
Volume 11 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), W . Brauer (Germany), L. Budach
(Germany), R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France).
J. Csirik (Hungary), J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet
(The Netherlands), Z. Ésik (Hungary), J. Gruska (Slovakia), H. Jürgensen (Canada),
L. Lovász (Hungary), A. Makay (Hungary), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary)

Szeged, 1994

Information for authors: Acta Cybernetics publishes only original papers in Eng-
lish in the field of computer scienos. Review papers are accepted only exceptio-
nally. Manuscripts sihould be sent in triplicate to one of the Editors. The manus-
cripts must be typed douple-spaced on one side of the paper only. For the form oE
references, see one of the articles previously published in the journal.

Editor-in-Chief : F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
Board of Editors:
M. Arató
University of Debrecen
Department of Mathematics
Debrecem, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Habokén
New Jersey 07030, USA

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
AdW
Forschungsbereich Mathematik
und Informatik
Rudower Chaussee 5
Berlin - Adlershof
Germany

R. G. Bukharajev
Kazan State University
Department of Applied Mathematics
and Cybernetics
Lenin str. 18., 420008 Kazan
Russia (Tatarstan)

H.Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex, France

J. Csirik
A. Józ=ef University
Department of Camputer Science
Szeged, Árpád tér 2.
H-6720 Hungary
J. Demetrovics
MTA SZTAKI
Budapest, P.O. Box 63
H-1502 Hungary

Managing Editor: Z. Fülöp
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Dömölki Bálint
IQSOFT
Teleki Blainika u. 15—17.
H-1142 Hungary, Budapest
J. Engeltriet
Leiden University
Computer Science Department
P.O. Box 9512, 2300 RA LEIDEN
The Netherlands
Z. Ésik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
Prof. J. Gruska
Institute of Informaties/Mathematies
Slovak Academy of Science
Dúbravslka 9, Bratislava 84235
Slovakia
H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College
London, Ontario
Canada N6A 5B7
L. Lovász
Eötvös Loránd University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary
A. Makay
A. József University
Computer Center
Szeged, Árpád tér 2.
H -6720 Hungary
A. Prékopa
Eötvös Loránd University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary
A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland
L. Varga
Eötvös Loránd University
Budapest
Bogdánfy u. 10/B.
H-1117 Hungary

Acta Cybernetics Vol. 11, No. 3, Szeged, 1994

Mealy-automata in which the
output-equivalence is .a congruence*

I. Babcsanyi* A. Nagy*
/ /

Dedicated to Professor A. ADAM on his 60th birthday

Abstract

Every Mealy-automaton whose output equivalence is not the universal
relation has a non-trivial simple state-homomorphic image. Thus the simple
Mealy-automata play an importante role in the theory of Mealy-automata. It
is very difficult to describe the structure of these automata. Contrary to the
earlier investigations, in our present paper we concentrate our attention only
to a special kind of simplicity, namely the strongly simplicity. Besides we give
a construction for strongly simple Mealy-automata, we also describe the struc-
ture of all Mealy-automata which have strongly simple state-homomorphic
image.

1 Preliminaries
By a Mealy-automaton we mean a system A = (A, X, Y, 6, A) consisting of a state
set A, an input set X, an output set Y, a transition function 8 : A x X —• A
and an output function A : A X X —• Y. In that case when |.A|, |Jf|, |F| are finite,
A = {A, X, Y, 6, A) is called finite (|S| denotes the cardinality of a set S) . A Mealy-
automaton A is called a Moore-automaton if

<5(ai) = Ha2.2:2) ==> Afai .xx) = A(a 2 , 2 2)

for all ai , 02 £ A and 11,12 G X. It means that the function A can be given in the
form

A(o, x) = n[S(a,x)) (ae.A,x€X),

where fj.: A —* Y is a single-valued mapping. The function fi is said to be the sign
function of A.

'Research supported by project 11281 of the Academy of Finland, the Basic Research
ASMICS II Working Group, and, in the case of the second author, also by the Alexander
von Humboldt Foundation.

^Department of Mathematics, Transport Engineering Faculty, Technical University of
Budapest, H - l l l l Budapest, Műegyetem rkp. 9., Hungary

122 I. Babcsinyi, A. Nagy

Let X* and X+ denote the free monoid and the free semigroup over a non-
empty set X, respectively. We extend the functions 6 and A of A in the usual forms
S : A x X* —• A* and A : A X X' —V as follows :

6(a,e) = a, S(a,px) = S(a,p)S(ap,x),

A(a,e) = e, A(a,px) = A(a,p)A(ap,x),

where a e A, p € X+, x G X, ap denotes the last letter of S(a,p) and e denotes the
empty word.

An equivalence relation r of a state set A of a Mealy-automaton
A = (A, X, Y, S, A) is called a congruence on A if

(a,b) G r ==>• (ap,bp) e r and A(a,p) = A(6,p)

for all a,b € A and p 6 X+. (If r € Y+ then r denotes the last letter of r.)

Let Pmax denote the relation on the state set A of a Mealy-automaton
A = {A, X, Y, 5, A) defined by

(ai 6) 6 Pmax A(a,p) = A(6,p) for all p e X + ([2]).

The pm a l-class of A containing the state a of A is denoted by pmax\o\-
Denoting the identity relation of a Mealy-automaton A by t, we say that A is

simple if pmax = t.

It is easy to see that p m a x is the greatest congruence of A and A] p m a x is simple.

Let A = [A,X,Y,6, A) and A' = (A', X, Y, 6', A') be arbitrary Mealy-
automata. We say that a mapping a : A — • A' is a state-homomorphism of
A into A' if

a(5(a, x)) = 5'(a(a), x), A(a, x) = A'(a(a), x)

for all a 6 A and x X. If a is surjective then A' is called a state-homomorphic
image of A. If a is bijective then a is called a state-isomorphism and the automata
A and A' are said to be state-isomorphic.

Let A = (A, X,Y, 6,X) be a Mealy-automaton. By the output-equivalence of A
we mean the equivalence p defined as

p = {(a, 6) 6 A x A : (V* € JQ A(a, x) = A(6, x) } ([3]).

It is evident that p m a l С p. Moreover p is a congruence if and only if p = p m a x .
If p is the universal relation of A then, for every o, b e A, X* and x & X ,

A(a, gx) = A(aq, x) = A(bq, x) = A(6, gx).

From this it follows that if p is the universal relation of A then p = pmax-

For notations and notions not defined here, we refer to [4] and [5].

Mealy-automata in which the output-equivalence is a congruence

2 Strongly simple Mealy-automata
123

Definition A Mealy-automaton will be called a strongly simple Mealy-automaton
if p = i.

The next construction plays an importante role throughout this paper.
Construct ion 1 Let A = (A, X, Y, S, A) be a Mealy-automaton. To arbitrary states
a of Aj we can associate mappings aa of X into Y defined as follows:

a a : x —• A(o, x).

Consider the set A = { a a ; a G A} and, for every a G Л and x G X, let

S'(aa,x) = аца,х), A ' (a a ,x) = a a (x) .

T h e o r e m 1 For an arbitrary Mealy-automaton A = (A, X,Y, S,X), the following
four conditions are equivalent:

(i) The quintuple ^ — (A, X, Y, 6', A'), where A, 6', A' are defined as-in Construc-
tion 1, is a Mealy-automaton;

(H) p - pmax in Aj

(Hi) A. and Ajpmax are state-isomorphic;

(iv) A]Pmax is strongly simple.

P r o o f . Assume that is a Mealy-automaton. Then a a = аь implies
as(a,x) = aS(b,x) f ° r every a,b G A and x € X, because 5' is well-defined. We
show that p = Pmax in A• Consider two arbitrary elements a and 6 of A with
(a, 6) E p. Then aa = аь and so we get oti(a,x) = аб(ь,х) f ° r every x 6E X. Using
this idea and the fact that 6 is extended to Л х X*, we get aap = ctbp for every
p € X*. Thus

A(a,px) = A (ap,x) = A(6p, x) = A(6,px)
for every p €E X* and x € X . Consequently (a, b) 6 Pmax which implies that
P — Pmax in A. Thus (i) implies (ii).

Assume that p = pmax in a Mealy-automaton A. To show that A. is a Mealy-
automaton, it is sufficient to prove that 6' is well-defined. Let a and b be arbi-
trary elements of A with aa = «ь- Then (a, b) G p = pmax from which we get
(<5(a, x),6(b, x)) e p = Pmax for every x € X. Thus ай(а,х) = <*s(b,x) (s e X) and
so 6' is well-defined. Consequently, (ii) implies (i).

To show that (ii) implies (iii), assume p = pmax in A. Then a „ = ab if and only
if (a, b) G Pmax which implies that aa —• pmax\o\> ° G A is a state-isomorphism of
A onto AJ Pmax- Consequently, (iii) is satisfied.

Assume (iii). Then ¿ i s a Mealy-automaton. Thus A' is well-defined. From this
it follows that A. and so A/pmax is strongly simple. Therefore, (iv) is true.

Condition (ii) follows from (iv) in a trivial way. •

Construct ion 2 Let M be a non-empty subset of the set Y x of all mappings
of X into Y, where X and Y are arbitrary non-empty sets. Consider the Mealy-
automaton M = (M, X, Y, S*,X*), where 6* is arbitrary and A* is defined as follows:

A*(a,x) = q(X), a G M, x e X.

124 I. Babcsinyi, A. Nagy

For non-empty sets X and Y, denote M[X,Y 1 the set of all Mealy-automata
defined in Construction 2. It is evident that £_ 6 M[X, Y] supposing that p = pmax
in the Mealy-automaton A = (A, X, Y, 8, A).

Theorem 2 A Mealy-automaton is strongly simple if and only if it is state-
isomorphic to a Mealy-automaton M = (M,X,Y,8*,*) defined in Construction 2
for some X, Y, 8* and A*.

P r o o f . It is trivial that Mealy-automata defined in Construction 2 are strongly
simple.

Conversely, let A = (A, X, Y, 8, A) be an arbitrary strongly simple Mealy-
automaton. For this Mealy-automaton consider ¿_ = (A,X,Y,S', A') with A, 8' A'
defined in Construction 1. By Theorem 1, A is isomorphic to Ae Ai [X,y] . •

L e m m a 1 M_lt M2 E .MIX, y] are state-isomorphic if and only if
M i = M 2 •

P r o o f . Assume that M_x, M_2 E M\X,Y\ are state-isomorphic. Let <p be a state-
isomorphism of M1 onto M ? . Then, for every a E M\ and x E X,

a(x) = Ai(a,x) = A ^ i a) , *) = p (a) (x)

and
<p(6;(a,x)) = 6;(<p(a),x).

From the first expression we get that <p is identical and so M\ = Mi, A J = A|.
Then the second expression implies 8f = 8£. Consequently, M_1 = M 2 . •

Corol lary 1 If X and Y are finite non-empty sets then

i w i i ^ E (' T V 1 * 1 -

P r o o f . Let X and Y be arbitrary finite non-empty sets. Then |y x | = |y|'*'. Let
M C Y x be arbitrary with \M\ = k. By the Lemma, the number of all different
Mealy-automata defined in Construction 2 with the state set M is &fclxl, because
we can choose 8* : M X X —* M in fcfclxl different way. This implies our assertion. •

It is known that every Mealy-automaton is equivalent ([4]) to some Moore-
automaton. Therefore, it is interesting for us to know how we can construct the
strongly simple Moore-automata. We note that a Mealy-automaton M_ defined in
Construction 2 is a Moore-automaton if and only if we choose 8* such that

<*i(zi) ^ 0=2(2:2) ==> 6* (a i ,x i) / 6*{a2,x2)

for every Qi, a^ E M and xi , 12 E X. Moreover, the output function A* of M does
not depend on the input signs if and only if all mappings a & M are constant. In
this case M can be considered as a special Moore-automaton ([l]) with the sign
function A* and the output function A defined by A(a, x) = A*(5*(a, x)). Thus the
number of these special Moore-automata belonging to Xt[X,y] is

xk'i'H fc=iv '

Mealy-automata in which the output-equivalence is a congruence 125

supposing that X and Y are finite.
Introduce a partially ordering " < " on Ai[X, Y] as follows: Ml < M 2 if and only

if Mi C M2 and Si equals the restriction of 82 to Mi X X . Under this ordering an
element of A([X, Y] is maximal if and only if its state set is Y x . If X and Y are
finite then the number of maximal elements of .M[X, Y] is

|Y | (l r l ' x |) l x l a .

It can be easily verified that the number of maximal elements of Ai[X, Y] which are
special Moore-automata (see above) is

3 Mealy-automata having a strongly simple
state-homomorphic image

In this chapter we give a construction for Mealy-automata which has the property
P = Pmax •

Construct ion 3 Let M = (M, X , Y,8*, A*) be a strongly simple Mealy-automaton
(defined in Construction £). Consider a family of sets Bm, m G M such that
Bm H Bm. = (I i / m / m'. For all x G X and m G M, let <pm,x be a mapping of
Bm into Bs'(m,x)- Let B = Um€MBm. Define the functions 8° : B X X —• B and
A0 : B x X -+ Y as follows. For arbitrary b G Bm, let

8°(b,x) = <pmtX(b) and A°(6, x) = m(x).

It can be easily verified that 8° and A0 are well-defined and so ¿= (B, X, Y, 8°, A°)
is a Mealy-automaton.

T h e o r e m 3 A Mealy-automaton has the property that p = pmax if and only if it
can be defined as in Construction S.

P r o o f . Let B be a Mealy-automaton defined in Construction 3. We prove that
P = Pmax • For all m g M , p 6 X* and x G X let <pm,px = <PmP,x ° <Pm,p, where mp
denotes the last letter of 8*(m,p). It is clear that <pm,p(a) = ap for all a G Bm and
p G X* , where ap denotes the last letter of £°(a,pj. Assume (a, 6) G p for some
a, 6 G B. Then a, b G Bm for some m G M . For arbitrary p G X* and x G X ,

A°(a,px) = A°(ap,x) = A°(vpm,p(a), x) = A0(*>„,.„(&), x) = A°(6p, x) = A°(6,px).

PVom this it follows that (a, 6) G pmax-
Conversely, assume that p = pmax in a Mealy-automaton A = {A, X, Y, 8, A).

By Theorem 1, A = (A, X, Y, 8', A') is a Mealy-automaton which is state-isomorphic
with the strongly simple Mealy-automaton AJpmax. Using Construction 3 for M =
A_, consider the Mealy-automaton B_ = (B,X,Y,8°, A0) such that Bai = pmax\o\
and <paa<x defined by <pai,x{b) — 8(b,x) for arbitrary a G A, b G £«»> x G X . It is
easy to see that A = B, 8 — 8° and A = A0. Thus A = B. •

R e m a r k . If the output equivalence p of a Mealy-automaton A is the universal
relation of A then A is simple if and only if it is strongly simple if and only if it
is trivial (it has only one state). Thus our problems are trivial in this case. We

126 I. Babcsinyi, A. Nagy

note that if A = (A,X,Y,S,X) is a Mealy-automaton in which p is the universal
relation then the congruences of A are the same as the congruences of the pro-
jection Apr = [A, X, i) of A. But the simplicity of automata without outputs is
modified as follows: An automaton B_ without outputs is called simple if its every
state-homomorphic image is trivial or isomorphic to B_. It is easy to see that this
simplicity is different from the strongly simplicity. (Here the strongly simplicity
means that the automaton is trivial.)

References
[1] Ádám, A., On the question of description of the behaviour of finite automata,

Studia Sci. Math. Hungar., 13 (1978), 105-124.

[2] Babcsányi, I., On output behaviour of Mealy-automata, Periodica Polytech-
nica (Transportation Engineering), 19(1991), No 1-2, 15-21.

[3] Babcsányi, I., A. Nagy and F. Wettl, Indistinguishable state pairs in strongly
connected Moore-automata, PU.M.A. Ser. A, 2 (1991), 15-24.

[4] Gécseg, F. and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó,
Budapest, 1972.

[5] Szász, G., Introduction to Lattice Theory, Academic Press, New York- London,
1963.

Received December 21, 1993

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Measure of Infinitary Codes

Nguyen Huong Lam * Do Long Van *

Abstract

An attempt to define a measure on the set AN of infinite words over an
alphabet A starting from any Bernoulli distribution on A is proposed. With
respect to this measure, any recognizable (in the sense of Buchi-McNaughton)
language is measurable and the Kraft-McMillan inequality holds for measur-
able infinitary codes. Nevertheless, we face some "anomalies" in contrast with
ordinary codes.

1 Introduction
In this paper we need only very basic concepts and facts from the formal language
theory and the theory of codes, for which we always refer to [Ei] and [Be-Pel. Let
A be a finite or countable alphabet and A* be the set of (finite) words on A (that is
A* is the free monoid with base A) with the empty word (the unit of A*) denoted
by e. The set of nonempty words is denoted by A + = A* — e. The product of two
words u and v is the concatenation uv of them.

A factorization of a word w on a given subset X of A* is a sequence U i , . . . , u„
of words of X such that to = t<i.. . un. A subset X of A* is a code if every word of
A* has at most one factorization on X.

Intuitively, a code may not contain too many words and this idea has been stated
mathematically in the remarkable Kraft-McMillan inequality. Let us mention it
now.

A Bernoulli distribution on A is a function

P-.A-+R+

associating with each letter a nonnegative real number such that

E ? («) = 1-
aS A

A distribution p is positive if p(a) > 0 for all a G A. We extend p in a natural way
to a word u = o i . . . o „ of A* (o i , . . . , an are letters) by

n
p(u) = J J p (a 0

»=1

'Institute of Mathematics, P. O. Box 631, 10 000 Hanoi, Vietnam.

128 Nguyen Huong Lam, Do Long Van

and then to a subset X of A* by

p(X) = £ p(u).
u £ X

The value p (X) is called the measure of X, which may be finite or infinite. If finite,
the measure is the sum of an absolutely convergent numerical series, so the order
of summation is not important and the definition is correct.

The well-known in the information theory Kraft-McMillan inequality ([Mc] or
[Be-Pe]) says that:

For any Bernoulli distribution, the measure of any code does not exceed
1.

The presentation that follows is an attempt to resolve a question, quite natural, in
the mainstream of extensive studies on infinite words: how can one define a measure
(in some sense) on the set of infinite words AN so that this measure should be well
compatible with the measure structure and properties of languages in A*7 Besides,
we want this measure to satisfy our own demand: to prove something like the
Kraft-McMillan inequality for infinitary codes, introduced in [Va]. To do this we
come to the theory of measure, making use of its very basic concepts (Lebesgue
extension of measures, infinite product of probability spaces) and we also exploit
some techniques suggested by [Sm].

2 Measure Theory

2.1 Basic
We give a brief survey of facts for furthergoing treatment. For more details the
reader is referred to [Ha]. Let X be any fixed set; we always deal with subsets of X,
so in the sequel sets always mean subsets of this "base" set. Also we use the Euler
fraktur alphabet to indicate classes (collections) of sets, for example, i)3 (X) is the
class of all subsets of X (the power set). A class is called a (Boolean) ring of sets
provided for any E,F e the set-theoretic difference E — F and union E U F are
also in $K . A ring is called o-ring if iH is closed under the formation of countable
unions, i.e., ^Ei is in fR for any countable sequence of sets Ei, E 2 , . . . of <R . A
ring (a-ring) containing the base set X , is said to be an algebra (a cr-algebra resp.).
Since E n / = E U F - ({E - F) U (F - E)) and n f l . E i = X - U ,^ x (X - Eq,
we see that a ring is also closed under the formation of finite, and moreover if it
is a cr-algebra, of countable intersections. Since the intersection of any number of
rings (cr-rings) is also a ring (cr-ring), for any class <£ there exists the smallest ring
(a-ring) containing it, which is called the ring (a-ring) generated by <E and denoted
by i i f i) (S(<£) resp.). We say that e is a hereditary class if for every E € <E ,
F C E implies f £ £ . Clearly, the hereditarity of classes is preserved under any
intersection therefore we can say of the smallest hereditary class H(<£) containing
a given class £ .

Let £ be any class of sets. A set function on <£ is a mapping

f :<£ -» R+ U 00

defined on £ , taking real nonnegative values including infinity. A set function / is
called

Measure of Infinitary Codes 129

— additive, if for any disjoint sets E\, E2 of <E such that E\ U E2 6 <£

f{E1uE2) = f(E1) + f(E2)]

— countably additive, or a-additive, if for any countable sequence of mutually
disjioint sets EI,E2,... of <£ such that U^-E,- e <E

»=1 ¿=1

A <7-additive set function p on a ring £R is said to be a measure (on Si). The
value n(E) is the measure of E. A measure fi is finite if every E of iR has finite
measure and is cr-finite if every E of iR is a countable union of sets of St , all of
them having finite measure.

2.2 Lebesgue Extension of Measures
Let be measures respectively on the rings St 1 and 5R 2 with iR 1 C Si 2 ,
then /¿2 is an extension of /¿i if restricted to iR 1, p,2 is equal to Hi.

Provided the cr-additivity of the measure fi on some ring SR , we can extend it
considerably further to a cr-ring which is in some sense maximal as follows.

Let i f (iR) be the smallest hereditary cr-ring containing iR . For any set E €
H(SR), we define the outer measure of E

00 00
y." (£) = inf (X) ^ l i i c U ^ ^ e « } .

»=1 »=i

Indeed, p.*{E) = ¡x{E) for E e iR . Following [Ko-Fol, a set E e H(iR) is called
measurable if for any e > 0 there exist Eq € £R such tnat

fi*{EAE0)<e,

where EAE0 = (E - E0) U [E - E0) is the symmetric difference of E and F.
It is proved that the class OT of all measurable sets is a cr-ring and the function

¡j,* is cr-additive on it and S(9\) c OT [Ko-Fo].
Thus the measure /i on iR has been extended to the measure n* on the cr-ring

S(iR) generated by iR and certainly FI*(E) = FI(E) when E e 5R . Usually, the
triple (X , Wl , /j,) consisting of the base set X, a cr-ring JOT of subsets of X and
a measure /1 on St is called a measure space-, when X e n and n{X) = 1 the
measure space is called a probability space.

We now make a remark that will be useful in the sequel. Sometimes, the starting
point is not the ring iR itself, but some subclass S such that it can generates !R and
the latter is easily constructed from S . An example of such classes are semirings,
considered in [Ko-Fo]: a class 6 is a semiring provided, first, it is closed under the
formation of finite intersections and, second, if E,F E & ,E Q F then F splits into
a finite number of mutually disjoint subsets EO, EI,...,EN of 6 such that E = EQ:
F = Ur= 0 -^- If ® is a semiring, R{&) is then the class of all finite unions of
subsets of 6 . It is easy to see also that if /i is cr-additive on 6 , so is in i2(S) .

130 Nguyen Huong Lam, Do Long Van

2.3 Infinite Product Measure
Another fundamental construction we need here is the infinite product measure.
More specifically, we treate only the countable product.

Let (X,-, OT m), i — 1 ,2 , . . . be a countable collection of probability spaces, i.e.
measure spaces with XI € 2JI and p , (X ,) = 1. Further, let X = n ^ i be
set-theoretic Cartesian product of the sets X i , X? A subset A of A of the form

oo
A = JJ AIT AIEM I

«=i
and Ai = Xi for almost all », is called a measurable rectangle. The class of mea-
surable rectangles is'obviously a semiring and is denoted by a . Let us denote
OT = 5 (a) the a-ring generated by the measurable rectangles. Theorem 2 of [Ha,
Chapter VII, §38] states, in fact, that there exists uniquely a measure p on an
such that if

A = AI x ... x AN x XN+I x X„+ 2 x • • •
is a measurable rectangle then

H{A) = M{AI)... FIN(AN).

Since HilXi) = 1 for all t, /i is well-defined on 21 and n(X) = 1. Therefore, the
triple (X, an , y.) is a probability space that is called the product measure space of
spaces (X,-, an ¿,/ij) and the measure ¿t on an is then called the product measure
of measures p,-.

This construction ensures the existence of a measure on the set of infinite words,
which we shall consider in the next section.

3 Measure on AN

An infinite word a on the alphabet A is an infinite sequense of letters indexed by
natural numbers

a = Oja2
The set of all infinite words on A is denoted by AN. We consider also the set A°° =
A* U AN, on which we define the monoid structure as follows [Va]: for a,/? e A°°,
if a S A* then the product a • ¡3 is the concatenation ap of a and /3; otherwise, if
A E AN , A • ¡3 is defined to be A. Naturally, the product of words can be extended
for languages, i.e. subsets of A°°: XY = { a • 0\a € X C A°°,/3 e Y C A 0 0 } . Not
to be too strict, in the folowing, we omit the dot in the product of words ana when
a set is a singleton we frequently identify it with its element.

Let now p be any Bernoulli distribution on A, as before extended to A*; then
(A, ip (A),p) actually forms a probability space, where (p (A) is the set of all
subsets of A. Next, we can view AN as the Cartesian product of W (the cardinality
of N) copies of A

A » = l [A
i&N

and we can say of the class a of measurable rectangles R
oo

R = J J Ai, Ai e an <
>=i

Measure of Infinitary Codes 131

with A{ = A for almost all t, which is, needless to say, a semiring. We define a set
function n on 21 by

CO
/*(*) = I I

i

Clearly, by consideration of product measure in 2.3, fi is a-additive on 91 and thus
is so on iR = R{<&). Now we can extend /i further to a a-algebra OT = S(iR) =
5 (d) by measure extension procedure.

Beside measurable rectangles we also consider a subclass 6 of measurable rect-
angles S of the special form

S = (oi , . . . , o„, A, A,...), Oj G A, n > 1

which are nothing but the subset wAN of AN, where w = aj . . . a„ G A*. Clearly,
each measurable rectangle of a is a union no more than countable of sets from 6 ,
and consequently 5 (6) = 5 (a) = tot .

As an immediate consequence of the existence of the product measure on AN,
we have

T h e o r e m 1 If X C A* is a code of A* such that AN = XAN, then X is a prefix
code and for any Bernoulli distribution p on A, p(X) = 1, so X is a maximal code.

Proof. Set X' = X - XA+. Then X' is a prefix code and AN = XAN = X'AN =
Uwex'U>AN. The union is certainly countable and disjoint, therefore

1 = » (A n) = M ([J = ¿2 H(WAn) = £ p(w) = p(X') < p(X).
w€X> w€X' wex'

But X is a code, by the Kraft-McMillan inequality, p(X) < 1, which implies p(X') =
p(X) = 1 and X = X' is a maximal prefix code. •

For any subset X C AN, a cover of X is a finite or countable collection € of
sets from such that X C U^g« E. Since every set of iR is a finite or countable
union of sets of 6 , so we can assume that a cover is always a countable collection of
sets from S and we write C = {tUfA'" : i €E / } , where I C N. FVom <t we discard
the redundant subsets, that is, the subsets having no intersection with X = 0 or
containing another subset £ to obtain a subclass C ' = {u> : w' G J C 1}
which, evidently, is still a cover of X and besides {to' : w'AN 6 £ ' } is a prefix
subset of A*. From now on, speaking of covers, we always mean covers with these
properties. Obviously, the outer measure of X is

M*(X) = inf £ M M ") = i n f £ P M .
® wANet ' toANet

We prove now one simple property of the measure fi".

Propos i t i on 2 For any set X C AN and w G A*,n*{wX) — p{w)fi*[X).

Proof. For any e > 0 let C = {tUiA7' : t G 1} be a cover of X such that

/i*(x) < = < H*(X) + e
iei iei

132 Nguyen Huong Lam, Do Long Van

then € ' = {totU{An : t € / } is a cover of wX and

/i*(twX) < uu)iAN) = p(wwj)
»€/ . e /

that means < p(u>)/i*(X).
For the reverse inequality, suppose that C = {to ,Aw : t € / } is a cover of ujX,

t o X C (1)
»6/

such that
< ^ / . K - A ") < + e. (2)

<6/

If w = for some t and to' E A+, then, in fact, C must be a singleton class,
I = { t } , hence

H*(wX) + e > p (^) > p(to) > p H m * (X) .
If now for all t, to is a prefix of tm, = v)w'it from (1) we have

X C (J wlAN

that means ff' = {uiJA^ : t E / } is a cover, for which from (2) we get

p M m * (X) < P M X > k a ") = J " ! » ^ ")
i€i iei

= ^n[wiAlf) < n*(wX) + e.
i€I

That is, in both cases, e abitrarily small, we have p (w)n* (X) < (j,*{tvX) that
concludes the proof. •

For any word to E A°° and any subset E C A°° we define

to~ lE = {PEAco:(wpEE)k(wEAN)^p = e}-,
Ew'1 = { a e A°° : (ato e E)k{a E AN) => w = e}.

The fisrt set is clear; the last one has the following meaning: empty word is the
only one to be allowed to cut on the right of an infinite word in E. For any subset
F C we write

F~1E= (J W~XE, EF~* — (J ETI)-1.

w€F W€F

Further on, p is assumed to be positive.

Propos i t i on 3 Let X be a subset of AN
and to a finite word of A*. Then X is

measurable if and only if wX is measurable and n(wX) = p(to)/x(X).

Measure of Infinitary Codes 133

Proof. It is easy to check that

w(XAE) = (wXAwE)

for any subset EC AN. Set EX = W E, we have

(3)

wX - wEi = wX-E,
wEi -wX Ç E - wX.

Hence
to(XA£i) = (wX&wEx) Ç {wXAE). (4)

Proposition 2, monotonicity of p.*, (3) and (4) imply that

p(w)n*(XAE) = f (wXAwE),
p(w)n*(XAEi) < n*{wXAE).

Note that if E € iR then wE, w~lE € iR , so X is measurable iff wX is measurable.
The second claim immediately follows from Proposition 2. •

Any language X Ç A°° is a disjoint union of its finitary part = X D A*
and its infinitaty part X-ln{ = X fl AN :

For a langague of finite words X C A*, commonly, X* denotes its Kleene closure,
that is X* = {e} (J ^ i x'> o r other words, X* is the smallest submonoid of A*
(thus of A°°) containing X. We can extend this notion for any language X of A°°,
namely, X* by definition is the smallest submonoid of A°° containing X, which, as
one can easily verify, is X£ a U XgnX;n f .

We recall now the concept of codes on A°° [Va]. Given any language X of
A°° and a word w € A°°, a factorization of w on X is a finite sequence of words
xi,..., x„-i,xn such that x\,..., xn—i S xn G X and w = x\ ... xn—\xn. X
is said to be an infinitary code, or code for short, if every word of A°° has at most
one factorization on X. Clearly, if restricted to A*, the infinitary codes are just the
ordinary ones.

Naturally, we say that a subset X C A°° is measurable if its infinitary part X;nf
is measurable, and the measure y(X) is defined to be

Now we are in a position to prove the Kraft-McMillan inequality for infinitary
codes.

T h e o r e m 4 (Kra f t -McMi l lan Inequality) For any measurable code X of A°°,
mPO < i .

Proof. Set / = p(-Xfi„),t = /i(Xinf). We have / < 1 by Kraft-McMillan Inequality
for ordinary codes. Since X is an infinitary code, the union

X = Xzn U .Xinf.

ß i X) = p(*fin) + AXint)-

xLxini = (J w i l n I

134 Nguyen Huong Lam, Do Long Van

is disjoint. Therefore, by Proposition 2

= p(x*Mxint) < l = H{AN).

If / < 1, then

P (* a J = 1 + / + / 2 + • • = Y^Tf-

Consequently, j^y < 1, i.e., fi(X) = » + / < 1. In the case / = 1, we show
that t = 0. In fact, for all n, p[X&u U • • • U Xgn)/j(Xinf) = m - Hence, if t > 0,
p(Xg n Xi n f) = lim„_oo ni = oo, a contradiction. •

Example 5 A prefix of a word a € A°° is a finite word w such that a = wfi for
some fi CE A°° — e; a subset X Ç A°° is called prefix if for any two words in X none
of them is a prefix of the other i.e. Xfln(A0° — e) PI X = 0; X is prefix-maximal
if for any prefix subset Y,XCY implies Y — X. Evidently, a prefix subset is a
code. Every prefix-maximal subset P is measurable and fi{P) — Indeed, since
P is prefix-maximal, every word not in Pi„f has a prefix in Pfini therefore

AN = PM (J wA»
»ePfin

is a disjoint union. Consequently

i = » (A N) = n (p i a t) + Y l / i M ") = P (p i n f) +] r P (p f i n) = M (p) . •
«"epfin »effïn

When A is a finite alphabet, any recognizable language is measurable, thus we
have got a large class of measurable languages, which, by the way, are algorith-
mically constructible by finite means. Recall that a language X Ç AN is said to
be recognizable if it is recognized by a finite Buchi automaton [Ei]. It has been
well-known that the family Rec AN of recognizable languages of AN is the Boolean
closure of the family Det AN of deterministic recognizable ones (Biichi-McNaughton
Theorem), i.e. the languages recognized by finite deterministic Buchi automata,
which are the finite unions (J"=1 Bi C", where B{, C,- are (regular) prefix subsets of
A* and Cf stands for the set of infinite words obtained by infinite concatenation
of nonempty words of C,- : C = {xi^a • • • : xi> x2, • • • G Ci).

Propos i t i on 6 Every recognizable language X of AN is measurable, i.e. Rec AN Ç
OT .

Proof. For any subset BiC? with , C,- prefix subsets of A* we have
oo

BiC? = Pi BiCiAN.
n= 1

By proposition 2, B i C ? A N is measurable for all n. Since the tr-algebra 9JI of
measurable subsets is closed under the formation of Boolean operations, moreover,

Measure of Infinitary Codes 135

of countable unions and intersections, B iC" is measurable, hence DetA^ С ОТ
and thus RecAw С ОТ . •

We now resume the assumption that A is finite or countable. A code is said to
be maximal if it cannot be included properly in another code. The existence of a
maximal code containing a given code X is easily verified by mean of the Zorn's
lemma. A maximal code must has a "nonnegligible" fraction of words in AN. More
precisely, we have

Propos i t ion 7 For every maximal code X, the outer measure of X¡„f is positive:
y*(Xin{)>0.

Proof. Let
FD (X l n f) = { a € AN : 3w € A* : WA 6 X i n f } .

be the subset of suffixes of X,af. Suppose that р*(Хш) = 0, hence /i*(FD (Xi„f)) =
0. For any w e A + , tu(iu - 1X;nf) С Xinf, we have

0 < м ' И и Г 1 ^ ,)) = p H M * ^ " 1 ^ ,) < ц*(Хш) = 0,

hence p{w)n*(w~1Xint) = 0 and so ¿z*(to -1X;nf) = 0. Consequently

0 < A«*(FD (Xi„{)) = /•»*((J w _ 1 Xi „ f) < £ n*(w~1Xin f) = 0
шел* тел*

(subadditivity of /x*).
On the other hand, being a maximal code, X is complete [Va], i.e., AN =

F D (X £ n X i n f) . By M*(*inf) = 0

0 < / i* (Xj? n X i n f) < Y1 M * № f) = £ PMSiX.inf)=0,
" е х Я п

that is / i*(XgnX;nf) = 0, therefore

" е Х Яп " 6 *f in

M*(FD (Xj|nX in {)) = 0 = p{AN) = 1,

a contradiction. •

Example 8 (a non-measurable subset of A^) A suffix of a word a 6 A°° is a
word such that a = wp for some w €E A + ; X C A°° is called a suffix subset
if there are no words in X one of which is a suffix of the other, i.e. for every
w € A + : X n wX = 0. A suffix set of AN is called suffix-maximal if it is not
contained properly in any other suffix subset of AN. Let S be any suffix-maximal
subset of AN. Suppose that S is measurable; it is easy to see that 5 U A is a code,
so we have p.{S) = 0. On the other hand, since S U A is even a maximal code, the
previous proposition shows that p(S) = / i*(5) > 0. This contradition means that
S is not measurable.

