
Tomus 8. Fasciculus 3.

ACTA
CYBERNETICA

F O R U M C E N T R A L E P U B L I C A T I O N U M

C Y B E R N E T I C A R U M H U N G A R I C U M

F U N D A V I T : L. KALMÁR

R E D I G I T : F. GÉCSEG

COMMISSIO REDACTORUM

A. Á D Á M
M. A R A T Ó
S. CSIBI
B. D Ö M Ö L K I
B. K R E K Ó
Á. MAKAY
D. M U S Z K A
ZS. NÁRAY

F. OBÁL
F. PAPP
A. P R É K O P A
J. S Z E L E Z S Á N
J. S Z E N T Á G O T H A I
S. S Z É K E L Y
J. S Z É P
L. VARGA
T. VÁMOS

SECRETARIUS COMMISSION«

J. C S I R I K

Szeged, 1988
Curat: Universitas Szegediensis de Attila József nominata

8. kötet 3. füzet

ACTA
CYBERNETICA

A H A Z A I K I B E R N E T I K A I K U T A T Á S O K

K Ö Z P O N T I P U B L I K Á C I Ó S F Ó R U M A

A L A P Í T O T T A : KALMÁR LÁSZLÓ

F Ő S Z E R K E S Z T Ő : GÉCSEG FERENC

A SZERKESZTŐ BIZOTTSÁG TAGJAI

O B Á L F E R E N C
PAPP F E R E N C
P R É K O P A A N D R Á S
SZELEZSÁN J Á N O S
S Z E N T Á G O T H A I J Á N O S
SZÉKELY S Á N D O R
S Z É P J E N Ő
VARGA L Á S Z L Ó
VÁMOS T I B O R

A SZERKESZTŐ BIZOTTSÁG TITKÁRA

C S I R I K J Á N O S

Á D Á M A N D R Á S
A R A T Ó MÁTYÁS
CSIBI S Á N D O R
D Ö M Ö L K I B Á L I N T
K R E K Ó BÉLA
MAKAY Á R P Á D
M U S Z K A D Á N I E L
NÁRAY ZSOLT

Szeged, 1988
A Szegedi József Attila Tudományegyetem gondozásában

Pure languages of regulated rewriting
and their codings0

B y J . DASSOW

Dedicated to Prof. Herbert Goering in the occasion of his 60th birthday

0. Introduction

Since context-free grammars are not able to cover all aspects which are of interest
(e.g. in the theory of programming languages), a lot of regulating mechanisms for the
derivation process have been introduced. However, mostly the generative capacity
of these mechanisms has been studied with respect to the generated set of words over
a terminal alphabet. Thus all the intermediate steps of the derivation are not contained
in the language, and therefore it often happens that the differences between the mecha-
nisms disappear. Hence — in order to contribute to a comparison of the mechanisms —
we shall investigate languages which contain also the words of the intermediate steps,
the so-called pure languages.

Let us also mention that these languages are of interest for themselves by the
following two facts:

— they form a sequential counterpart to the L systems (with regulation),
— the intermediate steps are important for the syntax analysis.
The first results on pure versions of grammars with regulated rewriting are pre-

sented in (1), (6), (2). However, besides (6) (where a different definition of the pure
language is used) the appearance checking mode is used in the derivation. One of the
purposes of this paper is to complete the hierarchy by the relations concerning pure
languages of regulated rewriting without appearance checking.

Usual languages (containing only terminal words) can be obtained from a pure
language by intersecting with the set of all words over the terminal alphabet. By the
results by Ehrenfeucht and Rozenberg it is known that for L systems there is a second
way, namely the application of a coding (letter-to-letter homomorphisms), if one is

»> Paper presented at the 4 th Hungarian Computer Science Conference, Gyor, July, 8—10,1985.

228 J. Dassow

only interested in the generated family of languages (see (7)). This does not hold for
sequential rewriting. But in (3) it is shown that the hierarchy of families of languages
obtained by codings lies between that of pure languages and that of usual languages.
Again, here we shall add some results by consideration of grammars without ap-
pearance checking.

In this paper we shall restrict to the following three types of regulated devices:
matrix grammars, programmed grammars, and random context grammars.

Throughout the paper we assume that the reader is familiar with the rudiments
of formal language theory and has some information on regulated rewriting (e.g. see
(8), (5)).

1. Definitions

For the sake of completeness we give the formal definitions for the pure versions
of the above mentioned grammars.

In the following definitions, let V be an alphabet, and let S be a finite subset
of V+. (Usually in the theory of pure languages one uses a set of starting words,
however, as one can see by our proofs our results do not change if S consists of only
one word.)

A pure random context grammar is a triple G=(V, P, S) where P is a finite
set of productions of the form

(a - w, R, Q), a€V, w£V*, RQV,QQV.

We say that x£V + directly derives ydV* (written as x =>_y) iff x=z1az2, y=
= z1wz2, (a—w, R, Q)£P, z1 z2 contains all letters of R, and zxz2 contains no letter
of Q. The language L(G) generated by G is defined as

L(G) = {j: z=> y for some z€S}

where denotes the reflexive and transitive closure of =>.
A pure programmed grammar is a triple G=(V, P, S) where P is a finite set of

rules of the form
(b, a - w, E(b), F(b))

where b is a label of the production, a£V, w£V*, and E(b) and F(b) are subsets of
the set of labels. The language L(G) consists of all words y such that there is a deri-
vation

z = ^ y-'TT y" = y

where z£S, (bh w£, Eit F,) are rules of P, l^i^n, and, for 1 S/ '^n ,

Ji-1 = a,Z;2, >>; = znWiZi2 for some zn, zi2£V*,

and bi+1^Ei (if i < n)
or

at does not occur in ^ = y ^ , and bi+l£Ft (again, if i < n).

Pure languages of regulated rewriting and their codings 229.

A pure matrix grammar is a quadruple G={V, M, S, F) where M is a finite set
of finite sequences of productions,

M — {mx, m2, ... m,},

m. = (aa - wn, ai2 - wi2,..., air(l) wI>(0),

aijZV, WijZV*, l S / S r , and F is a subset of occurrences of rules in M.
Then, for 1 ^ i ^ r , we say that x~>y iff

where

or

atJ does not occur in yj-j,, au — w^dF, and y} = jy-i.

The language L(G) generated by G is defined as the set of all words y which are obtain-
ed by iterated applications of matrices (elements of M) to words of S and all inter-
mediate words (yj in the above notation) of these applications of matrices.

These definitions are the most general ones, i.e. rules of the form a-*A are
allowed and the appearance checking mode is used in the derivation process.

By ¿C(pRCic), £e(pPRic), ¿?(pM*c) we denote the families of languages
obtained by pure random context, pure programmed, and pure matrix grammars,
respectively. We omit the upper or lower index or both indices if we. consider the
families of languages generated by grammars without erasing rules or without ap-
pearance checking (i.e. Q=0 and F(b)=0 for all productions, or F=0) or without
both these features.

By SC(pCF) and 3?{pCS) we denote the families of pure context-free and pure
context-sensitive languages, respectively (the definitions can be given in an obvious
way, e.g. see (4)), and we add the upper index X if A-rules are allowed.

#0(w) denotes the number of occurrences of the letter a in the word w.

2. The hierarchy of pure language families

Let us consider the pure programmed grammar

Gx = ({a, b}, {(1, a - b\ {1}, {2}), (2, b - a3, {2}, {1})}, {a}).

The language Lx generated by G1 contains only words of {a, b}+ which satisfy one of
the following conditions:

(1)

where n£N.

Lemma 1. L^&ipPRJ, L^&ipPR*-).

x = Jo^Ji^Ja =>•••=• ^(0 = y

yj-i = Zj^ijZjz, yj = ZjiWijZjz for some zjl, zJ2£V*

230 J. Dassow

Proof. By the construction of Li we have to prove only the second statement.
Let us assume the contrary, i.e. L1=L(G) for some pure programmed grammar
G without appearance checking. First we note that, for w, w^w',
|/(w)—/(w')|s2 holds. Hence without loss of generality we can assume that G is
¿-free. If there is a rule whose core production is of the form a—b or b—a then its
application to a word of L, produces a word which do not belong to Lx.

For a production p:(h, x—w, E(h), Q), we set

/(/>) = / (w) - l ,
and we also define

1(G) = max l(p). pîp
Obviously, / ((j)s2 . Further, let be the number of productions in G, let t2 be the
maximal length of a word in S, and let n be an integer such that 3">t1 • t2 • 1(G). Now
we consider a derivation D of a3"'b3€L1, especially the last (ix+2) steps of this
derivation which increases the length, i.e.

D: yor* y ^ yir> y2£> y2 =>...=f=> J>r1+i=^ tti+iTTT* a3'"b3

where the derivation steps yi=>yi+1 are obtained by application of the production
(/,-, Xi—Wi, Ei, 0) of G with and the phases ^-yi contain only applica-
tions of rules with core productions a—a or b—b. By the definition of n and tlt the
following facts are valid :

- - i ^ + % 0 ' , -) = 32"-1 for l s i s * ! ,

— there are two integers A:, y with ^ such that lk=lj-
Let

= 3 t o - 3 r l f #„(yk) = r i ,

#0<Jj) = 3 2 " - 3 r 2 , # b (j j) = r 2 .

Then 3">r1—r2>0. Further we have also the correct derivation

yoX> zj==* Zy+1 =•...-=* ztl+1

where zJt ..., z, l+1 are appropriate strings with

#.(z,1+i) = 32" —3(rx —r2), #6(z,1+1) - 3 + 0 i - r 2) .
This contradicts (1) and thus ztl+1^.L1. Since z, l+1£L(G) we obtain the desired
contradiction to L(G)=L1. •

Now we consider the pure matrix grammar

G2 - ({a, b, c, d}, {(a - a3, b - b\ c - c3), (a - a3, b - d\ c - c3)},

{abc}, {b - b\ b - d3}).

Then the words of its generated language L2 satisfy the following conditons :
If #6(w)=0, then vv=a2"+1

£/3mc2"-1 or w=a2n+1d3mc2n+1 with 2n+ l>3w,
n, m£N.

Pure languages of regulated rewriting and their codings 231.

If then w=a2n+1w'c2n+1 or w=a2n+1w'c2n-1 where

w'€{&, d3}+, l(w') = 2n+l or l(w') = 2n — l.

Lemma 2. L2^(j>Mac), L2$g(pMx).

Proof. Again, we have to prove only the second statement. Lét us assume that
L2=L(G) for some pure matrix grammar G without appearance checking. As in the
preceding proof we can show that all core productions (besides x-~x) have the form
x—w with /(w)^3. Let n be a sufficiently large number. We consider a derivation of
w=a2n+1d3c2n+\ say

D: s vx => v2 => w

where (without loss of generality) /(uj) < l(v2)<l(w). By the structure of the words in
L2 it is easy to prove that v1=d2n~1d:ic2n~1, v2=a2n+1d3c2n~1. Iterating this argument
and taking into consideration that we can omit length preserving matrices we obtain

D: s=í> Mj==> M2===>- w •*• m

where the derivation u2 corresponds to the application of a proper initial part of
a matrix or u2=w, and the application of m increases the number of a's and/or c's
only. If it increases only the number of a's ,then by its iterated application to u2 we can
generate a word y with #„(>')— #c(j>)>2 which contradicts the structure of the
words in L2. Analogously, the matrix m cannot only increase the number of c's.
Hence it has to increase both numbers. Now we consider a derivation D' of w'—
=a2n+ib2n+ic2n+i A g a i n >

D'-.s'UzUw'

where is the initial part of a matrix application or z—w' and z is generated
by iterated applications of matrices. Clearly, # 6 (z)S 1. Then it is easy to show that
the correct derivation

Z1 "ST* z3 m m m tit

produces a word z3 which is not in L2.

Lemma 3. Let

L3 = {a2b2c, ab5c, b3ab2c, b8c, feu}U{a2nb5: n ^ 1}U

U{b3a2n+1b2: n S 1}U{a2n+1bs: n ^ 1}.

Then L3e^(pRCac), L3$£?(pRCx).

Proof. The pure random context grammar G3=({a, b, c}, {(c—b3,0,0),
(a—a3,0, {c}), (a—t3, {c}, 0)}, {a2b2c}) generates L3.

Assume that L3=L(G) for some pure random context grammar without
appearance checking. We consider a2nb5 where n is sufficiently large. This word can be
derived only from a word a2mbb (without loss of generality we can assume that
m<n), and thus we have a production (a-a 2 ("- m) + 1 , R, 0) or (b-*a2í"-m)b, R, 0)

232 J. Dassow

with R^ {a, b, c}. This rule is applicable to a2b*c producing a word not contained
in I 3 .

Lemma 4. Let

JL4 = {canb": n S 2}U{caB+1bn: n s 2}U{a"bn: n £ 2}.

Then L^(pMx), Ltd&ipMj.

Proof. Clearly, Lt is generated by the pure matrix grammar

G4 = ({a, b, c}, {(c - c, a - a2, b - b2), (c - A)}, {ca*b2}).

Thus L^£C(pMx).
Now assume Z-4=L(G) for some pure matrix grammar G with appearance

checking but without A-rules. We consider the word a"bn where n is chosen such
that a"bn is not an axiom. Then there is a word z with z=>anbn and z^cfb". If z—

r ur _ .. t -- :u 1-. 1— . . . i r — , — j :„ .. 1 ,1.. — A C LUT AUNIC R ri ia IIIIPOAAIUIT UY LAIC A-NCEIICAA ANU t—n ANCAUY
excluded), then we have applied a rule of the form a—cf+1bs to the last a in z
or b—asbs+1 to the first b in z where Since r ^ 2 we can apply this rule to the
first a or last b, too, and then we derive a word which is not in L4. Hence z is of the
form ccfb' or ccf+1br, and we have to apply a rule of the form c—z' which yields
z'tfb" or z'ar+1br. In the first case z'=A and r—n have to hold and this contra-
dicts the A-freeness of G. In the second case we do not obtain a"bn. Therefore Lt=
= L(G) do not hold for all A-free pure matrix grammars G.

Lemma5. Let Z 4 = { C / } U L 4 . Then L'£&(pPRx), L'££e(pPRttc).

Proof It is easy to see that L'^Se(pPRx), and L'^SC(pPRac) can be proved
analogously to the proof of Lemma 4.

Lemma 6. Let

L5 = {ca"bnd: n S 2}U{c/a"+1£>"if: n ^ 2}U{c'a"bnd': n s 3}U

U {canbnd'\ «&3}U{a nb nd: n ^ 2}.

Then L£&(j>RCk), L^{pRCac).

Proof. The pure random context grammar

G5 = ({a, b, c, d, c\ d'}, {(c - c'a, {d}, 0), (d - bd', {c'}, 0)

(c' - c, {d'}, 0), (d' - d, {c}, 0), (c - A, {d}, 0)}, {ca*b*d})

generates Ls. Hence L6££?(pRCx).
Now let Lb—L(G) for some pure random context grammar G (with appearance

checking) without erasing rules. We consider w=tfb"d with sufficiently large n.
As in the proof of Lemma 4 it can be shown that w cannot be generated from a word
of the form cfb'd. Hence z with z =>w, z^w has to be of the form carbrd or c'cf+1brd.
It is easy to see that a"bnd is obtained iff c—A is applied to z and r—n holds, i.e.
we get a contradiction to the A-freeness.

Pure languages of regulated rewriting and their codings 233.

Lemma 7. Let

Le = {bia}ö{bas+sn: n S 0}U{a3m+4ba3"+1: m, n S 0}.

Then L^{pRC), Lé&ipPRl), L^(pMx
ac).

Proof, i) L6 is generated by the pure random context grammar

Ge = ({a, b}, {(b - a4, {b}, 0), (a - a4, {a}, 0)}, {f»"a>).

Thus L£&(pRC).
ii) Assume that L6=L(G) for some pure programmed grammar G. Again, G

is ¿-free, and hence b2a has to be an axiom. Further, in order to generate ba5+3n for
a sufficiently large integer n we need a production with the core rule a-»a3m+1 for
some m>0. Clearly, it can be applied to the axiom, and this gives b2a=>b2a3m+1.
Therefore L(G) contains the word b2a3m+1 which is not in L6.

iii) can be proved analogously to ii).
Fact I. Let

L-j = {a"bnc": n is l}U{an+1fc"cn: n is 1}U{an+1bn+1c: n is 1}.

Then L^(pM), LAJ?(pPR*c), L^(pRC"ac).
Fact 2. I f ' Ls— {a, a5}(J {a7+10n: nisO}U {a11+10": 0}, then Ls£S?(pPR),

L8$J?(pRCZc), LA&ipML).
Summarizing all these results and taking into consideration the relations to pure

versions of the grammars of the Chomsky hierarchy which are already given in (1) we
obtain the following diagram. Instead of A^B we write A-+B, and if two families
are not connected then they are incomparable.

Theorem 8.

&(pRCa\) &{pMx
c) 2? (pPRic)

/ \ / \ • / \ npcs
£C(pRCac) &(pRCx) g(pMac) Se{pMxy XipPRJ ¿C(pPRx) t

\ • / \ / \ / &(pCS)
S?(pRQ_ £C(pM) SeipPR)

\
^(pCF)=&(pCFx)

3. Codings of pure languages

Let X be a family of grammars. Then we set %?(X)= {L: L=h(L') for some
L'^£C(X) and some coding h} (i.e. h(a) has the length 1 for all letters a).

Lemma 9. V(pM)=<g(pPR).

Proof. (3(pM)Qri(pPR) can be proved analogously to (3). Now let G=
— (V, P, S) be a pure programmed grammar. We set V— {(a, b): a£V, b is a label
of a production in P}. With the production (b, a-*w, E(b), 0) we associate the

234 J. Dassow

matrices
{(a, b) - w, x - (x, bO)

where x£ V, b'£E(b). The set S' is defined as the set of all words w^x, b)w2 where
WiJOfi^S, (x, b)£V. We consider the pure matrix grammar G'—(V UK', M, S', 0)
where M is the set of all matrices of the above introduced type. Then the correct
derivations have the following form (in the second row we note the applied rule):

s = Wnfc, b l)w 2 l j I - j -^ T > w n z ^ ! = = = = = > w12(;c2, b2) w22...=>

... => wln(x„, b > t o . - — = » vvlnz„w2„

i ~(x b V* Wl.n + l(*B + l» ^n + l)W2,n + l

Further we consider the coding h given by h(x)=x for xdV and h((x,b))=x for
(x, b)£V. Then the image of the above derivation is

Wii*iW21=* w^w» = w12x2w22 ==>...

— =>w„1xnwtll=~> wlnzBwiB = w l j n + 1 x n + 1 w 2 , n + 1 ==>. . .

where, by the definition of the matrices, bi+l is in the success field E(bt) of bt. Thus
we have proved that

L(G) = h(L(G')).

Since the composition of codings is a coding again,

h'(L(G)) = (hoh')(L(G% and.thus
<g(pPR) Q V(pM).

Combining Lemma 9 with the results of (3) we obtain

Theorem 10.

%(pRC) Q <g(pPR) = V(pm) i V(pMac) %V(pPRac) = <0(pRCac) % V(pCS).
It is known (see (8), (5)) that for usual languages (i.e. sets of words over a ter-

minkl alphabet) the following hierarchy holds:

&(AC) G I ? (M) = &(PR) I <£ (M J = &(PRac) = RCac) I I ? (C S)

(and that for Xd {M, PR, RC}, a=ac or empty, all the families if (A'») coincide
with the family of all recursively enumerable languages). Thus one sees that the
hierarchy of families obtained by codings of pure languages is situated between the
hierarchy of language families obtained by the use of nonterminals and terminals and
that of pure language families.

Acknowledgement. The author is grateful to the referee and Henning Bordihri
for their comments which improved the earlier version.

TECHNISCHE UNIVERSITAT
OTTO VON GUERICKE
POSTFACH 124
MAGDEBURG 3010/DDR

N.

Pure languages of regulated rewriting and their codings 235.

References

[1] DASSOW, J., Pure grammars with regulated rewriting. Revue Roumaine Math. Pures Appl.
31 (1986) 657—666.

[2] DASSOW, J. & GH. PAUN, Further remarks on pure grammars with regulated rewriting. Revue
Roumaine Math. Pures Appl. 31 (1986) 855—864.

[3] DASSOW, J. & GH. PAUN, Codings of pure languages obtained by regulated rewriting. Foundat.
Control Engineer. 9 (1984) 3—14.

[4] MAURER, H . , A . SALOMAA & D . WOOD, P u r e g r a m m a r s . I n f o r m . C o n t r o l 4 9 (1980) 4 7 — 7 2 .
[5] MAYER, O., Some restrictive devices for context free grammars. Inform. Control 20 (1972) 69—92.
[6] PAUN, GH. A note on pure matrix grammars. To appear in Revue Roumaine Math. Pures Appl.
[7] ROZENBERG, G. & A. SALOMAA, The Mathematical Theory of L Systems. Academic Press, 1980.
[8] SALOMAA, A. Formal Languages. Academic Press, 1973.

(Received Oct. 15, 1985)

On state grammars

A . MEDUNA a n d GY. HORVATH

In this paper we study some properties of state grammars. Among others, it is
shown that for every recursively enumerable language there exists a state grammar
with erasing rules that generates it. Some problems concerning the descriptive com-
plexity of state grammars are discussed.

1. Introduction

In the last years several types of grammars have been defined which have context-
free rules and an additional mechanism which regulates the derivation process (see
e.g. [1]—[6]), since such grammars can describe such special aspects of programming
languages that cannot be covered by context-free grammars. One of the typical gram-
mars of this kind is the state grammar (see [3]) — the subject under investigation in
the present paper.

Intuitively, a state grammar is a context-free grammar with an additional mech-
anism which consists of the following: at each derivation step the grammar is in
a state which influences the choice of the next production to be applied, and the next
state is determined by this production. Moreover, rewriting is done in a leftmost
fashion.

2. Preliminaries

In this section we briefly review some of the basic notions and notations of formal
language theory. Items not defined explicitly are standard in language theory, see
e.g. [5].

For a finite set A we use \A\to denote its cardinality. If w is a word over an alphabet
Z, then |w| denotes the length of w, alph(w) denotes the set of letters occuring in w
and Ny(w) denotes the number of occurrences of letters from Y(QZ) in w. The
empty word is denoted by X. For a grammar G, denotes its direct derivation
relation and =g=>* denotes the derivation relation of G. We also write => and =>*
rather than ==> and =>* if no confusion arises. A production (p, q) of a grammar
G will also be called a rule and written as p-*q. For context-free grammars we use

238 A. Meduna and Gy. Horvâth

the following notation : G=(Z, A, x0, P), where I is the total alphabet of G, A QZ
is the terminal alphabet of G, x0€ A is the initial letter and P is the set of produc-
tions of G.

Now we recall the definition of a queue grammar defined in [4].
A queue grammar is a 7-tuple Q—(Z, A, S, F, x0, 50, P) where I and S are

finite sets, the total alphabet and the state set of Q, respectively, AQZ is the terminal
alphabet, FQS is the final state set, is the initial letter, sgÇS is the initial
state and finally, PQZX(S\F)XZ*XS is a finite set, the production set of Q.
A production (x, s, u, s') in Pis also written (x, s)—(«, j ').

For any (m, S), (V,S')£Z*XS the direct derivation (w, j) s') holds iff
U=XUI for some XÇZ and uX£Z*, and there is a production (x, J)—(vt, s') in P
such that v=u1v1. The derivation relation ==>* is the reflexive transitive closure
o f ^ .

The language L(Q) generated by Q is defined by L(Q)= {vvÇJ*: (x0, Î0)=>*(H>, s)
for some sÇ. F}.

The central notion of this paper is that of a state grammar that we recall now.
A state grammar is a construct G=(E,A, S, x0, i0 , P) where Z and S are finite

sets, the total alphabet and the state set, respectively, A QZ is the terminal alphabet,
is the initial letter, s0€S is the initial state and P is a finite set of produc-

tions of the form (x, j)—(u, s') where x £ r v 4 , s, S and uÇZ*. The direct
derivation (u,s) ~>(v, s') holds for u,v£Z* and s, s'£ S iff there exist decompo-
siton u=u1xu2, v=u1v1u2 and a production (x, s)^(vL, s') in P such that for every
nonterminal occuring in the word ux there is no production with left side
(y, s) in P.

