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Grammars Working on Layered Strings 

Paolo Bottoni, * Giancarlo Mauri, t Piero Mussio, * 

Gheorghe Páun § 

Abstract 
We consider first an operation with strings and languages suggested by 

superposed windows on the computer screen (as well as by cryptographic 
systems of Richelieu type): we assume that the strings contain usual symbols 
as well as a transparent symbol. Superposing two strings (justified to left), 
we produce a new string consisting of the symbols observable from above. 
This operation is investigated as an abstract operation on strings, then it is 
used in building a variant of grammar systems with the component grammars 
working on the layers of an array of strings. Each grammar can rewrite only 
symbols in its layer which are observable from above. The language generated 
in this way consists of strings of the observable symbols, produced at the end 
of a derivation. The power of several variants of these generative mechanisms 
is investigated for the case of two layered strings. When a matrix-like control 
on the work of the component grammars is considered, then a characterization 
of recursively enumerable languages is obtained. 

s 
1 Introduction 
Recent work in the study of algebraic features of pictorial languages has shown 
how a natural operation between pictures is that of superposition. This operation 
is informally understood as the placing of one image (which can contain some 
transparent symbols) above another, so that only pixels in the second image which 
appear immediately below transparent pixels in the first image are observable and 
can contribute to the resulting image [2]. Actually, superposition of structures on 
the screen is continuously used in visual interactive systems. Consider for example 
windowing systems in which windows are allowed to overlap, as in the MacOs™ 
and Windows™ operating systems. In these cases what is actually observable by a 
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user results from the spatial relations among the windows currently on the screen. If 
one considers that each window contains a sentence in a language, the screen defines 
a sentence which results from the superposition of several such partial sentences. 
The study of the characteristics of such languages, and hence of the properties of 
the superposition operation becomes interesting if one wants to avoid situations 
which may generate disorientation in the user [3]. 

The idea of employing transparency as a language-defining tool predates the 
appearance of computers of a long time. It can be traced back to the Richelieu 
code, an elementary form of cryptography in which a message is embedded in a 
random text, and can be recovered by superposing the whole text by an opaque 
sheet with holes in it. The letters reading through the holes form the original 
message [1]. On the other hand, non-transparent pixels are those on which the user 
can interact, hence are those from which the transformations of the current sentence 
may originate. This suggests a notion of control in which the activation of symbols 
in a rewriting process is possible only if such symbols are visible, i.e., observable and 
non-transparent. Such a form of control appears to be very frequent in natural and 
artificial systems, in all cases in which layers may be defined and the development of 
a phenomenon depends on the characteristics both of the layer at which it occurs 
and of the above layers (e.g., rain permeability of a terrain, the growth of films 
in VLSI chips, competition for light in chlorophylliac plants, radiology methods 
based on differences in tissue absorbing properties, etc.). The notion of layer is 
also useful in defining systems in which different agents may cooperate to define 
the evolution of a substrate. Different systems may have different roles and be 
allowed to operate only on parts left undefined by prominent agents. A similar 
model was also at the basis of the proposal of Parallel Communicating Grammar 
Systems, where query symbols are used by a master agent to mark the places 
where other, specified, ageqts may contribute strings of unknown length [9]. In 
the notion of layered grammar proposed in this paper, instead, agents can operate 
autonomously and independently, but their contribution to the final result is limited 
to fill transparent "holes" left by an agent in an upper position. Which agent will 
contribute in which zones of the substrate to the final result cannot be established 
a priori, depending on the ability of an agent to synchronize its activity with that 
of agents at an upper layer. 

Hence, two problems appear worth studying related to the notion of layer. 
First, what are the properties of the superposition operation and which properties 
and families of languages it preserves. Second, which is the expressive power of 
layers as a modelling tool. We start this study by considering closure properties 
of the operation and by exploring the generative power of context-free grammars 
with only two layers. It results that by such simple tools, more precisely by using 
layered right-linear grammars with a specific form of synchronization, we can pro-
vide a characterization of recursively enumerable languages. Further study can be 
performed on the characteristics of systems with more than two layers and on an 
extension of the notion of transparency (for instance by considering symbols with 
different levels of opacity). 
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2 Formal Language Theory Prerequisites 
In this section we recall only a few notions, notations, and results needed below. 
Further details can be found in [11] and in references therein. For an alphabet 
V, we denote by V* the free monoid generated by V; A is the empty string, |x| 
is the length of x G V*. The language of the non-empty strings over V, that is 
V* - {A}, is denoted by V+. A morphism h : V* —> U* such that h(o) G U U {A} 
for all o G V is called a weak coding; it is called a coding when h(a) G U for all 
a £ V and a projection when h(a) G {a, A} for all a G V. A string x G V* can be 
seen as a mapping x : { 1 ,2 , . . . , oo} —> V U { # } , where # is the blank symbol, 
with the following properties: there is i > 1 such that x(i) = # ; moreover, if 
x(j) = # , then x(j -f 1) = # , j > 1 (this means that x(j) G V for 1 < j < 
and x(j) = # otherwise). Sometimes, we shall use below such an interpretation 
of a string. A Chomsky grammar is a construct G = (N,T, S, P), where N,T are 
disjoint alphabets, S G N, and P is a finite subset of (NUT)*N(NUT)* x (NUT)*. 
The elements of N are called nonterminal symbols, those of T are called terminal 
symbols, 5 is the axiom, and the elements (u, v) G P, written in the form u —¥ v, are 
called rewriting rules (for short, rules). The language generated by G is denoted 
L(G). When all rules in P are of the form A x,A G N,x G (N UT)*, then 
the grammar is said to be context-free; it is linear if x above contains at most 
one nonterminal symbol. A context-free grammar whose rules are of the forms 
A —> xB,A x, for A,B G N, x G T*, is said to be right-linear; when x above 
is a single symbol in T, then the grammar is said to be regular. We denote by 
FIN, REG, LIN, CF, CS, RE the families of finite, regular, linear, context-free, 
context-sensitive, and recursively enumerable languages, respectively. 

For x,y G V*, we define the shuffle of x,y by 

x til y = {xiy1x2y2---xnyn\n>l,x = xix2...xn, 
V = 2/2 • ••yn,xi,yi G V*,l < i < n). 

The concatenation has priority over shuffle: L1L2 ill L3 should be read as 
(LiL2) 111 L3. 

Convention. Two language generating mechanisms are considered equivalent 
if they generate languages which differ at most by the empty string. 