In the propositions that follow we prove some properties of codes imposed with
special conditions.

Propos i t i on 9 Let X be a measurable code of A°° with /¿(X) = 1 and /¿(Xinf) > 0,
then X f i n is a prefix code.

136 Nguyen Huong Lam, Do Long Van

Proof. We show that Xgn is left unitary, i.e., X|n = (X J n) _ 1 X J n , whose base Xfi„
is then a prefix code. Always, XgQ C (X g n) _ 1 X g n . For the converse^ inclusion,
we take any nonempty word w G (•^an)-1-^fin> s o th e r e exist u, u G Xgn such that
uto = v. Since p (X) = 1, / i (XgnX i n f) = j r y = \ = 1. we have wXinf n X g n X i n (^ 0
otherwise

n{wXint U X| n X i n {) = fi(u>Xiaf) + /x(XgnXin {) = p(tw)i + 1 > 1

that is an obvious contradiction. So there exist x G X| n ,a , / ? G Xiuj such that
wa = xp. Hence va = ttx/?, that implies v — uz, as X is a code. Thus to = x G Xg n . •

T h e o r e m 10 If X is a measurable maximal code with fi(X) = 1 then Xfin is a
prefix code.

Proof. By Proposition 7, n{Xinf) > 0 and by the previous proposition the result
immediately follows. •

A language X C A°° is called finite-state provided the collection { t o _ 1 X : to G
A*} is finite. It is not difficult to prove that the family of finite-state languages is
closed under the formation of finite unions, of finite intersections and the w-product.
It is noteworthy that Rec AN is a subfamily of finite-state languages.

Propos i t i on 11 If X is a maximal code over A satisfying (X g n) - 1 X g n = A*, then
X;n f is not a finite-state language if A consists of at least two elements.

Proof. Under the assumption (X g n) - 1 X g n = A*, X is a (maximal) code iff Xi„f is
a suffix(-maximal) set. We show that a suffix-maximal language is not finite-state
(the fact that it is not recognizable is shown in Example 8).

Fix x G A*, for any r G A + we take a word

a = (A*{rx)u U FD (rxw)) n X i n f ± 0.

This can be done, as X;nf is suffix-maximal. We write a = a{rx)u, where o G A*,
hence a — arx(rx)" and (rx) u G (arx) - 1 Xj n f . Thus for any x, there exists u G A*
such that (uz) _ 1 Xi n f ^ 0. Consequently, there exists an infinite sequence vi, v ? , . . .
such that t>{ is a suffix of and vt~1 Xinf 0 for all t. As X m f is a suffix set,
V^XINF ^ VJ1Xinf for i j i j . O

Propos i t i on 12 If X is a maximal code with Xfi„ a nonsingleton prefix code, then
Xinf is not finite-state.

Proof. Suppose on the contrary that X is finite-state. Consider the subset

y i n f = X i n f n X £ n C X £ n (5)

which is nonempty, since X is a maximal code. For every to G Xgn it is clear that

w - ^ t o t = u»-1 JTinf n X£ n C X£ n . (6)
Let now c be a coding morphism for Xfin

c : B —• Xgn ,

Measure of Infinitary Codes 137

where B is an alphabet of the same cardinality as Xsn. As X is a prefix code, we
may correctly extend c to an injective morphism of monoids .

c : B°° — XI CO
fin I

where denotes X£n UX£ n . Therefore (5) and (6) and the fact that X is finite-
state maximal code imply that B U c - 1 (y|n f) is also a finite-state maximal code on
B°° with CardB > 2 that contradicts Proposition 11. Thus X is not finite-state. •

Putting the propositions 6, 10 and 12 all together, we are lead to a situation
quite opposite to the case of ordinary codes

T h e o r e m 13 Let X be a code on the finite alphabet A with Xinf a recognizable
language of AN, then the following two assertions are incompatible

1. n(X) = 1

2. X is a maximal code.

References
[Sm] M. Smorodinsky, On Infinite Decodable Codes, Information and Control

11(1968), 607-612.

[Ei] S. Eilenberg, Automata, Languages and Machines, Vol. A , Academic
Press, New York, 1974.

[Be-Pe] J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York, 1985.

[Va] Do Long Van, Codes avec des mots infinis, RAIRO Informatique
théorique et applications 16(1982), 371-386.

[Me] B. McMillan, Two Inequalities Implied By Unique Decipherability, IRE
Transactions on Information Theory IT-2(1956), 115-116.

[Ha] P. R. Haimos, Measure Theory, D. Van Nostrand, New York, 1950;
Springer-Verlag, New York, 1974.

[Ko-Fo] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions
and Functional Analysis, Nauka, Moscow, 1981. (in Russian)

Received January SO, 199S

Revised February 20, 1994

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

A Universal Unification Algorithm Based on
Unification-Driven Leftmost Outermost

Narrowing

Heinz Fafibender * * Heiko Vogler *

Abstract

We formalize a universal unification algorithm for the class of equational
theories which is induced by the class of canonical, totally-defined, not strictly
subunifiable term rewriting systems (for short: etn-tra). For a ctn-tra R and
for two terms t and s, the algorithm computes a ground-complete set of
(Ez, A)-unifiers of t and s, where Ez is the set of rewrite rules of R viewed
as equations and A is the set of constructor symbols. The algorithm is based
on the unification-driven leftmost outermost narrowing relation (for short: ulo
narrowing relation) which is introduced in this paper. The ulo narrowing rela-
tion interleaves leftmost outermost narrowing steps with decomposition steps
taken from the usual unification of terms. In its turn, every decomposition
step involves a consistency check on constructor symbols combined with a
particular form of the occur check. Since decomposition steps are performed
as early as possible, some of the nonsuccessful derivations can be stopped
earlier than in other universal unification algorithms for ctn-trs's. We give a
proof that our algorithm really is a universal unification algorithm.

1 Introduction

The unification problem is to determine whether or not, for two given terms t and
s, there exists a unifier <p of t and s, i.e., a substitution <p such that p(t) = ^>(s).
It is well-known that the unification problem for first-order terms is decidable [27].

The problem of unification generalizes to the problem of ^-unification, if one
considers the equality modulo a set E of equations, denoted by rather than
the usual equality; =E is also called the equational theory induced by E. The
E-unification problem is to determine whether or not, for two given terms t and s,
there exists a substitution <p such that <p(t) =E <p(s)] then <p is called an ^-unifier of

'The work of this author has been supported by the Deutsche Forschungsgemeinschaft
(DFG).

*Dept. of Theoretical Computer Science, University of Ulm, D-89069 Ulm, Germany,
e-mail: {fassbend,vogler}@informatik.uni-ulm.de

140 Heinz Faß bender, Heiko Vogler

t and s. Clearly, the decidability of the ¿-unification problem depends on the set E
of equations. If, e.g., E is the empty set, then the ^-unification problem coincides
with the unification problem and therefore it is decidable. As another example,
if E consists of the algebraic laws of associativity and distributivity, then the E-
unification problem becomes undecidable; if the law of associativity is dropped,
then it is not known whether the problem is decidable. Surveys about the problem
of ¿^-unification can be found in [28,20,18].

For a class £ of equational theories, a universal unification algorithm for £ (for
short: uu-algorithm for £) is a nondeterministic algorithm which takes as input an
equational theory =E from the class £ and two terms t and s, and which computes a
complete set of ¿-unifiers of i and a (for the definition of complete set of ¿-unifiers
cf., e.g., [28]). In this paper, we will concentrate on uu-algorithms for classes of
equational tneories which are induced by particular term rewriting systems (for
short: trs's). A trs X. induces the equational theory = £ g , where E% is the set of
rules of Z viewed as equations.

Until now, a lot of research has been carried out to construct uu-algorithms for
classes £ of equational theories which are induced by trs's. There exist approaches
which are extensions of the unification algorithm in [23] (cf. [19,12,18]). In these
approaches there are additional transformation rules which perform the application
of equations. Other approaches to construct uu-algorithms are based on the con-
cept of narrowing [21]. More precisely, in every such investigation, a uu-algorithm
is constructed for some particular class of trs's where the algorithm is based on
a particular narrowing relation (plus some additional actions as, e.g., the usual
unification of trees). Here we list some pairs (consisting of a class of trs's and a
narrowing relation), for which uu-algorithms have been constructed.

• canonical trs's and narrowing [10,16]

• canonical trs's and basic narrowing [16,24]

• left-linear, non-overlapping trs's and D-narrowing [29]

• canonical, uniform trs's and leftmost outermost narrowing strategy [25]

• canonical, totally-defined, not strictly subunifiable trs's and any narrowing
strategy [3].

We note that a narrowing strategy is a narrowing relation in which the narrowing
occurrence is fixed. We also recall that a trs is canonical, if it is confluent and
noetherian. A trs is constructor-based, if its ranked alphabet ft is partitioned into
sets F and A of function symbols and constructor symbols, respectively; moreover,
the left-hand side of every rule is a linear term f(ti,..., t„) where / is a function
symbol, ti,...,tn are terms over A U V where "V is the set of variables (cf. [30]).
This particular structure of the left hand sides induces that every constructor term
is irreducible. A trs is totally-defined, if it is constructor-based and every function
symbol is completely defined over its domain or, equivalently: every normal form
is a constructor term (cf., e.g., [3]). A trs which is not strictly subunifiable (cf. [3]
and Subsection 3.1 of the present paper), satisfies a kind of local determinism, e.g.,
two rules cannot be applied at the same occurrence under the same substitution.
In [25] totally-defined, not strictly subunifiable trs's are called uniform trs's.

In all mentioned narrowing-based approaches, the narrowing derivation results
into two terms t' and s'; then, it has to be checked whether t' and s' are unifiable.

A Universal Unification Algorithm Based 141

In Jll] a uu-algorithm for totally-defined trs's is defined which interleaves unifi-
cation with the narrowing derivation. More precisely, he considers any innermost
narrowing strategy and interleaves decomposition steps without any occur check.
Since the decomposition steps are performed as early as possible, it is clear that
this can lead to a more efficient computation of ¿?jj-unifiers.

There exist some other narrowing relations as, e.g., lazy narrowing [26], outer
narrowing [30] which were shown to be complete with respect to the unrestricted
narrowing relation. It was not shown that & uu-algorithm which is based on one of
the narrowing relations mentioned above, computes a complete set of ER-unifiers.
However, for canonical trs's, this statement is clearly true (cf., e.g., [18] for a
complete list of these narrowing relations).

In this paper we construct a uu-algorithm for the class of equational theories
which are induced by canonical, totally-defined, not strictly subunifiable trs's (for
short: ctn-trs's). This algorithm shall serve as a source for efficient implementations
of -unification on deterministic abstract machines. Thus, we formalize our uu-
algorithm in a way from which an operational approach can be derived easily. This
is one of the reasons why we will introduce the uu-algorithm on the basis of a
narrowing relation and not as a system of transition rules. The second reason for
choosing the formalism of a narrowing relation is that we refine the uu-algorithm
of [3] which, in its turn is based on a narrowing relation. The uu-algorithm in
[3] improves the algorithm in [16] which is based on the unrestricted narrowing
relation, by choosing an arbitrary narrowing strategy. For a particular narrowing
strategy, our algorithm improves in its turn the uu-algorithm of [3] by following the
idea of interleaving decomposition steps with the narrowing derivation as in [11].
However, we consider the leftmost outermost narrowing strategy and we implement
a particular occur check. The relationships between the approaches of [16], [3], and
[11], and our approach are illustrated in Figure 1.

More precisely, our uu-algorithm is based on the so-called unification-driven
leftmost outermost narrowing relation (for short: ulo narrowing relation) which is
introduced in this paper. For a trs R, the ulo narrowing relation is denoted by

In leftmost outermost narrowing is interleaved with the application of
decomposition-rules (cf., e.g., [23]) which check the consistency of the root symbols
of the terms to be unified. Moreover, the applicability of a decomposition-rule
depends on a particular version of the occur check. Since decomposition-rules are
applied as early as possible, the ulo narrowing relation is called 'unification-driven'.

Actually, for a ctn-trs R with some set A of constructors and two terms t and
s, our uu-algorithm computes a ground complete set of (Er, A)-unifiers of t and
s. An (Er , A)-unifier of t and a is an Er-unifier in which all the images are terms
over A U , where "V is the set of variables; in particular, this means that we do
not consider unifiers of the form [zj/fit)] for some function symbol / . Roughly
speaking, a set S of [ER , A)-uriifiers of t and a is ground complete, if, for every
ground (Eji, A)-unifier <p of t and s (i.e., the images of <p do not contain variables),
there is a f £ S which is more general than <p. This notion will be formalized in
Section 3.

Let us give an example at which we can illustrate the ulo narrowing relation.
In Figure 2 a set Ri of rules of the ctn-trs Ri is shown where we assume to have
a ranked alphabet = {s / i ' 2 ' , m i ' 1 ' } of function symbols and a ranked alphabet
A j = { a ' 2 ' , a ' 0 ' } of constructor symbols. Intuitively, Ri defines two functions
shovel and mirror with arity 2 and 1, respectively; mirror reflects terms over
A at the vertical center line, and shovel accumulates in its second argument the

142 Heinz Faß bender, Heiko Vogler

outermost narrowing innermost narrowing

Figure 1: Relationship between some narrowing based approaches.

mirror-image of the second subterm of its first argument. If we consider, e.g., the
term i j = a (a (a ,S i) , s 2) for some terms «i and a2 , then for an arbitrary term t2,
ahovel(ti,t2) is the term a(m»rror(si),<7(mt'rror(s2),^2))-

sh{a,yi)
sh(a(x i,i2),yi)

rra'(a)
mi{a{xx,x2))

yi
sÄ(ii,tr(mt"(i2) ,yi))
a
o[mi{x2),mi{x 1))

(1)

(2)

(3)
(4)

Figure 2: Set of rules of the ctn-trs

Now we consider the -unification problem, where the set of equations

A Universal Unification Algorithm Based 143

is obtained from iii by simply considering the rules as equations. In particular, we
want to compute an ¿^.-unifier for the terms ah(zi,a) and mi(a(z2, a)) in which
z\ and z2 are free variables. Similar to Hullot in [16], we combine the two terms
into one term equ{sh{zi, a), mi[<j(z2, a))) with a new binary symbol equ (which is
called H in [16]). Next we enrich Ri by the set i i (A) of decomposition-rules of A
(cf. Figure 3). This enrichment yields the trs Zi.

equ{ac,a) —» a (5)
equ((T(xi,X2),(r(x3,xi)) -* <r(equ{xi,x3),equ(x2,xi)) (6)

Figure 3: Set of decomposition-rules of A i .

Then a derivation by ^j j - starting from equ(sh[zi, a) , mi(a(z2 , a))) may look
as follows where we have attached to in every step the narrowing occurrence
(in Dewey's notation), the applied rule, and the unifier as additional indices;
denotes the empty substitution; A denotes the empty word.

eqti(sh[zi, a),mi((r(z2, a)))
equ{sh[z3, o-(mt(z4), a)) , mi[a(z2, a)))
equ{a(mi(z4), a), mi[a{z2, a)))
equ(cr(mi(z4), a),o-(mi(a), mi{z2)))
o(equ(mi(zt), mt(a)), equ(a, mt(z2)))
o(equ(a, mt(a)), equ(a, mi(z2)))
cr(equ{a, a), equ{a, mt^)))
<j(a,equ(a,mi(z2)))
cr(a, equ(a, a))
cr(a, a)

If we compose the unifiers which are involved in the narrowing steps, then we
obtain the substitution <p = \z\/o[a, a), «2/«*]; in fact, <p is a ground [Ejtlt A i) -
unifier of sh(zi,a) and mi(a(z2, a)) . Note that <p is not an -unifier, be-* 1
cause the equational theory is generated by ¿¡Tr,. The narrowing step at * shows
how the ulo narrowing relation deviates from the leftmost outermost narrowing
relation. For the latter relation, 11 is the narrowing occurrence in the term
equ(o(mi{zi),a),mi(a(z2,a))), and then the subterm »711(24) has to be narrowed.
Note that, since is constructor-based, every normal form of the first argument
Si = cr{mi(zi), a) of equ has the root label o. Thus, s'j is unifiable with a normal
form s!j of the second argument = mi[cr[z2, (*)) of equ only if the constructors at
the root of s'j and s'2 are identical. Because of reasons of efficiency, it is important
to check this consistency as soon as possible. And since the root of Si is already
a constructor symbol (i.e., «1 is evaluated in constructor head normal form), we
narrow 32 at step * and try to get it also into head normal form. Actually, this

*
* *

/V>£1,:L,(2),[*i/<T(zj,;t4)]
u

^£1,1,(1),[*,/«! u , , * 1.2,(4), u
^ í i .A . íe) , ? ! u
^ i i . iMs) , ! * « / «] u
^^,12,(3) ,^, u

*i,l,(5),»>» u
^íj,22,(3),[*,/«] u

«1,2, 5),?»

144 Heinz Faß bender, Heiko Vogler

form is reached as the result of the application of rule (4). Then, at step **, the
consistency of root symbols is checked by applying the decomposition-rule (6).

This paper is organized in five sections where the second section contains prelim-
inaries. In Section 3 we recall the definitions of the leftmost outermost narrowing
relation and o f ctn-trs's; we recall the uu-algorithm of |3]. In Section 4 we de-
fine the ulo narrowing relation and an algorithm of which we prove that it is a
uu-algorithm, i.e., that it computes a ground complete set of [ER , A)-unifiers for
the class of equational theories Eg which are characterized by ctn-trs's. Finally,
Section 5 contains some concluding remarks and indicates further research topics.

2 Preliminaries
We recall and collect some notations, basic definitions, and terminology which will
be used in the rest of the paper. We try to be in accordance with the notations in
[14] and [2] as much its possible.

2.1 General Notations
We denote the set of nonnegative integers by IN. The empty set is denoted by 0.
For j e IN, [;'] denotes the set i l , , / } ; thus [0] = 0. For a finite set A, P{A) is
the set of subsets of A and card(A) denotes the cardinality of A. As usual for a set
A, A* denotes the set U n eiNi 0 i 0 3 ••,a»» I e v e r y * G [n] : a; 6 A } that is called
the set of words over A; A denotes the empty word.

2.2 Ranked Alphabets, Variables, and Terms
A pair (fi, ranfcn) is called ranked alphabet, if Q is an alphabet and ranfcn : ft — •
IN is a total function. For / S ft, ranfcn (/) is called rank of f; maxrankil denotes
the maximal image of ranfcn. The subset fl(m) of ft consists of all symbols of rank
m (m > 0). Note that, for i ^ j, ft(') and ftO are disjoint. We can define a
ranked alphabet (ft, ranfcn) either by enumerating the finitely many subsets n M
that are not empty, or by giving a set of symbols that are indexed with their
(unique) rank. For example, if ft = {a, b, c } and rankn : ft —• IN with
rankn{a) = 0, rankn[b) = 2, and rankn{c) = 7, then we can describe (ft, ranfcn)
either by ft<°) = {a } , ft(2> = {fc}, and ft<7> = { c } or by {a«0), 6<2),c(7>}. If the
ranks of the symbols are clear from the context, then we drop the function ranka
from the denotation of the ranked alphabet (ft, ranfcn) and simply write ft.

In the rest of the paper we let V denote a fixed enumerable set.
Its elements are called variables. In the following we use the notations
X, ¿1, x2,..., y, yi, y2, • • •, Z, Zi, z2,.. • for variables.

Let ft be a ranked alphabet and let S be an arbitrary set (in the sequel S will
be instantiated by sets of variables). Then the set of terms over ft indexed by S,
denoted by T(ft)(S), is defined inductively as follows: (i) 5 C T ,(ft)(5) and (ii) for
every / 6 ftW with fc > 0 and f 1 (. . . , tk e T(ft) (5) : }{tu... ,tk) € T(ft) (S) . The
set T(ft)(0), denoted by T(ft), is called the set of ground terms over ft.

For a term t g r(ft)CV), the set of occurrences of t, denoted by O(t), is a subset
of IN* and it is defined inductively on the structure of t as follows:

A Universal Unification Algorithm Based 145

(i) If t = x where x g V, then 0(t) = {A} ,

(ii) if t = f where / 6 then 0{t) = {A} , and

(iii) if t = f(tlt...,tn) where / g n (n> and n > 0, and for every i g [nl : U £
r < n > (n then 0 (t) = { A } u U i e W { * « | « 6 0 (t i)> .

The prefix order on 0(t) is denoted by < and the lexicographical order on 0(t)
is denoted by < u x • The reflexive closures of < and <u x are denoted by < and
<iex, respectively. Clearly, < C <i e x . Note that <i e x is a total order, whereas, in
general, < is a partial order. The minimal element with respect to <i e x in a subset
S of 0(t) is denoted by m m / « (S) . For a term t g T {n) (V) and an occurrence u
of t, t/u denotes the subterm of t at occurrence u, and t[u] denotes the label of t
at occurrence u. We use V(i) to denote the set of variables occurring in f; that is,
x g "V (t), if x g "V and there exists a u g 0(t) such that t/u — x. Finally, we define
tju s] as the term t in which we have replaced the subterm at occurrence u by
the term a.

2.3 Algebras, Substitutions, and Congruences

Let (Cl,rankn) be a ranked alphabet. An Cl-algebra is a pair (A, tni^), where A
is a set and intA is a mapping such that intA(f) G A, if rankn(f) = 0, and
intA(f) : An A, if rankn(f) — n.

The H-algebra (T(n)(V) , tn£T) , where for every f g fiW and for every ij g
T (n) (V) with t g [n] : intT(f){ti,...,tn) = f(ti,...,tn), is called the Q-term
algebra. It is a free f]-algebra (cf. [15]).

If (A,intA) and (B , intB) are two O-algebras, we say that h : A —• B is a
homomorphism, if for every / g f l ' " ' with n > 0 and for every a,- g A with i g [n],
we have

h(intA (f){ai a n)) = intsf^fhfa!),..., h(an)).

A mapping v : "V —» A is called an A-assignment.
The property that every A-assignment can be extended in a unique way to a

homomorphism from T(Q}(V) to A is called the universal property for the free
il-algebras in [15]. We use v to denote both the A-assignment and its extension.

A (V, CI)-substitution is a r(n)(V)-iissignment <p, where the set {x \ <p(x) ^
x, x g V } is finite. The set fx | <p(x) / i } is denoted by P(<p) and it is
called the domain of <£>. If = {xi,...,xn}, then <p is represented by
[x 1 /v5(x 1) , . . . , x„/^>(z„)]. If D(<p) = 0, then <p is denoted by <p$. We say that
<p is ground, if for every x g D[<p) : *V(v3(x)) = 0. The set U«eP(p) ^ (^ i 2))
noted by I(<p) and is called the set of variables introduced by <p. The set of
substitutions and the set of ground ("V, Q)-substitutions are denoted by Su&(V, f2)
and gSub{V, fl), respectively. The composition of two ("V, Q)-substitutions <p and
t/i is the t(Q)(l))-assignment which is defined by \p(<p(x)) for every x g "V. It is
denoted by <p o \p.

An equivalence relation ~ on T{i i) (V) is called an (l-congruence over T{fl)("V),
if for every / g f i (n) with n > 0 and for every tlt a j , . . . , i „ , s„ g T(fl)("V) with
ti ~ ax , . . . , tn ~ a„, the relation f(ti tn) ~ / (s x , . . . , a„) holds.

146 Heinz Faß bender, Heiko Vogler

2.4 ^-Unification

An equation over 0 and V is a pair (£,«), where t,s € T{fl)(V). As usual we
denote an equation (t, s) by t = a. Thus, we consider an equation as an ordered
pair. In the rest of the paper, we let E denote a finite set of equations over ft
and V. The E-equality, denoted by =g, is the finest (i.e., smallest) congruence
relation over T(ft)(V) containing every pair {ip{t), ip(s)), where t = s € E and t/i
is an arbitrary (V, OJ-substitution. If t =E a, then t and a are called E-equal (cf.
[15]). Two terms t, a € T(ft) (V) are called E-unifiable, if there exists a (V, fi)-
substitution p such that yj(t) =E p[a). The set { p \ <p(t) =E y>(s)} is called
the set of E-unifiera of t and a, and it is denoted by Z/.E(i, a) (cf. [28]). Let V
be a finite subset of V. We define the preorder <E on (V, ft)-substitutions
by p <p' (V-), if there exists a (V, fi)-substitution ip such that for every
xeV :rfi(p(x)) =E<p'(x) (cf. [28]).

2.5 TRS, Reduction, Narrowing, and Narrowing Trees

A term rewriting ayatem, denoted by Z, is a pair (ft, R), where fl is a ranked
alphabet and R is a finite set of rules of the form I —* r such that /, r 6 T{ft)(V)
and V(r) C V(l) (cf. [14]). For every term rewriting system Z = (ft, R), the related
aet of equations, denoted by E%, is the set (! = r | l - t r £ R} (cf. [24]).

The reduction relation aaaociated with Z, denoted by = > £ , is defined as follows:
for every t,s e T(il)(V) : t a, if there exist u € 0 (t) with t/u 4. V,p e
Sub{V,il),l — r 6 R with <p{l) = t/u, and a = t[u « - y?(r|] (cf. [14]). We use the
standard notation ==>•* to denote the transitive-reflexive closure of

A term rewriting system is canonical, if it is confluent and noetherian (cf. [15]).
A term t is a normal form of a term a, if a t and t is irreducible, i.e., there
does not exist any term t' such that t =>•£ t'. For a canonical term rewriting
system Z, every term t has exactly one normal form (cf. [15]) which is denoted by
n/^(t) . A (V, ft)-substitution p is in normal form if for every x €E P(p), p{x) is
irreducible.

The aet of narrowing interfacea for Z and t € T(Ct)[V), denoted by
narI(Z,t), is the set {{^,p,l r,p) \ u S Oft),t/u $ V I
r G R, o is a renaming of variables in I such that Vfpf/)) n V(t) = v,p e
Sub[V,U) is the most general unifier of p{l) and t/u}. The set of narrowing oc-
currences for Z and t S T(0)(V), denoted by narO(Z, t), is the set {u | (u, p, I —*
r,p) € narI(Z,t)}. The narrowing relation associated with Z, denoted by is
defined as follows. For every t,s e T{ii)(V) and ip,ip' e Sub(V,n) : (t,^)
(s,ip'), if the following three conditions hold:

1. There is a narrowing interface (u, p,l —» r, p) € narI(Z, t).

2. a = p{t[u « - p(r)]).

3. \j>' = \}> o (^|v(t)) (cf. [24]), where composition is read from left to right.

It is obvious that there are two types of nondeterminism involved in the narrow-
ing relation. Starting from a term t, first, there may be more than one narrowing
occurrence in t, and second, for a fixed narrowing occurrence, there may be more

A Universal Unification Algorithm Based 147

than one narrowing interface. As usual, for a given starting term t and for given
orders on the set of occurrences of t and on the set R of rules, one can collect all
the possible narrowing sequences which start from t, into one tree which is called
narrowing tree for t.

3 ^-Unification by LO Narrowing and Unifica-
tion

As starting point of our considerations we recall the uu-algorithm which is induced
by Theorem 3 in [3l. Here we impose the leftmost outermost narrowing strategy
on the narrowing relation of the algorithm.

Before we recall the approach of [3], let us first state that the approach of [25] is
technically a bit too complicated for the present purpose although it would theoreti-
cally also be a possible starting point. In [25] a uu-algorithm for equational theories
induced by canonical, uniform trs's, is presented, where only leftmost outermost
narrowing steps are allowed; in fact, ctn-trs's are canonical, uniform trs's.

Furthermore, we note that for ctn-trs, outer narrowing [30] is the same as outer-
most narrowing. But, in [30], there is no uu-algorithm presented, only a universal
matching algorithm.

3.1 The Leftmost Outermost Narrowing Relation and
CTN-TRS's

In the leftmost outermost narrowing relation, a pair (t, \j>) derives to a pair (t', ip')
at the minimal element (with respect to </«») of the set of narrowing occurrences
in t.

Definit ion 3.1 Let Z = (fl.iZ) be a term rewriting system and let t g T(fl)("V).

• The leftmost outermost narrowing occurrence for Z and t, denoted by lo-
narO(Z, t), is the narrowing occurrence miniex(narO{Z, t)).

• The set of leftmost outermost narrowing interfaces for Z and t, denoted by
lo-narI(Z,t), is the set

{(u,<p,l —» r,p) | (u,<p,l —• r,p) 6 narI{Z,t) and u = lo-narO(Z,t)}.

• The leftmost outermost narrowing relation associated with Z, denoted by
is defined as follows: for every t,s 6 T(ft)("l>) and ip,^' S Sub(V,n): (t,ip)
derives to (s,ip') by denoted by (t, if)) («jV*')) if th® following three
conditions nold:

1. there is a leftmost outermost narrowing interface (u,<p,l —* r,p) € lo-
narl(Z.t)

2. a = v?(t[u - p(r)])

148 Heinz Faß bender, Heiko Vogler

3. f = rj> o (Hv(t)) ©

It is obvious, that { C ^ ,
In Example 1 of [3] it is shown that the uu-algorithm of |16] which is based on

the unrestricted narrowing relation, is not complete if one imposes a strategy on
the narrowing relation. In particular, this negative result holds for the leftmost
outermost narrowing relation.

However, Echahed also proves a positive result: the uu-algorithm of [16] stays
complete for an arbitrary strategy imposed on the narrowing relation if one re-
stricts to canonical trs's that have the property of free strategies. We call these
trs's canonical, totally defined, not strictly sv.b-unifia.ble term rewriting systems, for
short: ctn-trs's.

A ctn-trs R = (ft, R) is a canonical trs, where fl is divided into two disjoint
ranked alphabets, denoted by F and A . F is called the set of function symbols
and A is called the set of working symbols or constructors. The left hand sides
of the rewrite rules in R are linear in V; function symbols only occur at the root
of a left hand side. Thus, ctn-trs's are particular constructor-based trs's (cf. [30]).
Furthermore, every function symbol in F is totally defined over its domain (cf.
Definition 12 in [3]), i.e., if a term is in normal form, then it is in T{A)(V). Finally,
the left hand sides of the rules in R must be pairwise not strictly sub-unifiable.

Definit ion 3.2 (cf. [3] Definition 10 and Definition 11). Let t,t' S T(n)(V).

• t and t' are sub-unifiable, if there exists an occurrence u in O(t) n O(i ') such
that the following two conditions hold:

1. i / u and p(t' /u) are unifiable with most general unifier au where p is a
variable-renaming such that V(t /u) fl V(p(i ' /u)) =

2. For all occurrences w with w < u,tjw and t'/tw have the same label at
the root.

• t and t' are strictly sub-unifiable, if there exists an occurrence u where t and
t' are sub-unifiable and the corresponding most general unifier cr„ is neither
a variable renaming nor the empty substitution. 0

Example 3.3 Let R = (fl, R) be a canonical trs where fl = { / (2) , - y (1) , a<0 ' } and
let R contain the following rules:

/ (a , a) - a (1)
f(l[x),a) - <y(a) (2)
f{*,l{y)) - 7 (7(a)) (3)

• For the trs R, the left hand sides of rule 1 and rule 3 are strictly sub-unifiable
at occurrence 1; the same holds for rule 2 and rule 3.

• The left hand sides of rule 1 and rule 2 are sub-unifiable at occurrence 2 but
not strictly sub-unifiable, because the most general unifier o 2 is the empty
substitution.

A Universal Unification Algorithm Based 149

• Let Z' = (il, R') be a trs where R' contains rules 1 and 2 in R and additionally
the following two rules:

/ (a ,T (y)) - Tf(T(«)) (3)
/(-*(*), 7(y)) - ir(Tf(o)) (4)

The left hand sides of the rules in R' are pairwise not strictly sub-unifiable.
Furthermore, the left hand sides of the rules 2 and 3 are not sub-unifiable
and the left hand sides of the rules 1 and 4 are not sub-unifiable. 0

Now, we are able to define ctn-trs.

Definition 3.4 Let Z = (H,i2) be a trs. Z is a canonical, totally defined, not
strictly sub-unifiable term rewriting system, for short ctn-trs, if the following con-
ditions hold:

1. Z is canonical.

2. ft = F U A and F n A = 0.

3. Every left hand side is linear in V.

4. Every left hand side has the form / (i i , . . . , t n) where / G F a n d for every
* G [n] : t{ G T(A){V).

5. For every t G T(f i) (V) : nfR(t) G T(A)(V).

6. The left hand sides of the rewrite rules in R are pairwise not strictly sub-
unifiable. 0

In the sequel we will denote a ctn-trs by the triple [F, A,R). In fact, the trs in
Figure 2 is a ctn-trs. To give the reader an idea about the computational power
of ctn-trs's, we mention that every primitive recursive tree function [17] can be
described by a ctn-trs (which follows from [6]). But in fact, ctn-trs's are even more
powerful.

In general, it is not decidable whether a trs is canonical (cf., e.g., [15]). However,
if Z is canonical, then the conditions (2)-(6) in Definition 3.4 are decidable.

3.2 The UU-Algorithm of Echahed

Here we recall the uu-algorithm of Echahed. < This algorithm computes particular
En-unifiers which sire called ground (Eg, A)-unifiers. The range of such a unifier is
a subset of T{A), i.e., function symbols and variables are not allowed. For a ctn-trs
Z, this point of view is reasonable, because, in particular, Z is totally defined and
every function call can be evaluated into an element of T(A). Thus, e.g., if we
consider the ctn-trs Z i in Figure 2 and we want to compute Eg l-unifiers of the
terms mi(x) and z, then we are not interested in the minimal .Eg,-unifier [z/mt'(x)];
rather we should be able to compute the unifier \z/a, x/a\.

Definit ion 3.5 Let Z = (F, A , R) be a ctn-trs, let t,s G T(F U A)(V) , and let
<p G UEz (t, s) be an ¿^-unifier of t and s.

150 Heinz Faß bender, Heiko Vogler

• <p is an (ER, A)-unifier of t and a, if <p € 5u6(V, A) .

• <p is a ground (Ex, A)-unifier of t and a, if f> G gSub(V, A) .

The sets of (ER , A)-unifiers and of ground (ER , A)-unifiers of t and a are denoted
by (*>a) and gU l B«,A)(t ,«) , respectively. ©

Similar to the situation of .EJ-unifiers of two terms t and a, we do not have to
compute the whole set gU{E*,&)(*>')> b i t rather an approximation of it. It suffices
to compute a ground complete set of (ER , A)-unifiers of t and A.

Definit ion 3.6 (cf. [3] page 92) Let Z = (F,A,R) be a ctn-trs. Let t,a e
T{F U A) (V) and let W be a finite set of variables containing V = V(i) U "V (s). A
set S of (V, A)-substitutions is a ground complete set of (ER, A)-unifiers of t and
a away from W, if the following three conditions hold:

1. For every <p € S: D(<p) C V and I(<p) n W = 0.

2. S C l / (s« ,A)(t ,«) .

3. For every <p € gU[E>s) there is a ^ € S such that ^ <P (V)• ©

For ctn-trs's. Theorem 3 of [3] shows a uu-algorithm which computes a ground com-
plete set of (ER , A)-unifiers based on an arbitrary narrowing strategy. We present
an instance of this theorem where we choose the leftmost outermost strategy. We
assume that R is extended to objects of the form (equ(t, a), <p) where equ is a
new binary symbol, in the way as it is done in, e.g., [16] and [3].