The language L{G) generated by G is defined by L(G)= {w£A* : (x0, J0) ==>-*(w, i)
for some s£ S}, where is the reflexive transitive closure of ==>.

A state grammar G is called propagating if for every production (x, s)—
—(u, s') of G we have u^L

We point out that the above definition differs from Kasai's original definition in
[3] since Kasai considers only propagating state grammars.

The family of languages generated by context-free, contex-sensitive, type 0,
queue and state grammars is denoted by i?(CF), iP(CS), i ? (RE), ¿?(Q) and SB (S),
respectively.

3. On the generative power of state grammars with erasing productions

In his original definition of state grammars, Kasai did not consider erasing
productions. It is however a natural generalization (see e.g. [6]). But then, the first
question we have to ask is: what is the generative power of such grammars? We are
going to show in this section that Jëf (S) and J§?(RE) coincide. Although the equality
i f (S)=JS? (RE) can be obtained as a direct consequence of a theorem in section 4,
we prove it here in order to demonstrate the close connection between queue and
state grammars, moreover, this connection will be used in a subsequent section.

A state grammar G=(Z, A, S, # , J0> P) ¡ s called front-end state grammar if
the nonterminal letter # is an endmarker, which means that every production con-
taining # is of the two forms (# , s)—(h#, s') or (# , s)—(«, s')> where # does

On state grammars 239

not occur in the word u, moreover, for every state s, if there is a production with left
side (x, s) for some # , then for each nonterminal letter x V # there is a pro-
duction with left side (x', s).

One can see that in any derivation step according to a front-end state grammar,
the rewritten non-terminal letter is either the first nonterminal in the word or the
endmarker.

Lemma 1. For any queue grammar Q one may construct an equivalent front-end
state grammar G.

Proof. Let Q—(E, A, S, F, x0, s0, P) be an arbitrary queue grammar. We
construct a state grammar G=(I', A, S, #, q0, P). For each terminal letter aÇA
we introduce a new nonterminal letter xa. We set

Z' = ZU{xa: a€<d}U{#}

We define a homomorphism h of I into I' by h(x)=x for and h(a)—xa
for a£A, The homomorphism g of ZUh(A) into X is defined by g(x)=x for xtl
and g(xa)=a for aÇA. Clearly, g(h(x))=x for xÇZ and h(g(x))=x for x g l U
\Jh(A). Now the production set P'= P^li P[U P^U P^li Pi is constructed in the
following way :

{ (# ,9o)^ (*o #,«<>)}»
Pi = {(*, s) - (A, [x, s]) : s € 5 \ F , x£ h (I)},
K = { (# , [*, s]) - (h(«)# , s'): (g(x), s) - (u, s%P},

= { (# , s) - (A , q1): s6F},

Pi = {(*, qù - (g00, xih(Z)}.
It is evident that the state grammar G constructed above satisfies the front-end require-
ment. We are going to prove that a derivation

(x0, s0)=>* (w, s) holds iff

(* o # , s 0) ^ * (h (w) # , s) holds.

Indeed, for any production (x, s)->-(u, s') in Q, the productions (h(x), s)—
—(A, [h(x), •$•]) and (# , [h(x), s])-*(h(u) #,.? ') are present in G, moreover, for every
word v£h(X)* the derivation

(h(x)v#,s)~*(v#,[h(x), s]) ==• (vh(u)#, s')

holds. Conversely, a derivation (x0#, s) c a n only be carried out by
using productions from P[and from P'2. If a production (h (x), s) — (A, [h (x), i]),
x£l, is used in a derivation step, then after it a suitable production (# , [h(x), s])—-
--(h(u) # , 5') must be applied, where (x, s) —-(w, s') is in P. By the front-end prop-
erty of G we obtain that (x0, 5,

0)=>*(w, 5) holds. Assume that w£L(Q). Then

240 A. Meduna and Gy. Horvâth

(x0, s0) s) holds for some s£F, consequently we obtain the derivation

(# , q0)=S>(x0v, s 0) { h (w) # , s) {h(w), q,).

The iterated application of productions from Pi gives the derivation

(#. (h(.w), ^>*{g(h(w)), = (w, qj.

Therefore H>£L(G).

To establish the converse inclusion L(G)QL(Q), assume that w£L(G). Thus
(#» <7o) *(w> fa) must hold since every production of G not containing nonter-
minal letter on its right side is a member of P'3 or P'4. The nonterminal letter # can
only be eliminated by a production from P'2, thus we obtain the derivation

(#, q0)*£> {x0*,s0)~>* s)=* (v, fc)g=>-* (w, ft)

for some s£F and v£h(iy. Furthermore, w=g(v) by virtue of definition of P't,
thus h(w)=h(g(v))= v. We obtain the derivation (x 0 # , s0) =>*(/2(w), i), which
implies (x0, j0)===>-+(w, j). Therefore w£L(Q). •

Lemma 2. Every recursively enumerable language can be generated by a front-end
state grammar.

. Proof. From Theorem 2.1 Chapter 2 in [4] we know that S£ (Q)=„S?(RE), hence
the lemma holds by Lemma 1. •

The following theorem is now an immediate consequence of Lemma 2.

Theorem 1. <£ (S)=JS? (RE).

4. On the complexity of state grammars

It is a natural question whether or not the representation of languages by gram-
mars of a certain type is "better" than by grammars of another type. In this section
we study complexity measures of state grammars in terms of [2] as for example the
number of nonterminals and the number of states sufficient to generate any language
of a given type.

First we investigate the complexity of state grammars with regard to the measure
of states.

It is an immediate consequence of the definition of the state grammar that any
language L is context-free iff L can be generated by a state grammar with a single
state.

Theorem 2. Let L££f (RE). Then there exists a state grammar
G=(I, A, S, x0,s0,P) such that L= L(G) and |S[= 3.

Proof. Every type-0 language L can be obtained in the form L=h(L1(~}L2)
where h is a homomorphism and and L2 are context-free languages (Theorem
11.1, Part one in [6]). Assume that the languages Lx and L2 are generated by the con-
text-free grammars G 1 =(I 1 , A', x], PJ and G2=(I2, A', x\, P2), such that

On state grammars 241

ZtC\Z2=0, A(1A'=0. Let h:A'-+A* be the required homomorphism where L is
a language over the alphabet J . Assume that A'—{at, ..., a„} for some w ^ l and
consider an auxiliarly alphabet A"—...,bn). We define a function 1,—
—Z2\<d'LM" by <p(x)—x for x£Z2\zl and (p(a)-bi for a£A'. Furthermore,
let ip:A"^A' be defined by ip(.bt)=ai for b£A".
Now we construct the state grammar G in the following way:

Z = {*0, # , ± } U r l U I 2 U J " U { a / , b{: 1 ^ i == «}UJ,

S — {s0, Sj, s2},

P = P°UP 1UP 2UP 3UP 4 .

P° = {(*0, *o) - (*o*o # > so)> (# , So) - (I, Si)},

P1 - {(x, s0) - (p, s0): x - s„) - (<p(q), s0): y - ?6P2},

. P2 = {(«i, si) - (a], s2), (a/, sx) - (a/+1, s2): 1 j < i S «},

P» = {(bt, s2) - (b}, sj, (b{, s2) - (6/+1, s j ; 1 ^ j < i ^ «},

P4 = {(a|, Sl) - (&(«;), s0), (bj, s0) - (A, sx), (6{, s2) - (± , s2): 1 3= i S n}.
We prove first that LQL(G). Let w=h(v) for some v^LyC\L2. Then there exist
(leftmost) derivations xj=>*t> and XQ==>*U. By the construction of the production
set P1 we obtain the derivation

(*o, s0) ̂ (xlxl # , s0) (vxl # , s0) (v<p(v) # , s0) (v<p(v), sj.

Using productions from P2, P 3 and P4 we have

(x0, s0) * (v<p (v), s j => * (h (v), sx).
Therefore w£L(G).

To establish the converse inclusion L(G)QL consider a derivation (x0, s0)=>*
==>*(w, s) for some w£A* and S. This derivation must start with the use of the
production (# , Jo)--(*o*o#> Jo), and the nonterminal letter # can be eliminated
by the production (# , j0)—(A,-?i) only if

(*<Uo*, s0) * (v, <p (v2) # , s0) (Vl <p (v2), S!)=>*(w, s)

holds for some words v1; v2(iA'* such that xl~>*v1 and xl~>*v2. Suppose that
tfi=tfij• • A-fc, ah, ...,aik£A', and (p(v2)=bJl...bjl, bh, ..., bj£A". Considering
the production sets P2 and P3 one can see that the nonterminal a t l can be derived to
a terminal word in the derivation (t^(p(v2), ¿1) => * (vv, s) only if the subderivation

(ah...aik bh...bh, Sl)~>* (a\[...aikbi
i\...bjl, Sl)~>

=>(h(ail)ah...aikbJl...bh,s0)

holds. Moreover, this subderivation can be continued only if i ^ j i and then the
production (bl\, s0)—(/, must be used. Repeated application of the above proc-

\

242 A. Meduna and Gy. Horvâth

ess yields the equalities k=l, i,=j, (t=l, ..., k), i.e. cp(vi)—(p(v2) and w=h(v1).
Since v1—4'((p(v1))=^/((p(vz)=v2 we conclude that w£h(L1P\L2)= L. •

Now we will study the complexity of state grammars with regard to the measure
of nonterminals. First we shall give a uniform definition of the (uncontrolled) finite
restriction for grammars.

We say that a grammar G is of index k (for some positive integer k) if, for every
word in the language L(G) there exists a derivation such that no word in this deriva-
tion contains more than k occurrences of nonterminal symbols. We say that G is of un-
controlled index k if every word in each derivation of a word in L(G) contains no more
than k occurrences of nonterminal symbols. Finally, we say that G is of (uncont-
rolled) finite index if it is of (uncontrolled) index k for some positive integer k.

Lemma 3. Let G=(Z, A, S, x0, s0, P) be a state grammar such that Z\A =
= {x„}. Then there exists an equivalent context-free grammar G', moreover, if G is of
uncontrolled index k then so is G'.

Proof. We construct the context-free grammar G'=(Z", A, y0, P')

I' = 0 > 0 } U S X S I M ,

{[s, s t + 1] - MITSJ, S 2]M 2 [S 2 , s3]...uk[sk, Sk+1]uk+1: k S i

s, Si, ..., sk+i£S, Ui, ..., uk+1£A*,

(x0, s) - (u1x0u2...ukxauk + 1, s1)€P}U

{[s, s'] - u: (XQ, S) - (u, s')£P, u£A*}.

We prove by induction on the length of derivation that for any s, S and
(x„, J)=>*(W, I') holds iff [J, J']=>*VV holds. If (x0, J) =̂=> (w, s') is a direct derivation
then [j, j']==>w holds by the definition of P'. Assume that for every derivation
(x„, s)==>*(w, s') of length less than a given integer / (=2) the derivation [j , s ']=>*w
holds. Let

(X0, S)=> (u1X0U2...UkX0Uk + 1, S1)==>*(UiV1U2..,UkVkUk + i, s') = (w, s')

be a derivation of length/, where k^ 1 and v£A* (/=1, ...,A:-I-1). Since x0 is the
only nonterminal letter in G there are derivations

(*o, Si)=g>* ("l' S2), (*0> (Vk, sk+i)

for some states J2, ..., sk£S and sk+l—s' such that the length of each derivation
is less than /. By the induction hypothesis we obtain derivations [j l s i j =>*v±, ...,
..., S'] =>*vk. Furthermore, the rule [J, J']—z/Jsj, JJu2 . . .uk[sk , in P',
thus [i, j '] holds. The reverse implication can be proved similarly. The second
statement of the Lemma follows immediately. •

On state grammars 243

Theorem 3. Any language L can be generated by a context-free grammar of
uncontrolled index k iff there exists a state grammar G of uncontrolled index k such
that the number of nonterminals of G is one and L=L(G).

Proof. Let
G' = (E, A, x6, P')

be a context-free grammar of uncontrolled index k for some k^l. Obviously, for
any wÇL(G') there is a leftmost derivation such that no word in this derivation
contains more than k occurrences of nonterminals. Consider a state grammar

G = (J U {y0}, A,S,y0,s0, P)

where y0 is a new nonterminal,

5= {[a]: s k),

s0
 = M .

and the set of productions P is defined as follows :

i) if A-»u0B1u1...un-.1Bnun£P'

where A, Bit..., Bn£Z\A, u0, ult..., un£A* for some

then (y0 , [Ax]) - .-#„«])£/> for every L4a]6S;

ii) if A - u£P' where u£A*

then (j 0 j [Aa]) - (m, [a])€P for every |>4a]£S;

iii) each element of P is obtained by i) or ii).

It follows immediately that L(G')= L(G) and that G is of uncontrolled index k.
The reverse implication is true by Lemma 3. •

For the definition of metalinear languages we refer to [5].

Corollary 1. The family of metalinear languages is properly contained in the
family of languages generated by state grammars of uncontrolled finite index with
one nonterminal.

Proof. The statement follows from Theorem 3 and Theorem 3.14 in [6]. •

Now we recall the definition of forbidding context grammars.
A forbidding context grammar is a construct G=(I, A, x0, P) which is very

much like a context-free grammar except that each production p of P is of the form
A—a, F where F is a subset of the nonterminal alphabet called the forbidding
field of p. Such a production p can be used to derive a word w in context-free fashion
only if Fflalph (w)=0. For detailed information we refer e.g. to Chapter 3 in [4].

Theorem 4. For any forbidding context grammar of uncontrolled index k one
may construct an equivalent state grammar of uncontrolled index k with two nonter-
minals.

2 Acta Cybernetics 8/3

244 A. Meduna and Gy. Horvâth

Proof. Let
G'= (Z',A,x0,P)

be an arbitrary forbidding context grammar of uncontrolled index k for some 1.
We construct a state grammar

G = (Z, A, S, jo, [> *„]. P)

in the following way:
£ = {y0,yo}UA,

S = {[a > fl, [a < P]: a, PtQ^A)*, 0 ^ |a/J| k,

> and < are new symbols},

i> = PiUPaUPaUPi, where

Pi = {(JV [«i > — (.y!>> > a2]),

0>o, [<M < a2]) - (j0, [«i < Acc2]): A£Z'\A,

a l5a2£(Z"VI)* and Ko^l < fc},
= {(yo, [< «]) - (Jo, [> «]): « S i ^ r , l«l ^ k},

Pa = {Oo, [«i > Acc2]) - (u0y0u1...um.1y0um,[cc1 < ^ . . . ^ „ a j)

: m 1, ^ - M051w1 . . .Mm_i5mwm , F g P ' ,

..., w0, Mi,..., um£A*,

a l 5 a2e(Z'\A)* and {a^^k, FHalph^AiXi) = 0),

Pi = {Oo, [«i > Acc2]) - (u, [«! < <x2]): A ->- u, F£P',

Fflalph (axAas) = 0, a l 5 l«ia2| < k}.

It is easy to verify that L(G')—L(G) and that G is of uncontrolled index k. •
Corollary 2. Let L be a language generated by a state grammar of finite index.

Then L can be generated by a state grammar of finite index with (at most) two non-
terminals.

Proof. Immediately follows from Theorem 4. and Theorem 3.22 in [6]. •

Theorem 5. Any recursively enumerable language can be generated by a state
grammar with at most three nonterminals.

Proof. Let (RE). We may assume by Lemma 2 that L is generated by front-
end state grammar G=(Z, A, S, #, i0 , P)- Let us denote by X the set of nonter-
minals of G excluding # . .Assume that X= {xlt ..., xn} for some n&l. We define
a coding function q>: X-* {0, 1 }* by

<p(xi) = O'l for i = 1, ..., n.

Extend (p to a homomorphism of Z* into {0,1, #}* by <p(y)=y for y€A U {# }.

On state grammars 245

From the front-end property of the state grammar G it follows that the state set
S can be partitioned into subsets Sx and S2. Let S1 be the set of all states s£ S such
that for every x£X there is a production in P with left side (x,.?). Now the state
grammar

G' = (Z', A,S', #,[A,s0],P')

is constructed in the following way.

r = {0, 1 , # } I U ,

ST =

P = P-IVJ Pi U Pi, where

Pi = {(0, [0l, s]) - (A, [0 i + \ s]): s£Slt 0 s i < n),

Pi = {(1, [01, s]) - (<p(u), [X, /]): (x,-, s) - (u, s')eP},

Pi = {(#, [X, s]) - (</>(«), [X, j']): (#, s) - («, /)6i>}.
One can see that for every s£S and every m>£Z* a derivation (# , j0)==>*(w, j)
holds iff (# , [X, J0]) = = > * (< P (W) , [X, J]) holds. Since (p(w)=w if w€A*, we obtain the
desired equality L(G)=L(G'). •

To conclude this section let us remark that it remains an open question whether
the number of nonterminals (three) in T heorem 5 is minimal.

COMPUTING CENTRE
TECHNICAL UNIVERSITY
OBRÁNCÚ MIRU 21
BRNO
CZECHOSLOVAKIA

A. JÓZSEF UNIVERSITY
BOLYAI INSTITUTE
ARADI VÉRTANÚK TERE 1.
6720 SZEGED
HUNGARY

References

[1] DASSOW, J., Comparison of some types of regulated rewriting. Technological University Magde-
burg, Department of Mathematics and Physics, Technical Report SMA 58/83 (1983).

[2] DASSOW, J. and PAUN, G., Further remarks on the complexity of regulated rewriting. Technologi-
cal University Magdeburg, Department of Mathematics and Physics, Technical Report SMA
70/83(1983).

[3] KASAI, T., A hierarchy between context-free and context sensitive languages. Journal of Computer
and System Sciences 4 (1970), 492—508.

[4] KLEIJN, H. C. M., Selective substitution grammars based on context-free production. Ph. D. The-
sis, University Of Leiden (1983).

[5] SALOMAA, A., Formal languages. Academic Press, New York 1973.
[6] VERMIER, D., On structural restrictions of ET0L Systems. Ph. D. Thesis, University of Antwerpen

(1978).

(Received July 2,1987)

2*

A note on the generalized v1 -product

B. IMREH

A hierarchy of products was introduced in [1]. This hierarchy contains one kind
of product, the v;-product, for every positive integer i, and the work [1] deals with
the isomorphic completeness with respect to the v;-products. As regards another
representations, the metric representation was studied in [6], [8]. The work [6] con-
tains the characterization of the metrically complete systems with respect to the V;-
products. In [8] it is shown that the Vi -product is metrically equivalent to the general
product. The works [2], [3], [4], [5] are devoted to the investigation of the homomor-
phic representation. In [3] and [4] some special compositions of the a„-product and
vf-products was studied and it is proved that these compositions are just as strong as
the general product with respect to the homomorphic representation. The work [5]
deals with the commutative automata. It is shown that there are finite homomorphi-
cally complete systems with respect to the vx-product for this class. In [2] the hier-
archy of the v,--products was investigated. It is proved that this hierarchy is proper
as regards-the homomorphic representations. Finally, the work [7] compares the iso-
morphic and homomorphic representation powers of af-products and Vj-products.

In this paper, connecting with the work [1], we give a sufficient condition for
a system of automata to be isomorphically S-complete with respect to the generalized
Vj-product. This condition is a special case of condition (2) of Theorem 2 in [1], but
the construction of the automata from these systems is simpler than the general
construction given in [1]. Since our work is closely related to [1], we shall use its no-
tions and notations.

Our result is the following statement.

Theorem. A system I of automata is isomorphically S-complete with respect to
the generalized Vi-product if I contains an automaton which has a state a and input
word q such that the states a, aq, ..., aqs_1 are pairwise different and aqs=a for
some integer 1.

Proof. Let us assume that I satisfies the condition. Then without loss of general-
ity we may suppose that I contains an automaton A which has a state a and input
word q such that a, aq, ..., aq"-1 are pairwise different, aqp—a, and p is a prime
number. Let us denote by 0, 1, ...,p— 1 the states a, aq, ...,aqp~1, respectively.
Depending on p, we shall distinguish two cases.

248 B. Imreh: A note on the generalized v, -product

Case 1. Let us suppose that p=2. By the proof of Theorem 2 in [1], it is enough
to prove that for any n ^ 3 the automaton T'„ can be simulated isomorphically by
a generalized vx -product of automata from I , where t2, /3}, {0,... , n— 1},<5̂)
and

fa(fe) = k+l (mod«) (k = 0, ..., n - 1) ,

t№ = h /,(1) = 0, tz(k) = k(k = 2, ..., n-1),

' .(0) = /,(1) = 0, t3(k) = k (k = 2, ..., n - 1) .

Now let be an arbitrary fixed integer. Let us take an integer k for which
2*4- l ^ n holds and denote by m the number 2*4-1. Form the generalized vx-prod-
uct Am(X, <p, y) where

X = {JC15 x „ x3}U {y,: 0 S t m - 1 }

and the mappings y and (p are defined in the following way:

H 0 = { i - l (m o d m) } (i = 0, ..., m — 1),

<p,(0, Xl) = q, (p,(l, xx) = q2 (t = 0, ..., m - 1) ,

<¡0,(0, x2) = (p,{ 1, x2) = q* if 0 ^ / ^ m - 3 ,

<p,(0, x2) = cp,(l, x2) = q if m — — 1,

<P,(0, x3) = q\ 9,(1, x3) = q if t^ m — 2,

<Pm-s(0> *3) = q, <Pm-i(1, = q2,

0, y j = 9,(1, yj) = {q
q2 I / J i i a = 0, m - 1 ; r = 0, . . . , m - 1)

Take the mappings:
0 - (0 , 0 , . . . , 1),
:

m - i — ci, 0 o),

k - * r 2 ,
t : t2 - XaA-J'm-sJ'm-l^m-a-J'lJ'm-l.

Now we show that T ,̂ can be simulated isomorphically by Am(X, cp, y) under
[X and T. Indeed, the validity of the equations n{5'm(j, ti))=SA-"(n(j), T (/ ,))
(/=2, 3;j=0, ..., m— 1) follows from the definitions. To prove the validity, of
the equations n(S'm(j\ ti))=f>A»>(nU)> r(li)) C/=0, ..., m—1) let us observe the
following connection. If

(«0, •••> "m-i)e{0, l}m and

<5A" ((«<), • "m-l),*l) = ("o, •••, Vm-])

A note on the generalized -product 249

then
Vt = <5A("<. </>(("(-l(modm), * l)) -

= utqu'-u™^m,+i(modi) = w,+«,_1(modm) + l (mod 2)

holds for any O^t^m— 1. Now let us denote by (fos)> • • • > ^m-i) the state
<5A">((«o> •••' um-1)> Then using the above connection, by induction on s, it can
be proved that

f,(s) = 1 + 2 f S] «.-ycnod») (mod 2) (/ = 0, ..., m - 1) .
j=o

On the other hand, it is known that j =0(mod^)(y'= 1, ...,pk— 1) holds for any
prime / » 1 and integer k ^ 1. Using this, by induction on j , one can show that

(V) (_iy = 1 (m°dp) (j = •'pk-l)-
From this, by p=2, we obtain

(2 k ~ j l) = l (mod2) (J = 0, ..., 2k — 1).

Now let i^m— 1 be an arbitrary integer and let us denote by (c0, ..., cm_i)
the state /i(i). Then

/1 if t = m - i - 1 , c, = • 0 = 0, ..., m - 1) .
10 otherwise,

Let (c„, ..., c'm_1) denote the state <5A-((CO> •••. C M - I) > x"'2). Then, by the above
equality for vf-s\ we obtain that

c't = 1 +*£12 7 c'-j(modm) (mod 2) (t = 0, ..., m - 1) .
j=o ^ J *

If t—m— i— 2 (mod m) then from the definition of c, it follows that c ,_ j (m o d m)=0
(y'=0, ..., 2k— 1), andso, c'm_i^2imoim)=l. If t^m— i— 2 (mod m) then among the
elements ci_J-(modm) (y'= 0, ..., 2*— 1) one and only one is different from 0, and so,
c ^ l + p T 1) (mod2) for some 0sjs2k-l. Since (2 * J 1 j = 1 (mod2) this
implies the equality c't = 0. Summarizing, we obtained that

. fl if t = m — i—2 (mod m), „
C' = l 0 otherwise, <* - 0 m - 1) .

