Tomus 8. Fasciculus 3.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMAR
REDIGIT: F. GECSEG

COMMISSIO REDACTORUM

A. ADAM F. OBAL
M.ARATO F. PAPP
S. CSIBI A. PREKOPA
B. DOMOLKI J. SZELEZSAN
B. KREKO J. SZENTAGOTHAI
A. MAKAY S. SZEKELY
D.MUSZKA J. SZEP
ZS. NARAY L. VARGA
T. VAMOS
SECRETARIUS COMMISSIONIS
J. CSIRIK
Szeged, 1988

Curat: Universitas Szegediensis de Attila J6zsef nominata

8. kotet 3. fiizet

ACTA
CYBERNETICA

A HAZAI KIBERNETIKAI KUTATASOK
KOZPONTI PUBLIKACIOS FORUMA

ALAPITOTTA: KALMAR LASZLO
FOSZERKESZTO: GECSEG FERENC

A SZERKESZTO BIZOTTSAG TAGJAI

ADAM ANDRAS OBAL FERENC

ARATO MATYAS - PAPP FERENC

CSIBI SANDOR - PREKOPA ANDRAS
DOMOLKI BALINT SZELEZSAN JANOS
KREKO BELA -SZENTAGOTHAI JANOS
MAKAY ARPAD SZEKELY SANDOR
MUSZKA DANIEL SZEP JENO

NARAY ZSOLT VARGA LASZLO
- VAMOS TIBOR

A SZERKESZTO BIZOTTSAG TITKARA
CSIRIK JANOS

Szeged, 1988
A Szegedi Jozsef Attila Tudoményegyetem gondozésiban

Pure languages of regulated rewriting
and their codings”

By J. Dassow ‘ -
Dedicated to Prof. Herbert Goering in the occasion of his 60" birthday

0. Introduction

Since context-free grammars are not able to cover all aspects which are of interest
(e.g. in the theory of programming languages), a lot of regulating mechanisms for the
derivation process have been introduced. However, mostly the generative capacity
of these mechanisms has been studied with respect to the generated set of words over
a terminal alphabet. Thus all the intermediate steps of the derivation are not contained
in the language, and therefore it often happens that the differences between the mecha-
nisms disappear. Hence — in order to contribute to a comparison of the mechanisms —
we shall investigate languages which contain also the words of the intermediate steps,
the so-called pure languages.

Let us also mention that these languages are of interest for themselves by the
following two facts :

— they form a sequential counterpart to the L systems (with regulation),

— the intermediate steps are important for the syntax analysis.

The first results on pure versions of grammars with regulated rewriting are pre-
sented in (1), (6), (2). However, besides (6) (where a different definition of the pure
language is used) the appearance checking mode is used in the derivation. One of the
purposes of this paper is to complete the hierarchy by the relations concerning pure
languages of regulated rewriting without appearance checking.

Usual languages (containing only terminal words) can be obtained from a pure
language by intersecting with the set of all words over the terminal alphabet. By the
results by Ehrenfeucht and Rozenberg it is known that for L systems there is a second
way, namely the application of a coding (letter-to-letter homomorphisms), if one is

1 Paper presented at the 4*® Hungarian Computer Science Conference, Gyér, July, 8—10, 1985.

228 J. Dassow

only interested in the generated family of languages (see (7)). This does not hold for
sequential rewriting. But in (3) it is shown that the hierarchy of families of languages
obtained by codings lies between that of pure languages and that of usual languages.
Again, here we shall add some results by consideration of grammars without ap-
pearance checking.

In this paper we shall restrict to the following three types of regulated devices:
matrix grammars, programmed grammars, and random context grammars.

Throughout the paper we assume that the reader is familiar with the rudiments
of formal language theory and has some information on regulated rewriting (e.g. see

(3): (5)).

1. Definitions

For the sake of completeness we give the formal definitions for the pure versions

of the above mentioned grammars,
In the following definitions, let V' be an alphabet, and let S be a finite subset

of ¥'*. (Usually in the theory of pure languages one uses a set of starting words,

however, as one can see by our proofs our results do not change if S consists of only
one word.)

A pure random context grammar is a triple G=(V, P, S) where P is a finite
set of productions of the form

(a—+w,R,Q), acV, weV*, RCV,QCV.

We say that x€V * directly derives y€V™* (written as x=y) iff x=zaz,, y=
=z:wz,, (a—w, R, Q)€P, z,z, contains all letters of R, and z, z, contains no letter
of Q. The language L(G) generated by G is defined as

L(G) = {y: z=y forsome z€S)}

where = denotes the reflexive and transitive closure of =.
A pure programmed grammar is a triple G=(V, P,) where P is a finite set of
rules of the form
(b, a = w, E(b), F(b))

where b is a label of the production, a¢V, weV*, and E(b) and F(b) are subsets of
the set of labels. The language L(G) consists of all words y such that there is a deri-
vation

2= NG Ve 132 Y =Y

n

where z€ S, (b;, a;—w;, E;, F;) arerules of P, 1=i=n, and, for 1=j=n,

—_ pa— *
Yic1 = Zu@iZig, ¥i = Zaw;ziz forsome z;, z€cV,

and bi+1€Ei (if i - n)
or :
a; does not occur in y;_;, y; = y;—;, and b; . € F; (again, if i < n).

Pure languages of regulated rewriting and their codings 229 -

A pure mairix grammar is a quadruple G=(V, M, S, F) where M is a finite set
of finite sequences of productions,

M={m,m,, .. m},
m; = (a; = Wi, Qi > Wigs s Qi) —~ Wir(i))s

a;;€V, wi;€V*, 1=i=r, 1=j=r(i), and F is a subset of occurrences of rules in M.
Then, for 1=i=r, we say that x=>y iff

X=)Yo=2N=>)Ve=---2 Ny =Y
where
—_— _— *
or '

aij dOeS not occur in yj—l’ aij—’ WijEF, and y" = yj—l‘

The language L(G) generated by G is defined as the set of all words y which are obtain-
ed by iterated applications of matrices (elements of M) to words of S and all inter-
mediate words (y; in the above notation) of these applications of matrices.

These definitions are the most general ones, i.e. rules of the form a—A are
allowed and the appearance checking mode is used in the derivation process.

By Z(pRCL), ZL(pPR}), % (pM}) we denote the families of languages
obtained by pure random context, pure programmed, and pure matrix grammars,
respectively. We omit the upper or lower index or both indices if we.consider the
families of languages generated by grammars without erasing rules or without ap-
pearance checking (i.e. Q=@ and F(b)=@ for all productions, or F=) or without
both these features.

By Z(pCF) and £(pCS) we denote the families of pure context-free and pure
context-sensitive languages, respectively (the definitions can be given in an obvious
way, e.g. see (4)), and we add the upper index A if A-rules are allowed.

#,(w) denotes the number of occurrences of the letter a in the word w.

2. The hierarchy of pure language families

Let us consider the pure programmed grammar

G, = ({a’ b}5 {(1’ a— b?, {1}’ {2})’ (2, b —~ a3, {2}’ {1})}a {a})

The language L, generated by G, contains only words of {a, b}* which satisfy one of
the following conditions: '

)+ = 5,

(1)
3#,(w)
3

+#b(w) = 32"+1’
where n€EN.
Lemma 1. L,c4(pPR,.), L ¢ ZL(pPRY).

230 J. Dassow

Proof. By the construction of L; we have to prove only the second statement.
Let us assume the contrary, i.e. L,=L(G) for some pure programmed grammar
G without appearance checking. First we note that, for w, wé€L;,, w=w,
[I(w)—I(w")|=2 holds. Hence without loss of generality we can assume that G is
A-free. If there is a rule whose core production is of the form a-b or b—a then its
application to a word of L, produces a word which do not belongto L.

Fora production p: (h, x—~w, E(h), 9), we set

I(p) = I(w)—1,
I(G) = max I(p).

and we also define

Obviously, /(G)=2. Further, let t; be the number of productions in G, let ¢, be the
maximal length of a word in S, and let n be an integer such that 3">¢, -1,./(G). Now
we consider a derivation D of a3’"b3€Ll, especially the last (#,+2) steps of this
derivation which increases the length, i.e.

D. * * . b 32nb3
. S=’J’o=,f’ Nn=nh3>)’2=‘~’>J’2=>--~—:>,‘ V1= .V:1+1——“*->,t 1 a
1 1

where the derivation steps y;=»y;.; are obtained by application of the production
(l;, x;—w;, E;, 9) of G with /(w;)=2 and the phases y; =>y; contain only applica-
tions of rules with core productions a—~a or b—b. By the definition of n and ¢,, the
following facts are valid:

-——-#"3(}") +#,(0) =371 for 1=i=t,
— there are two integers k, jwith 0=k<j =1 suchthat /,=/;.

Let
#.00) = 37 =3r;, #00) =11,
#a(yj) = 32"—3"2’ #b()’j) =Ts.
Then 3">r,—r,>0. Further we have also the correct derivation
s——f:>y0—,—o~>y1—t—->...=>yk?> zj=*:» T2 L = T In
J n+1
where z;, ..., 7,4, are appropriate strings w1th
#a(zt1+1) =3"-3(r;—ry), #b(zt1+1) = 3+(ry—ry).

This contradicts (1) and thus z,,,¢L,. Since z,,,€L(G) we obtain the desired
contradiction to L(G)=L,. O

Now we consider the pure matrix grammar
G, =({a,b,c,d}, {(a—~a® b—b%c—~c), (a—a% b—~dc~ 3},
{abc}, {b—~ b% b~ d%).

Then the words of its generated language L, satisfy the following conditons:
If #,(w)=0, then w=a®**if"c¥*-1 or w=a¥+@*mc>+1 with 2n+1=3m,
n, méN.

Pure languages of regulated rewriting and their codings 231

If #,(w)=1, then w=a®+w'c*+1 or w=a**w'c*~1 where
w'e{b, d®}*, I(w) =2n+1 or I(w)=2n-1.
Lemma 2. LZE.?(pM,,C), L. Z(pM?).

Proof. Again, we have to prove only the second statement. Lét us assume that
L,=L(G) for some pure matrix grammar G without appearance checking. As in the
preceding proof we can show that all core productions (besides x-x) have the form
x—w with /(w)=3. Let n be a sufficiently large number. We consider a derivation of
w=a2n+ld362n+ l, say

D:sZsp v, 2w

where (without loss of generality) /(v,)<I(v,)<I(w). By the structure of the words in
L, it is easy to prove that v,=a*~1d3¢®"~1, v,=a**+1d3c* -1, Iterating this argument
and taking into consideration that we can omit length preserving matrices we obtain

* 5
D: s=> uj= uzi._~> w
m

where the derivation u, =>w corresponds to the application of a proper initial part of
a matrix or u,=w, and the application of m increases the number of a’s and/or ¢’s
only. If it increases only the number of a’s ,then by its iterated application to u, we can
generate a word y with 3#,(y)— #.(¥)>2 which contradicts the structure of the
words in L,. Analogously, the matrix m cannot only increase the number of ¢’s.
Hence it has to increase both numbers. Now we consider a derivation D’ of w'=
— a2n+1b2n+lc2n+1. Again,

D:siz3w

where z<t>w’ is the initial part of a matrix application or z=w’ and z is generated
by iterated applications of matrices. Clearly, #,(z)=1. Then it is easy to show that
the correct derivation

s = Z=>Z)=> Zy=> 23
produces a word z; which is not in L,. '
Lemma 3. Let
L, = {a?b%c, ab®c, b*ab?c, b¥¢c, b1} U{a®"b®: n = 1}U
U{ba®+1b2: n = 1}U{a®*1b%: n = 1} i
Then L% (pRC,.), L.¢ Z(pRCH).
Proof. The pure random context grammar G,=({g,b, c}, {(c~b? 6, 9),
(a—a3 8, {c}), (a—~b? {c}, D)}, {a?b’c}) generates L,.
Assume that L,=L(G) for some pure random context grammar without
appearance checking. We consider a*'b® where n is sufficiently large. This word can be

derived only from a word a®"b® (without loss of generality we can assume that
m<n), and thus we have a production (a—~a*"~™*+, R,0) or (b—~a*"-™b, R, 0)

232 J. Dassow

with RS {a, b, ¢}. This rule is applicable to a®b% producing a word not contained
in L,

Lemma 4. Let
L, = {ca"b": n =2}U{ca"**b": n=2}U{a"b": n 2'2}.
Then L,c ¥ (pM?*), L, L (pM,,).

Proof. Clearly, L, is generated by the pure matrix grammar
G, = ({a’ b, C}, {(c ~c,a—~a%b~ bz)s (c—~)‘)}a {Cazbz})'

Thus L, L (pM*).

Now assume L,=L(G) for some pure matrix grammar G with appearance
checking but without 2-rules. We consider the word a"b" where n is chosen such
that @"b” is not an axiom. Then there is a word z with z=4"b" and z=a"b". If z=
=a'b" for some r<wn {r>n is impossible by the A-freeness and r=n is already
excluded), then we have applied a rule of the form a—a**b* to thelastain z
or b—+a’b**! to the first b in z where s=1. Since r=2 we can apply this rule to the
first a or last b, too, and then we derive a word which is not in L,. Hence z is of the
form ca’b” or ca"+'b", and we have to apply a rule of the form c¢—z’ which yields
Z’a"b" or Z’a"t'b". In the first case z’=1 and r=n have to hold and this contra-
dicts the A-freeness of G. In the second case we do not obtain 4"b". Therefore L,=
= L(G) do not hold for all 1-free pure matrix grammars G.

Lemma 5. Let L;={d}UL,. Then Lic%(pPR?), L;c%(pPR,,).

Proof. 1t is easy to see that L;¢#(pPR"), and L4 %(pPR,.) can be proved
analogously to the proof of Lemma 4.

-Lemma 6. Let
Ly = {cab*d: n = 2JU{c’a™ b"d: n = 2JU{c’a"b"d’: n = 3}U
U{ca"b"d’: n = 3}U{a"b"d: n = 2}.
Then L4 (pRCH), Li¢ Z(pRC,). - '
Proof. The pure random context grammar
Gs =({a, b, c,d, ¢, &'}, {(c ~ ¢’a, {d}, 0), (d ~ bd’, {c’}, 0)
= e, @0, (@ ~d, (),9), (4 (@}, 9)), {eabrd))

generates L;. Hence L;€.%(pRC?).

Now let L;=L(G) for some pure random context grammar G (with appearance
checking) without erasing rules. We consider w=a"b"d with sufficiently large n.
As in the proof of Lemma 4 it can be shown that w cannot be generated from a word
of the form a’b"d. Hence z with z=w, zzw hasto be of the form ca"b"d or ¢’a+'b'd.
It is easy to see that a"b"d is obtained iff ¢—~A is applied to z and r=n holds, i.e.
we get a contradiction to the A-freeness.

Pure languages of regulated rewriting and their codings 233.

‘Lemma 7. Let
= {b2a}U{ba®**: n = 0}U{a®+*ba%+': m, n = 0}.
Then Ls€.€f(pRC) L % (pPRY), L§ &L (pM2).
Proof. i) Ly is generated by the pure random context grammar
Gs = ({a, b}, {(b ~ a*, {6}, 9), (a ~ a*, {a}, B}, {b%a}).

Thus LZ(pRC).

ii) Assume that Lg=L(G) for some pure programmed grammar G. Again, G
is A-free, and hence b%s has to be an axiom. Further, in order to generate ba®*3" for
a sufficiently large integer n we need a production with the core rule a—a®**! for
some m=0. Clearly, it can be applied to the axiom, and this gives b%a=b2g*"+1,
Therefore L(G) contains the word %"+ which is not in L.

iii) can be proved analogously to ii).

Fact 1. Let
= {a"b"c": n = 1}U{a" ' b"c": n = 1}U{a"*t'b"*1c: n = 1}.
Then Lv€$ (PM), L4 Z(pPRL), L¢Z(pRCE,).

Fact 2. If Lg={a, 5} U{a™*1%: n=0}U {a"1+1": n=0}, then L, Z(pPR),
Ley¢ £ (pRCY), Lt & (pMy.).

Summarizing all these results and taking into consideration the relations to pure
versions of the grammars of the Chomsky hierarchy which are already given in (1) we
obtain the following diagram. Instead of A& B we write A—~B, and if two families
are not connected then they are 1ncornparable

Theorem 8.
Z(pRCL) Z(pM}) < (pPR})
VRN /N , /N ZeCshH
Z(pRC,) Z(pRC*) £L(pM,) £ (pM*) £ (pPR,) Z(pPRY) t
N4 N /S , N S Z(pCsS)
Z(pRC) L (pM)- - %(pPR) :

AN /"
(pCF) =2 (pCF?)

3. Codings of pure languages
Let X be a family of grammars. Then we set € (X)={L: L=h(L’) for some
L'€Z(X) and some coding h} (i.e. h(a) has the length 1 for all letters a).
Lemma 9. 4(pM)=%(pPR).

Proof. G(pM)S¥(pPR) can be proved analogously to (3). Now let . G=.
=¥, P, S) be a pure programmed grammar. We set ¥V'={(a, b): ac¥, b is a label
of a production in P}. With the production (b, a—w, E(b),) we associate the

234 . J. Dassow

matrices

((a, b) ~ w, x — (x, b))
where x€V, b’€E(b). The set S’ is defined as the set of all words w,(x, b)w, where
wixwo€ S, (x, b)EV’. We consider the pure matrix grammar G'=(VUV’, M,S’, 0)
where M is the set of all matrices of the above introduced type. Then the correct
derivations have the following form (in the second row we note the applied rule):

s = wi (%, by)wa m’ WnZiWa 56007 Wiz (X3, ba) Ws...=
---=>W1n(xmbn)W2n’;ﬁ’w Z,W
(x,,0,) =z, Inén'"2n

—_— W X, b w =>....
Xpne1— CGns1:Pnsr) 1.n+1(n+1ls n+1) 2,n+1

Furthér we consider the coding h given by h(x)=x for x¢V and h((x, b))=x for
(x, b)€¥’. Then the image of the above derivation is
Wi X1 Wa1 3= WnZi Wy = WieXeWop 5.0

D Wi X Wor 5= Win ZWon = Wins1Xns1Wons1 570

where, by the definition of the matrices, b;, is in the success field E(b;) of b;. Thus

we have proved that
L(G) = h(L(G")).

Since the composition of codings is a coding again,
K (L(G)) = (hoh")(L(G")),
%(pPR) S ¢(pM).

Combining Lemma 9 with the results of (3) we obtain
Theorem 10. .

%(pRC)C 4 (pPR) = € (pm) € ¥(pM.) T¥(pPR,) = €(pRC.) E €(pCS).

_It is known (see (8), (5)) that for usual languages (i.e. sets of words over ater-
minal alphabet) the following hierarchy holds: : S

Z(RC)S Z(M)=2(PR) S £ (M,) =2 (PR,) = £(RC,) & £(CS)

(and that for X€{M, PR, RC}, a=ac or empty, all the families £ (X}) coincide
with the family of all recursively enumerable languages). Thus one sees that the
hierarchy of families obtained by codings of pure languages is situated between the
hierarchy of language families obtained by the use of nonterminals and terminals and
that of pure language families.

and.thus

Acknowledgement. The author is grateful to the referee and Henning Bordihn
for their comments which improved the earlier version.

TECHNISCHE UNIVERSITAT
OTTO VON GUERICKE
POSTFACH 124
MAGDEBURG 3010/DDR

Pure languages of regulated rewriting and their codings 235

References

[1] Dassow, J., Pure grammars with regulated rewriting. Revue Roumaine Math. Pures Appl.
31 (1986) 657—666.

[2] Dassow, J. & GH. PauUN, Further remarks on pure grammars with regulated rewriting. Revue
Roumaine Math. Pures Appl. 31 (1986) 855—864.

[3] Dassow, J. & GH. Paun, Codings of pure languages obtained by regulated rewriting. Foundat.
Control Engineer. 9 (1984) 3—14.

[4] MAURER, H., A. SaLoMaA & D. Woop, Pure grammars. Inform. Control 49 (1980) 47—72.

[5] MAYER, O., Scme restrictive devices for context free grammars. Inform. Control 20 (1972) 69—92.

[6] PAuN, GH. A note on pure matrix grammars. To appear in Revue Roumaine Math. Pures Appl.

[7] RozENBERG, G. & A. SALoMAA, The Mathematical Theory of L Systems. Academic Press, 1980.

[8] SaLomAA, A. Formal Languages. Academic Press, 1973.

(Received Oct. 15, 1985)

On state grammars

A. MepuNA and GY. HorRVATH

In this paper we study some properties of state grammars. Among others, it is
shown that for every recursively enumerable langunage there exists a state grammar
with erasing rules that generates it. Some problems concerning the descriptive com-
plexity of state grammars are discussed.

1. Introduction

In the last years several types of grammars have been defined which have context-
free rules and an additional mechanism which regulates the derivation process (see
e.g. [1]1—][6]), since such grammars can describe such special aspects of programming
languages that cannot be covered by context-free grammars. One of the typical gram-
mars of this kind is the state grammar (see [3]) — the subject under investigation in
the present paper. '

Intuitively, a state grammar is a context-free grammar with an additional mech-
anism which consists of the following: at each derivation step the grammar is in
a state which influences the choice of the next production to be applied, and the next
state is determined by this production. Moreover, rewriting-is done in a léftmost
fashion. ' '

2. Preliminaries

In this section we briefly review some of the basic notions and notations of formal
language theory. Items not defined explicitly are standard in language theory, see
e.g. [5]).

® [F]or afinite set A we use | 4| to denoteits cardinality. If w is a word over an alphabet
Z, then |w| denotes the length of w, alph (w) denotes the set of letters occuring in w
-and Ny(w) denotes the number of occurrences of letters from Y(E£Z) in w. The
empty word is denoted by A. For a grammar G, =»> denotes its direct derivation
relation and —>* denotes the derivation relation of G. We also write = and =*
rather than = and —=>* if no confusion arises. A production (p, q) of a grammar
G will also be called a rule and written as p—q. For context-free grammars we use

238 A. Meduna and Gy. Horvith

the following notation: G=(Z, 4, x,, P), where Z is the total alphabet of G, ACSX
is the terminal alphabet of G, x,€ Z\\ 4 is the initial letter and P is the set of produc-
tions of G.

Now we recall the definition of a queue grammar defined in [4].

A queue grammar is a 7-tuple 0=(Z, 4, S, F, xy, S5, P) where X and S are
finite sets, the total alphabet and the state set of @, respectively, A4S X is the terminal
alphabet, FES is the final state set, x,€ X\ 4 isthe initial letter, s,€ S is the initial
state and finally, PSIX(S\F)XZ*X S is a finite set, the production set of Q.
A production (x, s, 4, s’) in P1is also written (x, s)-(u, s").

For any (u,s), (v, s')€XZ*X S the direct derivation (u,s) 2>(v,s") holds iff
u=xu, for some x€X and u;€X* and there is a production (x, s)~(vy, s") in P
such that v=u,v,. The derivation relation =»* is the reflexive transitive closure
of =».

The language L(Q) generated by Q is defined by L(Q)= {we 4*: (x,, S5) =*(w, 5)
for some se F}.

The central notion of this paper is that of a state grammar that we recall now.

A state grammar is a construct G=(Z, 4, S, x,, S5, P) where X~ and § are finite
sets, the total alphabet and the state set, respectively, 42 is the terminal alphabet,
Xo€ 2\ A4 is the initial letter, 5,€S is the initial state and P is a finite set of produc-
tions of the form (x, s)—~(u, s’) where x¢I\4, s,s5'¢S and u€X* The direct
derivation (4,5) =>(v, s") holds for u, v€Z* and s, s'¢S iff there exist decompo-
siton u=uwu, xu,, v=wuvu, and a production (x, s)—(v;, s") in P such that for every
nonterminal y€X\4 occuring in the word u, there is no production with left side
(y, s)in P.

The language L(G) generated by G is defined by L(G)= {w€4*: (xo, 5o) =>*(w, 5)

for some s€S}, where ==>*is the reflexive transitive closure of —.

A state grammar G is called propagating if for every production (x,s)—
~(u, s") of G we have uA.

We point out that the above definition differs from Kasai’s original definition in
[3] since Kasai considers only propagating state grammars.

The family of languages generated by context-free, contex-sensitive, type O,
queue and state grammars is denoted by & (CF), £ (CS), Z(RE), £(Q) and Z(8S),
respectively.