T h e o r e m 3.7 (cf. [3] Theorem 3) Let Z = (F,A,R) be a ctn-trs. Let t,s e
T(F U A)("V), and let V be the set V(t) U V(a). Let S be the set of all (V, A) -
substitutions <p such that <p is in S iff there exists a derivation by

-&Je (egu(t3 ,s2),^2) &R °Je (equ(tn,an),pn),

where for every t € [n] : ipi is in normal form, tn and sn are in normal form and
unifiable with most general unifier p, and <p = (<pn o y)\v. Then 5 is a ground
complete set of (ER, A)-unifiers of t and 3 away from V. 0

Clearly, in the leftmost outermost narrowing relation only one type of nondeter-
minism occurs, i.e, for a fixed narrowing occurrence, there may be more than one
rule applicable. Thus, the leftmost outermost narrowing tree for a term equ(t, s)
results from the narrowing tree for equ(t, s) by deleting the branches which do not

.ustrate the leftmost outer-
«2, a))) and we compare it

The latter one consists of

correspond to derivations by **R. In Figure 4 we il
most narrowing tree for the term cqu(ah(zi,<x),mi(a
with the narrowing tree for equ(ah(zi, a) , mi(a[z2, a))
the shaded and the non-shaded areas, whereas the former one only contains the
non-shaded areas. We note that, for the computation of the -unifier, it must
be checked after the computations of the narrowing derivations, whether the two
subtrees contained in the labels of the leaves are unifiable.

A Universal Unification Algorithm Based 151

eqv(»h(*i, a), mi(<f(*3, a)))

152 Heinz Faß bender, Heiko Vogler

In general, by fixing one narrowing occurrence the breadth of the narrowing
trees is reduced. Moreover, by choosing the leftmost outermost narrowing strategy,
also the depth of narrowing trees is possibly reduced: arguments of functions are
only evaluated on demand.

If we regard the shape of narrowing trees as a measure of the complexity of a
uu-algorithm, then the uu-algorithm which is induced by Theorem 3.7, is as efficient
as the uu-algorithm in [16] which is based on the unrestricted narrowing relation.
But in some cases it is even more efficient. This is the reason for paying the price
of a reduced expressiveness of ctn-trs's with respect to canonical trs's, because we
want to introduce an efficient uu-algorithm.

4 .^-Unification by Unification-Driven LO-
Narrowing

In this section we increase the efficiency of the uu-algorithm implied by Theorem
3.7 as follows. Consider a leaf n of some leftmost outermost narrowing tree. Now
we view the unification which takes place at n, as a sequence of decomposition steps
[23]. Next we split up this sequence and apply every decomposition step as early
as possible. Moreover, whether a decomposition step is applicable or not depends
on a particular occur check. By means of this technique, some of the derivations
that do not yield unifiers, are blocked earlier than in the uu-algorithm of Echahed.

Every decomposition step is formalized as the application of one of the additional
rules called decomposition-rules. The union of the decomposition-rules and R itself
is called the extension of R. Then the ulo narrowing relation is defined on the basis
of the extension of R.

We start this section with the definition of the ulo narrowing relation. As an
intermediate result, we rephrase Theorem 3.7 by using the ulo narrowing relation
(restricted to decomposition-rules) to unify two terms. Finally, based on the ulo
narrowing relation, we present a uu-algorithm which computes a ground complete
set of (Eg, A)-unifiers for every equational theory where R is a ctn-trs.

4.1 The Unification-Driven Leftmost Outermost Narrow-
ing Relation

Definit ion 4.1 Let R = (F , A , R) be a ctn-trs.

• Let a £ A' f c) with k > 0. The decomposition-rule for a has the form

equ(cr(xi,..., xk), cr[xk+i,..., x2fc)) <r{equ(xi, i f c + i) , . . . , equ(xk) x2k)).

• The decomposition-part of R, denoted by £ (A) , is the triple [F, A,R[A))
where F = F U {egu} and equ is a new binary symbol, and iZ(A) is the set
of all decomposition-rules for elements in A .

A A A A
• The extension of R, denoted by R, is the triple (F , A , R) where R is the set

flUfl(A). ©

A Universal Unification Algorithm Based 153

sh(a, t/i)
3h{a(xi,x2),yi)

mi(a)
mi(a(xi,x2))

equ(a,a)
equ(a(xi,x2), o(x3,x4))

VI (1)
«Mzi ,a (m» (x 2) , y i)) (2)

(3)
^(mi'fxa), mt'fx!)) (4)

(5)
a(equ(xi,x3),equ{x2,x4)) (6)

Figure 5: Set of rules of an extension.

A A A
In Figure 5 the rules of the extension Z\ = (f i , A\,RI) of Z\ (cf. Figures 2 and
3) are shown where A = {sh™, mi<*>, egu<2)} and A i = {a™, a<0)}.

Roughly speaking, the ulo narrowing relation is almost the same as the leftmost ¿A.
outermost narrowing relation associated with Z. But there are the following three
differences between the two relations. Let (t, be the current derivation form.

1. Consider the term t = egu(a l<T(m»(a),mt(z2))) at occurrence 11 in the left-
most outermost narrowing tree of Figure 4. The leftmost outermost narrowing
occurrence of t is 21. However, it is clear that none of the branches start-
ing from t will yield an .Eg.-unifier, because the two direct subterms a and
<7(mi(a), mi(z2)) of t have different root symbols which cannot be changed in
further derivation steps (this is due to the fact that Z i is constructor-based);
hence, the terms a and a(rm(ai),mt(z2)) cannot be .Egt-unified. Thus, we
will define the ulo narrowing relation in such a way that it blocks at this
point. We realize this property by requiring that rules may only be applied
at the leftmost occurrence of equ in the current derivation form t. This occur-
rence of equ is called important occurrence of t, denoted by impO(t), because
the nonunifiability of the two subterms of t is recognized exactly here. In
our concrete situation, impO(t) = A and none of the decomposition rules is
applicable at impO(t); hence, the derivation blocks.

2. If t/impO(t) = equ(zi,t') or t/impO(t) = equ(t',Zi) where t' is a term the
root of which is labelled by a construtor symbol, e.g. a, then we can ap-
ply the decomposition-rule for a. Clearly, this leads to an instantiation of
Zi. Since, in this situation, the algorithm for usual unification of terms [23]
would apply the rule for 'elimination of variables' and since this elimination
rule requires an occur check, we also have to restrict the applicability of the
decomposition-rules by an occur check. However, we may only check whether
Zi occurs in the (A U V)-skeleton of t' (note that the (A U "V)-skeleton is
called shell in 221) or not. For instance, the (A U V)-skeleton of the tree
o(a(o(zi, a), z2) , a\sh(a, Zi), a)) is the pattern a(o(a(zi, a) , z2) , a)) . In
general, our algorithm would be incomplete if we would check the whole term
f', e.g., if we have the following situation: i ' = o(f(ot,zi), a) where / is a
new function symbol of rank 2, and there exists a rule /(<2,t/i) —• a, then
[z, /a(a, a)] is an ^ - u n i f i e r of Zi and t' which would not be computed if we
would apply the occur check to the whole term t', because Zj occurs in t'.

3. If t/impO(t) = equ(zi, z}•) for two variables Zj and zy, then, using the leftmost
outermost narrowing relation associated with Z in a naive way, (f, <p) derives

154 Heinz Faß bender, Heiko Vogler

to (ip, (t[impO(t) *— a l) , p o p ,) for every a € T(A) where <p, = [z,/3, zy/s].
That means, <p, would be computed as the most general unifier of z. and zy
which is certainly wrong. The most general unifier o f z,- and zy is [z,/zj;, zy fzk]
where k— 1 is the maximal index of a free variable in use (cf. (23]). Thus, we
define the ulo narrowing relation in such a way that a derivation form (t, <p)
with t/impO[t) = cqu(zi,zj) derives as follows: t/impO(t) is replaced by zk,
every occurrence of z,- and zy in t is replaced by zk, and <p is composed with
the substitution [z,'/zfc,zy/z*].

Before we introduce the ulo narrowing relation, we define some auxiliary notions.

Definit ion 4.2 Let Z = (F, A , R) be a ctn-trs and let t £ T(F U A) (V) .

• The important occurrence in t, denoted by impO(t), is the occurrence
mi'n|ej({u £ 0(t) | t[u] = equ}).

• t is in binding mode, if t[»mpO(t)l], t[t'mpO(t)2] £ "V.

• The (A U V)-skeleton of t is the set

{u £ 0(t) | there does not exist any v € 0(i) ,w < u and f[u] £ F).

• The occur check for t succeeds, if the following conditions hold:

1. t is not in binding mode.
2. there is an t € [2] such that t[tmpO(t)t] € V and t\impO(t)(3 -

t)J ^ V and there exists an occurrence u in the (A U "V)-skeleton of
t/(impO{t){3 - »')) such that t/(impO(t)(3 - i))[u] = i[tmpO(i)t']. ©

Def init ion 4.3 Let Z = (F, A,R) be a ctn-trs. The unification-driven leftmost
outermost narrowing relation associated with Z, denoted by is defined as

^ *

follows: for every t,a £ T{F U A) (V) and V, € 5u6 (V ,A) : (t,rl>) derives to
(s,\p') by denoted by [t,ip) (s, V"')» if t/impO(t) = equ(ti,t2) where
t\, t2 £ T(F U A) (V) and one of the following four conditions holds:

1. iti[A],t2[Al £ A and MA] = f3[A]) or (((¿i[A] £ A and t2[A] £ V) or (tj.[A] £
V and t2[A] £ A)) ana the occur check fails for t) and the following three
conditions hold:

(a) (egu(t1,t2),^0) ^ « (a) (t',<p').

(b) s = <p'(t[impO{t) — i ']).
(c) ip' = tp o <pl.

2. • ¿i,¿2 G V, tj ^ t2, and the following three conditions hold where k =
min{i | Zi £ V\(V(t) U D[1>) U I(t/>))}:
(a) <p' = [ii/z f c ,t2 /zfc].
(b) s = <p'{t\impO{t)*-zk}).
(c) V = <p>.

A Universal Unification Algorithm Based 155

• ti, ia 6 "V, ti = i2 , and the following two conditions hold:
(a) a = t[impO(t) «- tx].
(b) =

3. ii [A] g F and the following three conditions hold:

(a) [t u v t) P . *) -
(b) a = <p'(t\impO(t)l t']).
(c) r/>' = $ o <p'.

4. ii[A] ^ F and t2|A] € F and the following three conditions hold:

(a) {t2,<Pt) (*',*>')•

(b) s = <p'{t[impO{t)2 *- t'}).
(c) iP' = ^o<p'. 0

If a rule / —• r e .R is applied, i.e., in cases 1, 3, and 4, we write In case 2
we write 'v* . to indicate that the current term is in binding mode. K ,bm

In the following example we show three derivations by the ulo narrowing relation
which illustrate the involved occur check.

Example 4.4 Consider the ctn-trs Zi and its extension Z\ (cf. Figure 5).
(a) Consider the terms SH(ZI, <7(01,22)) and cr(mi(zi), <J(Z2, a)) . A possible deriva-
tion by runs as follows:

(equ(sh(zi,a(a, z2)) , <r(m»(zi), <r(z2, a))) , <p$)
«i,x,(i) (e^u(ff[a,z2),(r[mi{a),a{z2,a))),\z1/a])
£ i,A,(6) WC9U (Q> m t ' (a)) . «9«(*2, °(*2, a))) , [* i / a D

^,12,(3) W e i u (« . a)> a))) , [*i/®D
«1,1,(5) (g(a, egu(z2 ,g(z2 , a))) , [*i A»])

u
u
u

Here the derivation stops, because the occur check succeeds.

S Consider the terms sA(zi,a(oi,z2)) and a(mt(zi), a(z3 , a)) . The first four
ivation steps are analogous to those one in (a).

4 u
«1

U

«1,2,(6) u
Jt i,21,6m

(egu^/ i f o , <t(q!, z2)), ^ m » ' ^ , a(z3 , a))) , ^>0)

(e[a,equ(z2,<r(z3la))), [zi /a])
(a(a,a(eqfu(z4, z3) , egu(z5, a))) , \z1/a,z2/a(zi, z5)])
(<7(a,ff(z6, equ(zs, a))) , [z i /a , z2/a(z6, z 5) , z 3 / z 6])

*»22,(5) (f f (a . f f (z 6 , a)) , a) , z 3 / z 6])

156 Heinz Faß bender, Heiko Vogler

Here the derivation yields the iJjj,-unifier [zi/a, z2/a(ze, a),z^/zQ\.

(c) Now enrich Ri by the rules sh(ft, y) —» ft (with number (7)) and mi (ft) —» ft
(with number (8)) where ft € A^0 ' . Denote this ctn-trs by R2 and its extension by
R2 where the decomposition-rule for ft has the number (9). Consider the terms z\
and <i(a,sh(z2,zi)).

{equ{z1,<T(a,ah{z2,zi))),<p^)

,,A,(6) Me?«(*3, a), equ(z4, sh{z2,a{z3, «4)))), [zi/o(zz, *4)])
eQu(z*> s h(z*> ff(a« *«))))> l*i/*(<*• z*)\)

(*) ^ j e , 22 (7) e 9 u (* < > &))> [^i/crfa, z 4) , z2/ft\)

^ 2 , (9) [*!/*(«,0),Z2/0])

Hence, this derivation yields the 2£g,-unifier \zi/cr(a, ft), z2/ft\. Note that at (*)
the occur check is only applied to the (A U "V)-skeleton of sh(z2, cr(a, Z4)). 0

4.2 Unification by ^jc(a)

As an intermediate result between Theorem 3.7 and the intended uu-algorithm
in Theorem 4.7 which is based on the ulo narrowing relation, we show in this
subsection that the usual unification of two terms t,s € T(A)(y) can be realized
by a derivation by the ulo narrowing relation associated with x (A) .

L e m m a 4.5 Let R = (F , A , E) be a ctn-trs and let t,s & T (A) (V) . The terms
t and s are unifiable with most general unifier ip iff there exists a derivation by

of the following form [equ(t,s),<p$) (i ' »v) and t' S T(A)(V).

Proof: For the usual term unification, we consider the algorithm in [12] which trans-
forms sets of unordered pairs. Let us briefly recall this algorithm. The unification
of t and s starts with the set P = { (t , «) } . Then, a finite number of transformations
is applied step by step to this set. Every transformation is of one of the following
three types:

1. If (z{,zi) € P, then P is transformed into the set P\{(z,•,£;)}.

2. If Wt\,... cr (s i , . . . , Sk)) G P, then P is transformed into the set
P \ { { a (t 1 , . . . , tk), ct(si, . . . , s f c))} U { (t i , s i) , . . . , (ifc, s f c)} .

3. If (z,-,s) G P such that Zi does not occur in s, then P is transformed into
3)})u{(z,-, s) } , where <p = [z;/s] and the ^>-image of a set is defined

as the set of the images of its elements.

A Universal Unification Algorithm Based 157

The algorithm stops, if P is in solved form, i.e., P = {(zi,U) | t e [n]} where
for every t , j 6 [nj : Z{ ji Zj for » / j and z,- does not occur in any tj. Then,
\zi jt\,..., zn/tn\ is the most general unifier of t and s.

Let us note that the algorithm computes the same unifier (modulo variable
renaming) if a strategy is imposed on the order in which the transformation steps
are applied. Thus, we can choose the order which corresponds to leftmost outermost
narrowing by

Each transformation of the unification algorithm corresponds to the following
derivations by ^ j j (a) where (t,<p) € T (A) (V) X Sub(V, A) .

1. A transformation of type 1 corresponds to the derivation step (t, <p)
(t\impO(t) *— Zi],<p), because t/xmpO(t) = equ(zi, Zi). Then, the substitu-
tion <p is not changed.

2. A transformation of type 2 corresponds to the derivation step (t,<p) ~>je(A)
(t',<p), where t' = t\impO(t) <— a(equ(ti, s i) , . . . , equ(tk, s/t))] and <p is not
changed, because t/%mpO(t) = egufcrfi! , . . . , f f c) ,a (s i , . . . , s fc)). Thus, an ap-
plication of an decomposition-rule covers the transformation of type 2.

3. The correspondence of a transformation of type 3 is split up into two cases.
Case 1: If a £ V, then the transformation corresponds to the derivation
(t, <p) (¿'j ° \zi/s}), where t' is the term that results from t by re-
placing every occurrence of Zi by a. The length of this derivation is aize(a),
because decomposition-rules are applied node by node in a. Note that the
applicability of decomposition-rules is subjected to an occur check (cf. Defi-
nition 4.3 1.).
Case 2: If a = Zj with j ^ t, then t is in binding form and the transformation
corresponds the derivation step (t, <p) ~»£(a),6m (i', <p ° 2,/zfcj) where
Zk is a new variable.

Conversely, in the definition of ~»k(a)> there occurs exactly one of the cases 1, 2,
3.1, and 3.2. In every of these cases, the derivation step by corresponds to
the transformation of the unification algorithm which is mentioned above. 0

The unification of the terms t = cr(zi, z2) and a ~ <t{(t(z2, a) , a) via a derivation
by is shown in Figure 6 (for Z\ and A i cf. Figure 2). The most general
unifier is 6 = [z\/(r(oc,a.),Z2/a].

Now we rephrase Theorem 3.7 by replacing the unification by a derivation in-
duced by

T h e o r e m 4.6 Let Z = (F, A , R) be a ctn-trs. Let t, a € T(F U A) (V) , and let V
be the set "V(i) U "V(s). Let S be the set of all ("V, A)-substitutions <p such that <p
is in S iff there exists a derivation by :

(equ(t,a),<po) {equ[tlt <px)

(equ(t2,a2), <p3) (equ(tn, an), <pn),

158 Heinz Faß bender, Heiko Vogler

(equ(a(z1)g7),cT(<T(z3, a), a)), y?0)
Ä,(A,),(6) (<7(egu(*lt <r(z2, <*))> equ(z3, a)) ,

^äi (a ,) . (6) {<r{o{e<lu{z3,Z2),tqu(z i ,a)),equ(z2,a)),\z i /a(z3 ,z i)))
A,),6m («rM*6, equ{z4, ct)),equ(zB, a) } , [zi/a(zb, z4), z 2 / z 5])

äi(Ai),(&) (cr{°{z(,,a),equ(zt„ a)) , [z i / f f (z s ,a) , z 2 /z 6])
ÄifAjJ.is) (^M«*. <*), <*), [z i M a , <*)> *2/ a I)

u

u r\>
U

< \ >

U
U

Figure 6: A unification by a derivation by ^.RilAi)-

where for every »' 6 [n] : <pi is in normal form, tn and sn are in normal form, and
there exists a derivation by

(equ[tn,sn),<pn) (*',¥>'),

such that t' e T{A)("V) and <p = p'jy. Then 5 is a ground complete set of (E g , A) -
unifiers of t and s away from V.

Proof: The correctness of Theorem 4.6 immediately follows from Theorem 3.7 and
from Lemma 4.5. 0

4.3 .^-Unification by

We finish this section by showing that we can compute a ground complete set of
(Eg, A)-unifiers of two terms t and s by derivations induced by the ulo narrowing
relation.

T h e o r e m 4.7 Let R = (F, A , R) be a ctn-trs. Let t,a € T(F U A) (V) , and let V
be the set V(f) U V(s). Let S be the set of all (V, A)-substitutions <p such that <p
is in S iff there exists a derivation by

{equ[t,s),<pt) {h,<pi) (t2,<P2) (tn,<pn),

where for every » S in] : <pi is in normal form, tn € T (A) (V) , and <p — <pn\v • Then
5 is a ground complete set of (Eg, A)-unifiers of t and s away from V.

Proof: We show that there exists a derivation

io * u *

[equ[t,s),<p0) (equ(t',i'),<p') ^je(A) (**.£>*), (1)

where t',s',t* e T(A)(V) and <p',<p* € Sub[V, A) iff there exists a derivation

(eqti(t,s),<pt)&£{f,<p*) (2)

Then from Theorem 4.6 the correctness of the present theorem follows.

A Universal Unification Algorithm Based 159

Derivation 1 = > Derivation 2

First, we show that for every derivation 1, there exists a derivation 2. For this
purpose, we introduce the function eqpoa : r (f U A) (V) X T(F U A) (V) -+ IN
that yields, for two terms ti and f 2 , the maximal number of steps which can be
performed by on the term equ(ti,t2). In order to describe this function,
we first have to find out the first occurrence notequ(ti,t2) in t\ or t2 at which no
decomposition-rule is applicable; notequ(ti,t2) is defined by

minlex[{u £ 0(h) U 0 (t 2) | ti[u] e F or t2[u] e F or
(t i M € A and t2[u] 6 A and ii[u] / ^[u]) or
the occur check for e?u(ti[u], t2[uj) succeeds})

Then eqpos(ti, t2) is defined by summing up the number of possible applications of
decomposition-rules at occurrences which are common to t\ and t2.

£ equatepa{titt2,u)
{ueO(t!)nO(t,) | u<ie»not«iu(t1,«j)}

equstepa(ti,t2, u) is the number of possible applications of decomposition-rules at
occurrence u. Let t' = t$-i/u.

1 if 11 [u], t2 [u] € A and 11 [u] = t2 [u]
1 if i i H . i a H e V
n if, for some t € [2] : t,[u] S V,t ' € r (A) (V)\V

and n = card(0(t'))
n if, for some t 6 [2] : t,[u] £ V,

t' € T (F U A) (V) \ T (A) (V) and n =
card({u> € O(t') I w < l e x min,ex{{v | f [w] € F})})

To give an example, consider the following two terms i j = a(cr(cr(a, a), zi),
cr i / (a) ,a)) and t2 = a(tr(z2,23), cr(a(a, a) , a)) (in Figure 7, the occurrences at
which a decomposition-rule is applicable, are enclosed).

Obviously, notequ[ti,t2) = 21. Hence, eqpos(ti,t2) = equstepa(ti,t2,h) +
equstepa(ti,t2, l) + equsteps[ti, t2,11) + equatepa{ti,t2,12) + equatepa(ti,t2,2).

And equateps(ti,t2, A) = equatepa(ti,t2,i) = equ3tepa(ti, t2,12) =
equsteps(ti, t2, 2) — 1, and equstepa(ti, t2,11) = 3. Thus, eqpoa(ti,t2) = 7. This
means that, starting from equ(ti, t2), it is possible to perform exactly 7 applications
of some decomposition-rule. The result after application of 7 decomposition-rules
is the term

cr(a(a(a, a), 24), a{equ(f(a),a{a, a)) , equ[a, a)))
which is shown in Figure 8, where 24 results from the handling of the binding mode.

Furthermore, we prove the following Claim by induction on k.

Claim 1 For every k > 0, f, <= T(F U A) (V) , f € T(F U A) (V) , and for every
<p, rj) €E Sub("V, A) : If there exists a derivation

equsteps(ti, t2, u) = <

160 Heinz Faß bender, Heiko Vogler

equ

Figure 7: The term equ(ti,t2).

then there exists a derivation

Induction on k:

k = 0 : it = i and (, = a. We have (e g u f t . s) , ^) (f, V)-

From Ä(A) C Ä follows (egu(t, s), <p$)
u eqpo»((t,{.)

M) -

A: —» A: + 1 : There exist j/.rf g T (F u A) (V) , f ' € T(F U A) (V) , vAV-' 6
and there exists the following derivation:

(e g u (i , s) , ^) (egu(ft, $,),<p) (equ(f{, <p') (f'.V-')-

Now we split the derivation by into two derivations: There 'exist f S
T{F U A)CV), <p S Sub(V, A) , and there exists the following derivation:

(equ(t, a), <p$) {equfa, £,), <p) (equ(tf, <p') (f, <p)

U cqpot(fl,(l)-cqpot(ft,f,) , ,
'Ä(A)

There exist f € T(F\JA)(V), <p' £ 5u6("V,A), and there exists the following
derivation by changing the order of applications of rules in the previous derivation:

u eqpot{{l,('.)-eqpot'((t,f.) , ,

u eqpot((t,(t)

*Ä(A) (I'.N

A Universal Unification Algorithm Based 161

a a a

Figure 8: Resulting term t* after application of seven decomposition-rules.

Changing the order of the derivation is correct, because in the derivation step
(equ(çt> ?»), <p) (eQu(ft> $»)> <P')> »function f is applied at the leftmost outermost
narrowing occurrence. EVom the definition of eqpos it follows that / is also the label
of the leftmost outermost narrowing occurrence in Ç*. Furthermore, in the case of
a function application, the relations and yield the same result.

Example: Let ft — h a n d Ç, = t2 in Figure 7 and let f(a) —» a be a rule in R. The
leftmost outermost narrowing occurrence in equ{ti,t2) in Figure 7 is occurrence
121 which is labelled by the function symbol / . After eqpos{ti,t2) = 7 applications
of decomposition-rules we get the term t* in Figure 8 which is denoted by f ' in the
proof. The leftmost outermost narrowing occurrence in t* is the occurrence 211
which is also labelled by / . Furthermore, the next step in the derivation by ^ R
starting with equ(ti,t2) in Figure 7 is analogous to the next step in the derivation
by jg- starting with t* in Figure 8. •

The existence of the following derivation follows from the induction hypothesis:

/ /. \ \ U k+eqPOB(ft,i.) _n « /_ v „ eqpo.UifD-eqpo.Ut^,)
(equ(t, s), <p$) (ç ,<p) (Ç,<p) ̂ (a) (i,i>)-

The existence of the following derivation follows from R[A) Ç R:

I U \ \ ti k+1+e1P°»U't'<'.) ,J

This finishes the proof of Claim 1.

Especially, if A; is equal to the length of the derivation by in derivation 1,
it follows that for every derivation 1, there exists a derivation 2.

162

Derivation 2 =>• Derivation 1

Heinz Faß bender, Heiko Vogler

Now we" show that for every derivation 2, there exists a derivation 1. For this
purpose, we introduce the function eqapp : T{F U A)("V) —• IN that yields, for a
term t, the sum of applications of decomposition-rules and steps started by a term
in binding mode, in the derivation by up to t.

eqapp(t) — card({u 6 O(t) | u <ux t'mpO(i)})

Furthermore, we prove the following claim by induction on k.

Claim 2 For every k> 0 , f e T{F U A)(V) , and if> € Sub(V,A) : If there exists
a derivation

(egti(t,s),p0)

then there exist ft, f, G T(F U A) (V) , <p G Sub[V, A) , and there exists a derivation

Induction on k:
k = 0 : f = equ(t, s), V" = <P$- Thus, egapp(f) = 0. We have

(o o - o o
(equ(t,s),<p0) (egu(ft,f,),y>0) (i, rp).

k -> k+ 1 : There exist f ' G T{F U A)(V) , G 5ufc(T, A) , and there exists the
following derivation:

(egu(i,s),y>0) (f'.V'')-

From the induction hypothesis it follows that there exists the following derivation:

I I, ^ , 0*-<WP(i) ue««pp(?), „ , ,
N" (t , s) ,v?0) ^ j e (egulft.f ,) ,^) VO (? ,)•

Now we have to distinguish the following two cases:

Case 1 : egapp(f') = egapp(f). Then, the /e + 1th derivation step is a function
application. The same function application can be applied to the term egu(ft,£,)
in a derivation step by
Example: Let ft = ' l and = t? in Figure 7 and let f be the term t* in Figure
8; eqapp(t*) — 7. The next derivation step in the derivation by starting with
t* is the application of the rule / (a) —• a which simply replaces the subterm f(a)
in t* by a. The resulting term is denoted by in the proof. The next step in the

derivation by starting with equ(ti,t2) is the application of the same rule. •

Furthermore, the eqapp(f) derivation steps by work only on occurrences

A Universal Unification Algorithm Based 163

that are less with respect to <i e x than the occurrence where the function is ap-
plied. Thus, there exist tf.tf e T(F U A) (V) , <p' S Sub(V,A), and there exists a
derivation:

/ IJ. \ ^ ' 0 f c - e « o p p (i) I o / » M M u « 4 « p p (c ') , , , n

(equ(t,s),<p 0) [equ[St,(.),<p) > £>)> P) (¡T.V1)-

Then we obtain the following derivation:

/ \ . , o f c + 1 - e « a P P (i ') u cqappW) . , „ .

Case 2 : eqapp($') = eqapp($) + 1. One of the cases 1 and 2 in Definition 4.3 is
applied in the added step. In these cases exactly works as (e.g., suppose
that the subterm f [a) is replaced by a (a , a) in Figure 8, then the decomposition-
rule for a is applied in the added step.). We get the following derivation:

/ U \ \ lok-<0"M<) . u eqapp{$) . u

(equ[t, s), <p0) (egu(ft, f ,) , <p) ^je(A) (?, V) A) (? , V»)•

From eqapp($') = eqapp($) + 1 follows:

(equ[t, s), w) (egu(ft, fc), <p) ~»;j(a) (? , V1)•

Here we obtain the following derivation:
/ U \ \ ,0k + l-eqappU') ueqappW)
(equ(t, s),<p0) (equ(it,S,),<p) (S >•

Especially, if A: is equal to the length of the derivation by in derivation 2,
it follows that for every derivation 2, there exists a derivation 1. This finishes the
proof of Claim 2. ©

The unification-driven leftmost outermost narrowing tree of for the ERl-
unification of the terms sh(zi,a) and mi{o(z2, a)) is shown in Figure 9. At leaves
which are labeled by 'clash!', the derivations are stopped by the ulo narrowing rela-
tion. Thus, in an intuitive sense, the uu-algorithm induced in Theorem 4.7 is more
efficient than the uu-algorithm of Theorem 3.7. (Compare the ulo narrowing tree
of Figure 9 with the leftmost outermost narrowing tree in Figure 4.)

164 Heinz Faß bender, Heiko Vogler

egu(«/>(*i, a), m»'(<y(*3, a)))

equ{a, mi(ff(»j, a)))

equ(a, ff(m»(a), rm'fs?}))

e<ju(í/v(*3, if(mi(i4),a)), mi(ff(ij, a)))

ega({f(m»'(*4), a),<y(m»(a), mi(ij)))

<7(c<ju(mii(«4), m»(a)), cgu(a, mifz?)))

tr(«flu(a, rm(a)),e?u(a, rm(j3))) *(e<iu(a(rm{*0),rm(*s)), mi{a)), equ(a, mi(*3)))

<r(equ(a, a), equ(a, m»(*3))) <y(eflu(<f(m»(*í), m»(*5)), a), «flu(a, ^ (í j)))

clash!

<r(a, ««ju(a, a))

<y(a, a) clash!

Figure 9: Ulo narrowing tree for equ(sk(z1, a), mi(a(z2, a))).

A Universal Unification Algorithm Based

5 Conclusion
165

In this paper we have formalized a universal unification algorithm for equational
theories which are characterized by ctn-trs's. This algorithm is at least as efficient
as the algorithm which is implied by Theorem 3 in [3], but sometimes it is more
efficient. The universal unification algorithm is based on the unification-driven left-
most outermost narrowing relation which is a combination of leftmost outermost
narrowing and unification. It is inspired by the idea of the uu-algorithm in [11]
which combines every innermost narrowing strategy with interleaving decomposi-
tion steps. The advantage of our uu-algorithm in comparison to the uu-algorithm
in [l l] is that arguments of function calls are only evaluated on demand which leads
to a more efficient algorithm.

The conditions that the considered trs's are canonical and not strictly subunifi-
able, cannot be weakened, because the uu-algorithm would loose its completeness.
Furthermore, the condition that the trs's are constructor-based, cannot be weak-
ened. Otherwise, the decomposition-rules would make no sense. We are not sure,
whether the condition that the trs's are totally-defined, can be weakened.

As mentioned in the introduction, there exist a lot of other uu-algorithms which
are based on narrowing strategies. But none of them combines the narrowing
strategy with interleaving decomposition steps. Thus, nonsuccessful derivations are
computed up to the end, whereas they are immediately stopped in our algorithm.

Two implementations of leftmost outermost reduction for special ctn-trs's which
are called macro tree transducers [1,4,5], are formalized in [8,13]. A nondeterminis-
tic implementation of the universal unification algorithm of the present paper which
is an extension of the implementation in [8] by adding features for unification, is
presented in [7]. In our current research [9] we construct a deterministic implemen-
tation of the universal unification algorithm by adding features for unification and
backtracking to the implementation of leftmost outermost reduction shown in [13].
In the deterministic implementation a depth-first left-to-right traversal over the
ulo narrowing tree is formalized. Clearly, this implementation does not produce a
ground complete set of (E%, A)-unifiers, because otherwise the (Eg, A)-unification
problem would be decidable. Rather there «ire three possibilities:

• The machine stops and it has computed one (Eg, A)-unifier.

• The machine does not stop.

• The machine stops and it has computed no [E%, A)-unifier. In fact, in this
situation, the tree traversal has returned to the root and it is clear that there
is no (Eg, A)-unifier at all.

As further research investigation, we will generalize the scope of this implementa-
tion from macro tree transducers to modular tree transducers |6]. Modular tree
transducers are ctn-trs's which compute exactly the class of primitive recursive tree
functions.

Acknowledgements

The authors would like to thank Alfons Geser for discussions on preliminary ver-
sions. The authors are grateful to the referee for communicating related work to
us and for suggesting improvements of a previous version.

166

References
48 Heinz Faß bender, Heiko Vogler

[1] B". Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive
program schemes. Theoret. Comput. Sci., 17:163-191 and 235-257, 1982.

[2] N. Dershowitz and J.P. Jouannaud. Notations for rewriting. Bulletin of the
EATCS, 43:162-172, 1991.

[3] R. Echahed. On completeness of narrowing strategies. CAAP 88, LNCS 299,
89-101, 1988.

[4] J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R.V. Book, editor, Formal language theory; perspectives and
open problems. New York, Academic Press, 1980.

[5] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sci.,
31:71-146, 1985.

[6] J. Engelfriet and H. Vogler. Modular tree transducers. Theoret. Comput. Sci.,
78:267-304, 1991.

[7] H. Fafibender. Implementation of a universal unification algorithm for macro
tree transducers. In FCT'98, pages 222-233. Springer-Verlag, 1993. LNCS
710.

[8] H. Fafibender and H. Vogler. An implementation of syntax directed functional
programming on nested-stack machines. Formal Aspects of Computing, 4:341-
375, 1992.

[9] H. Fafibender, H. Vogler, and A. Wedel. Implementation of a partial E -
Unification algorithm for macro tree transducers. Technical report, University
of Ulm, 1994. in preparation.

[10] M. Fay. First-order unification in an equational theory. In Proceeding of the
4th workshop on automated deduction, Austin, pages 161-167, 1979.

[11] L. FVibourg. Slog: A logic programming language interpreter based on clausual
superposition and rewriting. In Proceedings of the IEEE International Sym-
posium on logic programming, pages 172-184. IEEE Computer Society Press,
1985.

[12] J.H. Gallier and W. Snyder. A general complete E-unification procedure. In
P. Lescanne, editor, Rewriting techniques and applications RTA 87, LNCS 256,
pages 216-227, 1987.

[13] K. Gladitz, H. Fafibender, and H. Vogler. Compiler-based implementation of
syntax directed functional programming. Technical Report 91-10, Technical
University of Aachen, 1991.

[14] G. Huet. Confluent reductions: abstract properties and applications to term
rewriting systems. J. Assoc. Comput. Mach., 27:797-821, 1980.

[15] G. Huet and D.C. Oppen. Equations and rewrite rules: a survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems. Academic
Press, New York, 1980.

A Universal Unification Algorithm Based 167

J.M. Hullot. Canonical forms and unification. In Proceedings of the 5th con-
ference on automated deduction, LNCS 87, pages 318-334. Springer-Verlag,
1980.