Now let us observe that (c'0, ..., l(mod mj) and so,

Ks'm(i> h)) = ^ (/+1 (modm)) = (c£, ..., c;_x) = <5Am((c0, ..., cm_ t). *i~2) =

= <5a™((n(i), ?(h))
which completes the proof of the Case I.

250 B. Imreh: A note on the generalized v, -product

Case 2. Let us suppose that p>2 and let « S 3 be an arbitrary fixed integer
again. Let k be an integer such that pk+\^2n and, let s—pk+ 1 and m=s/2.
Form the generalized Vj-product AS(X, <p, y) where

A

X= ...,xs}U{yr: O S r S s—2}U{wr, zr: 0 S r S s - 4 } U { w r : O S r S s - 1 }

and the mappings y and <p are defined in the following way: for any /£{0, ..., s— 1},
y'€{0, ...,P~ 1}, f t{0, ..., J - l }

y(l)= {i — 1 (mod s)},

<P,(J,x1) = qp-1-j if 0 = § j < / > - l , <pt(p-l,xd = q',

<P,(j, x2) = q1"1 if / € { s - 3 , s - 2 , s - l } , (pt(j,x2) = qp if 0 t < s - 3 ,

<Ps-s(0. x3) = q\ 9,0, x3) = q" otherwise,

^5-2(0, Xi) = q, <¡¡>,0, x4) = qp otherwise,

<p,(p-l, xs) — q if t 0 and (p,(J,x5) = qp otherwise,

(p,(p-l,x6) = q if /£{s —2, s —1} and (p,(J,x6) = qp otherwise,

<p((0, x7) = q"'1 if t = s — 3 and (p,(J, x7) = qp otherwise,

<p,(p-2, xg) = jj2 * J ~ s — 1 and = otherwise>

fq"-1 if t = r and j = p-1, , . ..
<P.0,yr) = {qP o t h e r w i s e > (r = 0 , . . . , s - 2) ,

* , (/ . *) = ft * u
t = r a n d j = P ~ 2 > (r = 0 , . . . , S - 4) , r) {q" otherwise,

fq if t = r and j=p — 1, , . ..
9,0, zr) = { „ , . (r = 0, ..., s - 4) , f ,vj , rj yqP otherwise, v '

fqp~2 if t = r and j = p—2, .

Take the mappings:
0 - (0 , 0 , 0 , . . . ,0,0, />-1),
1 - (0 , 0 , 0 , ...,p-1,0,0),

/X • . •

m - l - (0 , / 7 - 1 , 0 , ...,0, 0, 0),

t : t2 - x2y2...ys-iw0...ws_4x3xii>s_4..,v0x^ys-2x6,

A note on the generalized Vj-product 251

Now we shall show that the automaton T'm can be simulated isomorphically by
AS(T, cp, Y) under ¡i and T.

The validity of n{S'Jj, t,))=SA.(ji(./'), t(/,)) (1=2, 3 ; j = 0 , ..., m- 1) can be
checked by a simple computation. To prove the validity of n(5'm(j, /i))=
= SA.(n(j),x(tj)) let («o, ..., {0, . . . , />- 1}S be arbitrary and let us denote by
(w<r), ..., ugh) the state ¡5A«((w<>, ws-i), for arbitrary integer r £ 1. Then

",(1) - <?A(«„ -l(mods), JCi)) = M , ^ - 1 - " « - . ^ ,) ^ ?) = «,—M,_1(mods)— 1 (mod/>).

Using this, by induction on r, it can be proved that

W,(r) = — 1 + J ? (r) (— i y « r - j (m o d s) (m o d p) (i = 0 , . . . , s — 1)
j=o v '

Now let /6 {0, ..., m— 1} be arbitrary and let us denote by (c0, ..., c ^) , (c'a, ..^c'^),
(c0, ..., cs_i) the states n(i), 5A*(ii(i), x^"-»), SA*(n(i), x ^ " - ^) , respectively.
1 hen from the definition of /1,

(p-1 if t = s—2i — 1, .
C' = l0 otherwise. (* = 0, 5 - 1) .

Consider the state (c„, c ^) . By the above equality for w(
(r), we obtain that

c't = -1 + 2 1 K 7 l) (- 1) ; c,-y(mods) (mod p) (t = 0, ..., s - 1) .
j=o \ J /

If i=j— 2i—2 (mod j) then from the definition of c, it follows that cI_J-(mods)=0
(7=0, ...,pk-1), and so, Cj_2 i_2 (m o d s)=p-1. If t^s-2i-2(mods) then among
the elements c,_ j(mods) (7=0, . . . , p k - 1) exactly one element is different from 0 and

this element is equal to p-1, and so, cf' = - 1 + ^ j 1) for some

0^j^pk-l!t From this, by ^ J ! j (- i y = 1 (mod/>) (j=0, . . . , / - 1) , we obtain
that c't=p—2. Therefore

, fp-1 if t = s—2i—2, n c, = 1 , . (i = 0, ..., s —1). ' I />-2 otherwise, v

Now consider the state (c0, ..., cs_j).

c, = - 1 ~ 1] (" ^ c«'-;(mods) (mod / ,) (' = 0, s - 1) .
j—0 v J /

If r = j - 2 (i + l) - l (modi), then c,'_ j(mods)=/>- 2 (./= 0, ..., / - 1). On the other

hand ^ y (— i y = 1 (mod/»), and so, we obtain that c s_2 (i + 1)_1 (m o d s)=p-1.
If j—2(/+1)— 1 (mod s) then among the elements c't_J(mois) (j=0, ...,pk-1)
exactly one element is different from p—2 and this element is equal to p— 1. From

252 B. Imreh: A note on the generalized v, -product

this, by ^ J ' j (- i y = l (modp) (j= 0, ...,/>*-1), we get that c,=0. Therefore,

\p-\ if t = s—2(i +1) — 1 (mods),
C , = lO otherwise, (/ = 0, s - 1) .

Observe that (c0, ..., cs_1)=/i(/'+l(mod/rj)), andso,

/ W , h)) = fi(i+ 1 (modm)) = (c0, ..., c,^) = SA.(n(i), =
= <h))

which completes the proof of Case 2. This ends the proof of our Theorem.

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY
ARADI VÉRTANÚK. TERE 1.
SZEGED, HUNGARY
H—6720

References

[1] DÖMÖSI, P. and IMREH, B., On V,-products of automata, Acta Cybernet., 6 (1983), 149—162.
[2] DÖMÖSI, P. and ESIK Z., On the hierarchy of Vf-products of automata, Acta Cybernet., 8(1988),

, 2 5 3 — 2 5 8 .
[3] ESIK, Z., Loop products and loop-free products, Acta Cybernet., 8 (1987), 45—48.
[4] ÉsiK, Z. and GÉCSEG, F., On a0-products and a2-products, Theoret. Comput. Sci., 48 (1986),

1 — 8 .
[5] GÉCSEG, F., On i v p r o d u c t s 0 f commutative automata, Acta Cybernei., 7 (1985), 55—59.
[6] GÉCSEG, F. Metric representations by v,-products, Acta Cybernet., 7 (1985), 203—209.
[7] GÉCSEG, F. and IMREH, B., A comparison of a,-products and v,-products, Foundations of Control

Engineering, 12 (1987), 3—9.
[8] GÉCSEG, F. and IMREH, B., On metric equivalence of v,-products, Acta Cybernet., 8 (1987),

129—134.

(Received July 10, 1987)

On the hierarchy of vf-products of automata

P . DOMOSI a n d Z . ESIK

In order to decrease the feedback complexity of the Gluskov-type product of
automata, a hierarchy of products was introduced by F. Gecseg in [6]. This hier-
archy, referred to as the a;-hierarchy, contains one product concept for each nonne-
gative integer i. The a0-product is also known as the loop-free product, the series-
parallel composition or the cascade composition [11, 1, 13]. Another hierarchy, the
vf -hierarchy appears in [2], where i is any positive integer. Using the main result of
[3] it has been shown in [5] that for homomorphic realization the a ; -hierarchy col-
lapses at i= 2. One of the aims of the present paper is to show that the vf-hierarchy
is strict. For some classes of automata even the Vi-product has a surprising power.
This has been demonstrated in [2] for the first time and then in [1, 4]. In fact there are
classes of automata for which the vx-product is much stronger than the a0-product.
In this paper we prove that the opposite can also be true for some classes.

An automaton is a system A ==(A, X, 8) with finite nonempty sets A and X,
the state set and the input set, and transition 5: AXX—A. The transition is also
used in the extended sense, i.e. as a map 5: AxX*—A where X* is the free monoid
of all words over X. Let A.~(A}, Xj, 5j) (j= 1, . . . ,n, «S0) be automata, and
take a family of feedback functions

(pJ:A1X...XA„XX^XJ

(./'= 1, ... ,«), where X is a new finite nonempty set of input letters. The Gluskov-
type product (cf. [10]) of the automata Aj with respect to the feedback functions cpj
is defined to be the automaton

AiX-.XA n(X,(p)

with state set A=A!X...XA„, input set Xand transition 5 given by

prj(<5(a, x)) = Sj(pTj(a), <pj(a, x)),

for all a£A,x£X and l ^ j ^ n . The Gluskov-type product is also called the general
product, or ^-product, for short. Let 1 be any integer. Following [2], the above
defined ^-product is called a v,-product if for every integer j= 1, ..., n there is a set

254 P. Doraosi and Z. £sik

v (y) i { l , ..., n} with cardinality not exceeding i such that each feedback function

is independent of any state variable ak with v(j). For the definition of the a, -
products see [6, 8].

Let X be a class of automata. We shall use the following notations:

P 9 (J f) :=a l l ^products of automata from J f ;
P a i(jT):=all «j-products of automata from J f ;
PV[(yT):=all vf-products of automata from J f ;
S (J f) :=all subautomata of automata from J f ;
H(X) :=a l l homomorphic images of automata from JT.

In the sequel we shall also make use of a few simple facts.

Lemma 1. For every class J f , HSPao (j f) is the smallest class containing J f and
closed under the operators H, S and Pao.

The proof of Lemma 1 can be found in [8]. We note that a similar statement is
true for the g-product.

Lemma 2. Let A=A1x...XA„(X,tp) be a -product of automata A
= (Aj, Xj, 5j). Let n be a permutation of the set {1, ..., n). There exists a -prod-
uct A'=A j r (1)X ...XAkM(X, cp') which is isomorphic to A, an isomorphism A—A'
is the map (a1; ..., a„)-+(aKll), . . . ,a l (n)) ((au ..., an)eA1X ...XAn).

Lemma 3. Let A = A j X ...X A„(X, <p) be a v;-product with w s l and compo-
nents A j = (A j , Xj, 8j). Let B=(i?, X, <5) be a subautomaton of A, y06{l, ..., n}
a fixed integer and a^AJo. If prJo(b)—a for all b£B then there is a v,-product
A'=AiX ...X AJo_1xAJo+1X ...X A„{X, <p') such that A' contains a subautomaton
B'isomorphic to B, an isomorphism B—B' is the map (a l s ..., aJO_ l s a, aJo+1,...,an) >->
•—(iZi, ..., ah-x, aJo+1, ..., an).

We are now ready to state.our main result..

Theorem. There exists a class Jf of automata such ~ that HSPV |(jT)c:
c HSP V i + 1 (J f)c HSPao (J f) holds for all i s 1.

Proof. Let p be a prime number. We define an automaton D P =(D P , {x,y}, 8)
as follows:

S(j,y) = P, j£Dp.

Let X= {Dp\p is a prime}. We set out to prove the following properties of Jf".

(1) H S P . p O g H S P J j O ,

(2) HSPV)(X)cHS]PV i + l(X) for all / S i .

<2>,(0i, •••,a„,x)

Dp= {0, ...,/>},

On the hierarchy of v, -products of automata 255

Supposing (1) and (2) have been shown, the proof is easily completed. Since
HSPVi / . J O ^ H S P ^ J f) holds obviously, from (1) we have HSPV i + 1(Jf)g
iHSP^CJf) , which in turn implies HSPV ((Jf)cHSP a o (X) by (2). Thus
HSP V i (X)cHSP a o (X) for all ¡ a 1.

Proof of (1). For every prime number p, define CP—(CP, {x}, <5) by

C p = (0, . . . , /7 — 1},

$(j,x) = j + l mod p,jeCp.
Moreover, let E=(£ , {x, y}, <5) with £ = {0, 1}, <5(0, x)=0, <5(0,;;)=<5(1, x)=
= 5(1, y)— l. Thus Cp is the counter with lengthp and E is the elevator. Set

J f ' = {Cp| p is a prime} U {E}.

From the proof of the main result of [5] we have HSP9 (J f)=HSP a o (X') . To end
the proof, by Lemma 1, it suffices to show that J f gHSP a o(Jf) . That is however
obvious for we have Cp€S({DP}) and E£H({DP}), each prime number p.

Proof of (2). Let / s 1 be any integer and m=J] (Pj\j= 1, ..., i+1), where p} is
they-th prime. Define M=(M, {x, y}, 5) to be the automaton with

M = {0, ..., m},

mod m if j < m,
if j = m,

c / . 0 + 1 mod m if 0 «= j < m,
if y' = 0 or j = m,

for all j£M. We prove that M$HSP v , (j r) while M€HSP, l t l (J f) .
Assume that, on the contrary, MCHSPV[(jf). Let

D 3 L X . . . X D ? N ({ X , Y}, (P)

be a Vj-product of automata from j f that contains a subautomaton A= (A, {x,y}, 5)
which is mapped onto M under a suitable homomorphism h. We may choose n to be
the least (positive) integer with the above property, i.e. if a v; -product of automata
from X contains a subautomaton that can be mapped homomorphically onto M
then the number of factors of that product is at least n. Also, the subautomaton A can
be chosen such that none of its proper subautomata is mapped homomorphically
onto M.

Let us write A as the disjoint union A=A0UA1 where A0—h~](M— {w})
and A1=k~1({/n}). Let a€A0 be a state. Since a is a generator of A, if prj (a)—qj
for an integer j—l,...,n, then pTj(b)=qj for all b£A. By Lemma 3, there exists
a Vj-product

D 9 I X . . . X D ^ . I X D , J + I X . . . X D J { X , y), <p')

that contains a subautomaton isomorphic to A. This contradicts the minimality of n.
Thus pTj(a)9£qj for all a£A0 and y= 1, ..., n. Suppose now that there is an a^A1
such that for all j= 1, ..., « we have p Tj(a)^qj. Let b£A0 beastateand «6 {x, y}*

256 P. Dômôsi and Z. Ésik

a word with ô(b,u)=a. Let v—x^ where k denotes the length of u. We have c=
= <5(6, v)£A0, henceforth prjÇc)^ q7- for all j= 1, ..., n. The special structure of the
automata T>qj guarantees that a=c. This contradiction yields that for every aÇ.A1
there is an integer j(l=j=n) with p r ^ a) ^ ^ .

Let a 0
= (a o, i ' •••' flo,n)» •••> a , - i = (û,-ifi» •••» û4-i,») be all the states in A0, so

that O^t^q— 1, l ë / â n . By the minimality of A and the special structure
of the automata Dqj it follows that the letter x induces a cyclic permutation of the
states a,, say 5(a,, x)=a,+lmoiq. Also q is the l.c.m. of the primes qlt ...,q„.
Since h is a homomorphism of A onto M, we have q=0 mod m. Without loss of
generality we may suppose <5(a0, y)=a£A1. Thus prJ(a)=^rJ- for some/ By Lemma
2, we may take J = l . Since pr 1(a)=q1 we must have (Pi(a0, y)—y. Let v(l)=
= {jif---jjk}> s o that k^i. Define q to be the l.c.m. of the primes on the list
qh qJk. Obviously then q = 0 mod q. Since m is the product of i+ 1 distinct
primes and q is the product of at most i distinct primes, from q = 0 mod m and q = 0
mod q we obtain q<q. Let us now consider the state ad=(a31, ..., as,n). For every
/= 1, ..., k we have 5(a0Jl, x «) = ^ q J t . Since q = 0 mod qjl we see that aiih—
=a0Jt. Since we have a v,-product it follows that cp1(aq, y)=cp1(a0, y)—y. We
conclude ô(aq, y)£A1. Since h is a homomorphism of A onto M we see that q = 0
mod m. This is however clearly impossible for m is the product of i+ 1 distinct
primes and q is the product of at most i distinct primes.

We still have to show that M€HSPV(+1(Jf). For this define the ¿-product

A = (A, X, S) = D P L X . . . X D P (+ 1 ({ X , y}, <p)
by

(Pjifli, ..., a i + 1 , x) = x,

(x \y if a i =•••= a i + 1 = 0,
<Pj(c1, ..., ai+1, y) = otherwise.

Since the number of factors is i+1, this ^-product is also a vi+1-product. Define

A0 = {aÇ.A\pTj(a) ^ pj for all j = 1, ..., i+1},

Ai = A A o.
For an a=(a 1 ; ..., ai+1)£A0 let h(a)=t be that integer m with t=aj modpj,
7=1, ..., /+1. If a€A1 put h{a)=m. The mapping h is easily seen to be a homo-
morphism of A onto M. •

Remark. It is said that an automaton A=(A, X, 5) satisfies the Leticevskiï
criterion if there exist a state aÇA, input letters x1 ; x2ÇX and words ult u2£X*
with S (a, xj^ôfa, x2) and ô(a, XlUi)—ô(a, x2u2)—a. If only ô (a, x j ^ ô (a, x2)
and 6(a, Xlu)=a hold for some aÇA, x l5 x2ÇX and u£X*, we say that A satisfies
the semi-Leticevskiï criterion. The above definitions extend to classes of automata:
a class Jf satisfies the Leticevskiï criterion or the semi-Leticevskiï criterion if one
of its members satisfies it. By a classical result in [12], HSPg(Jf) is the class of all
automata if and only if Jf satisfies the Leticevskiï criterion. It has been shown in
[3] that the same is true for thé a2 -product. If X does not satisfy the semi-Leti-
cevskiï criterion then, by the proof of the main result in [5], HSP9(X)=HSPe ,o(jT).
Also HSP 9 (J f)=HSP V l (J f) in this case as shown in [9]. Suppose now that J f

On the hierarchy of v, -products of automata 257

satisfies the semi-Leticevskii criterion but does not satisfy the Leticevskii criterion.
In [5] it is proved that for every such Jf we have HSP9(Jf)=HSP1 I 1(Jf). The v r
products behave quite differently. The class JT given in the proof of our Theorem
satisfies the semi-Leticevskii criterion but does not satisfy the Leticevskii criterion,
moreover, there exists no integer with HSPg (,3f)=HSPV((j f) .

• Open problems. (1) Suppose that Jf satisfies the Leticevskii criterion. Does
there exist an integer i s l with HSP9(Jf)=HSPv .(.5f)? (2) Does there exist an
integer fel such that HSP9(Jf)=HSPV(JT) whenever j f satisfies the Leti-
cevskii criterion? What is the least such i, if it exists?

INSTITUTE OF MATHEMATICS
L. KOSSUTH UNIVERSITY
EGYETEM TÉR 1
4010 DEBRECEN
HUNGARY

BOLYAI INSTITUTE
A. JÓZSEF UNIVERSITY
ARADI V. TERE 1
6720 SZEGED '
HUNGARY

References

[1] ARBIB, M. A. (ed), Machines, languages and semigroups, with a major contribution by K. Krohn
and J. L. Rhodes, Academic Press, 1968.

[2] DÖMÖSI, P . a n d IMREH, В . , O n v , -products o f a u t o m a t a , A c t a C y b e r n e t i c a , 6 (1983) , 1 4 9 — 1 6 2 .
[3] ÉSIK, Z., Homomorphically complete classes of automata with respect to the a2-prcduct, Acta

Sci. Math., 48 (1985), 135—141.
Г4] ÉSIK, Z., Loop products and loop-free products, Acta Cybernetica, 8 (1978), 45—48.
[5] ÉSIK, Z. and HORVÁTH, GY., The A2-product is homomorphically general, Papers on Automata

Theory, V (1983), 49—62.
[6] GÉCSEG, F., Composition of automata, 2nd Colloq. Automata, Languages and Programming,

1974, LNCS 14 (1974), 351—363.
[7] GÉCSEG, F., On ^-products of commutative automata, Acta Cybernetica, 7 (1984), 55—59.
[8] GÉCSEG, F., Products of automata, Spiinger Verlag, 1986.
[9] GÉCSEG, F. and IMREH, В., On metric equivalence of ivproducts, Acta Cybernetica, 8 (1987),

1 2 9 — 1 3 4 .
[10] GLUSKOV, V. M. [Глушков, В. M.], Абстрактная теория автоматов, Успехи Матем. Наук,

16:5 (101), (1961), 3—62.
[11] HARTMANIS, J. and STEARNS, R. E., Algebraic structure theory of sequential machines, Prentice-

Hall, 1966.
[12] LETICEVSKI!, А. А. [Летичевский, А. А.] Условия полноты для конечных автоматов,

Журнал Выч. Мат. и Мат. Физ., 1 (1961), 702—710.
[13] ZEIGER, Н. В., Cascade synthesis of finite state machines, Information and Control, 10 (1967),

4 1 9 — 4 3 3 .

(Received March 7, 1987)

On ranges of compositions of deterministic root-to-frontier tree
transformations

Z . FÜLÖP a n d S . VÁGVÖLGYI

, 1. Introduction

In [3] we have proved that 3>(№=$&3%n for every where is the class
of all deterministic root-to-frontier tree transformations. This result motivated us
for examining whether the set S= JfQiSk, ¡ejf3)0t, , J f t f , i f ^ f }
generates, with composition o, a finite or infinite set of tree transformation classes.
Here JF is the class of all homomorphism tree transformations, moreover the linear,
nondeleting and linear-nondeleting subclasses of a class are denoted by prefixing the
class by jSf, Jf and J r £ J f , respectively. We note that the enlargement of S by
has no effect on the generated set [S]= {^o...ojfjn^l, cf^S for l s / ^ « }
since, for each W^S,

In Theorem 12 of [3] we obtained a characterization for the set [S], by means
of which we proved that [S] is infinite if and only if the hierarchy {{£?JfQi3ftoJ/'yf)n}
is proper, which was shown in [6].

In this paper we examine the set of surface set classes [S]{3$ec)= (^¿c)^ d[S]}
as well as the set of classes of tree transformation languages yd([S](S?^c))=
= { y d (^ r) | (S t e c is the class of all recognizable forests and yd is the
operation "taking the string formed by the leaves" for trees.) We show that, although
([•£]), =)> as a poset, contains unrelated classes, [S] (3/tec) forms a chain with respect
to inclusion with least element 3k ec and greatest element 2!3${3$£c). We also prove
that, in this chain, Jf20l{0lec) is properly contained in Si 3k(3kec) while the problem
whether [S](^Uc) is finite or infinite remains open. However, we show that the chain
(yd([S](3$£c)), g) consists of exactly three elements.

2. Preliminaries

This paper is sequel to [3] and [6]. For notions and notations the reader is advised
to consult with these works. Here we recall only the main results of [3] and [6] and
introduce the terminology used exclusively in this paper.

We specify a special function symbol e of arity 0 which either belongs to a ranked
alphabet F or not.

3 Acta Cybernetica 8/3

260 Z. Fulop and Ŝ Vdgvolgyi

If p£ TF is a tree then the yield yd(/?)gFo of p is defined inductively as follows:
(a) for p£F0, y d (p) = k if p=e and y d (p) = p otherwise;
(b) for p=f(px, ...,pj, with f£Fm and plf ...,pm£TF, y d (p) =

= yd(p1)...yd(pm).
We call the attention of the reader not to confuse yd (p) with fr (p) defined in [3]
and [6] and called the frontier of a tree p.

Subsets of TF are called forests. If TQ TF is a forest then yd (T)= {yd (p)\p€ T}
and, for a class F of forests we put yd (ST)= {yd { T) \ T ^ } .

In [6] we defined the set of paths path (p)^N* for a tree p£TF(Y). Here we
shall consider two distinguished elements, the longest leftmost path lip (p) and the
longest rightmost path lrp (p) of path (p) which are defined in the following way :

(a) if p£YUF0 then Up (p)=lrp (/>)=A,
(b) if p=f(pi, ...,pm) for some m g 1, f£Fm and plt ...,pm£TF(Y) then

Up (/0=1 lip (pi) and lrp (p)=n lrp (/>„).
Let T Q T f X T g be a tree transformation. The range of T, defined as usual, is

denoted by ran (T). Let TQTp be a forest, The image z(T) of T under t is the set
{q£Tc\(p, q)£t for some p£T}.

