightarrow(C, D) \in Y$;
S4 $(A, B) \in Y, \quad(C, D) \in Y \rightarrow(A \cup C, B \cap D) \in Y$;
S5 $(A, B) \in Y, \quad(C, D) \in Y \rightarrow(A \cap C, B \cup D) \in Y$.
Definition 1.3. Let $I \subseteq P(\Omega)$. We say that I is a \cap-semilattice over Ω if $\Omega \in I$, and $A, B \in I \rightarrow A \cap B \in I$. Let $M \subseteq P(\Omega)$. Denote by M^{+}the set $\left\{\cap M^{\prime}: M^{\prime} \subseteq M\right\}$. Then we say M generates I if $M^{+}=I$.
J. Demetrovics in [3] showed that for a given \cap-semilattice I, there is exactly one family N which generates I and has minimal cardinality.

Lemma 1.4. ([3]). Let $I \subseteq P(\Omega)$ be a \cap-semilattice over Ω. Let

$$
N=\{A \in I: \forall B, C \in I: A=B \cap C \rightarrow A=B \text { or } A=C\} .
$$

Then N generates I and if N^{\prime} generates I, then $N \subseteq N^{\prime} . N$ is called the minimal generator of I. (It is obvious that $\Omega \in N$.)

It can be seen that if $N_{1}\left(N_{2}\right)$ is the minimal generator of $I_{1}\left(I_{2}\right)$ and $I_{1} \neq I_{2}$, then $N_{1} \neq N_{2}$ holds.

2. The results

Definition 2.1. Let $I \subseteq P(\Omega)$. We say that I is an s-semilattice over Ω if I satisfies
(1) I is a \cap-semilattice,
(2) for all $A \in N \backslash \Omega$

$$
(\exists a \in A)((\forall B \in N \backslash \Omega)(A \nsubseteq B) \rightarrow a \notin B)
$$

where N is the minimal generator of I.
Definition 2.2. The mapping $F: P(\Omega) \rightarrow P(\Omega)$ is called a strong operation over Ω if for every $a, b \in \Omega$ and $A \in P(\Omega)$, the following properties hold:
(1) $F(\emptyset)=\Omega$,
(2) $a \in F(\{a\})$,
(3) $b \in F(\{a\}) \rightarrow F(\{b\}) \subseteq F(\{a\})$,
(4) $F(A)=\bigcap_{a \in A} F(\{a\})$.

It is easy to see that the set $\{F(\{a\}): a \in \Omega\}$ determines the set $\{F(A): A \in P(\Omega)\}$.
The following theorem shows that there is an one-to-one correspondence between s-semilattices and strong operations.

Theorem 2.3. Let F be a strong operation over Ω. Let $I_{F}=\{F(A): A \in P(\Omega)\}$. Then I_{F} is an s-semilattice over Ω. Conversely, if I is an s-semilattice over Ω, then there is exactly one strong operation F so that $I_{F}=I$, where $F(\emptyset)=\Omega$, and for all $a \in \Omega$,

$$
F(\{a\})=\left\{\begin{array}{l}
\bigcap_{\substack{a \in A_{i}, \Omega \\
A_{i} \in N \backslash \Omega}} A_{i} \text { if } \exists A_{i}: a \in A_{i}(N \text { is the minimal generator of } I), \\
\Omega \text { otherwise. }
\end{array}\right.
$$

Proof. It is clear that for arbitrary strong operation F

$$
\forall A, B \in P(\Omega): F(A \cup B)=F(A) \cap F(B), F(\emptyset)=\Omega
$$

and $A \subseteq B \rightarrow F(B) \subseteq F(A)$. Consequently, $I_{F}=\{F(A): A \in P(\Omega)\}$ is a \cap-semilattice over Ω. Denote by N_{F} the minimal generator of I_{F}. For all $A \in N_{F} \backslash \Omega$ if there is no attribute a such that $F(\{a\})=A$, then if $A=F(B)(|B| \geqq 2)$ holds, then, according to the definition of strong operation, $A=\bigcap_{b_{i} \in B} F\left(\left\{b_{i}\right\}\right)$. This contradicts the definition of minimal generator. Consequently, there is an attribute $a \in \Omega$ so that $F(\{a\})=A$. It is obvious that $a \in A$. It is clear that $A, B \in N_{F}$ implies $A \neq B$, and by (3) in the definition of strong operation, for all $A \in N_{F} \backslash \Omega$:

$$
(\exists a \in A)\left(\left(\forall B \in N_{F} \backslash \Omega\right)(A \nsubseteq B) \rightarrow a \ddagger B\right) .
$$

Consequently, I_{F} is an s-semilattice over Ω.
Conversely, we now suppose that I is an s-semilattice over Ω. Denote by N the minimal generator of I. We define the following operation F :

$$
F(\emptyset)=\Omega,
$$

and for all b,

$$
F(\{b\})=\left\{\begin{array}{l}
\bigcap_{\substack{b \in A_{i} \\
A_{i} \in N \backslash \Omega}} A_{i} \text { if } \exists A_{i}: b \in A_{i} \\
\Omega \text { otherwise }
\end{array}\right.
$$

It can be seen that for all $A \in N \backslash \Omega$, where $\exists a \in A: A_{i} \in N \backslash \Omega$ and $A \nsubseteq A_{i} \rightarrow$ $\rightarrow a \notin A_{i}$, we have $F(\{a\})=A$. For all different elements $A(A \in N \backslash \Omega)$ it is easy to see that there is an $a \in A$ so that $F(\{a\})=A$. Consequently, $\forall A \in N \backslash \Omega: \exists a \in \Omega: F(\{a\})=A$. We now show that F is a strong operation over Ω. It can be seen that $b \in F(\{b\})$, and if there is an $A_{i} \in N \backslash \Omega$ such that $b \in A_{i}$, then $F(\{b\}) \in N^{+}$. If $a \in F(\{b\})$ holds, then

$$
F(\{a\})=\bigcap_{\substack{a \in A_{i} \\ A_{i} \in N \backslash \Omega}} A_{i} \subseteq \bigcap_{\substack{b \in A_{i} \\ A_{i} \in N \backslash \Omega}} A_{i}=F(\{b\}) .
$$

On the other hand, it can be seen that the set $\{F(\{b\}): b \in \Omega\}$ determines the set $\{F(A): A \in P(\Omega)\}$. Consequently, F is a strong operation over Ω. It is easy to see that $I=\{F(A): A \in P(\Omega)\}$. If we suppose that there is a strong operation F^{\prime} such that $I_{F^{\prime}}=I$ then for all $a \in \Omega \exists b \in \Omega: F(\{a\})=F^{\prime}(\{b\})$. It obvious that $a \in F^{\prime}(\{b\})$. Consequently, $F^{\prime}(\{a\}) \subseteq F(\{a\})$. On the other hand, there is an attribute c so that $F^{\prime}(\{a\})=F(\{c\})$. Clearly, $F(\{a\}) \subseteq F^{\prime}(\{a\})$ by $a \in F(\{c\})$. Consequently, for all $A \in P(\Omega), F^{\prime}(A)=F(A)$. The proof is complete.

Based on Theorem 2.3, it is easy to see that s-semilattices determine the strong operations, and for arbitrary s-semilattice I over $\Omega,|N|$ in not greater than $|\Omega|+1$. Clearly, there is an algorithm to decide for a given family of sets $N \subseteq P(\Omega)$ whether N is the minimal generator of some s-semilattice or not. The following theorem gives necessary and sufficient conditions for an arbitrary family of sets to be a full family of strong dependencies over Ω.

Theorem 2.4. Let $Y \cong P(\Omega) \times P(\Omega) . \quad Y$ is a full family of strong dependencies over Ω if and only if there is a family $\left\{E_{i}: i=1, \ldots, l ; \bigcup_{i=1}^{l} E_{i}=\Omega\right\}$ of subsets of Ω such that
(i) for all $A \subseteq \Omega,(\emptyset, A) \in Y$,
(ii) for any $A, B \subseteq \bigcup_{E_{t} \cap A \neq \varnothing} E_{i} \rightarrow(A, B) \in Y$,
(iii) $\left((C, D) \in Y, C \cap E_{i} \neq \emptyset\right) \rightarrow D \subseteq E_{i}$.

Proof. First we suppose that Y is a full family of strong dependencies over Ω. Then by (S1), (S3), (S5) for each $a \in \Omega$ we can construct an $E_{i}\left(E_{i} \cong \Omega\right)$ so that $\left(\{a\}, E_{i}\right) \in Y$, and $\forall E^{\prime}: E \subset E^{\prime}$ implies $\left(\{a\}, E^{\prime}\right) \nsubseteq Y$. It is obvious that $a \in E_{i}$, and we obtain n such E_{i} 's, where $n=|\Omega|$. Thus, we have the set $E=\left\{E_{i}: i=1, \ldots, n ; \bigcup_{i=1}^{n} E_{i}=\Omega\right\}$. It is easy to see that for all $A \subseteq \Omega$ we have $(\emptyset, A) \in Y$. We now assume that $A=\left\{a_{1}, \ldots, a_{k}: a_{j} \in \Omega, j=1, \ldots, k\right\} \neq \bar{\emptyset}$ and B_{1} is a set such that $\left(A, B_{1}\right) \in Y, \forall B_{2}: B_{1} \subset B_{2}$ implies $\left(A, B_{2}\right) \notin Y$. According to the construction of E, it is clear that for each a_{j} there is an $E_{i_{j}} \in E$ so that $\left(\left\{a_{j}\right\}, E_{i j}\right) \in Y$. By (S4) we have $\left(\bigcup_{j=1}^{k} a_{j}, \bigcap_{j=1}^{k} E_{i_{j}}\right)=$ $=\left(A, \bigcap_{j=1}^{k} E_{i_{j}}\right) \in Y$. By the definition of B_{1} we obtain $\bigcap_{j=1}^{k} E_{i j} \subseteq B_{1}$. On the other hand, by $\left(A, B_{1}\right) \in Y$ and by (S3), we have $\left(\left\{a_{j}\right\}, B_{1}\right) \in Y$ for all $j(j=i, \ldots, k)$. Consequently, $B_{1} \subseteq \bigcap_{j=1}^{k} E_{i j}$ holds, i.e. $B_{1}=\bigcap_{j=1}^{k} E_{i j}$. It is obvious that $\bigcap_{E_{i} \cap A \neq \varnothing} E_{i} \subseteq$ $\bigcap_{j=1}^{k} E_{i j}$. Thus, for all $B\left(B \subseteq \bigcap_{E_{i} \cap A \neq \varnothing} E_{i}\right): B \subseteq B_{1}$. Hence $(A, B) \in Y$ holds. If $(C, D) \in Y$, $C \cap E_{i} \neq \emptyset$, then we assume that $a_{1} \in C \cap E_{i}$. On the other hand, suppose that a is an attribute such that $\left(\{a\}, E_{i}\right) \in Y$, and $\forall E^{\prime}: E_{i} \subset E^{\prime}$ implies $\left(\{a\}, E^{\prime}\right) \nsubseteq Y$. By $a_{1} \in E_{i}$ and by (S3), (\{a\}, $\left.\left\{a_{1}\right\}\right) \in Y$ holds. By (S3) and $a_{1} \in C$ we obtain $\left(\left\{a_{1}\right\}, D\right) \in Y$. Consequently, by (S2), $(\{a\}, D) \in Y$ holds. According to the definition of E we have $D \subseteq E_{i}$.

The proof of the reverse direction is easy, and so it is omitted. The proof is complete.

Based on Theorem 2.4 we prove the following result, which shows that between full families of strong dependencies and strong operations there exists a one-to-one correspondence.