U. Hupbach. Rekursive Funktionen in mehrsortigen Algebren. Elektron. In-
formationsverarb. Kybernetik, 15:491-506, 1978.

J. Jouannaud and H. Kirchner. Solving equations in abstract algebras: a rule-
based survey of unification. In Computational Logic. Essays in the honour of
Alan Robinson, pages 257-321. MIT Press, Cambridge, 1991.

C. Kirchner. A new equational unification method: a generalisation of Martelli-
Montanari's algorithm. In Conference on Automated Deduction, pages 224-
247. Springer-Verlag, 1984. LNCS 170.

K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys,
21:93-124, 1989.

D.S. Lankford. Canonical inference. Technical Report ATP-32, Department
of Mathematics and Computer Science, University of Texas, 1975.

R. Loogen, F. Lopez-Fraguas, and M. Rodriguez-Artalejo. A demand driven
computation strategy for lazy narrowing. In PLILP'98, pages 184-200, 1993.
LNCS 714.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages Systems, 4:258-282, 1982.

A. Middeldorp and E. Hamoen. Counterexamples to completeness results for
basic narrowing. In H. Kirchner and G. Levi, editors, Algebraic and Logic
Programming, pages 244-258. Springer-Verlag, 1992. LNCS 632.

P. Padawitz. Strategy-controlled reduction and narrowing. In P. Lescanne, ed-
itor, Rewriting Techniques and Applications, pages 242-255. Springer-Verlag,
1987. LNCS 256.

U. S. Reddy. Narrowing as the operational semantics of functional languages.
IEEE Comp. Soc. Press 1985, Symp. Log. Progr., 1985.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
Assoc. Comput. Mach., 20:23-41, 1965.

J. H. Siekmann. Unification theory. J. Symbolic Computation, 7:207-274,
1989.

J.H. You. Solving equations in an equational language. In Conference on
algebraic and logic programming, pages 245-254. Springer-Verlag, 1988. LNCS
343.

J.H. You. Enumerating outer narrowing derivations for constructor-based term
rewriting systems. J. Symbolic Computation 7 (1989), 319-341, 1989.

Received March 5, 1993

Revised September 1, 1993

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Radical Theory for Group Semiautomata

Y. Fong* F.K. Huang* R. Wiegandt*

Abstract
A Kurosh-Amitsur radical theory is developed for group semiautomata.

Radical theory stems from ring theory, it is apt for deriving structure the-
orems and for a comparative study of properties. Unlikely to conventional
radical theories, the radical of a group semiautomaton need not be a sub-
semiautomaton, so the whole scene will take place in a suitably constructed
category. The fundamental facts of the theory are described in § 2. A special
feature of the theory, the existence of complementary radicals, is discussed
in § 3. Restricting the theory to additive automata, which still comprise
linear sequential machines, in § 4 stronger results will be achieved, and also
a (sub)direct decomposition theorem for certain semisimple group semiau-
tomata will be proved. Examples are given at appropriate places. The paper
may serve also as a framework for future structural investigations of group
semiautomata.

Key Words : Kurosh-Amitsur radical, group semiautomaton.

0 Introduction
The purpose of this paper is to develop a Kurosh-Amitsur radical theory for group
semiautomata which may serve as a framework for future radical theoretical inves-
tigations and for describing the structure of semisimple group semiautomata.

In the variety of group semiautomata there is a one to one correspondence
between homomorphisms and kernels, so it is meaningful to designate a kernel of
a group semiautomaton as its radical. Doing so, however, there is an obstacle : a
kernel is not always a subsemiautomaton, but only a normal subgroup subject to
some additional requirement. This shortcoming can be overcome, if we work in an
appropriately constructed category comprising group semiautomata and groups as
objects. In this way kernels can be considered as subobjects.

The category suitable for a radical theory of group semiautomata will be con-
structed in § 1 analogously as done for semifields in [12]. Following the framework
of [8], the fundamental notions of radical theory along with their characterizations,
are given in § 2 in a self-contained way. A special feature of the radical theory
of group semiautomata is the existence of complementary radical and semisimple
classes which are discussed in § 3. Restricting the investigations to additive group

'Department of Mathematics, National Cheng-Kung University Tainan, 70101, Tai-
wan, R.O.C.

Mathematical Institute, Hungarian Academy of Sciences P.O. Box 127, H-1364 Bu-
dapest, Hungary

170 y. FoJig, F.K. Huang and R. Wiegandt

semiautomata introduced in [4], we can get more explicit results. We shall see in § 4
that semisimple classes of additive group semiautomata are always hereditary, and
we shall prove a subdirect 'decomposition theorem for additive "group semiautomata
which are semisimple with respect to a certain radical. Examples are supplied at
appropriate places.

1 Preliminaries
A group semiautomaton (for short, a GS-automaton) is a quadruple (A , + , X, 5)
consisting of an additive (not necessarily commutative) group (A, +) as a set of
states, of an input set X ^ 0 and a state transition function 8 : A X X —• A. The
input set X, as usual, can be extended to the free monoid X* over X, and then it
is required that the transition function 8 satisfies

8(a,xy) = 5(£(a,x) ,y)

for all x, y G X*.
The notion of GS-automaton is a generalization of that of linear sequential ma-

chine [3] or linear sequential automaton [l], and has been investigated, for instance,
in [5],[6] (cf. also [9]).

In terms of universal algebra a GS-automaton is nothing but a universal algebra
(A, Q) with underlying set A and a set of operations fl = { + } u 5 where + is a binary
operation making (A, +) a group and 8 consists of unary operations fx : a S(a, x),
for all o £ A and x G X. Hence we know that GS-automata over a fixed input
set X form a variety, and it is clear what a subsemiautomaton, a homomorphic
image, an isomorphism, a direct or subdirect sum, a subdirectly irreducible GS-
automaton, etc. means. Also the meaning of the homomorphism theorem and of
the isomorphism theorems is obvious.

Throughout this paper the set X of inputs will be fixed, or equivalently, the set
6 of unary operations will be a given one, and so a GS-automaton on the set A of
states will be denoted by (A, + , 8), or sometimes briefly by A, if there is no fear of
ambiguity. Moreover, for the clumsy notation 8(a, x) we shall write simply ax.

A congruence relation K of a GS-automaton (A, + , 5) is a congruence on the
group (A, +) , and therefore K determines uniquely the coset K containing 0, which
is a normal subgroup of (A ,+) . Since K is a congruence of the GS-automaton
(A, + ,5) , K is compatible with the unary "operations fx G 8, x G X, that is, fx(a + k)
is congruent to fx(a) modulo K, that is,

(*) (a + k)x - ax G K

for every x G X, a G A and k G K. Conversely, if K is a normal subgroup of
(A , +) and satisfies condition (*), then the equivalence relation K defined by K on
the set A is a congruence on (A, + , 5). Thus by the homomorphism theorem every
homomorphism

<p: (A ,+ ,S) - (B , + , 5)

has a kernel K which is precisely a normal subgroup of (A, +) subject to the re-
quirement (*).

Let us observe a fact of importance for our investigations. A kernel of a GS-
automaton need not be a subsemiautomaton, and a subsemiautomaton (B, + , 8) of
a GS-automaton (A, + , 8) with normal subgroup (B, +) in (A, +) , is not necessarily
a kernel.

Radical Theory for Group Semiautomata 171

PROPOSITION 1.1. A kernel K is a subsemiautomaton if and only if OX C K. If
K contains a subsemiautomaton, then K itself is a subsemiautomaton.

PROOF: Since
kx - Ox = (0 + k)x - Ox € K

holds for arbitrary elements A: £ K and x £ X , the assertion follows. The second
statement is now clear. •

EXAMPLE 1.2. A subsemiautomaton (B, + , S) of a GS-automaton (A, + , 5) need
not be a kernel even if (B, +) is normal in (A , +) . Let us consider, namely, the
Klein 4-group (A , +) = {0, a, b, c} as the set of states and X = { x } as the set of
inputs. Define 6 by the following graph

1 L x x a x n c —y b —• a —• 0 —• 0.

It can be easily seen that {0, a}, forms a subsemiautomaton (which is trivially a
normal subgroup in A with OX = 0 £ {0, a}) , but it is not a kernel, for

(b -I- a)x — bx = cx — bx = b — a = c £ {0, a}.

The fact that there is a one-to-one correspondence between kernels and homo-
morphisms of GS-automata, but kernels are, in general, not subsemiautomata, adds
a special flavor to the radical theory of GS-automata. A similar situation occurs
also in the case of semifields [7], for which a radical theory has been developed in
a category (universal class) comprising semifields and groups as objects [12]. In
setting the scene we shall employ ideas of [12] and follow the framework of the
Kurosh-Amitsur radical theory as developed in [8]. Thus we shall work in a univer-
sal class of GS-automata and groups, and it is our purpose in this note to develop
a Kurosh-Amitsur radical theory in f j yielding specific results for GS-automata.
Due to the high level of generality in [8], the adaptation of the results of [8] to our
case is not quite straightforward, therefore for the sake of understandability and
clarity we shall present the Kurosh-Amitsur radical theory of GS-automata in a
self-contained way, though following the pattern of [8] and using ideas of [12].

Our investigations will take place within a suitable category C, the objects
thereof axe GS-automata and groups. Let 21 denote the class of all GS-automata
over a fixed input set X and © the class of all groups, and we set Ob£ = 2i U © .
For all A, B 6 21 U © we consider the following three types of morphisms ¡p: A —• B

1) All GS-automaton homomorphisms <p: (A, + , 6) —• (B, + , S) for A, B £ 21.
2) All group homomorphisms <p\ (A, +) —» (B, +) for A, B £ © .
3) All group homomorphisms <p\ (A, +) —• (B, -f , 6) for A S © and B £ 21

where one does not care about the transition function S (or equivalently,
about the unary operations fx S 5, x £ X) defined on B.

The morphisms of types l) , 2) and 3) will consititute the morphisms of C. It is
clear that C has become a category. Designating the subclass

E = {all surjective morphisms of types 1) and 2) in C }

and
M = {all injective morphisms in C } ,

both C and M, along with the objects of C, form obviously subcategories in C.
Moreover, £ and M consist of epimorphisms and monomorphisms, respectively,

172 y. FoJig, F.K. Huang and R. Wiegandt

and £ fl At is the class of all isomorphisms in £ . Every morphism <p: A —» B in £
factors as

where e € £ and y €E Ai. Thus £ is endowed with a bicategory structure.
For developing a radical theory, it is sufficient and sometimes also useful to

restrict the investigations to a certain subcategory of £ . A non-empty subcategory
Sj of £ is called a universal class, if f) satisfies the following conditions :

(i) f) is closed with respect to all surjective morphisms <p: A —• B of types
1) and 2).

(ii) f) is closed under taking kernels : for any morphisms <p: A —• B in fj
also K = ker <p is in Sj, (or equivalently, if K is a kernel in A 6E Sj , then
also K G

(iii) (A, +,6) eSj implies (A, +) £ Sj .
Concerning the universal class f j we shall work with, we make some observa-

tions.
1. The identical mapping i of the set of states A induces a bijection t: (A, +) —•

(A, + , S) which is not an isomorphism, for its inverse does not exist in £ (in fact,
it is not defined).

2. Sj contains an initial object (0 ,+) and a terminal object (0 ,+ ,5) whenever
Sj n2l 0. We call (0, +) and (0, + , 5) the trivial objects of 5} , and we shall write X
for the class of trivial objects. Since (0, +) and (0, + , 5) are not isomorphic, in view
of [11] we can predict a peculiar feature of the radical theory of GS-automata, and
that is the existence of non-trivial complementary radical and semisimple classes
(cf. § 3).

3. If (A, + ,5) € Sj and <p: A —• B is a morphism, then K = ker <p is either a
subsemiautomaton (K, + ,£) (this is the case whenever K is a subsemiautomaton)
or a normal subgroup (K, +) (this is the case when K is not a subsemiautomaton).
In the first case (K, +) is a subobject of (A, +, 5) which is contained in the subobject
(K , + , 5), but they are not equivalent subobjects.

4. The image of a kernel need not be a kernel. For instance, let (K, +) be a
kernel of a group (A, +) and

t : (A l +) - (A > + > i)

the identical embedding. Since (K, +) is merely a normal subgroup of (A, +) ,

iTT _) (K, +) if K is not a subsemiautomaton,
' ' (K, + ,5) if K is a subsemiautomaton,

but t(K, +) need not be a kernel of t (A, +) = (A, + , S), regardless as whether it is
a subsemiautomaton or not (cf. EXAMPLE 1.2).

5. We have to be careful in applying the second isomorphism theorem in Sj.
Let (L, +) be a subgroup of (A, +) in a GS-automaton (A, + ,5) . If K is a kernel of
(A, + ,5) , then L / (L n K) is only a group, although L + K may be a subsemiautoma-
ton, for instance, if L is a kernel of (A, + , 6} and K is also a subsemiautomaton. In
this case we have

(L/(L n K), +) s ((L + K) /K, +) - U ((L + K) /K, + , 6)

and the left hand side is not isomorphic to the right hand side.

Radical Theory for Group Semiautomata 173

6. In the category £ (and therefore also in ft) direct sums, in general, do not
exist; more precisely, the (complete) direct sum A a of objects A a , a 6 A, exists
in £ if and only if either all A a are GS-automata, or all of them are groups.

Kernels of an object A of ft form clearly a complete lattice isomorphic to the
lattice of congruences of A. Unions and intersections in the lattice of kernels will
be denoted by V and A, respectively. As usual, V over the empty set and A over
the empty set in the lattice of kernels of an object A, will mean the trivial kernel
of A and A itself, respectively.

PROPOSITION 1.3. If K and L are kernels of a GS-automaton (A , + , 5) , then
either K V L = (K + L , +) or K V L = (K + L, + , 5) . In particular, if K is a
subsemiautomaton, then K v L = (K + L , + , f) .

PROOF: K + L is obviously a normal subgroup in A. Let a £ A, H I s K + L and
x £ X be arbitrary elements. Then

(a + k + l)x - ax = (a + k + l)x - (a + k)x + (a + k)x - ax € K + L

holds proving the first assertion. Hence in view of PROPOSITION 1.1 the second
statement follows. •

2 Radical operator, radical class, semisimple
class

In this section we fix a universal class ft. Whenever we consider a subclass C of
objects of ft, we suppose that C is an abstract class (that is, C is closed under
isomorphisms) and that I C G , Moreover, we introduce the following notation :

A—>B means a nonzero surjective morphism of type 1) or 2),
K <J A means that K is a nonzero kernel of A.

In the sequel we are going to give the fundamental definitions and characteri-
zations of radical theory in a self-contained way for GS-automata. Further results
can be proven in a similar way as in [12] or can be derived from [8].

An operator Q which assigns to each object A Gft a kernel £>A of A is called a
radical operator, if Q satisfies the following set of conditions for all A,B Gft :

iga) if <p: A —• B is a surjective morphism, then <p(eA) C gB holds,

eb\ \e(A/eA]\ = l, gc) if gB = B < A, then B C QA, go) ggA = f>A.

PROPOSITION 2.1. Let Q be a radical operator. The class

R c = {A G ft | gA = A }

fulfils the following conditions for all A, B 6 ft :

(Ra) if A € R e , then for every A—>B there exists a K < B with K £ R c ,
(R6) if A S ft and for every A—>B there exists a K< B with K S R e , then

174 y. FoJig, F.K. Huang and R. Wiegandt

A e R j ,
(RA;) if (A, + , 6) € ft and there exists a K < (A, +) such that K £ R c , then

there exists an L <J (A, + ,5) with L £ R c .

PROOF: Let A £ R e and <p: A—>B be arbitrarily chosen. By (ga) we have

B - »'(A) = <p[qA) C Qip[A) = eB C B,

and hence B € R c . Thus (Ro) is trivially satisfied.
Let A £ ft be an object such that for each A—>B there exists a K < B with

K € R c . If A £ R c , then gA ^ A, and so for B = A/QA we have |B| > 1. By the
hypothesis there exists a K < B such that gK = K, and hence (gc) yields K C gB.
Thus we have got

l<\K\<\gB\ = \e(A/eA)\

contradicting (gb). Consequently A £ R c , proving (R6).
Finally, let us suppose that (A, + , 5) € ft is a GS-automaton such that K<(A, +)

with some K £ R e . Then (gc) yields K C g(A, +) . Further, for the morphism
i: (A, +) —• (A, + , 5) in view of (go) we get

t (K) C t (e (A , +)) C e (t (A , +)) = e (A ,+ ,5) ,

and so
1 < |K| = |i(K)|< |e(A,+,5)|

holds. Since by igd) we have also g(A, + , 5) £ R c , the validity of condition (RA:)
has been establisned. •

PROPOSITION 2.2. If a subclass R o / f t satisfies conditions (Ra), (Ri) , (Rifc), then
R fulfils also the following ones :

(R/i) the class R is homomorphically closed : if A £ R and <p: A—>B, then
B £ R ,

(Rc) if (A, + , 5) € ft and (A, +) £ R , then (A, + , <5) £ R ,
(Re) the class R is closed under extensions : i f K < A £ f t , K £ R and

A / K £ R , then A £ R ,
(Ri) the class R has the inductive property : if Ki C • • • C K a C • • • is any

ascending chain of kernels of an object A € ft such that K a £ R for
each index a, then VKtt £ R ,

(R<) I C R .
PROOF: Let A £ R and <p: A—>B, and let us consider an arbitrary ip: B—>C.
Then also V"PA—>C holds, and so by (Ra) there exists a K < C with K £ R .
Hence (R6) is applicable on B yielding B £ R . This proves (R/i).

Let (A, + ,£) be a GS-automaton in ft such that (A, +) £ R , and K be an
arbitrary kernel of (A, + , S) with K ^ (A, + , 5). Then we have

(A / K , +) - L + (A / K , + , 5)

and also (A / K , +) £ R\T in view of (R/i). Hence (RA;) infers the existence of a
kernel L of (A/K, - f , 6) such that L £ R\X. Since the choice of K was arbitrary,
by (R6) we conclude (A , + , 5) € R , proving the validity of (Rc).

Radical Theory for Group Semiautomata 175

For proving (Re), let L be an arbitrary nonzero kernel of A. We wish to apply
(R6) on A. If K C L, then the isomorphism

and the already demonstrated condition (R/i) yield A /L G R . If K % L, then
|K/(L n K)| > 1 and again by (Rh) also K / (L n K) £ R is valid. Further, by
PROPOSITION 1.3 we have

K/ (L n K) = (L + K) /L (L V K) /L < A /L

and so by (Rc), if needed, also (L V K) /L G R holds. Thus A /L possesses always a
nonzero kernel in R , and therefore (R6) infers A € R . This proves (Re).

For demonstrating (Ri), put L = VK a . If L ^ R , then in view of (Rb) there
exists an M < L such that |L/M| > 1 and L / M has no nonzero kernel in R . Further,
by (Rh) we have K a / (M n K a) G R for each a. From PROPOSITION 1.3 we have

K a / (M n K a) Si (Ka + M) / M (Ka V M) / M « L /M

and so (Rc) infers (Ka V M) / M G R for every a. Hence by the choice of M it follows
K a C M for every a, and so also L = VKa C M, contradicting |L/M| > 1.

(Ri) is a trivial consequence of (R6). •

PROPOSITION 2.3. Let a subclass R of ft satisfy conditions (R/i), (Re), (Ri), (Ri),
(Rk). If the operator Q is defined as

QA = V (K « A | K G R) , V A e f i ,

then
i) eA G R , VA G ft and R = {A € f) | ^A = A } ,
ii) Q is a radical operator.

PROOF: First we prove that R fulfils (Rc). Suppose the contrary: there exists an
automaton (A, + ,5) S ft \ R such that (A, +) 6 R \ I . By (Ri) and Zorn's Lemma
there exists a kernel I of (A, + , <5) such that I e R and I is maximal with respect to
this property. Let us consider the automaton A / I = (A/I, + , 5). Since R has (R/i),
we have (A/I, +) e R . Take any kernel L/I of (A/I, +d) such that L/I e R . Then
by I € R and (Re) we get L e R . Hence the maximality of I gives us L = I. Thus
there is no

kernel L /K of (A/I, + , <S) such that |L/K] > 1 and L /K e R . Applying
(RA;) we conclude that there is no kernel K / I of (A/I, +) such that |K/I| > 1 and
K / I 6 R . This and (A/I, +) e R imply A = I e R , contradicting A G ft \R . Thus
(Tic) has been established.

Now we prove QA G R . By (Rt) Zorn's Lemma is applicable yielding the
existence of a kernel K of A being maximal with respect to K G R . Let L be any
other kernel of A with L G R . By (Rh) we have L/(L D K) G R and so in view of

L/(L n K) s (L + K) / K - ^ (L V K) / K

condition (Rc), if needed, yields (L V K) / K G R . Hence by condition (Re) we get
L V K G R which implies L C K by the choice of K. Thus K is the unique kernel of
A such that K is maximal with respect to K G R . This means exactly QA = K G R .

Now the assertion that R = {A G ft | QA. = A } is obviously true.

176 y. FoJig, F.K. Huang and R. Wiegandt

For proving that g is a radical operator, we notice that (gc) and (gd) are clearly
satisfied, both by gA € R .

Next we exhibit (gb). Let L / g A < A / g A and L/gA 6 R . As we have already
seen, gA £ R , hence condition (Rel implies L € R . Thus by the definition of gA
we conclude L C gA which implies |L/gA| = 1 as well as |g(A/gA)| = 1.

For demonstrating (ga) it suffices to exhibit its validity for morphisms ip: A—>B
and i: (A , +) —• (A ,+ ,5) Decause every surjective morphism <p is a composition of
such morphisms or |Al = 1, and this latter case is covered by condition (Rf) .
For any morphism y>: A—>B we have *1>(K) < B or = 1 whenever K < A,
in particular for K = gA. Furthermore, also gA € R. holds as we have seen,
and so condition (R/i) infers ip(ek) € R . Thus by definition ip(gA) C gB holds.
In the case i: (A, +) —• (A, + , 5), let us suppose that (ga) is not true, that is,
t(e(A, +)) % e (A ,+ ,5) . Then we have

l e (A , +) / (g (A , +) n g (A , + , S)) l > 1

and

e (A , +) / (e (A , +) n e (A , + , 5)) - (e (A ,+) + e (A , + , , 5)) / e (A , + , 5)

<1 (A / e (A , + , 5) , +) .

Moreover, condition (R/i) implies

e (A , +) / (e (A , +) n g(A, + , S)) e R .
Hence condition (Rk) applies to K = (g(A, +) + g(A, + , £)) / A , + , S) yielding the
existence of an L < A / e (A , + , 6) with L e R . This, by |L| > 1, contradicts the
already demostrated condition (gc). Thus t(e(A, +)) C g(A, + , i) holds. •

A subclass R of ft is called a radical class if it satisfies condition (Ra), (R6),
(Rk). PROPOSITION 2.1, 2.2 and 2.3 can be summarized as follows

THEOREM 2.4. Let g be an operator assigning to each object A S ft a kernel gA
of A, and let R be a subclass of objects in ft. Then the following three conditions
are equivalent :

1) g is a radical operator and Rt f = R ,
2) R is a radical class and gA = V(K< A|K e R) , V A e f t ,
3) R satisfies conditions (R/i), (Re), (Ri), (Rfc), (Ri) and

gA = V(K <i A | K e R) , VA 6 ft . •

Let g be a radical operator. The class

se = {A e ft | |eA| = 1}
is called the semisimple class of g (or equivalently, of the radical class R e) . Obvi-
ously R e n S c = I holds. It is useful introduce the semisimple operator S acting
on subclasses C of objects of ft and defined by

5C = {A 6E ft | K < j A = > K £ C } .

If g is any radical operator and R c the corresponding radical class, then by THE-
OREM 2.4 we have

SE - SRE

which justifies the terminology.

Radical Theory for Group Semiautomata 177

PROPOSITION 2.5. If Q is a radical operator in ft, then the semisimple class Se
satisfies the following conditions :

(Sa) if AGS e, then for every К < A there exists а К—>B with В e S e ,
(Sfe) if A e ft and for every K< A there exists а К—>B with В e S c , then

A e S e .
(Sc) if (A, + , 6) € S „ then (A, +) 6 S e .

PROOF: For exhibiting (Sa), let us consider an object A (E Se = SRe and an
arbitrary K<A. Now we have gK € R e , and so |K/gK| > 1. Also K/gK S S c holds
in view of (gi>). Hence К—>B e S e is satisfied with В = K/gK.

Next, let us suppose that for every K « A there exists а К—>B with В & Se, but
A ^ S e . Then |gA| > 1. In particular, for К = QA there exists a QA—>C £ S e , and
by (ea) (or (RA)) we conclude also gC = С (or С e R c) . Thus С e S e П R c = 1 ,
contradicting QA—>C. This proves the validity of (Si).

Finally, assume that (A ,+ ,5) £ ft and (A, +) ^ S c , that is, £>(A,+) < (A, +)
and g (A,+) 6 R e . By THEOREM 2.4 condition (RA;) is applicable yielding the
existence of an L < (A, + , S) with L € R e . Hence by (gb) it follows L С g(A, + , <5)
implying (A, + , S) £ S e . This proves (Sc). •

For any subclass С С ft we define an operator U as

UC = {A 6 ft IA—t>B =>B £ C } .
The operator U, which is defined dually to the semisimple operator 5, is called the
upper radical operator.

PROPOSITION 2.6. If a subclass S C i j satisfies conditions (Sa), (Si>), (Sc), then
R = US is a radical class, and S = SR = S e where Q denotes the radical operator
correponding to the radical class R .

PROOF: Since the relation —> is transitive, the class R = US is homomorphically
closed, that is, US satisfies (R/i) and hence also the weaker condition (Ro).

For demonstrating (Rfc), let us consider and object A 6 ft \ X such that for
every A—>B there exists а К < В with К 6 US. If A ^ US, then there exists an
A—>B with В € S and by (Sa) to every K « B there exists а К—>C £ S, that is,
К ^ US. This contradicts the assumption on A, and so (Rfc) is satisfied. Let us
notice that an object A £ 1 trivially satisfies (R6).

Let (A, + , 5) € ft be an object such that K< (A, +) and К € R = US for some
kernel of (A ,+) . To prove (RA;) we have to show that (A , + , 5) ^ S, because then
by (Sb) there exists an L< (A, + , 5) such that L £ US = R, and this means exactly
the validity of (RA;). Suppose that (A ,+ ,5) € S. Then by (Sc) also (A, +) € S
is valid, and so by (Sa) we have К—>B 6 S for the kernel К of (A, +) with an
appropriate В G ft . This means К ^ US, contradicting К € US. Thus (RA;) has
been established.

Since R = US satisfies (Ra), (Rb) and (RA;), by THEOREM 2.4 we conclude that
R is a radical class.

As one readily checks, (Sa) is equivalent to S С SUS and (Sfc) is equivalent
to SUS С S. Hence S = SR as well as S = S e hold by the remark proceding
PROPOSITION 2.5. •

PROPOSITIONS 2.5 and 2.6 infer immediately

COROLLARY 2.7. A subclass S с ft is the semisimple class of a radical class (or
equivalently, of a radical operator) if and only if S satisfies conditions (Sa),(S6)
and (Sc).

178 y. FoJig, F.K. Huang and R. Wiegandt

For a subclass S of objects, let us define the operator r] as
т)А = Л(К < A | A / K 6 S)

which assigns to each A S ft a kernel of A.
PROPOSITION 2.8. IfSis the semisimple class corresponding to a radical operator
S, then
(Ss) S is closed under subdirect sums : A = and A a 6 S for all a

subdirect
imply A G S, or equivalently : k/rjk 6 S,

(Sg) r/A = gk for all A € ft ,

(Srj) r/f] A is a kernel of A for all A e ft ,

(Se) S is closed under extensions.
PROOF: Firstly we prove (Ss). Let us consider an object A 6 ft such that A is a
subdirect sum of objects Aa. a € A., each in S. Then there exists a set { K a | a 6 A}
of kernels of A such that A / K a = A a £ S and | A K a | = 1. Let L < A be arbitrary.
Now by |L| > 1 there exists an index a such that L £ K a , and hence

(L V Ka)/Ka < A / K a £ S.
Thus, condition (Sa) infers the existence of an

(L V K a) / K a — > B e S.
Hence either

L—>L/(L A K„) = (L v K a) / K a — o B e S
or by (Sc)

(L, +)—>(L/ (L A K a) , +) а ((L + K a) / K a , +)—>(B, +) e S
yields L—t>C 6 S where С = (В, + , S) or (B, +) . Hence by (S6) we conclude that
A S S, proving (Ss).

For demonstrating (Se), let us consider а К < A such that К G S and A / K 6 S.
Further, let L < A be arbitrary. If L С К, then by L < К and K e S condition (So)
implies the existence of an L—>B 6 S. if L 2 K> then we have

(L v K) / K < i A / K e S ,

and so by (Sa), (L VK) /K—>B 6 S with an appropriate В £ ft . The isomorphism

L/(L Л K) = (L + K) /K (L v K) / K
and condition (Sc), if necessary, infer L—>C 6 S where either С = (В , + , 5) or
С = (В, +) . Thus by (Sb) we obtain A 6 S which proves (Sc).

Next, we are going to prove (Sg). By condition (gb) we have |^(A/pA)| = 1, and
therefore A/gA 6 S c = S. Hence r\А С gk holds by the definition of r\. Suppose
that r/A ф gk. Then gk/rjki A is valid as |^А/г;А| > 1. Moreover, by (pa) and
(gd) we obtain

gk/r)k = ggk/qk С g(gk/r]k),
yielding gk/r)k €E R e = US. Since k/t)k £ S by (Ss), condition (Sa) applied to
gk/rjk < k/rjk yields the existence of a gk/rjk—>C G S, contradicting gk/rjk £
US. Thus r]k — gk has been proved.

Finally, condition (Srj) is a trivial consequence of rjk = gk and condition (gd).
•

Radical Theory for Group Semiautomata 179

PROPOSITION 2.9 . Let S be a subclass of Sj which fulfils conditions (Sa),
(Se), (Se), (Ss), (Si),(Srj). Then S is a semisimple class.

PROOF: In view of COROLLARY 2.7 all what we have to prove is the validity of
condition (Si). So, let us consider an object A G Sj such that for every K< A there
exists a K—>B with B G S. By way of contradiction, let us suppose that A ^ S.
Then by (Ss) we have A/r/A G S, and so |r;A| > 1, that is, »7A < A. By (Sr?) also
rçA/rjrçÀ < A/r/rjA holds, and by (Ss) we have r/A/rjfjA G S. Since

A / ™ A - A/tjA 6 S,
rçA/rjrçA

condition (Se) yields A/rçrçA G S which implies T]A Ç rçr/A. Thus by the definition
of rj, t]A has no non-zero isomorphic image in S, contradicting (Sa). •

COROLLARY 2.10. A subclass S of f) is a semisimple class if and only if S satisfies
conditions (Sa), (Se), (Se), (Ss), (Si) and (Sri). Moreover, the operator rj occuring
in condition (Sr]) is just the radical operator corresponding to the semisimple class
S.

PROOF: Trivial by PROPOSITIONS 2.8 and 2.9. •

THEOREM 2.11. The subclasses R and S are corresponding radical and
semi-simple classes (that is, R = US and S = SR) if and only if

a) А G R and A—t>B imply В £ S, that is, R С US,
b) A G S and В < A imply В 0 R , that is, S С SR,
c) for each A G Sj there exists a kernel К of A such that К € R and

A / K G S .
d) S fulfils (Sc) or R satisfies (Rk).

PROOF: We already know that these properties hold true for a radical class R with
semisimple class S = SR.

Conversely, we apply c) to each A G SR. Since A G SR implies B ^ R for
all B < A, necessarily |K| = 1 and hence A £ S, that is S R C S. This together
with b) yields S = SR. Applying c) to each A 6 US, from A / B ^ S for all kernel
B ^ A, we get A/K| = 1, and so A = K € R , that is, US C R. This and a) gives
us R = US. Thus R = USR and S = SUS hold. As one easily sees, R = USR
is equivalent to (Ra) and (Ri) and S — SUS is equivalent to (Sa) and (Si). This
along with d) proves that R and S are corresponding radical and semisimple classes
in view of COROLLARY 2.7 or by the definition of R . •

Before giving explicit examples, let us notice that there are plenty of concrete
radical classes, for instance, to every partition of simple GS-automata there is a
radical class containing exactly one class of the partition (and the other class will
be included in the corresponding semisimple class).

EXAMPLE 2.12. We say that a GS-automaton (A, + ,6) has the relative 0-reset
property, if to every element a G A there exists an x £ X* depending on a, such
that ax = 0. The class

R = {A G 21 | A has the relative 0-reset property} U {(0, +) }

is a radical class. Conditions (R/i), (Rt), (RA:), (Ri) are trivially fulfilled. In view
of THEOREM 2.4 we still have to show the validity of (Re). Let K be a kernel of

180 y. FoJig, F.K. Huang and R. Wiegandt

A £ ft such that K e R and A / K £ R . If |K| = 1, then we are done. So let K < A.
Since K e R and |K| > 1, K is a subsemiautomaton, and therefore A has to be
GS-automaton. Let o £ A" be an~ arbitrary element. Since A / K £ R, there exists
an x 6 X* such that (a + K)x C K, that is,

(o + Jfc)x e K, Vfc e K.

K is a kernel of A, so also
(a + k)x - ax £ K

holds. These together yield
ax £ K £ R .

Hence there exists a y £ X* such that (ax)y = 0, that is, a(xy) — 0 with xy £ X*,
proving that A has the relative 0-reset property. Thus R satisfies also condition
(Re), and consequently R is a radical class.

EXAMPLE 2.13. In a GS-automaton A, 0 is a reset if there exists an x £ X* such
that Ax = 0. Restricting the universal class to

H = {all finite GS — automata} U {all finite groups},

the class
R = {A £ 21 n ft 10 is a reset in A } U {(0, +)}

is a radical class. Again, conditions (R/i), (Ri), (RA;), (Ri) are trivially satisfied.
Notice that (Ri) would not be satisfied for infinite GS-automata. The same proof
as in EXAMPLE 2.12 infers the validity of condition (Re), because there the element
x £ X* may be chosen such that Ax C K and y £ X* such that Ky = 0, whence
A(xy) = 0.

EXAMPLE 2.14. A GS-automaton (A, + , 6) is said to be 0-connected, if for every
a £ A there exists an x £ X such that Ox = a. Then

R = {A £ 21 | A is 0-connected} U {(0, +) }

is a radical class. Conditions (R/i), (Rt), (RA:), (Ri) are trivially satisfied, only (Re)
needs verification. So, let K < A such that K £ R and A / K £ R . Now K has to
be a subsemiautomaton, and therefore KX C K. Since A / K £ R , for each a £ A
there exists an x £ X such that Kx C o + K. Hence KX C K implies a £ K, and
by K £ R there exists a y £ X with 0y = a. Clearly, we have also

R = {A £ 21 | A = OX} U {(0, +) } .

3 Complementary radical and semisimple classes
We start this section with

E X A M P L E 3 . 1 . The class

R = {A £ 21 | (0, + , 5) is a subsemiautomaton in A } U {(0, +) }

is a radical class and

S = SR = {A £ 21 | 0 is not a subsemiautomaton in A } U 0

Radical Theory for Group Semiautomata 181

is the corresponding semisimple class in the universal class £ , as one readily checks.
Moreover, R U S = £ , though R ^ £ and S ^ £ .