For a class # of tree transformations and a class 9~ of forests we set
r a n ((€) = {ran (T) |T€#} and ^(3r)= {z(T)\z^ a n d

We denote by Sfcec the class of all recognizable forests (c.f. [4]).
Again, let be a class of tree transformations.
The class of surface sets of <6 is the class (8%ec) of forests, moreover, the class

of tree transformation languages of is the class yd (3%ecj) of languages.
If r QTfXTg is a tree transformation then the tree-to-string transformation T t t s

underlying x is rtts={(p, yd (q))\(p, qKt). Thus tUsQTfXGo. Analogously,
for a class % of tree transformations we define {t tts\T^}-

We recall that the composition <6xoc62 of two tree transformation classes was
defined in the order "first r€x and then ^ (c.f. [3], [6]). Thus we have (^ 1o^ 2)U s=
= «io<g,

stls and, for any class ST of forests yd (<g'1(^))=^ l t t s(5 r) .
Let {#„|n=l, 2, ...} be a set of classes. We say that {^„\n= 1 , 2 , . . . } , or {%„}

for short, is a hierarchy if for each » S i . This hierarchy is proper if

Now we introduce some technical details which, hopefully, make easier to under-
stand the proofs in this paper.

Consider a DR transducer 2I=(F, A, G, P, a0) and a rule af(xlt ...,xm)—
—g in P. In this paper q is considered as an element of Ta(AXXm) rather than
TG(A(Xm)). This is important when speaking about the height h(q) of the right-hand
side of a rule. (For the definition of height, see [3] or [6].) Moreover, we extend yd
for the elements Tc(AXXm) as follows: yd (q)=q if q£AXXm and otherwise
yd (q) is defined in the same way as if q were in TG, see above. Thus if q is the right-
hand side of the above rule then yd (q) can be written in the form w0(al5 x.J Wj...
...(an,xin)wn for some nsO, w0, ..., wn£G%, au ...,an£A and xir ..., xin€Xm.

The length of a string w will be denoted by |w|. The following abbreviated nota-
tion will also be used. Let F and G be disjoint ranked alphabets, let / € F m with

0 and »v£Gq with w=a1...am for some a l5 ..., a„,CG0. For any partition w=
= w1...w„ (n s 0) of w the notation f(wx, ..., w„) stands for the tree f(ax, ..., am)£
€Tf u f i .

Finally we restate the main results of [3] and [6].

On ranges of compositions of deterministic root-to-frontier tree transformations 261

Denote the set {9M, JV3>M, <£2)M, SSJISDM, M, JFTF, <£&} of tree trans-
formation classes by S. The set of all tree transformation classes generated by S
with composition o is [S]= { ^ o 1, j f ^ S for 1^ /^n} .

Let us introduce, for each integer k^O, the class of tree transformations as
follows :

(a) %=sejr3>M,
(b) (gk+i=(£koJfJf' if k is èven a n d <gk+1=<#koSejV@M if A; is o d d .
Moreover, consider the two finite subsets and S2 of [5] defined by

S i = S U I£Q!8Î0J/-JE, SEOSMOJFQIM,
<£JT2)Mojf }

and

s2 = {jt, j t x , seje, <e®Mojrœ, sejfQMoje}.

Proposition 2.1. (Theorem 12 of [3].) For each one of the following three
assertions holds :

(i) Sx,
(ii) (ë=<èk for some k ^ 0 ,

(iii) (€=(€'o(€k for some <ë'ÇS2 and k^O.
By this proposition, [S] is infinite if and only if the hierarchy t} is proper.

Then, in [6] we obtained the following result.

Proposition 2.2. (Theorem 3 of [6].) {^2k+1\k—0, 1, ...} is a proper hierarchy.
Notice that it follows from Proposition 2.2 that k} is also a proper hierarchy.

This can easily be seen by using the identities Sej/~3lMo<£J/'3)M=Sej/'2)M and
j r x ojf3te=jr#e.

3. The results

First we examine the set of surface set classes [S](Mec)= {^(Mec^^lS]}.
We have the following result.

Theorem 3.1. The poset ([S](Mec), Q) is a chain which can be written in the
following form:
Mec QJTJP (Mec) g JOf o-^ (Mec) (Mec)... <^Jf®M (Mec) Q 9 M (Mec).

Proof. By P ropos i t i on 2.1, we have [S](Mec)= {(ê(Mec)\'ë^Sl}\J {<ek(Mec)\ks=
a 0 } U < ë k (M e c) \ < ë ' € S 2 and /fcsO}. Then, using the results @M2(Mec)=
=2>M(Mec) (T h e o r e m I . 3. in [5]) a n d <£@M(Mec)=<£J/'Q>M(Mcc)=<e3fe(Mec)=
=Mec (Corollary IV.6.6. in [4]) as well as the identities g ^ o j f j e = j e and
Jf#FoJ/'Q)M=J/~S>M ([3]) we can write

{(ë(Mec)\<e^.Si} = {Mec, ¿V3V(Mec), Jf2)M(Mec), 2>M(Mec)},
{<#k(Mec)\k 0} = {Mec, j f j e (MecXJfjeo^MecXJrœo^Mec), ...}

and
{^'o^k(MecW^S2 a n d k S 0} = {Jfje(Mec),Jfœo%(Mec),

Jftfo^Mec), ...}
obtaining all the elements of [S](Mec). For proving the inclusions stated in our
theorem we only have to observe that, since JfQlM is closed under composition,

3«

262 Z. Fulop and S^ Vdgvolgyi

and thus J f ^ o ^ ^ J i ^ S i t for each A:S0. All the other inclusions
follow by definition. •

We can raise the question that which of the inclusion relations appearing in The-
orem 3.1 are proper. It is a folkloric result that moreover, it is
also not difficult to see that J i t f { 0 i e c) < z J i ^ w h i c h , in our paper, will
be a consequence of Theorem 3.6. The questions that whether the hierarchy
{jVjFo^k(3iec)} of classes of surface sets is proper or not and that whether

U J O f o ̂ (3$ec)c (3%ec) are much more interesting and, at the same time,
k=0
difficult. These problems are still open. However, we obtained the following result:

Lemma 3.2.

Proof. We observe that, by Theorem 3.2.1 of [2], ran and
ran Therefore it is sufficient to give a forest in ran (253%)
which is not in ran (JiSlSi).

Let us introduce the ranked alphabet F=F0\JF1UF2 where F0— {#}, Fx—
= {/ i , /2} and F2 = {g}. Denote the balanced tree of type {g, jf} with height n by
t'„. Then construct the tree tn from t'„ in the following manner: for each wi path (t'„)
with \w\=n substitute the tree /•,(.../•„(#)•••) for str (t'n, w) in t'„ where w=
= i1...in. (We know that, for such a w, str (t'n, it and that 1 ^ , . . . , /„^2.)
An example for the case n—2 of this construction can be seen in Fig. 1.
With this we achieved that each subtree of tn with root g has exactly one occurrence
in f„.

Next we take a function symbol / with arity 2 and two function symbols e and
h with arity 1. Let G=FU{e} and H=FU{f,h}.

There exists a DR transducer 21 such that ra={(*?(/?),/(/>, h"($)))\peTF and
n=|llpO>)|}, where / i"(#)=# if n=0 and hn($)=h(h"-\$)) if n S l . (Notice
that R « A Q T G X T B , moreover that [llp(^)| = |lrp holds whenever ^€ran (T<H) .)

* «

f i

f i

/ 2 / 1

f y fz

8 /

h

/ 2

u

Figure 1.

On ranges of compositions of deterministic root-to-frontier tree transformations 263

In fact, the DR transducer the rules of which are listed below can be taken as 21.
The initial state is a.

aefo)-/(£*!, cxO,

bg(xx2) - g(bxl, bx2),

bfiM ^MbxJ, i = 1, 2, b if - ' f ,

c g (* i , x 2) - h(cXl), cfi(Xl) - hicxj, t = 1 , 2 , cif $.

We show that ran (T<B)| ran (jVSfiSi). For this, let us introduce first the abbre-
viation qn=g{t„, /i2"(#)), for n s l . Then, since x% sends e(t„) to q„ we have that
{q„\n=l, 2, ...}gran (TM). •

Now suppose indirectly that there exists an NDR transducer © = (£ , B, H, P, b0)
such that ran (TA)=ran (T®). Then also {q„\n— 1, 2, . . .}^ran (T<B) therefore, for
each n= 1, 2, ... there exists a p'n£TE so that b0p'„==> q„. We note that some of
these derivations may start with such a sequence of rules in which the height of the
right-hand side of each rule is 0. But, after dropping this sequence of rules from
each derivation we have that for each «=1 , 2 , ... there exists a bn£B anda/>„€sub(X)
with b„pn <=> q„ such thai each derivation starts with a rule, the height of the right-
hand side of which is greater than 0. Then we can choose an infinite subsequence

«2» •••> nk> ••• of 1, 2, ..., n, ... such that the same rule, let us say ba{x1, ..., xu)
—q(biXh, ...,bvXi) is applied in the first step of the derivations b„kp„k => q„k for
k= 1 , 2 , (This, of course, entails that b=b„k for each k= 1 , 2 ,) Moreover,
without loss of generality, we may suppose that q£.THiV and fr {q) = x1,...xv.
(For notations, see [3] or [6].)

We observe that the longest leftmost path (resp. longest rightmost path) of q
ends in x1 (resp. or, formally, str (lip (q), q)=xl (resp. str (lrp (q), q)—x^).
For, if this were not the case then |llp (g„t)| (resp. |lrp (q„k)\) would be a constant
for each k= 1, 2,

Next we show that xh=xiv or, equivalently, h=h • On the contrary, assume
that i1<iv. Choose two integers k and I such that and write the derivations
bp„k ==> q„k and bp„t q^ in more detailed form as

bPnk = bc(pi«\ ...,p\f, ...,/>«)#•
(1)

q(blP%\ ..., bvpf?)i> q{q*\ ..., <?<<>) = q„k

and similarly

bpn,= ba(j>i'\...,PW,...,pil\...,pP)%>

q{b1pW,...,bvPV)%>q{q«\...,qy)=qni.

These two derivations entail that

bc(p[k\ ...,plk\ q(qlk\ g<'>)

from where we see that q(qik), ..., q^)^ran (T») and thus, by ran (t a)=ran (r®),

264 Z. Fulop and S^ Vdgvolgyi

q(q{k\ ..., ^°)€ran (ta). Then, by the note we made after the definition of r a ,
| l lp(9 (^>, . . . ,^°)) |=|lrp(i(?i () l) . On the other hand

|Up(?(?ik). - |Hp(?)l + |Up(?it))| - I"P(<7JI = 2nk+l and

j l rp (q(aP, ..., <7<"))| - |kp(?)| + | l rp(^)) | = |lrp(?„,)| = 2nt+1, that is, nk =

This is a contradiction, since
Let us suppose that i 1 =i„= l .
Denote the number of states in B by \B\ and let K=max {h(q)\q is the right-

hand side of some rule in P}. Let the integer k be chosen and fixed such that
>K(|2?|+1).

Consider, from (1), the derivation b0 p[k) =§=> q{k). Since lrp (q) ends in xv, by the
definition of q„k, q^k) contains only the function symbols h and # of H. But then,
since 53 is an NDR transducer and the arity of h is 1, the arity of the function symbols
occuring in pik- is either 1 or 0.

Consider now the derivation bLpik) •§=>• q[k). We state three properties of q[k).
Namely, by the choice of k, we have

(PI) h(qik))^2nk+l-K>2-\B\-K
moreover, by the position of q[k) in q„k,

(P2) if w€path(^k>) is such that lab (qik), w) i s f l t f 2 or «then |w]> |5 | • K
and, since q[k) is a subtree of t„k,

(P3) each subtree of qik) with root g has exactly one occurrence in q[k}.
Further on, we analyse the derivation b t f ^ ^ - q ^ . Therefore, consider the

following algorithm.

let i'=0, r 0 =x 1 , b^^bi, s0=p1
(k), m0= 1;

while r ^ q i ^ do
begin

search for the smallest integer jfor which r^b^Si, ..., b^si) r(b[s,..., b'ms)
holds for some mSO, r^fHin,ts^TE and b[, ..., b'm£B such that rn (/•,)<
< r n (r);
let I = I + 1 ;
let rt = r, st=s, m—mij—j

and bp=b't for l S / S r a
end

(Here ==> stands for the 7-fold composition of the relation
We note that the smallest integer j in the above algorithm can be found by rewrit-

ing simultaneously the subtrees b ^ s t , ..., b^St. (This simultaneous rewriting was
called parallel derivation in [2].)

Since each derivation of S starting from a state and an input tree terminates after
a finite number of steps our algorithm also terminates after, let us say, N steps.
Moreover, since brf^ =§> qlk), it holds that mN=0 and rN=q[k). Thus we can write

r0(bf)s„)^ r^i1^, ..., b<n\>s1)4>...^> rN(brsN, ..., bZ>sN) = q{k\

On ranges of compositions of deterministic root-to-frontier tree transformations 265

We make the following observations.
Since we choose the smallest integer j in the while loop it holds that /i(r ()s

S i - K , for l^i^N, therefore, by property (PI) of q[k\ we have that N>2-\B\.
Let i=\B\. Then, by property (P2) of q[k) we obtain that each tree of r l f ..., r{

contains only the function symbol g of H. 1 hus the condition rn (r0)<rn (r t)< . . .<
< r n (rf) entails that 2 ^ m t < . . . < m t , hence, we get that mi>\B\.

Then, for i= \B\, there is at least one state that appears at least twice in the se-
quence ...,b£].

Since rtib^s,, q{k~> we obtain, by (P2) and h{r^i-K=B-K,
that there is a subtree with root g of q[k) which appears at least twice in q{k). However,
this contradicts property (P3) of q(k). With this we finished the proof of our lemma. •

We note that in the above proof we strongly used the fact that the output ranked
alphabet H of our counter-example tffl contains function symbols of arity 1. It is not
clear how this lemma could be proved if we restricted ourselves to ranked alphabets
that do not contain 1-ary function symbols.

Now we begin to deal with the poset (yd ([S](Mec)), g) where y d ([S] (^)) =
={yd(^")ly~i[S]{0l£c)}. We observe that, since ([S](@ec), g) is a chain and yd
preserves inclusion, (yd ([S](Mcc)), Q) is also a chain. First we prove a technical
lemma.

Lemma 3.3.

Proof. It is sufficent to show that To this end take a DR
transducer 21={F, A, G, P, a0) and denote the number of rules in P by |P|. Sup-
pose that the rules in P are numbered from 1 to |P|.

The following algorithm produces, for each /=1, ..., |P|, a function symbol
f and a rule gt for a DR transducer:

(a) Suppose that the i-th rule is of the form af{xx, ..., xm)-*q where
qiTa{AxXm).

(b) Let yd (g)=w0(a1,xil)w1...(an, xin)wn where n^O, lSxh, ..., xinSm,
w0, wlt ..., wn€G%.

(c) Let {xh, ..., xJk}QXm be the set of all variables which do not occur in q
(and so neither in yd (q)).

(d) Let/- be a new function symbol with arity |w0| + ... + |w„|+7z+fc.
(e) Let Qi be the rule

af(xlt ...,xm)-*fi(w0, fliX.j, ...,a„xln, wn, cxh, ..., cxJk) where c$A is a
new state. (As usual, (ak, xQ is abbreviated by akxik, for l^k^n.)

Now we introduce the DR transducer 8 = (F , AU {c}, F', P', a0) where

i7 ' = W-li = 1, |P|}U^U{e} and

P' = {Ql\i = 1, ..., IPDUfc/fo, ...,

-~f(cxlt cxm)\m 1, / € F m } U { c / - e\fcFa).
It can be seen from the construction that 23 is an NDR transducer. Moreover, it can
be verified by an induction o n p that for each a£A,p£TF and w(iG*,

(3?€TG)(ap =* qAyd(q) = w)o (3q'£ TF,)(ap ==> q'Ayd(q')= w).

266 Z. Fülöp and S. Vágvölgyi

It then follows that T<ntts=Tstts- Hence we have S ^ ^ ^ S S t ^ . •
Consequence 3.4. <ejfg>SH^=<£3)0t^.

Proof. If 21 in Lemma 3.3 is an LDR transducer then SB is an LNDR transducer.
•

Consequence 3.5.

Proof. It is well known that (c.f. [1], [4]) thus we have
a « t l I = { j r x ose®@)tl= jrxo&agt*^ jrtfo&jr®»^ { j r x ose^siM)^ •

•
Now we are ready to state our last theorem.

Theorem 3.6. The poset (yd([S](&-ec)), is a chain of three elements

yd {Stee) C yd C yd

Proof By Consequence 3.5, we can compute as follows:

=yd(3>3&(0tec)). Thus applying yd to each element of ([S]{0tec), we obt-
ain the chain yd(5?«0gyd Here each inclusion is
proper as it was shown in [2]. •

Finally we have the consequence mentioned before.

Consequence 3.7. J f t f
Proof. It is obvious since, by the proof of Theorem 3.6, the same proper inclusion

holds for the yields of these two classes. •

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7., SZEGED, HUNGARY,
H—6720

References

[1] ENGELFRIET, J., Bottom-up and top-down tree transformations — A comparison, Math. Syst'
Theory, 9, 198—231, 1975. ' -

[2] ENGELFRIET, J., G. ROZENBERG and G. SLUTZKI, Tree transducers, L systems and two-way ma-
chines, Journal of Comp. and Syst. Sciences, 20,150—202, 1980.

[3] FÜLÖP Z. and VÁGVÖLGYI S., Results on compositions of deterministic root-to-frontier tree trans-
formations, Acta Cybernetica, 8, 49—62, 1987.

[4] GÉCSEG F. and M. STEINBY, Tree Automata, Akadémia Kiadó, Budapest, 1984.
[5] ROUNDS, W. C , Mappings and grammars on trees, Math. Syst. Theory, 4, 257—287,1970.
[6] VÁGVÖLGYI S. and FÜLÖP Z., An infinite hierarchy of tree transformations in the class JfQlSfc,

Acta Cybernetica, 8, 153—168, 1987,

(Received June 19,1987)

On the numbers of shortest keys in relational databases
on nonuniform domains

O . SELESNJEW, B. THALHEIM

The use of the relational model of data structures by E. F. Codd is a promising
mathematical tool for handling data. In this model the user's data are expressed as
relations where the rows denote the records and the columns represent domains or
attributes. For the handling of relations the identification of sets of domains, called
keys, is suggested. The keys uniquely determine the values of the rest of the domains.
Delobel and Casey, Fadous and Forsyth, M. Fernandez, C. L. Lucchesi and S. L.
Osborn, J. Demetrovics and V. Thi have given different algorithms for finding the set
of all minimal keys in a relational database given by a set of functional dependencies
on the database. For characterizing the complexity of this algorithms we need some
combinatorial bounds.

In this paper we consider the maximal numbers of shortest keys in relational
databases on weighted domains and extend the result of J. Demetrovics who solved
the problem for relational databases on uniform domains. [1]

1. Basic notions

We recall briefly some definitions of the theory, of relational databases. Given
sets Du D2, ..., D„, called domains, not necessarily distinct, an «-ary relation R.
defined over Du ...,D„ is a subset of the cartesian product D1XD2XD„.

An attribute is a name assigned to a domain of a relation. Any value associated
with an attribute is called attribute value. The attribute names must be distinct. The
symbol U will be used to denote the set of all n attributes of R.

A set of attributes X, XQ U, is called a key of R if, for every «-tuple of R, the
values of the attributes in X uniquely determine the values of the attributes in U.

Now, suppose we are given some weight function (or complexity measure)
g: U—N' and a system SR of keys of R. For XQU let g(X)= % g(A) the Com-

d e x
plexity of X. An element K of SR is called g-shortest if there does not exist an element
K' of SR with g(K')^g(K). By SR (g) we denote the set of all ̂ -shortest elements of
SR and by sR(g) its cardinality. For g= 1 the set SR(g) is called the set of all
shortest keys or the set of shortest keys in.an unweighted database. It is obvious that

268 O. Selesnjew and B. Thalheim

any set SR(g) is a subset of a set of minimal keys [1]. For any set S of minimal keys
there exists a subset S(g) of shortest keys. This is well-known for g= 1.

Theorem 1. [1] The maximal size of a set of shortest keys in a database with n attri-

i M l n]

butes is n n j I. For any 1 s k s U n j I, there is an n-ary relation R with k shortest

keys.
2. Maximal number of shortest keys in nonuniform databases

In practical cases, keys are of different meaning and complexity. Domains for
attributes have very different complexity. This is well-known in practice but it is not
taken into consideration in the theory of minimal keys. Therefore, shortest keys are
introduced.

Lower and upper bounds for sR(g) are proved in [4]. The most interesting set of
functions g is the set G + of functions g with giA^^giAj) for i^j. The other cases
can be splitted in the case g(A)= 1 for A£X and in this case for A£ U\X. We
introduce the following functions:
s(g) = max sR(g),
J(G') = max s(g) for sets G' of weight functions. g €G'

Using the functions g!,g2,g3 with g1(Ai)=2i, g2(Ai)=3IiM, g3(Ai)=i, for
/, 1 ^ / S n , by the definitions and the recursion formulas for g3, we get

n
Corollary 2.1. For weight functions g it holds 1 s s(g) s | f n'

2. J (f t) = l , s(gj=2™, s (g 3 , [4] .

[1].

Our next aim is to prove

Theorem 3. j (G +) = - - = £ = (1 —o(l>).

n
From number theory [2] we get that functions g with j (g) = j (G +) must be

regulary. W.l.o.g. we consider a subclass G* of G + , the class of all equidistant func-
tions g with the property g(Ai)—g(Ai^1)=c for some c and any /,

Lemma 4. 1. Given two equidistant functions g, g' from G + . Then s(g)=s(g').
2. Let g be a function from G + . There exists an equidistant function g' in G*

such that s(g)=s(g').

Proof. 1. Is obvious.
2. W.l.o.g. we consider only functions g from G + with g(A,)<g(Ai+1) for

/, 1 ^ /< n. We prove the assertion by induction. For n= 2 the assertion is obvious.
Let n be a fixed number. Now we assume that for a fixed function g there is no equi-

On the numbers of shortest keys in relational databases on nonuniform domains 269

distant function g'£G* such that s(g)Ss(g'). Let be SR a key system with s(g)=
=sR(g). Now we define S,= {KiS^AAK}, S2={K\{An}/KiSR, An£K}. By
precondition of induction, we get for an equidistant function g" such
that s(g')Ss(g"). It follows that there is an equidistant function g+ in G* such
that and s(g)^s(g+). That is a contradiction.

W.l.o.g. we can consider for s(G+) the function g3 of Corollary 2. Now we define
independent random variables gk with two-point distribution for k= 1, 2, ..., n:

and consider the distribution of S„= 2 ¿¡¡.
i=i

Corollary 5. P (. S N = [" (" 4
+ 1)]] ^ j r J (g3) for probability P(Sn=m).

For the expectation ESn and the variance DS„ of Sn we get

m c-c v w v k " (" + !) Mn = ESn= 2 E£k= 2-K = —7—
k = l fc=1 ^ ^

Bn = DS. = 2mk = 24 ~ i 2

We shall say that the sequence {S„} satisfies a local limit theorem iff

sup \BnP(Sn = m)-<p(x„m)\ - 0 («-=»)
m

m—M S —M where xnm——-—zn=——cp is the standard normal distribution density.

We denote

a (a , q , N) = -± r 2 = r(mod.g), \tk\ S N) (+)
H -9 /2 -=rS9 /2

for %k=Zk—Z'k symmetrized random variable, where ££ is a random variable inde-
pendent of and having the same distribution as relatively prime integers a, q

with a s - | - and 1

In [3] is proved the following: If the distribution function of the sum of unboun-
dedly increasing number of random variables converges to the standard normal
distribution function,

i.e. N(0, 1), (1)

K exp { - ^ min 2 «»(«, <7, ^ t)} - 0 (« - oo), (2)

Nn is selected such that Hm 2 f x 2 d F l X x) = / > 0, (3)

then the sum satisfies a local limit theorem. •

270 O. Selesnjew and B. Thalheim

Let Nn=n. Then we get

1 = Km 4 - ¿ / > 3 = 1 ^ 0 ,

pak = k) = pak=-k) = j , p(ifc = o) = i .