3. On the generative power of state grammars with erasing productions

In his original definition of state grammars, Kasai did not consider erasing
productions. It is however a natural geperalization (see e.g. [6]). But then, the first
question we have to ask is: what is the generative power of such grammars? We are
going to show in this section that .#(S) and % (RE) coincide. Although the equality
Z(S)=%(RE) can be obtained as a direct consequence of a theorem in section 4, .
we prove it here in order to demonstrate the close connection between queue and
state grammars, moreover, this connection will be used in a subsequent section.

A state grammar G=(Z, 4, S, #, 5,, P) is called front-end state grammar if
the nonterminal letter 4 is an endmarker, which means that every production con-
taining ¥ is of the two forms (3, s)~(ud,s) or (3, s)—(u,s"), where 4 does

On state grammars 239

not occur in the word u, moreover, for every state s, if there is a production with left
side (x, s) for some x# #, then for each nonterminal letter x’> # there is a pro-
duction with left side (x’, s).

One can see that in any derivation step according to a front-end state grammar,
the rewritten non-terminal letter is either the first nonterminal in the word or the
endmarker.

Lemma 1. For any queue grammar-Q one may construct an equivalent front-end
state grammar G.

Proof. Let Q=(Z, 4, S, F, x,, Sy, P) be an arbitrary queue grammar. We
construct a state grammar G=(2’, 4, S, 3, q,, P). For each terminal letter ac4
we introduce a new nonterminal letter x,. We set

2 =XU{x,: ac4}U{%}
S’ = {qo, ¢ }USUC\AU {x,: acd})xS.

We define a homomorphism 4 of Z into 2’ by h(x)=x for x€Z\4 and h(a@)=x,
for acA4. The homomorphism g of ZUh(4) into 2 is defined by g(x)=x for x€Z
and g(x,)=a for acd. Clearly, g(h(x))=x for x€X and h(g(x))=x for x€ZU
Uh(4). Now the production set P’=PFP;UP;UP;UP;UP; 1s constructed in the
following way:

Pg = {(#, q0) ~ (X%, 50)}

P} = {(x, 5) ~ (A [x, s]): SESN\F, x€h(Z)},

Py ={(#, [x, sD > (k@) #, 5): (g(x), 5) ~ (u, s)EP},
Py ={(%,5)~ (% qu): s€F},

P ={(x, 9) ~ (g(x), q1): x€h (D)}

It is evident that the state grammar G constructed above satisfies the front-end require-
ment. We are going to prove that a derivation

(%o, S0)5>* (W, 5) holds iff
(0%, s)g>* (h(W) %, s) holds.

Indeed, for any production (x,s)—~(u,s’) in Q, the productions (h(x), s)—
~(2, [h(x), s]) and (3, [A(x), s])—~(h(u) 4, s} are present in G, moreover, for every
word v€h(X)* the derivation

(h(X) 3, s)z> (v, [A(x), s]) o= (vh(u) %, 5")

holds. Conversely, a derivation (x,3#, So) <>* (w3, 5) can only be c|arried out by
using productions from P; and from Pj. If a production (h(x), s)-(4,[h(x), 5]),
x€Z, isused in a derivation step, then after it a suitable production (3, [A(x), s])—~
~(h(u) %, s’) must be applied, where (x, s)—~(u, s) is in P. By the front-end prop-
erty of G we obtain that (x,, So) —E-:>*(w, s) holds. Assume that we L(Q). Then

240 A. Meduna and Gy. Horvath

(xo0» So) —T—Z»*(w, s5) holds for some s€ F, consequently we obtain the derivation
(¥, QO) ? (Xo i SO) ?* (h(W) ¥, S) ?3 (h (W), Q1)

The iterated application of productions from P; gives the derivation
(# 3 40) ? (h (W), ql) ?’* (g(h (W)), ql) = (W, ql)

Therefore we L(G).

To establish the converse inclusion L(G)S L(Q), assume that w€L(G). Thus
(#, go) =>*(w, ¢;) must hold since every production of G not containing nonter-
minal letter on its right side is a member of P; or P;. The nonterminal letter 3 can
only be eliminated by a production from P;, thus we obtain the derivation

(%, g0 (%o ¥, s) 2™ (v,) (v, g)7=* W, q)

for some s€ F and v€h(Z)". Furthermore, w=g(v) by virtue of definition of P;,
thus h(w)=h(g(v))=v. We obtain the derivation (x,3,) z>*(h(w), s), which
implies (xo, Sp) 5 *(w, 5). Therefore we L(Q). O

Lemma 2. Every recursively enumerable language can be generated by a front-end
state grammar.

. Proof. From Theorem 2.1 Chapter 2 in [4] we know that £ (Q)=%(RE), hence
the lemma holds by Lemma 1. O

The following theorem is now an immediate consequence of Lemma 2.
Theorem 1. £ (S)=%(RE).

4. On the complexity of state grammars

It is a natural question whether or not the representation of languages by gram-
mars of a certain type is “better” than by grammars of another type. In this section
we study complexity measures of state grammars in terms of {2] as for example the
number of nonterminals and the number of states sufficient to generate any language
of a given type.

First we investigate the complexity of state grammars with regard to the measure
of states.

It is an immediate consequence of the definition of the state grammar that any
language L is context-free iff L can be generated by a state grammar with a single
state.

Theorem 2. Let Lc¥(RE). Then there exists a state grammar
G=(, 4, S, x;, Sy, P) such that L=L(G) and |S|=3.

Proof. Every type-0 language L can be obtained in the form L=h(L;NL,)
where h 1s a homomorphism and L, and L, are context-free languages (1heorem
11.1, Part one in [6]). Assume that the languages L, and L, are generated by the con-
text-free grammars G,=(Z;, 4’, x§, P) and G,=(Z,, 4’, x%, P,), such that

On state grammars 241

Z\NZ,=0, ANA’=0. Let h: A’~A4* be the required homomorphism where L is
a language over the alphabet 4. Assume that 4’={a, ..., a,} for some n=1 and
consider an auxiliarly alphabet A”={b,, ..., b,}. We define a function ¢:Z,—~
I \A’'U4” by ¢(x)=x for x€X,\4 and ¢(a;)=b; for a;c4’. Furthermore,
let ¥: 4”7—~A4" be defined by ¥ (b;)=gq; for bcA”. -
Now we construct the state grammar G in the following way:
I = {xy, #, LYUZ,UZ,UAQ"U{af, bi: 1 =j =i =npUA4,
S = {SO, 815 s2}3
P=pUpPUPUPUPL
P = {(xOs xO) g (x5x3 #, SO)’ (:H: s SO) - (;L’ sl)}’
P = {(x, sp) ~ (P, 50): x ~ pEPYU{(D, 50) ~ (0(9), 50): ¥ ~ qEPy},
. P2 = {(ai’ sl) g (a}a SZ): (a;-', Sl) - (a'ii+1’ s2): 1 é.’ =< l = n}9
P? = {(b;, s3) =~ (b, 51), (b, 50) ~ (bf*,5)): 1 =j<i=n},
= {(af, Sl) g (h(ai)’ SO)’ (b:’ SO) g ()', sl)s (bia s2) - (-L’ Sg): Il=sis n}-

We prove first that LS L(G). Let w=h(v) for some v€L;NL,. Then there exist
(leftmost) derivations x§ 'G—“f’*” and x} = *p. By the construction of the production

set P! we obtain the derivation
(X0, So) 5> (x3X5 %, So) 5™ (vx3 4 , 50) 5™ (v (@), so) Kad (vo (), 1)

Using productions from P2, P2 and P* we have

(xO: SO) ?* (U¢ (U), sl) ?3* (h (D), sl)'
Therefore we L(G).
To establish the converse inclusion L(G)S L consider a derivation (xo, so)=>*

=>*(w, 5) for some we4* and s€S. This derivation must start with the use of the
production (3, s5o)—~(xox3 4, 5), and the nonterminal letter # can be eliminated

by the production (3, 55)—(4, s;) only if
(x3x3 %, o) %—'** (U1(P (v2) #, So) g (01¢(U2), 51) =*(w,5)

holds for some words v;, v,€4"* such that xj=="*r, and x0 =>*p,. Suppose that

n=a,..a,, G,..,a,c4, and @(v)=b, ... 1 b;, bj, .. b,,EA” Considering
the producmon sets P2 and P® one can see that the nontermmal a;, can be derived to
a terminal word in the derivation (v,0(v), 51) z>*(w, 5) only if the subderivation

* (i i
(a,-l...a,-k bjl"'bj[’ 51)? (ai:...a,-kbj‘l....bj,,

=G‘=> (h(ail)a,-z...a,-k bjl"'bjj’ So)

holds. Moreover, this subderivation can be continued only if i{;=j, and then the
production (b, s,)—(4, s;) must be used. Repeated application of the above proc-

\

Whed

242 ' A. Meduna and Gy. Horvith

ess yields the equalities k=1, i,=j, (t=1, ..., k), 1.e. @(v)=¢(v) and w=h(v,).
Since v; =y (@(v1))=¥(p(vz)=v, we conclude that weh(L,NLy)=L. O
Now we will study the complexity of state grammars with regard to the measure

of nonterminals. First we shall give a uniform definition of the (uncontrolled) finite
restriction for grammars.

We say that a grammar G is of index k (for some positive integer k) if, for every
word in the language L(G) there exists a derivation such that no word in this deriva-
tion contains more than k occurrences of nonterminal symbols. We say that G is of un-
controlled index k if every word in each derivation of a word in L(G) contains no more
than k occurrences of nonterminal symbols. Finally, we say that G is of (uncont-
rolled) finite index if it is of (uncontrolled) index k for some positive integer k.

Lemma 3. Let G=(Z, 4, S, x,, 5;, P) be a state grammar such that X\ 4=
= {x,}. Then there exists an equivalent context-free grammar G’, moreover, if G is of
uncontroiied index & then so is G'.

Proof. We construct the context-free grammar G’'=(Z", 4, y,, P’)
2 = {ypUSxSu4,
P’ = {yo ~ [s0, s]: s€ S}U
{Is, sx+1] = walsy, Solualse, so)-- -t ses Sperltisr: kK =1
Sy 81y oevs Sg41€S, Uy, vy Uy g €A%,
(xq,) ~ (uyXxouy. .. UXoliy 41, S)EPYU
{ls, s’} — u: (xo, 5) — (u, s)EP, uc 4*}.

We prove by induction on the length of derivation that for any s, s’¢S and wé€4*,
(0>)= *(w, 5") holds iff [s, 5"l > *w holds. If (x,, 5) === (w, 5’) is a direct derivation
then [s,s]—=>w holds by the definition of P’. Assume that for every derivation
(05 5) 5> *(w, 5") of length less than a given integer / (=2) the derivation [s, 5] > *w
holds. Let

(%o, 5)? (my Xouy... U Xo Uy 11, 51)'?* (w01 8. U VU115 8T) = (W, §7)

be a derivation of length /, where k=1 and v,€4* (i=1, ..., k+1). Since x, is the
only nonterminal letter in G there are derivations

(%o, 51)?* (015 52), --os (X0 S 2> (Vs Sk 1)

for some states s,, ..., 5,€S and s,,,=s" such that the length of each derivation
is less than /. By the induction hypothesis we obtain derivations [s;, so] =>*v;, ...,

.. [8ks $1=5>*v,. Furthermore, the rule [s, s]—>u1[s1, Soltts. ..t Sg, 5Tt sq0is in P,
thus [s, s == *w holds. The reverse implication can be proved similarly. The second
statement of the Lemma follows immediately. O

On state grammars 243

Theorem 3. Any language L can be generated by a context-free grammar of
uncontrolled index k iff there exists a state grammar G of uncontrolled index & such
that the number of nonterminals of G is one and L= L(G).

Proof. Let
G =(Z,4,x,F)

be a context-free grammar of uncontrolled index k for some k=1. Obviously, for
any w€L(G’) there is a leftmost derivation such that no word in this derivation
contains more than k occurrences of nonterminals. Consider a state grammar

G = (4U {3}, 4, S, yo, 50, P)
where y, is a new nonterminal,
S = {[a]: 2€(E\4)*,0 = || = K},
So = [Xa]s
and the set of productions P is defined as follows:
i) if A-uBiu,...u, Bu,cP’
where A, By, ..., B,¢2\A4, uy, ty, ..., u,£4% for some nz=1
then (o, [Aa]) — (#oYotts.-. Un—1Voty, [By...B,a])€ P for every [4a]€S;
i) if A—ucP’ where ucd*
then (¥, [4a]) = (u, [x])€P for every [Au]€S;
iii) each element of P is obtained by i) or ii).

It follows immediately that L(G’)= L(G) and that G is of uncontrolled index k.
The reverse implication is true by Lemma 3. O

For the definition of metalinear languages we refer to [5].

“Corollary 1. The family of metalinear languages is properly contained in the
family of languages generated by state grammars of uncontrolled finite index with
one nonterminal.

Proof. The statement follows from Theorem 3 and Theorem 3.14in [6]. O

Now we recall the definition of forbidding context grammars.

A forbidding context grammar is a construct G=(Z, 4, x4, P) which is very
much like a context-free grammar except that each production p of P is of the form
A-o, F where F is a subset of the nonterminal alphabet 2\ 4, called the forbidding
field of p. Such a production p can be used to derive a word w in context-free fashion
only if FNalph (w)=0. For detailed information we refer e.g. to Chapter 3 in [4].

Theorem 4. For any forbidding context grammar of uncontrolled index k one
may construct an equivalent state grammar of uncontrolled index k with two nonter-
minals. ,

2 Acta Cybernetica 8/3

244 A. Meduna and Gy. Horvath

Proof. Let
G = (2, 4, x, P)

be an arbitrary forbidding context grammar of uncontrolled index k for some k=1.
‘We construct a state grammar

G = (Z> A’ S9 Yo, [> x0]9 P)

in the following way:
Z = {yo, y(;}UA,

S={la>pl, [< Bl:a, BE(E\K)", 0=lap| =k,
> and < are new symbols},
P=pPUP,UP,UP,, where
Py = {(yo. [0y > Ao]) ~ (33, [4 > &),
(7o, a4 < 0g]) = (3o, [0y < A,]): A€Z™\4,
oy, €€(ZN\A)* and |0, < k},
Py = {(o, [< a]) =~ (yo, [> a]): 2€(Z™\A)", la| =k},
Py = {(3o, [0ty > Aots)) = (4o Yoty Upy—1 Vo Upm, [0 < By...Bnat,])
tmz=1, A4-— uByy...u, B, FEP,
A, By, ..., B,€Z"\4, Uy, ty, ..., Uy € 4%, /
0y, E(ENA)* and |a a|<k, FNalph (¢, Aay) = 0},
Py = {(yo, [1 > Aog]) = (u, [0y < 0]): A ~ u, FEP,
FNalph (¢, o) = @, u€4*, oy, 0,€(Z\4)*, loyoa| < k}.
It is easy to verify that L(G’)=L(G) and that G is of uncontrolled index k. O

Corollary 2. Let L be a language generated by a state grammar of finite index.
Then L can be generated by a state grammar of finite index with (at most) two non-
terminals.)

Proof. Immediately follows from Theorem 4. and Theorem 3.22in [6]. O

Theorem 5. Any recursively enumerable language can be generated by a state
grammar with at most three nonterminals.

Proof. Let Le%#(RE). We may assume by Lemma 2 that L is generated by front-
end state grammar G=(Z, 4, S, #, 55, P). Let us denote by X the set of nonter-
minals of G excluding #. Assume that X={x,, ..., x,} for some n=1. We define
a coding function ¢: X—{0, 1}* by :

e(x)=01 fori=1,...,n
Extend.q) to a homomorphism of Z* into {0, 1, #}* by @(y)=y for yeAU{#}.

On state grammars 245

From the front-end property of the state grammar G it follows that the state set
S can be partitioned into subsets S; and S,. Let S; be the set of all states s€.S such
that for every x€X there is a production in P with left side (x, s). Now the state
grammar
G, = (2’, A’ S'a :H: ’ [l9 sO]a P’)

is constructed in the following way.
r={0,1,#}U4,
S ={0:0=i=nXS,
P = PFUPRUP,, where
B = {0, [0, s]) ~ (4, [0+, s]): 5€8,,0 = i <n},
B = {(1L[0,sD) ~ (o), [4 5T): (xi, 8) = (u, 5")EPY,
By = {(3,[4 s) ~ (o), [, 5'1): (3,5) ~ (u,5')EP}.

One can see that for every s€S and every wéZX* a derivation (4, s5) =G-n*(w,'s)
holds iff (3, [, 5o]) ="(9 (W), [4, s]) holds. Since ¢ (w)=w if we4*, we obtain the
desired equality L(G)=L(G"). O

)

To conclude this section let us remark that it remains an open question whether
the number of nonterminals (three) in Theorem 5 is minimal.

COMPUTING CENTRE
TECHNICAL UNIVERSITY
OBRANCU MIRU 21
BRNO
CZECHOSLOVAKIA

A. JOZSEF UNIVERSITY
BOLYAL INSTITUTE

ARADI VERTANUK TERE 1.
6720 SZEGED

HUNGARY

References

[1] Dassow, J., Comparison of some types of regulated rewriting. Technological University Magde-
burg, Department of Mathematics and Physics, Technical Report SMA 58/83 (1983).

[2] Dassow, J. and PauN, G., Further remarks on the complexity of regulated rewriting. Technologi-
cal U?iversity Magdeburg, Department of Mathematics and Physics, Technical Report SMA
70/83 (1983).

[3] Kasal, T., A hierarchy between context-free and context sensitive languages. Journal of Computer
and System Sciences 4 (1970), 492-—508.

{4] KrepN, H. C. M., Sclective substitution grammars based on context-free production. Ph. D. The-
sis, University Of Leiden (1983).

[5] SALOMAA, A., Formal languages. Academic Press, New York 1973.

[6] VERMIER, D., On structural restrictions of ETOL Systems. Ph. D. Thesis, University of Antwerpen
(1978).

(Received July 2, 1987)

2¢

A note on the generalized v,-product

B. IM};}_EH

A hierarchy of products was introduced in [1}. This hierarchy contains one kind
of product, the v;-product, for every positive integer i, and the work [1] deals with
the isomorphic completeness with respect to the v;-products. As regards another
representations, the metric representation was studied in [6], [8]. The work [6] con-
tains the characterization of the metrically complete systems with respect to the v;-
products. In [8] it is shown that the v,-product is metrically equivalent to the general
product. The works [2], [3], [4], [5] are devoted to the investigation of the homomor-
phic representation. In [3] and [4] some special compositions of the «y-product and
v;-products was studied and it is proved that these compositions are just as strong as
the general product with respect to the homomorphic representation. The work [5]
deals with the commutative automata. It is shown that there are finite homomorphi-
cally complete systems with respect to the v,-product for this class. In [2] the hier-
archy of the v;-products was investigated. It is proved that this hierarchy is proper
as regards-the homomorphic representations. Finally, the work [7] compares the iso-
morphic and homomorphlc representation powers of a;-products and v;-products.

In this paper, connecting with the work [1]), we give a sufficient condltlon for
a system of automata to be isomorphically ‘S-complete with respect to the generalized
v, -product. This condition is a special case of condition (2) of Theorem 2 in [1], but
the construction of the automata from these systems is simpler than the general
construction given in [1]. Since our work is closely related to [1], we shall use its no-
tions and notations. :

Our result is the following statement.

Theorem. A system X of automata is isomorphically S-complete with respect to
the generalized v, -product if X contains an automaton which has a state a and input
word g such that the states a, ag, ..., ag°~! are pairwise different and ag*=a for
some integer s> 1.)

Proof. Let us assume that X satisfies the condition. Then without loss of general-
ity we may suppose that 2 contains an automaton A which has a state a and input
word g such that a, ag, ..., agP~! are pairwise different, aq =a, and p is a prime
number. Let us denote by 0,1, ..., p—1 the states a, ag, ..., ag”~ 1. respectively.
Depending on p, we shall dlstmgulsh two cases.

248 B. Imreh

Case 1. Let us suppose that p=2. By the proof of Theorem 2 in {1}, it is enough
to prove that for any n=3 the automaton T; can be simulated isomorphically by
a generalized v, -product of automata from Z, where T,=({t,, t,, ts}, {0, ..., n—1},8;)
and

thk)=k+1(modn) (k=0,...,n-1),

$,0) =1, ,(1) =0, () =k (k=2, ..., n—1),
1,0) = t,(1) =0, t;(k) =k (k=2, ..., n—1).

Now let n=3 be an arbitrary fixed integer. Let us take an integer k for which
2%+ 1=n holds and denote by m the number 2*+ 1. Form the generalized v,-prod-
uct A"(X, ¢,y) where

X={x;, %, x}U{y: 0=t =m—1}
and the mappings y and ¢ are defined in the following way:
y()={t—-1(modm)} (t=0,...,m—1),
0,0, x)=q, 0,1, x)=¢* (t=0,..,m-1),
0,0, x)=0,(1,x))=¢q* If 0=t=m-3,
¢,0,x) =0 (L, x5)=q if m=3<t=m-1,
0,0, %) =¢% o,(1, x;)=¢q if t#=m-2,
Pm-2(0, X3) = ¢, @m-2(1, X3) = ¢,
g if 1=},

0.0, y)=¢% o,(1,y) = {q2 otherwise (j=0, ym—1; t=_ 0,...m-1)

Take the mappings:
: 0 —(0,0,..1),
proot
m—1-(1,0, ..., 0),
tl - xin—2, .

T by > Xo V1o Ym—-3Vm-1Vm—2-+-Y1Vm-1»
I3 > YoY1-+-Ym-3Xs-
Now we show that T, can be simulated isomorphically by A™(X, ¢,y) under
p and 7. Indeed, the validity of the equations u(6;,(J, 1))="0an(u(j), ©(1))
(=2,3;j=0,...,m—1) follows from the definitions. To prove the validity. of
the equations u(5,,(J, 1,))=0am(u(/), t(t)) (j=0,...,m—1) let us observe the
following connection. If

(45 --os Uy_1)E{0, 1} and
Sam ((Uos «vs Upm—1)s X1) = (Vgs « vy Upmey)

A note on the generalized v,-product 249

then
U = 5A(un (pt(ul-l(modm), xl)) =
= Uy Gle-1tmoam 310D = gty 0qmy+1 (mod 2)

holds for any O=t=m—1. Now let us denote by (v§°,...,v(;) the state
Sam((to ..., Um_1), x}). Then using the above connection, by induction on s, it can
be proved that

s
o = 1-|-Jé'J (j] U j(moam(mod 2) (1=0,...,m—1).

‘ k
On the other hand, it is known that [[;) =0(mod p)(j=1, ..., p*—1) holds for any
prime p=>1 and integer k= 1. Using this, by induction on j, one can show that

1y, . .
; (-1 =1(modp) (j=0,..,p*=1).
From this, by p=2, we obtain
k—
(2 i I]E 1 (mod 2) (G=0,..2*~1.

Now let 0=i=m—1 be an arbitrary integer and let us denote by (cq, ...s Cp—1)
the state pu(i). Then : .

{l if t=m—i-1,
¢ =

) t=0,..,m-=1.
0 otherwise, (0 m—1)

Let (cg, ..., Cy—1) denote the state Sam((c, ..., Cp—i), X' ~2). Then, by the above
equality for v{®, we obtain that .

2k—1

2k—1
C" = l"l‘ 2' l j]ct—j(modm) (mod 2) (t = 0, veey m—I).
j=0 .

If t=m—i—2(mod m) then from the definition of ¢, it follows that ¢,_ ,imeamy=0

(j=0, ..., 2*—1), and 50, Cp—i-s(moam=1. If tm—i—2 (mod m) then among the

elements ¢, jimoam (/=0, ..., 2¥—1) one and only one is different from 0, and so,
k .

k_
2 . I)El (mod 2) this

c,’=1+[2 Tl (mod2) for some O0=j=2—1. Since J

implies the equality ¢, =0. Summarizing, we obtained that

« ={(1) ;fth:rwisr:, i=2 (modm), . (t=0,..,m=1).
Now let us observe that (cj, ..., cj—)=pu(i+1(mod m)) and so,
2 (05 G, 1)) = p(i+1(mod m)) = (c§, ..., Clpy) = Sam((Cos -+vs Cpr)s X7~ =
= Sam((u(@), T(t)

which completes the proof of the Case 1.