Motivated by this EXAMPLE we introduce the following definition.
Let g be a radical operator in Sj with corresponding radical class R and semisim-

ple class S. We say that g is complementary, or that (R and S) are complementary,
if

gA = A or |gA| = 1, for all A £ Sj ,
or equivalently,

R u S = i .
The existence of non-trivial complementary radical operators (here non-trivial
means R ^ T ^ S) is a consequence of the fact that in the category Sj the
initial object (0 ,+) is not equivalent to the terminal object (0, + ,£) (cf. [l l]) .

THEOREM 3. 2. Let Q be a radical operator in Sj with radical class R and semisim-
ple class S. If

1) R contains at least one nonzero GS-automaton and all GS-automata of
Sj with one-element subsemiautomaton,

and
2) S contains all groups of Sj,

then g is a non-trivial complementary radical operator.
If Sj is closed under forming finite direct sums (in the sense of 6 of §i) and g

is a non-trivial complementary radical operator in Sj, then R fulfils 1) and S fulfils
2)-

PROOF: Assume that 1) and 2) are satisfied, and let A £ Sj be an arbitrary nonzero
object. If lgA| = 1, then A S S . Suppose that |gA| > 1. Since all groups are in S,
we conclude by gA = ggA £ R that gA is a GS-automaton with subsemiautomaton
(0, + ,5) , and hence so is A. Thus A £ R , proving that g is complementary.

Next, suppose that Sj has finite direct sums and g is a non-trivial complementary
radical operator. In virtue of (Sc) the semisimple class S contains at least one
group (A, +) £ T . Let (B, +) £ Sj \1 be arbitrary. By the assumption on Sj we
have (A, +) © (B, +) £ Sj . Now (A, +) © (B, +) £ R is not possible because then
(A, +) © (B, +) —>(A, +) and (R/ij would imply (A, +) £ R . Thus (A, +) © (B, +) £
S, as g is complementary. Since S n 0 is a semisimple class of groups, S n © is
hereditary, and hence

(B , +) < (A , +) © (B , +) e s n e

yields (B, +) £ S n © C S, proving that S contains all groups of Sj.
Since S contains all groups and g is non-trivial, R has to contain at least one

nonzero GS-automaton. Assume that R does not contain all GS-automata of Sj
with one-element subsemiautomaton. Then there exists an (A, +,5A) £ Sj such
that (0,+,5A) is a subsemiautomaton of (A,+,<SA) and (A ,+ , 5A) ^ R| that is,
(A , + , 5 A) £ S by g complementary. Let (B, +,<5B) be an arbitrary GS-automaton
in Sj . By the assumption on Sj the direct sum (A , + , ¿ A) © (B , + , 6b) is in Sj . By (Rh)
and (A, + , I A) © (J 3 , + , < S B) — > (A , 5 A) 6 S the relation (A , + , <5A)® (B, + , M £ R
is not possible whence by g complementary it follows (A, + , 5a) ® (B, + ,5b) 6 S.
Thus by 8& (0, x) = 0, (B ,+ ,S B) < (A,+,<5a) © (B , + . 5 B) and hence by (Sah there
exists a (B, + , 5B)—>(C, + , 5C) 6 S. Thus by (R/i) we get (B, + ,5 B) g R , and
since g is complementary, we conclude (B, + , 5B) S S. Hence S = Sj and R = T

182 y. FoJig, F.K. Huang and R. Wiegandt

follows, contradicting the assumption that g is non-trivial. Thus R contains all
GS-automata of ft with one-element subsemiautomaton. •

COROLLARY 3.3. The class

R 0 = {A G ft n a | (0 , + , 5) is a subsemiautomaton o / A } u { (0 , +) }

is a complementary radical class in ft . If ft has finite direct sums and R ^ 1 is a
complementary radical class, then Ro C R .

PROOF: The first statement follows from EXAMPLE 3.1 and the second one from
T H E O R E M 3 . 2 . •

THEOREM 3.4. R is a complementary radical class in ft if and only t / R satisfies
(R/i), (Rc), (Rf) and

(C) B G R and B < A G ft imply A G R .
S is a complementary semisimple class in ft if and only if S satisfies (Sc),

(St) I C S ,
(S/i) A G S and B 4 A imply B G S,
(D) B G S ; A G ft and A—>B imply A G S.

PROOF: Let R be a complementary radical class. If A G ft \R , then A G 5 R and
hence B £ R for any B 4 A, which implies (C).

Conversely, let us assume that R satisfies (R/i), (Rc), (Rt) and (C). Condition
(C) readily implies (Re) and (Rt). To show (RA:), let us consider a GS-automaton
(A,+,(5) such that K < (A, +) and K G R for some K G ft. Now condition (C)
implies (A, +) G R and condition (Rc) infers (A, + , S) G R , proving (Rfc). Thus by
THEOREM 2.4 R is a radical class. Suppose that A £ R for some A G ft. Then
(C) yields A G S, and hence R is complementary.

Assume that S is a complementary semisimple class. (St) is always satisfied by
(So) and (S6) or (Sr)). If B 4 A and B g S, then B G R and hence A g S. This
proves (Sh). If A G ft \ S, then A G R and hence A—>B implies B G R by (Rh).
This means that (D) is satisfied.

Conversely, let us suppose that S satisfies (Sc), (St), (Sh) and (D). Condition
(Sh) implies trivially (So). We want to see the validity of (Sfc). Assume that A G ft
is such an object that for every B 4 A there exists a B—>C G S. From B—>C G S
and (D) we get B G S for every B 4 A, in particular for B = A. If there is no B 4 A,
then |A| = 1, and (St) infers A G S. Thus (Sb) holds and so by COROLLARY 2.7 S
is a semisimple class. We still have to see that S is complementary. If A G ft \ US,
then there exists an A—>B G S and so (D) yields A G S. Thus S is complementary.

•

4 Additive automata
An element io £ X is called a zero-input, if Oxo = 0. A GS-automaton (A, + , 5) is
said to be additive, if there exists a zero-input xo G X with the following properties

i) decomposition property : ox = oxo + Ox, Va G A, Vx G X,
ii) zero-input additivity : (a + fc)x0 = ax0 -f bx0, Va, b G A.

Obviously on every additive group (A, +) of at least two elements one can define

Radical Theory for Group Semiautomata 183

at least two non-isomorphic GS-automata. Concerning additive GS-automata the
reader is refered to [4].

In the sequel we suppose that all the GS-automata in the universal class ft
considered, are additive ones.

PROPOSITION 4.1. Let A be an additive GS-automaton and C<i(B,
U (C, +) ts 0 normal subgroup of (A, +) , then C is a kernel of A.

PROOF: We have to show that

(a + J t) i - a i 6 C

holds for all a e A, k € C and x S X. Since A is additive, we have

(a + k)x — ax = (a + k)xo + 0x — Ox — axo = axo + kx o — OXQ.

Taking into account that C is a kernel of (B, + , 6), it follows

bxo + kxo — bxo = (b + k)xo + Ox — Ox — bxo — (b + k)xo — bxo 6 C
for all b € B. Since (C ,+) is a normal subgroup of (A ,+) , we may conjugate by
(axo — bxo) 6 A obtaining

axo + kx0 — axo = (axo — bxo) + (bxo + kx0 — bxo) — (axo — bx0) S C,

regardless as whether kxo is in C or not. Thus also

(a + i t) i - a i e C

holds proving the assertion. •

PROPOSITION 4.2. Let g be an operator assigning to each A € ft a kernel gA of
A and satisfying condition (ga). If (B, + ,5) <3 (A ,+ ,5) e ft, the n g(B, + , S) is a
kernel of A.

PROOF: In virtue of PROPOSITION 4.1 we have to prove that (gB, +) is a normal
subgroup of (A, +) . Since (B, +) is normal in (A, +) , for every element a £ A the
mapping

<pa(b) = a + 6 - a, V6 e B,
is an isomorphism of (B, +) onto itself. Hence condition (ga) yields

<Pa(eB) C g<pa(B) = fiB,

proving that (gB, +) is a normal subgroup in (A, +) . •

THEOREM 4.3. Every semisimple class S in ft is hereditary, that is, S satisfies
(S h).

PROOF: Let g be the radical operator corresponding to S. If (B, + , <5)<iA, + , 5) G S,
then by PROPOSITION 4.2 e(B, + , 5) is a kernel of (A, + , 6) and by (gc) and (gd)
we have

g(B,+,S) C g(A,+,6) 6 l
Thus also (B, + , 5) € S holds.

If (B, +) < (A, + , 5), then also (B, +) < (A, +) is valid. Moreover, condition (Sc)
infers (A, +) S S. As is well-known, semisimple classes of groups are hereditary.
Hence we conclude (B, +) e S, and the Theorem is proved. •

From THEOREMS 2.11 and 4.3 we obtain immediately.

184 y. FoJig, F.K. Huang and R. Wiegandt

COROLLARY 4.4. Subclasses R and S of Sj are corresponding radical and
semisimple classes if and only if

a) R n S e T ,
bj R is homomorphically closed, that is, (R/i) is fulfilled,
c) S is strongly hereditary, that is, S satisfies (Sc) and (S/i),
d) for each A (E Sj there exists a kernel К of A such that K g R and

A / K e S . •

In order to get more explicit results and derive a structure theorem (COROL-
LARY 4.7) for semisimple objects, we shall restrict our investigations to a universal
class Sj in which all the groups are commutative. This class still includes linear
sequential machines.

PROPOSITION 4.5. Let us suppose that L < К < (A, + , 5) E Sj. If x0 is a 0-input
for A then L < (A, + , 6) if and only if Lx0 С L. If L < (K, + , 5) < (A, + , 5), then
L < (A , + , 5) .

PROOF:

L < (A, + , 5) (a -I- l)x - ax £ L for all a € A, I S L and i g X ,
Ixо 6 L for all I e L,

•O- Lx0 С L.

For the second assertion, note that by L < (K, + , 6) it follows (к + l)x — kx G L
for all к G K, I £ L and x e X, and hence Ix о £ L for all I €E L. Thus the first
statement yields L < (A, + , 5). •

A kernel К of an object A € Sj is said to be essential in A, if for any other
kernel L < A it follows К Л L Т . This fact will be denoted by K< oA. A subclass
M of Sj is said to be closed under essential extensions, if K < o A and К 6 M imply
A e M .

THEOREM 4.6. Let M be a subclass of Sj П 2t such that M is hereditary, closed
under essential extensions and satisfies condition

(F) L < К < A 6 Sj and K /L e M imply L < A.
If M denotes the subdirect closure o / M that is

M = {A 6 Sj | A is a subdirect sum of objects from M }

then the class S = M U (55 П 0) is a semisimple class.

PROOF: First, we show that every kernel К of a GS-automaton A € M is a
subsemiautomaton. For this end it suffices to prove that OX = 0. Since A G M ,
there are kernels I a , a € A, of A such that A / I a € M for each a S A and л(1а | a £
A) 6 X . The class M consists of GS-automata, so by the hereditariness of M every
kernel, in particular the trivial kernel of A / I a is a subsemiautomaton, and therefore
1 а Х С Ia for each a €E A. This implies

OX = (л1„)ХС Л1а = 0 .

Next, we are going to prove that M is hereditary. Let us consider an arbitrary
kernel К of a GS-automaton A € M . If К £ T , then by the previous statement

Radical Theory for Group Semiautomata 185

К = (0, + , 5) holds, and so К 6 M С M. So, let us assume that К < A. Since К is
a subsemiautomaton, we have

K/(K A Ia) = (K V Ia) /Ia < A/I a £ M

for all а £ A. Thus the hereditariness of M yields K/(K A Ia) £ M. Moreover,
by A (K A Ia) = (A Ia) А К = 0 We conclude К £ M, proving that M is, in fact,

а а
hereditary.

The hereditariness of M readily yields that of the class S = M U (ft Л ©), and
therefore S satisfies (Sa) trivially.

To prove the validity of (Si>), let us consider an object A £ ft such that every
K<A has a nonzero homomorphic image K/L in S = M u (f t U 6) . If A = (A, +) £
ft Л 0 , then A s S . Hence we shall consider the case A = (A, + , 5). Let us suppose
that A ^ S. Since A is a GS-automaton, we get A M. Hence

К = л(К/з < A I A/Kp £ M) / 0.

Since M is hereditary and consists of GS-automata, the trivial kernel of A/K^ is a
subsemiautomaton, which implies K^X С K ĵ, and so each K^ is a subsemiautoma-
ton. Hence so is К as well. By the hypothesis on А, К has a nonzero homomorphic
image K/L in S and also K/L £ M holds, for К is a subsemiautomaton. Hence
there exists a kernel J/L of K/L such that

K / J ^ 6 M \ T .

Using condition (F) we conclude that J is a kernel of A. Let us choose a kernel M
of A being maximal with respect to the property M А К = J. By Zorn's Lemma
such a kernel M does exist. Now we have

K/J = K/(M ЛК) = (K + M)/M < A/M.

For any Q/M < A/M the choice of M yields J С Q A K, and therefore

(Q A K) / J < K / J £ M .

Thus the hereditariness of M infers that (Q A K)/J is a GS-automaton, and so

0 / (Q A K) / J = ((Q A K) V M) / M С ((К v M) / M) A (Q / M) ,

proving that (К V M)/M is essential in A/M. Hence by

(K V M) / M = * K / J E M

and by M being closed under essential extensions, we conclude A/M £ M. This
implies by the definition К that К С M, and soJ = M A K = K holds, yielding
K/J £ T , contradicting K/J ^ X. Thus A 6 S has been proved, establishing the
validity of condition (S6).

Since (В Л ft С S by definition, the class S fulfils condition (Sc), too. Thus in
view of C O R O L L A R Y 2 . 7 S is a semisimple class. •

186 y. FoJig, F.K. Huang and R. Wiegandt

COROLLARY 4.7. Let M be a subclass of f) nst such thafM. is hereditary, closed
under essential extensions and satisfies condition (F). Then

R = { A e s n a |A—>B =» B ^ M } u { (o , +) }

is a radical class. Denoting by Q the corressponding radical operator, QA = 0 for a
GS-automaton A EE Sj D 21 if and only if A = (A a | A A 6 E M) . In particular

subdirect
if A satisfies also the descending chain condition on kernels, then A is a finite
direct sum of GS-automata from the class M .

PROOF: The assertions are immediate consequences of THEOREM 4.6, because
R = US. The last assertions can be proved by standard reasoning (cf. [2] Corollary
5). •

PROPOSITION 4.8. The radical class R of COROLLARY 4.7 has the following hered-
itary property :

if (K, + , 5) < (A, + , 5) e R, then (K, + , 5) e R .

P R O O F : Suppose that (K, + , S) & R . Then there exists a kernel L of K such that
K/L € S \ X . Since K is a GS-automaton, necessarily K /L £ M holds. Thus also
K /J 6 M holds with an appropriate L C J < K. Applying condition (F) on M ,
it follows J < A. Let M be a kernel of A being maximal relative to the property
K A M = J. As we have seen in the proof of T H E O R E M 4.6,

K /J = K / (K A M) ^ (K v M) / M « o A / M .

Since K / J € M and M is closed under essential extensions, we get A / M € M C S.
Thus A / M C S n R = 1 , which yields A = M, and also J = K AM = K, as well as
K / J £ 1 , a contradiction. Thus K = (K, + , i) e R has been proved. •

Recall that an object A € Sj is said to be subdirectly irreducible, if H = A (K<
A) ^ T . The kernel H of A is referred to as the heart of A.

In the sequel we give a concrete class M of GS-automata which satisfies the
conditions required in THEOREM 4.6, COROLLARY 4.7 and PROPOSITION 4.8.

THEOREM 4.9. The class

M = {A = (A, + , 5) e Sj | A is subdirectly irreducible and OX = 0}

is hereditdary, closed under essential extensions and satisfies condition (F).
Furthermore, for the radical class

R = {A € Sj n 21 | A—>B =>• B £ M } U {(0, +) }

the following two conditions are equivalent :
(i) A e R \ T
(ii) A 6 Sj n2l and i / K < A and K—>L, then L is not a simple GS-automaton

with subsemiautomaton 0.

In analogy with ring theory we may call this radical R the antisimple radical
of commutative additive GS-automata.
PROOF: Since OX = 0, every kernel K of any A £ M is a subsemiautomaton. Hence
by PROPOSITION 4.5 every kernel L of K is also a kernel of A. Thus the heart of A

Radical Theory for Group Semiautomata 187

is contained in every L<K, and therefore K is subdirectly irreducible, proving that
M is hereditary.

For proving that M is closed under essential extensions, let us consider a K G M
and K<oA. We have to show that A is subdirectly irreducible. Let I<jA be arbitrary.
Since K < oA, it follows K A l ^ I , and so the heart H of K is contained in K A I
and also in I. Since I was arbitrary, also H C A (I < A) holds, proving that A is
subdirectly irreducible.

In order to show the validity of condition (F), let us suppose that L < K <
A e f) and that K/L £ M. Since K/L 6 M, we have LX C L. Thus L is a
subsemiautomaton of A, and consequently K as well as A are GS-automata. Hence
P R O P O S I T I O N 4 . 5 yields L < A.

By C O R O L L A R Y 4 . 7 R is a radical class. Assume that K< A € R and K—C>L.
If K is merely a group, then so is L too, and condition (ii) is trivially fulfilled. So
we may suppose that K is a subsemiautomaton. By P R O P O S I T I O N 4 .8 it follows
that K e R which implies L ^ M. Since simple GS-automata are subdirectly
irreducible, by the definition of M we conclude that either L is not simple or 0 is
not a subsemiautomaton of L or both, proving the validity of (ii).

Suppose that A £ R . Then either A is a group or A / J € M with a suitable
kernel J of A . In the second case, since the class M is hereditary, also the heart L of
A / J is in M and in view of PROPOSITION 4.5 L has to be a simple GS-automaton .
Since L = K/J with an appropriate kernel K of A, we see that (ii) is not satisfied.

•
As is well known [10] the subdirectly irreducible abelian groups are precisely the

(quasi)-cyclic groups C(pn), n = l , 2 , . . . , o o for all primes p. Obviously, on every
subdirectly irreducible abelian group we may define an additive GS-automaton
by assigning a homomorphism xo: C(pn) —* C(pn), which will be a 0-input, and by
defining OX = 0. There are, however, subdirectly irreducible additive GS-automata
the additive group thereof is not subdirectly irreducible. Consider, for instance, the
direct sum C(p) ©C(p) of two copies of a simple cyclic group, the automorphism XQ
interchanging the components of C(p) © C(p). xo can be regarded as a 0-input of
C(p)©C(p), further define OX = 0. Thus we have got a simple and hence subdirectly
irreducible additive GS-automaton (C(p) © C(p), + , 5), though (C(p) © C(p), +) is
not a subdirectly irreducible group. Moreover, there are subdirectly irreducible
additive GS-automata, which are not in M, for instance (C(p), ¿) where the
0-input xo may be any homomorphism xo:C(p) —+ C(p), but OX ^ 0 for some
x S X. These observations demonstrate that C O R O L L A R Y 4.7 applied to the class
M of T H E O R E M 4.9 provides a subdirect decomposition for some additive GS-
automata only, and that the subdirectly irreducible components are not necessarily
subdirectly irreducible groups.

The third author gratefully acknowledges the financial support of the National
Science Council of the Republic of China and the kind hospitality of the National
Cheng-Kung University, Tainan, Taiwan, R.O.C. 1991 Mathematics Subject Clas-
sification : Primary 68Q70, Secondary 18B20.

Acknowledgement : The third author gratefully acknowledges the financial
support of the National Science Council of the Republic of China and the kind
hospitality of the National Cheng-Kung University, Tainan, Taiwan, R.O.C.

188 y. FoJig, F.K. Huang and R. Wiegandt

References
J. Adámek and V. Trnková, Automata and Algebras in Categories, Kluwer
Acad. Publ., 1990.

T. Anderson, K. Kaarli and R. Wiegandt, Radicals and subdirect decomposi-
tion, Comm. in Algebra, 13(1985), 479-494.

S. Eilenberg, Automata, languages and machines, Vol.A, Academic Press,
1974.

Y.Fong, F.K. Huang and W.F. Ke, Syntactic near-rings associated with group
semiautomata, PU.M.A. (Hungary) Ser A, Vol. 2 (1991), pp. 187-204.

G. Hofer, Near-rings and group automata, Ph.D. Thesis, J. Kepler-Universitat,
Linz, 1987.

G. Hofer and G. Pilz, Group automata and near-rings, Contr. to General Alg.
2, Proc. Klagenfurt Conf., 1982, Holder- Pichler-Tempsky, Wien and B.G.
Teubner, Stuttagrt, 1983, 153-162.

H.C. Hutchins and H.J. Weinert, Homomorphisms and kernels of semifields,
Period. Math. Hung., 21(1990), 113-152.

L. Márki, R. Mlitz and R.Wiegandt, A general Kurosh-Amitsur radical theory,
Comm. in Algebra, 16(1988), 249-305.

G. Pilz, Near-rings, North-Holland, 1983.

B.M. Schein, Homomorphisms and subdirect decompositions of semigroups,
Pacific J. Math., 17(1966), 529-549.

S. Veldsman and R. Wiegandt, On the existence and non-existence of comple-
mentary radical and semisimple classes, Quaest. Math. 7(1984), 213-224.

H. J. Weinert and R. Wiegandt, A Kurosh-Amitsur radical theory for proper
semifields, Comm. in Algebra, 20(1992), 2419-2458.

Received May 21, 1993

Revised March 21, 1994

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Structuring grammar systems by priorities and
hierarchies*

Victor Mitrana * Gheorghe Pilun* Grzegorz Rozenberg s

Abstrac t

A grammar system is a finite set of grammars that cooperate to gener-
ate a language. We consider two generalizations of grammar systems: (l)
adding a priority relation between single grammar components, and (2) con-
sidering hierarchical components which by themselves are grammar systems.
The generative power of these generalized grammar systems is investigated,
and compared with the generative power of ordinary grammar systems and of
some well-known types of grammars with regulated rewriting (such as matrix
grammars). We prove that for many cooperating strategies the use of priority
relation increases the generative capacity, however this is not the case for the
maximal mode of derivation (an important case, because it gives a charac-
terization of the ETOL languages). We also demonstrate that in many cases
the use of hierarchical components does not increase the generative power.

1 Introduction
A cooperating grammar system (introduced in J 7], and motivated by considerations
related to two level grammars), is a set of usual Chomsky grammars which cooper-
ate in rewriting sentential forms. In [7] a component that is currently rewriting a
sentential form cannot quit until it introduces a symbol which it cannot rewrite (the
current sentential form is not a sentential form of this component) . Only one com-
ponent at a time rewrites a sentential form. The set of terminal strings obtained in

'Research supported by project 11281 of the Academy of Finland, the Basic Research
ASMICS II Working Group, and, in the case of the second author, also by the Alexander
von Humboldt Foundation.

^University of Bucharest, Department of Mathematics Str. Academiei 14, 70109 Bu-
cure§ti, Romania

'institute of Mathematics of the Romanian Academy of Sciences P.O.Box 1 - 764,
70700 Bucure§ti, Romania

* University of Leiden, Department of Computer Science Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands and Department of Computer Science, University of Colorado
at Boulder Boulder, CO 80309, USA

190 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

this way is the language generated by the system. It is shown in [7] that this type
of cooperating grammar systems (equiped with a control over the sequencing of the
individual components) generates the-family of-programmed languages (which is
equal to the family of languages generated by matrix grammars).

The cooperating grammar systems were rediscovered in [l], under the name
of modular grammars (a term related to the time varying grammars). A rather
intensive study of cooperating grammar systems has been initiated in [2], where the
grammar systems were related to the notions from artificial intelligence, such as the
blackboard model in problem solving [9]. (See also Chapter 1 of [3] for further links
between grammar systems and topics in artificial intelligence, computer science,
and cognitive psychology.) Within this framework, more conditions on enabling and
disabling of individual components were considered. Two, quite basic, examples of
this type are: the step limitations (a component must work exactly, or at least, or
at most a given prescribed number of steps), and the maximal competence strategy
(a component must work as long as it can) - this is similar in some extent to the
stoping condition from [7]. The latter strategy is particularly interesting, because
it yields a characterization of the family of ETOL languages.

A number of novel cooperating strategies has been considered recently — forming
the teams of components, as in [6] and [9], is one of such strategies.

In this paper we consider two quite natural modifications of the basic model.
The first of these is adding a priority relation between the components of a system.
A component can become active only when no other component with a greater
priority can rewrite the current string. The other modification consists of allowing
components which by themselves are grammar systems, or systems of grammar
systems, etc.

We demonstrate that neither of the two modifications increases the generative
capacity when maximal competence strategy is used. For the other strategies,
adding the priority relation strictly increases the generative power.

We end this section by pointing out that both modifications of grammar systems
we consider in this paper, viz. priorities and hierarchies, are very natural. Adding
priorities in rewriting systems in order to ensure the deterministic applicability
of rules is a rather standard mechanism - e.g. it is used in regulated rewriting
in context-free grammars and in term rewriting systems. Also, the way that a
computation in a grammar system is defined on the base of computations of basic
units (grammars) may be seen as just a specific cooperation mechanism. In order to
understand its power, it is natural to consider the bootstrapping of this mechanism

- take grammar systems as basic units and obtain "grammar systems of depth
2" by organizing their work together by a given cooperation mechanism,

and proceeding inductively

- take grammar systems of depth % > 2 and organize their work together by a
given cooperation mechanism obtaining "grammar systems of depth t + 1".

Then a way to understand a given cooperation mechanism as defined in grammar
systems is to investigate the relationship between the generative power of grammar
systems of different depth. This leads one then to hierarchical grammar systems.

Structuring grammar systems by priorities and hierarchies 191

2 Basic definitions
For an alphabet V, V* denotes the free monoid generated by V; the empty string
is denoted by A, and |z| denotes the length of x £ V*. The families of context-free,
context-sensitive and recursively enumerable languages are denoted by CF, CS, and
RE, respectively; ETOL denotes the family of ETOL languages.

A matrix grammar is a construct G = (N, T, S, M, F), where N, T are disjoint al-
phabets, S £ N,M is a finite set of sequences, called matrices, (Ai —> xi,..., An
xn),n > 1, of context-free rules over N U T, and F is a set of occurrences of rules
in matrices of M .

For m = (Ai xi,...,An -* xn) £ M, and w,w' £ [N U T)*, we define
w =>m w' iff there are w2, • • •, t^n+i in (JVuT)* such that w = wlt w' = wn+i,
and for each i, 1 < i < n, either io; = w^Aiw", to,+i = or Ai does not occur
in Wi, Wi+i = Wi and Ai —* x; appears in F.

If F = 0, then the grammar is said to be without appearance checking (and the
component F is omitted from the specification of G).

We denote by MATac (respectively, MAT^.) the family of languages generated
by A-free (arbitrary) matrix grammars; when the appearance checking feature is
not present we remove the subscript ac.

A (context-free) ordered grammar is a construct G = (N,T, S, P,>~), where
N, T, S, P are as in a context-free grammar, and >- is a partial order relation over
P. A rule A —• x in P can be used for rewriting a string w only if no rule B y
in P with B —* y >• A —* x can rewrite the string to. The family of languages
generated by A-free ordered grammars is denoted by ORD, and ORDx is used for
the case when A-rules are allowed.

It is known that

CF c MAT c MATac c CS,
MAT c MATX c MATXC = RE,
CF c ETOL c ORD c MATac.

For the basic elements of formal language theory the reader is referred to [11]; for
Lindenmayer systems we refer to [10] and for regulated rewriting to [4].

Definit ion 1 A cooperating distributed (cd, for short) grammar system is a con-
struct

T = (N,T,S,PuP2,...,Pn),

where N,T are disjoint alphabets, S £ N, and < t < n, are finite sets of
context-free rules over N UT.

The sets P,- are called the components of T; we also say that T is a cd grammar
system of degree n.

For a component Pi from a grammar system T as above, dom(Pi) = {A £ N
I A —• x £ Pi}, and we define the derivation relation =>pi in the usual way.
Then we can consider derivations in P, of exactly k successive steps, of at least k
steps, at most k steps, and of an arbitrary number of steps; they are denoted by
= > p f , =>p i k , and , respectively. Another important relation is

x =>tpi y iff x =>•/>,. y and there is no z £ (N U T)* such that y =>pi z

(the derivation is maximal in the component Pi).

192 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

In this way we have specified stop conditions for the components, i.e. conditions
under which an active component must/can become inactive.

For / S { * , t } U { < k,= k, > Jfc | Jfc > 1} the language generated by T in the /
mode is defined by

Lf(T) = {xeT*\S Xl =>fPi; »a ... =>'Pir xr = X,

r > 1,1 < ty < n, 1 < J < r } .

The family of such languages, generated by systems with at most n components
(all of them without A-rules) is denoted by CDn(f) (if A-rules are allowed, then we
write CD^(f)). The union of the families CDn(f) for all n is denoted by CD 00(f).

In [2] and [3] it is proved that:

CF = CDoo(= 1) = CD0„(> 1) = CD^i*) = CDoo(< k), k > 1,
CF c CDn{= k) n CDn(> it), n > 2, Jfc > 2,
C D 0 0 (= Jb) C MAT, CKooi^ Jfc) C MAT, Jfc > 1,
CF = CDx (t) = CD2 (t) c CDn (i) = ETOL

(hence also CD^(t) = ETOL), n > 3.

3 Introducing orderings and hierarchies into
grammar systems

We introduce now new classes of grammar systems which will be investigated in
this paper.

Def init ion 2 A grammar system with priorities (pcd grammar system) is a con-
struct T = (N , T, S, Pi, ..., Pn, >-), where N,T, S, Px,..., Pn are as in a cd gram-
mar system, and >- is a partial order relation over the set of components. For a
derivation mode f , two strings x,y 6 (NUT)*, and a component Pi ofT we write
x y if and only if x ==>pi y and for no component Pj with Pj >- Pi and
no string z € (NUT)*, x =>pj z holds.

Note that if x ^ ^ ^ y, then no Py with Pj >- Pi can rewrite x in the / mode
- but there may be Py with Py >- P,- that can rewrite x in some way (e.g. Py can
make only one rewriting step on x while / = " > 2").

We denote by PCDn(f) the family of languages generated by (A-free) pcd
grammar systems of degree at most n in the derivation mode / . Again, we add the
superscript A when also A-rules may be used, and we replace n with oo when the
degree is not bounded.

Structuring grammar systems by priorities and hierarchies 193

Here is an example of a pcd gramar system. Let

r = ({S,A,B,A',B',A",B"}l{a,b,c}lS,Pi,P2,P3lP4,P5,>),
px = {A aA'b, B -* cB'},
P2 = {A-* A", B - B"},
p3 = [A' —» A, B' —• B, A" — ab, B" — c} ,
Pi = {A' - A', B' - B', A" - A", B" -» B"},
P5 = {A A, B - 5 , S -» A S } ,

and P 4 >- P i , P i >- P2, Ps >- -Pa-

Then
L/(r) = {anbncn | n > 1},

for all / e {*, > 1} U { < A: | k > 2} (and also for / € { = 2, > 2}).
Indeed, take a string an Abncn B ,n > 0; after using P5, the component in which

we must start any derivation, we have n = 0. We can apply either Pi or P2, using
only one or both rules from each of these components. If we use only one rule, then
we obtain either a " + 1 A'bn+1cnB or anAbncn+1B' when using Plt and we obtain
either anA"bncnB or anAbncnB" when using P2 . In all cases, both P4 and P5 can
be used afterwards (and one of them has to be used, because they have the priority
over Pi, P2, P3). However, nothing changes then in the current string, and so the
derivation is blocked. Consequently, when using Pi, P2 we must use both rules from
each of them, thus obtaining either a n + 1 A'bn+1cn+1B'or anA"bncnB". Now P4 is
applicable and it changes nothing, but it does not forbid the use of P3 (P5 is not
applicable). If, using P3 , only one of A',B' in o n + 1 A'bn+1cn+1B' is replaced by
A, B, respectively, then again the derivation is blocked in the components Pi,P^,
hence we must produce an+1 Abn+1cn~*~1 B - this is a string of the form that we have
started with, hence the derivation can be iterated. If from anA"bncnB" we produce
either an+1bn+1cnB" or anA"bncn+1, then the only applicable components are P3
and P4 ; P4 changes nothing, hence we eventually will use P3 again, and get in this
way a terminal string o " + 1 t n + 1 c r l + 1 .

Definition 3 A hierarchical grammar system (hcd grammar system) of depth
h, h > 0, is

1. a context-free grammar T = [N, T, S, P) if h = 0,

2. a construct T = (N, T, S, 71,721 ••• ,1m)) m ^ I, if h > 1, where T,- =
(N, T, S, 7i), 1 < i < m, are grammar systems of depth h — 1.

Thus, at the bottom level of a hcd grammar system we have sets of context-free
rules, on the next level it contains sets of such sets, then sets of sets of sets and
so on. The systems 7 1 , . . . , 7m from the specification of T in point 2 of the above
definition are called components or subsystems of T of depth h — 1.

Here is an example of a hcd grammar system of depth 2:

level two : T = ({5 , A, B, A', B'}, {a, b, e}, S, 7L> 72),
level one : 71 = { 7 1 , 1 , 7 1 , 2 } ,

72 = {72,1},

194 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

level zero : 71,1 = {A —• aA'b, B —» cB'},
71,2 = {A' —• A, B'^B},
72,1 = {S -» AB, A A, A ab, B - » c} .

We known how to define a derivation step in a system of depth 0 (this is a
usual derivation step in a context-free grammar), and we know how to define the
derivation modes = > > , for / S {* ,t }U { < k, = k, > k \ k > 1} in a set P of rules.
Then, for a system of depth h > 2, T = (N,T,S, 7 i , . . . , 7 m) we define, for the
component 7y, 1 < j < m,

y iff h.n
l],i, 1 1 —

X! =•=* .
r < k, are

. =fc _ _
, •••=>fi.tk Xk~
components of 7y; 1

1

y iff x=>f. Tj.'i
. <fc

7j,ir > 1 < r < 3, are components of 7y, r < k,

y iff ij.-i
._>fc
">}•' 2 =>-fc x — V • ^n.i. x> y>

r < 3, are components of 7y, r > k,

y iff . * • = y.

7 / , . „ 1 < r < 3, are components of 7y, r > o,
y iff * y and there is no z S [N U T)"

such that y z.

Continuing the previous example, let us consider the = 2 derivation mode.
Starting from S, we must use 72, which contains only one subsystem, hence

S =>=2 x means S xx x.

Hence after using S —» AB and A —• A (three times) we obtain x = AB. Now 71
must be applied, that is we must find a derivation

A B ^ i m f i

for i,j S {1, 2}. The only possibility is t = 1, j = 2, hence we get

AB =>=2 aAbcB, because AB =>=21 aA'bcB' = > = 2 , aAfccB.

This step can be iterated, obtaining anAbncnB,n > 0, and then 72 can be used
for replacing A, B with ab, c, respectively. If the current string contains only one
nonterminal, then 71 cannot be applied, hence after using 72 either a nonterminal
string as above is produced or a terminal string must be obtained. It is easy to see
that the generated language is

L=2[r) = {anbnen I n > 1}.

We denote by H h C D (f) the family of languages generated by grammar systems
of depth at most h,h> 1, in the derivation mode / ; we also set HoCD(f) = CF,
for all / .

Structuring grammar systems by priorities and hierarchies 195

4 The generative power of grammar systems
with priorities

In this section we will consider the effect of adding a priority relation on the gen-
erative power of grammar systems.

The next results follow directly from the definitions.

Lemma 1 CDn(f) C PCDn(f),PCDn(f) C PCDn+1{f),n > 1, for all f e
{M}U {< k,= k,> k | k > 1}.