By summation of (+) over representatives of q we get for /eg {1, ..., «}.
Observe that if 1^=0 then r=0 and this summand can be eliminated and that if
lk=k then ak=rk+qlk for the unique representative of q. We get

q>n) = 4i 2 r2P(alk = r (mod q)) =
q -9/2<r39/2

From number theory it is known that if {*} form a full system of representatives of q
n

then {ax} form a full system of representatives. Now A„Smin 21 ak(a, ")=
"•« k = 1

1 "
s m i n —j 2rl- Assume that q=2m. (For odd q proof is analogous.) Let 0 < 4 4q k=I

. If then
n m

2 rl S Z № S cm3 S ca3«3

t = i t=I •

for the full system of representatives r t = — (m— 1), ..., 0, 1, ..., m and therefore

• • 1 ccc3 w3

l a £ min - r - r ca3«3 s - r -ST - ? = P n ' $ >

- " ? 4#a 4a24 /1

If l < m < a n then the full system of representatives {/•}"(„,_!) is contained in

{1 «} at least — times. Consequently we get
l q J

f -1 ¿ k 2

A, S min - L J rl S m i n - ^ - 7 7 — S 0,4 4#2 a,« . 4q2

m m

(n \ 2 k Z

S min 1 r ' . s min (n-q)k „ s min (n-2an)c =
a,« \q) 4q2 i 4q3 9

= c (l - 2 a) n = fin > 0 , £ > 0.

On the numbers of shortest keys in relational databases on nonuniform domains 271

We get that (2) holds because A„=n exp j — y exp{~y"}"*"0(n —

Summarizing corollary 5, lemma 4 and the properties of S„ we get

»(ft) = 2"P(sn= [-^11]) = „~

2" 2" 2"

The proof of theorem 3 is complete.
1С rPClllt ЛХ/itb

i \ r n

2"
It is of interest to compare this result with s(g t) fo r^ 4 (^)= 1 for

AZU.
Using a central limit theorem we get further

2"

/M'+rt)
с

for some constant c.

O. SELESNJEW
MOSCOW STATE UNIVERSITY
DEPT. OF MATHEMATICS A N D
MECHANICS
117 234 MOSCOW
USSR

B. THALHEIM
DRESDEN UNIVERSITY OF TECHNOLOGY
DEPT. OF MATHEMATICS
COMPUTER SCIENCE DIVISION
8027 DRESDEN
GDR

References

[1] J. DEMETROVICS, On the equivalence of candidate keys with Sperner systems. Acta Cybernetica 4
(1979) , 2 4 7 — 2 5 2 .

[2] K. KNOPP, I. SCHUR, Elementarer Beweis einiger asymptotischer Formeln der additiven Zahlen-
theorie. Mathematische Zeitschrift 24, 1925, 559—574.

[3] А. А. Миталаускас, В. JI. Статулявичус, Локальные предельные теоремы и аси-
мптотические разломение для сумм независимых решетчатых случайных величин. Литовс-
кий математический сборник 1966, Т. 6, N. 4, 569—583.

[4] В. THALHEIM, Abhängigkeiten in Relationen. Dissertation В, Technische Universität Dresden,
Dresden 1985.

(Received March 4,1987)

Some results about functional dependencies*

J . DEMETROVICS a n d V . D . THI

Abstract

§ 1. Introduction

The relational datamodel was defined by E. F. Codd [2]. In this datamodel a rela-
tion is a table (matrix) in which each column corresponds to a distinct attribute and
each row to a distinct record. Relations are used to describe connections among data
items. The functional dependency is one of the main concepts in relational datamodel.
The mathematical structure of functional dependencies was thouroughly investi-
gated by W. W. Armstrong [1]. The equivalence of sets of minimal keys with Sperner-
systems was proved [4]. It is known [1] that for a given family F of functional depend-
encies there is a relation representing F in the sense that the full family of functional
dependencies of this relation is exactly F. Also it is shown [4] that for an arbitrarily
given Sperner-system there exists a relarion R representing this Sperner-system so that
this Sperner-system is exactly the set of all minimal keys of R. In this paper we give
necessary and sufficient conditions for a relation to represent a given family of
functional dependencies or a Sperner-system.

The closure operation is a useful and interesting instrument for investigating the
structure of functional dependencies. In this paper we investigate the connection
between closure operations and sets of minimal keys, too. Now we give some neces-
sary definitions.

Let £2= {au ..., a„} be a finite non-empty set of attributes. For each attribute at
there is a non-empty set D(ai) of all possible values of that attribute. An arbitrary
finite subset of the Cartesian product ...XD(an) is called a relation over Q.
It can be seen that a relation over Q is a set of mappings h: £2— t j D(a), where
h(a)£D(a) for all a.

•This paper was supported by grants from the Hungarian Academy of Sciences OTKA
Nr. 1066 and 1812.

The main purpose of this paper is to give necessary and sufficient conditions for a relation to
represent an arbitrarily given family of functional dependencies or a closure operation or a Sperner-
system. The connection between closure operations and sets of minimal keys is investigated too.

274. J. Demetrovics and V. D. Thi

Definition 1.1. [2] Let R= {hlt ..., hm} be a relation over the finite set of attri-
butes £2. Let A, BQQ. We say that B functionally depends on A in R (denoted as
A-^B) iff (i hi, hj € ((V flC fa (a)=hj (a)) - (V 5) fa 0 0 = h j (b))).

Let FR—{(A, B): A-^-B}. FR is called the full family of functional depend-
encies of R.

Definition 1.2. [1] Let £2 be a finite set, and denote P(£2) its power set. Let
FQP(Q)XP(Q). We say that F is an /-family over £2 iff for all A, B, C, DQQ

(Fl) (A, A)£ F;
(F2) (A, B)£F, (B, C)(LF~(A, C) £ F ;
(F3) (A, B)£F, A<GC, DQB^(C,D)£F;
(F4) (A , B) E F , (C,D)IF^(AUC,BLJD)£F._

By [1]. Fr is an /-family over £2. It is known [1] that if F is an /-family, then there is a
relation R over £2 such that FR—F.

Definition 1.3. The mapping L: P(Q)-»P(Q) is called a closure operation
over £2 iff for every A, BQ £2:

(1) AQL(A);

(2) A Q B - L(A) g L(B);

(3) L(L(A)) = L(A).

Remark 1.1. It is easy to see that if F is an /-family and for all AQ£2, we set
LF(A)={a££2: (A, {a})€F} then LF is a closure operation over £2. Conversely, it
is shown [1] that if L is a closure operation over Q, then there is exactly one /-family
such that Lr— L, where F= {(A, B): BQL(A)}. Thus, between closure operations
and /-families over £2 there exists an one-to-one correspondence.

Definition 1.4. Let R be a relation, F an /-family and L a closure operation over
£2. We say that R represents F (L) iff FR= F (LFR=L).

Definition 1.5. Let R be a relation, L a closure operation over £2, and KQ £2.
We say that K is a key of R (of L) if K^Q (L(K)= £2). K is a minimal key of R
(of L) if K is a key of R (of L) and for any proper subset B of K, £2 (.L(B) ^ £2).

Denote JFR the set of all minimal keys of R and JFL that of L. Clearly, KT, KJ£JITR

implies K&KJ. Systems of subsets of £2 satisfying this condition are Sperner-
systems. Consequently, X~R, XL are Sperner-systems.

For a Sperner-system X we can define the set of antikeys of J f (denoted
by J f - 1) as follows:

J f - 1 = {BcQ: (K€JT) - (K%B) and (5 c C) - (3K€JT) (K i C)}.

It is easy to see that J f - 1 is also a Sperner-system. Clearly, the elements of J f - 1 do
not contain the elements of Jf and they are maximal for this property.

Definition 1.6. Let R— {hlt ..., hm} be a relation over Q. For
denote Eu the set {a^Q: hi(a)^hj(a)}. We set ER= {£,,: Isi^j^m}. ER is
called the equality set of R.

Some results about functional dependencies 275

§ 2. Results

Now we give a necessary and sufficient condition for a relation representing a
given/-family. It is a precise characterization for relations represent /-families.

Theorem 2.1. Let R={hlt ...,'hm} be a relation and F an /-family over £2.
Then R represents F iff for every AQQ

f H E j if 3 E U £ E R : AQETJ,
LF(A) = ^ U .

Ii2 otherwise,

where LF(A)= £2 : (A, {a}) 6 F} and ER is the equality set of R.

Proof. It is easy to see that FR is an /-family over Q, first we prove that in an
arbitrary relation R for all AQQ

I n n EU if 3 E , J T E R : AQETJ,

Q otherwise.

We suppose that A is a set such that there is not an EIJ£ER so that AQEU. Then for
all hit hj£R 3a£A: hi(a)7ihj(a). According to the definition of functional depend-
ency A Q holds. By the definition of the mapping LFR we obtain LFN(A)=Q.
It is obvious that LFIT(0) = f] EI} holds. If A^0 and there is an ETJ€.ER so that

AQEu, then we set V= {Eu^AQEn, EU£ER} and E= f | Eu. Clearly, AQE.
E,j(LV

If V=ER holds, then (A, E)£ FR holds. If V^ER holds, then it can be seen that
for all E„£V (Va^A)(hi(a)=hj(a))^('ibeE)(hi(b)=hj(b)) and for all Eui V
3 A Z A - . H I I A ^ H J I A) . Thus, (A, E)£FR holds. By the definition of LFR,E^LFR(A)
holds. Clearly, by the definition of relation we have ECQ. From AQEQLFR(A)
and according to the definition of closure operation we obtain (E, LFR(A))£FR.
Now we assume that c is an attribute such that c$E. Consequently, there is an
EIFIV so that C$EIV Thus, 3/i;, hj£R:\/b£E: hi(b) = hj(b) holds, but /!,(c)^/7;(c).
According to Definition 1.1, (£Uc) does not depend on E. Thus, for all attributes
c$E (E, EUc)(t FR holds. By the definition of LFR we obtain LFR(A)= f | E. By

EutV
Remark 1.1 it is easy to see that FR=F holds iff LFR—LF holds. The proof is
complete. •

The following corollary is obvious.

Corollary 2.1. Let R be a relation and L a closure operation over Q. Then R
represents L iff for all AQQ

r n EU if 3 E U Z E R : A Q EU,
L(A) = \AIEIJ •

li2 otherwise.

Definition 2.1. Let L be a closure operation over Q. Let Z(L)=
= {A^Q: L(A)=A}, a n d M(L)={ACQ: A£Z(L), ACZB^L(B)=Q} T h e ele-
ments of Z(L) are called closed sets. M{L) is the family of maximal closed sets
(except Q).

4 Acta Cybernetica 8/3

276. J. Demetrovics and V. D. Thi

Clearly, Z(L) is closed under intersection.

Definition 2.2. Let N^P(Q). Denote N+ the set {f)N': N'QN}. By con-
vention 0 0 = £2, i.e. N + always contains £2. It can be seen that for all E U £E R we
have EIJTZILPJ, i.e. E£QZ(LFR). By Theorem 2.1, Z(LFR)QER holds. Clearly,
if Lj, L2 are two closure operations over £2 theh LL=L2 holds iff Z(LL)—Z(L2).
Consequently, the next corollary is clear.

Corollary 2.2. Let R be a relation and L a closure operation over £2. Then R
represents L iff Z(L)=E£ holds. •

Definition 2.3. Let F be an /-family over £2 and (A, B)£F. We say that (A, B)
is a maximal right side dependency of F iff

V-B7 (B^B'Y. (A,FF)£F - B' = B.

Denote by M(F) the set of all maximal right side dependencies of F. We say that B
is a maximal side of F iff there is an A so that (A, B)£M(F). Denote 1(F) the set of
all maximal sides of F.

It can be seen that I(F)=Z(LF). Consequently, the following corollary is
obvious.

Corollary 2.3. Let F be an /-family and R a relation over £2. Then R represents
Fiff I(F)=E£. •

It is known ([1], [4]) that for an arbitrary non-empty Sperner-system X there
is a relation R so that XR=Jf.

Definition 2.4. Let R be a relation and J f a Sperner-system over £2. We say that
R represents Jf iff C/fR—X.

The next theorem is a useful precise characterization of relations which repre-
sent a given Sperner-system. First we define the following concept.

Definition 2.5. Let R be a relation over £2, and ER the equality set of R, i.e.
ER = {Eij: 1 ^ /<y'Sm},_ where Eu ={a£Q: hL(a) = hj(a)}. Let TR= {AczQ:
3Eij£ER: Eij—A and 3ESI£ER: A(zEs,}. Then TR is called the maximal equality
system of R.

Theorem 2.2. Let J f be a non-empty Sperner-system and R a relation over £2.
Then R represents Jf" iff X'~1=TR, where TR is the maximal equality system of R.

Proof. As X is a non-empty Sperner-system, exists. On the other hand,
X and i f - 1 are uniquely determined by each other, we obtain holds iff
X R

1 = J f ~ 1 does. Consequently, we must prove that X R
1 = T R .

It is obvious that FR is an /-family over £2. Now we suppose that A is an antikey
of . Clearly, A^Q. If there is a B such that A c B and A—*B then by definition
of antikeys we obtain B-^-£2. Hence A—+Q holds. This contradicts to KDXR:
KgA. So A£I(FR) holds. If there is a B' so that B'^Q, B,0(FR), and AczB',
then B' is a key of R. This contradicts to B'^Q. Thus, A£l(FR)\Q and
3B' (B'£I(FR)\Q): AczB'. On the other hand, £2^7* by definition of R. It is easy

Some results about functional dependencies 277

toseethat EifiI{FR). Hence TRQI(FR) holds. IfD is a set such that VC£TR: D%C,
then from Definition 1.1, D is a key of R. Consequently, TR is the set of maximal
distinct elements of I(FR). So we obtain A£TR.

Conversely, we assume that A£TR. According to the definition of a relation and
T, we have Q, i.e. V : K%A. On the other hand, by definition of TR

for all D (A(^D) D—^Q holds. Consequently, by the definition of antikeys A^Jf^1.
The proof is complete. •

Now we investigate the connection between closure operations.

Lemma 2.1. [6] Let L be a closure operation over Q, and the set of minimal
keys of L. Then Jf£~1=M(L). •

Definition 2.6. [3] Let Q be a set of all closure operations over Q. An ordering
over Q is defined as follows:

For L,L'£Q let L^L' iff for all A^Q, L'(A)QL(A). It can be seen that Q
is a partially ordered set for this ordering. If L^L' but L ^ IJ then the notation
Z.< L' is used.

Theorem 2.3. [3] Let L, L' be two closure operations over Q. Then L^ L' iff
Z(L)^Z(L') . •

Based on Theorem 2.3 it is easy to see that L' iff Z(L)cZ(L') .

Theorem 2.4. Let be a non-empty Sperner-system over Q, and J f - 1 the set
of all antikeys of X . Let

Then L is a closure operation over Q and XL=.if. If L' is an arbitrary closure
operation over Q such that than L s L ' holds.

Proof. Clearly, L is a closure operation over Q. Also it is obvious that for all
jB^Jf - 1 we have L(B)=B, i.e. B£Z{L). On the other hand, j f - 1 being a Sperner-
system over Q we obtain M(L)=jf~1. By Lemma 2.1 J f _ 1 = J f ^ 1 . Since Jf and Jf
are uniquely determined by each other

Suppose that L' is an arbitrary closure operation, so that it can be seen
that Z(Z,)=(JT-1)+. By Lemma 2.1, M(L')=1=j^t \ Consequently, M(L')=
— M(L) = Jf"-1. Hence Z(L)gZ(L ') holds and by Theorem 2.3 we obtain LsL'.
Clearly, L is the closure operation for which and for any closure operation
L' such that J f " = , and L?±L' we obtain L< L' .The theorem is proved. •

Corollary 2.4. Let J be a non-empty Sperner-system over Q. Denote by V
the set of all closure operations over Q the minimal keys of which are exactly the
elements of J f . Then L as constructed in Theorem 2.4 is the unique minimal element
of the partially ordered set V for the ordering defined. •

n B if there is a B£ JT'1: A g B,
L(A) = ASS

Bitf-1

Q otherwise.

r

4'

278 J. Demetrovics and V. D. Thi : Some results about functional dependencies

Remark 2.1. In [6] we constructed an algorithm which computes the set of all
antikeys of an arbitrary Sperner-system. By Theorem 2.4 and this algorithm we can
explicitly construct the closure operation L for which to an arbitrarily
given Sperner-system X . •

The next remark shows that conversely, the set of all minimal keys of a given
closure operation can be found.

Remark 2.2. In [5] we construct an algorithm which determines the set H such
that for a given Sperner-system J f . Thus, if J f is a set of antikeys then
H is a set of minimal keys. Consequently, from a given closure operation L we can
construct the family M(L). By Lemma 2.1 M(L)=Jf£~1 holds. From M(L) we can
determine the set of all minimal keys of L by this algorithm. •

Резюме

Одно из главных понятий теории реляционных баз данных является пон-
ятие функциональной зависимости. Статья изучает реляции которые пред-
ставляют данную фамилию функциональных зависимостей, операции замыка-
ния и системы Спернера. А также изучается связь между операциями
замикания и минимальными ключами.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
VICTOR HUGO U. 18—22
1123 BUDAPEST
HUNGARY

References

[1] W. W. ARMSTRONG, Dependency structures of data base relationships. Information Processing
74, North-Holland (1974) 580—583.

[2] E. F. CODD, Relational model of data for large shared data banks. Communications of ACM, 13
(1970) , 3 7 7 — 3 8 4 .

[3] G. BUROSCH, J. DEMETROVICS, G. O. H. KATONA, The poset of closures as a model of changing
databases. Order, 4 (1987), 127—142.

[4] J. DEMETROVICS, On the equivalence of candidate keys with Sperner-systems. Acta Cybernetica 4
(1979) , 3, 2 4 7 — 2 5 2 .

[5] J. DEMETROVICS, V. D. Tm, Relations and minimal keys. Acta Cybernetica, Szeged 8 (1988), 3.
279—285.

[6] V. D. THI, Minimal keys and antikeys. Acta Cybernetica, 7 (1986), 4, 361—371.

(Received Dec. 4, 1986)

Relations and minimal keys*

J . DEMETROVICS a n d V . D . THI

Abstract

The main purpose of this paper is to prove that the time complexity of finding a relation repre-
senting a given Spsrner-system K is exactly exponential in the number of elements of K. Conversely,
we show that if NP?Î P then the time complexity of finding a set of all minimal keys of given rela-
tion R is also exactly exponential in the size of R.

§ 1. Introduction

The minimal keys play important roles for the logic and structural investigation
of relational datamodel. In this datamodel the form of data storage is matrix (rela-
tion), rows of which represent records and columns represent attributes. A set of
minimal keys of a relation forms a Sperner-system. Sets of minimal keys and Sperner-
systems are equivalent in the sense that for an arbitrary Sperner-system K there exists
a relation R such that the minimal keys of R are exactly the elements of K (cf. [3]),
i.e. R represents K.

In this paper we prove that the time complexity of finding a relation representing
a given Sperner-system K is exactly exponential in the number of elements of K, i.e.
we shall show that there is an algorithm that determines a relation representing a given
Sperner-system K in time exponential in the number of elements of K, and there is no
algorithm which finds a relation representing K and the time complexity of which is
polynomial in the number of elements of K. Let P denote the class of problems that
can be solved in deterministic polynomial time and let N P denote the class of problems
that can be solved in nondeterministic polynomial time. It is shown that if NP^P
then the time complexity of finding a set of all minimal keys of a given relation R is
exactly exponential in the number of rows and columns of R.

We start with some necessary definitions, and in § 2 formulate our results.

*This paper was supported by a grant from the Hungarian Academy of Sciences OTKA
Nr. 1066.

280. J. Demetrovics and V. D. Thi

Definition 1.1. Let R={hlt ..., hm} be a relation over Q, and A, BQQ. Then
we say that B functionally depends on A in R (denoted A~*B) iff

(VA„ h^R){^aZA)(ht(a) = h,(a)) - - h^b))).

Let FR= {(A, B) : AJ~B} • FR is called the full family of functional dependencies
of R.

Definition 1.2. Let £2 be a finite set, and denote P(Q) its power set. Let FQ
gP(£2)XP(£2). We say that F is an/-family over £2 iff for all A, B, C, DQQ:

(F1)(A,AKF;
(F2) (A, BXF (B, C)£F—(A, C)£F;
(F3) (A, B)£F, AQC, DQB^(C, D)£F]
(F4) (A, B)£F, (C, D)iF-*(A{JC,B(JD)iF.

Clearly, FR is an/-family over £2.
It is known [2] that if F is an arbitrary /-family, then there is a relation R over £2

such that FR=F.

Definition 1.3. The mapping L: P(£2)—P(£2) is called a closure operation over
£2 iff for every A,BQQ

(1) AQL(A);

(2) A<gB^L(A)<^L(By,

(3) L{L(A)) = L(A).

Definition 1.4. Let R be a relation, L be a closure operation over £2, and AQQ.
A is a key of R (a key of L) if A £2 (L(A)= Q). A is a minimal key of R (a mini-

f
mal key of L) if A is a key of R (a key of L), but B -V* Q (L(B)^Q) for any proper
subset B of A. Denote KR (KL) the set of all minimal keys of R (L). Clearly, KR,
KL are Sperner-systems over £2.

Definition 1.5. Let K be a Sperner-system over £2. We define the set of anti-
keys of K, denoted by K-1, as follows:

K~1= {A Cj £2: (B£K) + {B%A) and (A g C) - (3B£K) (BQC)}.

It is easy to see that K ' 1 is also a Sperner-system over £2.

Theorem 1.1. ([2], [3]) If K is an arbitrary Sperner-system, then there is a closure
operation L for which KL=K. •

In this paper we always assume that if a Sperner-system plays the role of the set
of minimal keys (antikeys), then this Sperner-system is not empty (doesn't con-
tain £2).

Definition 1.6. ([2]) Let F be an /-family over £2, and (A, B)£F. We say that
(A,B) is a maximal right side dependency of F iff \/B' (BQB'): (A, B%F^B=B'.
Denote by M(F) the set of all maximal right side dependencies of F. We say that B

Relations and minimal keys 281

is a maximal side of F iff there is an A such that (A, B)EM(F). Denote by 1(F)
the set of all maximal sides of F.

In this paper we regard the comparison of two attributes to be the elementary
step of algorithms. Thus, if we assume that subsets of Q are represented as sorted
lists of attributes, then a Boolean operation on two subsets of Q requires at most
| Q\ elementary steps.

Definition 1.7. Let R be a relation, and K be a Sperner-system over Q. We say
that R represents K iff KR=K.

§ 2. Results

Definition 2.1. Let L be a closure operation over Q.
Denote Z(L)= {A£P(Q): L(A)=A),

T(L)={A€P(0):L(A)=A and A^B-*L(B)=Q).
The elements of Z(L) are called closed sets. T(L) is called a maximal family of L.

Lemma 2.1. ([5]) Let L be a closure operation over Q. Then K£1=T(L). •

Theorem 2.1. ([4]) Let K be a Sperner-system over Q. Let .?(£)=min {m: | i?| =
=m, KR=K, R is a relation over i2}. Then]'2\K-1\^s(K)s\K-1\ +1. •

Theorem 2.2. The time complexity of finding a relation representing a given
Sperner-system K is exactly exponential in the number of elements of K.

Proof. We have to prove that:
(1) There exists an algorithm that determines a relation representing a given

Sperner-system K in time exponential in the number of elements of K.
(2) There is no algorithm that finds a relation representing K in time polyno-

mial in the number of elements of K. Based on (1) and (2) it is clear that the time
complexity of any algorithm that determines a relation representing a given Sperner-
system is at least exponential in the number of elements of this Sperner-system.