250 B. Imreh

Case 2. Let us suppose that p>2 and let n=3 be an arbitrary fixed integer
again. Let k be an integer such that p*+1=2n and, let s=p*+1 and m=s/2.
Form the generalized v,-product A’(X, ¢, y) where

X={x,..xJU{: 0=r=s-2}U{y,,z: 0=r=s5-4}U{w,: 0=r=5-1}

and the mappings y and ¢ are defined in the following way: for any t€{0, ..., s—1},
Jje{o, ...,p—1}, r€{0, ..., s—1}

(1) = {t—1(mod 5)},
e, x) =g if 0=j<p-1, o(p—1,x)=g"

0,y x2) = q?=1 if t€{s=3,5-2,5—1},0,(j, %) = q° if O=t=<s=3,
¢5-3(0, x3) = ¢ @,(J, x3) = ¢° otherwise, |
0s—o©, x) = ¢, 9,{j, %) = g° otherwise,

olp—1,x)=¢q if t#0 and ¢, x;) =qg? otherwise,
o(p—1,x)=¢q if t€{s—2,s—1} and ¢,(j, xs) = g° otherwise,
@0, x)=¢g""t if t= s—3 and 0,(j, x;) = q° otherwise,

if t=s-1,
¢, (p—2,x5) = {q

& i ts—1 and ¢,(j, xs) = g¢° otherwise,

0,y = {Z:_lot;iwéi;r and j=p=L o . s-2),
0. (j, v) = {gi i;h::vi:e’ and j=p=2, (r=0,..5-4),
Catha=fh, Lo I o,
.G, w) = {g:—zotlilirvii:,r and j=p=2, (r=0,..,s5-1).

Take the mappings:
0 ~(,0,0,..00,p-1),
"1 =(0,0,0, ..., p—1,0,0),
m—1-(0,p—1,0, ..., 0,0,0),
tl - x%(?k—l)’

T Iy~ Xp Yoo Ys—aWoe - Wy g X3Xq Us—q.-. Vg X5 Vo2 X
t3 - yo...ys_4x7‘vs_.2“’ _1W0...Ws_4zs_4...20xs.

A note on the generalized v,-product 251

Now we shall show that the automaton T,, can be simulated isomorphically by
AS(X, ¢, y) under g and .

The validity of u(8,,(J, 1))=0as(uC/), (1)) (I=2,3;j=0,...,m—1) can be
checked by a simple computation. To prove the validity of u(6,(J, &)=
=6as(1(j), (1)) let (uy, ..., ts_1)€{0, ..., p—1}° be arbitrary and let us denote by
@, ..., u,) the state Sas((up, ..., Us—y), x]) for arbitrary integer r=1. Then.

ut(l) = 5A(il,, (pt(ut—l(mods)a xl)) = utq(p—l—u"“}“"d'))(mc’dp) = ut_ut-;l(mods)'— 1 (mOd p)'

Using this, by induction on r, it can be proved that

r

uN =—14 3](— 1) ty jtmoasy(mod p) (¢t =0, ...,5—1)

j=oYJ

Now let i€ {0, ..., m— 1} be arbitrary and let us denote by (¢y, ..., €5—1), (€55 -+-5Co-1)s

(Co» -..» Cs—_y) the states pu(i), Sas(u(@), xF*~D), das(u(), x}#*-V), respectively.
Then from the definition of u,

¢ = {p—l if t=s-2i—-1,

0 otherwise. (t=0,...,s—1).

Consider the state (¢}, ..., ¢._;). By the above equality for u{”, we obtain that

’ PGl pk—l - ‘
o =—1+ Z(') (j](— 1) ¢,- jmoasy (mod p) (¢ =0,...,s—1).
J=

If t=5—2i—2 (mods) then from the definition of ¢, it follows that ¢,_jimean=0
(j=0, ..., p*—1), and s0, € _si—s(measy=P— 1. If t##5—2i—2 (mod s) then.among
the elements ¢, jimoas) (=0, ..., p*— 1) exactly one element is different from 0 and

k_
this element is equal to p—1, and so, c;=—l+(p j IJ(— 1)/ (p—1) for some

k__
0=j=p*—1, From this, by (p j 1] (=1Y=1(mod p) (j=0, ..., p*—1), we obtain
that ¢;=p—2. Therefore

, (p—1 if t=s5-2i-2,

“= {p—2 otherwise, (t=0,...,s-1).

Now consider the state (G, ..., Cs—1)-

=143 (P ye =0,..,5—1
G = + 2;] () ct—j(mods) (mOd P) (t =Y.,)‘
=

If t=5—2(i+1)—1(mod s), then ¢,_;measy=P—2 (j=0, ..., p*—1). On the other
k__
hand [p j-1] (=1)=1(mod p), and so, we obtain that &_s;+1)—1(moasy=2— 1.

If t#s—2(@i+1)—1(mods) then among the elements ¢;_jmoas) (/=O0, ..., p*—1)
exactly one element is different from p—2 and this element is equal to p—1. From

252 B. Imreh: A note on the generalized v,-product

k—- .
this, by [p j 1)(— 1Y=1 (mod p) (j=0, ..., p*—1), we get that ¢=0. Therefore,

) ={p_1 if t=s5-2(i+1)—1 (mods), (t=0,..,5-1)

0 otherwise,

~ Observe that (&, ..., &_;)=u(i+1(mod m)), and so,

1(0m(i, 1) = p(i+1(mod m)) = (&, ..., E—y) = Sas(u(i), x3¢*-V) =
= as(u(@), t(1y))

which completes the proof of Case 2. This ends the proof of our Theorem.

DEPT. OF COMPUTER SCIENCE
A. JOZSEF UNIVERSITY

ARADI VERTANUK TERE 1.
SZEGED, HUNGARY

H—6720

References

11] DoMost, P. and IMREH, B., On v;-products of automata, Acta Cybernet., 6 (1983), 149—162.

[2] D6Mbst, P. and Esik Z. On the hierarchy of Ve products of automata, Acta Cybernet 8(1988),
253—258.

[3] EsIK, Z., Loop products and loop-free products Acta Cybernet., 8 (1987), 45—48.

[4] Esik, Z. and GECSEG F., On a,-products and a,-products, Theoret Comput. Sci., 48 (1986),
1—8.

[5] GEcseg, F., On v;-products of commutative automata, Acta Cyberner., 7 (1985), 55—59.

[6] GEcseg, F. Metric representations by v,-products, Acta Cybernet., 7 (1985), 203—209.

[7] GEcskg, F. and IMRER, B., A comparison of ¢,~products and v,-products, Foundations of Control
Engineering, 12 (1987), 3—9.

[8] GEcskg, F. and IMREH, B., On metric equ1valence of vi-products, Acta Cybernet., 8 (1987),
129—134.

(Received July 10, 1987)

On the hierarchy of v,-products of automata

P. Domost and Z. Esik

In order to decrease the feedback complexity of the Gluskov-type product of
automata, a hierarchy of products was introduced by F. Gécseg in [6]. This hier-
archy, referred to as the «;-hierarchy, contains one product concept for each nonne-
gative integer i. The oy-product is also known as the loop-free product, the series-
parallel composition or the cascade composition [11, 1, 13]. Another hierarchy, the
v;-hierarchy appears in [2], where i is any positive integer. Using the main result of
[3] it has been shown in [5] that for homomorphic realization the o;-hierarchy col-
lapses at i=2. One of the aims of the present paper is to show that the v;-hierarchy
is strict. For some classes of automata even the v,-product has a surprising power.
This has been demonstrated in [2] for the first time and then in [7, 4). In fact there are
classes of automata for which the v;-product is much stronger than the «,-product.
- In this paper we prove that the opposite can also be true for some classes.

An automaton is a system A=(4, X, §) with finite nonempty sets 4 and X,
the state set and the input set, and transition é: AX X— A. The transition is also
used in the extended sense, i.e. as a map 6: AX X*~A where X* is the free monoid
of all words over X. Let A;=(4;, X;,d;) (j=1,...,n,n=0) be automata, and
take a family of feedback functlons

0;: A1>< XAXX ~ X;
(j=1, ...,n), where X is a new finite nonempty set of input letters. The Gluskov-

type product (cf. [10]) of the automata A; with respect to the feedback functions ¢;
is defined to be the automaton .

Ay X XA(X, @) -
with state set A=4;X...X 4,, input set X and transition given by
pr,(5(a, x)) = 8,(pr;(a), ¢;(a, %)),
for all acA4, x¢X and 1=j=n. The Gluskov-type product is also called the general

product, or g-product, for short. Let i=1 be any integer. Following {2], the above
defined g-product is called a v;-product if for every integer j=1, ..., n there is a set

254 P. Démosi and Z. Esik

v(j)EAL, ..., n} with cardinality not exceeding i such that each feedback function

(pj(ah cery Qps x)

is independent of any state variable @, with k({v(/). For the definition of the «;-
products see [6, 8].
Let 2 be a class of automata. We shall use the following notations:

P,('):=all g-products of automata from %"

P, () :=all «;-products of automata from %",

P, (o) :=all v;-products of automata from %"
S(o¢):=all subautomata of automata from J¢;
H(¢"):=all homomorphic images of automata from 7.

In the sequel we shall also make use of a few simple facts.

Lemma 1. For every class ¢, HSP, () is the smallest class containing 2" and
under the operators H S and I’ i

[238) [341w a0l 2%, Qi &

e
)
(2]
(¢
a

The proof of Lemma 1 can be found in [8]. We note that a similar statement is
true for the g-product.

LemmaZ Let A=A;X...XA,(X,9) be a v;-product of automata A~—'

=(4;, X;, 3;). Let n be a permutation of the set {1, ..., n}. There exists a v; -prod-
uct A =A,1)X ... X Army(X, ¢”) which is isomorphic to A, an isomorphism A—A’
is the map (a1, ..., @)>(Gzays s Gum) (@15 ..., @IEAX ... X A4,).

Lemma 3. Let A=A;X...XA,(X, ¢) be a v;-product with n=1 and compo-
nents A;=(4;, X;, ;). Let B=(B, X, d) be a subautomaton of A, j,€{l, ..., n}
a fixed integer and a€4;,. If pr; (b)=a for all b€B then there is a v;-product
A=A X ... XA _ IXAJOHX XA,,(X (p’) such that A’ contains a subautomaton ’
B’ isomorphic to B, an isomorphism B~B’ isthe map (a;, ..., @j,—1, @, Gjy415...5 G}
»—»(al, ooy Qjom1s Qjgars oes Q)

We are now ready-to state.our main result

Theorem. There exists a class o of automata such ~ that "HSP, (o)C
CHSP, , (#)<HSP, () holds for all i=1..

Proof. Let p be a prime number. We deﬁne an automaton D,=(D,, {x,y}, 9)
as follows: :
D,={0, ..., p},

. j+1 mod if j<p,
5(”x):{1 ? if §=§

8(,y)=p, JED,.
Let A= {Dpl p is a prime}. We set out to prove the followmg properties of J¢".
(1) HSP,(A")SHSP, (1),
(2) HSP, (X)cHSP, (&) for all. i=1.

Vil

Vi+l

On the hierarchy of v,-products of automata 255

Supposing (1) and (2) have been shown, the proof is easily completed. Since
HSP,, (#)& HSPg(Jif) holds obviously, from (1) we have HSP, (X)S
CHSP, (%), which in turn implies HSP,(#)CcHSP, (X) by (2). Thus
HSP, (.%’)CHSP () for all i=1.

Proof of (1). For every prime number p, define Cp='(C,,, {x}, 6) by
C,={0,..,p-1},
6(j, x) = j+1mod p, jeC,.
Moreover, let E=(E, {x,y},6) with E={0,1}, 6(0,x)=0, &(0,»)=6(l, x)=
=6(1, y)=1. Thus C, is the counter with length p and E is the elevator. Set
H"={C,lp isaprime}U{E}.

From the proof of the main result of [5] we have HSP,(:#)=HSP, (4~). To énd
the proof, by Lemma 1, it suffices to show that /& HSP (). 'lhat is however -
obvious for we have CPES({DP}) and E€H({D,})), each prime number p.

Proof of (2). Let i=1 be any integer and m= [] (p;| j=1, ..., i+1), where p; is
the j-th prime. Define M=(M, {x, y}, 6) to be the automaton with
M={,..,m},
j+1mod m if j<m,
00, %) = { if j=m,

j+1modm if O<j<m,
Y)_{ if j=0 or j=m,
for all je M. We prove that M¢ HSP, (") while McHSP,, (X').

Assume that, on the contrary, McHSP, (X). Let
D, X...XD, ({x, ¥}, ¢)

be a v;-product of automata from " that contains a subautomaton A=(4, {x,y}, 6)
which is mapped onto M under a suitable homomorphism 4. We may choose n'to be
the least (positive) integer with the above property, i.e. if a v;-product of automata
from o contains a subautomaton that can be mapped homomorphically onto M
then the number of factors of that product is at least n. Also, the subautomaton A can
be chosen such that none of its proper subautomata is mapped homomorphically
onto M. :
Let us write A as the disjoint union A=A4,U4, where A,=h~Y(M—{m})
and A,=h 1({m}) Let a€A, be a state. Since a is a generator of 4, if pry(a)=gq;
for an integer j=1, ..., n, then pr;(b)=gq; for all b€ 4. By Lemma 3, there exists
a v;-product
quX XD‘IJ-I-XDQAH-LX Xan({x, y}’ (P,)

that contains a subautomaton 1somorphlc to A. This contradicts the minimality of ».
Thus pr;(a)#=q; forall aEA0 and j=1, ..., n. Suppose now that thereis an ac4,-
such that for all Jj=1, ..., n we have pr; (a);:fqJ Let beA, beastate and u€ {x, y}*

256 . P. Démési and Z. Esik

a word with 6(b, ¥)=a. Let v=x* where k denotes the length of . We have c=
=6(b, v)€ Ay, henceforth pr;(c)>q; for all j=1, ..., n. The special structure of the
automata D, guarantees that a=c. This contradlctlon yields that for every a€ A4,
there is an 1nteger J(1=j=n) with pr;(a)=g;.

Let ay=(ag,15 ---» Go,n)s -++> Gq— 1_(aq ~1,15 -+-» Gg—1,,) be all the states in A4,, so
that q, ;#g;, 0=1= q-—1, 1= j=n. By the mlmmahty of A and the special structure
of the automata D, it follows that the letter x induces a cyclic permutation of the
states a,, say 6(a,, X)=0,41moaq- Also g is the Le.m. of the primes ¢, ..., g,.
Since h is a homomorphism of A onto M, we have ¢=0mod m. Without loss of
generality we may suppose 8(a,, ¥)=a€ A,. Thus pr;(@)=gq; for some;j. By Lemma
2, we may take j=1. Since pr,(@)=¢, we must have ¢,(qy,y)=y. Let v(l)=
={ji1,.--»Ji}» so that k=i. Define g to be the Lc.m. of the primes on the list
djys s 4j,- Obviously then g=0 mod g. Since m is the product of i+1 distinct
primes and q is the product of at most i distinct primes, from q =0modm and ¢g=0
~mod g we obtain g<gq. Let us now consider the state a,=(a; 4, ..., d;,). For every
I=1, ...,k wehave é(a, ;,, x0)=ay, ;#q;,- Since g= 0'mod q,, we see that a; ;=

ao j;- Since we have a v;-product it follows that ¢@,(a;, y)=¢1(a,, y)=y. We
conclude d(a, y)EA1 Since h is a homomorphism of A onto M we see that g=0
mod m. This is however clearly impossible for m is the product of i+1 distinct
primes and g is the product of at most i distinct primes.

We still have to show that McHSP, (%"). For this define the g-product

. A=(4,X,6) =D, X..XD,,,.({x, ¥}, 0)
y
‘Pj(ala s Qg1 X) = X,

_y if aa=..=a;,,=0,
@;(@rs sy 415 ¥) = {x otherwise.

Since the number of factors is i+ 1, this g-product is also a v;,,-product. Define
Ao = {acAlprj(a) # p; forall j=1,..,i+1},
Al = A "'Ao.

Foran a=(ay, ..., a;41)€ 4, let h(a)=t bethat mteger O=t<m with t=a; modp;,
j=1,...,i+1.If ac A, put h(a)=m. The mapping k is easily seen to be a homo-
rnorphlsm ofAontoM. O

. Remark. It is said that an automaton A=(4, X, §) satisfies the LetiCevskii
- criterion if there exist a state a€ A, input letters x,, x,€ X and words u,, u,€ X*
with -6(a, x;)#d(a, x;) and d(a, x;u)=0d(a, x;u,)=a. If only 6&(a, x,)#d(a, x,)
and é(a, x;u)=a hold for some a€Ad, x;,x,€X and u€ X}, we say that A satisfies
the semi-Letievskii criterion. The above definitions extend to classes of automata:
a class o satisfies the LetiCevskii criterion or the semi-Letievskii criterion if one
of its members satisfies it. By a classical result in [12], HSP, (") is the class of all
automata if and only if o satisfies the Leti¢evskii criterion. It has been shown in
[3] that the same is true for theé a,-product. If 2 does not satisfy the semi-Leti-
Cevskii criterion then, by the proof of the main result in [5], HSP,(4)=HSP, (X).
Also HSP, (4)=HSP, (/) in this case as shown in [9]. Suppose now that %

- On the hierarchy of v;-products of automata 257

satisfies the semi-Letidevskii criterion but does not satisfy the Leti¢evskii criterion.
In [5] it is proved that for every such 5 we have HSP,(#)=HSP, (X). The v;-
products behave quite differently. The class 2" given in the proof of our Theorem
satisfies the semi-Letidevskii criterion but does not satisfy the Leti€evskii criterion,
moreover, there exists no integer i=1 with HSP, (4)=HSP, (o).

Open problems. (1) Suppose that & satisfies the Letievskii criterion. Does
there exist an integer i=1 with HSP,(#)=HSP, (:)? (2) Does there exist an
integer i=1 such that HSP,(X)= HSPW(J() whenever A satisfies the Leti-
Gevskii criterion? What is the least such i, if it exists?

INSTITUTE OF MATHEMATICS
L. KOSSUTH UNIVERSITY
EGYETEM TER 1

4010 DEBRECEN

HUNGARY

BOLYAI INSTITUTE

A. JOZSEF UNIVERSITY

ARADI V. TERE 1

6720 SZEGED .
HUNGARY

References

[1] ArBiB, M. A. (ed), Machmes languages and semigroups, with amajor contribution by K. Krohn
and J. L. Rhodes, Academic Press, 1968.
[2] DomSst, P. and IMREH B, On v,-products of autcmata, Acta Cybernetica, 6 (1983), 149—162.
[3] Esik, Z., Homomorphlcally complete classes of autcmata with respect to the a,-preduct, Acta
Sci. Math 48 (1985), 135—141.
[4] Esik, Z. Loop products and loop-free products Acta Cybernetlca 8 (1978), 45—48.
[5] Eer Z. and HorvATH, GY., The a,-product is homomorphically general, Papers on Automata
Theory, V (1983), 49—62.
[6] GEcsEa, F., Composition of automata, 2nd Colloq. Automata, Languages and Programming,
1974, LNCS 14 (1974), 351—363.
[7) GEcseg, F., On v, -products of commutative automata, Acta Cybernetica, 7 (1984), 55—59.
[8] Gecseg, F., Products of automata, Springer Verlag, 1986.
[9] GEcseg, F. and IMrEH, B., On metric equivalence of v-products, Acta Cybernetica, 8 (1987),
129—134. .
[10] GLuSkov, V. M. [Cnymxos, B. M.], A6crpa1m-ra;r TeopHsd aBTOMaTOB, Ycnexu MateMm. Hayk,
16:5 (101), (1961), 3—62. :
[11] HarT™MANIS, J. and STEARNS, R. E., Algebraic structure theory of sequential machines, Prentice-
Hall, 1966.
[12] mewsxn A.A. 1 e'rn'lencrmﬁ A. Al VYcnosus moHOTBEL it KOHEYHBIX aBTOMATOB,
Xypuan Bera. Mat. u Mar. ®u3,, 1 (1961), 702—710.
[13] ZeiGer, H. B., Cascade synthesis of finite state machines, Information and Control, 10 (1967),
419—433.

(Received March 7, 1987)

On ranges of compositions of deterministic root-to-frontier tree -
transformations o

Z. FuLop and S. VAGV6L0Y1

' o - 1. Introduction

In [3] we have proved that QR2=PR" for every n=2 where PR is the class
of all deterministic root-to-frontier tree transformations. This result motivated us
for examining whether the set S={9%, /DR, DR, LN DR, H, N K, LH}
generates, with composition o, a finite or infinite set-of tree transformation classes.
Here 2 is the class of all homomorphism tree transformations, moreover the linear,
nondeleting and linear-nondeleting subclasses of a class are denoted by prefixing the
class by &, # and LA, respectively. We note that the enlargement of S by LA #
has no effect on the generated set [S]={Ajo0...0oH,n=1, H;€S for 1=i=n}
since, for each €¢€S, Go LN H =L N H o€=F.

In Theorem 12 of {3} we obtained a characterization for the set [S], by means
of which we proved that [S] is infinite if and only if the h1erarchy {(,SP./V @%om H)"}
is proper, which was shown in [6].

In this paper we examine the set of surface set classes [S](.%ec) {¢ (%ec)l(g €[S1}
as well as the set-of classes of tree transformation languages yd([S](%ec))—
={yd(T)|T€[S](Rec)}. (Rec is the class of all recognizable forests and yd is the
operation “taking the string formed by the leaves™ for trees.) We show that, although
{SD), &), as a poset, contains unrelated classes, [S](Z%ec) forms a chain with respect
to inclusion with least element Zec and greatest element DR (Aec). We also prove
that, in this chain, /9% (Zec) is properly contained in D% (ZRec) while the problem
whether [S](Zec) is finite or infinite remains open. However, we show that the chain
(yd ([S 1 (.%ec)) > consists of exactly three elements.

2, Prellmmarles '

This paper is sequel to [3] and [6]. For notions and notations the reader is advised
to consult with these works. Here we recall only the main results of [3] and [6] and
introduce the terminology-used exclusively in this paper.

We specify a special function symbol € of arlty 0 which either belongs toa ranked
alphabet F or not. ,

3 Acta Cybernetica 8/3

260 Z. Filop and S Vagvolgyi

If pe T is atree then the yield yd(p)S Fy of pis defined inductively as follows:

(a) for p€F,, yd(p)=424 if p=¢ and yd(p)=p otherwise;

) for p=f(p1, ..., Pm), With fEF, and py,..,p,€Te, yd(p)=
=yd(py)...yd(pn)-)

We call the attention of the reader not to confuse yd (p) with fr (p) defined in [3]
and [6) and called the frontier of a tree p.

Subsets of T are called forests. If TC Ty is a forest then yd (T)={yd (p)|p€ T}
and, for a class 7 of forests we put yd (7)={yd (T)|T€T}.

In [6) we defined the set of paths path (p)SN* for a tree p€T(Y). Here we
shall consider two distinguished elements, the longest leftmost path lip (p) and the
longest rightmost path Irp (p) of path (p) which are defined in the following way:

(@) if pcYUF, then llp (p)=Ilrp(p)=4,

) if p=f(py, ..., p) for some m=1, f€F, and p,,. ,p,,,ETF(Y) then

llp (p)=1 lip (p,) and Irp (p)=n1lrp (,). :

Let t&TpXT; be a tree transformation. The range ¢ of 1, deﬁned as usual, is
denoted by ran (1). Let TS Tr be a forest. The image 1(7) of T under 7 is the set
{9€T5I(p, g)€T for some pET).

For a class ¥ of tree transformations and a class J of forests we set
ran (%)= {ran (7)|1€¥¢} and ¢(J)={t(T)|t€¥ and T€cT}.

‘ We denote by Zec the class of all recognizable forests (c.f. [4]).

Again, let % be a class of tree transformations.

The class of surface sets of € is the class € (%«c) of forests, moreover, the class
of tree transformation languages of € is the class yd (% (Z%ec)) of languages.

If t&TeX T is a tree transformation then the tree-to-string transformation
underlying © is T,={(p, yd (@)p, 9)€1}. Thus 71,ETFXG:. Analogously,
for a class € of tree transformations we define = {7,|t€%}. ‘

We recall that the composition %,0%, of two tree transformation classes was
defined in the order “first %, and then %3 (c.f. (3], [6]). Thus we have (%,0%2)y=
=%,0%s and, for any class 7 of forests yd (%,(7))=%1s(T).