3 The Operation of Superposition 
In what follows, t is always a special symbol, which is considered transparent. Let 
V be an alphabet. Two strings x,y G (V U {t})* can be superposed, producing a 
third string z which is constructed as follows: 

1. the shortest of x, y is completed to the right with occurrences of t such that 
two strings of the same length are obtained; let us denote by x',y' the strings 
obtained in this way (at least one of them is not modified); 
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2. then, for i > 1, we set 

y'(i), otherwise. 

(Clearly, \z\ = max{|a;|, |j/|}.) We denote the string z by x oy and we say that 
it is obtained by the superposition of x and y. We can imagine that x o y is 
obtained by writing the strings x,y one over the other, with x above, aligned to 
left, and looking from above to the "layered string" obtained in this way. Through 
transparent symbols we observe the corresponding symbols of y (maybe also the 
transparent symbol), otherwise we observe the symbols of x. 

For example, for 

Note that every string from Li is superposed with every string in L2, irrespective of 
their length, because of the completion with occurrences of t of the shortest string 
in each pair. 

We now investigate the operation of superposition as an abstract operation on 
languages, relating it to other operations on languages. In this way, the closure 
properties of families in the Chomsky hierarchy under this new operation will be 
settled. 

Since our goal is the study of the closure properties of language families in the 
Chomsky hierarchy, all families we consider below are supposed to contain at least 
all regular languages (but this is not stated again and again). 

Lemma 1. If F is a family of languages which is closed under superposi-
tion, shuffle with regular languages, weak codings, and intersection with regular 
languages, then it is closed under intersection. 

Proof. Consider two languages L\,L2 Ç V*. Denote V1 = {a' \ a G V"}, 
where a' is a new symbol associated with a G V, and define the weak coding 
/ii : (VU V')* —> V* by /u(a') = A,a' 6 V', and /ii(a) = a, a G V, and the coding 
h2 : (V U {it})* —> (V1 U {£})* by h2(a) = a', a G V, and h2(t) = t. Consider also 
the regular languages 

we obtain 

x = abttabt, y = tabttbbabt, 

J 
x o y = abbtabbabt, 

where the underlined symbols are taken from y. 
Obviously, the operation o is associative, but not commutative. 
For LI,L2 C {V U {t})* w e p u t 

Li o L2 = {xoy I x e Li,y e L2}. 

Ri = {at I o G V}*, 
R2 = {ta I a G V}*, 
R3 = {aa' I a G V}*. 
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Then the following equality holds 

Li fl L2 = hi{{L\ o L2) Pi R3), 

where 

L\ = (Lx 111 t*)nRu 

L'2 = h2((L2 111 t*)DR2). 

(The intersection with R\, R,> forces the shuffling with t* to pair symbols of strings 
in Li,L2 with symbols t, then the intersection with R3 selects only those strings 
coresponding to equal strings from LI,L2. Finally, the weak coding HI discards 
symbols in V . ) In view of the closure properties of the family F, it follows that F 
is closed under intersection. • 

Corollary 1. The families LIN, CF are not closed under superposition. 

Lemma 2. If F is a family of languages which is closed under intersection with 
regular languages, shuffle, codings, and inverse morphisms, then F is closed under 
superposition. 

Proof. Consider two languages LI,L2 C f F u {£})*, denote as above V' = {a' | 
a G V } , consider the new symbols c,c',t' and the new alphabet 

U = {[ab'],[at'],[ac'},[ca'],[ta']\a,beV} 
U {[tt'},[ct'},[tc'}}, 

and define the following morphisms: 

/11 : U* —>• V*, 
by hi ([ah']) = M[ai ' ] ) = M M ) = hi([ca']) = M[ac ' ] ) = a> f o r a,beV, 
and /11 ([«']) = M[c i ' ] ) = hi([tc']) = t, 

h2 : U* —> (VU V" U{ i , i ' , c , c ' } ) * , 
by h2([ap\) = a/3, for [a/?] G U, 

/ i 3 : ( V U { i } r - > ( V ' U { i ' } r , 

by / 13 (a) = a ' , a G V, and / 13 ( f ) = t!. 

With the regular language 

R. = [(V U {t})(V' U { f } ) ] * [ ( ( y U {t}){c'})* U ({c}(V' U {t'}))*} 

we obtain LXOL2 = h1(h;1((L1{c}* LLL h3(L2){c'r)^R)). 

The intersection with R selects, from the strings produced by shuffling, those strings 
which are obtained by interleaving the symbols of strings in L i ,L 2 , maybe pro-
longed with occurrences of c, c', but not containing superfluous occurrences of c, c'; 
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then, /¿.71 replaces blocks afi by symbols [a(5} which are "interpreted" by /¿1 in the 
same way as when constructing the superposition of the two strings in LI,L2. The 
use of symbols c, c' prevents the addition of superfluous symbols t in the right end 
of strings. From the closure properties of F, we get LX © L2 G F. 

Note that, by our convention above, {c}* G REG C F and L{C}* = 
(L 111 {c}*) fl V*{C}*, that is, F is closed under concatenation with {c}*. (In fact, 
by the closure properties of F, we can get the closure of F under concatenation 
with any regular language, but we do not need here this general property.) • 

Corollary 2. The families REG, CS, RE are closed under the superposition. 

Corollary 3. If F is a family of languages which is closed under intersection 
with regular languages, shuffle with regular languages, codings, and inverse mor-
phisms, then F is closed under superposition with regular languages, in the following 
sense: if LI G F, L2 G REG, then LX o L2 G F and L2 o ¿1 € F. 

Proof. If one of the languages LI,L2 is regular, then in the proof.above we use 
a shuffle with regular languages. • 

The families LIN, CF are closed under shuffle with regular languages, hence 
they are closed under superposition with regular languages. 

4 Grammars Working on Layered Strings 
For two strings x,y € (VU{t})* we denote by \x, y] the two-level sequence obtained 
by placing x over y, justified to left and completing the shortest string with occur-
rences of t; [x, y] is called a layered string. Given a layered string [x, y], any symbol 
x(i) G V is said to be observable. A symbol y(i) £ V U { i } is observable if and only 
if x(i) = t. If y(i) G V, then y(i) is also visible. Therefore, the observable symbols 
in [x,y\ correspond to the symbols appearing in the string x oy defined as in the 
previous section. In the sequel, for simplicity, we will only use the term observable. 
We can now define the main notion investigated in this paper. 