The example from the end of the previous section implies that PCDn(f)—CF ^
0, for n > 5 , / E { * , > 1} U { < k | k > 2}. Since CDn(f) = CF, for all n > 1,
and / as above (see the end of Section 2), this demonstrate that adding priorities
strictly increases the generative power. This result can be extended also to modes
of derivation other than t.

T h e o r e m 1 PCDn(f) - CD^f) ^ 0, n > 10, / € {*} U { < k, = k, > k \ k > 1}.

P r o o f . Consider the system

r = ({5, A, A', B, B', B"), {a}, S, Pu P2,..., P10, v),

with the components and the priority relations given in the following figure, where
the components Pi, Pi are in relation Pi > P}- iff Pi is placed above Pj in one of
the "composite boxes below:

B' —• B'
Pi B" — B"

A -» A
P2 A - A'A'

P3 : B — B

Pa :
A!
A'

ÎÎ

Ps S —> AB
A — A

B —> B
B —* B'

Ps = B" — B"
B" a

Pj : A' — A'

B' —* B'

co B' B
B' -*B"

P . B - + B Pq • B' — B'

P • A - A rio .

Notice first that the components Pi, P3, P-j, Pq consist of rules of the form X —»
X only, hence their application does not change the current string. The same
is true for P5, except for the first step of a derivation, because S never appears
later in a sentential form. Therefore, all components Pi, P3, Pj, Pg (as well as P5
after the first step) check the appearance of the corresponding nonterminals and
block the components P2, P4, P%, P10 (and P&), respectively. For this reason we will
call Pi, P3, P5, P7, Pg the control components and P2, Pi, P&, P%, Pio the rewriting
components.

196 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

The derivation starts in P5 by producing the string AB (if we have a derivation
mode = k or > k for k >2, then we can use k — 1 times the rule A —• A; this is true
for all rewriting components, because they contain rules of the form X —* X, which
do not modify the current string). Assume then that we have already generated
a string AnB,n > 1. The presence of the rules A —• A and B —* B in P 5 and
P9 forbides the use of components PS and PJO; P4 and P& are not applicable to
A and B. Thus P2 is the only component which changes the current string. The
obtained string will contain occurrences of both A and A' (and of B). Due to the
presence of A we cannot use PQ, and due to the presence of B we cannot use P4
and P10; PB is not applicable. Therefore we must again use P2 until all occurrences
of A are replaced by A!. The so obtained string is of the form A'2nB. Now the
only applicable component which changes the string is P 6 , and its use leads to a
string of the form A'2nB', which allows the use of P4 (and only of P 4 , with the
exception of control components like P7 and P9 which do not change the string
under rewriting) which replaces occurrences of A! by A. As long as A, A' and B'
are present, the only possibility is to continue to apply P4 until each A' is replaced
by A, obtaining in this way A2nB'. Now one can apply Pg (and only Pg with the
exception of Pj, P5, P9 which do not change the string under rewriting). If A2nB,
is obtained, then the above process can be iterated. If A2nB" "is obtained, then the
only applicable component (which changes the string) is P10; it must be then used
until each A is replaced by a. When A is not present anymore, one can use PQ,
finishing the derivation by replacing B" with a.

Consequently,
Lffi) = { a 2 " + 1 | n > 1}.

Since Lf(T) is not context-free, it is not in CDoo(f), for / G {*>= 1> > 1}U
{< k | k > 1}. Moreover, it is proved in [5] that the length set of every infinite
language in C'£)0 0(/) , for / G { = k, > k | k > 1), contains an infinite arithmetical
progression. This implies that L/(T) is not in CDoo(f) , for / G { = k, > A: | k > l } ,
which concludes the proof.

•
Our proof of the above theorem holds for n > 10. The question: "what is the

smallest n for which Theorem 1 holds ?" remains open. Of course, the equalities
PCDxif) = CI>i (/) = C F a r e true for all / . Moreover, PCD2{= 1) C CF.
Indeed, for T = [N, T, S, Pi, P2, >-) with Pi >- P2 (the same argument holds for
P2 >- Pi) we may assume that dom(Pi) ndom{P2) = 0 (the rules A —• x G P2 with
A G dom(Pi) can never be used, hence they can be eliminated). Thus L = i (r) =
L(G) for G = (N , T, 5, Pi U P2) (the derivations in G and in T are the same up to
a change of the order of using the rules).

The above language {a2 + 1 | n > 1} is probably not in the family MAT (it is
conjectured already in [l l] that the one-letter matrix languages are regular). Since
CDoo(f) C MAT for all / as in Theorem 1 (and in some cases, CDoo(f) = CF),
the increase in generative power by adding priorities is quite considerable for those
derivation modes. Hence it is somewhat surprising that for the t mode of derivation
adding a priority relation does not increase the generative power.

T h e o r e m 2 P C D ^ t) = C D ^ l t) .

P r o o f . We have to prove only the inclusion C.
For a pcd grammar system T = (N, T, S, PI,..., PN, >-), we construct the cd

grammar system T' as follows.

T' = (N',T,S',P0,P'1,P",P2,P2,...,P'n,Pll,Pn+i),

Structuring grammar systems by priorities and hierarchies 197

N' = N U {S, X , # } u {X,- | 1 < * < n} ,
pQ = {S' — S X } U {Xi — X | 1 < t < n } (

P! = Pi U {X - # } U {Xy - # | 1 < j < n,j ? »}, 1 < t < n,
P>' = {X — X , } U { A - # | B £ dom(Py), Py >- P,-, 1 < j < n} , 1 < i < n,

-Pfi+1 = { I - t A } u { A - » # | i 4 e N).

Once introduced in a sentential form, the symbol # cannot be removed (it is a
"trap-symbol"). The symbols X j , . . . , Xn identify the components P i , . . . , Pn of T.
In the presence of Xi the component Pi will be simulated by P{ and X,- can appear
(introduced by P ") only when no component Py with Py > Pi is applicable to the
current string.

Let us see how these principles work in V by examining in some detail a deriva-
tion. Consider a sentential form wX (initially we have w = S, obtained after using
Po, which is the only component which can be applied to S1). The component
P n + i can be used only if w £ T* - hence only as the final step of the derivation. A
component P/ introduces the trap-symbol If Pj is maximal with respect to the
relation >- among the components which can be applied to w, then P " can be used
without blocking the derivation; it changes X into X,-, thus leading to wXi. Now to
a string wXi we can apply either Po, replacing again Xi with X (hence not achiev-
ing anything) or the component P¿, which will simulate the application of Pi to to.
The string tu'Xi obtained in this way can be rewritten only by Po, which leads to
w'X, and so the process can be iterated. In the presence of X,-, every component
P'.,j t, will introduce the trap-symbol. Consequently, L t (r) = ¿ t (r ') . (Note
that the A-rule in P„-t-i causes no problem, because CDoo(t) = CD^ft) = ETOL.)

•
Let us return to families PCD00(f) for / / t. It is quite natural to compare

these families with ORD, the family of languages generated by ordered grammars.
Given an ordered grammar G = (N,T, S, P, >-), it is obvious that we have L(G) =
L = i (T) = L<i(T) where T is a pcd grammar system obtained by considering each
rule of P as a separate component and the relation >- defined as in G. Therefore
ORD C PCD00(= 1) = PCDni^. 1). This implies that the families PCD^if),
f £ { = 1, < 1}, strictly include ETOL (and hence CD^t)).

A similar result is obtained for the = k and < k modes of derivation for all
k > 1.

Theorem 3 ORD C PCD(/),/£{< k, = k \ k > 1).

P r o o f . For k = 1 the statement follows by the argument as above. Consider k > 2.
Let G — (TV, T, S, P, >-) be an ordered grammar with

P = { r i , . . . r „ } , r{ : Ai x{, 1 < t < n, n > 1.

We construct the pcd grammar system

T = (JV'i T,S,P0, P i , P2, • • •, Pn, >-)i

where

N' = N U [Aij | 1 < i < n, 1 < j < k - 1),

Po = - Aij \ l < i < n , l < j < k - l } ,
Pi = {M -* Aiti,Aitl ..., A i j f c_2 Ai,k-i, Ai,k-i Xi}, 1 < »' < n,

198 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

and

P 0 X Pf for all 1 < i < n,
Pi > Py iff T{ >- ry in G.

Then L{G) = L=k(T) = L<k(T).
Indeed, if we have a sentential form w to which PQ can be applied, then on the

one hand no other component of T can be used for rewriting w, while on the other
hand the use of PQ does not change the string W. Consequently, the derivation is
blocked, and Po is a trap-component. As Po can be applied whenever any of the
symbols in N' — N is present, it follows that the components Pi, 1 < t < n, upon
completing their derivations cannot produce strings containing symbols in N' — N.
This implies that using a component P,-, 1 < t < n, in < k or in = k mode of
derivation, means to use all the rules from P,- exactly once, hence to replace an
occurrence of A,- first by A,-,i, then by A,-,2,..., then by A.-^-i , and finally by x,-.
This is exactly the effect of using the rule A,- —» x,-. As the priority relation among
the components P< of T corresponds to the order relation among the rules of G, the
equalities L(G) = L=k[T) = L< f c(r) follow.

•
It is an open question whether or not Theorem 3 holds also for the > k mode

of derivation.
We will now demonstrate that all the families P C D o o (f) with / 7 i t , are in-

cluded in MATac. In view of the strong generative power of matrix grammars with
appearance checking this inclusion is somewhat expected, however is really cumber-
some to write the detailed proof of this result. This is due to the fact that we have
to check whether or not all the components greater than a given component (in
the sense of the >- relation) are applicable to a given string in a specified mode of
derivation. This is easy for modes *, = 1, > 1, < k, for all k, but much more difficult
for the cases = k,> k, for k > 2, when all combinations of k rules in a component
must be checked. For this reason the proof of the following theorem will be rather
sketchy, but certainly containing enough information so that the interested reader
may complete it to a detalied proof.

Theorem 4 PCD^f) C MATac, f G { * } U { < A:, = A;, > k \ k > 1}.

P r o o f . (1) For / G { * } U { < A: | A: > 1}, consider a system T = (N, T,
S, P i , . . . , P„ , >-), and construct the matrix grammar

G = (N',Tu{c},S',M,F),
N' = NU { X , S ' , # } U { [» , /] | 1 < »• < n,0 < 3 < k},
M = {(S' ^ SX)} U

u{(X —»[t,0], Ai -+#,..., A, —• #) | {Ai,..., A„} =
{A G dom(Pj) | Py V Pu 1 < j < n} , 1 < i < n} U

U { (M [i,j+l],A - x) I A ^ x G Pi, 1 < i < n,
0 < j < k - 1} U

U{[\i,j] -* X) | 1 < » < n,0 < j < k} U
u { (X - . c) } ,

F contains all rules A —• # (# is a trap — symbol).

Structuring grammar systems by priorities and hierarchies 199

We have L(G) = L<k(r) { c } . The first component of nonterminals [t, j] specifies
the simulated component, while the second one counts the used rules. The symbol
X is replaced by [i, 0], starting the simulation of P,-, only when no component Py
with Pj >- Pi can use at least one of its rules for rewriting the current sentential
form. After using j rules of P,-, for some 0 < j < k, the symbol [t, j] can be replaced
by X and another component of T can be simulated.

If all symbols [*, j] are replaced by [¿1, and no reference is made to the number of
used rules, then we obtain L(G) = L „ (r) { c } . As MATac is closed under restricted
morphisms, the new symbol c can be erased, and so Lf(T) e MATac> for / e
{ * } U { < k | k > 1}.

(2) In the case of the derivation mode = k, starting from T = (N, T, S, P j , . . .
...,Pn,>~) with N = { A i , . . . , A (} , we shall use again the closure of the family
MATac under restricted morphisms. We construct a matrix grammar G with ap-
pearance checking working as follows. The new axiom S' introduces a string SX,
where S is the axiom of T and X a control symbol; X or its variants will be present
during all derivation steps. Moreover, for each symbol A e TV we have its copy Ac.
In order to be able to check whether a component Py can be applied to the current
string to, we introduce a copy of each nonterminal appearing in to, obtaining in this
way a string toc scattered among the symbols of w; we try to use the rules of Pj on
wc so that the original string to is not destroyed.

Here is a "sub-routine" for such a copying, called for by the control symbol Xc
(here and in the matrices below, # is a trap-symbol):

(Xc —• Xc, A —» A'Ac), for each AeN,
(X . - X ' . A : A. - #) ,
(X ' X', A' A), for each AeN,
(X' -^X",^^ #,..., A', -*#).

(In the presence of Xc, each symbol A e N is replaced by A'AC; when all symbols
AeN have been so replaced, Xc can be replaced by X', and then in the presence
of X' each A' is rewritten back to A; when this has been completed, X' is removed
and the symbol X" is introduced.)

Then, the control symbol X" will guess a component, say Pi, to be used, by
changing to Xi . Now all the components Py >- Pi must be tested and if any of
them can be used, then the derivation is blocked. This can be done as follows.

Having an ordered list GiZ(Pt) = (P } 1 , . . . ,Py (), of components that are
"greater" than P,-, we inspect them in this order P y l f . . . , Py,.. If some Pyr is ap-
plicable, then the derivation is blocked; if Pyr is not applicable, then we pass to
Pyr+1. Finally when also Pyt is not applicable, the control symbol is changed to
some Yi, which leads to the simulation of P<. This is done as in the < k mode,
introducing a counter which terminates the simulation of Pi when exactly k rules
were used; then again the "general controller" X is introduced in order to start the
simulation of another component. The derivation terminates (the control symbol,
the copy symbols and their variants are replaced by the new terminal c) when no
nonterminal from N is present in the current string.

Hence to complete the proof of the theorem for the = k mode we have to show
how to test whether or not a given component Py is applicable in the = k mode to
the current string to (hence to the corresponding nonterminal string toc containing
copies of the nonterminals in w).

200 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

Consider the set P* of all sequences of k rules in Pj,

Pf = {m1,m2,...,mq},q = (card{Pj))k,
mi = (Atl -* xi Alk -* xtk), Air -» xtr e Pj, 1 < r < k.

We have to check all these sequences - if at least one of them is applicable, then
Pj is applicable. By appropriately modifying the control symbol, we check, one by
one all the sequences m ^ m j , . . . , mq . If some mj is applicable, then the derivation
is blocked by introducing the trap-symbol if mj is not applicable, then we pass
to mj+i. Finally, when mq is not applicable, then we conclude that Pj is not
applicable.

We explain now the basic idea behind the checking whether or not some mj =
(A;, —• i j , , ,Aik —• xik) is applicable. Assume that the current string
contains the control symbol [*, jt2} (meaning: "for using P,-, we must be sure that
Pj >- P{ is not applicable, and we will try the sequence mj in P / ") . Consider the
set of all sequences C(mj) associated with mj as follows

C[m,) = { (A (l -> ah,..., A,k a,k) | a,r e {x , r , # } ,
1 < r < k, and at least for one r we have air = # } .

If mi is applicable, then each sequence in C(m/), considered as a matrix with the
rules A —• # used in the appearance checking manner, will introduce at least one
occurrence of Conversely, if mj is not applicable, then there is exactly one
sequence in C(m/) which can be used without introducing the trap-symbol. '

Indeed, take a rule Air —• xir. If it is applicable in mi to the current string w,
then it is also applicable in all sequences of C(mj), whether or not it is replaced
by Air —i> If it is applicable in mi to a symbol not in w, but introduced by
a previous rule Ajp —• xip, with xip containing Aj r , then we examine this rule,
Aip —i• x/p. If it remains unchanged in a sequence of C(m[), then it introduces
Air, hence also Air —• ajr is applicable, introducing # when ajr = If it is
replaced by Aip —• then the above argument can be iterated again, considering
two possible cases for A[p: either it appears in w or it is introduced by a previous
rule. Since each sequence in C[mi) contains at least one rule Ais —* jf whenever mj
is applicable, at least one # is introduced. When m/ is not applicable, at least one
of its rules is not applicable. If we replace all not applicable rules by A|a —• then
we obtain a sequence in C(mj) which can be applied in the appearance checking
mode without introducing the trap-symbol.

Consequently, for checking whether or not mi is applicable it suffices to guess
which sequence in C[mi) is applicable in the appearance checking mode (if the
guessing is incorrect, then the derivation is blocked).

To this aim, the current control symbol [i, j , Z] is non-deterministicaly replaced
by [t, j , I; /i], where h is the label of a sequence (A/, —• a/l,..., Aik —• a/fc) in C(mi).
Here is the "sub-routine" for this step:

([{,;, /; h] - [M , i; OK), (A,JC - » (a , J c , . . . , (A,JC - » (a , J c) ,

where (a; r) c = # if a i r = # and it.is obtained by replacing in xir (whenever
a;r = xir) all nonterminals B € N by their copies Bc and removing all the terminals;
the terminal rules B —* x are replaced by Bc —* D, where D is a special nonterminal
(we do not introduce A-rules).

Structuring grammar systems by priorities and hierarchies 201

Then, because the copy symbols have been altered, we replace all of them by D
and for checking the next sequence in P* (namely mj + 1) we produce a new series
of copy symbols, using the following matrices:

([t,/, f; OK) (,-, j, I, OK], Ac —» D), Ae N,
([i,3,1-, OK] - [i^ JlcopyKAxU # (A.)c ^ #) ,

([*> j, i; copy] - » [t', j, l; copy], A—* A' ,D —* Ac), Ae. N,
([»• 3, copy] -» [», j, h copy], A A'Ac), Ae N,
([{, j, /; copy] [i, j, l\ copy'], Ax—*#,..., A, —• #),
([*,3, copy'] -+ [i, j, l, copy'], A' A), AeN,
([»•, j, /; copy'] [», j, I + 1], A[^ # a: - #).

In this way the new copies of nonterminals in the current string of T as simulated
in G use "the places" of the old copies (the order is not relevant if matrices are
used only for testing their applicability); new places for copies of nonterminals are
introduced only when we do not have enough occurrences of the "place holder"
symbol D (this is important when we pass from the simulation of P,-, which can
introduce new nonterminals, to the simulation of another component). Therefore
the length of the string is not increased more than by a factor of three (more exactly,
for a string x £ L= fc(r) we can obtain in L[G) a string with the length less than
2|z| + l) .

We believe that the description of G given above allows one to give a formal
(quite tedious) construction of a matrix grammar G with appearance checking such
that L = F C (R) = h(L(G)), where h : (T U {c})* —• T * is a 3-bounded morphism
defined by h(a) = a for a e T, and h\c) = A. Consequently, L=k(T) 6 MATac.

The modifications for the > k mode of derivation concern only the counting of
rules used in P< whenever the use of Pi is permitted. (A component Pj >• Pi is
applicable in the > k mode if and only if it is applicable in the = k mode, hence
the "checking part" of the construction from the above proof remains unchanged.)

•

5 The power of hierarchical grammar systems
We begin by pointing out the relations which follow directly from definitions:

L e m m a 2 CF = H0CD[f) C HxCDU) = CD^f) C H2CD(f) C H3CD(f)
C...,fe{*,t}u{<k,= k,>k\k >1}.

For many derivation modes, this hierarchy is finite.

T h e o r e m 5 HhCD(t) = HxCD{t), for each h>l.

Proo f . We only have to prove the inclusion HhCD(t) C HiCD(t), and to this aim
it suffices to show that H2CD(t) C H\CD(t) (by induction: having a system of
arbitrary depth h > 2, if its subsystems of depth h— 1 can be reduced to systems of
depth 1, then we replace them by such systems and obtain in this way a system of
depth 2 equivalent with the initial one; then again using the reduction from depth
2 to depth 1, we prove the theorem).

202 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

Hence consider a system T = (N, T, S, 7 1 , . . . , 7 m) of depth 2, with 7; = {7,- , i , . . .
• • • 17i,r, } j U > 1, 1 < t < m, where 7^y are sets of context-free rules over JVl lT .
We construct the system I", of depth 1, with the nonterminal alphabet

If = {S ,# } u {[A,i] I A € N, 1 < i < m),

the terminal alphabet T, the axiom S', and the following components:

Pr = {S'-+[S, 1],
PiJ = (K » '] ^hi{x)\A-*xe 1 < »' < m, 1 < j < r<,

Ki = { M ^ \A,j\ \AeN- (U ^ d o m f o , .)) U
U{[A,i] - » # | i l e U ^ d o m f o .) } , 1 < i,j <m,iji 3,

where, for each 1 < »' < m, h{ : (N U T) * —• (N'uT)* is the morphism defined by
hi (A) = [A,t] for all A e N, and hi (a) = a for all a e T.

Each derivation in T' begins by a rule S' —* [S,t], which selects a component
7i of T which is simulated first. Assume we use now a component Pij, 1 < j < ri.
All the introduced nonterminals will be of the form [A, i], A € N. The derivation
will be maximal in P i j , hence it corresponds to a maximal derivation in 7 A f t e r
finishing the derivation in Pij, another component for 1 < s < r ,̂ can be used,
and so on. At each moment, all the nonterminals present in the current string are
of the form [A,i], for the chosen t. When no component P.- y, 1 < j < r c a n be
used (this corresponds to a maximal derivation in 7,), a component P- t, of
T' can be used. It changes all nonterminals in the sentential form from [A,i] to
\Ayj\. A component ^ 3', can be used without blocking the derivation only
when no derivation step in P^s, 1 < s < r ,̂ can be done, that is the corresponding
derivation in 7i is maximal (otherwise a rule [A,t] —> A £ dom(~ntt), for some
1 < s < r,-, can be used, which introduces the trap-symbol #) . Consequently, the
terminal derivations in T' simulate derivations in T.

Conversely, it is obvious that each derivation in T can be simulated in T'.
Consequently, Lt(T) = £ t(r ')> that is H2CD(t) C HiCD{t) = CD^t), which

concludes the proof.
•

Theorem 6 HhCD(f) = HxCD(f) = CF, for f £ {*, = 1, > 1} U { < k \ k > l} ,
and h > 1.

P r o o f . We proceed again as in the previous proof, reducing the problem to the
inclusion H2CD[f) C H1CD(f)-> because we know that HxCD[f) = CF, for / as
in the statement of the theorem, we shall prove the relation H2CU(f) C CF.

Consider a system of depth 2, T = (N,T,S, 71 , . . . , 7m) , with 7,• = {7» , i , . . .
• • • >7»,a. } 1 f° r each 1 < t < m, where 7tiy is a set of context-free rules, 1 < j < s,-.
Let G be the context-free grammar (N, T, S, {A —» x | A —» x £ 7,- y, 1 < t < m, 1 <
j < SI}).

Every derivation in T ammounts to the use of rules from sets 7,,y, hence the
inclusion L/[T) C L(G) is obvious (and actually holds for all modes of derivation,
and not only for the modes / as in the statement of the theorem). Conversely, every
derivation in G is correct with respect to the / mode in T, because we can reproduce
all derivations in G as = 1 derivations in T. Consequently, L(G) = Lj (F), that is
Lf(T) £ CF. •

Structuring grammar systems by priorities and hierarchies 203

It is an open problem whether Theorem 6 can also be extended to the derivation
modes = k and > k, for k > 2. This question seems to be related to the unsolved
problems about usual grammar systems concerning (1) the relations between fam-
ilies CD0o (= k) and CD^ (= j) for k j, and (2) the strictness of the inclusions
CDoo (> k) C CDoo(> k + 1) for k > 2 (weak inclusions are proved in [3]). In the
example from Section 3 we have seen that a derivation in the = 2 mode at the level
of the system corresponds, in some sense, to a derivation in the = 4 mode at the
level of components: two rules from the first sub-component and two rules from
the second sub-component are used.

We will demonstrate now that the result analogous to Theorem 3 holds for hcd
grammar systems.

Theorem 7 HhCD[f) C MAT, for all h > 0 and for f e {= k,> k \ k> 2}.

Proo f . First of all notice that for each / as in the statement of the theorem,
H0CD(f) = CF, and HiCD(f) = CD(f) - thus (see also the end of Section 2)
HoCD(f) C MAT and HxCD(f) C MAT. Hence we may assume that h> 2.

Let T be a hcd grammar system of depth h,T = (N, T,S, 7 1 , . . . , 7M). Using a
component 7 i n the = k mode for k >2, means to use k of its subsystems. This
in turn means that k sub-subsystems are used, and so on until one reaches the
level 0 (of sets of rules) where we use k rules from each set chosen by the previous
steps. This means that from the sets P}- on the level 0 we use sequences in the
sets Pj\ then "concatenating" such sequences, we obtain sequences corresponding
to the next level and so on. The so obtained sequences are matrices of rules, and
so the work of T in the = k mode can be simulated in a matrix grammar which is
defined as follows.

For a sequence of matrices of context-free rules, ny = (»"¿,1,..., rj,,,.), 1 < t <
p, we define (m i , . . . , m p) = (r<,i , . . . , riitl, r 2 , i , . . . , r 2 , „ , r3<1,..., rp > ,J , which is
again a matrix of rules.

For a set P of context-free rules let mat[P,k) = Pk (all matrices, in all orders
and combinations, of k rules in P), and then, for a system S = [N, T, S, Si,...
. . . , 67) of depth h > 1, we define recursively

mai(5, A;) = {mat(6i, k),mat(S2, k),..., mat{St,k)}k.

The matrix grammar G — (N,T,S,mat(T,k)) has the property L(G) = L=fc(r),
which proves the inclusion HhCD{= k) C MAT.

The inclusion HhCD(> k) C MAT can be obtained in the same way, using the
observation that every derivation in a system T in the mode > k can be decomposed
into one or more derivations in the mode = j, for k < j < 2k — 1. Therefore,
if we define now mat'(P,k) = U^-^.1 mat(P, j) and we modify in the same way
the definition of mat(S,k), then we obtain a matrix grammar G' generating the
language L>k(T).

•
Note that in the above theorem we have dealt with matrix grammars without

appearance checking.

204 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

References
[1] A. Atanasiu, V. Mitrana, Modular grammars, Intern. J. Computer Math., 30

(1989), 101 - 122.

[2] E. Csuhaj-Varju, J. Dassow, On cooperating distributed grammar systems, J.
Inform. Process. Cybern., EIK, 26 (1990), 49 - 63.

[3] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Páun, Grammar Systems, Gor-
don and Breach, 1994.

[4] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory, Sprin-
ger-Verlag, 1989.

[5] J. Dassow, Gh. Páun, S. Vicolov, On the generative capacity of certain classes
of cooperating grammar systems, Fundamenta Informaticae, to appear.

[6] L. Kari, Al. Mateescu, Gh. Páun, A. Salomaa, Teams in cooperating grammar
systems, J. Experimental and Theoretical AI, to appear.

[7] R. Meersman, G. Rozenberg, Cooperating grammar systems, Proc. MFCS '78
Symp., LNCS 64, Springer-Verlag, 1978, 364 - 374.

[8] P. H. Nii, Blackboard systems, in The Handbook of AI, vol. 4 (A. Barr, P. R.
Cohen, E. A. Feigenbaum, eds.), Addison-Wesley, 1989.

[9] Gh. Páun, G. Rozenberg, Prescribed teams of grammars, Acta Informática, to
appear.

[10] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, 1980.

[11] A. Salomaa, Formal Languages, Academic Press, 1973.

Received October 6, 199S

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Normal Forms and Minimal Keys in the
Relational Datamodel*

J. Demetrovics * Yu Due Thi*

Abstract
The normalization of relations was introduced by E. F. Codd. The main

purpose of normalization is to delete undesired redundancy and anormalies.
The most desirable normal forms are second normal form (2NF), third
normal form (3NF) and Boyce-Codd normal form (BCNF) that have
been investigated in a lot of papers. The concepts of minimal key and prime
attribute (recall that an attribute is prime if it belongs to a minimal key,
and nonprime otherwise) directly concern 2NF, 3NF and BCNF. This paper
investigates connections between these normal forms and sets of minimal keys.
Lucchesi and Osborn showed [l l] that the problem to decide if an arbitrary
attribute is prime is NP-complete for relation scheme. We proved [9] that
a set of all nonprime attributes is the intersection of all antikeys (maximal
nonkeys) and this prime attribute problem can be solved by polynomial time
algorithm for relation. From these results some problems are NP-complete
for relation scheme, but for relation these problems are solved by polynomial
time algorithms. It is known [5j that a set of all minimal keys of a relation
scheme (and a relation) is a Sperner system (sometimes it is called an
antichain) and for an arbitrary Sperner system there exists a relation scheme
the set of all minimal keys of which is exactly this Sperner system. In this \
paper the following concepts are introduced.

A Sperner system K is in 2NF (3NF, BCNF, respectively) if for each
relation scheme s such that K, — K then « is in 2NF (3NF, BCNF, respec-
tively), where K, is a set of all minimal keys of e. This paper gives necessary
and sufficient conditions for an arbitrary Sperner system is in 2NF or 3NF
or BCNF. We prove that problems of deciding whether K, is in 2NF (3NF,
respectively) are NP-complete. However, we show that if a relation scheme
is changed to a relation then these problems are solved by polynomial time
algorithms. We give a new characterization of relations and relation schemes
that are uniquely determined by their minimal keys. From this character-
ization we give a polynomial time algorithm deciding whether an arbitrary

'Research supported by Hungarian Foundation for Scientific Research Grant 2575.
Computer and Automation Institute Hungarian Academy of Sciences P.O.Box 63,

Budapest, Hungary, H-1502
* Centre for Systems and Management Research National Centre for Scientific Research

of Vietnam P.O.B.626 Boho, Hanoi 10000 Vietnam

206 J. Demetrovics, Vu Due Thi

relation is uniquely determined by its set of all minimal keys. Osborn [14]
gives a polynomial time algorithm testing BCNF property of a given relation
scheme. This paper gives a polynomial time algorithm recognizing BCNF
and finding a set of all minimal keys and a minimum cover if a given relation
scheme is in BCNF.

Key Words and Phrases: database, relation, relational datamodel, func-
tional dependency, relation scheme, second normal form, third normal form,
Boyce-Codd normal form, closure, closed set, minimal generator, key, minimal
key, antikey.

1 Introduction
Let us give some necessary definitions and results that are used in next section.

D e f i n i t i o n 1.1 Let R = { a i , . . . , a n } be a nonempty finite set of attributes, r =
{ A i , . . . , A m } be a relation over R, and A,BQR. Then we say that B functionally

depends on A in r (denoted A B) iff

(VA,-, Ay € r)((Va e A)(A,(a) = Ay(a)) (V6 e B) (M &) = Ay(6))).

Let Fr = { (A , B) : A, B Q R, A-^B}. Fr is called the full family of functional

dependencies of r. Where we write (A, B) or A —* B for A B when r, / are clear
from the context.

D e f i n i t i o n 1.2 A functional dependency over R is a statement of the form A —» B,

where A,BCR. The FD A—*B holds in a relation r if A-^-* B. We also say that
r

r satisfies the FD A —> B.
Clearly, Fr is a set of all FDs that hold in r.

D e f i n i t i o n 1.3 Let R be a nonempty finite set, and denote P(R) its power set. Let
y C P{R) X P(R). We say that y is an f-family over R iff for all A,B,C,D C R

1. (A, A) € y,

2. {A,B)ey, [B, C) € y =>• (A, C) 6 y,

S. {A,B)ey,ACC,DCB=> (C, D) e y,

4. (A,B)e y, {C,D) € y = » (A u C . B u D) e y. Clearly, Fr is an f-family
over R.

It is known [l] that if y is an arbitrary /-family, then there is a relation r over
R such that Fr = y.

D e f i n i t i o n 1.4 A relation scheme s is a pair < R,F>, where R is a set of at-
tributes, and F is a set of FDs over R. Let F+ be a set of all FDs that can be
derived from F by the rules in Definition l.S. Denote A+ = {a : A -+ { a } g F+}.
A+ is called the closure of A over s. It is clear that A —* B 6 F+ iff B C A + .

Normal Forms and Minimal Keys in the Relational Datamodel 207

It is known [3] that there is a polynomial time algorithm which finds A + from
A.

Clearly, if s =< R,F > is a relation scheme, then there is a relation r over R
such that Fr = F+ (see, [1]). Such a relation is called an Armstrong relation of s.
It is obvious that all FDs of s hold in r.

Definit ion 1.5 Let r be a relation, s =< R, F > be a relation scheme, y be an
f-family over R and A C R. Then A is a key of r (a key of s, a key of y) if

A R (A—*R& F+, (A, R) Ey). A is a minimal key of r(s, y) if A is a key of
r(s, y), and any proper subset of A is not a key of r(s, y). Denote Kr, (K,, Ky) the
set of all minimal keys of r(s,y). Clearly, Kr,K,,Ky are Sperner systems over R.

Definit ion 1.6 Let K be a Sperner system over R. We define the set of antikeys
of K, denoted by as follows:

K~x = {A C R : [B e K) => (B % A) and (A c C) = > (3B € K){B C C)}

It is easy to see that K-1 is also a Sperner system over R.

It is known [5] that if K is an arbitrary Sperner system over R then there is a
relation scheme s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of the
set of minimal keys (antikeys), then this Sperner system is not empty (doesn't
contain R). We consider the comparison of two attributes as an elementary step
of algorithms. Thus, if we assume that subsets of R are represented as sorted
lists of attributes, then a Boolean operation on two subsets of requires at most |ii|
elementary steps.

Definition 1.7 Let I C P[R), R <= /, and A,B e I => AnB € I. Let M C P(R).
Denote M+ = {C\M : M C M}. We say that M is a generator of I iff M+ = I.
Note that R £ M+ but not in M, since it is the intersection of the empty collection
of sets.

Denote N = {A e I: A ? n { A ' e I: A c A ' } } .
In [6] it is proved that N is the unique minimal generator of I. Thus, for any

generator N of I we obtain N C N .
Definit ion 1.8 Let r be a relation over R, and Er the equality set of r, i.e. Er =
{Eij : 1 < % < j < |r|}, where E{i = {a e R : hi(a) = /iy(a)}. Let Tr = {A €
P(R) : 3 E { j = A, /BEpq : A C Epq}. Then Tr is called the maximal equality system
of r.

Definition 1.9 Let r be a relation, and K a Sperner system over R. We say that
r represents K iff Kr — K. The following theorem is known ([8]).

Definition 1.10 Let K be a non-empty Sperner system and r a relation over R.
Then r represents K iff i f - 1 = Tr, where Tr is the maximal equality system of r.

Definit ion 1.11 Let s =< R,F> be a relation scheme over R. We say that an
attribute a is prime if it belongs to a minimal key of s, and nonprime otherwise,
s =< R,F > is in

1. SNF if A—* {a } ^ F+ for each K £ K,, A <Z K, A, and a is nonprime.

208 J. Demetrovics, Vu Due Thi

2. SNF if A -* { a } g F+ for A+ ф R, a £ A, a is nonprime.

S. В CNF if A — {a } & F+ for A+ ф R, a 0 A.

Clearly, if s is in BCNF (SNF, respectively) then s is in SNF (2NF, respectively).
If a relation scheme is changed to a relation we have the definition of 2NF, SNF

and BCNF for relation.

Definit ion 1.12 [4] Let P be a set of all f-families over R. An ordering over P is
defined as follows:

For F,F'eP let F < F' iff for all AC R, НРЛА) С HF(A). where HF(A) =
{aeR: {A,{a})<=F}.

T h e o r e m 1.13 [7] Let К be a Sperner system over R. Let

Ш] = (Г 'л св B
1> \ if3B e К'1 : А С В R otherwise

and F = {[С, D): DC L(C)}.
Then F is an f-family over R, Hp = L, and Kp = K. If F' is an arbitrary

f-family over R such that Kp> = К then F < F' holds.