Let {¢,n=1,2,...} be a set of classes. We say that {%,In=1,2,...}, or {%,}
for short, is a hlerarchy if €,5%,+, for each n=1. This hierarchy is proper if
(g C%n+l

Now we introduce some technical details which, hopefully, make easier to under-
stand the proofs in this paper.

Consider a DR transducer U=(F, 4, G, P, a;) and a rule af(x,, ..., x,)—~
—g in P. In this paper ¢q is considered as an element of T(4X X,,) rather than
T6(A(X,)). This is important when speaking about the height 4(g) of the right-hand
side of a rule. (For the definition of height, see [3] or [6].) Moreover, we extend yd
for the elements T5(AXX,) as follows: yd(q)=q if g€AX X, and otherwise
yd (q) is defined in the same way as if ¢ were in T, see above. Thus if g is the rlght-
hand side of the above rule then yd (q) can be written in the form wy(ay, x;)w;..

..y, x;)w, for some n=0, w,, ..., w,€Gs, a,...,a,64 and x;, ..., x;, GX .

The' length of a string w will be denoted by |w]. The following abbrev1ated nota-
tion will also be used. Let F and G be disjoint ranked alphabets, let f€F, with
m=0 and w€G§ with w=a,...q, for some a, ..., a,€G,. For any partition w=
=w...w, (n=0) of w the notation f(w,, ..., w,) stands for the tree f(a;, ..., a,)€

€Trye-
Finally we restate the main results of [3] and [6].

On ranges of compositions of deterministic root-to-frontier tree transformations 261

Denote the set {2R, N DR, LDR, LN DR, H, N H,LH} of tree trans-
formation classes by S. The set of all tree transformation classes generated by S
with composition o is [S]={X}0...0 |n=1, H€S for 1=i=n}.

Let us introduce, for each integer k=0, the class %, of tree transformations as
follows:

@) =S N DR,

1) G o1=Co N H if kis éven and €, ,,=60 LA DR if k is odd.

Moreover, consider the two finite subsets S, and S; of [S] defined by

= SU{PR* LDRN K, FDR:, LDRON DR, H o N DR,
LDRN DR, LN DRoH '}
and

So={H,NH,LH LDRNH, LN DR H}.

Proposition 2.1. (Theorem 12 of [3].) For each €¢[S] one of the following three
assertions holds:
(l) (gE Sl.’
(ii) =%, for some k=0,
(ili) =% 0%, for some ¥’€S, and k=0.
By this proposition, [S] is infinite if and only if the hierarchy {%,} is proper.
Then, in [6] we obtained the following result.

Proposition 2.2. (Theorem 3 of [6].) {%,.1lk=0, 1, ...} is a proper hierarchy.

Notice that it follows from Proposition 2.2 that {&,} is also a proper hierarchy.
This can easily be seen by using the identities LN DR LN DR=L N DR and
NHONH=NH.

3. The results

First we examine the set of surface set classes [S](Zec)= {6 (Rec)|€€[S]).
We have the following result.

Theorem 3.1. The poset {[S](Zec), &) is a chain which can be written in the

following form:
Rec SN H (Rec) SN HoCy(Rec) SN H 0C (Rec)... EN DR (Rec) EDR(Rec).

Proof. By Proposition 2.1, we have [S](Zec)= {6 (Rec)|€€ S} U (G (Rec)k=
Z0}U{€ 0% (Rec)|6’€S, and k=0}. Then, using the results DR*(Rec)=
=PR(Rec) (Theorem 1. 3. in [5]) and L DR (Rec)=LN DR(Rec)=L H (Rec)=
=%Rec (Corollary 1V.6.6. in [4]) as well as the identities LH oA # =4 and
NHoNDR=NDR ([3]) we can write

{(Rec)|CE S} = {Rec, N H (Rec), N DR(Rec), DR (Rec)},
{6(Rec)lk = 0} = {Rec, N H (Rec), N H by (Rec), N H o6, (Rec), ...}
and :
{€ 0% (Ree)| G €S, and k = 0} = {N H (Rec), N H 0Cy(Rec),
N HoC (Rec), ...}
obtaining all the elements of [S](Z%«c). For proving the inclusions stated in our
theorem we only have to observe that, since &/ 92% is closed under composition,

3.

262 Z. Fulop and'S. Végvolgyi

CEN DR and thus N H oG SN DR for each k=0. All the other inclusions
follow by definition. [

We can raise the question that which of the inclusion relations appearing in The-
orem 3.1 are proper. It is a folkloric result that RecC A # (Zec), moreover, it is
- also not difficult to see that A (Rec)C A # 0€y(Rec) which, in our paper, will
be a consequence of Theorem 3.6. The questions that whether the hierarchy
(N H oG (Rec)} of classes of surface sets is proper or not and that whether

D N H oG (Rec) CHN DR(Rec) are much more interesting and, at the same time,
k=0

difficult. These problems are still open. However, we obtained the following result:
Lemma 3.2. /DR (Rec) DR(Rec).)
Proof. We observe that, by Theorem 3.2.1 of [2], ran (2%)=2DR(Rec) and

ran (N DR)=HN"DR(Rec). Therefore it is sufficient to give a forest in ran (2%)
which is not in ran (& 2%).

Let us introduce the ranked alphabet F=F,UF,UF, where Fy={%}, F,=
={f1,fz} and F,={g}. Denote the balanced tree of type {g, 4} with height n by
t,. Then construct the tree ¢, from ¢, in the following manner: for each wepath (#,)
with |w|=n substitute the tree f,(...f;(#)...) for str(s,,w) in 1, where w=
=iy...i,. (We know that, for such a w, str(s;, w)=# and that 1=i, ...,i,=2.)
An example for the case n=2 of this construction can be seen in Fig. 1.

With this we achieved that each subtree of #, with root g has exactly one occurrence
in t,.

Next we take a function symbol f with arity 2 and two function symbols e and
h with arity 1. Let G=FU{e} and H=FU{f, h}.

There exists a DR transducer % such that ‘rm:{(e(p). f(p, (4)| p€TF and
n=[llp (p)|}, where h"(4)=# if n=0 and h"(#)=h(h""'(%)) if n=1. (Notice
that taS7¢X Ty, moreover that [llp(g)|=|lrp (¢)| holds whenever g€ran (ta).)

¥ % ¥

Figure 1.

On ranges of compositions of deterministic root-to-frontier tree transformations 263

In fact, the DR transducer the rules of which are listed below can be taken as 2. -

The initial state is a.
ae(x;) ~ f(bxy, cxy),
bg(x1, x5) ~ g(bxy, bx,),
bfi(x) ~ filbxy), i=1,2, by >~ &,
cg (1, %2) ~ h(cxs), cfi(x) ~ h(exy), i=1,2, ¥ — 4.

We show that ran (ta)¢ ran (/" 2£). For this, let us introduce first the abbre-
viation g,=g(,, h**(4)), for n=1. Then, since ta sends e(t,) to g, we have that
{g.ln=1, 2, ...}Eran (ta). -

Now suppose indirectly that there exists an NDR transducer B=(E, B, H, P, b,)
such that ran (tw)=ran (ts). Then also {g,ln=1,2,...}&ran (zg) therefore, for
each n=1,2, ... there exists a p,€Ty so that byp,=3 2> g,. We note that some of
these derivations may start with such a sequence of rules in which the height of the
right-hand side of each rule is 0. But, after dropping this sequence of rules from
each derivation we have that foreach n=1, 2, ... thereexistsa b,€B and a p,Esub(p;)
with b,p, 5 = g, such thaj each derivation starts with a rule, the height of the right-
hand side of which is greater than 0. Then we can choose an infinite subsequence
My, gy ooy My, ... OF 1,2, ..., n, ... such that the same rule, let us say bo(xy, ..., x,)
~q(byx,5 ---» byx;,) is applied in the first step of the derivations b, p,, > Gy, for
k=1,2,. ("I his, of course, entails that b=b, foreach k=1, 2,) Moreover,
without loss of generality, we may suppose ‘that qcTy,, and fr @=x1,...x,.

(For notations, see [3] or [6].)

We observe that the longest leftmost path (resp. longest rightmost path) of ¢
ends in x, (resp.x,) or, formally, str(llp(g),g)=x, (resp.str (Irp(g), g)=1x,).
For, if this were not the case then lllp (@)l (resp. |Irp (g,)1) would be a constant

for each k=1, 2, .
Next we show that X, —-x or, equivalently, #;=i,. On the contrary, assume
that i;<i,. Choose two 1ntegers k and / such that k<! and write the derivations

bpy, == qn, and bp, => g,, in more detailed form as

bp,, = ba(p®, ..., p®, ..., p®, ...,) 2> "
g(byp®, ..., b,pP) 2> g(g®, ..., ¢*) = q,,
and similarly
bp, = ba(p{®; ..., p®, . p(” e p,ﬁ'))%»

g(b.pf?, ..., b,pM 5> q(g?, ..., ¢P) = ¢,
These two derivations entail that .
bo(p®, ..., b0, ., 2O, o, PF) 2> q (g, ..., gP)

from where we see that q(g®, ..., ¢)cran (1) and thus, by . ran (ta)=ran (1s),

264 Z. Fuldp and S. Vigvolgyi

q(g®, "))Eran (ta). Then, by the note we made after the definition of 74,
|llp (q(q(") e GO =D (q(q(") .--sq$)|- On the other hand

[ip(g(gs®, -.., ¢)| = lip(g)| +llp(¢*)| = llip(gn)| = 2m+1 and
irp(q(g®, ..., ¢™)| = lep (@)l +Irp(gsP)] = lrp(gn)l = 2m+1, that is, m = .

This is a contradiction, since k<I.

Let us suppose that §;=i,=1.

Denote the number of states in B by IBI and let K=max {h(q)lq is the right-~
hand side of some rule in P}. Let the integer k be chosen and fixed such that n,>
> K(|B|+1).

Consider, from (1), the derivation b, p{® %> ¢{®. Since Irp () ends in x,, by the
definition of g,,, gi* contains only the function symbols h and § of H. But then,
since B is an NDR transducer and the arity of h is 1, the arity of the function symbols
occuring in p{® is cither 1 or 0.

Consider now the derivation b,p{®==> ¢f®. We state three properties of g{®.
Namely, by the choice of k, we have

(P1) h(gM)z2n+1-K>2-|B|. K
moreover, by the position of ¢ in g,

(P2) if wepath (¢f¥) is such that lab (@™, w) is f,, f or % then |w|>|B|-K
and, since ¢{" is a subtree of t,,,

(P3) each subtree of ¢{¥ with root g has exactly one occurrence in g{®.

Further on, we analyse the derivation b,p{M%>g{®. Therefore, consider the

following algorithm.

let i=0, ry=x,, b{®=b,, 5,=p®, my=1;
while r;=g{® do
begm
- search for the smallest integer jfor which r;(b{s,, ..., bY s,-)—%o r(bis, ..., b.s)
. holds. for- some m=0, réTy,,, s€Tz and bj, ..., bL€B such that m (r;)<
<rm (r); A . : L
let i=it1;
let ri=r, s;=s, m=m,ji=j
and bP=b] for 1=l=m
end

(Here ‘=i:> stands for the j-fold composition of the relation 5> .)

We note that the smallest integer jin the above algorithm can be found by rewrit-
ing simultaneously the subtrees b{?s;, ..., b@s;. (This simultaneous rewriting was
called parallel derivation in [2].)

Since each derivation of B starting from a state and an input tree terminates after
a finite number of steps our algorithm also terminates after, let us say, N steps.

Moreover, since b,p® 2> g{®, it holds that mN=O and ry=¢{®. Thus we can write

j
ro(b{Vsg)=> ri(bVsy, ..., b,(,}l’sl);;:..._—%»_r,,(bl"’s”, s DM sy) = g0,

On ranges of compositions of deterministic root-to-frontier tree transformations 265

We make the following observations. o S

Since we choose the smallest integer j in the while loop it holds that A(r)=
=i.K, for 1=i=N, therefore, by property (P1) of ¢{¥), we have that N>2.|B|.

Let i=|B|. Then, by property (P2) of ¢ we obtain that each tree of ry, ..., r;
contains only the function symbol g of H. Thus the condition rn (rp)<rn (r)=<...<
<rn (r;) entails that 2=m;<...<m;, hence, we get that m;>|B]|.

Then, for i=|B|, there is at least one state that appears at least twice in the se-
quence b{", ..., b, -

Since r,(b{s;, ..., b s) 2> g we obtain, by (P2) and h(r)=i-K=B.K,
that there is a subtree with root g of ¢{* which appears at least twice in ¢{*. However,
this contradicts property (P3) of ¢{*. With this we finished the proof of our lemma. 0O

We note that in the above proof we strongly used the fact that the output ranked
alphabet H of our counter-example 7y contains function symbols of arity 1. It is not
clear how this lemma could be proved if we restricted ourselves to ranked alphabets
that do not contain l-ary function symbols. ‘

_ Now we begin to deal with the poset (yd ([S]1(%¢c)),) where yd ([S](%<e))=

={yd (DT €[S1(Rec)). We observe that, since ([S](Zec), &) is a chain and yd
preserves inclusion, (yd ([S1(Zec)),) is also a chain. First we prove a technical
lemma.

Lemma 3.3, /" 2%.=DRys-

Proof. 1t is sufficent to show that 9%, SN PA,,. To this end take a DR
transducer U=(F, 4, G, P, a,) and denote the number of rules in P by |P|. Sup-
pose that the rules in P are numbered from 1 to | P|. ’ :

The following algorithm produces, for each i=1, ..., |P|, a function symbol .
f; and a rule g, for a DR transducer: .

(a) Suppose that the i-th rule is of the form af(x,, ..., x,;)~¢ where

geTe(AX X,). C o)

(b) Let yd (@)=wo(ar, x;)w1...(@,, X;)W, where n=0, 1=x;,..,x, =m,

Wos Wy, ..., W,€Gg.
(© Let {xj, ..., x;}£X, be the set of all variables which do not occur in ¢
. (and so neither in yd(g)). , o
(d) Let f; be a new function symbol with arity |wy]+...+w,|+n+k.
(e) Let g; be the rule :
af (X1, ooy Xp)>fi(Wo, @1Xsys .05 QuXi , Wys €Xj5 .0, €X;) where cdA4 is a
new state. (As usual, (g, x;) is abbreviated by a.x;, for 1=k=n.)
Now we introduce the DR transducer B=(F, AU {c}, F’, P’, a,) where

F'={fli=1,..,|P}JUFU{e} and
P ={oli=1, ..., 1P YU{cf (x1, ... Xp) =
= f(exyy ..., ex)m = 1, fEF,}U {cf — el f€ Fy)-
It can be seen from the construction that B is an NDR transducer. Moreover, it can
be verified by an induction on p that for each ac 4, pcTr and weGy,

(3g€ To)(ap 5= gAyd(q) = w) < (3g’€ Te)(ap 5> ¢’ Ayd(g)=w).

266 Z. Fulop and S. Vigvolgyi

It then follows that 7eyu=7s4s. Hence we have- 22, S A4 2%,,. O
Consequence 34, PN DRy=L DR,

' Proof. If W in Lemma 3.3 is an LDR transducer then B is an LNDR transducer
o
Consequence 3.5. DR, =N H o LN DR)ys- , -
Proof. 1t is well known that 9R=H#o L DR (cf. [1], [4]) thus we have
DRys=(NH LD R)ys=N H L DRys=N H LN DRyys=(N H LN DR) s
Now we are ready to state our last theorem.) , "
Theorem 3.6. The poset {yd ([Sj(.%’ec)), C) is a chain of three elements . '
yd (Bec) C yd (./V H (Rec)) C yd (2R (.%ec)). .
Pmof By Corisequence 3.5, we can compute as follows:

yd (./ijo%(.%ec)) yd (.M;fog./tf@.%(.%w)) (N H LN DRy (Rec)= @%,,s(.%u)_
=yd (2%(Rec)). Thus applying yd to each element of ([S](%<c), &) we obt-
ain the chain yd(%ec)Syd (N (Rec))Syd (DR (Rec)). Here each mclusmn is
proper as it was shown in [2]. O

Finally we have the consequence mentioned before.
Consequence 3.7. N H# (Rec)CN H 0Cy(Rec).

Proof. 1t is obvious since, by the proof of Theorem 3.6, the same proper inclusion
holds for the yields of these two classes O

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7., SZEGED, HUNGARY

H—6720

-References

[1] ENGELFRIET, J., Bottom-up and top- down tree transformatlons — A comparxson Math Syst
Theory, 9, 198—231 1975, -

[2] ENGELFRIET, J., G. ROZENBERG and G. SLUTZKI Tree transducers, L systems and two-way ma-

¢ chines, Journal of Comp. and Syst. Sciences, 20, 150—202, 1980.

[3] FULSP Z. and VAGVSLGYI S., Results on compositions of deterministic root- to-fronuer tree trans-
formations, Acta Cybernetxca, -8, 49—62, 1987.

[4] GEcseG F. and M. STEINBY, Tree Automata, Akadémia Kiado, Budapest, 1984.

[5] Rounps, W. C., Mappings and grammars on trees, Math. Syst. Theory, 4, 257—287, 1970.

[6] VAGvVOLGYT S. and FOLOP Z., An infinite hlerarchy of tree transformauons in the class A" DR,
Acta Cybernetica, 8, 153—168 1987

- K¢ Received June 19, 1987) . .

On the numbers of shortest keys in relational databases
on nonuniform domains

- O. SELESNJEW, B. THALHEIM

The use of the relational'model of data structures by E. F. Codd is a promising
mathematical tool for handling data. In this model the user’s data are expressed as
relations where the rows denote the records and the columns represent domains or
attributes. For the handling of relations the identification of sets of domains, called
keys, is suggested. The keys uniquely determine the values of the rest of the domains.
Delobel and Casey, Fadous and Forsyth, M. Fernandez, C. L. Lucchesi and S. L.
Osborn, J. Demetrovics and V. Thi have given different algorithms for finding the set
of all minimal keys in a relational database given by a set of functional dependencies
on the database. For characterizing the complexity of this algorithms we need some
combinatorial bounds.

In this paper we consider the maximal numbers of shortest keys in relational
databases on weighted domains and extend the result of J. Demetrovics who solved
the problem for relational databases on uniform domains. [1]

1. Basic notions

We recall briefly some definitions of the theory. of relational databases. Given
sets Dy, Dy, ..., D,, called domains, not necessarily distinct, an n-ary relation R,
defined over D;, ..., D, is a subset of the cartesian product. D, X D, X D,.

An attribute is a name assigned to a domain of a relation. Any value associated
with an attribute is called attribute value. The attribute names must be dlstmct The
symbol U will be used to denote the set of all n attributes of R. ,

A set of attributes X, XS U, is called a key of R if, for every n-tuple of R, the
values of the attributes in X uniquely determine the values of the attributes in U.

" Now, suppose we are given some weight function (or complexity measure)
g: U~N’ and a system Sy of keys of R. For XSU let g(X)= 2’ g(A4) the com--

plexity of X. An element K of Sy is called g-shortest if there does not exist an element -
K’ of Sg with g(K')<g(K). By Sg(g) we denote the sct of all g-shortest elements of
Sr and by sg(g) its cardinality. For g=1 the set Si(g) is called the set-of all .
shortest keys or the set of shortest keys in_an unweighted database. It is obvious that

268 O. Selesnjew and B. Thalheim

any set Sp(g) is a subset of a set of minimal keys [1). For any set S of minimal keys
there exists a subset S(g) of shortest keys. This is well-known for g=1.

Theorem 1.[1] The maximal size of a set of shortest keys in a database with n attri-

n n
butes is ([n]) For any k, 1sk= ([n]) , there is an n-ary relation R with k shortest
2 2 :

keys.
2. Maximal number of shortest keys in nonuniform databases

In practical cases, keys are of different meaning and complexity. Domains for
attributes have very different complexity. This is well-known in practice but it is not
taken into consideration in the theory of minimal keys. Therefore, shortest keys are

introduced.
Lower and upper bounds for sz{g) are proved in [4]. The most interesting set of

functions g is the set G* of functions g with g(4;)#g(4;) for isj. The other cases
can be splitted in the case g(4)=1 for A€X and in this case for AE NX. We
introduce the following functions:

5(g)=max sg(g),

s(G)= max s(g) for sets G’ of weight functions.

Usmg the functions g,, g,, g5 with & (4)=2', g,(4,)=30", g.(4)=i, for
i, 1=i=n, by the definitions and the recursion formulas for g3, we get

n
Corollary 2. 1. For weight functions g it holds 1 =s(g)= ([n]) [1}.
2

2 s(e)=1, s(g)=2"", s(g)=— [4]
Our next aim is to prove

_r
% wn
From number theory [2] we get that functions g with s(g)=s(G*) must be

regulary. W.l.o.g. we consider a subclass G* of G, the class of all equidistant func-
tions g with the property g(4;)—g(4;_,)=c for some c and any i, 2=i=n.

Theorem 3. s(G+)= (l—o(i)).

Lemma 4. 1. Given two equidistant functions g, g’ from G*. Then s(g)= s(g .
2. Let g be a function from G*. There exists an equidistant function g’ in G*

such that s(g)=s(g’).

Proof. 1. Is obvious.

2. W.lo.g. we consider only functions g from G* with - g(A4)<g(A;+,) for
i, 1=i<n. We prove the assertion by induction. For n=2 the assertion is obvious.
Let n be a fixed number. Now we assume that for a fixed function g there is no equi-

On the numbers of shortest keys in relational databases on no/nuniform domains 269

distant function g’'€¢G™* such that s(g)=s(g’). Let be Sy a key system with s(g)=
=sp(g). Now we define S,={K¢ SR/A,,({K} Sz—{K\{A YKESg, A EK} By
precondition of induction, we get for g’=g|y\(4,) an equidistant function g” such
that s(g)=s(g"). It follows that there is an equidistant function g* in G* such
that g¥|y\(4,3=8&" and s(g)=s(g*). T1hat is a contradiction.

W.lo.g. we can consider for s(G*) the function g; of Corollary 2. Now we define
independent random variables £, with two-point distribution for k=1,2,...,n:"

fk:{k.

and consider the distribution of S,= 2 ;.

Corollary 5. P(S,= [nnt 1)) s(ga) for probability .P(S, m)
For the expectation ES, and the vanance DS, of S, we get

M=, = F e = 35 = 10D

. e _ nlp+ D)@t A
B,,—DS,,_k;;Dék_—————-——m = (n).

We shall say that the sequence {S,} satisfies a local limit theorem iff
sup|B, P(S, = m) = ()l >0 (1<)

where x,,= m;M,, y Zp= S";M" , ¢ is the standard normal distribution density.
We denote ’ ! " -
.)) .
a(@, g, Ny=— 3 1?P(af;=r(modg), |&l=N) (+)

q4° —gpa<rsa2

for &,=&,—¢, symmetrized random variable, where &; is a random variable inde-
pendent of &, and having the same distribution as &, relatively prime integers a, g
with a§% and 1<g=2N.

In [3] is proved the following: If the distribution function of the sum of unboun-
dedly increasing number of random variables converges to the standard normal
distribution function,

ie. z,2- N(, 1), 0))
N, exp{-—-;—miqn Z"’ o (a, ¢, Nk)} -0 (n—+e),)
a4 k=1
N is selected such that lim — 2 f x? ng @=1=0, 3)

Longhad nk 1[x|=N,

then the sum satisfies a local limit theorem.

270 O. Selesnjew and B. Thalheim
Let N,=n. Then we get

I-—Jlrng zpc,—1>o

PG=R=PG=-RH=1, PEG=0=.

By summation of (+) over representatives of g we get |E|=n for ke(l, ..., n}.
Observe that if Ck—O then r=0 and this summand can be eliminated and that if
&=k then ak=r,+gql, for the unique representative of g. We get

a(a, g, n) = 1 > r*P(a§, =r(mod q)) =

q* —gpirsap
1 1
=i (R+ri)= i ri.