A layered grafnmar is a construct 

7 = (N,T,t, (S1,P1),(S2,P2)), 

where N, T are disjoint alphabets, t is a special symbol not in N U T, SI, S2 G N, 
and PI,P2 are finite sets of context-free rules over N U T U { t } (t is considered a 
terminal symbol); N is the nonterminal alphabet, T is the terminal alphabet, t 
is the transparent symbol, (Si, Pi) are the components of the grammar; Sj is the 
axiom and PI is the set of rules of component i,i = 1,2. We also say that (SI, PI) 
is the upper component and (S2,P2) is the lower component of 7 . 

For xi,x2,yx,y2 G (N U T U {i})* we write \xi,x2] =$s [3/1,2/2] if and only if 
both the following conditions hold: 

(1) xi = x[Ax",yi = x[uix",A —> MI G Pi, or 



Grammars Working on Layered Strings 345 

Xl =yi e (Tu{t}y, 
(2) X'2 = x'2Ax'2,y2 = X'2U2X2,A —¥ u2 £ P2, A is observable, or 

x2 = y2 and no nonterminal symbol is observable in x2. 

The relation = > s is called a synchronized derivation in 7 : each component has to 
use a rule, except the case when the corresponding string is terminal, or, in the 
case of the lower component, no nonterminal is observable. Therefore, only the 
observable symbols of the lower level are active and can be rewriten. A variant of 
the relation = > s is = > n s , the non-synchronized derivation step: for xi,x2,yi,y2 € 
( ]VUTU {f})* we write [x\,x2] =>ns [2/1,2/2] if and only if one of the following 
cases holds: 

(1) x\ = x[Ax",yi = x[uix",A - H i ! 6 Pi, and 
X2 = 2/2, 

(2) a;i = 2/1 and 
x2 = x'2Ax2,y2 = X'2U2X2,A —• u2 £ P2,A is observable. 

Only one of the two components works, rewriting any symbol in the upper level 
and an observable symbol in the lower level. By rewriting first in the lower level 
and then in the upper level we can simulate in this way a synchronized derivation. 
Thus, = » s is indeed a restricted version of => n s- For any ==>a ,a G {s ,ns} we 
denote by its reflexive and transitive closure. For each relation we can 
consider two languages associated to 7, by considering two stop conditions for a 
derivation: when no nonterminal is allowed in the last layered string, we get 

LtAl) = E (TU{t}Y I [Si,S2] = » ; [ Z I , 2 2 ] , zltz2 G ( T U { I } ) * } . 

When we allow finishing the derivation with non-observable nonterminal symbols 
in the lower level, then we get 

LntA7) = {z1oz2e(Tu{t}y\[S1,S2]=^*a[zuz2}, z i e ( T u { i } ) * , 
z2 £ (JVUTU {t})*, but no nonterminal in z2 is observable}. 

In both cases, a € {s,ns}. In this way, we associate with 7 
four languages, L M ( 7), Lt,ns( 7), LnttS( 7). Lntins(y). We denote by 
TSL(X),TNSL{X),NTSL{X),NTNSL(X) the families of languages of these 
types generated by layered grammars with rules of type X; for X we consider here 
REG,RL,LIN,CF (regular, right-linear, linear, context-free, respectively); we do 
not distinguish between grammars allowed to contain A-rules and A-free grammars 
(that is, we allow erasing rules). In the proofs in the following section we shall 
present several specific layered grammars, hence we do not give here examples. 

5 Preliminary Results 
Directly from the definitions, we obtain 
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Lemma 3. YL(REG) Ç YL(RL) Ç YL(LIN) Ç YL(CF), for all Y e {TS, 
TNS, NTS, NTNS}. 

By adding to each set P\,P2 rules A -» A for each A 6 N, we can simulate a 
non-synchronized derivation by a synchronized one, hence we get 

Lemma 4. TNSL(X) Ç TSL(X), NTNSL(X) C NTSL(X), for each X <E 
{RL, LIN, CF}. 

The use of chain rules is important here. We shall see below that layered gram-
mars with regular rules generate only regular languages, both in the synchronized 
and the non-synchronized modes, hence the result above holds in this indirect way 
also for the regular case. 

Lemma 5. X Ç YL(X), for all X e {REG, RL, LIN, CF}, Y G {TS, TNS, 
NTS, NTNS}. 

Proof. For a usual grammar G — (N, T, S, P) we construct the layered grammar 

7 = (N U {Si} , T, t, (Si, {Si t}), (S, P)). 

Because the upper component generates only one transparent symbol and then 
stops, we obviously obtain Lt,a(l) = Lnt,a(l) = L(G),a 6 {s,ns}. • 

There is a close relation between the work of layered grammars and the superpo-
sition operation (between the superposition of context-free languages and languages 
generated by a layered grammar). The next result illustrates this. 

Theorem 1. For all context-free languages L\,L2 Ç (TU{£})* there are a weak 
coding h, a regular language R, and a layered context-free grammar 7 such that 

L1OL2 = h(LT,NS(~F) D R). 

Proof. Let Gi = (Ni,TU {t},Si,Pi) be two context-free grammars with N1 fl 
N2 =% such that Li = L(Gi),i = 1,2. Let S[,S'2 and A be new nonterminals and 
let ci,c-2 be new terminals. We construct the layered grammar 

1^(N',T',t,(S'l,P[),(S'2,P^), 

with 

TV' = N1UN2U{S[,S!2,A}, 
T' = T U { c i , c 2 , i ' } , 
P[ = {SJ ->iSi , S[ - > c i S i } U P i , 
P!2 = {S'2 AS2, A -> t'A, A c2t} U P2. 

Consider also the weak coding h : T1* —> (T U {t})* defined by h(a) = a, a G T, 
h(t') = h(ci) = h(c2) = A, as well as the regular language 

R={t'y{c2Cl}(Tu{t}y. 
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We obtain the equality LI<>L2 = /i(Lt,ns(7)ni?). Indeed, the derivations in 7 leading 
to strings in R are equivalent (modulo the order of some steps) to a derivation of 
the following form: 

[S[,S!2] =^*ns [t"Si,S£] =*ns for n > 1, 
= > * n s [TNCIWI, $2] , for W! e LU 

=>ns [tnc1w1,AS2] =>NS [tnciWi,AIV2], for W-2 € L2,\W2\ < N- 1, 

[inci«;i,im-1c2iu;2]. 

Clearly, (tnc\Wi) o (t'n~1C2W2) = i'n~1c2ci (u>i ow2). With the weak coding h, we 
obtain the string wi o w2- Q 

C o r o l l a r y 4 . TNSL(CF) - CF ± 0, TSL(CF) -CF^Q. 