Theorem 2.5. Let Y be a full family of strong dependencies over Ω. We define the mapping $F_{Y}: P(\Omega) \rightarrow P(\Omega)$ as follows:

$$
F_{Y}(A)=\{a \in \Omega:(A,\{a\}) \in Y\} .
$$

Then F_{Y} is a strong operation over Ω. Conversely, if F is an arbitrary strong operation over Ω, then there is exactly one full family of strong dependencies Y so that $F_{Y}=F$, where

$$
Y=\{(A, B): A, B \in P(\Omega): B \subseteq F(A)\}
$$

Proof: Suppose that Y is a full family of strong dependencies over Ω. It is obvious that $\forall a \in \Omega: a \in F_{Y}(\{a\})$. By Theorem 2.4 we have $(C, D) \in Y, C \cap E_{i} \neq \emptyset$ imply $D \subseteq E_{i}$. It can be seen that in Theorem 2.4, for any $a \in \Omega$,

$$
F_{Y}(\{a\}) \in\left\{E_{i}: i=1, \ldots, n ;|\Omega|=n ; \bigcup_{i=1}^{n} E_{i}=\Omega\right\}:
$$

Consequently, $\quad\left(\{b\}, F_{Y}(\{b\})\right) \in Y, b \in F_{Y}(\{a\})$, i.e. $b \cap F_{Y}(\{a\}) \neq \emptyset$ implies $F_{Y}(\{b\}) \subseteq$ $\subseteq F_{Y}(\{a\})$. By (iii) in Theorem 2.4 we obtain $\left(A, F_{Y}(A)\right) \in Y, \forall a \in A: A \cap F_{Y}(\{a\}) \neq \emptyset$ imply $F_{Y}(A) \subseteq F_{Y}(\{a\})$. Thus, $F_{Y}(A) \subseteq \bigcap_{a \in A} F_{Y}(\{a\})$. On the other hand, by (S5) in the definition of full family of strong dependencies we have $\forall a \in A:\left(\{a\}, F_{Y}(\{a\})\right) \in \dot{Y}$ implies $\quad\left(A, \bigcap_{a \in A} F_{Y}(\{a\})\right) \in Y$, i.e. $\quad \bigcap_{a \in A} F_{Y}(\{a\}) \subseteq F_{Y}(A)$. Consequently, $F_{Y}(A)=$ $=\bigcap_{a \in A} F_{Y}(\{a\})$ holds. Conversely, assume that F is a strong operation over Ω, and $Y=\{(A, B): B \subseteq F(A)\}$. We have to show that Y is a full family of strong dependencies. By Theorem 2.4 we set $E=\{F(\{a\}): a \in \Omega,|\Omega|=\}$. By the definition of Y and by $\bigcap_{F(\{a) \cap A \neq \varnothing} F(\{a\} \subseteq F(A)$, it is obvious that $B \subseteq$ $\subseteq \cap \quad F(\{a\})$ implies $(A, B) \in Y$. On the other hand, if $(C, D) \in Y$ and $C \cap F(\{a\}) \neq \emptyset$, then we assume that $b \in C \cap F(\{a\})$, hence by (iii) in the definition of strong operation $b \in F(\{a\})$ implies $F(\{b\}) \subseteq F(\{a\})$. It is obvious that $D \subseteq$ $\subseteq F(C)=\bigcap_{d \in c} F(\{d\})$. By $b \in C$, and $\bigcap_{d \in C} F(\{d\}) \subseteq F(\{b\})$ we obtain $D \subseteq F(\{a\})$. It is clear that $\forall A \subseteq \Omega:(\emptyset, A),(A, \emptyset) \in Y$. It can be seen that $F=F_{Y}$. Now, we suppose that there is a full family of strong dependencies Y^{\prime} so that $F_{Y^{\prime}}=F$. By the definition of Y and F we obtain $Y^{\prime} \subseteq Y$. If $(A, B) \in Y$ holds, then $B \subseteq F(A)=$ $=F_{Y^{\prime}}(A)$ holds. By the definition of F_{Y} we have $(A, B) \in Y^{\prime}$. Consequently, $Y^{\prime}=Y$ holds. The proof is complete.

Remark 2.6. Clearly, if F_{1} and F_{2} are strong operations over $\Omega\left(F_{1} \neq F_{2}\right)$, then $Y_{1} \neq Y_{2}$, where $Y_{i}=\left\{(A, B): B \subseteq F_{i}(A)\right\}, i=1,2$.

Based on Theorem 2.3 and Theorem 2.5 the next corollary is obvious.
Corollary 2.7. Let Y be a full family of strong dependencies over Ω. We define the mapping $F: P(\Omega) \rightarrow P(\Omega)$ as follows:

$$
F_{Y}(A):\{a \in \Omega:(A,\{a\}) \in Y\}
$$

Let $I_{Y}=\left\{F_{Y}(A): A \in P(\Omega)\right\}$. Then I_{Y} is an s-semilattice over Ω. Conversely, if I is an arbitrary s-semilattice over Ω, then there is exactly one full family of strong
dependencies Y such that $I_{Y}=I$, where

$$
\begin{aligned}
Y= & \left\{(A, B): A, B \in P(\Omega), A \neq \emptyset, \exists A_{i} \in N \backslash \Omega: A_{i} \cap A \neq \emptyset, B \subseteq \bigcap_{\substack{A_{i} \cap A \neq \emptyset \\
A_{i} \in N \backslash \Omega}} \text {, } N\right. \text { is the } \\
& \text { minimalgenerator of } I\} \cup \\
& \cup\left\{(A, B): A=\emptyset \text { or } \bar{\exists} A_{i} \in N \backslash \Omega: A_{i} \cap A \neq \emptyset, B \in P(\Omega)\right\} .
\end{aligned}
$$

Corollary 2.7 shows that between full families of strong dependencies and s-semilattices there is a one-to-one correspondence and the s-semilattices determine the full families of strong dependencies.

It is proved (see [2], [3], [4]) that if Y is a full family of strong dependencies over Ω, then there exists a relation R over Ω so that $S_{R}=Y$.

With the aid of the concept of s-semilattice we can construct for a given full family of strong dependencies Y a simple concrete relation R such that $S_{R}=Y$.

The equality sets of the relation are defined in [4] as follows:
Definition 2.8. Let $R=\left\{h_{1}, \ldots, h_{m}\right\}$ be a relation over Ω. For $1 \leqq i<j \leqq m$ denote by $E_{i j}$ the set $\left\{a \in \Omega: h_{i}(a)=h_{j}(a)\right\}$.

Definition 2.9. Let Y be a full family of strong dependencies over Ω. We say that a relation R represents Y iff $S_{R}=Y$.

We now prove the following theorem which gives a necessary and sufficient condition for a relation to represent a given full family of strong dependencies:

Theorem 2.10. Let Y be a full family of strong dependencies, and $R=\left\{h_{1}, \ldots, h_{m}\right\}$ be a relation over Ω. Then R represents Y iff for each $a \in \Omega$,

$$
F_{Y}(\{a\})=\left\{\begin{array}{l}
\bigcap_{a \in E_{i j}} E_{i j} \text { if } \exists E_{i j}: a \in E_{i j} \tag{1}\\
\Omega \text { otherwise }
\end{array}\right.
$$

where $F_{Y}(A)=\{a \in \Omega:(A,\{a\}) \in Y\}$, and $E_{i j}$ is the equality set of R.
Proof. By Theorem $2.5, S_{R}=Y$ if and only if $F_{S_{R}}=F$ holds. Consequently, first we show that $F_{S_{R}}(\{a\})=\bigcap_{a \in E_{i \tau}} E_{i j}$ if $\exists E_{i j} ; a \in E_{i j}$, and in other case $F_{S_{R}}(\{a\})=\Omega$ holds. Clearly, $F_{S_{R}}(\{a\})=\left\{b \in \Omega:\{a\}_{R}^{s}\{b\}\right\}$. According to the definition of strong dependency we know that for any $a \in \Omega$,

$$
\{a\} \frac{s}{R} B \leftrightarrow\{a\} \underset{R}{f} B,
$$

where $a \neq \emptyset$, and $\{a\} \frac{f}{R} B$ denotes that B functionally depends on $\{a\}$ in R, i.e.

$$
\left(\forall h_{i}, h_{j} \in R\right)\left(h_{i}(a)=h_{j}(a) \rightarrow(\forall b \in B)\left(h_{i}(b)=h_{j}(b)\right)\right)
$$

(see [4]). Let us denote by T the set $\left\{E_{i j}: a \in E_{i j}\right\}$. It is obvious that if $T=\emptyset$, then $\{a\} \underset{R}{f} \Omega$, i.e. $F_{S_{R}}(\{a\})=\Omega$ holds. If $T \neq \emptyset$ holds, then we set $A=\bigcap_{a \in E_{i j}} E_{i j}$.

If $T=E$ (E is the set of all equality sets of R), then it is obvious that $\{a\} \frac{f}{R} A$. If $T \subset E$ then for $E_{i j}: E_{i j} \notin T$ we obtain $h_{i}(a) \neq h_{j}(a)$. Consequently, we have also $\{a\} \frac{f}{R} A$. Denote by A^{\prime} the set with the following properties:
(i) $\{a\} \underset{R}{f} A^{\prime}$,
(ii) $A^{\prime} \subset A^{\prime \prime}$ implies $\{a\} \underset{R}{\underset{R}{r}} A^{\prime \prime}$, i.e. $A^{\prime \prime}$ does not functionally depend on $\{a\}$. It can be seen that $A^{\prime}=A$. According to the definition of $F_{S_{R}}$, we obtain $F_{S_{R}}(\{a\})=$ $=\bigcap_{a \in E_{j}} E_{i j}$. Thus, if $S_{R}=Y$ then we have (1). Conversely, if F_{Y} satisfies (1), then according to the above considerations, for any $a \in \Omega$ we have $F_{Y}(\{a\})=F_{S_{R}}(\{a\})$. Because F_{Y} and $F_{S_{R}}$ are strong operations over Ω, and by Theorem 2.5 we obtain $\forall A \subseteq \Omega: F_{S_{R}}(A)=F_{S_{Y}}(A)$. Consequently, $F_{Y}=F_{S_{R}}$ holds. The proof is complete.

Definition 2.11. Let R be a relation, and F a strong operation over Ω. We say that the relation R represents F iff $F_{S_{R}}=F$.

By Theorem 2.10 the next corollary is obvious.
Corollary 2.12. Let F be a strong operation and R a relation over Ω. Then R represents F iff for all $a \in \Omega$,

$$
F(\{a\})=\left\{\begin{array}{l}
\bigcap_{a \in E_{i j}} E_{i j} \text { if } \exists E_{i j}: a \in E_{i j} \\
\Omega \text { otherwise }
\end{array}\right.
$$

Clearly, from a relation R we can construct the set of all equality sets of R. Consequently, the following corollary is also obvious.

Corollary 2.13. Let R be a relation and F a strong operation over Ω. Then there is an algorithm which decides whether R represents F or not. This algorithm requires time polynomial in the number of rows and columns of R.

Based on Theorem 2.10 the next proposition is straightforward and so its proof will be omitted.

Proposition 2.14. Let Y be a full family of strong dependencies over Ω. Denote N the minimal generator of s-semilattice I_{Y}.

Suppose that $N-\Omega=\left\{B_{1}, \ldots, B_{l}\right\}$. We set
$R=\left\{h_{0}, h_{1}, \ldots, h_{l}\right\}$ as follows:

$$
\text { for all } a \in \Omega: h_{0}(a)=0,
$$

for each $i(i=1, \ldots, l), h_{i}(a)= \begin{cases}0 & \text { if } a \in B_{i}, \\ i & \text { otherwise } .\end{cases}$
Then $S_{R}=Y$ holds.

Clearly, Proposition 2.14 shows that from a given s-semilattice I we can construct a simple concrete relation R such that $I=I_{S_{R}}$. Because between \cap-semilattices and minimal generators there is a one-to-one correspondence, it can be seen that (based on Theorem 2.3, Corollary 2.7, and Proposition 2.14) from the minimal generators of s-semilattices we can construct suitable full families of strong dependencies, strong operations, and relations.

Acknowledgements

The author would like to take this opportunity to express deep gratitude to Professor J. Demetrovics for his help, valuable comments and suggestions.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
KENDE U. 13-17
BUDAPEST, HUNGARY
H-1502

References

[1] Armstrong, W. W., Dependency structures of data base relationships, Information Processing 74, North-Holland (1974) 580-583.
[2] CzÉdıl, G., Függóségek relációs adatbázis modellben, Alkalmazott Matematikai Lapok 6 (1980) 131-143.
[3] Demetrovics, J., Relációs adatmodell logikai és strukturális vizsgálata, MTA-SZTAKI Tanulmányok, Budapest, 114 (1980) 1-97.
[4] Demetrovics J. and Gy. Gyepesi, On the functional dependency and some generalizations of it, Acta Cybernetica, Tom. 5, Fasc. 3 (1981) 295-305.