From number theory it is known that if {x} form a full system of representatives of ¢
then {ax} form a full system of representatives. Now A,,;mig 2 ula, g, n=
. @4 g=1
n
gmqin 4_1qﬁ'_ 2, r¥. Assume that g=2m. (For odd ¢ proofis analogous.) Let 0<
k=

1
<a<o. If a,=m=n then

n m
2 = Z’ k* = cm?® = ca®nd

for the full system of representatives r=—(m-1),...,0,1,...,m and therefore
_ 1 g ca® n?
),,_mm—Iq—can = =fn, B=>0.

If 1<m<an then the full system of representatives” {r}™,_,y is contained in

{1, ..., n} at least [g] times. Consequently we get

| S []2k2
= 2 __
I = qn4q2k§1"§n‘} Y
Je >k
1

= 1 p— k= = i —_ ==
=mqm(n q) A _mqm(n 2an)c

. n k=1
=ne (3_1) A

=c¢(l-20)n=Pn=>=0, f=0.

On the numbers of shortest keys in relational databases on nonuniform domains 271

We get that (2) holds because A4,=nexp {——1- A,,}én exp { - gn}—»O(n — o),

Summarizing corollary 5, lemma 4 and the propertiezs of S, we get
s(gy) = 2"P[S,= [n(n+1)]] (p(x [n(n+1)]) ~
N 2 _ 2" L
T V2n-———n(”f12):2n+l) V% n3/2(1+2—3n+ 2212]1/2 -g—na

The proof of theorem 3 is complete.

It is of interest to compare this result with s(g,)~ for g,(4)=1 for

2n
n —
/7 Vm
AeU.

Using a central limit theorem we get further

2" | c

[Zo(ee)| ™
Jerli+s+2a

s(G*)—

Vn

for some constant c.

O. SELESNJEW

MOSCOW STATE UNIVERSITY
DEPT. OF MATHEMATICS AND
MECHANICS

117 234 MOSCOW

USSR

B. THALHEIM

DRESDEN UNIVERSITY OF TECHNOLOGY
DEPT. OF MATHEMATICS

COMPUTER SCIENCE DIVISION

8027 DRESDEN

References

[1] J. DEMETROVICS, On the equivalence of candidate keys with Sperner systems. Acta Cybernetica 4
(1979), 247—252.

[2] K. Knopp, 1. SCHUR, Elementarer Beweis einiger asymptotischer Formeln der additiven Zahlen-
theorie. Mathematische Zeitschrift 24, 1925, 559—574.

[3] A. A. MuTanayckac, B. JI. CTaTyannqyc, JlokanbHeIe npeneabHLlE TEOPEMBI M acH-
MOTOTHYECKHE Pa3/IOMeHHe IS CYMM He3aBHCHMBIX PEIIEeTY4 ThIX CyYaliHbIX BeTu4HH. JIuTOBC-
Kuit MaTeMaTHIecKui cbopHnk 1966, T. 6, N. 4, 569—583.

[4] B. TuALHEIM, Abhingigkeiten in Relationen. Dissertation B, Technische Universitit Dresden,
Dresden 1985.

(Received March 4, 1987)

Some results about functional dependencies*

J. DeEMETROVICS and V. D. Tm1

Abstract

§ 1. Introduction -

The relational datamodel was defined by E. F. Codd [2]. In this datamodel a rela-
tion is a table (matrix) in which each column corresponds to a distinct attribute and
each row to a distinct record. Relations are used to describe connections among data
items. The functional dependency is one of the main concepts in relational datamodel.
The mathematical structure of functional dependencies was thouroughly investi-
-gated by W. W. Armstrong [1]. The equivalence of sets of minimal keys with Sperner-
systems was proved [4]. It is known [1] that for a given family F of functional depend-
encies there is a relation representing F in the sense that the full family of functional
dependencies of this relation is exactly F. Also it is shown [4] that for an arbitrarily
given Sperner-system there exists a relarion R representing this Sperner-system so that
this Sperner-system is exactly the set of all minimal keys of R. In this paper we give
necessary and sufficient conditions for a relation to represent a given family of
functional dependencies or a Sperner-system.

The closure operation is a useful and interesting instrument for investigating the
structure of functional dependencies. In this paper we investigate the connection
between closure operations and sets of minimal keys, too Now we give some neces-
sary definitions.

Let Q={a,, ..., a,} be a finite non-empty set of attributes. For each attribute g,
there is a non-empty set D(a;) of all possible values of that attribute. An arbitrary
finite subset of the Cartesian product D(a1)>< .XD(a,) is called a relation over Q.
It can be seen that a relation over is a set of mappmgs h: Q—~ U D(a) where
h(a)¢D(a) for all a.

*This paper was supported by grants from the Hungarian Acé.demy of Sciences OTKA
Nr. 1066 and 1812.
The main purpose of this paper is to give necessary and sufficient conditions for a relation to

represent an arbitrarily given family of functional dependencies or a closure operation or a Sperner-
system. The connection between closure operations and sets of minimal keys is investigated too.

274 J. Demetrovics and V. D. Thi

Definition 1.1. [2] Let R={h,, ..., h,} be a relation over the finite set of attri-
butes Q. Let 4, BS Q. We say that B functionally depends on A4 in R (denoted as
A~ B) iff (Vh;, h;€ R)((V a€ A)(hi(@)=h;(a))—~(V b€ B)(h;(b)=h;(b))).

Let Fr={(4, B): A4~ B}. Fg is called the full family of functional depend-
encies of R.

Definition 1.2. [1] Let Q be a finite set, and denote P(Q) its power set. Let
FCP(Q)X P(2). We say that F is an f-family over iff for all 4, B,C, DEQ

(F1) (4, A)CF;

(F2) (4, B)EF, (B, C)e F~(4, C)CF;

(F3) (4, B)e F, ASC, DEB~(C, D)EF,;
(F4) (4, B)EF, (C, D) F~(AUC, BUD)CF. .

By [1], Fg is an f~family over Q. It is known [1] that if F is an f-family, then there is a
relation R over Q such that Fe=F.

Definition 1.3. The mapping L: P(Q)—-P(2) is called a closure operation
over Q iff for every 4, BEQ:

(1) A4S L(4);
(2) ASB~L(4)SL(B);

(3) L(L(4)) = L(4).

Remark 1.1. It is easy to see that if F is an f~family and for all AS Q, we set
Lp(A)={acQ: (4, {a))c F } then Ly is a closure operation over £. Conversely, it
is shown [1] that if L 1s a closure operation over €, then there is exactly one f~family
such that Lg=L, where F={(4, B): BEL(A4)}. ’lhus, between closure operations
~ and f~families over £ there exists an one-to-one correspondence.

Definition 1.4. Let R be a relation, F an f~family and L a closure operation over
. We say that R represents F (L) iff Fp=F (Lg,=L).

Definition 1.5, Let R be a relation, L a closure operation over Q, and KS Q.
We say that K is a key of R (of L) if K~Q (L(K)=®). K is a minimal key of R
(of L) if K is a key of R (of L) and for any proper subset B of K, B> Q (L(B)=Q).

Denote #% the set of all minimal keys of R and £} that of L. Clearly, K, Kic Ay
implies K;EK;. Systems of subsets of Q satisfying this condition are Sperner-
systems. Consequently, A, A are Sperner-systems. .

For a Sperner-system 2 we can define the set of antlkeys of A (denoted
by A1) as follows

#1= (B Q: (KeH) — (KgB) and (BCC) ~ @KeA)(K S C)}.

It is easy to see that # 1 is also a Sperner-system. Clearly, the elements of 2"~ do
not contain the elements of " and they are maximal forthis property: .

Definition 1.6. Let R={h,, ..., h,} be a relation over Q.. For 1<1<j<m
denote E;; the set {a€Q:h(a)=h;(a)}. We set Eg= {ElJ 151<_1$m} ER
called the equality set of R.

Some results about functional dependencies 275

§ 2. Results

Now we give a necessary and sufficient condition for a relation representing a
given f-family. It is a precise characterization for relations represent f-families.

Theorem 2.1. Let R={h,, ...,’h,} be a relation and F an f-family over Q.
Then R represents F iff for every 4ASQ

(\ E; if 3E;€Eq: ASE;,
Le(4) = {AgEu .
Q otherwice,

where Lp(4)={acQ:(4, {a})¢ F} and Ey is the equality set of R.

Proof. Tt is easy to see that Fy is an f~family over €, first we prove that in an
arbitrary relation R for all ASQ

(1 E; if JE;CEx: ASE,

1y
Lp (4) = {ACE:J
£a(4) = Q otherwice.

We suppose that A is a set such that there is not an E;;€ Eg so that ASE;;. Then for
all h;, hj€R 3acAd: hi(a)#h;(a). According to the definition of functlonal depend-
ency A—» Q holds. By the deﬁmtlon of the mapping Lr, we obtain Ly, (4)=Q.

It is obv1ous that Ly (@)= (N E; holds. If A#@ and there is an E;;€ Eg so that

E; €Ep
ASE;;, then we set V= {EU ACE;;, E;j€Eg} and E= ﬂ E,, Clearly, ASE.

If V= ER holds, then (4, E)¢ Fg holds. If V=Eg holds then it can be seen that
for all E; €V (Va€A)(hi(a@)=h;(@)—~(beE)(h(b)=h; (b)) and for all E; ¢4V
Ja€A: h; (a);éh (a). Thus, (4, E)GFR holds. By the deﬁnltlon of Ley, ESLg (A)
holds. Clearly, by the definition of relation we have Ec Q. From ACE < LF (A)
and according to the definition of closure operation we obtain (E, LFR(A))E Fg.
Now we assume that ¢ is an attribute such that c¢E. Consequently, there is an

E;€V sothat ¢4 E;,. Thus, 3h;, h;€ R:VbEE: hy(b)=h;(b) holds, but h;(c)=h;(c).
Accordmg to Deﬁmtlon 1.1, (FU c) does not depend on E. Thus, for all attnbutes
c¢ E (E, EUc)¢ Fg holds. By the definition of Ly, we obtain Lg (4)= () E. By

E;.cV
Remark 1.1 it is easy to see that Fg=F holds iff Ly,=Ly holds. The proof is
complete. O

The following corollary is obvious.

Corollary 2.1. Let R be a relation and L a closure operation over Q. Then R
represents L iff for all ASQ
(E; if 3E;€Er: AS E;, .
L(4) = {"EEU , O
Q otherwise. .

Definition 2.1. Let L be a closure operation over Q. Let Z(L)=
={ASQ: L(4)=A}, and M(L)={AcQ: AcZ(L), AcCB—~L(B)=Q} The ele-
ments of Z(L) are called closed sets. M (L) is the family of maximal closed sets
(except Q).

4 Acta Cybernetica 8/3

276 J. Demetrovics and V. D. Thi

Clearly, Z(L) is closed under intersection.

Definition 2.2. Let NS P(Q). Denote N* the set {NN": NSN}. By con-
vention N@=Q, ie. N* always contains Q. It can be seen that for all E;;€Ex we
have E;;€Z(Lg,), ie. E{ SZ(Lg,). By Theorem 2.1, Z(Lr,)S E% holds. Clearly,
if L,, L, are two closure operations over Q then L,=L, holds iff Z(L,)=Z(L,).
Consequently, the next corollary is clear.

Corollary 2.2. Let R be a relation and L a closure operation over Q. Then R
represents L iff Z(L)=FEf holds. QO

Definition 2.3. Let F be an f-family over Q and (4, B)¢ F. We say that (A B)
is a maximal right side dependency of F iff

VB (BcB):(4,B)cF —~ B = B.

Denoie by M (F) the set of all maximal right side dependencies of F. We say that B
is a maximal side of F iff there is an A4 so that (4, B)E M(F). Denote I(F) the set of
all maximal sides of F.
It can be seen that I(F)=Z(Lg). Consequently, the following corollary is
- obvious.

Corollary 2.3. Let F be an f-family and R a relation over Q. Then R represents
Fiff I(F)=FE}. O

It is known ([1], [4]) that for an arbitrary non-empty Sperner-system ¢ there
is a relation R so that A p=X%"

Definition 2.4. Let R be a relation and o~ a ‘Sperner-system over Q. We say that
R represents " iff Ar=A".

The next theorem is a useful precise characterization of relations which repre-
sent a given Sperner-system. First we define the following concept.

Definition 2.5. Let R be a relation over 2, and EjR the equality set of R, i.e.
Ex={E;: 1=si<j=m}, where E;={acQ:h(a)=h;(@)}. Let Tr={4cCQ:
JE;€Eg: E;;=A and 3E,€Eg: ACE,}). Then Ty is called the maximal equality
system of R.

Theorem 2.2. Let 2 be a non-empty Sperner-system and R a relation over Q.
Then R represents A iff A4 ~1=Tg, where Ty is the maximal equality system of R.

Proof. As A is a non-empty Sperner- system, o1 exists. On the other hand, '
Jf’ and A~ are uniquely determined by each other, we obtain A= holds iff
=41 does. Consequently, we must prove that J# g 1=T5p.
It is obvious that Fjy is an f~family over Q. Now we suppose that 4 is an antikey
of #x. Clearly, A7 Q. If thereis a B suchthat ACB and A~ B then by definition
of antikeys we obtain B~ Q. Hence A Q holds. This contradlcts to K€ Ay

KE 4. So A€I(FR) holds If there is a B’ so that B’ Q, B'¢cI(Fg), and AcCB’,
then B’ is a key of R. This contradicts to B’'#Q. Thus, A¢I(Fx)\2 and

3B’ (B’€I1(FR)\R2): ACB’. On the other hand, Q¢ Ty by definition of R. It is easy

Some results about functional dependencies 277

toseethat E;;€I(Fg). Hence TRCI(Fg) holds. If Disa set such that VC€Tg: DEC,
then from Definition 1.1, D is a key of R. Consequently, Ty is the set of maximal
distinct elements of 1(Fg). So we obtain A€ Tg.

Conversely, we assume that "4€ Tz. According to the definition of a relation and
T, we have A—\ Q, i.e. YKEAR : KE A. On the other hand, by definition of Ty

forall D (ACD) D = 2 holds. Consequently, by the definition of antikeys A¢ A ?.
The proof is complete O

Now we investigate the connection between closure operations.

Lemma 2.1. [6] Let L be a closure operation over Q, and 7 the set of minimal
keys of L. Then A '=M(L). O

Definition 2.6. [3] Let Q be a set of all closure. operations over 2. An ordermg
over Q is defined as follows:

For L,L'c¢Q let L=L" iff forall ASQ, L'(4)SL(A). It can be seen that Q
is a partially ordered set for this ordering. If L=L" but L= L’ then the notation
L<I’ isused.

Theorem 2.3. [3] Let L, L’ be two closure operations over Q. Then L=L’ iff
Z(0HsZL). O

Based on Theorem 2.3 it is easy to see that L<L’ iff Z(LYycZ(L").

Theorem 2.4. Let 2 be a non-empty Sperner-system over Q, and 4 —! the set
of all antikeys of " . Let

(W B if thereisa BEA ~': AC B, \
L(4) = {ez
Q otherwise.

Then L is a closure operation over Q and H#p=#". If L’ is an arbitrary closure
operation over Q such that # =2¢;., than L=L’ holds.

Proof. Clearly, L is a closure operation over Q. Also it is obvious that for all
BeA-! wehave L(B)=B, ie. BEZ(L). On the other hand, #~* being a Sperner-
" system over Q we obtain M(L)=2¢{""1. By Lemma 2.1 # =271, Since " and o !
are uniquely determined by each other A=

Suppose that L’ is an arbitrary closure operation.so that 2 =27, it can be seen
that Z(L)=(#"Y)*. By Lemma 2.1, M(L)=X"1=24". Consequently, M(L)=
=M(L)=2"1. Hence Z(L)YSZ(L’) holds and by Theorem 2.3 we obtain L=L’.
Clearly, L is the closure operation for which =2} and for any closure operation
L’ such that o=}, and LsL’ we obtain L< L’ .The theorem is proved. [

Corollary 2.4. Let £ be a non-empty Sperner-system over . Denote by V
the set of all closure operations over @ the minimal keys of which are exactly the
elements of . Then L as constructed in Theorem 2.4 is the unique minimal element
of the partially ordered set ¥ for the ordering defined. O

4*

278 J. Demetrovics and V. D. Thi: Some results about functional dependencies

Remark 2.1. In [6] we constructed an algorithm which computes the set of all
antikeys of an arbitrary Sperner-system. By Theorem 2.4 and this algorithm we can
explicitly construct the closure operation L for which = Ji’,_ to an arbitrarily
given Sperner-system 2. [

The next remark shows that conversely, the set of all minimal keys of a given
closure operation can be found.

Remark 2.2. In [5] we construct an algorithm which determines the set H such
that H =" for a given Sperner-system . Thus, if 2 is a set of antikeys then
H is a set of minimal keys. Consequently, from a given closure operation L we can
construct the family M(L). By Lemma 2.1 M(L)=X;" holds. From M (L) we can
determine the set of all minimal keys of L by this algorithm. 3

Pesiome -

OnHO ¥3 IJIABHEIX MOHATHH TEOPHH PEINIIMORHLIX 6a3 JaHHBIX SBJISETCA JIOH-
siTHE (YHKLUOHANBHOM 33BHCMMOCTA. CTAaThi HM3YyYaeT PENSLMH KOTOpBIE TIpef-
CTaBIAIOT AaHHYI0 paMuinio QyHKIHOHANBHBIX 3aBACUMOCTEH, ONEPalli 3aMblka-
HUSd ® cHcTeMbl CrepHepa. A TakXe HM3y4aeTCsl CBA3b MEXAY OINEpalluaMu
3aMHKAHASA H MUHAMAJIBHBIMH KJIIOYaAMH.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
VICTOR HUGQ U. 1§—22

1123 BUDAPEST

HUNGARY

References ,

[1] W. W. ArRMSTRONG, Dependency structures of data base relationships. Information Processing
74, North-Holland (1974) 580—583.

[2] E. F. Copp, Relational model of data for large shared data banks. Communications of ACM, 13
(1970), 377—384.

[3] G. BuroscH, J. DemMeTROVICS, G. O. H. KATONA, The poset of closures as a model of changing
databases. Order, 4 (1987), 127—142.

[4] J. DEMETROVICS, On the equivalence of candidate keys with Sperner-systems. Acta Cybernetica 4
(1979), 3, 247—252.

[5]7.]g)EMErRowcs, V. D. Tar, Relations and minimal keys. Acta Cybernetica, Szeged 8 (1988), 3.
279—28S.

[6] V. D. Tu1, Minimal keys and antikeys. Acta Cybernetica, 7 (1986), 4, 361—371.

(Received Dec. 4, 1986)

Relations and minimal keys*

J. DemEeTROVICS and V. D. THI

Abstract

The main purpose of this paper is to prove that the time complexity of finding a relation repre-
senting a given Sparner-system K is exactly exponential in the number of elements of K. Conversely,
we show that if NP=P then the time complexity of finding a set of all minimal keys of given rela-
tion R is also exactly exponential in the size of R.

§ 1. Introduction

The minimal keys play important roles for the logic and structural investigation
of relational datamodel. In this datamodel the form of data storage is matrix (rela-
tion), rows of which represent records and columns represent attributes. A set of
minimal keys of a relation forms a Sperner-system. Sets of minimal keys and Sperner- -
systems are equivalent in the sense that for an arbitrary Sperner-system K there exists
a relation R such that the minimal keys of R are exactly the elements of K (cf. [3]),
i.e. R represents K.

In this paper we prove that the time complexity of finding a relation representing
a given Sperner-system K is exactly exponential in the number of elements of X, i.e. -
we shall show that there is an algorithm that determines a relation representing a given
Sperner-system K in time exponential in the number of elements of K, and there is no
algorithm which finds a relation representing K and the time complexity of which is
polynomial in the number of elements of K. Let P denote the class of problems that
can be solved in deterministic polynomial time and let NP denote the class of problems
that can be solved in nondeterministic polynomial time. It is shown that if NP=P
then the time complexity of finding a set of all minimal keys of a given relation R is
exactly exponential in the number of rows and columns of R.

We start with some necessary definitions, and in § 2 formulate our results.

*This paper was supported by a grant from the Hungarian Academy of Sciences OTKA
Nr. 1066.

280 J. Demetrovics and V. D. Thi

Definition 1.1. Let R={h,, ..., h,} be a relation over 2, and 4, BEQ. Then
we say that B functionally depends on 4 in R (denoted 4 %» B) iff

(V i, h€ R)((V a€ A)(hi(a) = h;(a)) ~ (Vb€ B) (h;(b) = h,(b))).

Let Fr={(4, B):A%»B}- Fg is called the full family of functional dependencies
of R. .

Definition 1.2. Let 2 be a finite set, and denote P(Q) its power set. Let FC
S P(Q)X P(Q). We say that F is an f-family over Q iff for all 4, B,C, DEQ:

(F1) (A4, A)EF;
(F2) (4, B)EF, (B, C)¢F—~(4, C)¢F;
(F3) (4, B)¢F, ASC, DSB~(C, D)¢F;
- (F4) (4, B)EF, (C, D)¢ F~(4UC, BUD)EF.

Clpaﬂy’ F_ ic anlf.famﬂy over Q

..... Fgisan er Q.
1t is known [2] that if F is an arbitrary f-family, then there is a relation R over Q
such that Fz=F.

Definition 1.3. The mapping L: P(Q2)~P(Q) is called a closure operation over
Q iff for every 4, BEQ

(1) ASL4);
(2) ASB~L(4)SL(B);
3 L (L)) = L(4).
Definition 1.4. Let R be a relation, L be a closure operation over Q, and AS Q.
Aisakey of R (a key of L) if AL-Q (L(4)=Q). Ais a minimal key of R (a mini-
"mal key of L) if A is a key of R (a key of L), but B {v» Q (L(B)# Q) for any proper

subset B of A. Denote Ky (K) the set of all minimal keys of R (L). Clearly, Kz,
K, are Sperner-systems over £.

Definition 1.5. Let K be a Sperner-system over Q. We define the set of anti-
keys of K, denoted by K1, as follows:

K1={4% Q: (BEK) > (BEA) and (45 C)~ (3B€K) (BSC)}
It is easy to see that K~ is also a Sperner-system over Q.

Theorem 1.1. ([2], [3]) If K is an arbitrary Sperner-system, then there is a closure
operation L for which K;=K. 0O

In this paper we always assume that if a Sperner-systexﬁ plays the role of the set
of minimal keys (antikeys), then this Sperner-system is not empty (doesn’t con-
tain Q).

Definition 1.6. ([2]) Let F be an f-family over @, and (4, B)¢ F. We say that
(4, B) is a maximal right side dependency of F iff VB’ (BSB’): (4, B'Y¢ F~B=B".
Denote by M (F) the set of all maximal right side dependencies of F. We say that B

Relations and minimal keys 281

is a maximal side of F iff there is an A such that (4, B)¢ M(F). Denote by I(F)
the set of all maximal sides of F.

In this paper we regard the comparison of two attributes to be the elementary
- step of algorithms. Thus, if we assume that subsets of £ are represented as sorted
lists of attributes, then a Boolean operation on two subsets of Q requires at most
|Q| elementary steps.

Definition 1.7. Let R be a relation, and K be a Sperner-system over 2. We say
that R represents K iff Kz=K.

§ 2. Results

Definition 2.1. Let L be a closure operation over Q.
Denote Z(L)={A€ P(Q): L(4)=A},
T(L)y={4€P(Q): L(A)=A and ASB-L(B)=Q}.
The elements of Z(L) are called closed sets. T(L) is called a maximal family of L.

Lemma 2.1. ([5]) Let L be a closure operation over Q. Then K/ '=T(L). O

Theorem 2.1. ([4])Let K be a Sperner-system over . Let s(K)=min {m: |R|=
=m, Kg=K, R is a relation over Q}. Then V2|K!j=s(K)=|K~!+1. O

Theorem 2.2, The time complexity of finding a relation representing a given
Sperner-system K is exactly exponential in the number of elements of K.

Proof. We have to prove that:

(1) There exists an algorithm that determines a relation representmg a given
Sperner-system K in time exponential in the number of elements of K.

(2) There is no algorithm that finds a relation representing K in time polyno-
mial in the number of elements of K. Based on (1) and (2) it is clear that the time
complexity of any algorithm that determines a relation representing a given Sperner-
system is at least exponential in the number of elements of this Sperner-system.