Proof. The family CF is not closed under the operation ©, but it is closed 
under intersection with regular languages and arbitrary morphisms. Moreover, 
TNSL(CF) C TSL{CF) ( L e m m a 4) . • 

We shall strenghten this result in the following section. 

6 The Power of Layered Grammars 
First, we show that all families of languages generated by layered grammars with 
linear rules can generate non-context-free languages. (Note that this does not follow 
from the proof of Theorem 1, because we use the non-linear rule S'2 —> AS2 in P2.) 

Theorem 2. YL(LIN) -CF^<H, Ye {TS, TNS, NTS, NTNS}. 

Proof. Let us consider the following layered grammar 

1 = ({S1,S[,S?,S2,S!2},{a,b,c,d,e},t,(S1,P1),(S2,P2)), 
P1 = {Si -> tS[, -> S['d, aS'{t, S'{ et}, 
P2 = {5*2 ttS2, S2 tS2, S2 dS'2, S'2 bS'2c, S!2 -> te}. 

A non-synchronized derivation in 7 is equivalent (modulo the order of some steps) 
to a derivation of the following form. After using the rule Si —> tS[ in the upper 
layer, the rule S2 —> ttS2 must be used in the lower one in order to "get free" this 
component: 

[«Slj-Sy =>ns [¿¿i,-^] =^ns [tS'i,ttS2]. 

In the second component we can derive freely: 

[tS'1,ttS2] =**ns [iS;,imS2], for m > 2, 
[tS[,tmdS!2] =^*ns [tS[,tmdbnS'2cn], for n > 0, 

— {tS[,tmdbntecn}. RTLS 
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At any time, we can also start deriving in the upper component, where a string 
tárettrd, r > 0. can be produced. If we consider also the regular language 

B. = ta+edb+dec+, 

and we look only for strings in Lt,ns(j) H R, then we have to stop by producing a 
layered string 

[tarettrd,tmdbntecn], 

such that r + 2 = m, r — n. Therefore, the obtained string is 
(tarettrd) o (tmdbntecn) = tanedbndecn. 

Consequently, 
Lt,ns(l) n R = {tanedbndecn | n > 0}, 

which is not a context-free language. Because the intersection with R asks for 
having the terminal rule S2 —> te used, we have Lt,ns(7) l~l R = Lnt¡ris(7) n R. 
Therefore, TNSL(LIN) - CF ¿ 0, NTNSL(LIN) - CF ^ 0. With'Lemma 4, 
also TSL(LIN) -CF¿<&, NTSL(LIN) - CF ± 0. • 

We consider now the case of right-linear layered grammars. When they work in 
the synchronized mode, they can generate non-regular languages. (However, we do 
not know whether or not also non-context-free languages can be generated in this 
way.) 

Theorem 3. TSL(RL) - REG ± 0, NTSL(RL) - REG ± 0. 

Proof. Consider the layered grammar 

7 = ( {5 ! , S[, S 2 } , {a, b, c, d},t, (Si, PO, (S2, P2)), 
pt = {sx tSi, Si b2tb2s[, s[ -> 62í62s;, s[ b2tc}, 
P-2 = {52 ->a3S2yS2 -+a3d}, 

as well as the regular language 

R = a+(bbabb)+bbdc. 

In order that a terminal synchronized derivation in 7 will produce a string in R, 
it has to proceed as follows. After the first step, S2 is observable; it runs faster 
than Si as long as the upper component uses the rule S1 —> tSi\ after starting 
to use another rule, the upper component runs faster and eventually it catches up 
the lower one. This must indeed happen when looking for strings in R, because 
we must obtain a string containing both the symbol c (introduced by the upper 
component) and the symbol d (introduced by the lower component), in neighboring 
positions. Thus, we have to follow derivations of the form 

[Si,S2] = > s [iSi.Sa] [ttnSi,a3nS2], for n > 0, 
=>s [¡ttnbbtbbS'1,a3na3S2} 
=>*s [ttn{bbtbb)mS[,a3na3mS2\, for m > 0. 
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The second component can stop in any moment, but the upper one must derive 
until catching up (in order to produce the substring dc). Therefore, we have to 
produce a layered string of the form 

[ttn(bbtbb)m+pbbtc,a p> 0, 

such that 

n + l + 5(m + p ) + 3 = 3(n + m) + l (1) 

(in order to have d adjacent to c). This implies that 2m + 5p + 3 = 2n; because 
p > 0, we obtain 

2m + 3 < 2n. (2) 

Consequently, we get 

Lt,s(l) n R = {an+1(bbabb)mbbdc | n > 0,2n > 2m + 3}. 

The intersection ¿4,5(7) D R is infinite. More precisely, this intersection contains 
strings an+l (bbabb)mbbdc with arbitrarily large m: consider the values 

n = 3s + 3, p = 1, m = 3s — 1, 

for any integer s > 1. Conditions (1), (2) are fulfilled, hence the strings 
a3s+3+1(bbabb)3s-1bbdc are in L M ( 7 ) f\R for all s > 1. This means that L M (7) Di? 
(hence Lt,s(7), too) is not a regular language: by pumping a substring of the suffix 
(1bbabb)3s~1bbdc we get strings not in LttS{7) H R. 

Because the occurrences symbols c, d are introduced by the terminal rules of 
Pi, P2, respectively, it follows that the strings in R are obtained by terminal deriva-
tions, that is, Lt,s{i) H R = Lnt,s( 7) C\.R. Therefore, Lnt,s( 7) n R g REG, which 
implies that LntiS(7) 0 REG either. • 

The synchronization is essential in the result above: 
Theorem 4. TNSL(RL) C REG, NTNSL{RL) C REG. 