A finite axiomatization of flowchart schemes

M. Bartha

1. Introduction

An equational axiomatization of flowchart schemes and their behaviours, being the syntax and semantics of flowchart algorithms, was given by Bloom and Ésik in [B-Es]. This paper is another approach toward the same goal, characterizing the algebra of schemes with a different set of operations. We use separated sum and a constant ε instead of the pairing operation, and replace iteration by an operation called the feedback. The advantage of using this operation is that vector iteration can be done simply by a repeated application of the feedback. This advantage comes out apparently in the form of the axioms that are much simpler than those listed in [B-Es].

Since the algebra of flowchart schemes is sorted by the infinite set $N \times N$ (N denotes the set of all nonnegative integers), to describe our system of axioms we use a scheme of axioms rather than a set of ordinary equational axioms where both sides of the equations are terms built up from constants and variable symbols of fixed sort with the given operations. In our sense such a scheme consists of equation patterns of the following form. The terms on the left and right side are built up from variables of variable sort and subterms denoting algebraic constants. These subterms, however, are allowed to depend on the sort of the variables so that they are uniquely determined by a fixed choice of the sorts of the variables occuring in the whole term. A scheme of axioms is called finite if the number of equation patterns is finite. In this sense the scheme of axioms developed in [B-Es] is infinite. It turns out, however, that a more careful treatment of algebraic constants yields a finite scheme.

As the scheme algebra operations of Bloom and Esik are easy to derive from our ones (and vice versa), it is possible to approve our scheme of axioms by proving the equivalence of the two axiom systems remaining strictly within the framework of equational logic. This, however, would require a tremendous amount of computation. Instead, we follow the way of constructing suitable normal forms of terms (as it was done also in [B--Es]), which is easy to illustrate by schematic proofdiagrams.

2. The axiomatization of flowchart schemes

We shall consider three classes of $(N \times N)$-sorted algebras, called P, M and S-algebras, respectively. If A is such an algebra, then $A(p, q)$ denotes the underlying set of A corresponding to sort (p, q). The notation $f: p \rightarrow q$ is introduced with the meaning $f \in A(p, q)$ if A is understood.

A P-algebra is an $(N \times N)$-sorted algebra equipped with the following operations and constants.

Composition: a binary operation which maps $A(p, q) \times A(q, r)$ into $A(p, r)$ for each triple $p, q, r \in N$. Composition is usually denoted by juxtaposition or - if it is intended to be emphasized. Composition is in fact a collection of binary operations $\cdot(p, q, r)$, but the subscript (p, q, r) is omitted for simplicity.

Separated sum: also a binary operation mapping $A\left(p_{1}, q_{1}\right) \times A\left(p_{2}, q_{2}\right)$ into $A\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ for each choice $p_{1}, q_{1}, p_{2}, q_{2}$ of nonnegative integers. Separated sum is denoted by + .

There are three constants: $1 \in A(1,1), 0 \in A(0,0)$ and $x \in A(2,2)$.
Terms constructed from these constants with the above operations are called base P-terms. Clearly, every base P-term is of sort (p, p) for some $p \in N$. For each $n \in N$ let $t(n)$ denote the base P-term defined recursively as follows.
(i) if $n=0$ or $n=1$, then $t(n)=n$,
(ii) $t(n+1)=t(n)+1 \quad$ if $n \geqq 1$.

However, we shall write n instead of $t(n)$ if there is no danger of confusion.
Definition 1. A permutation algebra is a P-algebra satisfying the following equational axioms:

$$
\begin{aligned}
& P 1: f \cdot(g \cdot h)=(f \cdot g) \cdot h \text { for all } f: p \rightarrow q, g: q \rightarrow r, h: r \rightarrow s ; \\
& P 2: f+(g+h)=(f+g)+h \text { for all } f: p_{1} \rightarrow q_{1}, g: p_{2} \rightarrow q_{2}, h: p_{3} \rightarrow q_{3} ; \\
& P 3: p \cdot f=f \text { and } f \cdot q=f \text { for all } f: p \rightarrow q ; \\
& P 4: f+0=f \text { and } 0+f=f \text { for all } f: p \rightarrow q ; \\
& P 5:\left(f_{1} \cdot g_{1}\right)+\left(f_{2} \cdot g_{2}\right)=\left(f_{1}+f_{2}\right) \cdot\left(g_{1}+g_{2}\right) \text { for all } f_{i}: p_{i} \rightarrow q_{i}, g_{i}: q_{i} \rightarrow r_{i}, \\
& \quad i=1,2 ; \\
& P 6^{*}: x \cdot x=2 ; \\
& P 7^{*}:(1+x)(x+1)(1+x)=(x+1)(1+x)(x+1) .
\end{aligned}
$$

For each pair $(p, q) \in N \times N$ let $\Pi(p, q)$ denote the set of all p-ary permutations if $p=q$, else let $\Pi(p, q)=\varnothing$. Define composition and separated sum over the sets $\Pi(p, q)$ in the usual way, and let 1 and 0 be the unique elements of $\Pi(1,1)$ and $\Pi(0,0)$, respectively. Interpreting x as the transposition $2 \rightarrow 2$ we get a P-algebra Π, which is clearly a permutation algebra.

[^2]A base P-term is called simple if it is equal to k for some $k \in N$, or it is of the form $(i-1)+x+(n-i)$ for some $n \geqq 1, i \in[n]=\{1,2, \ldots, n\}$. (In the latter case if $(i-1)$ or $(n-i)$ is 0 , then it is omitted according to $P 4$.) The term $(i-1)+x+(n-i)$ will be denoted by $x_{n}(i)$. Let P denote the collection of axioms $P 1, \ldots, P 7$. The following remark can be easily proved using only the "magmoid identities" (cf. [AD]) $P 1, \ldots, P 5$.

Remark. For every base P-term t there exists a base P-term t^{\prime} which is the composite of a number of simple base P-terms (called the factors of t^{\prime}) and $P \vdash t=t^{\prime}$, i.e. the identity $t=t^{\prime}$ is provable from $P . t^{\prime}$ is said to be in split normal form (s.n.f: for short).

Lemma 1. Let $n \geqq 1$ and $i \in[n-1]([0]=\emptyset)$. Then

$$
x_{n}(1) x_{n}(2) \cdot \ldots \cdot x_{n}(n) x_{n}(i)=x_{n}(i+1) x_{n}(1) x_{n}(2) \cdot \ldots \cdot x_{n}(n)
$$

is provable from P.
Proof. (See also Fig. 1 for the case $n=3, i=1$.)

$$
\begin{gathered}
x_{n}(1) x_{n}(2) \cdot \ldots \cdot x_{n}(n) x_{n}(i)=x_{n}(1) \cdot \ldots \cdot x_{n}(i) x_{n}(i+1) x_{n}(i) x_{n}(i+2) \cdot \ldots \cdot x_{n}(n)= \\
=(\text { by } P 7)=x_{n}(1) \cdot \ldots \cdot x_{n}(i-1) x_{n}(i+1) x_{n}(i) x_{n}(i+1) \cdot \ldots \cdot x_{n}(n)= \\
=x_{n}(i+1) x_{n}(1) \cdot \ldots \cdot x_{n}(n) .
\end{gathered}
$$

Fig. 1. Proof of Lemma 1 on an example

In two steps of the above derivation we used the obvious identity $x_{n}(k) x_{n}(l)=$ $=x_{n}(l) x_{n}(k)$, where $1 \leqq k<l-1<n$.

For a base P-term t let $|t|$ denote the value of t in Π. (In other words $|\mid$ is the unique homomorphism of the initial P-algebra into Π.) Since every permutation is expressible as a composite of permutations of the form $\left|x_{n}(i)\right|$, the following proposition says that the initial permutation algebra is Π.

Proposition 1. Let t and t^{\prime} be base P-terms. If $|t|=\left|t^{\prime}\right|$, then $P \vdash t=t^{\prime}$.
Proof. By the Remark we can assume that t and t^{\prime} are both in s.n.f. Listing the factors of t in reverse order we get a term t^{-1} such that $P \vdash t^{-1} t=n$ for appropriate $n \in N$. If we can prove $t^{\prime} t^{-1}=n$, then we get the required proof: $t^{\prime}=$ $=t^{\prime}\left(t^{-1} t\right)=\left(t^{\prime} t^{-1}\right) t=t$. Hence it is enough to show that if $|t|=|n|$ for some base P-term t in s.n.f., then $P \vdash t=n$. We follow an induction on n. If $n \leqq 1$, then the statement is trivial. Let $n \geqq 2$. If none of the factors of t is equal to $x_{n-1}(1)$, then $t=1+t^{\prime}$, and the induction hypothesis works for t^{\prime}. If $x_{n-1}(1)$ occurs in t, then assume indirectly that $P \nvdash t=n$, and the length of t (i.e. the number of the factors of t) is minimal. Split $t=\alpha x_{n-1}(1) \beta$ so that $x_{n-1}(1)$ should not occur in α. By

Lemma 1 and the assumption that the length of t is minimal we get that $P \vdash x_{n-1}(1) \beta=\gamma x_{n-1}(1) x_{n-1}(2) \cdot \ldots \cdot x_{n-1}(j)$ for some $j \in[n-1]$, where $x_{n-1}(1)$ does not occur even in γ. We conclude that $P \vdash t=\alpha \gamma x_{n-1}(1) \ldots x_{n-1}(j)$ which is a contradiction, since in this case $|t|(1)=j+1>1$.

Corollary 1. The initial permutation algebra is Π.
In the light of Proposition 1, when working in permutation algebras we identify a base P-term t with the permutation $|t|$.

The following definition is adopted from [B-Es]. Let s be a finite sequence $\left(n_{1}, \ldots, n_{r}\right)$ of nonnegative integers and suppose that $\alpha: r \rightarrow r$ is a permutation. Let n be the sum of the numbers n_{i}.

Definition 2. $\alpha \# s: n \rightarrow n$ is the permutation which takes a number in [n] of the form

$$
n_{1}+\ldots+n_{k}+j
$$

where $j \in\left[\bar{n}_{k+1}\right]$, to the number $y+j$, where y is the sum of all numbers n_{i} such that $\alpha(i)<\alpha(k+1)$.

From now on we drop the axioms $P 6^{*}$ and $P 7^{*}$, replacing them by the stronger block permutation axiom of [ES]:

$$
\begin{gathered}
P 6 ; f_{1}+f_{2}=x \#\left(p_{1}, p_{2}\right) \cdot\left(f_{2}+f_{1}\right) \cdot x \#\left(q_{2}, q_{1}\right) \text { for all } \\
f_{i}: p_{i} \rightarrow q_{i}, \quad i=1,2 .
\end{gathered}
$$

Assume that $x \#\left(p_{1}, p_{2}\right)$ and $x \#\left(q_{2}, q_{1}\right)$ are represented in $P 6$ by base P-terms in a minimal length s.n.f. Then we see that $P 6^{*}$ and $P 7^{*}$ are indeed consequences of P6. (Take $f_{1}=f_{2}=1$ in the case of $P 6$, and $f_{1}=x, f_{2}=1$ for P7.) Since $P 6$ is also valid in Π, Π remains initial. Now the following lemma is true in every permutation algebra.

Lemma 2. Let $\alpha: r \rightarrow r$ be a permutation and $f_{i}: p_{i} \rightarrow q_{i}$ for each $i \in[r]$. Then

$$
\sum_{i=1}^{r} f_{i}=\left(\alpha^{-1} \# s_{1}\right) \cdot\left(\sum_{i=1}^{r} \cdot f_{\alpha(i)}\right) \cdot\left(\alpha . \# s_{2}\right)
$$

where $s_{1}=\left(p_{1}, \ldots, p_{r}\right)$ and $s_{2}=\left(q_{\alpha(1)}, \ldots, q_{\alpha(r)}\right)$.
Proof. Easy induction on the length of a base P-term in s.n.f. representing α :
An M-algebra is an ($N \times N$)-sorted algebra having all the operations and constants of P-algebras and two further constats: ε of sort $(2,1)$ and 0_{1} of sort $(0,1)$. As in the case of P-algebras, base M-terms are those built up from the constants using the given operations. Define base M-terms ε_{n} and 0_{n} for each $n \in N$ as follows.
(i) $\varepsilon_{0}=0_{1}, \quad \varepsilon_{1}=1, \quad \varepsilon_{2}=\varepsilon, \quad 0_{0}=0, \quad 0_{2}=0_{1}+0_{1} ;$
(ii) if $n \geqq 2$ then $\varepsilon_{n+1}=\left(\varepsilon_{n}+1\right) \cdot \varepsilon, \quad 0_{n+1}=0_{n}+0_{1}$.