For (1): First we construct an algorithm which finds the set of antikeys from
a given Sperner-system, as follows:

Let us given an arbitrary Sperner-system K={B, ..., B,} over Q. We set
- Ky={2\{a}: a€B,}. It is obvious that K,={B;}*. Let us suppose that we have

constructed K,={B, ... q} t for g<m. We assume that Xl, .oy Xy, are the
elements of K contammg Bq+1 So K,=F,U{Xy, ..., X}, where F,=
—{AEK B .1 &4} Forall i (i=1, ..., 1) we construct the antlkeys of {Bqﬂ} on'

X;in an analogous way as K;, whlch are the maximal subsets of X; not containing
B 1. We denote them by A4, ..., 4}, (i=1,...,1). Let

K= FU{4d,: AcF,~ 4, ¢ A4, 1=i=1, 1=sp=r}

Clearly, because K and K ~! are uniquely determined by one another, the determi-
nation of K~ based on our algorithm does not depend on the order of B, ..., B,,.

In [5] we proved that for every ¢ (1=¢=m), K,={B, ..., B,;}7%, ie. K,=K™1,
and the worst-case time of this algorithm is exponential not only in the number of

282 J. Demetrovics and V. D. Thi

elements of K, but also in the number of attributes. Now we construct the following
algorithm:

Step I1: Based on the above algorithm we construct X 1,

Step 2: Let K~1={4,, ..., 4,} be a set of antikeys. Let R={hy, hy, ..., h,}
be a relation over Q given as follows:

For all acQ, hy(a)=0, .

0 if acA4,

for i (1=i=1t), h,-(a)={l, otherwise.

In [4], it has been proved that R represents K. It is clear that the complexity of this
algorithm is the complexity of the algorithm that finds the set of antikeys.

For (2): Let us take a partition Q=X1U...UXMUW, where m=[’31], and
[Xi|=3 (I1=i=m). Let . d
K= {B: |B| - 2, B € X; for some i} -if W1=0,
K={B:|B|=2,BS X, forsome i:1=i=m—1 or BEX,UW} if W|=1,
K={B:|B|=2,BS X, forsome i:1=i=m or B=W} if W|=2
It is lclear that
K= {4:|4NX|=1vi} if W|=0,
K1'={4:]ANX|=1(A=i=m-1) and [ANX,UW) =1} if W|=1,
K1'={4:]ANX|=1(1=i=m) and [ANW]|=1} if W|=2.

Let f:N—N (N is the set of natural numbers) be the function defined as follows:

3n/s if n=0(mod3),
f(m) =131.4/3 if n =1 (mod 3),
3R1.2 if n = 2 (mod 3).

It can be seen that f(n)=|K~1|. Clearly, n—1=|K|=n+2 and 3"*<f(n), where
n=|8|, i.e. 31"1<|K 1|, According to Theorem 2.1 we have V2. 308)= 5(K), i.e. the
number of rows of minimal relation representing K is greater than y2 .38, Thus,
for an arbitrary set of attributes we always can construct an example, in which the
number of K is not greater than |Q]+2, but the number of rows of any relation
representing K is exponential not only in the number of attributes, but also in the
number of elements of K. Hence, there is no algorithm which finds a relation represent-
ing a given Sperner-system and the time complexity of which is polynomial in the
number of elements of Sperner-system. The theorem is proved. [J

Now we give a necessary and sufficient condition for a relation to represent a gi-
ven Sperner-system. We define the following concept.

Relations and minimal keys 283

Definition 2.2, Let R={hy,...,h,} be a relation over Q. Let Ez=
={E;;: 1si<j=m}, where E;;={acQ: h;(a)=h;(a)}. Let

Mg = {4€P(Q): 3E;;€Ex: E;=A and 3E,€Ex: ASE).
My is called the maximal equality system of R.

Theorem 2.3. Let K be a non-empty Sperner-system, and R be a relation over Q.
Then R represents K iff K~1= My, where My is the maximal equality system of R.

Proof. Because K is a non-empty Sperner-system, K ~! exists. On the other hand,
Kand K1 are uniquely determined by each other, hence Kz=K holds iff Kz'=
=K1 holds. Consequently, we must prove that Kz '=M,. It is obvious that Fisa

f-family. Now we suppose that A4 is an antikey of K. It can be seen that 4=Q. If

there exists a B such that 4G B and 4 1{——»B, then by the definition of antikey we
have BL- Q. Hence A~ @ holds. This contradicts C€K: CEA. So AEI(Fy)
holds. If there is a B’ so that B'= Q, B’¢I(Fg), and A& B’ then B’ is a key of R.
This contradicts to B’= . Consequently, AcI(FR)\® and 3B’ (B’eI(FR\2):
ASGB’. On the other hand, according to the of relation Q¢ M. It is easy to see

that E;;€I(Fg). Thus, MzSI(Fg) holds. If D is a set such that VCEMp: DEC,
then by the definition of functional dependency, D is a key of R. Consequently, Mg
is the set of maximal distinct elements of I(Fg). So we have A€ Mp.

Conversely, we assume that A€ M. According to the definition of relation and

My we obtain A{r Q, i.e. YBEKy: BE A. On the other hand, because A is a maxi-

mal equality set, for all D (4 D) D,{—» Q holds. Consequently, by the “definition
of antikey A€ Kgl. The theorem is proved. [0

It can be seen that the time complexity of finding the set of antikeys of R is poly-
nomial in the number of rows and columns of R. We construct the following algorithm
for finding a minimal key. Let H be a Sperner-system. We take a B (B€H) and
an a€ Q\B. We suppose that B={b,, ..., b,}. Let G={B;cH:a{B;} and To,=
=BU{a}. We define '

T .. = {Tq\{bq+1} if VB HN\G: T;\{bg+1} & B;,
g+l — .
T, otherwise.

" Lemma 2.2. (S If H is a set of antikeys, then Ty, Ty, ..., T, are the keys
and T, is a minimal key. [

It is easy to see that the worst-case time of finding T, is O(|2*-|H|).

Lemma 2.3. Let H be a Sperner-system over Q, and let H'={B,, ..., B,} be
a set of antikeys of H, TS H. Then TCH and T#0 if and only ifthereisa BSQ
such that B€T~! and BEB; (Vi léiém).

Proof. Suppose that there exists a Bsuchthat B€ET-! and BEB; (Vi: 1=i=m).

From the definition of the set of antikeys and by T ~!3@, we have T0, and for
all C (CeT), B does not contain C. If there is a B; such that B,¢ H ~! and B;C B,

284 i J. Demetrovics and V. D. Thi

then it is obvious that Bisa key. If H “*UB is a Sperner-system, then by Theorem 1.1
there exists a closure operation L such that H=Kj. It is clear that if L(B)=Q,
then from Lemma 2.1 there is a B; (B;¢ H~!) such that L(B)< B;. Consequently,
BSB;. This conflicts with the fact that BEB; (Vi: 1=i=m). That is, B is a key.
Hence there is an 4 (AS Q) such that ASB and A€ H\T. It is easy to see that
TCH.

- Conversely, we suppose that TC H and T##. It is obvious that there is an 4
such that 4¢ H\T. From H is a Sperner-system we have AUT is a Sperner-system.
Denote B the biggest set such that ASB and BUT is also a Sperner-system. It is
clear that, B always exists and from the definition of antikeys we have BeT -1,
By A€H it can be seen that AEB; (Vi:1=i=m). By ASB we have BZEB,;
(Vi: 1=i=m). The theorem is proved. 0O

. Let K={B,, ..., B,} be a Sperner-system over . We have to construct H,
where H ~1=K. We construct H by induction.

Algorithm 2.1. Step I: Using a minimal key algorithm we construct an A4,
(4,€H). We set K;={4,}.

Step i+1:If thereisa BEK;! such that BEB;(Vj: 1§j§m), then by algo-
rithm which finds a minimal key we determine an A4;,; (A4;+1€H) and A4;,,< B.
After that, let K;,;=K;U{4;.,}. In the converse case we set H=K;. (]

Based on Lemma 2.3 there is a natural number p so that K,=H. It can be
seen that the time complexity of Algorithm 2.1 is also exponentlal in the number of
attrlbutes

Lémma 2.4. The following problem is NP-complete:

Given a Sperner-system K={B, ..., B,} over Q={a,,...,a,} and integer
k (k=n), decide whether there exists an ACSL such that |4|=k and
AEB; (i=1,...,m), ie. decide whether there exists a key having cardinality
not greater than k, if K is the set of antikeys.

Proof. We nondeterministically choose a subset 4 of Q so that |4]=k and
decide whether A is not a subset of B;(i=1, ..., m). It is obvious that this algorithm
is nondeterministic polynomial. Thus, the problem lies in NP. It is known [1] that
the vertex cover problem is NP-complete:

Given integer k and non-directed graph G=(V, E), where V is a set of vertices
and E is set of edges, decide whether or not G has a vertex cover having cardinality
not greater than k.

We shall prove that the vertex cover problem is polynomially reducible to our
problem. :

Let G=(V,E) be a non-directed graph, k=|V|. We set Q=V and K=
_{Q\{an a]} (al’ aJ)EE}

f ASQ, |d|=k and AL B (Vi=1, ..., m), then according to definition of K
we have AN {a;, a ,}#ﬁ(\y’ (a;, a;)EE). Consequently, A is a vertex cover of G.

Conversely, if A4 is a vertex cover of G, then by definition of K and definition of
vertex cover we have AL B; (Vi=1,...,m). Hence, AL B; (Vi=1, ..., m) holds if
and only if A4 is a vertex cover of G. The Lemma is proved. [

Relations and minimal keys 285

Based on Lemma 2.4 and Step 2 of the algorithm which determines a relation
representing a given Sperner-system in Theorem 2.2, the following corollary is
obvious.

Corollary 2.1. The following problem is NP-complete: Given integer k£ and
relation, decide whether or not there exists a key having cardinality not greater
than k. 0O

Theorem 2.4. The time complexity of finding a set of all minimal keys of a given
relation R is exactly exponential in the number of rows and columns of R.

Proof. For a given arbitrary relation R we construct the following algorithm
which determines the set of all minimal keys of R,

Step 1: According to Theorem 2.3 we construct the set of antikeys of R.

Step 2: Based on Algorithm 2.1 we determine the set of all minimal keys of R.

By Lemma 2.2, Lemma 2.3, Theorem 2.3 and Algorithm 2.1, it is clear that the
worst-case time of this algorithm is exponential in the number of rows and col-
umns of R.

According to Lemma 2.4 and Corollary 2.1, it can be seen that there is no algo-
rithm which finds a set of all minimal keys of a given relation and the time com-
plexity of which is polynomial in the size of this relation. The theorem is proved. [

4

Based on Theorem 2.1 and Theorem 2.4 it can be seen that the problem
of finding a relation representing a given Sperner-system and finding a set of all
minimal keys of a relation are inherently difficult.

Pesrome

B nacTodmei paboTe u3y4aeTcss CBA3b MeEXAY OTHOIUCHHAMH M MHHHMAIb-
HBIMH KJIIOYaMH. '

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

1132 BUDAPEST

VICTOR HUGO U. 18—22

HUNGARY

- References

[1] A. V. AHo, J. E. Hopcrorr, J. D. ULLmaN, The design and analysis of computer algoritms.
Addison-Wesley, Reading, Mass. 1974,

[2] W. W. ARMSTRONG, Dzpendency structures of data base relationships. Inf. Proc. 74 North-Hol-
" land Pub. Co. (1974) 580—583.

[3] J. DeMETROVICS, On the equlvalence of candidate keys with Sperner-systems. Acta Cybernetica 4
(1979) 247—252

[4] J. DeEMETROVICS, Z. FUREDI, G. O H. KATONA, Minimum matrix representation of closure ope-
rations. Discrete Applied Mathematics 11 (1985) 115—128.

[5] V. D. THi, Minimal keys and antikeys. Acta Cybernetica 7 (1986), 361—371.

(Received March 12, 1987)

A new approach to defining software complexity measures

Z. DARGCzY, L. VARGA

Abstract

A general method is given for defining software complexity measures. Properties of the com-
plexity measure are given by functional equation. Three cases of functional equations are discussed.
Many known software complexnty measures are given as special cases of the solutlons of functional
equations and a new measure is also presented.

Introduction

It is a fact of common knowledge, that both simple and complicated programs
can be developed for the solution of a given problem, whatever its inherent complexity.
Therefore software complexity can be investigated independently of the complexity
of a problem. During recent years many efforts have been made to create quantlﬁable
measures of software complexity ({11, [3]), to use objective complexity measures in

- programming methodology and to validate these uses with empirical researches [2].

In spite of the importance of software complexity it is insufficiently known and
defined. In this paper a new approach to defining abstract properties of software
complexity over the class of structured programs is proposed by the help of using
functional equations. Many known measures of software complexity can be obtained
as special cases of the solutions of functional equations, and a new measure is also
presented.

Software complexity measure

Given a system (X, F, A) where Xis a set of data, Fisa set of functions ([X-X)
and 4 is a set of predicates (a: X—Bool). .

Definition 1. Simple programs are:

1. null, with program function x,

2. assignment £, with program function f (x) for all fe F.
Let SP be the set of all simple programs.

288 Z. Daréczy and L. Varga

Definition 2, Structured programs are:

1. Simple programs.

2. Sequence B(u, v) with the program function p,(p,(x));

3. Selection I—T—E (a;u, v) with the program function if a(x) then p,(x)
else p,(x); ‘

4. Repetition W—D(a; u) with the program function p(x)=if a(x) then
p(p.(x)) else x;

where a€A, u and v are structured programs with program functions

D.(x), p,(x) respectively.
Let S be the set of all structured programs.

Given the complexity measures
b: SP—~N,

c: A= N
and the homomorphisms
g: N2— N,

=

: N3 > N,
j: N*—~ N.

Definition 3. Complexity measures of B(sy,s,), I—T—E (a;s;, su),
W—D (a;s) are: '

b(B(s1» 52)) = g(b(sy): b(sa),
b(I—T—E(a; s, 52)) = k(c(a), b(sy), b(sy)), .
b(W—D(a; 5)) = j(c(a), b(s).
The question is what kind of functions g, h, j characterizé the software com-
plexity measure of structured programs sufficiently? In order to find an appropriate

complexity measure the properties of functions g, h, j will be given by functional
equations.

First approximation. If the functional equations -
Cgxx, y+y) = glx)+, ¥,
h(x+x', y+y’, z+2") = h(x, y, 2)+ h(x', y’, 2'),
jx+x, y+y) =jx »+ik, ¥),

hold, then the functions g, h, j give an acceptable measure for each structured pro-
gram. '

A new approach to defining software complexity measures 289

Theorem 1.
- g(x, y) = cx+coy, -

h(x, y, 2) = dix +dyy+dsz,
G, y) = exxteyy
where ¢y, ¢;, dy, d;, ds, €,, €5 are ihteger constants.
Proof. ‘ ’
x'=y=0=gxy)= gk 0+g@ y)
x=x=y=y=0= g00=0,
y=y =0=g(x+x’,0) = g(x, 0)+g(x’, 0).
This is the well known Chauchy equation, which has the following solution:

g(x, 0) = ¢yx.
Similarly we have '

x=x"=0=g@0,y+y) =280 »)+80,y) =200, y) = c2y.
That is, g(x, y)=c;x+cyp.
Second approximation. If)
glx+x, y+y) = glx, »)+g(x, y),
h(x+x', y+y’, z+2) = h(x, y, 2)+ h(x, ¥, 2')+
| h(x', y, D+h(x, ¥, 2),
Jlex, y+y) = jlx, »)+iCx, Y+, 9+, ¥,

then g, h, j give an adequate measure for each structured program.

Theorem 2.
glx, y) = ax+cpy,
h(x, y, 2) = x»(dlyﬁ'dzz)
jCe y) =exy
Proof. .

x=x'=y=y"=0=j0,00=0
X=y=y"=0=> jx,0=0
x=x'=y=0=> j0,))=0
Y =0=j(x+x,y)=jx »N+jE, y)=jx,) =eO)x
X =0Ax#0=>e(y+y)=e()+e(y)>e-y
That is
j(x, y) = exy.

290 Z. Dar6ezy and L. Varga

Similarly we have

h(x, y, z2) = x(d,y +d,2).
Third approximation. If
g(x+x', y+y) = glx,) +g(', y)
h(x+x, y+y', z4+2) = g(x+x', y, 2) +g(x+x", y', 2)
jGey)=hx, 1)
then g, A, j give a correct measure for each structured program.
Theorem 3.
g(x, y) = aix; + x5y
h(x, y, 2) = d\(x)y+dy(x)z
j(x, y) = di(x)y+da(x)
where 4, (x), d,(x) are unknown functions.

Proof.
X =0=g(x, y+y,z+2) = g(x, y,)+g(x ¥, 2) =
= g(x, y, 2) = dy(x)y +dy(x)z
Special cases
1. First approximation
glx, y)=x+y
h(x,y,2)=x+y+z
jG) =x+y
1.1. Let b(f)=b;, fi€F;

cla) =c¢;, aifA.
Then
@ T
b(s) = X b+ S ¢
i=1 i=1
where s€S and

z=number of predicates in s;
@=number of functions in s.

1.2. Let b=c;=1 for i=1,2,...,then

4 b(s) = ¢p+nr.

1.3. Let ¢;=1 and b;=0 for i=1,2,..., then
. b(s)=m,

which gives the well known McCabe metric [1].

A new approach to defining software complexity measures 291

2. Second approximation
glx, y)=x+y

h(x, y,z) = x(y+2)
jGx, y)=xy
2.1. Let b(f)=b; fi€F,
. c(a)=c;, a4,

then we get the Prather measure [3].
3. Third approximation
glx, y) =x+y

h(x, y, z2) = di(x)y+dy(x)z
jGx,) = di(x)y +d,(x)

3.1. Let dfc(ap))=d;;; i=1,2; a;€A, where
dy;=number of “true” value in the operation table of predicate a; ;
d,;=number of “false” value in the operation table of predicate a;
and b(f))=b;, fi€ F which produces a new measure.

An example
Let .
s: if a, then s,; while a, do s,0d
else s, fi; s,;
and)
c(a) =c;, b(s)=b; di(c(aj)) =dy;.
The complexity measures in the above special cases are:
1.1.: ¢;+cy+Co+by+by+by
1.2.: 6
1.3.: 2 (McCabe)
2.1.: ¢yby+c¢y¢3by+ ¢y b+ b,y (Prather)

L. KOSSUTH UNIVERSITY
DEBRECEN
HUNGARY

L. EOTVOS UNIVERSITY
BUDAPEST
HUNGARY

References

[1] T. J. McCasg, A Complexity measure, IEEE Trans. Software Eng. 2. (1976) 308—320

[2] B. CurTis, In search of software complexity, Workshop on Quantitative Software Models for
Reliability, Complexity, and Cost. New York, IEEE (1980).

[3] RoNALD E. PRATHER, An axiomatic theory of software complexity measure, The Computer Jour-
nal 4 (1984) 340—347.

(Received Jan. 30, 1987)

5 Acta Cybernetica 8/3

A noninterleaving semantics for communicating sequential
processes: a fixed-point approach

D. V. Hune, E. KNUTH

Abstract

The paper presents a noninterleaving semantics for Communicating Sequential Processes
introduced by Hoare and studied in many works. Concurrency is expressed explicity in the intro-
duced model. Furthermore, semantics of CSP-programs can.be obtained by equations in the model.
By relating the model to labelled event structures and Petri nets the relationship between CPS and
the mentioned models is pointed out.

Key words: CPS programs, concurrency, traces, semiwords, event structures, synchronization.

1. Introduction

In 1978 C. A. R. Hoare introduced in [6] a language for distributed programming
called Communicating Sequential Processes — in short CSP. Subsequently, this
language has received a great deal of attention. As mentioned in [4], both ADA and
OCCAM are based upon CSP..

Many models of semantics for CSP have been proposed. Among them we should
mention Hoare’s interleaving of strings [7, 8], Gostz’s and Reisig’s Petri nets with
individual tokens [4], Janicki’s semitraces [11], Hennessy’s (et al.) operational model
[5]. In the model of interleaving semantics concurrency is represented by the possi-
bility of shuffling sequences of operations, and thus is not expressed in an explicit
form. Furthermore, concurrency is not distinguishable from nondeterminism in this
model. Janicki [11] has used Mazuskiewicz’s traces to give semantics for CSP, in
which concurrency can be distinguished from nondeterminism. The possibility of
handling with traces as words makes analyzing properties of CSP-programs in
Janicki’s model as easy as in Hoare’s model. However, as shown by him, traces can-
not be used to give semantics for all CPS-programs. The notion of so-called semi-
traces was introduced by Janicki in order to describe the behaviour of all CPS-
programs. Although his semitraces are powerful enough to describe the behaviour
of CSP, they have a disadvantage that they cannot be represented by single words.

In our paper [8] we have developed the notion of Mazurkiewicz’s traces to a
new one based upon the notion of Starke’s semiwords. This is the notion of labelled

/

294 D. V. Hung and E. Knuth

traces. As pointed out in [8], labelled traces have the same advantage as and are more
powerful than traces. They can describe the behaviour of concurrent systems modelled
by bounded Petri nets, e.g. producer-consumer systems, while traces cannot.

In the present paper, with the same point of view as in Gorts and Reisig’s, Janik-
ki’s papers [4], [11], we construct a model of semantics for concurrent systems, more
specifically, CSP by using labelled traces. The advantage of Mazurkiewicz’s model
[14] is taken to this model. By relating the model to Starke’s one the relationship
between CSP and finite event structures is pointed out. Combining w1th the results
presented in [8], CSP are related to Petri nets as well.

In this paper the basic notion of Mazurkiewicz’s traces is used and understood as
follows.

For a finite alphabet X, X* denotes the set of all finite strings over X, ¢ denotes
the empty word, a subset of X* is called a language over X; a reflexive and symmetric
relation on X is called a dependency on X. For a given dependency D on X, let =, be
the least congruence on X* w.r.t. the concatenation of strings such that ab=pba
for ail a, b€ X with (a, b)§ D. Each equivaience ciass of = is called a trace over D,
and a set of traces over D is called a trace language over D.

The paper is organized as follows.

The second section presents a model of semantics for concurrent systems by
introducing the notion of labelled traces. The third section is devoted to a study on
labelled trace languages. The introduced model is related to other models in the
fourth section. A noninterleaving semantics for CSP based upon labelled traces is
presented in the fifth one.

2. Labelled trace languages

Let us consider the following problem (bounded buffer [6]):

Construct a buffering process X to smooth variations in the speed of output of
portions by a producer process and input by a consumer process. The buffer should
contain up to two portions.

A solution of the problem is represented by a 2-bounded Petri net as follows.

consumer buffer producer

Suppose that, at the begining, the buffer is empty so that only the action “in” of
the producer can be executed for the first time. After that, the action “out” can occur
the first time and the action “in” can occur the second time concurrently. However
the first occurrence of “out” depends causally on the first occurrence of “in”. Thus,
actions “in” and “out” have different cases, and we should take them for atomic acti-
ons. For the sake of simplicity sets of atomic actions is assumed to be finite. From the
2-boundedness of the buffer process, every occurrence of one action is concurrent

5* D

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 295

with not more than one occurrence of the other. Hence, we can use a dependency on
a set of four elements to construct a set of labelled partial orderings for describing
the behaviour of the above solution.

Basing on the above notice and the theory of Mazurkiewicz’s traces we intro-
duce a new description of concurrent systems presented bellow.

All the notions introduced in this section have been presented in our paper [8]
in detail. Here, for the aim of the paper we present them in a different form for the
sake of convenience.

Let X be a finite alphabet. A finite symmetric relatxon DE(Xx{l,2,..DX
X(Xx{1,2,...}) such that

a)(a, 1)6 dom (D)=(a,j)€dom (D) for all j=i, and

b) ((@./), (@))eD for all (a,i),(a,j)E dom (D) will be called a labelled
dependency over X.

Let D be a labelled dependency over X. Define =, as the least congruence over
(dom (D))* (w.r.t. the concatenation) such that (a,;)(b, i)=p(b, i)(a,j) for all
(a,7), (b, i)¢dom (D) and ((a,;), (b, ©))¢ D. Each equivalence class of =, will be
called a Jabelled trace over the labelled dependency D, and a set of labelled traces over
D will be called a labelled trace language over D. Like in the case of traces [w]p, will
denote the labelled trace generated by a string wé€(dom (D)}*, and [L]D will denote
the labelled trace language generated by a language LE(dom (D)), i.e.