Proof. Consider the layered grammar 7 = ( N,T, t , (5 i ,Pi ) , (5 -2,/2)) and exam-
ine the derivations performed in the terminal non-synchronized mode. In each layer 
there is one nonterminal only, which moves from left to right. If the lower nonter-
minal is behind the upper one, then the derivation in the lower level depends on the 
transparent symbols in the upper layer (the lower level is blocked if its nonterminal 
is placed under a terminal symbol in the upper level). If the lower nonterminal goes 
ahead the upper one, then no restriction on the derivation is imposed. The two 
nonterminals can work freely, but the result is obtained by superposition. Because 
of the non-synchronization, we can apply a rule in any of the two layers. Therefore, 
(1) only the relative-position of the two nonterminals is important, and (2) as long 
as both nonterminals are present we can keep them at a bounded distance. The * 
distance between the two nonterminals can be bounded by 2m, where 

m = max{|u| | A ->• u £ Pi U P2}. 
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(If the distance between the two nonterminals is smaller than m, then we rewrite the 
nonterminal which is ahead; if the distance is between m and 2m, then we rewrite 
the nonterminal which is behind. Note that we cannot bound this distance by m 
by always rewriting the nonterminal which is behind: if the upper nonterminal is 
behind, by rewriting it we can cover the lower nonterminal, which can modify the 
language, because the derivation is not synchonized. By first rewriting the lower 
nonterminal, we go at a distance at most 2m, and the lower nonterminal continues 
to be observable after one more rule used in the upper layer.) 

Therefore, the work of 7 can be controlled by a "window" of length at most 
2m. Initially, this is [Si,52], it possibly grows to some [w\A\,A2] or [Ai,w2A2], 
with jit>x | > \W'A-, terminal strings of length at most 2m— 1, and continues in this way 
until ending the derivation in one component; after that, only one nonterminal is 
enough in order to control the derivation. 

We construct a right-linear grammar 

G=(N',TU{t},(S1,S2),P) 

with 

N' = {(wltw2) | wi 6T*(7VU{A}),W2 e T * ( W u { A } ) , 
0 < |iui|, |w2| < 2m, at least one of w\,w2 contains a nonterminal 
and at most one of them contains terminal symbols} 

and with the following rules. 
We distinguish several cases, according to the type (terminal or nonterminal) 

of the strings in the two layers and to the length of these strings. 

1. Both layers contain a nonterminal symbol and these symbols are superposed, 
that is, the sentential form ends with (A,B ) and only A can be rewritten. 

(a) If A uC is in Pi,u £ (TU {t})*, then 

(A, B) (uC, B) 

is a production in P. 

(b) If A u is in PI,M £ (T U {i})*, then 

(A,B)->(u,B) 

is a production in P. 
2. Both layers contain a nonterminal and the nonterminal in the second layer 

is behind, that is, the sentential form ends with a nonterminal (uA,B). The 
string u must be of the form u = tu' in order to be able to apply a rule in 
the second layer. Note that it is not necessary to rewrite in the upper layer 
before rewriting the lower string and getting a longer string in the lower layer 
(the rewriting in the upper layer does not depend on the contents of the lower 
layer). Thus, we do not consider rules for modifying the symbol A in (uA, B). 
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(a) If B vD is in P2, v G (T U {«})*, and |u| < M, then 

(•uA,B) ->• UOVI(A,V2D), 

for v = ViV2 with |M| = is a production in P. 

(b) If B ->• vD is in P2, v G (T U {£})*, and |M| > H, then 

(uA, B) -»• mi o v(u2A, D), 

for u = u±u-2 with |ui| = |u|, is a production in P. 

(c) If B v is in P2, v e (T U {£})*, and |M| < H, then 

(uA,B) UOV1{A,V2), 

for v = V1V2 with |M| = is a production in P. 

(d) If B v is in P2, v G (TU {£})*, and |u| > H, then 

(uA,B) MI ov(u2A,X), 

for u = Mi u2 with |ui| = |i>|, is a production in P. 
3. Both layers contain a nonterminal and the nonterminal in the first layer is 

behind, that is, the sentential form ends with a nonterminal (A,vB), with 
v € (T U {¿ } )+ - (This time we need rules for modifying both symbols A and 
B - see again the mode of obtaining the bound 2m as a maximal distance 
between nonterminals in the two layers.) 

(a) If A uC is in Pi, u G (T U {£})*, and |M| < |u|, then 

(A, vB) -»• uov1(C,v2B), 

for v = vxv-2 with |M| = |T>i|, is a production in P. 

(b) If A -)• uC is in Pi, M E (T U {£})*, and |M| > then 

(A,vB) ->• mi o v(u2C,B), 

for u = U1U2 with |«i| = is a production in P. 

(c) If B -> wD is in P2, and \vwD\ < 2m, then 

(A,vB) ->• (A,vwD) 

is a production in P. 

(d) If A M is in Pi, M G (T U {£})*, and |u| < M, then 

(A,vB) u'ov(X, B) 

is a production in P. 
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(e) If A -4 u is in Pi, u 6 (TU {<})*, and |u| > |u|, then 

(.A,vB) ui ov[u2,B), 

for u = U\U2 with |ui| = |w|, is a production in P. 

(f) If B w is in P2 and |uio| < 2m, then 

(A,vB) -¥ (A,vw) 

is a production in P. 
4. Only the first layer contains a nonterminal, that is, the sentential form ends 

with a nonterminal (A,v). 

(a) If A -» uC is in Pi, u G (TU {i})*, and |M| < |v|, then 

(A,v) -> uovl(C,v2), 

for v = viv2 with |u| = |wi|, is a production in P. 

(b) If A uC is in Pi, u € (TU {i})*, and |u| > M, then 

(A,v) uo v{C, X) 

is a production in P. 

(c) If A u is in Pi and u G (T U {«})*, then 

(A.v) 4UOU 

is a production in P. 
5. Only the second layer contains a nonterminal, that is, the sentential form 

ends with a nonterminal (u,B); the string u must be of the form u = tu' or 
u = A in order to be able to apply a rule in the second layer. 

(a) If B vD is in P2, v G (TU {i})*, and |u| < M, then 

(u,B) -> uov(\,D) 

is a production in P. 

(b) If B vD is in P2, v G (TU {i})*, and |u| > |u|, then 

(•u,B) ui OV{U2,D), 

for u = UiU2 with |ui| = |t;|, is a production in P. 

(c) If B -> v is in P2 and v G (T U {f})*, then 

(u ,B) - ) ! iOD 

is a production of G. 
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This completes the construction. 
One can easily check that we obtain L(G) = Lt^l$(7), which proves the inclusion 

TNSL(RL) Ç REG. 
For the non-terminal case we can finish the derivation with the lower nontermi-

nal placed under a symbol different from t. The necessary modifications are left to 
the reader. • 

Theorems 3 cannot be improved by replacing RL by REG: even synchronized, 
layered grammars with regular components can generate only regular languages. 

Theorem 5. TSL(REG) Ç REG, NTSL(REG) Ç REG. 