Definition 3. A mapping algebra is an M-algebra satisfying the identities belonging to P and the following ones.

M1: $(\varepsilon+1) \cdot \varepsilon=(1+\varepsilon) \cdot \varepsilon ;$
M2: $\quad x \cdot \varepsilon=\varepsilon ;$
M3: $\left(1+0_{1}\right) \cdot \varepsilon=1$.
For $(p, q) \in N \times N$ let $\theta(p, q)$ be the set of all mappings of [p] into [q]. Let 0_{1} and ε be the unique elements of $\theta(0,1)$ and $\theta(2,1)$, respectively, and interpret the P-algebra operations and constants over the sets $\theta(p, q)$ as an obvious extension of their interpretation in Π. In this way we get the M-algebra θ, which is clearly a mapping algebra as well.

A base M-term is called simple if it is a simple base P-term, or it is one of the forms
(i) $(i-1)+0_{1}+(n-i)$, or
(ii) $(i-1)+\varepsilon+(n-i)$
for some $n \geqq 1, i \in[n]$. Let M denote the collection of axioms $M 1, M 2, M 3$. As in the case of base P-terms, for every base M-term t these exists a base M-term t^{\prime} such that t^{\prime} is the composite of simple base M-terms and $P \vdash t=t^{\prime}$. Moreover, by $P 6$ it is possible to rearrange the factors of t^{\prime} in such a way that $P \cup M \vdash t^{\prime}=\alpha \beta$, where α is a base P-term in s.n.f., but none of the factors of β is a simple base P-term (exept when $\beta=k$ for some $k \in N$). But then $P \cup M \vdash \beta=\varepsilon_{j_{1}}+\ldots+\varepsilon_{j_{m}}$ for some nonnegative integers m, j_{1}, \ldots, j_{m}.

For a base M-term t let $|t|$ denote the value of t in θ. The above reasoning together with Proposition 1 yields the following result.

Proposition 2. Let t and t^{\prime} be base M-terms. If $|t|=\left|t^{\prime}\right|$, then $P \cup M \vdash t=t^{\prime}$. Equivalently, the initial mapping algebra is θ.

As in the case of permutation algebras, when working in mapping algebras we identify a base M-term t with the mapping $|t|$.

Let $\alpha: p \rightarrow q$ be a mapping and $B \subseteq[q]$. We say that α is onto B if $\alpha^{-1}(j) \neq \emptyset$ for any $j \in B$. If $\alpha_{i}: p_{i} \rightarrow q, i=1,2$ are mappings, then define their pairing $\left\langle\alpha_{1}, \alpha_{2}\right\rangle: p_{1}+p_{2} \rightarrow q$ as

$$
\left\langle\alpha_{1}, \alpha_{2}\right\rangle(i)=\left\{\begin{array}{lll}
\alpha_{1}(i) & \text { if } & i \in\left[p_{1}\right] \\
\alpha_{2}\left(i-p_{1}\right) & \text { if } \quad i \in\left[p_{1}+p_{2}\right]-\left[p_{1}\right] .
\end{array}\right.
$$

An S-algebra has one further unary operation beyond the M-algebra operations and constants. This operation will be called the feedback and denoted by \uparrow. In an S-algebra the feedback maps $A(1+p, 1+q)$ into $A(p, q)$ for each pair $(p, q) \in N \times N$.

Let Σ be a doubly ranked set. (Recall from [B-Es] that

$$
\Sigma=\{\Sigma(p, q) \mid(p, q) \in N \times N\}
$$

where the sets $\Sigma(p, q)$ are pairwise disjoint.) A Σ-flowchart scheme with p begins and q exist consists of:
(i) A finite nonempty set V of labelled vertices, where the labels belong to the union of four, pairwise disjoint sets:

$$
(\cup \Sigma) \cup\left\{b_{i} \mid i \in[p]\right\} \cup\left\{\mathrm{ex}_{j} \mid j \in[q]\right\} \cup\{\perp\} .
$$

For each $i \in[p]$ and $j \in[q]$ there exists exactly one vertex labelled by b_{i}, called the i-th begin vertex, and exactly one vertex labelled by ex_{j}, the j-th exit vertex. Moreover, exactly one vertex, the loop vertex is labelled by \perp. For each $v \in V$ denote $v_{\text {in }}$ and $v_{\text {out }}$ the following sets of so called "signed vertices". Let α be the label of v. If $\alpha \in \Sigma(r, s)$, then

$$
v_{\text {in }}=\{(v, i) \mid i \in[r]\} \quad \text { and } \quad v_{\text {out }}=\{(v, j) \mid j \in[s]\} .
$$

If $\alpha=\mathrm{ex}_{j}$ or $\alpha=\perp$, then $v_{\text {in }}=\{(v, 1)\}$ and $v_{\text {out }}=\emptyset$, else (i.e. if $\left.\alpha=b_{i}\right) v_{i \mathrm{n}}=\emptyset$ and $v_{\text {out }}=\{(v, 1)\}$. Signed vertices belonging to begin, exit and loop vertices will be identified with their label.
(ii) A mapping E of $V_{\text {out }}=\bigcup\left(v_{\text {out }} \mid v \in V\right)$ into $V_{\text {in }}=U\left(v_{\text {in }} \mid v \in V\right)$. E represents the edges of the scheme, and in this sense we consider Σ-flowchart schemes as directed graphs.

Define the S-algebra operations on Σ-schemes as follows.

- The composition of schemes $F: p \rightarrow q$ and $G: q \rightarrow r$ is constructed in three steps.

1) Take the disjoint union of the graphs of F and G.
2) Direct each edge of F ending in any exit vertex of F, say ex_{j} to the signed vertex pointed by $E\left(b_{j}\right)$ in G.
3) Identify the lopp vertices of F and G, and delete the exists of F as well as the begins of G (together with all the incoming and outgoing edges, of course).

- The sum of schemes $F_{1}: p_{1} \rightarrow q_{1}$ and $F_{2}: p_{2} \rightarrow q_{2}$ is taken as follows.

1) Take the disjoint union of F_{1} and F_{2}.
2) Relabel each begin vertex of F_{2} from b_{i} to $b_{p_{1}+i}$ and each exit vertex of F_{2} from ex ${ }_{j}$ to $\mathrm{ex}_{q_{1}+j}\left(i \in\left[p_{2}\right], j \in\left[q_{2}\right]\right)$.
3) Identify their loop vertices.

- If F is a scheme $1+p \rightarrow 1+q$, then $1 F$ is constructed as follows.

1) Direct each edge of F ending in ex_{1} to $E\left(b_{1}\right)$ if $E\left(b_{1}\right) \neq \mathrm{ex}_{1}$, else to \perp.
2) Delete vertices b_{1} and ex_{1}, and relabel b_{i+1} and ex_{j+1} as b_{i} (resp. ex x_{j}) for $i \in[p], j \in[q]$.

- The interpretation of the constants is shown by Fig. 2.

Fig. 2. Interpretation of the constants as schemes

The loop vertex is omitted on the figure (exept for 0).
Definition 4. A scheme algebra is an S-algebra satisfying the identities $P \cup M$ and the following ones (the collection of these identities will be denoted by PMS).
$S 1: \uparrow\left(f_{1}+f_{2}\right)=\uparrow f_{1}+f_{2}$ for $f_{1}: 1+p_{1} \rightarrow 1+\dot{q}_{1}, f_{2}: p_{2} \rightarrow q_{2} ;$
S2: $\uparrow \uparrow((x+p) f)=\uparrow \uparrow(f(x+q))$ for $f: 2+p \rightarrow 2+q$;
$S 3: \uparrow(f(1+g))=(\uparrow f) g$ for $f: 1+p \rightarrow 1+q, g: q \rightarrow r ;$
$S 4: \quad \uparrow((1+g) f)=g \cdot \uparrow f$ for $f: 1+q \rightarrow 1+r, \quad g: p \rightarrow q$;
$S 5: \uparrow 1=0$ and $\varepsilon \cdot \perp=\perp+\perp$, where $\perp=\uparrow \varepsilon ;$
S6: $\quad \uparrow x=1$.
It is easy to see that Σ-schemes together with the operations and constants defined above form a scheme algebra, which will be denoted by $\operatorname{Sch}(\Sigma)$.

Lemma 3. If $\alpha: 1+p \rightarrow 1+q$ is a mapping with $\alpha(1) \neq 1$, then there exists a mapping $\beta: p \rightarrow q$ such that $P M S \vdash \vdash \alpha=\beta$.

Proof. Split α into the form

$$
\left(1+\beta_{1}\right)(x+r)\left(1+\beta_{2}\right)
$$

where $\beta_{1}: p \rightarrow 1+r$ and $\beta_{2}: 1+r \rightarrow q$ are appropriate mappings. Then

$$
\dagger \alpha=(\text { by } S 3 \text { and } S 4)=\beta_{1} \cdot \uparrow(x+r) \beta_{2}=(\text { by } S 1 \text { and } S 6)=\beta_{1} \beta_{2}
$$

Claim. The following identities are valid in every scheme algebra.
$S 1^{*}: \uparrow^{l}\left(f_{1}+f_{2}\right)=\uparrow^{l} f_{1}+f_{2}$ for $f_{1}: l+p_{1} \rightarrow l+q_{1}, f_{2}: p_{2} \rightarrow q_{2}$.
(\uparrow^{l} denotes the l-fold application of \uparrow.)
$S 3^{*}: \uparrow^{l}(f(l+g))=\left(\uparrow^{l} f\right) \cdot g$ for $f: l+p \rightarrow l+q, \quad g: q \rightarrow r$.
$S 4^{*}: 1^{l}((l+g) f)=g \cdot भ^{l} f$ for $f: l+q \rightarrow l+r, \quad g: p \rightarrow q$.
Proof. Trivial.
$X 1: \quad \uparrow^{l}\left((\alpha+p) f\left(\alpha^{-1}+q\right)\right)=\uparrow^{l} f$ for $f: l+p \rightarrow l+q$ and permutation α.
Proof. Put α into s.n.f., and apply $S 2$ with $S 3^{*}$ and $S 4^{*}$ repeatedly.
$X 2: \quad \quad^{l_{1}+l_{2}}\left(\left(l_{1}+x \#\left(l_{2}, p_{1}\right)+p_{2}\right)\left(f_{1}+f_{2}\right)\left(l_{1}+x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)=$ $=\dagger^{l_{1}} f_{1}+\dagger^{l_{2}} f_{2}$ for $f_{i}: l_{i}+p_{i} \rightarrow l_{i}+q_{i}, i=1,2$.

Proof. A schematic derivation is shown by Fig. 3.

Fig. 3. Schematic proof of X2
The same proof formally:

$$
\begin{aligned}
& t^{l_{1}+l_{2}}\left(\left(l_{1}+x \#\left(l_{2}, p_{1}\right)+p_{2}\right)\left(f_{1}+f_{2}\right)\left(l_{1}+x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)= \\
& =\dagger^{l_{2}}\left(\dagger^{l_{1}}\left(\left(l_{1}+x \#\left(l_{2}, p_{1}\right)+p_{2}\right)\left(\left(f_{1}+f_{2}\right)\left(l_{1}+x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)\right)\right)=\left(S 4^{*}\right) \\
& =\dagger^{l_{2}}\left(\left(x \#\left(l_{2}, p_{1}\right)+p_{2}\right) \cdot \dagger^{l_{1}}\left(\left(f_{1}+f_{2}\right)\left(l_{1}+x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)\right)=\left(S 3^{*}\right) \\
& =\psi^{l_{2}}\left(\left(x \#\left(l_{2}, p_{1}\right)+p_{2}\right) \cdot 4^{l_{1}}\left(f_{1}+f_{2}\right)\left(x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)=\left(S 1^{*}\right) \\
& =\dagger^{l_{2}}\left(\left(x \#\left(l_{2}, p_{1}\right)+p_{2}\right)\left(\dagger_{1} f_{1}+f_{2}\right)\left(x \#\left(q_{1}, l_{2}\right)+q_{2}\right)\right)=(P 6) \\
& =\uparrow^{l_{1}}\left(\left(l_{2}+x \#\left(p_{1}, p_{2}\right)\right)\left(f_{2}+\dagger^{l_{1}} f_{1}\right)\left(l_{2}+x \#\left(q_{2}, q_{1}\right)\right)\right)=\left(S 4^{*}, S 3^{*}, S 1^{*}\right) \\
& =\left(x \#\left(p_{1}, p_{2}\right)\right)\left(4^{l_{2}} f_{2}+4^{l_{1}} f_{1}\right)\left(x \#\left(q_{2}, q_{1}\right)\right)=(P 6)=4 l_{1} f_{1}+4^{l^{2}} f_{2} .
\end{aligned}
$$

In the sequel we shall omit the tedious formal proofs restricting ourselves to the corresponding schematic ones.
$\left.X 3 a: \quad \dagger^{q}(x \#(p, q)+l)(f+g)\right)=(f+l) g \quad$ for

$$
f: p \rightarrow q, \quad g: q+l \rightarrow r
$$

$X 3 b: \quad 1^{q}((g+f)(x \#(r, q)+l))=f(g+l)$ for

$$
f: p \rightarrow q+l, \quad g: q \rightarrow r
$$

Proof. Both cases a and b can be proved in a similar way, so we only prove $X 3 a$. (Dotted lines. indicate composition in Fig. 4.)
$X 4: \uparrow(f(\varepsilon+q))=\uparrow^{2}((\varepsilon+p) f):$ for $f: 1+p \rightarrow 2+q$.
Proof. See Fig. 5.