Wlp:= {v: ve(dom (D))*&v=pw},
[L]p:= {[v]p: vEL}.

For (a, i)é¢dom (D), (a,i) will be called a case of ¢ in D and we denote by
4#(a, D) the number max {i: (a,{) is a case of g in D}. Throughout this paper /
always denotes the projection from cases to their first component.

Remark 1. If we identify X with XX {1}, each dependency over X (defined by.
Mazurkiewicz) is a. labelled dependency over X. On the other hand each labelled
dependency is a special dependency on XX {l, 2, ...}. Thus, all the notions and
results obtained in the theory of traces [1], [13], [14] can be applied to labelled traces
and labelled trace languages. This means that we can handle with labelled traces as
traces, and the advantage of traces and trace languages is taken to labelled traces
and labelled trace languages. The only difference between traces and labelled traces is
how the atomic actions are considered.

To show the difference between our notion and Mazurkiewicz’s one we consider
the dependency graphs of labelled traces.

Definition 1. Let D be a labelled dependency over X, w¢(dom (D))*. A depend-
ency graph of w (over D) abbreviated a dep-graph of w (over D) and denoted by
D(w), is a graph isomorphic to the node-labelled graph (V, E, X, f8), defined by:

V={L2,..,n} if w=xx,. B(i) = 1(x), and
ESVXV issuchthat,foralll =i, j=#n, (i,j)€E

ifand only if i<j and (x;, x;)€D.

296 D. V. Hung and E. Knuth

For the sake of convenience by syre (R) we denote the symmetrical and reflexive
closure of a binary relation R on dom (R) throughout the paper.

Example 1. Let X={a, b, ¢, d},
D = syre({((a, 1), (b, 1)), ((b, 1), (b, 2))((b, 1), (¢, 1)), (], 2), (d, 1)), ((c, 1), (d, 1)}),
~w=(a, 1)(b,1)(b, 2)(c, 1)(c, 1)(d, 1).
D(w) has the following form:

Notice that this node-labelled graph can not be a dep-graph of any trace over any
dependency on X. The reason is that the occurrences of ¢ depend on the first occur-
rence of b, but are concurrent with the second occurrence of b.

It can be seen from the theory of traces that

w =pv=D(w) == D(v).

(Unlike in the case of dep-graphs of traces, the converse direction is not true!)

Hence, it is reasonable to define a dep-graph of a labelled trace t over D as D(w)
for any wet. Not distinguishing labelled traces, dep-graphs of which are isomorphic,
we define that labelled traces ¢ and t* over D are isomorphic iff D(t)~D(¢’), where
D(u) denotes a dep-graph of a labelled trace » over D.

Clearly, each dep-graph of a labelled trace is acyclic, and its transitive closure
is a labelled partial ordering over X, which will be called a labelled partial ordering
generated or induced by a labelled trace, and in which any pair of nodes with the same
label is ordered. Hence, our notion is related to Starke’s one of semiwords (see the
section 4). ’

As mentioned in Remark 1, all the notions of traces are applied to labelled
traces. Here we remention some of them, which are needed in the sequel.

Let D be a labelled dependency over X. The trace concatenation and trace itera-
tion of labelled traces and labelled trace languages are defined by

[lol¥lo =[0lp for x, y€(dom (D))",

UV: = {uvlucU veV'} for iabelled trace languages U and V over D.

U*:=J U, U'=[elp, UH'=UU, i=0, for a labelled trace language U
i=0
over D. .
The following lemma is needed for a purpose of constructing operations on

labelled trace languages.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 297

Lemma 1. Let D and D’ be labelled dependencies on X, h:(dom (D’)~
~(dom (D))* be a homomorphism satisfying:

a) Yx¢dom (D'): h(x)€dom (D)U {e},

b) Vx, yedom (D'): ((x,)¢ D’ & h(x) =6, h(»)7e) =(h(x), h(»))¢ D.

Then, for any labelled trace u over D', w€u we have

h(w) € [h(W)]p.

Proof. Let u be a labelled trace over D’ and w€u. Since 4 is a homomorphism,
we have only to prove that if w=w,xyw,, w'=w;yxws, (x, y)¢ D, then h(w)=ph(w’).
But this is obvious from the specified property of .

Hence, each mapping h:(dom (D))*—~(dom (D))* satisfying the condition of
Lemma 1 can be considered as a homomorphism from a labelled trace language over
D’ to a labelled trace language over D as well.

We shall adopt Mazurkiewicz’s denotation. Let D be a labelled dependency
over X.

A(D):= {[alp: a€dom (D)},

T(D):= {[w]p: we(dom (D))*},
P(D):=2TD),

Having in mind our intended interpretation, elements of A(D) will be called
actioncases over D, those of T(D) processes over D and those of P(D) activities over
D. Actioncases a and b occur concurrently in a process ¢t if t=1t"[ab]t” where (a, b)¢ D.

From Remark 1 and the definition of dep-graphs, if we identify X with XX {1},
and a word over X with a trace over the dependency D= (XX {1})} (XX {1}) in the
obvious way, we have that each word, each trace, and each labelled trace induce a la-
belled partial ordering over X. Let W (X), T(X) and LT(X) denote classes of label-
led partial orderings induced by words, traces, and labelled traces, respectively, on X.
Clearly,

W(X)ST(X)S LT(X).

We have introduced cases of actions in order to expand the power of our model
comparing to Mazurkiewicz’s model of traces. Thus, from the intended meaning, we
should not distinguish cases having the same effect in a labelled dependency. Therefore,
only reduced labelled dependencies are considered. Formally, we introduce the fol-
lowing notions.

Definition 2. Let D and D’ be labelled dependenmes on X, T and T’ labelled
trace languages over D and D, resp.
(i) D and D’ are said to be isomorphic, denoted by D=D’, if there exists a
mapping ¢ from dom (D) onto dom (D’) satisfying:
(i) ¢ preserves cases of actions, i.e. if x is a case of an action a, so is ¢ (x),
(ii) ¢ preserves the dependence, i.e. (x, y)€D iff (p(x), @(¥))ED".
(ii) T and T are said to be isomorphic, denoted by T=T", iff VT, 3t’€T”’
such that D(¢#)=D(t’) and vice versa.

Definition 3. Let D be a labelled dependency on X.
(i) Cases (a,i) and (a,j) are said to be equivalent iff V (b, k)€¢dom (D):
((ba k)a (as l))EDQ((b, k)’ (a9j))ED-

298 D. V. Hung and E. Knuth

(ii) A labelled dependency D" on X is said to be a reduced version of D iff D and
D’ are isomorphic and D’ is reduced, ie. for (a,i), (a,j)edom (D) with ixj
(a, i) and (a,j) are not equivalent.

Proposition 1. Every labelled dependency on X has its reduced version.

Proposition 2. Let D be a labelled dependency on X and T a labelled trace lan-
guage over D. Assume that D is isomorphic to D’ by an isomorphism ¢. Then T and
@ (T) are isomorphic.

The above propositions follow immediately from the definitions 2 and 3.

3. Operations on labelled trace languages (on activities)

In the previous section we have defined some operations on labelled trace lan-
guages over a given labelled dependency. Those operations have restricted applica-
tions, as pointed out by Janicki [11], since concurrency relations are fixed. To improve
upon this shortcomings we define our operations corresponding to ones on concurrent
processes from Milner’s and Hoare’s works [7], [15].)

In the sequel, let X be an alphabet, D; a labelled dependency over X, and let ¢;
and U, respectively, be labelled traces and labelled trace languages over D;, i=1, 2.

a) Sequential concatenation and concurrent composition.

We intend to use the sequential concatenation to represent the fact that a proc-
essin U, starts only when a process in U, has terminated. By the concurrent compo-
sition, we shall represent a synchronization of processes corresponding to the syn-
chronization mechanism introduced by Hoare [2], [7], Mazurkiewicz [14], and in our
papers [8], [9], [10]. By this operation we want to construct a process ¢ from ¢#; and ¢,,
which behaves like ¢, and ¢,, progressing in parallel and simultaneously participating
in actions having cases in D, and D,.

Having in mind our attention, we define some operations on labelled depend-
encies as follows.

Sequential composition of D, and D,, denoted by S(D,, D,), is the labelled
dependency :

S(Dy, Dy):= DyU{((a, i+ # (a, Dy)), (b, j+ % (b, D))| (@,), (b,))Dg}U
~ Usyre({((a, i), (b, j+ 4 (b, D)) |(a, edom (Dy), (b, j)edom (Do)}).
Together with S(D;, D,) a mapping s from T'(D,)to T(S(D,, D,)) is defined by
s((a, i)) = (a, i % (a, Dy)).

The definition of s is reasonable by Lemma 1,

Concurrent composition of D, and D,, denoted by C(D;, D,)is a labelled depend-
ency defined as follows. Let Y=1/(dom (D,))NI(dom (D,)) be the set of actions
having cases in both D, and D,. Then,

dom(C(D,, Dy)):= {x|x€dom (D,)Udom (Dy) & I(x)¢ YU
U{(a, i)|acY&i =#(a, D)) ¥ (a, Dy)}.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 299

For two positive integers m, nlet en (n, m) and rem (n, m) stand for the quotient
and remainder of dividing n by m. For j=1, 2, define mappings

h;: dom (C(Dy, Dy)) ~ dom (D)U {g} as follows.

For ady, i=1,2,
N _ [,) if (a,j)édom (D),
hi((a’lj)= {a otherwise;
for acY '
) hl((a’])) =(a’ rem(j—l, #(aa Dl))+1):

ho((@,) = (a,en i~ 1, #(a, DY) +1).

Now, C(D,, D,) is defined by .

C(D,, D;)={(x,)| there exists an i in {1, 2} such that (%;(x), k;(»))€ D:}.

Since h, and h, satisfy the condition of Lemma 1, h, and h, can be extended to
homomorphisms from T(C(D;, D,)) to T(D,) and T(Dz) respectively. b, and h, will
be called the projections associated with C(D,, D,).

Now, we are ready to define our operations on labelled trace languages.

Definition 4. .

(i) The sequential concatenation U,oU, of U, and U, is a labelled trace over
S(D,, D,) defined by U,oU,=U,s(U,), where U, is considered as a labelled trace
language over S(D;, D,) and the trace concatenation in the right side is for labelled
trace languages over S(D,, D,).

(i) The concurrent composition U,||U, of U, and U, is a labelled trace lan guage
over C(D,, D,) defined by:

U, U, = {t€T(C(Dy, D) | (D€ Uy, ho (D)€ U}
(iii) Sequential iteration (iteration for short) of U;, denoted by U, is defined by
UP = (U= {lelo)o W~ {Is10,)) (U1 U {[els s, 0y}
where U, U {[e]s(p,, by} is considered as a labelled trace language over S(D,, D,), and
the trace iteration and trace concatenation are for labelled trace languages over
S(Dl\;\/ﬁ& U, and U, contain a single element, say U,={t,}, U,= {12} we write

108y, tflt, instead of {r}o{t.}, {t:;}ll{z.} resp.

Example 2.
(@) Let D,=syre ({((a, 1), (b, 1))}),

= [pref (b, 1)(a, D))*]p,,
D, = syre ({((b, 1), (¢, 1)), (b, 2), (¢, 2)), (b, 1), (b, 2)), ((c, 1), (c, 2)})
U, = [pref((c, 1)(b, D+(c, 2)(b, 2))*]p,-

300 D. V. Hung and E. Knuth

Then, .
C(Dla DZ) = syre ({((a’ 1)’ (b’]))) ((a: 1)’ (b’ 2))})UD23

hl((a, 1)) =(a, 1), hl((b, l)) = hl((b, 2)) = (b, 1),
hy((c, 1)) = hi((c,2)) = ¢
hy(a, 1) =g, hz((b, l)) =(b, 1), h2((b, 2)) = (b, 2), hz((c, 1)) =(c, 1),
hy((c, 2)) = (¢, 2).
Let 5,=[(b, 1)(a, 1)(b, Dlp,€ Uy,
t=[(c, 1)(b, 1)(c, 2)(b, 2)(c, D]p,€ Us.

Reduced versions of dep-graphs of ¢, and 1,, resp., are of the form (i.e. transitive
arcs are omitted):-

By the definition of the concurrent composition, #]#, is a labelled trace over

C(Dy, Dy)
tl " t2 = [(C’ 1)(b: 1)(0, 1)((:’ 2)(br 2)(0, 1)]C(D1,D,)
A reduced version of a dep-graph of ¢,||¢, is of the form:

It can be seen that
Ul " UZ = [pref ((C: 1)(b, 1)(a’ 1)+(Cs 2)(b, 2)(01 1))*]C(D1,D,)'

. . » i . .
A noninterleaving semantics for communicating sequential processes: a fixed-point approach 301

We propose in the example that U, is the activity of the single portion-buffer,
and U, is the activity of the two-portion buffer with a and b corresponding to “out”
and “in” repectively, in the former, b and ¢ corresponding to “out” and “in” in the
latter. Then U, || U, corresponds to a composition of the two buffers: the two-portion
buffer inputs from its producer, then outputs to the single-portion buffer, and in
turn, the single-portion buffer outputs to its consumer.

(i) Let D=syre({((a, D), (e, 1)), (b, 1); (e, 1)), (e, 1), (c, D)}),

U = {[(a, (b, D(e, D(a, 1)(c, D]o}-
Then

S(D, D) = DU{((x, 2), (7, 2)|((x,1), (», D)eD}U
Usyre ({((x,1), (0, 2))| x, y€1(dom (D))}).
By the definition of the iteration _
U® = [((a, (b, D(e,)(a, 1)(z, D(a, 2)(b, 2)(e, 2)(a, 2)(c, 2))*
(£+(a, 1 (b, 1)(e, D(a, 1)(c, 1))]5(1),1))-

A reduced version of a dep-graph of 7€ U has the form:

In the sequel, for u€ X*, YZX, by uly we denote the projection of u on Y, i.e.
the image of u by the erasing homomorphism from X*to Y*. For u, v€ X* we also
write u|, instead of u|,,,(,) Without fear of confusion, where alph (v) denotes the set
of symbols forming v.

Proposition 3. t,||7, contains not more than one element.

Proof. By trivial induction on the length of elements of T(C(D,, D,)) we can
show that if for ¢, '€ T(C(Dy, D)) hy(t)=h(t") and hy(t)=hy(t'), then t=¢".

302 ' D. V. Hung and E. Knuth

Proposition 4.
tjt, # 0 if and only if

1|1 dom (0 N (D1 (gom (D)) # 9.

Proof. The “only if” part is obvious and we prove the “if” part. Suppose that
there exists WE/(£1)]; gom (0 N (t2)l1dom 0y E X *. Then there exist €1,
Us€ 1o 1)) l1(dom (01 =1 (U2l 1(gom (b= 1. Let
U, = a,a,...a,€(dom (D)),
Uy = b1b2...bm6(d0m (D2))*,
W = ¢;65...¢€Y* = (I(dom (DY) N 1(dom(D))) .
Then, ;Lhere exist monotonic functions f;: {1, 2, ..., k}~{1, 2, ..., n} and
Li{L2, L kY >{1, 2, ..., m} satisfying:
a; is a case ofan element in Y if and only if j=/,(i) for some i=k, j=n, and b;
isa case of an element in Y if and only if j=£,(i) for some i=k, j=m.
Let g: {c, s, ..., € }~dom (C(D,, D,)) be defined as follows.
Let ap n=(c, p), bsw=(ci, q). Then g(c)=(c;, s), where s is determined
from the equation system: .
p=rem(s—1, # (c;, DD)+1.
q=en(s—1, % (c;, D)) +1.
Let wy=aja;...a,, uy=>bib;...b), be defined by

2 {aj if j({fl({l,2,...,k}),

7o glep if j=A@), for j=n,
{bi if Jsz({l 2,. k})

gle) if j=r0) “for j=m.
Clearly, u, '—uzl ’—g(clcz .)

Hence, by Theorem 2 ([12), pp. 205) there exists w ’¢(dom (C(Dy, D,))* such that
Wl =ui, wl,,=u;. Itisobvious from the definition of g that

b;

[W,]C(D,.D,) =t t,.

Proposition 5. Let D, D;, D, be labelled dependencies on X, U, U,, U,¢ P(Dl),
V.Vy, Vo€ P(Dy), ZEP(Dy), WEP(C(Dy, D,)), t€T(C(D,, D,)), and hy, h, the
homomorphxsms associated with C(D,, D,). Then

a) C(D,, D;)=C(D,, D) and U|V=V|U,

b)) gﬁDhC(DzyDa» C(C(Dy, Dy), D3) and (U|M)Z=U|(¥V|Z);
C =

d) [H]D,"[E]D, [S]C(D D2)>

e) (LUU)|V= (U1"V)U(U2"V)

f) U"(VIUVZ) U HUUIY);

g) (m()U)]|(he <z)V)—t(Ulwz)

h) WSh,(W)|lh.(W

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 303

Proof.

a) For acX, O<j=3#(a, D) -#(a D) the numbers i=
=rem (j—1, #(a, D))+1, k=en(j—1, #(a, D,))+1 are defined uniquely, and
for a pair (i, k) with /= #(a, D,) and k= 4#(a, D,). the integer j'= #(a, D)X
X (i—1)+k is determined uniquely. Thus the correspondence f,(j)=j" is an
one-to-one mapping from {1, ..., #(a, D;)-(a, D,)} to {1, ..., #(a, D,) - #(a, D,)}.

By the definitions of C(D,, D;), C(D,, D,) and h,, h,, the mapping h: dom
(C(Dy, Dy))-~dom C(D,, D)) defined by

~ _ [,) if #(a,Dy): #(a,D;) =0,
"((“’J))‘{(a,f;(j)) it #(a,Dy)- #(a,Dy) = O

is an one-to-one isomorphism. Furthermore, let k; and h; be the projections associated
with C(D,, D,), we have:

hl((a:])) = hé(h(a’ J)): hZ((an)) = h;(h(a’.]))

Consequently, it follows a). :

b) For acX with #(a, C(Dy, C(Dy, D3)))=0 and for i=1,2,3 let the
mappings g, and gi, from {1, 2, ..., #(a, C(Dy, C(D,, D))} to {1, 2, ..., #(a,D;)}
be defined as follows (g;, and g}, are undefined if 4 (a, D;)=0).

If #(a, D) #(a, Dy)- #(a, D;)=0, for j= #(a, Dy)-4(a, D,)- 4 (a, Dy), let
’ 814(j) = rem (j-l, #(a’ Dl))+1,
gs.() =rem (en (j—1, #*(a, Dy), #(a, D))+1,
gsa(i) = enen G—1, #(a, D)), #(a, DY)+1,
gla(j) = rem (rem (j—1, #(a, Dy)- % (a, Dy)), #(a, D)) +1,
g2.(j) = en (rem (-1, #(a,Dy)- #(a, Dz))a‘#(a, D1))+1
gsa() = en(j' =1, % (a, D)« % (a, D)+ 1.
If #(a, D)4 (a, Dy)-#(a, Dy)=0, for j= #%(a, C(D,, C(Dy, D;)), then let

) = g0 = {noeimed if #(a,D) =0,
214 = 81a = rem(j—l, :ﬁ:(a,Dl))-l-l if #(a, D) =0,

undefined if 4:(a, D) =0,
g2a(j) = g;a(j) =1¢én (]_1, #(a:Dl))"l'l lf #(aa Dl)' #(as DZ) >0’
rem (j—1, #(a,Dz))-}-l if #(a,D,) =0& #(a,Dy) =0,

() = gi(i) = {undeﬁned if #(a,Dy) =0,
83a) = 80 = len (j—1, 4 (a, D+ #(a, DY) if #(a, Dy) > 0.

Let £,(j)=j" iff for i=1,2,3 gi,(j)=gi(J’)
" Tt can be scen easily that ((a,7), (b,;))€C (D1, C(D;, Dy)) (C(C(Dy, D), Dy),
resp.) if and only if there exists i in {1,2,3} such that ((a, (/) (b £(J))€

304) D. V. Hung and E. Knuth

€D;((a, g.(1), (b, g(j)))ED;, resp.). Hence, the mapping f: dom (C(D,, C(D,,
Dy)))~dom (C(C(D;, Dy), D)) defined by

[,) = (a, 1))

is an isomorphism between C(D,, C(D,, D,)) and C(C(D,, Ds), D;).
For i=1, 2, 3 mappings G;, Gi from T(C(Dy, C(D;, Dy)), T(C(C(D,, D;), D))
resp., to T(D;) defined by

Gi((a’])) = (a’ gia(j)):
Gi((a,) = (3, g())

are homomorphisms by Lemma 1. Furthermore, for t€T(C(D,, C(D,, Ds)))

(T(C(C(Dy, Dy), Dy)), tesp.) tc UI(VIIZ) (UIV)I|Z, resp.) if and only if G,(1)€U,

Go(1)EV, G3(1)EZ (G1(1)EU, G3(1)€V, G3(1)€EZ, resp.). Hence, by Lemma 1 fcan

be extended to an isomorphism from T(C(Dy, C(D,, D3))) to T(C(C(D,,Dy),

D) and fIUNVIZ)=(UII¥)Z. Thus, by Proposition 2, UNVIZ)=(UIV)|Z.
The properties (c)—(h) are obvious.

The following theorem has been formulated by Mazurkiewicz for the case of
trace languages. Fortunately, it is still true for labelled trace languages, although our
operation of synchronization is more powerful and general than his one.

Theorem 1. The concurrent composition || is the least function from P(Dl)x
X P(Dy) to P(C(Dy, D)) (w.r.t. the inclusion ordering of its values) meeting the
following conditions:

@ (hl(x) U)"(hz(x))V) = x(U|v),

(b) (LU IV = (L|V)U(U[V),

© Ul(rUVe) = (UIV)UU|VY),

(@) [l [€], = [elc oy, by

for each actioncase x in C(D,, Dy), U, Uy, U,€ P(D,y), V, V1, V€ P(D,). ‘

The proof of the theorem is similar to the proof of Theorem 1, [14], pp. 352 and
is omitted here.

b) Union and intersection.

We deal with the construction of activities from activities over different labelled
dependencies. The union is intended for the nondeterministic choice and the inter-
section is intended to represent the tied synchronization.

Let N(D,, D,) be the labelled dependency defined by

N(Dy, D,) = D;U{((a, i+ #(a, Dy)), (b, j+ # (b, D)) |((a, i), (b,)€ D5} U
Usyre ({(a, /), (a,)+ # (a, Dy)|(a, j)€dom (D,), (a,)€ dom (D,)}).
A mapping s: T(D,)~T(N(D;, D)) associated to N (D,, D,) is defined by
s((a, D) = (a, i+ #(a, DY), (a,)edom (Dy).

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 305

Let I(D,, D,) be the labelled dependency defined by I(D,, D,)= C(D;, D;)N
N(Yx {1, 2,...})2, where Y=I(D,)NI(D,). Since C(Dy, Dy)N(dom (I(Dy, D,)))*=
=1(D,, D,) each labelled trace over I(D,, D,) is a labelled trace over C(D,, D,).
Let h;, h, be homomorphisms associated with C(D;, D,).

Definition 5. (i) A nondeterminic composition U, U, of U; and U, is a labelled
trace language over N(D,, D,) defined by

U,QU,=U,Us(U,), where the operation U on the right hand side is for labelled
trace languages over N(D,, D,) with considering U, as a labelled trace language
over N(D,, Dy).

(ii) The intersection U;MU, of U; and U, is a labelled trace language over
I(D,, D,) defined by

U,MU, = {teT(I(Dy, D)) | by ()€ Uy, hy(D)€ Uy}

Proposition 6. For U’, U”€¢ P(D,), V'€ P(D,),
a) U'gU”=U'UU"; N(D,, D,)=D,,

b) U\W'=UnvV’" if D,=D,.

This follows immediately from Definition 3.

Proposition 7. Let D,, D,, D;, D be labelled dependenceis on X, U€ P(D),
VEP(Dy), WEPWD,), ZEPDy), t,€T(Dy), ,€T(Dy). Then

) [e]peo U=Us[elp, 2V,
b) (UoV)YoW=Uo(VoW),

¢) Uo(VOW)=(UoV)YOQWUoW), WOW)oU=loU)T(WoU),
d) tioUoty=tioVot,=U=x=V.