Proof. Let us consider a layered grammar 7 = ( N,T, t , (Si ,Pi) , (S2,P2)) with 
the sets Pi,P-2 containing regular rules. Because the work of 7 is synchronized, 
whenever the nonterminal in the lower level is observable, it has to be rewritten. 
At the first step, when the upper level uses a rule different from A -» tB,A —ï t 
(that is a terminal in T is introduced), this will cover the nonterminal in the lower 
level, hence it is no longer rewritten. Thus, the derivation of 7 starts by a number of 
steps of using rules of the form A tB (this number may be zero). Synchronously, 
the lower level nonterminal advances, one step behind the nonterminal in the upper 
level, at any step it can be replaced by a terminal, and this ends the derivation 
in the lower level. When the upper level introduced a symbol in T, the lower one 
should use a terminal rule in the case of terminal derivation, or any rule in the 
case of non-terminal derivation and it stops. The upper level can continue without 
any restriction. To sum up, a window of length two suffices in order to control 
the work of 7 in a way similar to that in the proof of Theorem 4. Consequently, 

Corollary 5. YL(REG) = REG for all Y e {TS,TNS, NTS, NTNS}. 

Proof. Combine Lemma 5 (it gives the inclusion D) with Theorem 4 (the con-
verse inclusion for the non-synchronized case) and Theorem 5 (the converse inclu-

Thus, the regular layered grammars need no further investigation (in what con-
cerns the generative capacity). The results above deserve to. be emphasized: in the 
synchronized case, the regular rules are strictly less powerful than right-linear rules. 
This does not happen in many situations in formal language theory (for instance, 
in regulated rewriting area, [6]). However, a similar result has been recently proved 
for parallel communication grammar systems: in the centralized returning case, the 
regular rules are strictly weaker than the right-linear rules [7]. 

7 A Characterization of RE Languages 
We now increase the degree of synchronization in a layered grammar, by specifying 
the pair of rules to be used by the two components, at steps when both of them 
have observable nonterminals. 

Lt,s{j) € REG,Lntts(j) € REG. • 

sion for the synchronized case). • 
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A matrix layered grammar is a construct 

7 = (N,T,t,SuS2,M), 

where N, T, t, Si, S-2 are as in a usual layered grammar (the nonterminal and the 
terminal alphabet, the transparent symbol, the axioms of the two layers, respec-
tively), and M is a finite set of pairs (we call them matrices) of the forms 

UuA2 u2), (Ai ->• Ui,#), (#,¿2 u2), 

where Ai —> ui, A2 u2 are context-free rules over ft'UTU {t}. In a derivation 
step [xi,x2] —> [2/1,2/2] we have to use a pair (Ai —> ui,A2 —• u2) if both xi 
and x2 contain observable nonterminals (hence xi = x\Aix",y-¡ = x[uix", x2 = 
x'2A2x2,y2 = X'2U2X2), a pair (Ai - » ut, # ) ifx2 contains no observable nonterminal 
and Ai appears in xi (hence xi = x'^Aix'^yi = x[uixi,x2 = y2), and a pair 
(#,A2 —> u2) if xi is a terminal string and A2 is an observable nonterminal in x2 

(hence xi = yi,x2 = x'2A2x'2,y2 = x'2u2x2). We denote by Lt{7) the language 
generated by 7 in the terminal mode and by Lnt{7) the language generated by 7 
in the non-terminal mode. The corresponding families of languages are denoted by 
TML(X),NTML(X),X e {REG,RL,LIN,CF}. 

Remark. Because we may always assume that the nonterminals used in the 
two layers are distinct, we can consider matrices as pairs of rules without specifying 
where each rule is used: we have just to use the two rules in two different layers. 
We prefer here to work with the previous definition because we find it more natural. 

Rather surprisingly, the following characterization of recursively enumerable 
languages can be obtained. 

Theorem 6. For every language L G RE there are a projection h, a regular 
language R, and a language L' £ TML(RL)C\NTML(RL) such that L = h(L'nR). 

Proof. We use the following variant (proved in [8]) of the characterization of 
• recursively enumerable languages by means of equality sets of morphisms (see [5], 

[12], [13]). For two morphisms hi,h2 : V* —> U* we denote 

EQ{huh2) = { » e V ' | hi(w) = h2(w)}. 

For every language L £ RE,L C V*, there are two alphabets VX,V2 such that 
V C V2, two A-free morphisms hi, h2 : Vj* —>• V2 , a regular set R C V2 , and a 
projection /13 : V2 —> V*, such that L ~ h3(hi(EQ(hi, h2)) OR). Consider also 
the alphabet of new symbols VJ = (a' \ a £ V2}. We npw construct the matrix 
layered grammar 

7= ({Si,S[,S2},V2UV.¡U{c,d},t,Si,S2,M), 
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with the following matrices of rules: 

(1) (Si -^tS[,#), 
(2) (Si -> tbh tbi2 ... tbik tS[, S2 b'h tb'j21... tb'h tS2), 
(3) (Si tbhtbi2 ... tbiktd, S2 -)• b'htb'ht... tb'htc), 

for hi (a) = bh bis ... bik, k > 1, bis £ V2,1 < s < k, 
and h2(a) = b'hb'h ...b'h,l> 1, b'jt € V2', 1 <s< I. 

Consider also the regular language 

Ro = {b'b\ be V2}*{cd} 

and the projection g : (V2 U V¿)* V2 defined by g(b) = b, b £ V2, and g(b') = 
A ,b' £ V2. It is easy to see that we have 

g{Lt{i) n Ro) = g(Lnt(7) n Ro) = hi{EQ{hu h2)). 

Indeed, because the upper component introduces the symbol t in each odd position 
and the nonterminal of the lower component appears always in an odd position, 
the non-terminal derivations should be terminal. Moreover, the intersection with 
R0 ensures the fact that we end in the two layers with two identical strings modulo 
the primes appearing in the lower layer, namely the two strings correspond to some 
hi(wi) = h-2(w2)\ the matrices in M ensure the fact that wi = w2: after using the 
only matrix of type (1), always is S2 observable, and the two components should 
stop at the same time, by using a matrix of type (3). 

Now, let us consider the morphism h : V2 —> (V2 U V2)* defined by h(b) = 
b'b,b £ V2, the regular language R! = h(R)cd, and extend the projection h3 to 
K : (V2 U V.¡y V* by h'3(b) = h3(b),b £ V2, and h'3(b') = A,b' £ h'3{c) = 
h'3(d) = A. Then we have 

L = h'3(Lt(j) n h(R')) = h'3(Lnt(7) n h(R')). 