Fig. 4. Proof of $X 3 a$

Fig. 5. Proof of $X 4$

Lemma 4. Let $\alpha: r \rightarrow 1+p$ and $\beta: 1+q \rightarrow s$ be mappings, $f: p \rightarrow q$. In every scheme algebra we have
a) if $\alpha(1)=1$ and $\beta(1) \neq 1$, then

$$
\uparrow(\alpha(1+f) \beta)=\alpha^{\prime}(1+f) \beta^{\prime}
$$

b) if $\beta(1)=1^{\prime}$ and $\alpha(1) \neq 1$, then

$$
\uparrow(\alpha(1+f) \beta)=\uparrow\left(\alpha^{\prime \prime} f \beta^{\prime \prime}\right)
$$

c) if $\alpha(1)=\beta(1)=1$, then

$$
\uparrow(\alpha(1+f) \beta)=\uparrow\left(\alpha^{\prime \prime \prime}(\perp+f) \beta^{\prime \prime \prime}\right)
$$

for appropriate mappings ${ }^{\prime} \alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}, \beta^{\prime}, \beta^{\prime \prime}, \beta^{\prime \prime \prime} ;$ moreover $\alpha^{\prime \prime \prime}(1)=1$.
Proof.
Case a : By assumption α can be written in the form $\alpha=\left(1+\alpha^{\prime}\right)(\varepsilon+p)$. Then

$$
\begin{gathered}
\alpha(1+f) \beta=\left(1+\alpha^{\prime}\right)(\varepsilon+p)(1+f) \beta=\left(1+\alpha^{\prime}\right)(2+f)(\varepsilon+q) \beta= \\
\cdots=\left(1+\alpha^{\prime}(1+f)\right)(\varepsilon+q) \beta .
\end{gathered}
$$

Hence by $S 4$:

$$
\uparrow(\alpha(1+f) \beta)=\alpha^{\prime}(1+f) \cdot \uparrow((\varepsilon+q) \beta)
$$

Since $\beta(1) \neq 1$, Lemma 3 says that $\uparrow((\varepsilon+q) \beta)=\beta^{\prime}$ for some mapping β^{\prime}.
Case b : In this case β can be written in the form

$$
\beta=\left(1+\beta^{\prime \prime}\right)(\varepsilon+s-1),
$$

so

$$
\begin{gathered}
\uparrow(\alpha(1+f) \beta)=\uparrow\left(\left(\alpha(1+f) \beta^{\prime \prime}(\varepsilon+s-1)\right)=(\text { by } X 4)\right. \\
=\uparrow^{2}\left((\varepsilon+r-1) \alpha(1+f)\left(1+\beta^{\prime \prime}\right)\right)=\uparrow\left(\uparrow\left((\varepsilon+r-1) \alpha\left(1+f \beta^{\prime \prime}\right)\right)\right)=(\text { by } S 3) \\
=\uparrow\left(\uparrow((\varepsilon+r-1) \alpha) f \beta^{\prime \prime}\right)=(\text { by Lemma } 3)=\uparrow\left(\alpha^{\prime \prime} f \beta^{\prime \prime}\right) .
\end{gathered}
$$

Case c: As in the previous case we have

$$
\uparrow(\alpha(1+f) \beta)=\uparrow\left(\uparrow((\varepsilon+r-1) \alpha) f \beta^{\prime \prime}\right)
$$

but now

$$
\begin{gathered}
(\varepsilon+r-1) \alpha=(\varepsilon+r-1)\left(1+\alpha^{\prime}\right)(\varepsilon+p)=(1+r)\left(2+\alpha^{\prime}\right)\left(\varepsilon_{3}+p\right) ; \\
\uparrow((\varepsilon+r-1) \alpha)=(\text { by } S 4)=\left(1+\alpha^{\prime}\right) \uparrow\left(\varepsilon_{3}+p\right)=\left(1+\alpha^{\prime}\right)(\varepsilon \cdot \perp+p)= \\
=\left(1+\alpha^{\prime}\right)(\varepsilon+p)(\perp+p) .
\end{gathered}
$$

Putting $\alpha^{\prime \prime \prime}=\left(1+\alpha^{\prime}\right)(\varepsilon+p)$ and $\beta^{\prime \prime \prime}=\beta^{\prime \prime}$ we get:

$$
\uparrow(\alpha(1+f) \beta)=\uparrow\left(\alpha^{\prime \prime \prime}(\perp+p) f \beta^{\prime \prime \prime}\right)=\uparrow\left(\alpha^{\prime \prime \prime}(\perp+f) \beta^{\prime \prime \prime}\right)
$$

We call Σ-terms those S-terms that are built up from the elements of Σ considered as atomic terms (recall that Σ is a doubly ranked alphabet) and from the constants, using the given operations. Since the S-algebra of Σ-terms is freely generated by Σ, each homomorphism of it into the algebra $\operatorname{Sch}(\Sigma)$ is uniquely determined by its restristion to Σ. Let | | be the homomorphism determined by the mapping shown by Fig. 6.

Fig. 6. $\sigma \in \Sigma(p, q)$ as an atomic scheme
A Σ-term t is said to be in weak normal form (w.n.f.) if

$$
t=\uparrow^{l}\left(\alpha\left(a_{1}+\ldots+a_{n}\right) \beta\right)
$$

where
(i) $a_{i} \in \Sigma$ or $a_{i}=1$ or $a_{i}=\perp$ for each $i \in[n]$, and there exists at least one $j \in[n]$ such that $a_{j}=\perp$.
(ii) α and β are mappings of appropriate sort.

Lemma 5. For each Σ-term t there exists a Σ-term t^{\prime} in w.n.f. such that $t=t^{\prime}$ is provable from $P M S$.

Proof. Induction on the structure of t. If t is a constant, then its simplest w.n.f. is one of the following: $1=\left(1+0_{1}\right)(1+\perp), 0=0_{1} \cdot \perp, x=\left(x+0_{1}\right)(2+\perp), 0_{1}=$ $=0_{1} \cdot \perp \cdot 0_{1}, \varepsilon=\left(\varepsilon+0_{1}\right)(1+\perp)$. These identities are easy to prove. If $t=\sigma \in \Sigma(p, q)$, then its w.n.f. is $\left(p+0_{1}\right)(\sigma+1)$. Let $t=t_{1}$ op t_{2}, where $\mathrm{op}=+$ or \cdot, and let t_{1}^{\prime} and t_{2}^{\prime} be some w.n.f.-s of t_{1} and t_{2}, respectively. If $\mathrm{op}=+$, then we get a w.n.f. of t by applying $X 2$ for $f_{1}=t_{1}^{\prime}$ and $f_{2}=t_{2}^{\prime}$. If op $=\cdot$, then apply $X 3$ with $l=0$ (both cases a and b are appropriate), and then $X 2$ together with $S 3^{*}$ or $S 4^{*}$ to get the required w.n.f. of t. For $t=\uparrow t^{\prime}$ the induction step is trivial.

Definition 5. A Σ-term $t: p \rightarrow q$ is said to be in normal form (n.f.) if

$$
t=\uparrow^{l}\left(\left\langle\alpha_{1}+0_{k+1}, \alpha_{2}\right\rangle \cdot\left(\sum_{i=1}^{n} \sigma_{i}+\perp+k\right) \cdot\left\langle\beta_{2}, 0_{l}+\beta_{1}\right\rangle\right),
$$

where
(i) $n \geqq 0, \sigma_{i} \in \Sigma\left(r_{i}, s_{i}\right)$ for each $i \in[n]$,

$$
\sum_{i=1}^{n} r_{i}=r, \quad \sum_{i=1}^{n} s_{i}=s
$$

(ii) $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} are mappings such that
$\alpha_{1}: l \rightarrow r+1$ and $\beta_{1}: k \rightarrow q$ are injective and monotonic,
$\alpha_{2}: p \rightarrow r+1+k$ is onto $[r+1+k]-[r+1]$;
$\beta_{2}: s \rightarrow l+q$ is onto [$\left.l\right]$.
Lemma 6. For each Σ-term $t: p \rightarrow q$ there exists a Σ-term t^{\prime} in n.f. such that $t=t^{\prime}$ is provable from $P M S$.

Proof. By Lemma 5 we can assume that t is in w.n.f., i.e. $t=t^{l}\left(\alpha\left(a_{1}+\ldots+a_{m}\right) \beta\right)$. Moreover, by $P 6$ and $S 5$ we can assume that for some $n<m$ we have: $a_{i} \in \Sigma$ if $i \in[n], a_{n+1}=\perp$ and $a_{j}=1$ for each $n+1 \leqq j \leqq m$. Let $k=m-n-1$. We prove by induction on the number $k+l$. If $k+\dot{l}=0$, then we have nothing to prove. For $k+l>0$ we distinguish two cases. By assumption, $\alpha: l+p \rightarrow r+1+k$ and $\beta: s+k \rightarrow$ $\rightarrow l+q$ for some $r, s \in N$.

Case a : $l>0$ and one of conditions ($*$), ($* *$) or ($* * *$) below is satisfied: Suppose that for some $j \in[k]$

$$
\begin{equation*}
\left(\alpha^{-1}(r+1+j) \cup \beta(s+j)\right) \cap[l] \neq \emptyset . \tag{*}
\end{equation*}
$$

By P6 and $X 1$

$$
t=t^{l}\left(\alpha^{\prime}\left(1+a_{1}+\ldots+a_{j-1}+a_{j+1}+\ldots+a_{m}\right) \beta^{\prime}\right)
$$

is provable for some α^{\prime} and β^{\prime} such that $\alpha^{\prime}(1)=1$ or $\beta^{\prime}(1)=1$. Using Lemma 4 we obtain a simpler w.n.f. of t by decreasing the number k or l, which makes the induction hypothesis applicable. If this type of reduction cannot be applied, i.e. condition (*) does not holds for any $n+1<j \leqq m$, then α and β can be written in the form

$$
\alpha=\left\langle\alpha_{1}+0_{k+1}, \alpha_{2}\right\rangle \quad \text { and } \quad \beta=\left\langle\beta_{2}, 0_{1}+\beta_{1}\right\rangle,
$$

where $\alpha_{1}: l \rightarrow r+1, \alpha_{2}: p \rightarrow r+1+k, \beta_{1}: k \rightarrow q$ and $\beta_{2}: s \rightarrow l+q$ are appropriate mappings. Now suppose that there are distinct integers

$$
\begin{equation*}
1 \leqq i_{1}<i_{2} \leqq l \text { such that } \alpha_{1}\left(i_{1}\right)=\alpha_{1}\left(i_{2}\right) \tag{**}
\end{equation*}
$$

By $X 1$ we can assume that $i_{1}=1$ and $i_{2}=2$. Using $X 4$ we can decrease l making the induction hypothesis applicable. In this way α_{1} can be made injective. It is also easy to see that if
β_{2} is not onto [l],
then the feedback counter l can be decreased again.
Case $b: l=0$ or none of ($*),(* *)$ and $(* * *)$ is satisfied.
In this case if α_{2} were not onto $[r+1+k]-[r+1]$, then k could be decreased trivially, moreover any duplication of β_{1} could be "lifted" to α_{2} causing again the number k to be decreased.