For (1): First we construct an algorithm which finds the set of antikeys from
a given Sperner-system, as follows:

Let us given an arbitrary Sperner-system K— {Bx, ..., Bm} over Q. We set
^!={i3\{a}: aiBj}. It is obvious that Ki={B1}~i. Let us suppose that we have
constructed Kq= {By, ..., for q<m. We assume that ..., Xtq are the
elements of K containing Bq+1. So Kq=Ft\J{Xu J , where Fq=
= {A£Kq: Bq+1^A). For all i (i— 1, ..., tq) we construct the antikeys of {Bq+1} on
Xi in an analogous way as Kx, which are the maximal subsets of X, not containing
Bq+1. We denote them by A[, ..., A)., (i— 1, ..., tq). Let

Kq+1 = F,U { 4 : AiFq - 4 $ A, 1 / =S fa, l s ^

Clearly, because K and K~l are uniquely determined by one another, the determi-
nation of K~l based on our algorithm does not depend on the order of Blt ..., Bm.

In [5] we proved that for every q (1 Sq^m), Kq= {B1, ..., i?,}-1, i.e. Km=K~1.
and the worst-case time of this algorithm is exponential not only in the number of

282. J. Demetrovics and V. D. Thi

elements of K, but also in the number of attributes. Now we construct the following
algorithm:

Step 1: Based on the above algorithm we construct K'1.
Step 2: Let K~^={A1, ...,A,} be a set of antikeys. Let R={h0,h1, ...,h,}

be a relation over Q given as follows:
Fo ra l l a e f i , h0(a) = 0,

rO if a£Ah
for i (lS/=§0, hi{a) = \ . v ' , w u otherwise.

In [4], it has been proved that R represents K. It is clear that the complexity of this
algorithm is the complexity of the algorithm that finds the set of antikeys.

For (2): Let us take a partition Q=X1U ...UXmUW, where m = [j] > a n d

1^1 = 3 (1 S iSm) . Let

K={B: \B\ = 2,BQXt for some /} if \W\ = 0,

K = {B\]£] = 2, B g Xi for some or B Q XmUlV} if \W\ = 1,

K = {B:\B\ =2,B QXi for some or B = W} if \W\=2.

It is clear that

K~x = {A: \AC\X,\ = l.Vi} if \W\ = 0,

K'1 = {A: \AC\Xi\ = 1 (l s i ^ m - l) and \Ar\(XmUW)\ = 1} if 1^1 = 1,

K-1 = {A: \ADXA = 1 (1 S i S m) and \Af)W\ = 1} if \W\ = 2.

Let f : N-»N (N is the set of natural numbers) be the function defined as follows:

3n/3 if n = 0 (mod 3),
3W«.4/3 if « = 1 (mod 3),
3C/3] .2 if n = 2 (mod 3).

It can be seen that Clearly, n-\^\K\^n+2 an_d 3 [" /4]</(n), where
n= |fi|, i.e. 3[n/4]< IA"-1!. According to Theorem 2.1 we have]/2-3tn/8]ss.y(A:), i.e. the
number of rows of minimal relation representing K is greater than j/2 • 3[n/8]. Thus,
for an arbitrary set of attributes we always can construct an example, in which the
number of K is not greater than | + 2, but the number of rows of any relation
representing K is exponential not only in the number of attributes, but also in the
number of elements of K. Hence, there is no algorithm which finds a relation represent-
ing a given Sperner-system and the time complexity of which is polynomial in the
number of elements of Sperner-system. 1 he theorem is proved. •

Now we give a necessary and sufficient condition for a relation to represent a gi-
ven Sperner-system. We define the following concept.

Relations and minimal keys 283

Definition 2.2. Let R= {hi, ..., hm} be a relation over £2. Let ER=
= {Etj: lS/«=/Sm}, where EtJ={aeQ: hl(a)=hJ(a)}. Let

MR = {AiP(Q): 3Ei£ER: EtJ = A and

MR is called the maximal equality system of R.

Theorem 2.3. Let K be a non-empty Sperner-system, and R be a relation over Q.
Then R represents K iff K~1=MR, where MR is the maximal equality system of R.

Proof. Because Kis a non-empty Sperner-system, exists. On the other hand,
K and K~x are uniquely determined by each other, hence KR=K holds iff KR

1=
— K h o l d s . Consequently, we must prove that KR

1=MR. It is obvious that Fis a
/-family. Now we suppose that A is an antikey of K. It can be seen that A^£2. If
there exists a B such that A^B and Aj^B, then by the definition of antikey we
have Bjf~Q. Hence A ^-£2 holds. This contradicts C£KR:C%A. So A£l(FR)
holds. If there is a B' so that B'¿¿£2, B'£l(FR), and A^B' then B' is a key of R.
This contradicts to B'^Q. Consequently, A£l(FR)\£2 and 3B' (B'£J(FR)\Q):
A'-zB'. On the other hand, according to the of relation Q$MR. It is easy to see
that Eif i I{FR) . Thus, MR^I{FR) holds. If D is a set such that VC£MR: D^C,
then by the definition of functional dependency, D is a key of R. Consequently, MR

is the set of maximal distinct elements of I(FR). So we have A£MR.
Conversely, we assume that A£MR. According to the definition of relation and /

MR we obtain A^~£2, i.e. \/B£KR: B%A. On the other hand, because A is a maxi-
mal equality set, for all D (A^zD) Dj-Q holds. Consequently, by the'definition
of antikey A^K^1. The theorem is proved, n

It can be seen that the time complexity of finding the set of antikeys of R is poly-
nomial in the number of rows and columns of R. We construct the following algorithm
for finding a minimal key. Let H be a Sperner-system. We take a B (B£H) and
an a££2\B. We suppose that B={bu ...,bm). Let G={B£H: a$Bj} and T0=
=5U{a}. We define

= JT q \ {b q + 1 } if VB£H\G: Tq\{bq+1} £ Bu
9 + 1 l r 9 otherwise.

Lemma 2.2. ([5]) If H is a set of antikeys, then T0, 7\, ..., Tm are the keys
and Tm is a minimal key. •

It is easy to see that the worst-case time of finding r m i s 0{\£2\2-\H\).

Lemma 2.3. Let H be a Sperner-system over £2, and let H~1—{B1, ...,Bm} be
a set of antikeys of H, TQH. Then T^H and 7 V 0 if and only if there is a BQ£2
such that B£T~l and B%B{ (W: l ^ z ^ m) .

Proof. Suppose that there exists a B such.that i?€ T~1 and B^Bt (Vi: Isi^m).
From the definition of the set of antikeys and by we have 7V0, and for
all C (C£T) , B does not contain C. If there is a such that B^H'1 and B^B,

284. J. Demetrovics and V. D. Thi

then it is obvious that B is a key. If H~1UB is a Sperner-system, then by Theorem 1.1
there exists a closure operation L such that H=KL. It is clear that if L(B)^Q,
then from Lemma 2.1 there is a Bt (B^H'1) such that L(B)^Bi. Consequently,
BQBi. This conflicts with the fact that (Vi: 1== iSm). That is, B is a key.
Hence there is an A (AQQ) such that AQB and A£H\T. It is easy to see that
TczH.

Conversely, we suppose that T<zH and 7V0. It is obvious that there is an A
such that A(iH\T. From H is a Sperner-system we have AUT is a Sperner-system.
Denote B the biggest set such that AQB and BUT is also a Sperner-system. It is
clear that, B always exists and from the definition of antikeys we have B^T'1.
By A£H it can be seen that A%Bt (Vi: l s i ^ w) . By AQB we have B^Bt
(V/: 1 ^ i ^ m) . The theorem is proved. •

Let K= {B1, ..., Bm} be a Sperner-system over Q. We have to construct H,
where H~1=K. We construct H by induction.

Algorithm 2.1. Step 1: Using a minimal key algorithm we construct an Al7
(A^H). We set

Step i+1: If there is a B£ Kr1 such that B%Bj(Vj: l ^ y ^ w) , then by algo-
rithm which finds a minimal key we determine an Ai+1 (^¡+ 1€H) and Ai+1QB.
After that, let Ki+1=KtU {Ai+1}. In the converse case we set H=Kt. •

Based on Lemma 2.3 there is a natural number p so that KP=H. It can be
seen that the time complexity of Algorithm 2.1 is also exponential in the number of
attributes.

Lemma 2.4. The following problem is NP-complete:
Given a Sperner-system K= {Bx, ..., Bm) over £2= a„} and integer

k (k^ri), decide whether there exists an AQQ such that Ml = A: and
A%Bi (i= 1, ..., m), i.e. decide whether there exists a key having cardinality
not greater than k, if K is the set of antikeys.

Proof. We nondeterministically choose a subset A of Q so that \A\^k and
decide whether A is not a subset of Bt (/= 1, ..., m). It is obvious that this algorithm
is nondeterministic polynomial. Thus, the problem lies in NP. It is known [1] that
the vertex cover problem is NP-complete:

Given integer k and non-directed graph G— (V, E), where V is a set of vertices
and E is set of edges, decide whether or not G has a vertex cover having cardinality
not greater than k.

We shall prove that the vertex cover problem is polynomially reducible to our
problem.

Let G=(V,E) be a non-directed graph, We set Q=V and K=
= {i2 \{a i ; aj}: fa, a,•)€£}•

If AQQ, = ana A%B (V/= 1, ..., tri), then according to definition of K
we have AO fa, <3j}^0(V fa, aj)(LE). Consequently, A is a. vertex cover of G.

Conversely, if A is a vertex cover of G, then by definition of K and definition of
vertex cover we have A%Bt (V/= 1, ...,m). Hence, A ^ B t (V/= 1, ..., m) holds if
and only if A is a vertex cover of G. The Lemma is proved. •

Relations and minimal keys 285

Based on Lemma 2.4 and Step 2 of the algorithm which determines a relation
representing a given Sperner-system in Theorem 2.2, the following corollary is
obvious.

Corollary 2.1. The following problem is NP-complete: Given integer k and
relation, decide whether or not there exists a key having cardinality not greater
than k. •

Theorem 2.4. The time complexity of finding a set of all minimal keys of a given
relation R is exactly exponential in the number of rows and columns of R.

Proof. For a given arbitrary relation R we construct the following algorithm
which determines the set of all minimal keys of R.

Step 1: According to Theorem 2.3 we construct the set of antikeys of R.

Step 2: Based on Algorithm 2.1 we determine the set of all minimal keys of R.
By Lemma 2.2, Lemma 2.3, Theorem 2.3 and Algorithm 2.1, it is clear that the

worst-case time of this algorithm is exponential in the number of rows and col-
umns of R.

According to Lemma 2.4 and Corollary 2.1, it can be seen that there is no algo-
rithm which finds a set of all minimal keys of a given relation and the time com-
plexity of which is polynomial in the size of this relation. The theorem is proved. •

>
Based on Theorem 2.1 and Theorem 2.4 it can be seen that the problem

of finding a relation representing a given Sperner-system' and finding a set of all
minimal keys of a relation are inherently difficult.

Резюме

В настоящей работе изучается связь между отношениями и минималь-
ными ключами.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
1132 BUDAPEST
VICTOR HUGO U. 18—22
HUNGARY

• References

[1] A. V. Ано, J. E. HOPCROFT, J. D. ULLMAN, The design and analysis of computer algoritms.
Addison-Wesley, Reading, Mass. 1974.

[2] W. W. ARMSTRONG, Dependency structures of data base relationships. Inf. Proc. 74 North-Hol-
l and P u b . C o . (1974) 5 8 0 — 5 8 3 .

[3] J. DEMETROVICS, On the equivalence of candidate keys with Sperner-systems. Acta Cybernetica 4
(1 9 7 9) 2 4 7 — 2 5 2 .

[4] J. DEMETROVICS, Z. FÜREDI, О. О. H. KATONA, Minimum matrix representation of closure ope-
rations. Discrete Applied Mathematics 11 (1985) 115—128.

[5] V. D.THI, Minimal keys and antikeys. Acta Cybernetica 7 (1986), 361—371.

(Received March 12, 1987)

A new approach to defining software complexity measures

Z . DAR6CZY, L . VARGA

Abstract

A general method is given for defining software complexity measures. Properties of the com-
plexity measure are given by functional equation. Three cases of functional equations are discussed.
Many known software complexity measures are given as special cases of the solutions of functional
equations and a new measure is also presented.

Introduction

It is a fact of common knowledge, that both simple and complicated programs
can be developed for the solution of a given problem, whatever its inherent complexity.
Therefore software complexity can be investigated independently of the complexity
of a problem. During recent years many efforts have been made to create quantifiable
measures of software complexity ([1], [3]), to use objective complexity measures in
programming methodology and to validate these uses with empirical researches [2].

In spite of the importance of software complexity it is insufficiently known and
defined. In this paper a new approach to defining abstract properties of software
complexity over the class of structured programs is proposed by the help of using
functional equations. Many known measures of software complexity can be obtained
as special cases of the solutions of functional equations, and a new measure is also
presented.

Software complexity measure

Given a system (X , F, A) where X is a set of data, F is a set of functions (/ : X— X)
and A is a set of predicates (A: X-* Bool).

Definition 1. Simple programs are:
1. null, with program function x,
2. assignment / , with program function / (*) , for all/£ F.

Let SP be the set of all simple programs.

288 Z. Dar6czy and L. Varga

Definition 2. Structured programs are:
1. Simple programs.
2. Sequence B(u,v) with the program function pu(pu(x))-,
3. Selection I—T—E (a;u,v) with the program function if a(x) then pu(x)

else pv(x);
4. Repetition W—D(a; u) with the program function p(;c)=if a(x) then

p(pu(x)) else x;
where a£A, u and v are structured programs with program functions
pu(x), pu(x) respectively.

Let S be the set of all structured programs.

Given the complexity measures

b:SP-~N,

c: A-~N
and the homomorphisms

g: N2 — N,

j : N2 N.

Definition 3. Complexity measures of B(s1,s2), I—T—E
W—D (a-,s) are: .

b(B(Sl, sj) = g(b(Sl), b(s2)),

b(l-T—E(a-s1,s2)) = h(c(a),b(s1),b(s2))>

6 (W - D (c ; s)) =j(c(a), b(s).
The question is what kind of functions g, h, j characterize the software com-

plexity measure of structured programs sufficiently? In order to find an appropriate
complexity measure the properties of functions g, h, j will be given by functional
equations.

First approximation. If the functional equations

g(x+x',y+y') = g(x,y)+g(x',y'),

h(x+x', y+y', z+z') = h(x, y, z) + h(x', y', z'),

j(x+x, y+y')=j{x, y)+j(x', y'),
hold, then the functions g, h, j give an acceptable measure for each structured pro-
gram.

A new approach to defining software complexity measures 65

Theorem 1.
g(*, У) = q x + c ^ ,

h(x, y, z) = dxX + d^y + d^,
j(.x, У) = е^х + еъу

where cu c2, dlt d2, da, ex, e2 are integer constants.

Proof.

x' = у = 0 g(x, y') = g(x, 0) + g (0 , /) ,

x = x' = y — y' — 0=> g(0, 0) = 0,
y = y' = 0 =>g(x+x', 0) = g(x, 0) + g(x', 0).

This is the well known Chauchy equation, which has the following solution

g (x , 0) = cxx.
Similarly we have

x = = 0 =• g(0, y+y') = g(0, y) + g(0, y') => g(0, y) = c2y.

That is, g(x, y)=c1x+c2y.

Second approximation. If

g(x+x', y + y') = g(x, y) + g(x', /) ,

h(x+x', y+y', z+z') = h(x, y, z) + h(x, y', z')+

h(x',y,z)+h(x',y',z'),

j (x+x', у+у') = j (x, y) +j (x, y') +j (x\ y) +j (x', y'),

then g, h,j give an adequate measure for each structured program.

Theorem 2.

g(x, y) = ClX+C2y,

h(x,y,z) = x(d1y+d2z)

j(x, y) = ex у Proof.
X = x' = у = у' = 0 =>j(0, 0) = О
x' = у = у' — 0 => j(x, 0) = 0
x = tf = y' = 0=> j(0,y) = 0

у' = 0 =>-j(x+x', у) = j(x, y)+j(x', у) =>j(x, у) = е(у)х
х' = 0/\х * 0 =» е(у+у') = е(у)+е(у') => е • у

That is j(x, у) = еху.

290 Z. Dardczy and L. Varga

Similarly we have

h(x, y, z) = x(d1y+d2z).

Third approximation. If

g (x + x \ y+y') = g(x, y)+g(x', y')

h(x+x', y+y', z+z') = g(x+x\ y, z) + g(x+x', y', z)

j(x, y) = h(x, y, I)

then g, h, J give a correct measure for each structured program.

Theorem 3.

g(x, y) = c^+x^y

h(x, y, z) = d1(x)y+d2(x)z

j(x, y) = d^y+dzix)

where dx(x), d2(x) are unknown functions.

Proof.

x' = 0 => g(x, y+y', z+z') = g(x, y, z)+g(x, y', z') =>

=> g(x, y, z) = dx(x)y + d2(x)z
Special cases
1. First approximation

g(x, y) = x+y

h(x, y, z) = x+y+z

j(x, y) = x+y

1.1. Let &(/,)=&„ / ,€F ;

c(ai) = Ci, a&A.
Then

b(s) = 2 bi+2 c,
¡=1 i = l

where s£S and

n=number of predicates in s ;
<p=number of functions in s.
1.2. Let b i = c ~ 1 for i = l , 2,then

b(s) = (p + ji.

1.3. Let c f = l and fcf=0 for / = 1 , 2 , . . . , then
b(s)=n,

which gives the well known McCabe metric [1].

A new approach to defining software complexity measures 291

2. Second approximation
g(x, y) = x+y

h(x, y, z) = x(y + z)

j(x, y) = xy

2.1. Let H/d=b„ MF,
= cf, a£A,

then we get the Prather measure [3].
3. Third approximation

g(x, y) = x+y

h(x, y, z) = dx(x)y + d2(x)z

j(x, y) = d1(x)y + d2(x)

3.1. Let di{c(aJ))=diJ; / = 1 , 2 ; a^A, where
d1}=number of "true" value in the operation table of predicate aj ;
ű?2J=number of "false" value in the operation table of predicate a}
and b(fi)=bi, fidF which produces a new measure.

An example
Let

s: if ax then while a2 do j2od
else s2 fi; J4;

and

c(at) = ci5 b(si) = W, dt(c(aj)) = d^.

The complexity measures in the above special cases are:
1.1.: Cj + Ca + Cü + fcj + fea + fcs
1.2.: 6
1.3.: 2 (McCabe)
2.1.: c1b1+c1c2b2+c1b3+bi (Prather)
3.1.: dnb1 + d12dnb2+d12b3+bi + dnd22

L. KOSSUTH UNIVERSITY
DEBRECEN
HUNGARY

L. EÖTVÖS UNIVERSITY
BUDAPEST
HUNGARY

References

[1] T. J. MCCABE, A Complexity measure, IEEE Trans. Software Eng. 2. (1976) 308—320
[2] B. CURTIS, In search of software complexity, Workshop on Quantitative Software Models for

Reliability, Complexity, and Cost. New York, IEEE (1980).
[3] RONALD E. PRATHER, An axiomatic theory of software complexity measure, The Computer Jour-

nal 4 (1984) 340—347.

(Received Jan. 30, 1987)

5 Acta Cybernetics 8/3

A noninterleaving semantics for communicating sequential
processes: a fixed-point approach

D . V . HUNG, E . KNUTH

Abstract

The paper presents a noninterleaving semantics for Communicating Sequential Processes
introduced by Hoare and studied in many works. Concurrency is expressed explicity in the intro-
duced model. Furthermore, semantics of CSP-programs can be obtained by equations in the model.
By relating the model to labelled event structures and Petri nets the relationship between CPS and
the mentioned models is pointed out.

Key words: CPS programs, concurrency, traces, semiwords, event structures, synchronization.

1. Introduction

In 1978 C. A. R. Hoare introduced in [6] a language for distributed programming
called Communicating Sequential Processes — in short CSP. Subsequently, this
language has received a great deal of attention. As mentioned in [4], both ADA and
OCCAM are based upon CSP.

Many models of semantics for CSP have been proposed. Among them we should
mention Hoare's interleaving of strings [7, 8], Gostz's and Reisig's Petri nets with
individual tokens [4], Janicki's semitraces [11], Hennessy's (et al.) operational model
[5]. In the model of interleaving semantics concurrency is represented by the possi-
bility of shuffling sequences of operations, and thus is not expressed in an explicit
form. Furthermore, concurrency is not distinguishable from nondeterminism in this
model. Janicki [11] has used Mazuskiewicz's traces to give semantics for CSP, in
which concurrency can be distinguished from nondeterminism. The possibility of
handling with traces as words makes analyzing properties of CSP-programs in
Janicki's model as easy as in Hoare's model. However, as shown by him, traces can-
not be used to give semantics for all CPS-programs. The notion of so-called semi-
traces was introduced by Janicki in order to describe the behaviour of all CPS-
programs. Although his semitraces are powerful enough to describe the behaviour
of CSP, they have a disadvantage that they cannot be represented by single words.

In our paper [8] we have developed the notion of Mazurkiewicz's traces to a
new one based upon the notion of Starke's semiwords. This is the notion of labelled

294 D. V. Hung and E. Knuth

traces. As pointed out in [8], labelled traces have the same advantage as and are more
powerful than traces. T hey can describe the behaviour of concurrent systems modelled
by bounded Petri nets, e.g. producer-consumer systems, while traces cannot.

In the present paper, with the same point of view as in Gorts and Reisig's, Janik-
ki's papers [4], [11], we construct a model of semantics for concurrent systems, more
specifically, CSP by using labelled traces. The advantage of Mazurkiewicz's model
[14] is taken to this model. By relating the model to Starke's one the relationship
between CSP and finite event structures is pointed out. Combining with the results
presented in [8], CSP are related to Petri nets as well.

In this paper the basic notion of Mazurkiewicz's traces is used and understood as
follows.

For a finite alphabet X, X* denotes the set of all finite strings over X, e denotes
the empty word, a subset of X* is called a language over X; a reflexive and symmetric
relation on X is called a dependency on X. For a given dependency D on X, let = D be
the least congruence on X* w.r.t. the concatenation of strings such that ab=Dba
for all a,b£X with [a, D. Each equivalence class of = D is called a trace over D,
and a set of traces over D is called a trace language over D.

The paper is organized as follows.
The second section presents a model of semantics for concurrent systems by

introducing the notion of labelled traces. The third section is devoted to a study on
labelled trace languages. The introduced model is related to other models in the
fourth section. A noninterleaving semantics for CSP based upon labelled traces is
presented in the fifth one.

2. Labelled trace languages

Let us consider the following problem (bounded buffer [6]):
Construct a buffering process X to smooth variations in the speed of output of

portions by a producer process and input by a consumer process. T he buffer should
contain up to two portions.

A solution of the problem is represented by a 2-bounded Petri net as follows.

ff •

« '

out in

consumer buffer producer

Suppose that, at the begining, the buffer is empty so that only the action "in" of
the producer can be executed for the first time. After that, the action "out" can occur
the first time and the action "in" can occur the second time" concurrently. However
the first occurrence of "out" depends causally on the first occurrence of "in". Thus,
actions "in" and "out" have different cases, and we should take them for atomic acti-
ons. For the sake of simplicity sets of atomic actions is assumed to be finite. From the
2-boundedness of the buffer process, every occurrence of one action is concurrent

5*

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 295

with not more than one occurrence of the other. Hence, we can use a dependency on
a set of four elements to construct a set of labelled partial orderings for describing
the behaviour of the above solution.

Basing on the above notice and the theory of Mazurkiewicz's traces we intro-
duce a new description of concurrent systems presented bellow.

All the notions introduced in this section have been presented in our paper [8]
in detail. Here, for the aim of the paper we present them in a different form for the
sake of convenience.

Let X be a finite alphabet. A finite symmetric relation DQ(Xx {1, 2, ...})X
X(XX {1, 2, ...}) such that

a)(a, z')€dom (D)=>(a,/)£dom (D) for all y « i , and
b) {{a J) , (a, for all (a, i), (a , /)£dom (£>) will be called a labelled

dependency over X.

Let D be a labelled dependency over X. Define =D as the least congruence over
(dom (.D))* (w.r.t. the concatenation) such that (a,j)(b, i)=D(b, i)(a,j) for all
(a,j), (b, z')€dom (D) and ((a,j) , (b, i))$D. Each equivalence class of =D will be
called a labelled trace over the labelled dependency D, and a set of labelled traces over
D will be called a labelled trace language over D. Like in the case of traces [w]D will
denote the labelled trace generated by a string w£(dom (D))*, and [L]D will denote
the labelled trace language generated by a language L^(dom (£>))*, i.e.