Indeed, R' plays at the same time the roles of both R and Ro, while h3 plays at 
the same time the roles of h3 and g. • 

Corollary 6. For every family of languages F C RE which is closed under 
intersection with regular languages and projections we have TML(RL) — F ^ 0, 
NTML(RL) - F ¿ 0. 

Proof. An inclusion TML(RL) C F,NTML(RL) C F would imply that the 
closure of TML(RL), NTML(RL) under intersection with regular languages and 
projections is included into the closure of F under these operations. This implies 
the inclusion RE C F, contradicting the strict inclusion F C RE. • 

Important families F as above are MATX, of languages generated by matrix 
grammars with arbitrary context-free rules but without appearance checking, and 
ETOL, the family of languages generated by extended tabled interactionless Lin-
denmayer systems, [10]. The proof of Theorem 5 remains valid also for matrix 
layered grammars, that is the next result holds: 

Theorem 7. TML(REG) = NTML(REG) = REG. 
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8 Final Remarks; Variants 

Several variants of layered grammars can be naturally defined. We only mention 
some of them as a proof of the richness of this notion. First, as it is the case 
with the icons observable in. windows superposed on the computer screen, we can 
assume that some nonterminals are "more active" than others. When several non-
terminals are observable, the "most active" of them is rewritten. This idea can be 
implemented, for instance, under the form of a partial order relation on the non-
terminal alphabet of the grammar, or under the form of a leftmost restriction on 
the derivation (the first observable nonterminal from the left of the layer should be 
rewritten). Note that in the case of linear grammars (hence also of right-linear and 
regular grammars) these variants coincide with the one investigated here, hence 
all Theorems 1 - 7 from the previous sections remain true also for these variants. 
Second, we can consider a variant which removes the apparent contrast between the 
parallel character of activating symbols by observability and the sequential mode 
of rewriting. That is, it is quite natural to derive all observable symbols at the 
same time. This leads to considering parallel derivations, either in a context-free 
grammar as here (this reminds the so-called Indian and Russian parallel grammars 
in regulated rewriting area, see [6]), or in a pure grammar, where there is no distinc-
tion between terminal and nonterminal symbols (this corresponds to Lindenmayer 
systems; in particular, layered OL or DOL systems look attractive). Third, we can 
consider layered grammars of any order, not only with two levels as we have done 
here. The definition of observability can be obviously extended to n-layered strings; 
similarly the definition of a layered grammar of degree n,n > 1, is an obvious ex-
tension of the definition here. Such systems will probably have a rather intricate 
behavior. They correspond in a better way to a parallel grammar system, with a 
particular type of cooperation among components: they work synchronously, on 
their separate sentential forms (this is similar to a parallel communication gram-
mar system, [9], [4]), but they do not communicate by sending messages, rather 
they just influence each other through observable symbols; however, the result is 
highly integrated: it is the superposition (in the sense of the operation o, extended 
to n-layered strings) of the strings generated by the component grammars. Then, 
usual derivation, leftmost, parallel derivations can be considered also in this case. 
Of course, such a system with n layers can be simulated by a system with n + 1 
layers (just add a component which contains only the rule S t). Whether or 
not the systems of degree n + 1 are strictly more powerful than those of degree n 
becomes a fundamental problem (in general, not solved in grammar systems area, 
[4]). By the various motivations of the model, by the results given here (especially 
the possibility of generating non-regular languages by layered grammars with right-
linear rules and the characterization of recursively enumerable languages by matrix 
layered grammars with rules of the same type — right-linear), and by the wealth of 
problem raised by the variants mentioned above, the layered grammars prove to be 
a research area of definite interest. Of course, it is however premature to inquiry 
about the practical relevance of these grammars. 
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On extended simple eco-grammar systems * 

Judit CSIMAÎ 

Abstract 
In this contribution extended simple eco-grammar systems are studied. A 

simple eco-grammar system is formed from an environment given by a set 
of OL rules and from some agents represented by sets of CF rules. In an 
extended simple eco-grammar system we distinguish a subset of the alphabet 
of the system and only strings over this subalphabet are in the generated 
language. The relations between language classes generated with different 
parameters and derivation modes are investigated. 

1 Introduction 
The concept of the eco-grammar system (the EG system, for short) has been intro-
duced in [2] as a model of communities of agents which interact with their common 
shared environment. Several aspects of these systems were discussed in [3] and [6], 
properties of a restricted variant, called simple eco-grammar system, were studied 
in [4], [1], [10], [5], and [9]. Briefly, a simple eco-grammar system consists of several 
agents (represented by sets of context-free rules) and an environment (given by a set 
of OL rules). At any moment of time, the behaviour of the system is described by 
the state of the environment which is a string over the alphabet of the system. The 
environmental state changes by derivation steps. In a derivation step the agents 
act on the string by applying one of their context-free rules - each agent rewrites 
only one letter - and the environment replaces, according to its 0L rule set, in a 
parallel manner the symbols where the agents do not perform any action. 

Starting from an initial string representing the environment, a lot of strings 
following each other arise, which describe the evolving system. The language gen-
erated by the eco-grammar system is the set of strings which can be obtained from 
the initial environmental state by a sequence of derivation steps. In the case of 
extended simple eco-grammar systems only those strings belong to the determined 
language which are over a distinguished subset of the alphabet of the system, the 
terminal alphabet. This notion was introduced in [5] under the name of 0-terminal 
EG system and some basic properties of these systems were examined as well. It 
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was shown there that A-free extended simple eco-grammar systems with one agent 
are as powerful as A-free extended simple EG systems with at most n agents, if the 
original mode of the derivation is used. 

Following this line, in this contribution we deal with a more sophisticated version 
of the derivation, the team behaviour of the extended simple eco-grammar systems: 
in each derivation step from the n agents exactly k or at most k are allowed to work. 
We describe the behaviour and the generative power of these systems according to 
some size parameters: the total number of the agents, the number of the agents 
being active in a derivation step. We examine the hierarchy of the language classes 
generated by extended simple eco-grammar systems with and without A-rules. 

The results demonstrate that while in the non-extended case the size parameters 
of the teams and the agent population have influence on the power of the system, 
in the extended case these parameters are not important: we obtain a collapsing 
hierarchy. 

2 Preliminaries and the definition of the extended 
simple eco-grammar system 

In this section we present the basic notions and notations used in the paper, for 
further information the reader is referred to [8] and [7]. 