2 Results
In this section we give some results related to 2NF, 3NF, BCNF and sets of minimal
keys.

Definit ion 2.1 Let K be a Sperner system over R. We say that K is in 2NF (SNF,
BCNF, respectively) if for every relation scheme s =< R,F > such that K, = K
then s is in 2NF (SNF, BCNF, respectively).

Now we give a necessary and sufficient condition for an arbitrary Sperner system
is in 2NF.

Let K be a Sperner system over R. Denote Kp = {a e R: 3A e K:a 6 A } , and
Kn = R — Kp. Kp (K n) is called the set of prime (nonprime) attributes of K.

Given a relation scheme s =< R,F >, we say that a functional dependency
A—>Be.F is redundant if either A = B or there is C D & F such that CCA.

Theorem 2.2 Let K be a Sperner system over R. Then K is in 2NF if and only
»/ Kn = 0.

P r o o f . According to definitions of 2NF relation, 2NF Sperner system and Kn we
can see that if Kn = 0 then K is in 2NF.

Now, assume that K is in 2NF. Denote Kthe set of all antikeys of K. From
K, K-1 we construct the following relation scheme.

For each A C R there is B € K'1 such that A C B. Denote C = C\{B e
K~l-.A C B}. We set A —* C. Denote T the set of all such functional dependencies.
Set F = {E — R: E 6 K} U (T - Q), where Q = {X Y e T:X K is a
redundant functional dependency } . JVom Theorem 1.13 and definition of Sperner
system we obtain K, = K. Clearly, for each arbitrary relation scheme s' =< R, F' >
such that Ky = K and A C R we have A*, C A+, where A^ = {a: A —• { a } G
F'+}. We showed [9] that Kn is the intersection of all antikeys of K. Based on the

Normal Forms and Minimal Keys in the Relational Datamodel 209

construction of s =< R, F > and according to definition of 2NF Sperner system
we obtain Kn = 0. Our proof is complete.

It is easy to see that a 3NF relation scheme is in 2NF and if a set of all non-
prime of arbitrary relation scheme is empty then this relation scheme is in 3NF.
Consequently, Theorem 2.2 immediately implies the following corollary.

Corol lary 2.3 Let K be a Sperner system over R. Then K is in SNF if and only
if Kn = 0.

Definition 2.4 Let K be a Sperner system over R. We say that K is unique if
K uniquely determines the relation scheme s =< R,F > , t. e. for every relation
scheme s' =< R, F' > such that K,< = K we have F+ = F'+.

From definition of BCNF Sperner system and Definition £.4 we obtain

Propos i t ion 2.5 K is in BCNF iff K is unique.
Now we introduce the following problem.

Theorem 2.6 The following problem is NP-complete:
Given a relation scheme s, decide whether K, is in £NF.

Proo f . For each a £ R we nondeterministically choose a subset B of R such that
o £ B. By an algorithm finding the closure of B over s (see [3]) and based on
definition of minimal key we decide whether B is a minimal key of 3. From this we
can decide whether a is prime of s. According to Theorem 2.2 if for every a £ R a
is prime then K, is in 2NF, in the converse case K isn't in 2NF. It is obvious that
this algorithm is nondeterministic polynomial. Thus, our problem lies in NP.

Now we shall show that our problem is NP-hard. It is known [l l] that the
prime attribute problem for relation scheme is NP-complete. Now we prove that
this problem is polynomially reducible to our problem.

Let s' =< P, F' > be a relation scheme over P, and a £ P. Without loss of
generality we assume that P is not a minimal key of s', i.e. if A £ K,i then A C P.
By a polynomial time algorithm finding a minimal key of relation scheme (see [l l]
) we can find a minimal key Q of s' from P and F'. Denote T = {I: I £ P-Q, {/} —•
P & F'+}. Assume that T = { a i , . . . , o t } . Now we construct the relation scheme
s =< R, F > as follows:

R = P U {b, c, d, ei,..., e t - i } , where b,c,d,e 1 , . . . , et-i & P and F contains F'
and the following functional dependencies:

It can be seen that s is constructed in polynomial time in the sizes of P and F'.
According to the construction of s =< R,F > and definition of minimal key and by
Q u { c } R, for all A £ Kt> we have A u { c } £ i f , (l) . Based on Qu{fc} Q u { c }
and {6} { 0 } if A £ K„< we obtain (A - o) U {6} £ K,{2). By {{a,-, o i + 1 , e,}
R-1 < i < t — 1} we have {a^, a^+i, e ; } (l < i < t — 1) £ K,. From this and (l)
Vo' £ P,b,c,ei,..., et-i are prime attributes of s. According to the construction of
s and definition of 3NF relation scheme we can see that s is in 3NF. Now we prove
that K„ is in 2NF iff a is prime attribute of s'.

Assume that K, is in 2NF. According to Theorem 2.2 we can see that d is
prime attribute of s. Consequently, there is a minimal key B of s such that d €. B.

210 J. Demetrovics, Vu Due Thi

It can be seen that a,b,ei,..., et-i B. Since there is only functional dependency
{ c .d } —+ {£>J the left side of which contains d we obtain c £ B. According to
{6} {a } , (c ,d } {6} and (2) it is easy to see that (S U a) - { c , d } e K,>. Thus,
a is prime attribute of a'.

Now we assume that K, is not in 2NF. By Theorem 2.2 d is nonprime attribute
of a. If a e A : A 6 K,- then by { c ,d } - » { a } 6 F+ and from (2) (c , d } u (A - a) 6 K,
holds. This conflicts with the fact that d is nonprime attribute of a. Consequently,
a is nonprime attribute of a'. The theorem is proved.

Theorem 2.6 immediately implies the following corollary
Corol lary 2.7 The problem of deciding whether K, is in SNF is NP-complete for
given a relation scheme s.

It i3 known [8] that there is a polynomial time algorithm which from a given
relation r finds the maximal equality systemTr. Based on Theorem 1.10 and because
the set of all nonprime attributes is the intersection of all antikeys we have the
following proposition.

Propos i t i on 2.8 There is an algorithm that for a given relation r decides if Kr is
in SNF or SNF. The time complexity of this algorithm is polynomial in the sizes of
R and r.

From Theorem 2.2 we immediately obtain the following corollary.

Corol lary 2.9 There is a polynomial time algorithm that decides whether a given
Sperner system is in 2NF or SNF. Let a = < R,F > be a relation scheme over R,
K, is a set of all minimal keys of a. Denote the set of all antikeys of s. From
Theorem 1.10 we obtain the following corollary.

Corol lary 2.10 Let s =< R,F > be a relation scheme and r a relation over R.
We say that r represents s if KT = K,. Then r represents s iff K*1 = Tr, where
Tr is the maximal equality system of r. In [7] we proved the following theorem.

Theorem 2.11 Let r = {hi,... .hm} be a relation , and F an /-family over R.
Then Fr = F iff for every A e P[R)

where HF[A) = {a S R: (A, { a }) S F} and ER is the equality set of r.
Let a = < R, F > be a relation scheme over R. FVom a we construct Z(s) =

{ X + : X C R}, and compute the minimal generator N, of £(s). We put

It is known [l] that for a given relation scheme a there is a relation r such that
r is an Armstrong relation of s. On the other hand, by Corollary 2.10 and Theorem
2.11 the following proposition is clear
Propos i t i on 2.12 Let s =< R,F> be a relation scheme over R. Then

It is known [5] that for given a Sperner system K there exists a relation scheme
a (a relation r, respectively) such that K, = K (Kr = K, respectively). We say
that s (r, respectively J is unique if K, (Kr, respectively) uniquely determines s
(r, respectively), i.e. K, (Kr, respectively) is unique.

Now we give a necessary and sufficient condition for given a relation scheme is
unique.

T, = { A 6 N, -.FLBEN,: A C B)

K;1 = T,.

Normal Forms and Minimal Keys in the Relational Datamodel 211

T h e o r e m 2.13 Let s —< R, F > be a relation scheme over R. Then s is unique
iff for all a A, A E K~l : A - a — n{J3 G i f f 1 : [A - a) C B} holds.

P r o o f . It is known [4] that a Sperner system K is unique iff for all B C A, A €
K-1, B is an intersection of antikeys. Denote P, = {A — a: A G Kj1, a G A}.

It can be seen that if s =< R,F > is unique then B G P, implies B is an
intersection of antikeys, i.e. B = f l {A G K~l-.B C A} .

Conversely, assume that for every B G P, we have B = (~|{A G K~l : B C
A} (*) . Now we shall prove the following result : a = < R, F > is in BCNF iff for
all B G P., B+ = J3(l) holds.

It is easy to see that if s is in BCNF then we obtain (1). Now, we assume that
for each B G P„ B+ = B. Suppose C —• {«¿} G F+ and d £ (7(2). If C+ ^ R then
by definition of antikey and Proposition 2.12 there exists an A G K~x such that
C+ C A and by (2) d G A holds. Clearly, C C A-d holds. It is easy to see that
(A - d)+ holds. By A - d G P, we have (A - d)+ ± A - d. This conflicts
with the fact that (A - d)+ — A- d. Hence, C+ = R holds, i.e. s is in BCNF.

From this result and according to Proposition 2.12 we have N, C (P„ U K~1).
It can be seen that s is in BCNF. Based on definition of N, and Proposition 2.12
K'1 C N, holds. According to (*) we obtain Kt 1 = N,. Because a is in BCNF we
can see that for all B C A, A G K : B+ = B holds. Thus, B is an intersection
of antikeys of s. The proof is complete.

According to definition of BCNF Sperner system and based on Theorem 2.13
and Proposition 2.5 we give a necessary and sufficient condition for an arbitrary
Sperner system is in BCNF.
Theorem 2.14 Let K be a Sperner system over R. Then K is in BCNF iff for all
aeA, Ae K'1 : A - o = n{B G K~l: (A - a) C B} holds.

By a polynomial time algorithm finding a set of all antikeys of a given relation
and according to Theorem 2.13 we obtain the following proposition.

Propos i t i on 2.15 There exists an algorithm deciding whether a given relation r
is unique. The time complexity of this algorithm is polynomial in the sizes of R
and r.

Theorem £.14 and Proposition £.15 immediately imply the following

Propos i t i on 2.16 There exists a polynomial time algorithm deciding whether a
set of all minimal keys of a given relation is in BCNF.

Theorem 2.13 immediately implies the next corolllary.

Corol lary 2.17 Let K be a Sperner system over R. Then there exists a polynomial
time algorithm deciding whether a Sperner system H is unique, where H~l = K.

Now we introduce the following problems : Given a relation scheme s (a Sperner
system K, respectively), decide whether s (K, respectively) is unique.

It is obvious that these problems are equivalent to the next problems: Given
a relation scheme s (a Sperner system K, respectively), decide whether K, (K,
respectively) is in BCNF.

It is unknown that these problems have polynomial time complexity. We con-
sider these problem as interesting open problems.

Osborn [14] gives a polynomial time algorithm deciding whether a relation
scheme is in BCNF. It is known [10, 12] that a relation scheme s =< R, F > is in
BCNF iff its minimum cover contains functional dependencies {K\ —> R,..., Kt —>•

212 J. Demetrovics, Vu Due Thi

R}, where K{(1 < i < t) are minimal keys of s. FVom this the BCNF property of
relation .scheme also is recognized in polynomial time.

Let s =< R, F > be a relation scheme over R. PVom mles (3) and (4) of Defini-
tion 1.3 we can see that the functional dependency A —* { o i , . . . , a t } is equivalent
to the set of functional dependencies {A —• { a i } , . . . , A —• {at } } - Thus, we can
assume that F only contains the functional dependencies form A —> { a } .

Definit ion 2.18 Let s =< R,F> be a relation scheme. We say that s is an a-
relation scheme over R if F = { A { b } : A j i b, JBB : (B -* {b})[B C A) } , where
b e R.

Definit ion 2.19 Let 3 = < R,F> be a relation scheme, b e R. Denote Kb =
{AC R: A {b}, flB: (B -* { 6 }) (S C A} } . Kb is called the family of minimal sets
of the attribute b. Clearly, R & Kb, {6} S Kb and Kb is a Sperner system over

Algor i thm 2.20 (Finding a minimal set of the attribute b)
Input: Let s =< R, F > be a relation scheme, A = {ai,..., at} —» {6}.
Output: A' € Kb
Step 0: We set L(0) = A
Step i+1: Set

Then we set A! = L(t).

L e m m a 2.21 L{t) € Kb

P r o o f . By the induction it can be seen that L(t) —• {6} , and L[t) C ... C L(0)
(l j . If L{t) = b, then by the definition of the minimal set of attribute b we obtain
L(t) £ Kb- Now we suppose that there is a B such that B C L(t) and 5 ^ 0 .
Thus, there exists ay such that ay ^ B, ay G L{t). According to the construction
of algorithm we have L(j — l) — ay •/* {6}. It is obvious that by (l) we obtain
L(t) - ay C L(j - 1) - ay(2). It is clear that B C L(t) - ay. From (1), (2) we have
B -f* {6} . The lemma is proved.

Clearly, by the linear-time membership algorithm in [3] the time complexity of
Algorithm 2.20 is 0(|ii|2|F|).

A lgor i thm 2.22 (Finding an a-relation scheme)
Input: Let s =< R,F> be a relation scheme.
Output: an a-relation scheme 3' = < R, F' > such that F'+ = F+.
Step 1: By rules (S) and (4) of Definition l.S from s we construct s" =<

R, F* = {A -* {6} : b e R} > such that F"+ = F+.
Step 2: For each A —* {6} e F" we use algorithm 2.20 to find a minimal set A'

of attribute b over s". Set F* = {A' -» b : V6 6 R}.
Step S: Set s' =< R, F' = F* - Q) >, where Q = {X Y € F*: X Y is a

redundant functional dependency }.
According to definition of a-relation scheme, based on Definition 2.19 and

Lemma 2.21 we can see that s' is an a-relation scheme and F'+ = F+.
It can be seen that the time complexity of Algorithm 2.22 is polynomial in the

sizez of R and F.

R.

Normal Forms and Minimal Keys in the Relational Datamodel 213

Theorem 2.23 Let s —< R,F > be a relation scheme. Then a is in BCNF if and
only if there exists an a-relation scheme a' =< R,F' > such that F'+ = F+ and
for every A -* (b) € F' A 6 K,< holds.

Proo f . Assume that a is in BCNF. By Algorithm 2.22 we can construct an o-
relation scheme s' =< R,F' > such that F'* = F+. By Step 3 of this algorithm
for each A -+ {6} e F' b & A holds. Since s' is in BCNF we have A + = R. Clearly,
if there is a C C A such that C + = R then C —• {6} holds. This is a contradiction.
Thus, A G K h o l d s .

Conversely, we assume that there is an a-relation scheme s' =< R, F' > such
that F+ = F'+ and for every A {6} 6 F' A € K,< holds. By Lemma 3 in [14] s'
is in BCNF. Thus, a is in BCNF. Our theorem is proved.

In Theorem 2.23 we set K = {A: A - » {6} € F'}. We have the following.

Propos i t ion 2.24 K = K,.

Proo f . By definition of BCNF relation scheme K,> = K, holds. From Theorem
2 . 2 3 K C K,< holds. Suppose B £ K,<,B C R and B £ K. Because IF4< is a
Sperner system over R we can see that K U B also is a Sperner system over R. It
can be seen that according to definition of a-relation scheme B+ = B over s'. This
conflicts with the fact that B is a minimal key of s'. The proof is complete.

Theorem 2.23 immediately implies the following.

Propos i t ion 2.25 Let a =< R,F> be a relation scheme. Then a is in BCNF if
and only if there exists an a-relation scheme s' =< R, F' > such that F'+ =
and for every A —• { 6 } € F' A is a key of s'.

It can be seen that based on definition of a-relation scheme, in Proposition 2.25 if
A —» {6} €E F' then A is a minimal key of s'.

Clearly, the time complexity of Algorithm 2.22 (finding an a-relation scheme)
is polynomial and deciding whether a set of attributes is a key also takes polynomial
time, It is known [10, 12] that a relation scheme s =< R,F> is in BCNF iff its
minimum cover contains functional dependencies { K i —• R,...,Kt —<• R}, where
•^¿(1 are minimal keys of s. We can give a polynomial time algorithm rec-
ognizing the BCNF property of arbitrary relation scheme s, and if relation scheme
s is in BCNF then this algorithm finds a minimum cover and a set of all minimal
keys of s.

Algor i thm 2.26 Input: Let a =< R, F > be a relation scheme.
Output: Deciding whether a is in BCNF, if s is in BCNF then finding K,, and

an a-relation scheme s' =< R,F' > such that a' is a minimum cover of s.
Step 1: Use Algorithm 2.S2 we construct an a-relation scheme s" =< R, F" =

{A {6} : b £ R} > such that F"+ = F+.
Step 2: If there is an A —* {fc} 6E F" such that A is not a key of s" then s isn't

in BCNF and stop. In the converse case go to the following step.
Step S: Set K, = {A : A —• {6} e / " ' } .
Step 4• Denote elements of K, by A i , . . . , A«. Set F' = {A,- —• R : 1 < t < i } .
It can be seen that s' =< R, F' > is a minimum cover of a.

214 J. Demetrovics, Vu Due Thi

3 Conclusion
Our further research will be devoted to the following problems:

Given a relation scheme s.

1. What is the time complexity of deciding whether s is in unique?

Given a Sperner system K over R.

1. What is the time complexity of deciding whether K is unique?

Acknowledgments
The authors are grateful to Dr. Uhrin Bela for useful comments to the first version
of the manuscript.

References
[1] Armstrong W.W. Dependency Structures of Database Relationships. Informa-

tion Processing 74, Holland Publ. Co. (1974) pp. 580-583.

[2] Beeri C., Dowd M., Fagin R., Staman R. On the Structure of Armstrong
relations for Functional Dependencies. J. ACM, 31 (1984) pp. 30-46.

[3] Beeri C., Bernstein P.A. Computational problems related to the design of
normal form relational schémas. ACM Trans, on Database Syst. 4 (1979) pp.
30-59.

[4] Burosch G., Demetrovics J., Katona G.O.H. The poset of closures as a model
of changing databases, Order 4 (1987) pp. 127-142.

[5] Demetrovics J. On the equivalence of candidate keys with Sperner systems.
Acta Cybernetica 4 (1979) pp. 247-252.

[6] Demetrovics J. Logical and structural Investigation of Relational Datamodel
(in Hungarian). MTA-SZTAKI Tanulmányok, Budapest, 114 (1980) pp. 1-97.

[7] Demetrovics J., Thi V.D. Some results about functional dependencies. Acta
Cybernetica 8 (1988) pp. 273-278.

[8] Demetrovics J., Thi V.D. Relations and minimal keys. Acta Cybernetica 8
(1988) pp. 279-285.

[9] Demetrovics J., Thi V.D. On Keys in the Relational Datamodel. EIK 24 (1988)
10, pp. 515-519.

[10] Gottlob G. , Libkin L. Investigations on Armstrong relations, dependency
inference, and excluded functional dependencies. Acta Cybernetic a 9 (1990)
pp. 385-402.

|ll] Lucchesi C.L., Osborn S.L. Candidate keys for relations. J.Comput.Syst. Seien.
17 (1978) pp. 270-279.

[12] Maier D. Minimum cover in the relational database model. J.ACM 27 (1980)
pp. 664-674.

Normal Forms and Minimal Keys in the Relational Datamodel 215

[13] Mannila H., Raiha K.J. Design by Example: An Application of Armstrong
relations. J. Comput. Syst. Seien. 33 (1986) pp. 126-141.

[14] Osborn S.L. Testing for existence of a covering Boyce-Codd normal form. In-
form. Proc. Lett. 8 (1979) pp. 11-14.

[15] Thi V.D. Investigation on Combinatorial Characterzations Related to Func-
tional Dependency in the Relational Datamodel (in Hungarian). MTA-
SZTAKI Tanulmányok, Budapest, 191 (1986) pp. 1-157. Ph.D. Dissertation.

[16] Thi V.D. Minimal keys and Antikeys. Acta Cybernetica 7 (1986) pp. 361-371.

[17] Thi V.D. On Antikeys in the Relational Datamodel (in Hungarian). Alkalma-
zott Matematikai Lapok 12 (1986) pp. 111-124.

Received March 3, 199S

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

On Strong-Generalized Positive Boolean
Dependencies*

Le Thi Thanh f

Abstract

Strong-Generalized Positive Boolean Dependencies are introduced.

K e y W o r d s and Phrases: relation, data base, functional dependency, Boolean
dependency, positive Boolean dependency, generalized positive Boolean dependency,
Armstrong relation, strong generalized positive Boolean dependency.

1 Introduction
In the theory of relational databases, connections between functional and multival-
ued dependencies and a certain fragment of propositional logic have been investi-
gated in several papers.

The full family and the possible mathematical structure of functional depen-
dencies was first axiomatized by W.W.Armstrong [1]. Different kinds of functional
dependencies have also been investigated. The full family of strong dependencies
has been introduced and axiomatized [5,7,8,9,14,15].

The family of Boolean dependencies is introduced [13]. In [2,3], the large sub-
class of positive Boolean dependencies, that is, Boolean combinations of attributes
and the logical constant TRUE in which neither negation nor FALSE occur are
studied. In [4], the class of equational dependencies is introduced. This class in-
cludes the class of functional dependencies as well as the Boolean dependencies, the
positive Boolean dependencies and the classes of dependencies considered in [6,10].

In the papers mentioned above, the connection between dependencies and the
fragment of propositional logic is built on the set of truth assignments TR of a given
relation R. Namely, for each pair of distinct tuples of R, the set TR contains the
truth assignment that maps an attribute A to TRUE if the two tuples are equal on
A and to FALSE if the two tuples have different values for A.

In [11] a large class of mappings for constructing the truth assignments of rela-
tions was introduced. This class includes the equality mappings mentioned above.
The class of Generalized Positive Boolean dependencies is introduced on these map-
pings.

In this paper we introduce a class of strong-Generalized Positive Boolean de-
pendencies. We present a characterization of Armstrong relations for a given set
of strong Generalized Positive Boolean dependencies.

'Research supported by Hungarian Foundation for Scientific Research Grant 2575.
tComputer and Automation Institute, Hungarian Academy of Sciences, H- l l l l Bu-

dapest, Lágymányosi u. 11. Hungary.

218 Le Thi Thanh

The paper is structured as follows. In Section 2 we give some basic definitions.
The concept of strong Generalized Positive Boolean dependencies is introduced in
Section 3. In Section 4 we investigate connections between full families of strong
Generalized Positive Boolean dependencies, s-semillatice and strong operations.
Armstrong relation, the update problem and membership problem for strong Gen-
eralized Positive Boolean dependencies are studied in Section 5, Section 6 and
Section 7.

We assume that the reader is familiar with the relational model of database systems
and with the basic concepts of relational database theory [12,16]. In this paper we
use the following notation.

Let U = { A j , . . . , An} be a set of attributes. Corresponding to each attribute A,-
is a set di, 1 < t < n, called the domain of A,-. We assume that every di contains
at least two elements.

A relation R over U is a subset of d\ X . . . X dn. Elements of R are called tuples
and we usually denote them by u, v or t. The class of all relations over U is denoted
by R. For k > 0, Rk denotes those relations in R that have at most k tuples. If
R S R, t S R, A € U and X C U. then we denote by t[A] the value of t for the
attribute A, and by tjX] the set {t\A\ | A € X).

By 7 we denote the set of all formulas that can be constructed from U using
the logical connectives A, V,——«, and logical constants 1 (TRUE) and 0 (FALSE).

For X = { A t l , . . . , AtJk} C U, AX denotes the formula A t l A . . . A AtJt, and V j
denotes the formula A t l V . . . V Aik.

Let B = {0 ,1} . A valuation is any function x : U —• B. The notation x =
(i i , . . . , xn) 6 8n means that x(Ai) = Xi, A,- € U, 1 < t < n.

If / £ ; and x € Bn, then f[x) denotes the truth value of / on the valuation x.
For a finite subset S of 7 and for a valuation x in Bn, we denote E(s) = A { f [x) |

Let / be a formula in 7. We denote Tj = {x e Bn \ f(x) = l } . For a subset E of
7 , we denote TE = n {T / | / G E}. Then x £ TE if and only if (V/ 6 E) [f(x) = 1)).

Definition 2.1 Let f and g be two formulas, f implies g, written f h <7, ifTr C Tg.
f and g are equivalent, f = g, if Tf = Tg. For E, T C 7, E I- T if Tb C T r , and
E = T ifTz=Tr.

Let e = (1 , . . . , 1) be the valuation that consists of all 1. A formula / in 7 is
positive if / (e) = 1. Let 7P denote all positive formulas on U. We know that 7P is
equivalent to the set of all formulas that can be built using the connectives A, V, —•
and constant 1 [10].

For each domain d,-, 1 < t < n, we consider a mapping a< : d{2 —* B. We
assume that the mappings a,- satisfy the following properties.

2 Basic Definitions

/ 6 E } .

(i) (Va e 4) M « . «) = !) .

(ii) (Va, b 6 di) (a,(a, b) = a,(6, a)), and

(iii) (3 a , 6 e < f ,) M « . &) = 0)-

Example 2.2 It is easy to see that the equality mappings on di •• 1

On Strong-Generalized Positive Boolean Dependencies 219

a,b e di, 1 < * < n

satisfy the properties (i) - (Hi).

Example 2.3 Let U = {A,B,C}, where dA it the set of positive integers, ds is
the set of real numbers and a null-value ±, and dc is the set of words w on a
nonempty alphabet P, where the length of w is not greater than k, k > 1. We define
the mappings OCA,OCB, and OLQ as follows.

if both a and b are simultaneously odd or even numbers
otherwise
if both a and b are simultaneously real or _L
otherwise
if both a and b have the same length
otherwise

= IJ
< * B M) = | J

ac[a,b) = •! *

It is not hard to verify that the mappings ocA, ag, and a<7 satisfy the properties
(i) - (Hi).

Let R € R. For u,v € R we denote by a(u, v) the valuation

(ai(u[Ai], v[Ai]) a„(u[A„] , v[A„])).

Now for R £ R we denote TR = {a(u, t>) | u, v € R}. Note that for every u in R,
a(u, u) = e, so e is in TR.

Definit ion 2.4 Elements of 7P are called generalized positive Boolean dependencies
(GPBD).

Definit ion 2.5 For R e R and f e Tp, we say that R satisfies the GPBD f,
written R(f), ifTRCTf.

Definit ion 2.6 Let R E R and E C 7pt we say that R satisfies the set of GPBDs
E, written £ (E) , if R{f) for all f € E. This is equivalent to TR C TE .

For E C 7P and / e 7P, E |= / means that, for all R 6 R, if i i(E) then R(f).
E (=2 / means that, for all R € R2, if iZ(E) then R(f). In other words, E (= / if
and only if for all Re R, TR C TE implies TR C Tf.

For the equality mappings mentioned in Example 2.2 several classes of Boolean
dependencies were investigated. Boolean dependencies were introduced in [13]. Pos-
itive Boolean dependencies are studied in [2,3]. Equational dependencies were in-
troduced in [4]. Boolean dependencies of a special form are studied in [6,10]. These
papers consider dependencies equivalent to the Boolean dependencies AA —* AY
(functional dependency), AX —» VV (weak dependency), V X —• AY" (strong de-
pendency), and VX —• VY (dual dependency). In [3], the authors shown that the
consequence relation for positive Boolean dependencies is the same as the conse-
quence relation for propositional logic.

220 Le Thi Thanh

3 Strong-Generalized Positive Boolean Depen-
dencies

Definit ion 3.1 Let R = { i i , . . . , tm . } be a relation over the finite set of attributes
U, and X,Y c u. We say that GPBD VX -» AY is strong-GPBD (for short s-
GPBD) in R denoted f£(X,Y) = VX + AY or X±Y or X±Y if

R R

(Vt.-.ty e fl)(3A e = 1) — »

(V J B e y) (a B №] , i , [5]) = l) .

Let SR = { l A y } . SR is called a full family of s-GPBDs of R.
R

Definit ion 3.2 A s-GPBD over U is a statement of the form X —*Yt where 1 , 7 C
U. The s-GPBD X holds in a relation R if X We also say that R satisfies

the X-^Y.

We now introduce five inference s-axioms for s-GPBDs. Let U be a finite set of
attributes, and denote by P(U) its power set. Let G C P{U) X P{U). We say that
G is a full family of s-GPBDs over U, if for all X,Y, Z,W C U, and A € U

(SI.) f{A,A)€G

(S2.) f (X, Y) e G, f (Y, Z) e G, Y # 0 —• f (X, Z) € G

(S3.) f(X,Y) eG,Z C X,W CY—• f[Z,W) gG

(S4.) f(X,Y) e G,f(Z,W) e G —• f'(X\JZ,Yr\W) e G

(S5.) f (X , Y) e G,f(Z,W) e G —• f{XnZ,YuW) G G

Let E, be a set of s-GPBDs over U. The closure of E„, written E^", is the
smallest set containing E* such that s-axioms cannot be applied to the set to yield
an s-GPBD not in the set. Since E "̂ must be finite, we can compute it by staring
with Ea , applying SI, S2 and S5 and adding the derived s-GPBDs to E, until no
new s-GPBDs can be derived.

It can be seen [11] that there is a relation R over U such that SR — Ef. Such
a relation is called Armstrong relation for E, .

Definit ion 3.3 X-1*Y is a s-GPBD over U if X and Y are both subsets ofU. E,
is a set of s-GPBDs over U if every s-GPBD in E„ is s-GPBD over U.

Definit ion 3.4 If E, is a set of s-GPBDs over U and G is the set of all possible
s-GPBDs over U, then = G — E+. E7 is the exterior of E4 .

If E, is a set of s-GPBDs over U and X is a subset of U, then there is s-GPBD
X Y in E+ such that Y is maximal: for any other s-GPBD X A Z in E+, Y 3 Z.
This result follows from S5. Y is called the closure of X, and is denoted by X+.

Definit ion 3.5 Let E4 be a set of s-GPBDs over U. X CU, AeU. Then { A } + =
{BeU\ {A} e E+} , X+ = {BeU\ X±{B} e E + } .

is called the closure of {A}.

On Strong-Generalized Positive Boolean Dependencies 221

T h e o r e m 3.6 Inference axioms SI to S5 are complete.
Proof: Given a set E, of s-GPBDs over U, for any s-GPBD X-^Y in E7. We

shall axhibit a relation R that satisfies E+ but not X-^*Y. Hence, we can see that
there are no s-GPBDs implied by E, that are not derived by E, . Relation R will
satisfy most of the s-GPBDs in E+, for a s-GPBD (W A Z) in E+.

Let U = (A i , A 2 , . . . , An) and let 0^,6,-,c,- be distinct elements of dom(Ai),
1 < t < n. There will be only two tuples in R, ti and t2. Tuple ti will be
< 0102 . . . a„ > . Tuple t2 is defined as

and

VAi <£X+,aAi(t1\Ai)MAi}) = 0.

First we show that R does not satisfy X Y. From the definition of R, 3B €E X
that aB(t1\B],t2[B\) = 1. Suppose a d « ^ ^ . ^ ^]) = 1 for all C e Y, and hence
Y C X+.

But since e E+, by S3, we obtain that X-^+Y is in E+, a contradic-
tion to X—* Y is in E7.

Now we show that R satisfies all the s-GPBD in E+. Let {B} e X+, hence by
Definition 3.5. we obtain that { ¿ ? } + = X + . By the definition of s-GPBDs, we have
[W-^X+) e E+. Since (W-^Z) e E+, and by S5, we obtain [W U Z)) e
E+, so (X+ U Z)eW+. Hence Z C X+, and ac{tx\C\yt2[C}) = 1 for all C e Z. •

4 Strong-Generalized Positive Boolean Depen-
dencies and s-semilattice

Definit ion 4.1 Let I C P(U). We say that I is a r\-semilattice over UifUel, and
X,Y e l —>Xn Y e l . Let M C P(U). Denote by M+ the set {nM' \ M' C M } .
Then we say M generates I if M+ = I.

T h e o r e m 4.2 [4] Let I C P[U) be a Ci-semilattice over U. Let N = {X e I :
VZ,W e I : X = Z nW —• X = Z or X = W). Then N generates I and if N'
generates I, then N C N . N is called the minimal generator of I (It is obvious
that U e N).

Definit ion 4.3 [15] Let I C P(U). We say that I is an s-semilattice over U if I
satisfies

(l.) I is a Ci-semilattice,

(2.) for all XCN\U

((3A e X)(VZ eN\ U){X <f. Z) —* (A & Z),

where N is the minimal generator of I.

222 Le Thi Thanh

Definit ion 4.4 [15] The mapping F : P(U) —* P(ll) is called a strong operation
over U if for every A,B eU and X € P(u), the following properties hold:

(l.)F№ = U,

(2.) Ae F({A}),

(S.) Be F{{A})^F({B})CF({A}),

(4.) F(X) = fl
Aex

Theorem 4.5 [15] Let F be a strong operation over U. Let IF — {F(X) \ X e
P(U)}. Then IF is an s-semilattice over U. Conversely, if I is an s-semilattice over
U, then there is exactly one strong operation F such that IF = I, where F(0) = U,
and for all AeU

^ (M)) =

f| W iflW : AeW (N the minimal generator of I J,
Aew

W€N\U
U otherwise.

T h e o r e m 4.6 Let G C P{U) x P[U). G is o full family of s-GPBDs over U. Let
(X , y) e P(U) X P(U) \ G. There is an A e X, and an EA C U such that

(i.) AeEA,

(ii.)

(Hi.) E' D Ea implies that ({ A } & G.

Proof: If for any A e X we have ({ A } , y) £ G. By S5 we have (X, Y) £ G. Hence
there is an A £ X such that ({ A } F) £ G. If for every B £ Y, ({ A } -^>{5}) £ G
holds, then by S4 ({ A } A Y) € G.

Thus there is a B eY such that ({ A } - ^ { S }) £ G. By SI and S3 there is an
Ea CU such that A £ EA, ({ A } -^*EA) £ G and EA is maximal to this property.

•
Theorem 4.7 Let G C P[U) X P{U). G is a full family of s-GPBDs over U if and

i
only if there is a family {Ei : i = 1 , . . . , /; |J E{ = U} of subsets of U such that

»=1

(i.) for all X C Z/, (0 A X) £ G,

(ii.) for any X , Y C f l — • (X A K) £ G,
EinXjtt

(Hi.) {Z-^W)eG, ZnE&Q—*W CEt-

On Strong-Generalized Positive Boolean Dependencies 223

Proof: Only if: Assume that G is a full family of s-GPBDs over U. Then by
Theorem 4.6, Si, S3, and S5 for each A G M we can construct an Ei(Ei C U) such
that ({A} G G, and VE' \ E{ C E' implies ({A} E') & G. By Theorem 4.6,
it is obvious that A G E{ and we have n such Ei-s, where n =| U | . Thus, we

n
have the set E = {£,• : » = 1 , . . . , n; (J Et = U}. Assume X = {AXA2... Ak :

•=1
Ay £ U, j = 1 , . . . , k} ± 0 and Yr is a set such that (X A y j e G, VY2 : Yx C Y2

implies (X A Y2) & G. By the construction of E, we have that for each Ay there
k k

is an Ej G E such that ({A} A_Ey) £ G. By S4 we have (f| A y f | Ej) =
i - i y=i

k k
(X-^ f l E i) e G - By Theorem 4.6 and the definition of Yi we have f) Ej C Yi.

j'= i j'=i
By (X-^Yi) 6 G and by S3, we have ({Ay} A Yi) G G for all j (j = 1 ,...,k).

k k
Thus, Yi C f) Ej holds. Hence, Yi = f| Ej. It is obvious that

y=i y=i

n * £ n E>-

Thus, for all

Y (Y C f | E^-.YCY,.