[w]D:= {u: u€(dom(£>))*&u=Bw},

[L]d:= viL}.

For (a, z')£dom (D), (a, i) will be called a case of a in D and we denote by
#(a, D) the number max {i: (a, i) is a case of a in D). Throughout this paper /
always denotes the projection from cases to their first component.

Remark 1. If we identify X with XX {1}, each dependency over X (defined by
Mazurkiewicz) is a labelled dependency over X. On the other hand each labelled
dependency is a special dependency on XX {1, 2, ...}. Thus, all the notions and
results obtained in the theory of traces [1], [13], [14] can be applied to labelled traces
and labelled trace languages. This means that we can handle with labelled traces as
traces, and the advantage of traces and trace languages is taken to labelled traces
and labelled trace languages. The only difference between traces and labelled traces is
how the atomic actions are considered.

To show the difference between our notion and Mazurkiewicz's one we consider
the dependency graphs of labelled traces.

Definition 1. Let D be a labelled dependency over X, vvd(dom CD))*- A depend-
ency graph of w (over D) abbreviated a dep-graph of w (over D) and denoted by
D(w), is a graph isomorphic to the node-labelled graph (V, E, X, ¡3), defined by:

V= {1, 2, ..., n} if w = x 1x2...x„, P(i) = l(xt), and

EQVxV is such that, for all 1 =S i, j sa n, (i, j)£E

i fandonlyi f icj and (x i ; Xj)£D.

296 D. V. Hung and E. Knuth

For the sake of convenience by syre (R) we denote the symmetrical and reflexive
closure of a binary relation R on dom (/?) throughout the paper.

Example 1. Let X= {a, b, c, d},

D = syre ({((a, 1), (b, 1)), ((b, 1), (b, 2))((&, 1), (c, 1)), ((b, 2), (d, 1)), ((c, 1), (d, 1))}),

D(w) has the following form:

c c

Notice that this node-labelled graph can not be a dep-graph of any trace over any
dependency on X. The reason is that the occurrences of c depend on the first occur-
rence of b, but are concurrent with the second occurrence of b.

It can be seen from the theory of traces that

w =Dv =>D{w) = D(v).

(Unlike in the case of dep-graphs of traces, the converse direction is not true!)
Hence, it is reasonable to define a dep-graph of a labelled trace t over D as D(w)

for any M>£ t. Not distinguishing labelled traces, dep-graphs of which are isomorphic,
we define that labelled traces t and t' over D are isomorphic iff D(t)^D(t'), where
D(u) denotes a dep-graph of a labelled trace u over £>.

Clearly, each dep-graph of a labelled trace is acyclic, and its transitive closure
is a labelled partial ordering over X, which will be called a labelled partial ordering
generated or induced by a labelled trace, and in which any pair of nodes with the same
label is ordered. Hence, our notion is related to Starke's one of semiwords (see the
section 4).

As mentioned in Remark 1, all the notions of traces are applied to labelled
traces. Here we remention some of them, which are needed in the sequel.

Let D be a labelled dependency over X. The trace concatenation and trace itera-
tion of labelled traces and labelled trace languages are defined by

W b M d : = W d for *,>>€(dom (£))*,
UV: = {uv\u£U v£V} for iabelled trace languages U and V over D.

U*:= (J U\ i/°=[e]D, Ui+1= U'U, i s 0 , for a labelled trace language U
i=0

over D.
The following lemma is needed for a purpose of constructing operations on

labelled trace languages.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 297

Lemma 1. Let D and D' be labelled dependencies on X, h: (dom CD'))*—
-^(dom (Z>))* be a homomorphism satisfying:

a) VxfEdom CD'): h(x)£dom (D)U{s},
b) V x, y€ dom CD'): ((x, y)$D'b.h (x) (y) * e) =>(h (x), h (;>))<£ D.
Then, for any labelled trace u over D', w£u we have

h(u) Q [h(w)]D.

Proof. Let u be a labelled trace over D' and wdu. Since A is a homomorphism,
we have only to prove that if w=w1xyw2, w'—w1yxw2, (x,y)$D\ then h(w) =Dh(w').
But this is obvious from the specified property of h.

Hence, each mapping h: (dom (£>'))*—(dom CD))* satisfying the condition of
Lemma 1 can be considered as a homomorphism from a labelled trace language over
D' to a labelled trace language over D as well.

We shall adopt Mazurkiewicz's denotation. Let D be a labelled dependency
over X.

AD):= {[a]D: addom(D)},

T(D):= {[w]D: w£(dom CD))*}, and

P(D):= 2T (D) .
Having in mind our intended interpretation, elements of A(D) will be called

actioncases over D, those of T(D) processes over D and those of P(D) activities over
D. Actioncases a and b occur concurrently in a process t if t= t'[ab]t" where (a, b)$D.

From Remark 1 and the definition of dep-graphs, if we identify X with XX {1},
and a word over X with a trace over the dependency D= (XX {1})X (XX {1}) in the
obvious way, we have that each word, each trace, and each labelled trace induce a la-
belled partial ordering over X. Let W{X), T(X) and LT(X) denote classes of label-
led partial orderings induced by words, traces, and labelled traces, respectively, on X.
Clearly,

W(X)^T(X)^LT(X).

We have introduced cases of actions in order to expand the power of our model
comparing to Mazurkiewicz's model of traces. Thus, from the intended meaning, we
should not distinguish cases having the same effect in a labelled dependency. 1 herefore,
only reduced labelled dependencies are considered. Formally, we introduce the fol-
lowing notions.

Definition 2. Let D and D' be labelled dependencies on X, T and T' labelled
trace languages over D and D', resp.

(i) D and D' are said to be isomorphic, denoted by D=D', if there exists a
mapping <p from dom CD) onto dom (D') satisfying:

(i) (p preserves cases of actions, i.e. if x is a case of an action a, so is (p (x),
(ii) cp preserves the dependence, i.e. (x, y)£D iff (cp(x), (p(y))dD'.

(ii) T and T' are said to be isomorphic, denoted by T^T', iff Mt^T, 3t'£T'
such that D(t)^D(t') and vice versa.

Definition 3. Let D be a labelled dependency on X.
(i) Cases (a,i) and (a , j) are said to be equivalent iff V (b, /c)€dom (D):

((b, k), (a, i))iD~((b, k), (a,j))eD.

298 D. V. Hung and E. Knuth

(ii) A labelled dependency D' on X is said to be a reduced version of D iff D and
D' are isomorphic and D' is reduced, i.e. for (a, /'), (a,y)6dom (D') with i ^ j
(a,i) and (a,j) are not equivalent.

Proposition 1. Every labelled dependency on A'has its reduced version.

Proposition 2. Let D be a labelled dependency on X and T a labelled trace lan-
guage over D. Assume that D is isomorphic to D' by an isomorphism (p. T hen T and
<p(T) are isomorphic.

The above propositions follow immediately from the definitions 2 and 3.

3. Operations on labelled trace languages (on activities)

In the previous section we have defined some operations on labelled trace lan-
guages over a given labelled dependency. Those operations have restricted applica-
tions, as pointed out by Janicki [11], since concurrency relations are fixed. T o improve
upon this shortcomings we define our operations corresponding to ones on concurrent
processes from Milner's and Hoare's works [7], [15].

In the sequel, let X be an alphabet, D{ a labelled dependency over X, and let ti
and Ui, respectively, be labelled traces and labelled trace languages over Du /= 1, 2.

a) Sequential concatenation and concurrent composition.
We intend to use the sequential concatenation to represent the fact that a proc-

ess in U2 starts only when a process in Ux has terminated. By the concurrent compo-
sition, we shall represent a synchronization of processes corresponding to the syn-
chronization mechanism introduced by Hoare [2], [7], Mazurkiewicz [14], and in our
papers [8], [9], [10]. By this operation we want to construct a process t from tx and t2,
which behaves like tx and t2, progressing in parallel and simultaneously participating
in actions having cases in Dx and D2.

Having in mind our attention, we define some operations on labelled depend-
encies as follows.

Sequential composition of Dx and D2, denoted by S(Dlt D2), is the labelled
dependency :

S (A,02) := -DiU{(((a, i + # (a, A)), (b,j+ # (b, A))) | ((a, i), (b,j))£D2)U

U syre ({((a, i), (b, j + # (b, £>,))) | (a, /)€dom (DJ, (b, j)€dom (Z)2)}).

Togetherwith S(DX, D2) a mapping^from T(D2)to T(S{DX, D2)) isdefinedby

s((a,i)) = (a,i#(a,Dù).

The definition of J is reasonable by Lemma 1,
Concurrent composition of Dx and D2, denoted by C(D1, D2)is a labelled depend-

ency defined as follows. Let 7=/(dom (Dj^n^dom (D2)) be the set of actions
having cases in both Dx and D2. Then,

dom(C(Dj, D2)) := {x\x£dom (D,)Udom(DJ & I(x) $ 7}U

U {(a, i)| i #(a , • # (a, Z)^}.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 299

For two positive integers m, n let en (n, m) and rem (и, m) stand for the quotient
and remainder of dividing n by m. For i= 1, 2, define mappings

ht: dom(C(Di,D2)) - dom(A)U{e} as follows.

For Y, i— 1, 2,

M (< w)) = i (a , V f . (a J) € d o m (A) '
'v J " U otherwise;

for a£Y
h((a,j)) = (a, rem 0 ' - 1 , # (a, ЗД) + 1),
Л«((я, Jl) = (a. e n 0 - 1 , # (a, DJ) +1).

Now, C(DX, D2) is defined by
C(D1, D2)={(x, y)\ there exists an i in {1, 2} such that (h^x), / i ;(j))eA}.
Since hj^ and h2 satisfy the condition of Lemma 1, hL and h2 can be extended to

homomorphisms from T(C(Dt, D2)) to T(DL) and T(D2) respectively. hx and h2 will
be called the projections associated with C(Dy, D2).

Now, we are ready to define our operations on labelled trace languages.

Definition 4.
(i) The sequential concatenation XJ1oU2 of U1 and U2 is a labelled trace over

S(Dlt D2) defined by U±o U2= U1s(U2), where Uj is considered as a labelled trace
language over S(-Dl5 D2) and the trace concatenation in the right side is for labelled
trace languages over S(Z^, Z)2).

(ii) 1 he concurrent composition ¿/J U2 of U± and U2 is a labelled trace language
over С(D x ,Di) defined by:

U1\\U2 = {tiT(C(D1,DJ)\h1(t)iU1,h2№U2}.

(iii) Sequential iteration (iteration for short) of Uu denoted by £/®, is defined by

U? = ((U, - { M d J M ^ I - {MDl}))*(C^ и {[e]s(Dl, Dl)}),

where Ux U {[e]S(D„ d2)} is considered as a labelled trace language over S(D1, Z)J, and
the trace iteration and trace concatenation are for labelled trace languages over
S (A , A) .

When Ui and U2 contain a single element, say их = j^}, U2— {/2}, we write
h°t2> 'ill h instead of {fj}o {t2}, {/x}|| {/2} resp.

Example 2.

(i) Let A=syre({((a , l) , (6 , 1))}),

U, = [pref ((b, l)(a, l))*]Dl,

D2 = syre({((b, 1), (с, 1)), ((b, 2), (c, 2)), ((b, 1), (b, 2)), ((с, 1), (c, 2))})

U2 = [pref((c, 1)(b, l)+(c, 2)(b, 2))*]Dj.

300 D. V. Hung and E. Knuth

Then,
C(DltDj = syre({((a, 1), (b, 1)), ((a, 1), (b, 2))})U£>2,

1)) = («, 1), K{(b, 1)) = h&b, 2)) = (6, 1),

hi((c, 1)) = fti((c, 2)) = £

h2(a, 1) = £, h2((i>, 1)) = (b, 1), /»2((b, 2)) = (b, 2), fc2((c, 1)) = (c, 1),

ha((c, 2)) = (c, 2).

Let /,=[(&, l)(a, 1)0, 1)] ^ ! ,

h=[(c, 1)(*>, l)(c, 2)(b, 2)(c, 1)]d8€ C/2-
Reduced versions of dep-graphs of ty and i2, resp., are of the form (i.e. transitive

arcs are omitted) : •

m
T a

By the definition of the concurrent composition, /̂K is a labelled trace over
C (A , A)

h\\k = [(c, 1) (i , l)(a, l)(c, 2)(fr, 2)(c, l)]c(Dl.Dl)

A reduced version of a dep-graph of f j t2 is of the form :

It can be seen that
UX\\U2 = [pref((c, 1)(b, 1)(a, l)+(c, 2)(b, 2)(«, 1))*]C(d,Di).

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 301

We propose in the example that Ux is the activity of the single portion-buffer,
and t/2 is the activity of the two-portion buffer with a and b corresponding to "out"
and "in" repectively, in the former, b and c corresponding to "out" and "in" in the
latter. Then i /Ji /a corresponds to a composition of the two buffers: the two-portion
buffer inputs from its producer, then outputs to the single-portion buffer, and in
turn, the single-portion buffer outputs to its consumer.

(ii) Let D=syre({((a, 1), (e, 1)), ({b, 1), (e, 1)), ((<?, 1), (c, 1))}),

U = {[(a, l)(b, l)(e, l)(a, l)(c, 1)]D}.
Then

S(D, D) =D\J{((x, 2), (y, 2))|((x,l), (y, 1»€Z>}U

U syre ({((x, 1), 0 , 2)) J x, yO (dom (£))}).

By the definition of the iteration

t/® = [((a, 1)(!>, l)(e, l)(a, 1)(:, 1)(a, 2)(b, 2)(e, 2)(a, 2)(c, 2))*

(£ + (a , l)(e, 1)(a, 1) (c , 1))]S(D,D).

A reduced version of a dep-graph of t£ U has the form:

and reduced versions of dep-graphs of elements of U® are of the form:

In the sequel, for u(iX*, YQX, by u\Y we denote the projection of u on Y, i.e.
the image of u by the erasing homomorphism from X* to Y*. For u, vdX* we also
write u\v instead of w|alph(„) without fear of confusion, where alph (v) denotes the set
of symbols forming v.

Proposition 3. f j i g contains not more than one element.

Proof. By trivial induction on the length of elements of T(C{Dl, D2)) we can
show that if for t, t'^TiCiD^ D2)) h^t^h^t') and h2(t)=h2(t'), then t=t'.

302 D. V. Hung and E. Knuth

Proposition 4.
/J/2 5*0 if and only if

'(/l)ll(dom(D!))n/(/2)li(dcjm(D1)) ^ 0.
Proof. The "only if" part is obvious and we prove the "if" part. Suppose that

there exists we/(Oli<dom(D,))n/(/2)|1(dom(D0)iX*. 1 hen there exist u^tl5

h '• '(Wl)li(dom (D.))= '(w2)li(dom (Oi))~ Let

»X = tfifl2...fl„€(dom (-Di))*.

M2 = ^ . . . ^ (d o m (Z)2))*,

w = Clc2...ck£Y* = (/ (dom (Z)x)) f l / (dom (£>2)))*.
Then, there exist monotonic functions yi: {1, 2, ..., &}—{l, 2, . . . ,«} and
f2: {1, 2, ..., A:}—{1, 2, ..., m} satisfying:

Qj is a case of an element in Y if and only if j=f (i) for some k, rt, and bj
is a case of an element in Y if and only if j=f2(i) for some i^k, j=m.

Let g: {ct, c2, ..., cfc}—dom (CX-Dj, D2)) be defined as follows.
Let afl(i)=(Ci, p), bf^i)—(ci, q). Then g(c,)=(c i , s), where J is determined

from the equation system:

p = rem (s — 1, # (c i , D 1)) + l .

•q = en (s — 1, # (c „ D 1)) + l .

Let u[=a[a'2..,a'n, u'2—b'1b'2...b'm be defined by

a , = (aj if J M ({ l , 2 , . . . , k }) ,
J lg(Cj) if j =fl(i), for j ^ n,

b . = \ b j i f J i / . ({ 1 . 2 fc}),
J U f o) if j — f i i f) for j = m.

Clearly, = ck).
Hence, by Theorem «2 ([12], pp. 205) there exists w'€(dom (C(DL, D2))* such that
w'\u' = u[, w'\u't—u'z. It is obvious from the definition of g that

I V l c ^ D ,) = hlh-

Proposition 5. Let D3, Dlt D2 be labelled dependencies on X, U, Ult U2£
V,.Vlt V^P(D2), Z£P(D3), W£P(C(D1, D2)), /€T(C(D1, Z>2)), and hu h2 the
homomorphisms associated with C(D1, D2). Then

a) C{DuDJ*iC(Dt,DJ a n d U\\V^V\\U',
b) C /) l . C (P i , i y) a C (C (A , ^ , f l ,) and {U\\V)\\Z=U\\(V\\Z)-,
c) U\\0=0;
d) [8]Dlll[e]D,=[fi]c(D„Dt);
e) (C/1UC/2)||F=(C/JF)U(C/2 | |F);
f) U W ^ V ^ M W ^ M V ,) - ,
g) {h{t)U) \ \ (K(ty)=t{UAU&
h) IVQh^Wnh^W) .

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 303

Proof.
a) For a£X, 0 < # (a, D J • # (a, D2) the numbers /=

= rem(y—1, #(a , !>!))+1) fc=en (j— 1, Dj))+ 1 are defined uniquely, and
for a pair (/, k) with / « # (a, Dx) and k^ #(a , Z>2) the integer ./"= # (a, Z)2) x
X(/— Y)-\~k is determined uniquely. Thus the correspondence fa(j)=j' is an
one-to-one mapping from {1, .'.., # (a, DJ • (a, Z>2)} to {1, ..., # (a, Dj • # (a, D2)}.

By the definitions of C{DX, D2), C(D2, Dx) and hu h2, the mapping h: dom
(C(£>i, D2))—dom C(D2, DJ) defined by

h Un iW = i (a ' j) if * (a> Dl)' =
I (a, fad)) if # (a, A) • # (a, D2) > 0

is an one-to-one isomorphism. Furthermore, let h[and h2 be the projections associated
with C(Z>2, Dx), we have:

h{(a,j)) = h2(h(a,j)), h2((a,j)) = h[(h(a,j)).

Consequently, it follows a).
b) For a£X with C(Dlt C(D2, D3)))>0 and for / = 1 , 2 , 3 let the

mappingsg iaandg' iafrom {1,2, . . . , C(Dlt C(D2, A)))} to {1,2,. . . , #(a,A)}
be defined as follows (gia and g'ia are undefined if # (a, Di)=0).

If # (a, D) • #(a, D2) • #(a, D3) >0 , for (a, DJ • *{a, D2)- # (a, D3), let

giati) = rem 0 - 1 , * (a, A)) + 1,

g2a(j) = rem (en (j - 1 , # (a, DJ), # (a, Z)2))+1,

ga.0) = en (en (J - I , # (a ,DJ) , #(a,K2))+1,

gia 0) = rem (rem 0 —1> #(a, AD), #(a, A))+l.
g'2a(j) = en (rem (/ - 1 , #(« , A) • # (a, A)), ' # (a, A)) + 1

g»(S) = e n (/ - l , # (a , A) • #(a , A)) + l -

If # (a, A) • # (a, D2) • # (a, £>3)=0, for #(a , C(DU C(A> Z)3))), then let

. (undefined if # (a, A) = 0, giaW ~ guW ~ | r e m q # j D i)) + 1 if # (a > ^ > o,

g2a0) = §2a(j) =
undefined if # (a, D2) = 0,
en (j - 1 , # (a, £>0) + 1 if # (a, A) • # (a, A) > 0,
rem (.j - 1 , # (a, A)) + 1 if # (a, A) = 0 & # (a, Z>2) > 0,

/ _ ' r \ - / u n d e f i n e d i f # («> A) = 0, g3aO) - gza(J) - |en # (a> + # (fl> ^^^ jf # Da) > 0>

Let faU)=f ^ for / = 1 , 2 , 3 gu,U)=gia(j")-
• It can be seen easily that ((a, j), {b,j'))aC{Di, C(D2, D3j) (<C(C(DU D2), D3),

resp.) if and only if there exists i in {1, 2, 3} such that ((<i,gia(j)), (b, gib(j'))£

304 D. V. Hung and E. Knuth

€Dl((a,g'la(j)), (B,G' IB(F)))IDH resp.). Hence, the mapping / : dom (C(A> C(D2,
A)))~~dom (C(C(A> D2), A)) defined by

f{(a,j)) = 07,/M)

is an isomorphism between C(A> C(D2, A)) and C(C(DL, D2), A) -
For / = 1 , 2 , 3 mappings G,-,Gi from T(C{Dlt C (A , D3j), T(C(C(A, A>),A))

resp., to T(Di) defined by

are homomorphisms by Lemma 1. Furthermore, for T(C(DL, C(D2, D3)))
(r (C (C (A , D2), DS)), resp.) tdUWWZ) {{U\\V)\\Z, resp.) if and only if G ^ U ,
G2(t)£V, G3(t)£Z (G[(t)£U, G'2(t)£V, G'3(t)£Z, resp.). Hence, by Lemma 1 / c a n
be extended to an isomorphism from T(C(D1,C(D2, D3))) to T(C(C(D1,D2),
A)) and f(m<v\\Z))=(U\\V)\\Z. Thus, by Proposition 2, U\\(V^Z)^(JJW)\\Z.

The properties (c)—(h) are obvious.

The following theorem has been formulated by Mazurkiewicz for the case of
trace languages. Fortunately, it is still true for labelled trace languages, although our
operation of synchronization is more powerful and general than his one.

Theorem 1. The concurrent composition || is the least function from P(D1)X
XP(D2) to P(C(DI, D2)) (w.r.t. the inclusion ordering of its values) meeting the
following conditions:

for each actioncase x in C(DU D2), U, Ux, C/2€P(A), V, VU V2£P(D2).

The proof of the theorem is similar to the proof of Theorem 1, [14], pp. 352 and
is omitted here.

b) Union and intersection.
We deal with the construction of activities from activities over different labelled

dependencies. The union is intended for the nondeterministic choice and the inter-
section is intended to represent the tied synchronization.

Let N(DL, D2) be the labelled dependency defined by

N(DltDJ = AU{((a , i + # (a , A)) , (b,j + #(b, A))) |((«, 0, (b,j))tDa}\J

Usyre({(a, j), (a, i)+ # (a , A) l (f , j)€dom(A) , (a, /)€dom(A)})-

A mapping j : T(D2)-*T(N(DU A)) associated to N (A . A) is defined by

Gi((a,j)) = (a, gia(J)),

G'i{(a>j)) — (3> g'iM

(a)

(b)'

(c)

(d)

(ht(x) U)\\(h2(x))V) = x(U \\V),

u w ^ v j = mvjvmv*),

[e]0l II [e]x>2 = [£]c(Dll0i),

s((a, 0) = (a, / + # (a, (a, i)<=dom (A)-

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 305

Let I(D1,D2) be the labelled dependency defined by I{DU D2) = C(Dly D2)C]
n (r x { l , 2 , ...})2, where Y=l{D1)C\l{D2). Since C(DU Z)2)fl(dom (I(D1,D2)))2=
— I{D1, D2) each labelled trace over 1(DU D2) is a labelled trace over C (Di, D2).
Let /jl5 h2 be homomorphisms associated with C(D1, D2).

Definition 5. (i) A nondeterminic composition Ux • U2 of Ux and U2 is a labelled
trace language over N(Dt, D2) defined by

I/iD U2— UxV>s(lJ^), where the operation U on the right hand side is for labelled
trace languages over N(D1, D2) with considering U1 as a labelled trace language
over N(D!, D2).

(ii) 1 he intersection Ux n U2 of (J1 and U2 is a labelled trace language over
/(£>!, D2) defined by

u,nu2 = {t£T(i(Du D2))| h^e vlt h2(i)e u2}.

Proposition 6. For U',U"£P(Dd, V'eP(D2),
a) U'\jU"siU'{JU"-, N(Dlt D^Dx,
b) U'\\V' = U'nV if D1 = D2.
This follows immediately from Definition 3.