Thus, we have seen that in any case when the induction hypothesis cannot be applied we have all the conditions of the n.f. satisfied, except monotonicity of α_{1} and β_{1}. However, this can also be adjusted by the application of $X 1$ and $P 6$, so the proof is complete.

Theorem 1. Let t and t^{\prime} be Σ-terms. If $|t|=\left|t^{\prime}\right|$, then $t=t^{\prime}$ is provable from PMS.

Proof. By Lemma 6 we can assume that t and t^{\prime} are in n.f. Normal form of Σ-terms was defined in such a way that if t and t^{\prime} were not identical, then the only difference between them should appear in the order of the atomic terms occuring in the sum $\sum_{i=1}^{n} \sigma_{i}$. In this case, however, an application of Lemma 2 with an appropriate permutation α will make them identical.

This theorem and the following corollary are the main results of the paper.
Corollary 2. $\operatorname{Sch}(\Sigma)$ is the free scheme algebra generated by Σ.

3. Connections to the same result of [B—Es]

In [B-Es] schemes are axiomatized as algebras equipped with the following operations and constants.

Composition, •: $A(n, p) \times A(p, q) \rightarrow A(n, q) ;$
Pairing, $\langle\rangle:, \quad A(n, q) \times A(p, q) \rightarrow A(n+p, q) ;$
Iteration, ${ }^{\dagger}: \quad A(n, n+p) \rightarrow A(n, p)$;

$$
\begin{array}{ll}
\pi_{p}^{i} \in A(1, p) & \text { for each } p \in N, \quad i \in[p] \\
0_{p} \in A(0, p) & \text { for each } \\
& p \in N .
\end{array}
$$

Let us call algebras of hist type $B S$-algebras, and to make a temporary distinction call the $B S$-type scheme algebras of [B-Es] B-scheme algebras.

In an arbitrary scheme algebra A we can introduce the $B S$-algebra operations as derived ones in the following way.

Composition: adopted as a basic operation;
Pairing: for $f: n \rightarrow q$ and $g: p \rightarrow q$ let

$$
\langle f, g\rangle=(f+g) \cdot w_{2}(q)
$$

where $w_{k}(q): k q \rightarrow q$ is the mapping which takes $(j-1) q+i$ to i for each $j \in[k]$, $i \in[q]$;

Iteration: for $f: n \rightarrow n+p$ let

$$
\begin{gathered}
f^{\dagger}=\uparrow^{n}\left(w_{2}(n) f\right) \\
\pi_{p}^{i}=0_{i-1}+1+0_{p-i} \text { and } 0_{p} \text { is adopted. }
\end{gathered}
$$

It is straightforward to check that if A is a free scheme algebra, then the above derived interpretation of the $B S$-algebra operations coincides with their original interpretation considering A as a free B-scheme algebra. From well-known results of universal algebra it follows that every scheme algebra equipped with these $B S$ algebra operations becomes a B-scheme algebra.

Now let A be a B-scheme algebra. We can derive the S-algebra operations in A as follows.
$1=\pi_{1}^{1} ; \quad x=\left\langle\pi_{2}^{2}, \pi_{2}^{1}\right\rangle ; \quad \varepsilon=\left\langle\pi_{1}^{1}, \pi_{1}^{1}\right\rangle ; \quad 0_{1}:$ adopted;
Composition: adopted;
Sum: for $f_{1}: p_{1} \rightarrow q_{1}, f_{2}: p_{2} \rightarrow q_{2}$ let

$$
f_{1}+f_{2}=\left\langle f_{1}\left\langle\pi_{q_{1}+q_{2}}^{1}, \ldots, \pi_{q_{1}+q_{2}}^{q_{1}}\right\rangle, f_{2}\left\langle\pi_{q_{1}+q_{2}}^{q_{1}+1}, \ldots, \pi_{q_{1}+q_{2}}^{q_{1}+q_{2}}\right\rangle\right\rangle ;
$$

Feedback: for $f: 1+p \rightarrow 1+q$ let

$$
t f=\left(0_{1}+p\right)\left(f\left(1+0_{p}+q\right)\right){ }^{\dagger}
$$

[^3]Repeating the previous argument for free algebras we can see that A equipped with the above defined S-algebra operations becomes a scheme algebra. Thus, we can state

Theorem 2. The equational class of all scheme algebras is equivalent to that of all B-scheme algebras.

4. Algebraic and iteration theories

Roughly speaking an algebraic theory (theory for short) is a $B S$-algebra without iteration satisfying the following equational axioms.

TH1: $f \cdot(g \cdot h)=(f \cdot g) \cdot h$ for all $f: n \rightarrow p, g: p \rightarrow q, h: q \rightarrow r$,
TH2: $p \cdot f=f=f \cdot q$ for all $f: p \rightarrow q\left(p\right.$ denotes the term $\left.\left\langle\pi_{p}^{1}, \ldots, \pi_{p}^{p}\right\rangle\right)$,
$T H 3:\langle\langle f, g\rangle, h\rangle=\langle f,\langle g, h\rangle\rangle$ for all $f: m \rightarrow q, \quad g: n \rightarrow q, \quad h: p \rightarrow q$,
TH4: $\left\langle f, 0_{q}\right\rangle=f=\left\langle 0_{q}, f\right\rangle$ for all $f: p \rightarrow q$,
TH5: $\pi_{p}^{i}\left\langle f_{1}, \ldots, f_{p}\right\rangle=f_{i}$ for all $f_{1}, \ldots, f_{p}: 1 \rightarrow q, i \in[p]$,
TH6: $\left\langle\pi_{p}^{1} f, \ldots, \pi_{p}^{p} f\right\rangle=f$ for all $f: p \rightarrow q$.
We would like to extend our system of axioms $P M S$ in such a way that in the corresponding smaller equational class each algebra should derive a B-scheme algebra which is a theory. We claim that the following two axioms are sufficient.

Th1: $0_{1} \cdot f=0_{q}$ for all $f: 1 \rightarrow q$,
Th2: $\quad w_{p}(p) \cdot f=\left(\sum_{i=1}^{p} f\right) \cdot w_{p}(q)$ for all $f: p \rightarrow q$
(recall that $w_{p}(q): p q \rightarrow q$ takes $(j-1) q+i$ to i for each $\left.j \in[p], i \in[q]\right)$. Indeed, the derived correspondents of $T H 1-T H 4$ follows already from $P \cup M$, so we only have to prove TH5 and TH6. The derived form of TH5 in S-algebras in the following:

$$
\left(0_{i-1}+1+0_{p-i}\right)\left(f_{1}+\ldots+f_{p}\right) w_{p}(q)=f_{i}
$$

By $T h 1$ the left-hand side reduces to

$$
\left(0_{(i-1) q}+f_{i}+0_{(p-i) q}\right) w_{p}(q)
$$

which is clearly equal to f_{i}.
Concerning TH6 we have to prove that

$$
\left(\left(1+0_{p-1}\right) f+\ldots+\left(0_{p-1}+1\right) f\right) w_{p}(q)=f
$$

Manipulating the left-hand side using Th2 we obtain:

$$
\begin{gathered}
\left(\sum_{i=1}^{p}\left(\left(0_{i-1}+1+0_{p-i}\right) f\right)\right) w_{p}(q)=\left(\sum_{i=1}^{p}\left(0_{i-1}+1+0_{p-i}\right)\right)\left(\sum_{i=1}^{p} f\right) w_{p}(q)= \\
=\left(\sum_{i=1}^{p}\left(0_{i-1}+1+0_{p-i}\right)\right) w_{p}(p) f=f .
\end{gathered}
$$

Unfortunately I did not succeed in an essential simplification of Ésik's "commutativity" axioms (cf. [Es]) for iteration theories:

$$
I T:\left\langle\pi_{m}^{1} \varrho f\left(\varrho_{1}+p\right), \ldots, \pi_{n}^{n} \varrho f\left(\varrho_{n}+p\right)\right\rangle^{\dagger}=\varrho(f(\varrho+p))^{\dagger},
$$

where $f: n \rightarrow m+p, \varrho: m \rightarrow n$ is a surjective mapping and $\varrho_{i}: m \rightarrow m$ are also mappings satisfying $\varrho_{i} \varrho=\varrho$. In our sense $I T$ is an infinite scheme of axioms, moreover, Ésik has proved that it cannot be replaced by any finite scheme, see [Es1].

BOLYAI INSTITUTE

A. JOZZSEF UNIVERSITY

ARADI VERTANÚK TERE 1
SZEGED, HUNGARY
H-6720

References

[B-Es] Bloom, S. L., Z. Ésik, Axiomatizing schemes and their behaviours, J. Comp. System Sci., 31/3 (1985), 375-393.
[ES] Elgot, C. C., J. Shepherdson, An equational axiomatization of reducible flowehart schemes, in Calvin C. Elgot, Selected papers, S. L. Bloom, ed., Springer-Verlag, 1982.
[Es] Ésik, Z. Identities in iterative and rational theories, Comput. Languages 14 (1980), 183207.
[Es1] EsiK, Z., Independence of the equational axioms of iteration theories, to appear.
[AD] Arnold, A., M. Dauchet, Theorie des magmoïdes, RAIRO Inform. Theor. 12 (1978) 235-257 and 13 (1979) 135-154.
(Received Oct. 8. 1986)

О ВЕРОЯТНОСТНЫХ МЕТОДАХ ОПТИМИЗАЦИИ НА ДИСКРЕТНЫХ МНОЖЕСТВАХ

С. В. Яковлев

Пусть X дискретное множество, на котором определен функционал $x: X \rightarrow R^{1}$. Требуется найти

$$
\begin{equation*}
x^{*}=\arg \min _{x \in X} x(x) \tag{1}
\end{equation*}
$$

Рандомизируем задачу (1). Отождествимпространство элементарных событий с X. Пусть $\mathscr{B}_{X}-\sigma$-алгебра подмножеств X (в частности возможно $\mathscr{B}_{X}=2^{X}$), а P_{X} - вероятностная мера на \mathscr{B}_{X}. Тогда $x(x)$ есть случайная величина на вероятностном пространстве $\left\langle X, \mathscr{B}_{X}, P_{X}\right\rangle$.

В данной статъе предлагаются методы статистической оптимизации, основанные на использовании свойств случайной величины $x(x)$ для исследования поведения минимизируемого функционала на множестве X и его подмножествах. В дальнейшем, чтобы отличать, идет речь о функционале или о случайной величине, будем использовать соответственно обозначения $x(x)$ и $x(x): x \in Y$, указывая тем самым множество, на котором задана вероятностная мера.

Пусть $\tau=\left\{Y_{j}^{i}\right\}, i=\overline{1, n-1}, j=\overline{1, n_{i}}$ такая система множеств, что

$$
Y_{j}^{i} \subset \bigcup_{l=1}^{n_{l}} Y_{\pi_{l}^{i j}}^{i+1}, \quad Y_{1}^{1}=X, \quad n_{1}=1, \quad \operatorname{card} Y_{j}^{i}>\operatorname{card} Y_{k}^{i+1}, \quad \forall j, k,
$$

где $\Pi_{i j}=\left\{\pi_{1}^{i j}, \ldots, \pi_{n_{i j}}^{i j}\right\}$ - такие подмножества множества $N_{i}=\left\{1,2, \ldots, \sum_{j=1}^{n_{1}} n_{i j}\right\}$, что

$$
\bigcup_{j=1}^{n_{i}} \Pi_{i j}=N_{i}, \quad \Pi_{i j} \cap \Pi_{i k}=\emptyset \quad \forall j, k=\overline{1, n_{i}} .
$$

Для определенности занумеруем, например, множества системы τ так, чтобы

$$
Y_{j}^{\prime} \subset \bigcup_{l=a_{j-1}^{U}+1}^{a_{j}^{l}} Y_{l}^{i+1}
$$

где

$$
\alpha_{0}^{i}=0, \quad \alpha_{k}^{i}=\sum_{j=1}^{k} n_{i j}, \quad k=\overline{1, n_{i}}
$$

Ясно, что для построения τ достаточно, например, осуществить разбиение исходного множества X на подмножества, затем каждое из подмножеств снова разбнть на подмножества и т. д. Однако заметим, что условие попарного непересечения множеств с одинаковым верхним индексом не является обязательньм.