Hence (X A Y) G G holds.
If (Z A W) G G, Z n E{ ^ 0. Let Ax G Z n Suppose that W n (U \ E{) ^ 0.

Let Di eWn{U\Ei).
By S3 we have ({ A ^ -^{Z^}) g G, and by SI we have ({AJ} -^ {A i }) G G. Let

A G Ei, then ({ A } A E{) G G implies that ({ A , A X } - ^ { A X }) G G by S5. Hence by
S3 we have ({ A } - ^ ! » 6 G. Since ({ A } A { A I }) 6 G, ({ A I } - ^ { ¿ M) G G and
by S2 we have ({ A } A { I » I }) £ G. Thus, by S4 we have ({ A } U { Z > I }) G G.

On the other hand, by Theorem 4.6 we have ({A} E{) G G and V-E?' : E{ C E'
implies ({A} A E') G G. Hence W C E{.

i
If : Assume that there is a family {Ei : i = 1 , . . . , / : |J Ei = U} such that

i=l
satisfies (»'), (it) and (Hi).

By Theorem 4.6 we can construct an Ei(Ei C U) so that VA G U, ({A)±Ei)eG,

and VE' : E{ C E' implies ({A} ^*E') $ G.
It is obvious that AG Ei, and easy to see that I = n, where n =| U | .
Then, from («) , easy to see that VA G U, we have ({A} A { A }) G G. Assume

S5 does not hold, that is if (X Y) G G and (Z-^W)eG then
((X H Z)-^* UW)) G G. (4.7.1)

224 Le Thi Thanh

Suppose X f l Z = 0 and Y UW = 11. From (4.7.1), we have (0 A t f) & G. This
contradiction to (t), so S5 holds.

Assume S4 does not hold, that is if (X A y) £ G and [Z A W) £ G, then

{{XnZ)±{YuW))tG. (4.7.2)

Suppose X U Z = Z , YNW = W' C P|

FVom (4.7.2), we have (Z' A W) & G. this contradiction to (¿»), so S4 holds.
From (u), (tii) it is easy to see that S2, S3 hold too. •

Theorem 4.8 Let G be a full family of s-GPBDs over U. We define the mapping
Fa : P{U) x P[U) as follow:

FA(X) = {AEU\ (X A { A }) £ G) .

Then FQ is a strong operation over U. Conversely, if F is an arbitrary strong
operation over U, then there is exactly one full family of s-GPBDs G such that
FQ = F, where

G = { (X A y) \X,YeP(U):Y Q F(X)}.
Proof: 1. Assume G is a full family of s-GPBDs over U. We show that FQ is a

strong operation. Since Fa[X) = {A £ U | (X A { A }) £ G) , so

FG({A}) = {B eU \ ({A} A { B }) £ G}. (4.8.1)

By SI, we have that VA £ U, A € ^ ({ A }) . By (i) in Theorem 4.7,

VGC Z/ , (0AG) £ G .

So we have Fc(0) = U. By Theorem 4.6, and by (4.8.1), we obtain that for A £ U,
F G ({ A }) = EA. SO, by (it) in Theorem 4.6, we have for BEU, ({ £ } A P G ({ B })) £
G. Thus, assume B £ f c ({ A }) , and by (tit) in Theorem 4.7, we have F G ({ B }) C
FG{{A}).

On the other hand, from (4.8.1) and Theorem 4.6, we have for A £ U,
({ A j A i ^ f A ^ G .

Let A £ X C U, then by S5 we obtain

A€X

That is
p| F({A))C i b (X) .

A€X

By the definition of f b (X) , we have (X A F g (X)) £ G. Since for VA £ X , X n
FG{{A}) JT 0, by Theorem 4.7, we obtain F G (X) £ ^ ({ A }) . So

On Strong-Generalized Positive Boolean Dependencies 225

ABX

Hence

F(X)= f l ^ » -
A€X

2. Assume that F is a strong operation over U, and G
We have to show that G is a full family of s-GPBDs.
satisfies (i), (tt) and (m) in Theorem 4.7.

By Theorem 4.6 and Theorem 4.7, we set

E={F({A}):AeU,n=\U\).

Assume
p| F ({ A }) C F(X).

F({A})NXJI0

Since G = { (X A Y) | Y C P (X) } . So if

Y C f| W » .
F ({ / l }) n X * 0

then it satisfies (**) in Theorem 4.7
Assume (V,W) G G, and V n F ({ A }) ^ 0. Let B G V n P ({ A }) , so B G V

and B G F ({ A }) . Thus, by (»»») in the definition of strong operation B G F ({ A })
implies F({B}) C F ({ A }) . By the definition of G, we have W C F(V). By (m) in
the definition of strong operation, we have

F(V)= f| W H -
DGV

Since B G V, so

f | P({Z?})C F ({ 5 }) .
Dev

Hence D C P ({ A }) , i.e. it satisfies (tit) in Theorem 4.7. It is clear that VA G U,
(0 A { A }) G G . •

5 Armstrong relation for s-GPBDs
Definit ion 5.1 Let E, be a set of s-GPBDs on U, and let R be a relation on U. R
exactly represents E, if SR = E + . If R exactly represents E, then we also say that
R is an Armstrong relation for E„.

= { (X f F) | Y C P (X) } .
That is, we show that it

226 Le Thi Thanh

Definition 5.2 Let R = { t j t m } be a relation over U. We set Ei3- = {A G U \
aA (t,[A], ty[A]) = 1}, and ER = {EIJT 1 < i,j < m}. We denote E(A) = f) EIS

AeEij
if there is a such EI3, in the converse case set E(A) = U, where A G U. Denote
E*R = {E{A) | AeU}. E% is called the a-attribute-equality set of R.

A strong relation scheme is a pair (U, E,), where U is a set of attributes and E,
is a set of s-GPBGs on U.

Definition 5.3 Let H = < U, E, > be a strong relation scheme, X C U. We set
X+ = {A eU | 6 E+} . X+ is called the closure of X. Denote 1(H) =
{ X + I X E P(U)}. It can be seen that 1(H) (for short I(S,)J is a s-semilattice over
U. Denote by Iv(H) (for short N(Ht)) the minimal generator of 1(H).

It is easy to see that N(H) satisfies (2) in Definition 4.3 and X+ C\Y+ =
(X u r) + , X + = f l

A£X

Theorem 5.4 Let G be a full family of s-GPBDs, and R = { t i , . . . , t rn } be a
relation over U. Then R represents G iff for each A € U

(n Eii if3Ei} -. AeEi,-,
= < A e s t i

I U otherwise.

Where Fa(X) = {AeU\ (XA{A}) € G}, and Ei}- is the equality set of R.
Proof: Only if: By Theorem 4.8 SR = G if and only if FSR = F, where F is

strong operation over U. We have show that FsR ({A}) = FG({A}) for all A € U.
Clearly,

FSA({A}) = { B E U : ({ A } M B }) } . (5 .4 .1)

According to the definition of s-GPBDs we know that for any A€U, and A ^ 0
({ A } A y) iff

(Vtx.ta G = 1 —+ (VB G Y M u (5] , i 2 [B]) = 1.

Let T = {EN | A G EIJ). It is easy to see that if T = 0, then FSR ({A }) = U holds.
If 2 V 0 . Let

X= f l Ei3:
A€Eij

If T = E (E is the set of all a-attribute equality sets of R), then ({ A j i l) . If
T C E, then for all EI}- G T, we have AA (ti|A], i2[A]) ^ 1. By (5.4.1), we obtain

FSr({A})= H E<r
AZEij

If: If FG holds to (5.4.1), then we have Fa({A}) = FSR ({A}) . By Theorem 4.8,
we obtain FQ = FsR.

a

On Strong-Generalized Positive Boolean Dependencies 227

Definition 5.5 Let R be a relation, an F a strong operation over U. We say that
the relation R exectly represents F iff FsR — F.

L e m m a 5.6 [15] Let F be a strong operation and R a relations over U. Then R
represents F iff for all AeU,

[n EIJ if 3EIJ : A G EIJ,
F ({ A }) = I AeEij

[U otherwise.

Theorem 5.7 Let E, be a set of s-GPBDs on U, and let R be a nonempty relation
on U. Then R is an Armstrong relation for E, if and only if

N(E.) C E*R C / (E .) .

Proof: Only if: If R is an Armstrong relation for E (, then by Definition 5.1
SR = £ + . We set Fc+ = X+ for all X G P[U) and

By Theorem 4.8, SR — E+ if and only if F$R = F, where F is a strong operation
over U. It follows that = FSR.

By Theorem 4.5 and Definition 5.3, J(E.) = IFSR and N(E,) = N, where N is
the minimal generator of IFSR • other hand, since

AeX

for all X G P(U), so we have to show that ^ „ ({ A }) = E{A) for each AEU.
Clearly, F s „ ({ A }) = { B e U | ({ A } A { B }) } . By the definition of s-GPBD, we

know that for any A G U, A ± 0, ({ A } A Y) iff

(Vt,-,fy G i?)(aA(i , [A],iy[A]) = 1) — ((VB G Y)(aB(ti[B],tj[B}) = !))•

Assume Q = {E{J | A G EH}. It is obvious that if Q = 0 then J « ({A }) = U. If
Q = 0, then assume that

f l
AeEij

then it is obvious that ({ A } A X) and for all EIJ : EIJ & Q,

Hence,
^„({A})= f| Eij = E(A)

AeEn

for all AEU. Therefore, by Definition 5.3, E*R C IFR.
Now we show that N(E,) C ER. By Definition 4.3, Theorem 4.2, and Theorem

4.5, clearly to see that N(E.) C E%.

228 Le Thi Thanh

If: Assume that N(E,) C E*R C / (E .) . Since E*R C I (E ,) , and I(S,) = { X + :
X g P (W) } ,

X + = { A G U | (X A { A }) G E + .

Thus we obtain ER = {FE+ ({ A }) : A € Z/}. By above proof for each A G Z/, we
have that £ (A) = F s B ({ A } j . Hence,

({ A }) :AEU} = {FSA({A}):AEU}.

Suppose AEU that F E + ({ A }) ^ FSB{{A}). By Definition 4.4 and Theorem 4.5
we assume that FE+ = Y, where Y G W(E,) . Since AT(Ea) C ER, so P E + 6
Clearly to see that ({-4}) = E(A). This is a contradiction. Therefore, we obtain
that F E + ({ A }) = .FV({A }) for each o G U. Thus, FE+ = FSR, and by Theorem
4.8, SR'=Z+.

•
Algor i thm 5.8 (Finding L,J

(Input :) Given relation R = {t\,... ,tm} over U.

(Output :) Construct E», such that SR = E+.

(Step 1 :) From R we compute ER.

(Step 2 :) From ER we construct E*R = {E(A) : A G Z/}.

(Step 3 :) Set E . = ({ A } A . £ (A)) M e Zi}

Clearly, the time complexity of this algorithm is polynomial in the size of R.

Algor i thm 5.9 (Finding {A})

(Input :) Given E, = {(Ai A 11 = 1 , . . . , m } and A G U.

(Output :) Compute { A } +

(Step 1 :) A G U, let L0 = { A }

(Step i + 1 :) If there is an (A,- B{) G E,

so that AJ n X(') ^ 0 and B% XM then

X(<+1) = j f u ((J B . y

AjHX^

In the converse case we set { A } + = X ' ' ' .
It can be seen that the time complexity of this algorithm is polynomial in the

sizes of E t and U.

On Strong-Generalized Positive Boolean Dependencies

6 Update Problem
229

In [11], the update problem is introduced for a set of GPBDs E. Let R be a relation
that satisfies a set of GPBDs E and t be a tuple dx X . . . x dn. We say that t can
be added to R if R U { i } satisfies E.

T h e o r e m 6.1 [l l] Let R be a relation satisfying a set of GPBDs E, and let t be a
tuple in di X. ..xdn. Then t can be added to R if and only if (Vu £ iZ)(a(t, tt) € Te) .

Let E, be a set of s-GPBDs, E, = { X ¡ A y ¡ } , where XitYi Q U. Let M =
U X i t N = UY{. By Theorem 6.1 and definition of s-GPBDs, we get the following
result.

Theorem 6.2 Let R be'a relation satisfying a set of s-GPBDs E, , E, =
and let t be a tuple in d\ X . . . X dn. Then t can be added to R if and only if
(Vu e R){VA € AT)(a,t(i[A],u[A]) = 1).

It is easy to see that, if (Vu e i?)(VA e M)[aA(t[A], u[A]) = 0). Then t is added
to R too.

7 Membership Problem for s-GPBDs
In [ll] , the membership problem for GPBDs is introduced. Given a set of GPBDs
E and a GPBD / , decide whether E [= / .

From Algorithms 5.8, 5.9 and X + = U { A } + A S X. We have the following.

Propos i t ion T.l Let E, be a set of s-GPBDs on U and X, Y C U. Then, there Í3
an algorithm deciding whether that X - A Y* € E^".

The time complexity of this algorithm is polynomial in the sizes of E, and ll.

Theorem 7.2 [l l] Let E be a set of GPBDs on U, and X,Y,Z C U. Then

1. E f= AX —+ AY o
(Vx e 2E)(((3A E X) (z(A) = 0)) V ((VB € Y) (x(B) = 1))).

2. E |= A X - v y o
(Vx e 2E)(((3A e X) (x(A) = 0)) V ((3J3 € Y) (x(B) = 1))).

S. E (= V X — A Y O
(Vx 6 TE)(((VA 6 X) (x(A) = 0)) V ((VB e Y) (x(B) = 1))).

4. E f= v X -+ v Y o
(Vx e r E) (((VA 6 X) (x(A) = 0)) V ((3B e Y) (x(B) = 1))).

5. E |= A X - » (AY V AZ) (Vx e r E) (((3 A e X) (x(A) = 0))V
(((VB G Y) (x(B) = 1)) V ((VC e Z) (x(C) = 1)))).

230 Le Thi Thanh

T h e o r e m 7.3 Let E, be a set of s-GPBDs on U, and X,Y ÇU. Then

E, f= VX —• A Y

E, |= V X - » v y E, |= A X — AK

E, |= A X —» V F

Proof:
By Theorem 7.2 and definition of s-GPBDs. It is easy to see that Theorem 7.3

References
[1] Armstrong W.W., Dependency structures of database relationships. Informa-

tion Processing 7Holland Publ.Co. (1974), 580-583.

[2] Berman J., Blok W.J., Generalized Boolean Dependencies. Abstracts of AMS,
6 (1985), 163.

[3] Berman J., Blok W.J., Positive Boolean Dependencies. Inf. Processing Letters,
27 (1988), 147-150.

[4] Berman J., Blok W.J., Equational Dependencies. Manuscript, (1990).

[5] Czédli G., Függőségek relációs adatbázis modellben. Alkalmazott Matematikai
Lapok, 6 (1980), 131-143.

[6] Czédli G., On dependencies in the relational model of data. J.EIK, 17 (1981),
103-112.

[7] Demetrovics J., Relációs adatmodell logikai és structurális vizsgálata. MTA-
SZTAKI Tanulmányok, Budapest, 114 (1980), 1-97.

[8] Demetrovics J.,Gyepesi Gy., On the functional dependencies and some gener-
alizations of it. Acta Cybernetica, 5 (1981), 295-305.

[9] Demetrovics J.,Gyepesi Gy., Logical dependencies in relational database.
MTA-SZTAKI Tanulmányok, Budapest, 133, (1982), 59-78.

[10] Demetrovics J.,Gyepesi Gy., Some generalized type functional dependencies
formalized as equality set on matrics. Discrete Applied Mathematics, 6 (1983),

[11] Huy N.X., Thanh L.T., Generalized Positive Boolean Dependencies. J.EIK,
28 (1992), 363-370.

[12] Maier D. The Theorem of Relational Databases. Computer Science Press ,

holds. •

35-47.

(1983).

On Strong-Generalized Positive Boolean Dependencies 231

[13] Sagiv Y., Delobel C., Parker D.S., and Fagin R. An Equivalence Between
Relational Database Dependencies and a Fragment of Propositional Logic.
J.ACM, 28 (1981), 435-453.

[14] Thi V.D. Logical dependencies and irredundant relations. Computers and
Artificial Intelligence, 7 (1988), 165-184.

[15] Thi V.D. Strong dependencies and s-semilatties. Acta Cybernetica, 8 (1987),
195-202.

[16] Ullman J.D. Principles of Database Systems. (Second Edition.) Computer
Science Press, Potomac, Md., 1982.

Received July SO, 199S

Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Partitioning Graphs into Two Trees*

Ulrich Pferschy * Gerhard J. Woeginger* En-Yu Yao5

Abstract

We investigate the problem of partitioning the edges of a graph into two
trees of equal size. We prove that this problem is NP-complete in general,
but can be solved in polynomial time on series-parallel graphs.

1 Introduction
In this note, we will examine the partitioning problem P G 2 T defined as follows.

P A R T I T I O N I N G G R A P H S INTO T W O T R E E S (P G 2 T)

Input. A graph G = (V, E).

Question. Does there exist a partition of E = EiUE% with = l-^li
Vi,V2 C V, such that the two edge-induced subgraphs Gj = (V\,Ei)
and G 2 = (V2, E2) of G both are trees ?

If the trees Gi and Gi are required to be spanning trees of G, the problem can
be solved in polynomial time by matroid partitioning techniques, see Lawler [4].
In contrast to this polynomial time result, we will show that detecting a partition-
ing into two arbitrary (not necessarily spanning) equal-sized trees is NP-complete.
Our reduction is done from the Hamiltonian Path problem in cubic graphs (Garey
and Johnson [2]). To simplify the presentation, we will introduce an intermediate
problem TCT (defined below) and prove that it is also NP-complete.

On the positive side, we will show that P G 2 T is polynomial time solvable for
the class of series-parallel graphs.

The paper is organized as follows: Section 2 presents the NP-completeness
result, Section 3 gives the polynomial time algorithm for series-parallel graphs and
Section 4 finishes with the discussion.

'This research was partially supported by the Christian Doppler Laboratorium für
Diskrete Optimierung and by the Fonds zur Förderung der wissenschaftlichen Forschung,
Project P8971-PHY.

*TU Graz, Institut für Mathematik B, Kopernikusgasse 24, A-8010 Graz, Austria
' T U Graz, Institut für Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Graz,

Austria
'Mathematical Department, Zhejiang University, Hangzhou, People's Republic of

China

234 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

2 Why the problem is NP-complete
In this section, we prove that PG 2T is NP-complete. The proof is done by a two-step
reduction from the following special case of the Hamiltonian Path problem.

H A M I L T O N I A N P A T H IN C U B I C G R A P H S (H P 3)

Input . A graph G' = (V1, E') such that all vertices in V' are of degree
three with the exception of the degree one vertices a and t.
Question. Does there exist a Hamiltonian Path of G' that starts in s
and ends in £ ?

T w o C O V E R I N G T R E E S P R O B L E M (T C T)

Input . A graph G" = (V", E"), two disjoint subsets Fx and F2 of E".
Question. Do there exist two edge-disjoint trees Tj and T2 in G" such
that Ti contains all edges in F,, i = 1,2 ?

To be precise, we will show that HP3 is polynomial time reducible to TCT, and
then that TCT is polynomial time reducible to PG2T. This clearly establishes the
NP-completeness result claimed above.

Hence, let us consider some instance G' = (V',E'), s,t € V of HP3. We will
construct a corresponding instance of TCT that is solvable if and only if HP3 is
solvable. This is done in three steps as follows.

(i) First, we subdivide every edge e = (u,v) £ E' into two subedges (u,e(m))
and (e(m),v) by introducing a new vertex e(m). Furthermore we introduce
a single new vertex c. Vertex c is connected to all vertices e(m) by an edge
which is put into F2.

(ii) We perform the following construction for every v € V' of degree three: Two
new vertices v* and v are introduced together with the two edges (t;, v*) and
(u,t>). The edge (v,v*) is put into Fi, the edge (v, v) into F2.

(iii) Finally, we introduce two new vertices a* and t* and two edges (s, s*) and
(t, t*) that are both put into F\.

We claim that the designed instance of TCT is solvable if and only if G' has a
Hamiltonian Path.

(If j': Assume, a Hamiltonian Path exists. Our tree 2\ simply consists of all
edges m Fi together with all subdivided edges of the Hamiltonian Path (i.e. if the
edge e = (u, u) is in the Hamiltonian Path, we put the two edges (u, e(m)), (e(m), v)
into the tree). It is trivial to check that this edge set is connected, without cycles
and contains all edges in Fx .

Hence, it remains to show that the set E* of remaining edges also forms a tree.
First, we will argue that E* is connected. Consider some vertex v of V' and the
three incident subedges (u,ei(m)), (v,e 2 (m)) and (ti, e3(m)). The Hamiltonian
Path uses exactly two of the edges t\, e2 and c3 . Therefore, the edge (v,v) is
connected to vertex c via the unused edge.

E* contains all edges (c, e, (m)) incident to c. Some of the vertices eAm) are of
degree one in E*, some of them are incident to two edges (u, e,-(m)) and (u, e,(m)).

Partitioning Graphs into Two Drees 235

Finally, there are the corresponding edges (u, u*) and (v, v*) appended to u respec-
tively v. Hence, E* is a tree of radius three with center c and the proof of the
(If)-part is complete.

(Only if): Now we assume that the TCT-instance is solvable. Consider T\ and
call an edge c = (u, v) in E' complete iff both subedges (u, e(m)) and (e(m), t;) are
in 7\. We claim that the complete edges constitute a Hamiltonian Path in G'.

Every degree three vertex v in G' is incident to at most two complete edges
(otherwise, the edge (v, C) in F2 would be separated from T2) . Vertices s and t are
incident to exactly one complete edge.

We remove from Ti all edges that are neither in Fi nor subedge of a complete
edge. It is easy to check that these removals cannot disconnect T\. Then we remove
all edges in Fi and replace the remaining subedges by the corresponding complete
edges. Since each vertex is of degree at most two and since s and t axe of degree
one, the resulting graph is a path spanning all vertices in V'. This completes the
proof of the (Only If)-part.

What we proved till now suffices to establish the NP-completeness of TCT.
However, we are interested in proving the NP-completeness of PG2T, and to this
end we need the following lemma.

Lemma 2.1 Given an instance of HP3, we can compute in polynomial time an
instance G" = (V",E"), Fx, F2 of TCT, such that HP3 is solvable iff TCT is
solvable and such that the following four conditions hold.

(Cl) TCT is solvable if and only if there exist two edge-disfoint connected subgraphs
S1 and S2 such that Si contains all edges in F{, i = 1 ,2.

(C2) If TCT is solvable, then there exists a solution that uses all edges in E".

(CS) |J\| and |F2| ore two distinct prime numbers.

(C4) Fi and F2 both contain at least one edge with one endvertex of degree one.

Proo f . To see (Cl) , we just have to check that in the proof of the (Only If)-part
above, we did not exploit the fact that T\ is a tree but only the connectedness of
Tj. (C2) follows from the proof of the (If)-part.

To ensure that (C3) and (C4) hold, we first compute a prime pj with |ii| < pi <
2|Fi|. Such a prime exists by Chebyshev's theorem. The prime can be computed
in polynomial time, since |Fi| is unary encoded by enumerating its elements. By
similar arguments, we can find another prime p2 ^ p 1 with |.F2| < P2 <

Then for t = 1,2, we take an edge e< = (t)j, u,) G Fi, create pi — new vertices
for V" and connect all these new vertices to t>; by new edges that are added to F,-.
Obviously, this new instance of TCT fulfills (C3) and (C4), it is solvable if and only
if the original instance was solvable, and conditions (Cl) and (C2) still hold. •

Now we consider an instance G" = (V", E"), FI,F2 C E of TCT as described
in the statement of Lemma 2.1. We construct an instance of PG2T that is solvable
exactly if TCT is solvable. Our construction is as follows (let n = 2\E"\, p 1 = |fi|,
P2 = |F3|).

(i) We subdivide every edge e in E" by a new vertex v(e). If e e Fi, we append
to v(e) a path of length p2n2 . Similarly, if e G F2 then we append to its
subdividing vertex a path of length pin2 .

236 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

(ii) Let e,- = (tii, Vi) £ Pi with degree of v,- equal to one, t = 1,2, denote the two
edges that exist by (C4). We connect t>i and v2 by a path of length 2\E"\.

Clearly, the size of the new graph G = (V, E) is polynomial in the size of G",
and the construction can be performed in polynomial time. The total number |i?|
of edges in the new graph is 2pip2»i3 + 4\E"\. We claim that the designed instance
of P G 2 T is solvable if and only if T C T has a solution.

(If): Let Tj and T2 constitute a solution of TCT that uses all edges in E". Let
ni denote twice the number of edges in T\, 0 < ni < 2\E"\. We put into Ei all
the edges corresponding to 2\, i.e. subdivided edges of G" and the corresponding
appended paths. Moreover, we put into E\ the 2\E"\ — ni edges of the path defined
in (ii) that are nearest to uj.

Thus, Ei contains pi appended paths with p2n2 edges per path, together with
a number nj of subdivided edges from G", together with 2\E"\ — ni edges from the
path defined in (ii). This gives a total number of P1P2H2 + 2\E"\ = \E\/2 edges in
Ei . It is easy to see that Ei is cyclefree and connected, since Ti is cyclefree and
connected. The same holds for E — E\.

(Only If): Assume, the PG2T-instance has a solution E\, E2. Each of the
appended paths defined in (i) is contained as a whole either in E\ or in E2.

We claim that all pi paths of length p2n2 are in one of the Ei, and all p2

paths of length pin2 are in Suppose otherwise: Let Ei contain xx paths of
length pin2 (0 < xi < p2) and x2 paths of length p2n2 (0 < x2 < pi) . Then the
facts 0 < xi < p2 and 0 < x2 < pi imply Xipin2 + x2p2n2 ^ pip2n2. W.l.o.g.
Ei contains at least as many edges of the appended paths as E2. This yields a
contradiction, since

|£i| > pip2n2 + n2 > pip2n2 + 2\E"\ = \E\/2.

To complete the proof, we show that there exists a connected subgraph 5i of
G" that covers Using a symmetric argument for F2 and condition (Cl) of
Lemma 2.1, this implies the existence of a solution to the TCT-instance. W.l.o.g.
let Ei connect all appended paths corresponding to edges in Fi. We define Si to
contain all edges in F\ together with all edges in E" for which both subedges are
in Ei (if only one of the subedges is in Ei, it cannot contribute to the connectivity
of Ei). It is easy to check that Si is connected.

Summarizing, we have proved the following theorem.

Theorem 2.2 The problem PG2T is NP-complete. •

3 Series-parallel graphs are easy to treat
The class of series-parallel graphs is a well-known model of series-parallel electrical
networks. Many difficult combinatorial problems for graphs become easy when
restricted to series-parallel graphs, see e.g. Tamkamizawa, Nishizeki and Saito [5].
In this section, we show that the same holds for the partitioning problem of a grapn
into two trees, i.e. we will give a polynomial time algorithm for this problem on
series-parallel graphs.

One possibility to define series-parallel graphs is via two-terminal graphs, cf.
Duffin [lj. A two-terminal graph G — (V,E) is a graph with two special vertices

Partitioning Graphs into Two Drees 237

Figure 1: A TTSP graph and its binary decomposition tree

238 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

that are called the left terminal ti and the right terminal tr. For two-terminal
graphs Gi = (V{tEi) with terminals tj and t'r, 1 < t < 2, we define the following
two operations.

• The series connection G, = Gj • G2 of G\ and G2 results from identifying
the right terminal of Gi with the left terminal of G 2 . The obtained graph
G, is regarded as a two-terminal graph with with left terminal tj and right
terminal f 2 .

• The parallel connection Gp = G1//G2 of G1 and G2 results from identifying
both right terminals with each otner and both left terminals with each other.
The terminal vertices of Gp simply are the identified terminals.

Now a two-terminal series-parallel graph (TTSP) is defined as follows:
(i) The graph consisting of two terminals connected by a single edge is a TTSP.

(ii) If Gi and G2 are TTSPs, then Gi * G2 and G1//G2 are TTSPs.
(iii) No other graphs than those defined by (i) and (ii) are TTSPs.

Finally, a graph is a series-parallel graph iff it is the underlying graph of a TTSP
(i.e. the terminals are considered as ordinary vertices).

It is well-known that decomposing a series-parallel graph into its atomic parts
according to the series and parallel operations can be done in linear time. Essen-
tially, such a decomposition corresponds to a binary tree where all interior vertices
Eire labeled by s or p (series or parallel connection) and where all leaves correspond
to edges of the graph (see Figure 1 for an illustration). We associate with every
interior vertex v of the decomposition tree the series-parallel graph G[v) defined
by the subtree rooted in v.

The usual way to deal with problems on series-parallel graphs is dynamic pro-
gramming via the decomposition tree, and this approach also works in our case.

Let us consider a TTSP graph G = (V, E), and one of the TTSP components
G(v) of G associated with one of the vertices v of the decomposition tree of G,
and let ij and tr denote the terminals of G(v). Let T be a subtree of G, and let
T" denote the edge-induced subgraph of T induced by the edges in T D G(v). We
distinguish five combinatorial types for T'.

(T l) T' consists of two connected components, one containing terminal i; and the
other one containing tT.

(T2) T' is connected and contains both terminals tj and tr.

(T3) T' is connected and contains only terminal tj but not t r .

(T4) T' is connected and contains only terminal tr but not tj.

(T5) T' is connected and contains neither tr nor tj.
Clearly, type (T l) covers the only possibility of not connected T' (In this case,
T can only be connected via some path going from tj to tr outside of G(u)). The
remaining four types (T2), (T3), (T4), and (T5) cover all possibilities for connected
graphs T'. Note that a T' of type (Tl) consists of exactly two trees, and a T' of
one of the other types is a tree itself.

We introduce twenty-five two-dimensional boolean arrays m], 1 < i,j < 5.
The first index v runs through all vertices of the binary decomposition tree, the
second index m runs from 1 to |V|. j4,y[u, m] will be set to TRUE if and only if

Partitioning Graphs into Two Drees 239

there exists a partition of G(y) into two edge-disjoint subgraphs T[and
V2 such that T{ is of type (Ti) and T2 is of type (T j) with respect to
G(u), and such that T[has exactly m edges.

If we compute the truthvalues of all entries of all arrays Aitp[*, *], we solve the
PG2T-problem as a by-product: The root r of the decomposition tree corresponds
to the graph G = (V, E) itself. The problem PG2T has a solution if and only if
is even and at least one of the sixteen entries A»y[r, |i?|/2] with 2 < i,j < 5 is set
to true.

Hence, our goal is to compute all entries of the array. This is done in a bottom-up
fashion according to the decomposition tree: We start with the entries correspond-
ing to leaves of the decomposition tree, and move up towards the root. The entries
corresponding to some vertex v of the decomposition tree are calculated only if all
entries corresponding to both sons have already been computed.

The initialization step is trivial, since the leaves of the decomposition tree cor-
respond to TTSPs consisting of a single edge.

The computation of entries corresponding to interior vertices v of the decompo-
sition tree is a little bit more complicated and depends on whether t> is labeled s or
labeled p. We just sketch two of the 50 possible cases and leave the other cases to
the reader as an exercise. (Some combinations like A&5[*, *j will only have entries
set to FALSE).

(1) Computation of -Aujv, m] if v is labeled s: Let Vi and v2 denote the right and
left son of v. In this case, 7\ may consist of (i) a not-connected part of type (T l)
in and a connected part of type (T2) in G(w2) (or the symmetric possibility
with G[vi) and G(t>2) exchanged), or (ii) of a part of type (T2) or (T3) in G(vi)
and a part of type (T4) in G(v2) (or again some symmetric possibilities). The same
possibilities hold for T2.

We just check whether there exist corresponding true entries Ai j [v i ,mi] and
Aki[v2,m2\, where mi, m2 denote two non-negative integers with mi -I- m2 = m
and i,j,k,l correspond to appropriate types as explained above.

(2) Computation of As2\v,m] if v is labeled p: Again, let «1 and v2 denote the
right and left son of v. In this case, Ti must consist of a part of type (T5) in <?(vi)
and G(«2) and of an empty part in the other subgraph. T2 must consist of a part
of type (T2) in G(t>i) and a part that is not of type (T5) in G(v2) (or vice versa).
Similarly as above, A2s\v,m] can be computed by investigating appropriate entries
Aij[vi, mi] and Afci[t>2, TI2], with numbers {mi , »715} = {0, m} .

Since all the operations used in the computations of the m] can be per-
formed in polynomial time, we may formulate the following summarizing theorem.

Theorem 3.1 The problem P G 2 T is solvable in polynomial time if the graph under
consideration is series-parallel. •

4 Discussion
In this paper, we proved that the problem of partitioning a graph into two trees is
NP-complete in general, and that the problem is polynomial time solvable for the
class of series-parallel graphs.

A similar but simpler version of the dynamic programming approach used for
series-parallel graphs in Section 3 succeeds to show that the problem can be solved
in polynomial time for trees.

240 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

The problem is also polynomial time solvable on the classes of interval graphs,
cographs, circular arc graphs, chordal graphs and split graphs (see Johnson [3] for
definitions). These results are rather easy to see:" The~graphsin-these graph classes
tend to be rather dense and to contain large cliques, whereas a graph G = (V, E)
that is partitionable into two trees must fulfill |.E| < 2\V\ — 2 and cannot contain
cliques of size greater or equal to five. Consequently, most of the graphs in these
classes may be a priori disregarded, whereas the remaining 'reasonable' graphs
possess a rather rigid and primitive structure. (E.g. a 'reasonable' split graph
consists of a clique C with at most four vertices, an independent set I and some
edges between C and I).

We do not elaborate on these questions. The surprising part of our results is
not that the problem is easy on specially structured graphs, but that the problem
is hard in general.

References
[1] R.J.Duffin, Topology of series-parallel networks, J. Math. Applic. 10, 1965,

303-318.

[2] M.R.Garey and D.S.Johnson, Computers and Intractability, A guide to the
theory of NP-completeness, freeman, San Francisco, 1979.

[3] D.S.Johnson, The NP-completeness column: an ongoing guide, J. Algorithms
6, 1985, 434-451.

[4] E.Lawler, Combinatorial Optimization, Networks and Matroids, Holt, Rine-
hart and Winston, New York, 1976.

[5] K.Tamkamizawa, T.Nishizeki and N.Saito, Linear-time computability of com-
binatorial problems on series-parallel graphs, J. Assoc. Comput. Mach. 29,
1982, 623-641.

Received August SO, 199S

Subscription information an! mailing address for editorial correspondence:
1

Acta Cybemetica
Árpád tér 2.
Szeged
H-6720 Hungary

CONTENTS

I. Babcsúnyi, A. Nagy: Mealy-automata in which the output-equi valence is a -
congruenca 121

Nguyen Huong Lam, Do Long Van: Measure of Infinitary Codes 127
Heinz Fassbender, Heiko Vogler: A Universal Unification Algorithm Based

on Unification-Driven Leftmost Outermost Narrowing 133
Y. Fong, F.K. Huang, R. Wiegandt: Radical Theory for Group

Semiautomata 169
Victor Mitrana, Gheorghe Paun, Gregorz Rozenberg: Structuring grammar

systems by priorities and hierarchies 189
J. Demetrovics, Vu Due Thi: Normal Forms and Minimal Keys in the

Relational Datamodel 205
Le Thi Thanh: On Strong-Generalized Positive Boolean Dependencies 217
Ulrich Fferschy, Gerhard J. Woegi-nger, En-Yu Yao: Partitioning Graphs

into Two Trees 233

ISSN 0324—721 X |

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1994. szeptember

Terjedelem: 7,12 (B/5) ív