Proof. a), b) and d) are obvious. To prove ¢) consider a mapping h from -
dom (N(S(D, Dy), S(D, D,))) onto dom (S(D, N(Dy, D)) defined by:

~_ J(a,), if . j=42(a,D)+ #(a,Dy,
h((a.1)) = {(a, j—#(a, D)), otherwise.

By the definition of the operations S, N on labelled dependencies, ((a, i), (b, j))€
EN(S(D, Dy), S(D, Dy)) iff (h((a, i), h((b,]))€S(D, N(Dy, Dy)). Hence, h can be
extended to a homomorphism from T(N(S(D, D,), S(D, D,)))to T(S(D, N(Dy,Dy)))
in the obvious way (by Lemma 1). Furthermore, it can be seen easily that
h((UoV)Q(UoW))=Uo(¥'OW). By Proposition 2, Uo(V OW)=(UoV)T(UoW).
The remaining case of c) is proved similarly. . _

4. Relations to other models

As mentioned in the section 2 each labelled trace induces a lebelled partial order-
ing over X, and each labelled partial ordering over X is a finite labelled event struc-
ture over X ([16]). Thus, a labelled trace language over a labelled dependency on X is
a set of labelled event structures having a very simple representative: a (finite)
labelled dependency and a word language (may be represented by a regular expression).
In our paper [8] we have related labelled trace languages to Petri nets and some

306 D. V. Hung and E. Knuth

interesting results have been obtained. In this section, we relate labelled trace lan-
guages to semilanguages introduced by Starke [18], [19].

Definition 6 ([19] pp. 337).

(i) A labelled partial ordering (1po for short) over X is a triple (4, S,), where
(4, S) is a irreflexive partial ordering, B: A~ X is a labelling mapping.

(ii) Two 1po’s (4, S, B) and (4, S’, p’) are said to be isomorphic iff there exists
a bijection b from A onto 4’ which preserves the labelling and the ordering:

aSc < b(a)S'b(c)&p(a) = B'(b(a)).

The isomorphy class [(4, S, f)] of a finite Ipo (4, S, B), i.e. the class of all Ipo’s
which are isomorphic with (4, S, f) is called a partial word over X. A partial word
[(4, S, P)] over X such that for all g, b from 4

B(b) = B(a) =>aSbVbSaVa = b, 1

i.e. where all the sets f~%x) (for x€X) are chains w.r.t. S is called a semiword
overX, '

Let p(t) denote a partial word over X induced by a labelled trace ¢ over a label-
led dependency on X (see section 2) ie. p(t)=[(4, S, f)] where (4, S, p) is the
iabelled partial ordering induced by ¢.

Theorem 2. For each labelled trace ¢ over a labelled dependency on X, p(¢) is a
semiword over X.

Proof. Let D(t) be a dep-graph of ¢, where ¢ is a labelled trace over a labelled
dependency D on X. By the definition of D, if x, y are cases of an action a€JX,
(x, y)ED. Thus, the labelled partial ordering over X induced by ¢ satisfies (1). Con-
sequently, p(¢) is a semiword over X,

It follows from Theorem 2 that every labelled trace language over a labelled
dependency on X generates a semilanguage over X in the natural way.

For U€P(D), denote by

SL(U) = {p®Itc U}.
SL(U) is called semilanguage generated by U.

Theorem 3. Let UcP(D,), V€ P(D,), where D;, D, are labelled dependencies
on X. Then
SL(U®oV) = SL(UoU®oYOY).
Proof.
By (iii) of Definition 4

ve = ((U - {[8101})0 - {[8]01}))*([]) {[8]5(1)1,1),)})61J (S (D,, Dl))a

where UU {[¢lsp,, by} is considered as a labelled trace language over S(D,, D)).
It follows from the definition of S(D,, D;) and of the sequential concatenation that
for 1€ T(S(Dy, Dy)), p(1)€U® if and only if there exist 1, 1y, ..., t, €U~ {[e]p,} such
that

() D()=9 iff n=0, and

(i) Let D(1), ..., D(1,) be dep-graphs of t,...,t, over D,, D(t)=
=(V,', Ei, X,-, ﬁi)s l=1, 2, Y (A V,ﬂV_,=ﬂ for i;é_], i,jén.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 307

Then D(t)g(Lnj Vi, E, X, B), where
i=1

E = () E)U{(@ b)|a€V;, bEViys, i = n=1} By, = .

Hence, since V%@ for i=n, for i<j=n, acV,, be¥;, (a,b)is an arc of the tran-
sitive closure of D(¢). From the definition of the sequential concatenation of labelled
trace languages it follows that

SL(Uo U®)U {p(lelp,}) = SL(U®),
SL(U®oV) = SL(UoU®o¥V)USL(V).

By the definition of the operation (] our theorem is obtained from the last

equality.
To relate labelled trace languages to interleavings of strings we recall the syn-
chronization mechanism introduced by Hoare [7], E. Knuth [12].

Definition 7 ([7]). Let L,, L,SX*, YSX. The synchronized parallel compo-
sition L,|yL, istheset {J w,|yws, where w,|yw, denotes the set of all successful
‘ wy €Ly
Wa€ Ly .
interleavings of w; and w, with synchronising communications in Y and is defined
inductively as follows:

(@) elye={¢}

. g if Y
(i) aw|ye = ellyaw = {a(wluyg)aéif agy, '

a(w|yw) if a = beY

g if a # bAa, beY
a(wllybw’) if a¢YAbeY
a(wlybw)Ub(awllyw) if ady, b¢Y.

. Theorem 4. For a labelled trace language U€ P(D) let inter(U)= U 1(2).

Then, for U¢P(D,), V¢P(D,), (where D,, D, are labelled dependenc1es) and
Y=I(dom D,)NI(dom (D,),

‘a) inter (UoV)=inter (U) inter (V),

b) inter (U||V)=inter (U)|y inter (¥V),

©) inter (U®)=(inter (U))*,
d) inter (UOV)=inter (U)Uinter (¥),
e) inter (UMV)=inter (U)Njinter (V).

Proof. a) and ¢), d) are obvious. ¢) follows from b).

b) is proved as follows.

Let A, and h, be the projections associated with C(D,, D5). Clearly, for tcU|V
h(D)EU, hy(t)EV, and I(t)ll(dom(Dz))“I(h2(t))clnter), 1 idom (o= 1P (1)) S
Cinter (U) Thus, inter (U]|V)Zinter (U)|y inter (V).

(i) aw|ybw’ = bw'|yaw =

6 Acta Cybernetica 8/3

308 D. V. Hung and E. Knuth

Let ycinter (U)lly inter (V). By Definition 7, y|jgom(p,n€inter (U), yl,(domw!»e
ginter (V). There exist u€U, v€V such that y|ygomp,n€/ @), Ylidom(pe)€!(v). By
Proposition 4, ¢t=uljv is defined.

It follows easily from the definition of h; and h, that y€l(t). This completes the
proof of the theorem.

In the sequel, for simplicity of denotation, if L, and L, are considered over fixed
alphabets, say X, and %,, and Y=23,N%,, we shall writte L,|L, instead of L,||yL,.

Proposition 8. Let L,, L,, L, are languages over Z,, X,. Z, respectively. Then
L\|L, = Lyj|L,, and (L|L)ILs = Lyll(LellLs).
Proof. Straightforward from the definition of the operation |.

5. Labelled trace languages as a noninterleaving semantics for CSP

The notion of CSP presented in this paper is at an abstract level necessary for
our purpose.
Let Comm be a finite set of actions. A process P over Comm is in one of the fol-
lowing forms:
P:=P;; Py; ...

'l’

P:= [Py||Py)... [P,),

P:= ® P,
P.=[PO0P,0O..0P,]
P:=a —~ P, acComm,
P:= skip, (skip4 Comm),
P:= P\ {by, bz, ..., b,},

where P, P,, ..., P, are processes over Comm.

The meaning of the above constructions of processes is given informally as fol-
lows.

P,; P,; ...; P, specifies sequential excution of Py, P,, ..., P, in the order writ-
ten (process by process, P, starts only P; has terminated, 1=i=n-—1), and
starts with the start of P;, terminates with the termination of P,.

[PiliPo||...I P;] specifies concurrent excution of its constituent processes. They
all start simultaneously and the process P=[P,|...|P,] terminates successfully
only if and when they have all successfully terminated. The relative speed with which
they are excuted is arbitrary. The set of actions excuted by each of them is required
to be disjoint from those executed by the rest. Py, P,, ..., P, aresynchronized by the
actions intended. P; excutes an action intended to synchromze with P; (in the con-

struction) if and only if P; excutes a corresponding action (intended to synchronize
P; with P)) s1multaneously (see [6], [7], [11]).
_® Pspecifies as many iterations as necessary of P sequentially.

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 309

[A,OP,O...0F,] specifies excution of exactly one of its consituent processes
and the choice between them is fully nondetermmxstlc cannot be influenced by the
environment.

a— P, specifies excution of the action a followed by excution of P,.

Skip specifies the process having no effect and never fails.

Now, we identify the action intended to synchronize P; with P; with a corre-
sponding action intended to synchronize P; with P; in a construct [Py Pyfl...| P,].
We can suppose that the set of actions excuted by P; may not be disjoint from the one
by P; and the actions in their intersection require that P; and P; must excute each
of them s1multaneously (This abstraction has been made by Hoare in [7], [2], Janicki
in [11]).

The interleaving semantics for CSP given by Hoare [2], [7] is a follows.

Each process over Comm is identified with a subset of Comm™* called its inter-
leaving semantics: . '

skip := {e},
a—~ P:=aP,
Py; Py ...; Py:=P,P,...P,,
[p,OP,O...0P):=P,URVU..UP,
[Py Py|... | Py):= Py| Pyll...| P,, where

the operation || on languages is defined in the previous section and P, ..., P, are
considered as languages over alph (P,), ..., alph (P,) respectlvely (Here for a lan-
guage L, alph (L) denotes the smallest alphabet over which L is a language).

®P:= P*,
P\ by, e b,}:= P|alph-(Pl)\(b1,...,b"},

where P|, denotes the projection of Pon A*.
Because of the presence of the hidding operation in CSP, to relate our model
to CSP we have to extend the notion of labelled trace languages.
An e-labelled dependency on X isa symmetricrelation D,E((XU {e)x {1, 2, ...})?
. satisfying:

@) (a, Dedom (D) = (a,j)édom(D,) for j=i,
(i) ((a, i), (@, N)ED, for (a,i),(a,j)édom(D) and a#e.

An g-labelled dependency on X may not be reflexive in its domain. However, this
has no effect in the definition of trace languages and the notion of trace languages is
extended to this case. Then, a trace language over D, is called an ¢-labelled trace lan-
guage over D,. All the notions and the results presented in the previous sections are
valid for e-labelled trace languages as well with the only exception that the set Y in
the definition of the operation || of labelled trace languages is modified as

Y = (I(dom (DY)Ni(dom(D))\ {¢}.

6*

310 D. V. Hung and E. Knuth

-e-labelled trace semantics proposed for CSP is presented bellow. Each process
over Comm is identified with an e-labelled trace language over an ¢-labelled depend-
ency on Comm as follows :

a ~ P:= {{(a, D)1} P,
Py; Py ...; P;:= P,oP,o...0P,;
[P\|Py]...[| P} := Py||Poff...| P,
[P,O...0P,):= P,OP,0...0P,;
R P.= P®

P\{bl cery bn}:= h(bl,...,bn}(P)’
where A, .5y is defined as follows: For an e-labelled dependency D, on X let

o J@ D if ad{by, ..., b)Y\ (a, i)édom(D,)
h(bl,...,b“)((a, l)) - {(e, i if aE{b;, ooy BYA(a, iydom (D),

Lo My \

Dz{bl, sees bn} = {(h(bl,...,bn}(x)a h{bl,...,b,,)(y))|(x’ y)EDe}

By Lemma 1, hy, .. b is considered as a homomorphism from T7(D,) to
T(D\{bs, ..., b)) .

The correspondence between e-labelled trace semantics and interleaving seman-
tics for CSP is stated by the following theorem, which follows immediately from
Theorem 4. .

Theorem 5. For a process P over Comm. Let LT(P), INTER (P) denote the
e-labelled trace semantics, interleaving semantics, respectively, for P. Then

inter (LT(P)) = INTER (P).

Proposition 9. If a process P over Comm does not contain a construction
[P,0...0P,), LT(P) contains, at most, one element.
The Proposition follows from Proposition 3.

~ 6. Conclusion

We have presented an extention of the theory of traces as an attempt to provide
a mathematical description for the behaviour of concurrent systems, more specifically,
CSP. Labelled trace languages have been shown to be more powerful than trace
languages and to have a simple representation.

However, the construction of the theory of CSP based upon labelled trace lan-
guages requires a deeper study on labelled trace languages concluding a construction
of domains of the operations on processes so that the operations are continuous and
the representation of the properties of processes in its semantics in the model. This
will be presented in our future work. »

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
VICTOR HUGO U. 18—22

1123 BUDAPEST

HUNGARY

©

A noninterleaving semantics for communicating sequential processes: a fixed-point approach 311

References

[1] 1. J. AALBERSBERG and G. ROZENBERG, Theory of traces, Institute of Applied Mathematics and
Computer Science, Univ. of Leiden, The Netherlands, Rep. 85— 16, August 1985.

[2] S. D. BRookEs, C. A. R. HOARE, A. W. R0OSCOE, A theory of communicating sequential processes,
J. of ACM, Vol. 31, N. 3, July 1984, pp. 560—599.

[3] P. DecaNo and U. MonTaNARI, Distributed Systems, partial orderings of events, and event
structures, Proc. of the International Summer School “Control Flow and Data Flow: Con-
cepts of Distributed Programming”, NATO ASI Series, M. Broy, Ed., Vol. 38F14, Springer-
Verlag, 1985, pp. 7—106.

[4]1 U. GoLtz and W. REstG, CSP-programs as nets with individual tokens, LNCS, Springer-Verlag,
Vol. 188, 1985, pp. 169—196.

[5] M. HENNESSY, W. L1, G. PLoTKIN, “A first attempt at translating CSP into CCS”, Proc. of the
2nd International Conference on Distributed Computing, IJEEE, N. 81, CH 1591—7, Paris 1981.

[6] C. A. R. Hoarg, Communicationg sequential processes, Comm. of ACM, Vol. 21, N. 8, 1978,
pp. 666—677.

[7] C. A. R. HoARE, Sp°mﬁcatlon -oriented semantics for communicating processes, Acta Informa-
tica, Vol. 23 Springer-Verlag, 1986, pp. 9—66. .

[8] D. V. Hung and E. KNuTH, Labelled trace languages and Petri nets, Working Paper, MTA-
SZTAKI.

[9] D. V. Huneg, Notes on trace languages, Projections and synthesized computatlon systems,
Kb6zlemények, MTA-SZTAKI, Vol. 32, 1985, pp. 87—104.

[10] D. V. HunG and M. SZIJJARTO Synchronued parallel composition of languages, Proc. of Con-
ference of Automata, Languages and Programming Systems, Salgétarjan, Hung. May 1986.

[11] R. JAnicki, Trace Semantics for Communicating Sequential Processes, Institute for Elektroniske
Systemer, Danmark, R—85-—12, 1985.

[12] E. KNuTH, GY. GYSRY and L. RONYAL, 4 Study of the projection operation, Application and
Theory of Petri Nets, W. Reisig, Ed. Springer-Verlag, Vol. 52, 1982,

[13] A. MazurkiEwicz, Concurrent Program Schemes and Their Interpretations, DAIMI PB—78,
Aarhus Univ., Press, 1977.

[14] A. MAZURKIEWICZ, Semantics of concurrent systems: a modular fixed-point trace approach,
LNCS, Vol. 188, 1985, pp. 353—375.

[15] R. MILNER, Calculi for synchrony and asynchrony, TCS, Vol. 25, 1983, pp. 267—310.

[16] M. NieLseN, G. PLoTKIN, and F. WINSKEL, Petri nets, event structures and domams, Part I,
TCS, Vol. 13 1981, pp. 85—108.

[17] C. A. Perr1, Non- sequentlal processes, GMD—ISF Report, ISF—77—05, 1977, pp. 1—24.

[18] P. H. STARKE, Processes in Petri nets, Informationverarb u. Kyberner. EIK, Vol. 17, 1981, pp.
389—416.

[19] P. H. STARKE, Traces and semiwords, LNCS, Computation Theory, Andrezej, Ed., Fifth. Sym-
posium, Vol. 208, 1985, pp. 332—350.

(Received June 20, 1987)

TAPSOFT ’87 Proceedings of the International Joint Conference on Theory and Practice of
Software Development Pisa, Italy, March 1987.

Volume 1: Advanced Seminar on Foundations of Innovative Software Development I and Col-
loguium on Trees in Algebra and Programming (CAAP’87) (Lecture Notes in Computer Science Vol.
249) X1V +289 pages, Springer Verlag, Berlin—Heidelberg—New York—Tokio, 1987. Edited by
Hartmut Ehrig, Robert Kowalski, Giorgio Leviand Ugo Montanari.

Volume 2: Advanced Seminar on Foundations of Innovative Software Development IT and
Colloquium on Functional and Logic Programming and Specifications (CFLP) (Lecture Notes in
Computer Science Vol. 250) XIV +336 pages, Springer Verlag, Berlin—Heidelberg—New York—
Tokio, 1987. Edited by Hartmut Ehrig, Robert Kowalski, Giorgio Levi and Ugo Montanari.

These two books contain a selected collection of papers presented at TAPSOFT ’87 held in
Pisa, Italy, March 1987.

TAPSOFT ’87 consists of three parts:

i, Advanced Seminar on Foundations of Innovative Software Development concerns new
directions in software development on the basis of recent technological and theoretical advances.

ii, Colloguium on Trees in Algebra and Programming covers the formal aspect and properties
of trees, and more generally, combinatorial and algebraic structures in all fields of Computer Science.
Besides the customary topics, CAAP includes contributions related to specifications, communicating
systems and type theory.

iii, Colloguium on Functional and Logic Programming and Specifications focuses on those
aspects of Functional and Logic Programming which are most important in innovative software
development,

Contents of Volume 1

1. Wegener: On the complexity of Branching Programs and Decision Trees for Clique Functions,
W. Szpankowski: Avarage Complexity of Additive Properties for Multiway Tries: A Unified Ap-
proach, M. Crochemore: Longest Common Factor of Two Words, S. Ronchi della Rocca: A Unifi-
cation Semi-Algorithm for Intersection Type Schemes, B. Steffen: Optimal Run Time Optimization
Proved by a New Look at Abstract Interpretations, F. Bellegarde and P. Lescanne: Transformation
ordering, M. Gogolla: On Parametric Algebraic Specifications with Clean Error Handling, D.
Sannella and A. Tarlecki: Toward Formal Development of Programs From Algebraic Specifica-
tions: Implementations Revisited, G. Marongiu and S. Tulipani: Finite Algebraic Specifications of
Semicomputable Data Types, G. BoudolandI. Castellani: On the Semantics of Concurrency: Partial
Orders and Transition systems, R. De Nicola and M. Hennessy: CCS without 7’s, Ph. Darondeau
and B. Gamatie: A Fully Observational Model for Infinite Behaviours of Communicating Systems,
E. Astesiano and G. Reggio: SMoLCS-Driven Concurrent Calculi, M. Navarro and F. Orejas:
Parameterized Horn Clause Specifications: Proof Theory and Correctness, F. Parisi-Presicce:
Partia] Composition and Recursion of Module Specifications, G. Galambosi, M. Talamo and
J. Nesetril: Efficient Representation of Taxonomies, J.-J. Ch. Meyer and E. P. de Vink: Applications
of Compactness in the Smyth Powerdomain of Streams, M. C. Browne, E. M. Clarke and O.
Griimberg: Characterizing Kripke Structures in Temporal Logic, R. Milner: Dialogue with a
Proof System, G. Huet: Induction Principles Formalized in the Calculus of Constructions, J.
Thatcher Algebraic Semantics.

Contents of Volume 2

J. A. Goguen and J. Meseguer: Models and Equality for Logical Programming, K. Furukawa:
Fifth Generation Computer Project: Current Research Activity and Future Plans, A. Piperno:
A Compositive Abstraction Algorithm for Combinatory logic, J. Y. Girard and Y. Lafont: Linear
Logic and Lazy Computation, D. Clément: The Natural Dynamic Semantics of Mini-Standard ML,
Z. Farkas: Listlog — a Prolog Extension for List Processing, R. Barbuti, P. Mancarella, D. Pedreschi
and F. Turini: Intensional Negation of Logic Programs: Examples and Implementation Techniques,
P. Van Roy, B. Demoen and Y. D. Willems: Improving the Execution Speed of Compiled Prolog
with Modes, Clause Selection, and Determinism, C. Percebois, I. Futé, I. Durand, C. Simon and
B. Bonhoure: Simulation Results of a Multiprocessor Prolog Architecture Based on a Distributed
AND/OR Graph, G. Lindstrom, L. George and D. Yeh: Generating Efficient Code from Strictness
Annotations, S. Finn: Hoisting: Lazy Evaluation ina Cold Climate, W. Drabent and J. Maluszynski:
Inductive Assertion Method for Logic Programs, A. Pettorossi and A. Skowron: Higher Order *
Generalization in Program Derivation, M. Thomas: Implementing Algebraically Specified Abstract
Data Types in an Imperative Programming Language, K. L. Clark and I. T. Foster: A Declarative
Environment for Concurrent Logic Programming, D. H. D. Warren: Or-Parallel Execution Models
of Proiog, M. Bellia: Retractions: a2 Functional Paradigm for Logic Programming, P. G. Bosco,
E. Giovannetti and C. Moiso: Refined Strategies for Semantic Unification, V. Breazu-Tannen and
T. Coquand: Extensional Models for Polymorphism, R. Harper, R. Milner and M. Tofte: A Type
Discipline for Program Modules, C. Beierle and A. Voss: Theory and Practice of Canonical Term
Functors in Abstract Data Type Specifications.

These well edited interesting volumes present the state of the art in theory and practice of soft-
ware development. It is recommended for those people interested in the latest results of the field.

S. Vagvolgy;

A SZERKESZTO BIZOTTSAG CIME:

6720 SZEGED
SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED
SOMOGYI U. 7.
" HUNGARY

Information for authors

Acta Cybernetica publishes only original papers in the field of computer sciences mainly in
English, but also in French, German or Russian. Authors should submit two copies of manuscripts
to the Editorial Board. The manuscript must be typed double-spaced on one side of the paper only.
Footnotes should be avoided and the number of figures should be as small as possible. For the form
of references, see one of the articles previously published in the journal. A list of special symbols used
in the manuscript should be supplied by the authors.

A galley proof will be sent to the authors. The first-named author will receive S0 reprints free
of charge.

INDEX — TARTALOM

J. Dassow: Pure languages of regulated rewritingand theircodings 227
A. Meduna and Gy. Horvdth: Onstate grammarsovviuiiniineiernrieeananeeenenians 237
B.Imreh: A note on the generalizedv,-productl 247
P. Domdésiand Z. Esik: On the hierarchy of v;-products of automata 253
Z. Fildpand S. Vdgvolgyi: Onranges of compositions of deterministic root-to-frontier tree trans-
BRI €03 o107 13T 1 - AU AU 259
0. Selesnjew and B. Thalkeim: On the numbers of shortest keys in relational databases on non-
UNIfOrM dOMAINS « .ot ittt ittt e tee e ettt ina e 267
J. Demetrovics and V. D. Thi: Some results about functional dependencies 273
J. Demerrovics and V. D. Thi: Relations-and minimalkeysoooviiiiiiiiii ... 279
Z. Daréczy and L. Varga: A new approach to defining software complexity measures 287
D. V. Hung and E. Knuth: A noninterleaving semantics for communicating sequential proces-

ses: a fixed-point aPPrOaCh « .. ov v it ve et i i et e REEETRTS 293

| ISSN 0324—721 X | -

Felelds szerkesztd és kiad6: Gécseg Ferenc
A kézirat a nyomddba érkezett: 1987 augusztus
Terjedelem: 7,7 (A/5) iv
Késziilt mondszedéssel, ives magasnyomdssal
az MSZ 6601 és az MSZ 5602—S55 szabviny szerint
87-4083 — Szegedi Nyomda — FelelGs vezet6: Surdnyi Tibor igazgat6