На подмножествах системы τ будем задавать вероятностную меру. Тем самым получим совокупность случайных величин $x(x): x \in Y \in \tau$. Одной из важнейших характеристик случайной величины является функция ее распределения. Идеи использования функции распределения случайной величины для оптимизации детерминированного функционала рассматривались, например, в работах [1,2]. Заметим, что в общем случае вид функции распределения $\bar{F}(v)$ случайной величины $x(x): x \in Y$ не известен. Однако можпо утверждать следующее.

Во-первых, $F\left(x\left(x^{*}\right)\right)=0$, а для любого $\varepsilon>0: F\left(x\left(x^{*}\right)+\varepsilon\right)>0$.
Во-вторых, если множество X конечно, а $N(\varepsilon)$ есть множество тех значений $x \in X$, для которых $x(x)<\chi\left(x^{*}\right)+\varepsilon$, то

$$
F\left(\varkappa\left(x^{*}\right)+\varepsilon\right)=\frac{\operatorname{card} N(\varepsilon)}{\operatorname{card} X}
$$

В-третьих, функция $F(v)$ ступенчатая. Вместе с тем ее можно аппроксимировать непрерывной функцией, воспользовавшись, в частности, разложением $F(v)$ в ряд по нормальным распределениям. При разложении необходимо знать моменты случайной величины. Для этого можно предложить их выборочные оценки. Однако оценки моментов высоких порядков порождают большие погрешности. Поэтому такой подход целесообразен, когда $F(v)$ хорошо приближается 2-3 членами ряда в разложении.

Для некоторых классов функционалов дискретный характер множества X позволяет получать точные значения моментов. В частности, для задачи назначения в работе [3] получены точные среднее и дисперсия, как определенные функции от элементов матрицы стоимости (эти результаты можно перенести на моменты более высоких порядков). Кроме того, сам вид минимизируемого функционала $x(x)$ иногда позволяет говорить о функции распределения $x(x): x \in Y$. Так, если $x(x)=\sum_{i=1}^{m} c_{i} x_{i}$, то при выполнении достаточно общих условий случайная величина $x(x): x \in Y$ асимптотически ($m \rightarrow \infty$) нормальна. Функцию распределения можно также оценивать с помощью критериев согласия и т. д.

В дальнейшем будем предполагать, что вид функции распределения $F(v)$ известен с точностью до параметров θ и пользоваться обозначением $F(v, \theta)$.

Назовем испытанием генерацию точки x из множества $Y \in \tau$. Для оценки вектора параметров $\theta(Y)$ функции распределения $F(v, \theta(Y))$ случайной величины $x(x): x \in Y$ произведем серию испытаний (т. е. сформируем выборку $\left\{\chi\left(x_{1}\right), \ldots, \chi\left(x_{s}\right)\right\}, x_{i} \in Y, i=\overline{1, s}$. Наименьшее выборочное значение при этом

можно рассматривать как приближение к оптимуму функционала $\chi(x)$. Зная функцию распределения и экстремальное выборочное значение, можно оценивать вероятность генерации точек x, которым соответствуют значения функционала меньшие, чем получены ранее. Тем самым можно осуществлять такой направленный перебор точек множества X, при котором вероятность уменьшения значений функционала растет.

Следующий алгоритм основан на указанных выше соображениях. Полагается, что для оценки параметров функции распределения и экстремального выборочного значения производится серия из s испытаний, а суммарное число испытаний ограничено и равно S.

Алгоритм 1

IIаг 1. Полагаем $i=j=1 S=S-s, l_{q}^{p}=\alpha_{q-1}^{p}, p=\overline{1, n-1}, q=\overline{1, n_{p}}$. Генерируем точки x_{1}, \ldots, x_{s} из множества X. По выборке $\chi\left(x_{1}\right), \ldots, x\left(x_{s}\right)$ определяем $x\left(x^{0}\right)=\min \left\{x\left(x_{1}\right), \ldots, x\left(x_{s}\right)\right\}$ и оцениваем параметры $\theta\left(Y_{1}^{1}\right)$ функции распределения случайной величины $x(x): x \in Y_{1}^{1}$. Переходим к шагу 2.

Шаг 2. Если $i \geqq n$, переходим к шагу 6; иначе - к шагу 3.
IIIaz 3. Полагаем $l_{j}^{i}=l_{j}^{i}+1, k=l_{j}^{i}$. Если $k>\alpha_{j}^{i}$, переходим к шагу 6; иначе - к шагу 4.

IIаг 4. Генерируем точки x_{1}, \ldots, x_{s} из множества Y_{k}^{i+1}. Вычисляем $x\left(x^{0}\right)=$ $=\min \left\{\chi\left(x^{0}\right), \chi\left(x_{1}\right), \ldots, \chi\left(x_{s}\right)\right\}$ и оцениваем параметры $\theta\left(Y_{k}^{i+1}\right)$ функции распределения случайной величины $\varkappa(x): x \in Y_{k}^{i+1}$.

IIIа 5. Определяем такие p и q, для которых значение $F\left(\varkappa\left(x^{0}\right), \theta\left(Y_{q}^{p}\right)\right)$ наибольшее из всех рассмотренных множеств Y_{k}^{i}. Полагаем $i=p, j=q$, $S=S-s$ и переходим к шагу 2.
Шаг 6. Генерируем точки x_{1}, \ldots, x_{S} из множества Y_{j}^{i}. Точку x^{0} и величину $x\left(x^{0}\right)=\min \left\{x\left(x^{0}\right), x\left(x_{1}\right), \ldots, x\left(x_{S}\right)\right\}$ принимаем за приближение к оптимуму.
Сделаем некоторые замечания. Алгоритм допускает несложные преобразования в случае если число испытаний s (объем выборки) на каждом шаге различное. Если суммарное число испытаний S не фиксировано, то в качестве S можно взять достаточно большое число. В этом случае, если будет получено уменьшение значения функционала $x\left(x^{0}\right)$ (шаг 6), следует вернуться к шагу 5 и алгоритм продолжит работу.

Согласно алгоритма после каждой серии испытаний необходимо пересчитывать величины $F\left(x\left(x^{0}\right), \theta\left(Y_{j}^{i}\right)\right)$ для всех рассмотренных ранее множеств. Но если значение $x\left(x^{0}\right)$ не изменилось, указанные величины также остануться преждними, т. е. вычислять $F\left(x\left(x^{0}\right), \theta\left(Y_{j}^{i}\right)\right)$ требуется только для нового сформированного множества.

Обобщением предложенного алгоритма можно считать алгоритмы, в которых на каждом шаге вероятностная мера задается не на Y_{j}^{i}, а на всем X. При этом структура вероятностной меры такова, что вероятность генерации точек, „близких" к рекордной, увеличивается.

При реализации алгоритма 1 вид функции распределения случалйных величин $x(x): x \in Y_{j}^{i}$ задается априорно или оценивается. Кроме того необходимо получать выборочные оценки параметров функций распределения. Bсе это порождает определенные погрешности вероятностной модели.

Следующий алгоритм основан на непараметрическом подходе к оценке вероятности улучшений и построен с использованием схемы независимых испытаний (схема Бернулли).

Предположим, что к началу очередной серии испытаний рекордное значение функционала равно $x\left(x^{0}\right)$. Пусть A-случайное событие, состоящее в генерации точки $x \in Y_{j}^{i}$, такой что $x(x)<x\left(x^{0}\right)$. Положим, что вероятность события A равна p. Рассмотрим сложное испытание, состоящее в m-кратном повторении простого испытания (генерации точки из Y_{j}^{j}). Число λ появлений события A при m-кратном повторении независимых простых испытаний подчиняется биномиальному закону распределения вероятностей

$$
\begin{equation*}
P\{\lambda=m\}=\binom{m}{\lambda} p^{\bar{m}(\overline{1}-p)^{\lambda-\bar{m}} .} \tag{2}
\end{equation*}
$$

Итак, величина p - это вероятность улучшений. Если в серии из s испытаний получено l улучшений, то p состоятельно оценивается отношением l / s. В частности, если улучшение (событие A) произошло на k-м испытании, то $p=1 / k$. Зная оценку p, а также значения λ и $P\{\lambda=m\}$, из выражения (2) несложно оценить длину серии испытаний до получения λ улучшений (успехов).

Алгоритм 2

IIIаг 1. Полагаем $i=j=l=1, v_{0}=v^{*}=10^{16}$. Задаем (или оцениваем) длину серии испытаний s и величину ожидаемых успешных испытаний λ.
IIIаг 2. Формируем множество Y_{l}^{i} и задаем вероятностное распределение на нем. Полагаем $k=0, m=0$. Переходим к шагу 3 .
IIIаг 3. Полагаем $k=k+1$. Если $k>s$, переходим к шагу 8 ; иначе к шагу 4.

IIаг 4. Генерируем точку $x \in Y_{i}^{i}$ и вычисляем $x(x)$. Если $x(x)<v_{0}$, полагаем $x^{0}=x, v_{0}=x\left(x^{0}\right)$. Переходим к шагу 5.

Шаг 5. Если $\chi(x)<v^{*}$, полагаем $m=m+1$. Если $m<\lambda$, переходим к шагу 3 ; иначе- полагаем $v^{*}=v_{0}$ и переходим к шагу 6.
ІІаг 6. Полагаем $j=l, l=\alpha_{j+1}^{i}+1$ и переходим к шагу 7.
IIIаг 7. Полагаем $i=i+1$. Если $i<n$, переходим к шагу 2 ; иначе к шагу 9.

ПІаг 8. Если $l<\alpha_{j}^{i}$, полагаем $l=l+1$ и переходим к шагу 2 ; иначе переходим к шагу 6.

IIIаг 9. Точку x^{0} и величину $x\left(x^{0}\right)$ принимаем за приближение к оптимуму.

В рамках приведенного алгоритма можно варьировать числом ожидаемых успешных испытаний, уменьшая λ при уменьшении card Y_{i}^{i}. Тот факт, что на начальных этапах число λ целесообразно брать большим, объясняется необходимостью более тщательного „просмотра" множества Y_{j}^{i} для определения перспективного направления дальнейшего поиска.

Заметим, что как в первом, так и во втором алгоритмах важное значение имеет правило выбора нового множества Y_{i}^{i}. Естественно это множество выбирать так, чтобы рекордная точка x^{0} ему принадлежала. Если такое множество уже рассмотрено, выбирается множество, которому принадлежит ближайшая (по значению функционала) точка и т. д. В приведенных алгоритмах указанный шаг опущен в целях простоты изложения, но такая процедура легко реализуется путем соответствующей перенумерации множеств системы τ.

В задачах оптимизации важное значение имеет поведение функционала $\chi(x)$ в окрестности глобального экстремума. В терминах вероятностной модели это соответствует поведению функции распределения $F(v)$ случайной величины $x(x): x \in Y$ на „хвостах". Поскольку функционал $x(x)$ ограничен на Y снизу, то положив

$$
\eta_{Y}=\inf _{x \in \boldsymbol{Y}} x(x),
$$

можно утверждать, что

$$
\begin{equation*}
F\left(\eta_{Y}\right)=0, \quad F\left(\eta_{Y}+\delta\right) \neq 0 \quad \forall \delta>0 . \tag{3}
\end{equation*}
$$

Зададимся числом $\varepsilon>0$. Поставим функции распределения $F(v)$, удовлетворяющей условию (3), в соответствие функцию распределения $F^{*}(v)$ такую, что для некоторого числа η_{Y}^{*} имеет место:

$$
F^{*}\left(\eta_{Y}^{*}\right)=0, \quad F^{*}\left(\eta_{Y}^{*}+\delta\right) \neq 0 \quad \forall \delta>0, \quad\left|\eta_{Y}-\eta_{Y}^{*}\right|<\varepsilon .
$$

Тогда параметр η_{Y}^{*} является статистической оценкой оптимума функционала $\chi(x)$ на Y. В качестве $F^{*}(v)$ могут выступать предельное распределение случайной величины $x(x): x \in Y$, а также предельное распределение ее экстремальных значений. В последнем случае точный вид исходного распределения $F(v)$ нас не интересует. Важно, чтобы оно удовлетворяло постулату устойчивости [4].