Proposition 7. Let £>l5 D2, D3, D be labelled dependenceis on X, U£P(D),
VZPiDJ, W£P(D2), Z£P(D,), t2£T(D2). Then

a) [s]Dloi7^i7o[8]Dl-C/,
b) (UoV)oW=Uo(VoW),
c) Uo(VoW) = (UoV)n(UoW), (i V O W) o U ^ (V o U) n (W o U) ,
d) t x o U o t ^ t x o V o t ^ U ^ V .
Proof, a), b) and d) are obvious. To prove c) consider a mapping h from

dom(N(S(D,D1), S(D,D2))) onto dom (S(D, N(D1; D2)) defined by:

h((n -Yi -((">& '^J U ' J >) ~ l(a, j— #(a , £>))> otherwise.

By the definition of the operations S, No n labelled dependencies, ((a, i), (b,j))£
6 N (S (D , A) , S(D, D2)) iff (h((a, /)), h((b,j))£S(D, N{Dx, D2)). Hence, h can be
extended to a homomorphism from T(N(S(D, DJ, S(D, D2))) to T(S(D, NiD^ D2)))
in the obvious way (by Lemma 1). Furthermore, it can be seen easily that
h{{U°V)n{UoW))=Uo(VUW). By Proposition 2, Uo{VnW)^{UoV)U{UoW).
The remaining case of c) is proved similarly.

4. Relations to other models

As mentioned in the section 2 each labelled trace induces a lebelled partial order-
ing over X, and each labelled partial ordering over X is a finite labelled event struc-
ture over X ([16]). Thus, a labelled trace language over a labelled dependency on A1 is
a set of labelled event structures having a very simple representative: a (finite)
labelled dependency and a word language (may be represented by a regular expression).
In our paper [8] we have related labelled trace languages to Petri nets and some

306 D. V. Hung and E. Knuth

interesting results have been obtained. In this section, we relate labelled trace lan-
guages to semilanguages introduced by Starke [18], [19].

Definition 6 ([19] pp. 337).
(i) A labelled partial ordering (lpo for short) over A' is a t r ip l e^ , S, P), where

(A, S) is a irreflexive partial ordering, /?: A-*X is a labelling mapping.
(ii) Two lpo's (A, S, P) and (A', S', /?') are said to be isomorphic iff there exists

a bijection b from A onto A' which preserves the labelling and the ordering:

aSc** b(a)S'b{c)&p(a) = p'(b(a)).

The isomorphy class [(A, S, /?)] of a finite lpo (A, S, P), i.e. the class of all lpo's
which are isomorphic with (A, S, P) is called a partial word over X. A partial word
[(A, S, p)] over X such that for all a, b from A

p(b) = P(a)=>aSbVbSaVa = b, (1)

i.e. where all the sets P~x(x) (for x£X) are chains w.r.t. S is called a semiword
overA.

Let pit) denote a partial word over X induced by a labelled trace t over a label-
led dependency on X (see section 2) i.e. p{t)= [{A, S, P)] where (A, S, ft) is the
labelled partial ordering induced by t.

Theorem 2. For each labelled trace t over a labelled dependency on X, pit) is a
semiword over X.

Proof. Let D(t) be a dep-graph of t, where t is a labelled trace over a labelled
dependency D on X. By the definition of A if x, y are cases of an action a£X,
(x, y)£D. Thus, the labelled partial ordering over X induced by t satisfies (1). Con-
sequently, p{t) is a semiword over X.

It follows from Theorem 2 that every labelled trace language over a labelled
dependency on A'generates a semilanguage over X in the natural way.

For U£P(D), denote by
SL(U) = {p(№U}.

SL(U) is called semilanguage generated by U.
Theorem 3. Let U^P(D^), V£P(D2), where Dx, Z>2 are labelled dependencies

on X. Then
SL(U® oV) = SXit/o thorny).

Proof
By (iii) of Definition 4

U* = {(U- {[e]Dl})o(i/- {[e]Dl}))*(t/U {[eJsiDLDoOC/^SCA, A)),

' where C/U {[sIs^d,)} is considered as a labelled trace language over S{Dl, A)-
It follows from the definition of S(A> A) and of the sequential concatenation that
for teT(SiDx, Dj)), p(t)£U0 if and only if there exist tx, t2, ..., tn £ U- {[e]Dl} such
that

(i) D(t)=0 iff n=0, and
(ii) Let D(t¡), ...,D(tn) be dep-graphs of tx, ..., tn over A . - 0 (0 =

= (V¡, Ei, X¡, p¡), 1=1 ,2 , . . . , « , ViDFJ=0 for /Vy, i,JSn.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 307

Then £>(/) = (Û Vi, E, X, /?), where
i = l

£ = (U £,)il{(a, b)\aÇVt, b£Vi+1, i ^ n-l},p\Vl = ft.
¡=i

Hence, since ¥¡9*0 for i^n, for aÇfs, b^Vj, (a, b) is an arc of the tran-
sitive closure of D(t). From the definition of the sequential concatenation of labelled
trace languages it follows that

SL(i/o C/®) U {p ([EIDJ) = SL(m\

SL(U® oV) = SL(UoU®oV)USL(V).

By the definition of the operation • our theorem is obtained from the last
equality.

To relate labelled trace languages to interleavings of strings we recall the syn-
chronization mechanism introduced by Hoare [7], E. Knuth [12].

Definition 7 ([7]). Let L 2 ^X*, YQX. The synchronized parallel compo-
sition Lil|yL2 is the set (J yv1\\Yw2, where WjHyWg denotes the set of all successful

Wl6L,
. interleavings of w1 and w2 with synchronising communications in Y and is defined

inductively as follows :

(i) eflre = {£}

(0
(ii) aw||ye = e]|yaw = |

if a€Y
(w||ye) if a$Y,

(iii) aw\\Ybw' = bw'\\raw =

a(w||yw') if a = b£Y
0 if a^bAa,b£Y
a(w\\Ybw') if a$YAb£Y
La(w||yi>w')Ufc(aw|]yw') if aY, bY.

Theorem 4. For a labelled trace language U£P(D) let inter (£/)= U K0-
ttu

Then, for U£P{Di), V£P(D2), (where Dlt D2 are labelled dependencies) and
y=/ (dom D j n / i d o m (D2),

a) inter (C/oF)=inter (U) inter (F),
b) inter (£/|| F)=inter (£/)|| y inter (F),

c) inter ([/»)=(inter (£/))*,
d) inter (E/nF)=inter (i/)Uinter (F),
e) inter (JJ n F)=inter (U) n inter (F).

Proof, a) and c), d) are obvious, e) follows from b).
b) is proved as follows.
Let hx and h2 be the projections associated with C(D1, D2). Clearly, for U\\V

h ^ U , h2(tKV, and /(OlKdomCD^^^faii^iinteriFX/iOlKdomCD.w^/faO^i
Qinter (£/). Thus, inter (£/ | |F) i inter (f/) | |y inter (F).

6 Acta Cybernetica 8/3

308 D. V. Hung and E. Knuth

Let jointer (C/)[|y inter (V). By Definition 7, j|,(dom(Dl))6inter (tf), j | ((dom(D!))e
6inter (V). There exist u£U, v€V such that y|i(dom(Dl))e/(w), J>li(dom(Ds))€/(i>)- By
Proposition 4, is defined.

It follows easily from the definition of hx and h2 that y£l{t). This completes the
proof of the theorem.

In the sequel, for simplicity of denotation, if and L2 are considered over fixed
alphabets, say Tj and I 2 . and Y=I1C\I2, we shall writte Ll\\L2 instead of LX\\YL2.

Proposition 8. Let L^, L2, L3 are languages over ZLT I2. r 3 respectively. Then

LAL* = L2\\LX, a n d (LAL2)\\LZ = ¿I||(L2||L3). .

Proof. Straightforward from the definition of the operation ||.

5. Labelled trace languages as a noninterleaving semantics for CSP

The notion of CSP presented in this paper is at an abstract level necessary for
our purpose.

Let Comm be a finite set of actions. A process P over Comm is in one of the fol-
lowing forms:

p — Pl'i • • • > Pn>

p = [p1«p2ll...llpn], .

p

p = [Pi • p2 • • • • • p„],

p = a — Pi, adComm,

p - skip, (skip $ Comm),

p = P1\{b1,b2, ...,&„},

where Pu P2, ..., Pn are processes over Comm.
The meaning of the above constructions of processes is given informally as fol-

lows.
P1-,P2;...; P„ specifies sequential excution of Plt P2, ..., P„ in the order writ-

ten (process by process, P i + 1 starts only Pt has terminated, lsz '^n— 1), and
starts with the start of P1; terminates with the termination of Pk.

[Pil|P2|| ...||P„1 specifies concurrent excution of its constituent processes. They
all start simultaneously and the process P=[P1||...||P„] terminates successfully
only if and when they have all successfully terminated. T he relative speed with which
they are excuted is arbitrary. The set of actions excuted by each of them is required
to be disjoint from those executed by the rest. Plt P2, ..., Pn are synchronized by the
actions intended. P; excutes an action intended to synchronize with Pj (in the con-
struction) if and only if Pj excutes a corresponding action (intended to synchronize
Pj with P,) simultaneously (see [6], [7], [11]).

<g> P specifies as many iterations as necessary of P sequentially.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 309

[^ • ^ • ••••-Pn] specifies excution of exactly one of its consituent processes
and the choice between them is fully nondeterministic, cannot be influenced by the
environment.

a — s p e c i f i e s excution of the action a followed by excution of P±.
Skip specifies the process having no effect and never fails.
Now, we identify the action intended to synchronize P ; with Pj with a corre-

sponding action intended to synchronize Pj with Pf in a construct [i,il|Z>
2||...||Pn].

We can suppose that the set of actions excuted by Pf may not be disjoint from the one
by Pj and the actions in their intersection require that Pj and Pj must excute each
of them simultaneously. (This abstraction has been made by Hoare in [7], [2], Janicki
in [11]).

The interleaving semantics for CSP given by Hoare [2], [7] is a follows.
Each process over Comm is identified with a subset of Comm* called its inter-

leaving semantics :

skip:={e},

a - P := aP,

Pl"> Pi\ •••') Pn'= PlPt-'-Pm

[P inP 2 D. . . nP„] :=P iUP 2 U. . .U P „ ,

[P1|!P2||...||Pn]:=P1||P2||...||Pn, where

the operation || on languages is defined in the previous section and P1(..., P„ are
considered as languages over alph (Pj), ..., alph (P„) respectively. (Here for a lan-
guage L, alph (L) denotes the smallest alphabet, over which L is a language).

<S5P:= P*,

P\{£>1, ..., bn}:= P|alph(i'1)\{i'1 &„}>

where P\A denotes the projection of P on A*.
Because of the presence of the hidding operation in CSP, to relate our model

to CSP we have to extend the notion of labelled trace languages.
An £-labelled dependency on X is a symmetric relation {e})X {1, 2, ...})2

satisfying:

(i) (a, i)€dom (De) (a, j)£dom(De) for j ^ i,

(ii) ((a, i), (a,j))€-De for (a, i), (a,j)edom(D£) and a ^ e.

An £-labelled dependency on X may not be reflexive in its domain. However, this
has no effect in the definition of trace languages and the notion of trace languages is
extended to this case. Then, a trace language over D£ is called an £-labelled trace lan-
guage over De. All the notions and the results presented in the previous sections are
valid for £-labelled trace languages as well with the only exception that the set Y in
the definition of the operation || of labelled trace languages is modified as

Y = (/(dom (Z^n / tdomCADNM.

6«

310 D. V. Hung and E. Knuth

e-labelled trace semantics proposed for CSP is presented bellow. Each process
over Comm is identified with an e-labelled trace language over an e-labelled depend-
ency on Comm as follows:

a - P:= {[(a, l)]{((a,!),(<.,
P l 5 P2; ...; Pn:=P1oP2o...oPn-,

[P i D . . . D P n] : = P 1 D P 2 D . . . n P n ;
<g> P :=P®

P\{b1....,b„}:=hibi U (P) ,

where hp t j is defined as follows: For an e-labelled dependency De on X let

h (i W = i(a' 0 if UA(a, OedomiA)
' " l (e,0 if ac{b l t i>„}A(fl, i) dom (£>.).

Dt{blt ..., bn) = {(h{bi bJ(x), h{bi y)£D.}.
By Lemma 1, h(b b} is considered as a homomorphism from T(De) to

T(Dt\{bit...,bn}).
1 he correspondence between e-labelled trace semantics and interleaving seman-

tics for CSP is stated by the following theorem, which follows immediately from
Theorem 4.

Theorem 5. For a process P over Comm. Let LT(P), INTER (P) denote the
e-labelled trace semantics, interleaving semantics, respectively, for P. Then

inter (LT(P)) = INTER (P).
Proposition 9. If a process P over Comm does not contain a construction

[Pi • . . . • P„], LT(P) contains, at most, one element.
The Proposition follows from Proposition 3.

6. Conclusion

We have presented an extention of the theory of traces as an attempt to provide
a mathematical description for the behaviour of concurrent systems, more specifically,
CSP. Labelled trace languages have been shown to be more powerful than trace
languages and to have a simple representation.

However, the construction of the theory of CSP based upon labelled trace lan-
guages requires a deeper study on labelled trace languages concluding a construction
of domains of the operations on processes so that the operations are continuous and
the representation of the properties of processes in its semantics in the model. This
will be presented in our future work.

COMPUTER A N D AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
VICTOR HUGO U. 18—22
1123 BUDAPEST
HUNGARY

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 311

References

[1] I. J. AALBERSBERG and G. ROZENBERG, Theory of traces, Institute of Applied Mathematics and
Computer Science, Univ. of Leiden, The Netherlands, Rep. 85—16, August 1985.

[2] S. D. BROOKES, C. A. R. HOARE, A. W. ROSCOE, A theory of communicating sequential processes,
J. of ACM, Vol. 31, N. 3, July 1984, pp. 560—599.

[3] P. DEGANO and U. MONTANARI, Distributed Systems, partial orderings of events, and event
structures, Proc. of the International Summer School "Control Flow and Data Flow; Con-
cepts of Distributed Programming", NATO ASI Series, M. Broy, Ed., Vol. 38F14, Springer-
Verlag, 1985, pp. 7—106.

[4] U. GOLTZ and W. REISIG, CSP-programs as nets with individual tokens, LNCS, Springer-Verlag,
Vol. 188, 1985, pp. 169—196.

[5] M. HENNESSY, W. LI, G. PLOTKIN, "A first attempt at translating CSP into CCS", Proc. of the
2nd International Conference on Distributed Computing, IEEE, N. 81, CH 1591—7, Paris 1981.

[6] C. A. R. HOARF, Communicationg sequential processes, Comm. of ACM, Vol. 21, N. 8, 1978,
pp. 6 6 6 — 6 7 7 .

[7] C. A. R. HOARE, Specification-oriented semantics for communicating processes, Acta Informá-
tica, Vol. 23 Springer-Verlag, 1986, pp. 9—66.

[8] D. V. HUNG and E. KNUTH, Labelled trace languages and Petri nets, Working Paper, MTA-
S Z T A K I .

[9] D. V. HUNG, Notes on trace languages, Projections and synthesized computation systems,
Kozlsmények, MTA-SZTAKI, Vol. 32, 1985, pp. 87—104.

[10] D. V. HUNG and M. SZIJJÁRTÓ, Synchronized parallel composition of languages, Proc. of Con-
ference of Automata, Languages and Programming Systems, Salgótarján, Hung. May 1986.

[11] R. JANICKI, Trace Semantics for Communicating Sequential Processes, Institute for Elektroniske
Systemer, Danmark, R—85—12, 1985.

[12] E. KNUTH, GY. GYÓRY and L. RÓNYAI, A Study of the projection operation, Application and
Theory of Petri Nets, W. Reisig, Ed. Springer-Verlag, Vol. 52, 1982.

[13] A. MAZURKIEWICZ, Concurrent Program Schemes and Their Interpretations, DAIMI PB—78,
Aarhus Univ., Press, 1977.

[14] A. MAZURKIEWICZ, Semantics of concurrent systems: a modular fixed-point trace approach,
LNCS, Vol. 188, 1985, pp. 353—375.

[15] R . MILNER, Calcu l i f o r s y n c h r o n y a n d a s y n c h r o n y , TCS, V o l . 2 5 , 1 9 8 3 , p p . 2 6 7 — 3 1 0 .
[16] M. NIELSEN, G. PLOTKIN, and F. WINSKEL, Petri nets, event structures and domains, Part I,

TCS, V o l . 13, 1981, p p . 8 5 — 1 0 8 .
[17] C. A. PETRI, Non-sequential processes, GMD—ISF Report, ISF—77—05, 1977, pp. 1—24.
[18] P. H. STARKE, Processes in Petri nets, Informationverarb u. Kybernet. EIK, Vol. 17, 1981, pp.

389—416.
[19] P. H. STARKE, Traces and semiwords, LNCS, Computation Theory, Andrezej, Ed., Fifth. Sym-

posium, Vol. 208, 1985, pp. 332—350.

(Received June 20, 1987)

TAPSOFT '87 Proceedings of the International Joint Conference on Theory and Practice of
Software Development Pisa, Italy, March 1987.

Volume 1: Advanced Seminar on Foundations of Innovative Software Development I and Col-
loquium on Trees in Algebra and Programming (CAAP'87) (Lecture Notes in Computer Science Vol.
249) XIV+ 289 pages, Springer Verlag, Berlin—Heidelberg—New York—Tokio, 1987. Edited by
Hartmut Ehrig, Robert Kowalski, Giorgio Levi and Ugo Montanari.

Volume 2: Advanced Seminar on Foundations of Innovative Software Development II and
Colloquium on Functional and Logic Programming and Specifications (CFLP) (Lecture Notes in
Computer Science Vol. 250) XIV + 336 pages, Springer Verlag, Berlin—Heidelberg—New York—
Tokio, 1987. Edited by Hartmut Ehrig, Robert Kowalski, Giorgio Levi and Ugo Montanari.

These two books contain a selected collection of papers presented at TAPSOFT '87 held in
Pisa, Italy, March 1987.

TAPSOFT '87 consists of three parts:
i, Advanced Seminar on Foundations of Innovative Software Development concerns new

directions in software development on the basis of recent technological and theoretical advances.
ii, Colloquium on Trees in Algebra and Programming covers the formal aspect and properties

of trees, and more generally, combinatorial and algebraic structures in all fields of Computer Science.
Besides the customary topics, CAAP includes contributions related to specifications, communicating
systems and type theory.

iii, Colloquium on Functional and Logic Programming and Specifications focuses on those
aspects of Functional and Logic Programming which are most important in innovative software
development.

Contents of Volume 1

I. Wegener: On the complexity of Branching Programs and Decision Trees for Clique Functions,
W. Szpankowski: Avarage Complexity of Additive Properties for Multiway Tries: A Unified Ap-
proach, M. Crochemore: Longest Common Factor of Two Words, S. Ronchi della Rocca: A Unifi-
cation Semi-Algorithm for Intersection Type Schemes, B. Steffen: Optimal Run Time Optimization
Proved by a New Look at Abstract Interpretations, F. Bellegarde and P. Lescanne: Transformation
ordering, M. Gogolla:'On Parametric Algebraic Specifications with Clean Error Handling, D.
Sannella and A. Tarlecki: Toward Formal Development of Programs From Algebraic Specifica-
tions: Implementations Revisited, G. Marongiu and S. Tulipani: Finite Algebraic Specifications of
Semicomputable Data Types, G. Boudolandl. Castellani: On the Semantics of Concurrency: Partial
Orders and Transition systems, R. De Nicola and M. Hennessy: CCS without T'S, Ph. Darondeau
and B. Gamatie: A Fully Observational Model for Infinite Behaviours of Communicating Systems,
E. Astesiano and G'. Reggio: SMoLCS-Driven Concurrent Calculi, M. Navarro and F. Orejas:
Parameterized Horn Clause Specifications: Proof Theory and Correctness, F. Parisi-Presicce:
Partial Composition and Recursion of Module Specifications, G. Galambosi, M. Talamo and
J. Nesetril: Efficient Representation of Taxonomies, J.-J. Ch. Meyer and E. P. de Vink: Applications
of Compactness in the Smyth Powerdomain of Streams, M. C. Browne, E. M. Clarke and O.
Griimberg: Characterizing Kripke Structures in Temporal Logic, R. Milner: Dialogue with a
Proof System, G. Huet: Induction Principles Formalized in the Calculus of Constructions, J.
Thatcher Algebraic Semantics.

Contents of Volume 2

J. A. Goguen and J. Meseguer: Models and Equality for Logical Programming, K. Furukawa:
Fifth Generation Computer Project: Current Research Activity and Future Plans, A. Piperno:
A Compositive Abstraction Algorithm for Combinatory logic, J. Y. Girard and Y. Lafont: Linear
Logic and Lazy Computation, D. Clément: The Natural Dynamic Semantics of Mini-Standard ML,
Z. Farkas: Listlog — a Prolog Extension for List Processing, R. Barbuti, P. Mancarella, D. Pedreschi
and F. Turini: Intensional Negation of Logic Programs: Examples and Implementation Techniques,
P. Van Roy, B. Demoen and Y. D. Willems: Improving the Execution Speed of Compiled Prolog
with Modes, Clause Selection, and Determinism, C. Percebois, I. Futô, I. Durand, C. Simon and
B. Bonhoure: Simulation Results of a Multiprocessor Prolog Architecture Based on a Distributed
AND/OR Graph, G. Lindstrom, L. George and D. Yeh: Generating Efficient Code from Strictness
Annotations, S. Finn: Hoisting: Lazy Evaluation in a Cold Climate, W. Drabent and J. Maluszynski:
Inductive Assertion Method for Logic Programs, A. Pettorossi and A. Skowron: Higher Order
Generalization in Program Derivation, M. Thomas: Implementing Algebraically Specified Abstract
Data Types in an Imperative Programming Language, K. L. Clark and I. T. Foster: A Declarative
Environment for Concurrent Logic Programming, D. H. D. Warren : Or-Parallel Execution Models
of Prolog, M. Beilia: Rétractions: a Functional'Paradigm for Logic Programming, P. G. Bosco,
E. Giovannetti and C. Moiso: Refined Strategies for Semantic Unification, V. Breazu-Tannen and
T. Coquand: Extensional Models for Polymorphism, R. Harper, R. Milner and M. Tofte: A Type
Discipline for Program Modules, C. Beierle and A. Voss: Theory and Practice of Canonical Term
Functors in Abstract Data Type Specifications.

These well edited interesting volumes present the state of the art in theory and practice of soft-
ware development. It is recommended for those people interested in the latest results of the field.

S. Vdgvolgyj

A SZERKESZTŐ BIZOTTSÁG CÍME:

6720 SZEGED
SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED
SOMOGYI U. 7.
HUNGARY

Information for authors

Acta Cybernetica publishes only original papers in the field of computer sciences mainly in
English, but also in French, German or Russian. Authors should submit two copies of manuscripts
to the Editorial Board. The manuscript must be typed double-spaced on one side of the paper only.
Footnotes should be avoided and the number of figures should be as small as possible. For the form
of references, see one of the articles previously published in the journal. A list of special symbols used
in the manuscript should be supplied by the authors.

A galley proof will be sent to the authors. The first-named author will receive 50 reprints free
of charge.

INDEX — TARTALOM

J. Dassow: Pure languages of regulated rewriting and their codings 227
A. Meduna and Gy. Horváth: On state grammars 237
B. Imreh: A note on the generalized Vi-product 247
P. Dömösi and Z. Ésik: On the hierarchy of v, -products of automata 253
Z. Fülöp and S.Vágvölgyi: On ranges of compositions of deterministic root-to-frontier tree trans-

. formations 259
O. Selesnjew and B. Thalheim: On the numbers of shortest keys in relational databases on non-

uniform domains 267
J. Demetrovics and V. D. Thi: Some results about functional dependencies 273
J. Demetrovics and V. D. Thi: Relations and minimal keys 279
Z. Daróczy and L. Varga: A new approach to defining software complexity measures 287
D. V. Hung and E. Knuth: A noninterleaving semantics for communicating sequential proces-

ses: a fixed-point approach 293

ISSN 0324—721 X | -

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1987 augusztus

Terjedelem: 7,7 (A/5) ív
Készült monószedéssel, ives magasnyomással

az MSZ 6601 és az MSZ 5602—55 szabvány szerint
87-4083 — Szegedi Nyomda — Felelős vezető: Surányi Tibor igazgató