При статистической оценке оптимума можно использовать и непараметрический подход, в основу которого положены элементы теории порядковых статистик. Рассмотрим независимые реализации $x\left(x_{1}\right), \ldots, x\left(x_{s}\right)$ случайной величины $x(x): x \in Y$. Обозначим через $\eta_{(1)} \leqq \ldots \leqq \eta_{(s)}$ порядковые статистики, соответствующие данной выборке. Выберем к крайних порядковых статистик и рассмотрим величину

$$
\hat{\eta}(Y)=\sum_{i=1}^{k} a_{i} \eta_{(i)} .
$$

Правило выбора k и значения коэффициентов $a_{i}, i=\overline{1, k}$ приведены в $[2,5]$. Заметим, что величина $\hat{\eta}(Y)$ состоятельно оценивает η_{Y}^{*}. Возможность статистического оценивания оптимума функционала $x(x)$ на множествах Y_{j}^{i} позволяет предложить группу алгоритмов, построенных аналогично методу ветвей и границ.

Алгоритм 3.

IIIаг 1. Полагаем $i=j=1, v_{0}=10^{16}, l_{p}=1, p=\overline{0, n}$. Задаемся допустимой погрешностью оценки $\tilde{\varepsilon}>0$.
IIIаг 2. Генерируем точки x_{1}, \ldots, x_{s} из множества Y_{j}^{i}. Полагаем $v_{0}=$ $\min \left\{v_{0}, \varkappa\left(x_{1}\right), \ldots, \varkappa\left(x_{s}\right)\right\}$. Вычисляем статистическую оценку оптимума $\hat{\eta}\left(Y_{j}^{i}\right)$. Если $\eta\left(Y_{j}^{i}\right)>\chi\left(x^{0}\right)-\tilde{\varepsilon}$, переходим к шагу 4 ; иначе к шагу 3.
ІІаг 3. Полагаем $j=\alpha_{l_{i}-1}^{i}, i=i+1$. Если $i>n$, переходим к шагу 5 ; иначе — к шагу 4.
IIIаг 4. Полагаем $j=j+1, l_{i}=j$. Если $j \leqq \alpha_{l_{i-1}}^{i-1}$, переходим к шагу 2; иначе - к шагу 5.

Паг 5. Полагаем $i=i-1, j=I_{i}$. Если $i \leqq 1$, переходим к шагу 7 ; иначе к шагу 6.

Паг 6. Если $\hat{\eta}\left(Y_{j}^{i}\right)>x\left(x^{0}\right)-\tilde{\varepsilon}$, переходим к шагу 5 ; иначе - к шагу 4.
IIаг 7. Точку x^{0} и величину $x\left(x^{0}\right)$ принимаем за проближение к оптимуму.
Как видно из приведенного алгоритма, он состоит из прямого хода, когда вычисляются статистические оценки, и обратного хода, когда эти оценки используются для отсечений. Прямой ход определяется шагами 2-4, а обратный - шагами 5, 6. Погрешность $\tilde{\varepsilon}$ оценки может задаваться априорно, что будет соответствовать некоторому уровню вероятности, либо вычисляться с учетом функции распределения случайной величины $\hat{\eta}\left(Y_{j}^{i}\right)$.

Заметим, что необходимость многократной статистической оценки оптимума на подмножествах Y_{j}^{i} увеличивает вероятность утери множества Y_{j}^{n}, которому принадлежит глобальный экстремум. Однако можно использовать дополнительные средства в процессе поиска.

Имеется в виду следующее. Если $Y_{2} \subset Y_{1}$, то

$$
\min _{x \in Y_{1}} x(x) \leqq \min _{x \in Y_{2}} x(x) .
$$

Таким образом вместо непосредственной оценки $\hat{\eta}\left(Y_{1}\right)$ и $\hat{\eta}\left(Y_{2}\right)$ можно проверить гипотезу $H_{0}: \hat{\eta}\left(Y_{2}\right)-\hat{\eta}\left(Y_{1}\right) \leqq \tilde{\varepsilon}$ при альтернативе $H_{1}: \hat{\eta}\left(Y_{2}\right)-\hat{\eta}\left(Y_{1}\right)>\varepsilon$. Другими словами, проверяется гипотеза, принадлежит ли искомое приближение к оптимуму подмножеству множества, содержащего это приближение.

Алгоритм 4.

IIIаг 1. Полагаем $i=j=1, v_{0}=10^{16}$. Задаемся погрешностью $\tilde{\varepsilon}>0$.
IIIаг 2. Генерируем точки $x_{1}, \ldots, x_{s} \in Y_{1}^{1}$. Вычисляем $\eta^{0}=\hat{\eta}\left(Y_{1}^{1}\right), \quad v_{0}=\min \left\{v_{0}, x\left(x_{1}\right), \ldots, x\left(x_{s}\right)\right\}$.

IIIаг 3. Полагаем $j=\alpha_{l_{i-1}}^{i}, i=i+1$. Если $i>n$, переходим к шагу 8 ; иначе - к шагу 4.

IIIаг 4. Генерируем точки $x_{1}, \ldots, x_{s} \in Y_{j}^{i}$. Вычисляем статистическую оценку оптимума $\hat{\eta}\left(Y_{j}^{i}\right)$ и $v_{0}=\min \left\{v_{0}, \chi\left(x_{1}\right), \ldots, x\left(x_{s}\right)\right\}$.
IIIаг 5. Проверяем гипотезу $H_{0}: \hat{\eta}\left(Y_{j}^{i}\right)-\eta^{0} \leqq \tilde{\varepsilon}$ при альтернативе $H_{1}: \hat{\eta}\left(Y_{j}^{i}\right)-$ $-\eta^{0}>\tilde{\varepsilon}$. Если гипотеза принимается, переходим к шагу 3 ; иначе к шary 6.
ШІаг 6. Полагаем $j=j+1, l_{i}=j$. Если $j \leqq \alpha_{l_{i-2}}^{i-1}$, переходим к шагу 4; иначе - к шагу 7.

IIIаг 7. Полагаем $i=i-1, j=l_{i}$. Если $i \geqq 1$, переходим к шагу 4; иначе к шагу 8.
IIIаz 8. Точку x^{0} и величину $x\left(x^{0}\right)$ принимаем за начальное приближение к оптимуму. Если $i>n$, дальнейший поиск осуществляется на множестве $Y_{l_{n-1}}^{n}$.
Заметим, что при отсутствии погрешностей вычисления, если $Y \subset \bigcup_{i=1}^{k} Y_{i}$, то существует такое $j=\overline{1, k}$, что $\eta_{Y}=\eta_{Y_{i}}$. Однако вероятностный характер оценок $\hat{\eta}\left(Y_{i}\right)$ может привести к тому, что для всех $j=\overline{1, k}: \hat{\eta}\left(Y_{i}\right)-\hat{\eta}(Y)>\tilde{\varepsilon}$. Поэтому на шаге 7 алгоритма по-существу осуществляется возврат к уже рассмотренному ранее множеству и пересчет оценки $\hat{\eta}\left(Y_{j}^{i}\right)$.

Сравнение статистических оценок оптимумов может осуществляться не только относительно исходного множества X, а и относительно множества, полученного на предыдущем этапе. В этом случае проверяется гипотеза $H_{0}: \hat{\eta}\left(Y_{j}^{i}\right)-\hat{\eta}\left(Y_{i_{i-1}}^{i-1}\right)>\tilde{\varepsilon}$.

Во всех приведенных в статье алгоритмах общим является использование статистических свойств функционала $\varkappa(x)$ на подмножествах множества X для определения направления поиска оптимума. Эти алгоритмы могут быть так илли иначе модифицированы применительно к конкретно решаемому классу задач. В частности, особенности применения алгоритмов в задачах размещения, квадратичного назначения, компоновки, балансировки и т. д. рассмотрены в [6-10]. Обширный вычислительный эксперимент описан в [2].

В заключение отметим, что класс предложенных алгоритмов объединен общим названием - метод последовательной статистической оптимизации [2]. Начало разработкам положено членом-корреспондентом АН УССР, профессором Ю. Г. Стояном [11]. Теоретические аспекты обоснования метода нашли отражение в [2, 12]. Более подробную библиографию также можно найти в [2].

Автор выражает благодарность Ю. Г. Стояну за постоянное внимание и помощь в работе.

ХАРБКОВСКИЙ ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ
Г. ХАРЬКОВ, ПРОСП. ЛЕНИНА, 14.

CCCP, 310141.

Литература

[1] Моцкус, И. Б., Многоэкстремальные задачи в проектировании (Статистические репения. Усиление локальных методов. Эвристические способности человека). - М.: Наука, 1967. - 215 c.
[2] Стоян, Ю. Г., Яковлев, С. В., Математические модели и оптимизационные методы геометрического проектирования. - Киев: Наукова думка, 1986. - 276 с.
[3] Ходзинский, А. Н., Статистические свойства критерия и их исполызование в алторитмах репения задач комбвнаторной оптимизации. - В кн.: Применения случайного поиска, Кемерово, 1984, с. 41-42.
[4] Гумбель Э., Статистика экстремальных значений. - М.: Мир, 1965. - 450 с.
[5] Математическая теория планирования эксперимента (Под ред. С. М. Ермакова). М.: Наука, 1983. - 392 с.
[6] Стоян, Ю. Г., Гиль Н. И., Методы и алгоритмы размещения плоских геометрических объектов. - Киев: Наукова думка, 1976. - 247 с.
[7] Стоян, Ю. Г., Туранов Н. Т., Алгоритм размещения плоских фитур с накменьшей длиной связывающей сети. - Управляющие системы, 1970, вып. 4/5, с. 97-107.
[8] Стоян, Ю. Г., Соколовский, В. З., Решекие некоторых многоэкстремальных задач методом сужающихся окрестностек. - Киев: Наукова думка, 1981. - 205 с.
[9] Кухаренок, М. А., Совместное решение задач размещения элементов и внешних контактных площадок при проектировании ЦВА. - В кн.: Прикладные методы кибернетики. - Киев: ИК АН УССР, 1984, с. 72-78.
[10] Стоян, Ю. Г., Соколовский, В. З., Яковлев, С. В., Метод уравновешивания вращающихся дискретно распределенных масс. - Энергомашнностроение, 1982, АЕ 2, c. $4-5$.
[11] Стоян, Ю. Г., О6 одном способе поиска наилучшего решения для одного класса многоэкстремальных задач. - Управляемые системы, 1969, вып. 3.
[12] Стоян, Ю. Г., Яковлев, С. В., Исследование сходимости и эффективности метода сужающихся окрестностен. - Харьков, 1981. - 43 с. (Препринт АН УССР.) Ин-т пробл. машиностроения; № 168.)

A SZERKESZTÕ BIZOTTSÁG CÍME:

6720 SZEGED
SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED
SOMOGYI U. 7.

HUNGARY

Information for authors

Acta Cybernetica publishes only original papers in the field of computer sciences mainly in English, but also in French, German or Russian. Authors should submit two copies of manuscripts to the Editorial Board. The manuscript must be typed double-spaced on one side of the paper only. Footnotes should be avoided and the number of figures should be as small as possible. For the form of references, see one of the articles previously published in the journal. A list of special symbols used in the manuscript should be supplied by the authors.

A galley proof will be sent-to the authors. The first-named author will receive 50 reprints free of charge.

INDEX - TARTALOM

Z. Esik: On isomorphic realization of automata with α_{0}-products 119
F. Gécseg and B. Imreh: On metric equivalence of v_{i}-products 129
F. Gécseg and B. Imreh: On α_{1}-product of tree automata 135
M. Katsura: On a problem of Ádám concerning precodes assigned to finite Moore automata 143
S. Vagvölgyi and Z. Fülop: An infinite hierarchy of tree transformations in the class 153
A. Meduna: Evaluated grammars 169
N. H. Chien. EBE: a language for specifying the expected behavior of programs during debugg- ing 177
H. Thuan: Some remarks on the algorithm of Lucchesi and Osborn 191
V. D. Thi: Strong dependencies and s-semilattices 195
M. Bartha: A finite axiomatization of flowchart schemes 203
В. С. Яковлев: О вероятноствых методах оптимизации на дискретных множествах 219

[^0]: ${ }^{1}$ Let Key (Ω, F, X) be the algorithm Minimal Key in [2], which determines a key for S that is a subset of a specified superkey X.

[^1]: ${ }^{2}$ Algo. 1 and Algo. 2 refer to Algorithm 1 and Algorithm 2 in [1] respectively.

[^2]: ${ }^{1} P 6^{*}$ and $P 7^{*}$ will be replaced by a single axiom called the block permutation axiom. In fact $P 6^{*}$ and $P 7^{*}$ are the weakest special cases of this axiom that are enough to prove that the P-algebra of all permutations is the initial permutation algebra.

[^3]: 7 Acta Cybernetica VIII/2