An alphabet is a non-empty set of symbols. The set of all non-empty words 
over a finite alphabet V is denoted by V+, the empty word is denoted by A. The 
set V* is U {A}. 

By a context free production or by a context free rule (a CF rule, for short) 
over an alphabet V we mean a production of the form a—>u, where a £ V and 
u £ V*. A CF rule is a A-rule (or an erasing rule) if u = A. 

A 0L system is a construct H = (V,P,UI), where y is a finite alphabet, P is a 
finite set of context free rules over V and UJ £ V* is the axiom. Moreover, P has 
to be complete, that is for each symbol a from V there must be at least one rule 
in P with this letter on the left-hand side. 
0L systems use parallel derivations: we say that x directly derives y in a 0L system 
H = (V, P,UJ), written as x^Hy, if x = x\x2 ...xn,y = yry2 •••tjn,xi£ V, yi £ V* 
and the rules are in P for 1 < i < n. 
The generated language of a 0L system H (denoted by L(H)) is the set of the 
words over V which can be derived (in some steps) from the axiom. 

Throughout the paper, we use the customary notations: C denotes inclusion 
and C denotes strict inclusion. 

If L is a language, we call alpliL the set of all letters which occur in the words 
of L. 

If V is an alphabet, we will use the following notations: 

• V^ = { | A £ V } , where k is a positive integer, 

. V' = { A' \ A £V }, 
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• V = {A\AeV }. 

If u is a word of the form u = xi . . . xn, Xi € V, 1 < i < n, then u^ = xi^ ... xn^ 
and u' = x\ ... xn'. 

After these basic notions we present the definition of the extended simple eco-
grammar system. 

Definition 2.1 
An extended simple eco-grammar system is a construct 
£ = ( VE,PE,RI,- • • ,RN,W, A ), where • 

• VE is a finite alphabet, 

• PB is a finite set ofCF rules over VE, this set is complete i.e. for each letter 
of VE there exists at least one rule in PE with this letter on the left-hand side, 

• Ri is a finite, non-empty set of CF rules over VE for 1 < i < n, 

• UJ e VE*, 

• A is a non-empty subset ofVs-

In this construct VE is the alphabet and PE is the set of the evolution rules of 
the environment. Ri represents the zth agent, this is the set of its action rules. 
The current state of the environment, which is also the state of the eco-grammar 
system, is the current sentential form. String u is the initial state from which all 
the derivations start. A is the terminal set, the language of the EG system consists 
of words over A. 

The system changes its state by a simultaneous action of some agents and by 
a parallel rewriting according to PE- In this contribution we consider two types of 
derivations, first we present the definition of derivation mode = k. 

Definition 2.2 
Consider an extended simple eco-grammar system E = (VE, PE, RI, • • •, RN,U, A ). 
We say that x directly derives y in £ in mode = k (x e VE+ ,y e VE* and 1 < k < 

n), written as x==>-£y, if 

• x — x1Z1x2Z2 • • .XkZkXk+i, Zi e VE, Xj e VE*, 

• IJ = yiWiy2W2...ykWklJk+i, yi,Wj eVE*, 

• there exist k different agents in namely Rj1,Rj2,... ,Rjk, such that 
Zi^Wi e Rji for 1 < i < k, and 

• Xi = yi = A or XI=$>EUI> where E = (VE,PE,<*>) is the 0 L system of the 
environment. 

= k 

In the above case we say that is a derivation step. 

Another mode of the derivation is derivation mode < k: 
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Definition 2.3 
Let H = (VE,PE,R i, • • • A) be an extended simple eco-grammar system. 
We say that x directly derives y in £ by a derivation < k (1 < k < n), written as 

if x==£%y for some I, 1 < I < k. 

=k <k =^ —^ We denote the transitive and reflexive closure of = > £ and ==>s by and =>£• 
In both cases, the generated language consists of the words which can be generated 
from the axiom in some derivation steps and which are over A. 

Definition 2.4 
Consider an extended simple eco-grammar system £ = ( VE , Pa, B.]...., Rn, w. A ). 
The generated languages in mode = k and < k are the following: 

=k 
L(£, = k) = { » e A* | 

<k 

L(£, < k) = { v G A*| 

Now we present an example. 
Example 2.1 Let £ = ( VE, PE, B\,R2,R3,w, A) be the following extended simple 
EG system: 

. VE = { A, B, C, a, b, c }, 

• PE = { A->a, C-^c, a—»a, b->b, c - »c } , 

• Ri = { A^A2, A-^a }, 

• R2 = { B^B2,B-^b), 

• R3 = { C^C2,C-^c}, 

• w = ABC, 

• A = { a, b, c }. 

It is easy to see that in mode = 3 a derivation sequence is of the following form. 
(In order to simplify the writing, when a rule can be applied in several places we 
use the left-most one; the other derivations give the same word.) 

ABC=>A2B2C2^A2aB2bC2c=> ... =$>A2ak~2B2bk~2C2ck~2=$>akbkck 

The three agents have to finish the derivation at the same step, otherwise the 
derivation would be blocked. (All of the three agents have to be active in each 
step, if there are at most two different upper case letters in the sentential form the 
derivation is blocked.) 
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Thus the generated language is L(E, = 3) = { anbncn | n > 1 }. 

Finally, we present some notations which we will use in the paper. 
We consider extended simple eco-grammar systems with or without A rules. When 
we allow A-rules in PE and in the sets i?¿, we use the following notations: the 
class of the languages which can be generated by an extended simple eco-grammar 
system is denoted by C(EE)X (in this notation the first E means "extended", 
the second one refers to "eco"). The class of the languages generated by a system 
containing n agents and operating in mode = k (< k) is denoted by C(EEx(n, = k)) 
(,C(EEx{n,<k))). 
We omit the notation A if A-rules are not allowed neither in PE nor in the sets ií¿: 
C(EE), £(EE(n, = k)) and C(EE(n, < k)). In the statements of the.paper we use 
the notation (A) if a statement is true both with and without A-rules. 

3 Relations between the language classes gener-
ated by extended simple EG systems 

3.1 The hierarchy of language classes C(EE^(n, = k)) 

In this section we are going to present results about the hierarchy of the language 
classes generated by n agents in derivation mode = k. This question was examined 
for the non-extended simple eco-grammar systems in [4]. It was proved there that 
the generated language classes are incomparable in most of the cases. We get 
very different results for the extended systems: here the language classes form a 
collapsing hierarchy. 

Most of the statements and proofs of the section are true with or without A-
rules, this fact is denoted by the superscript (A); sometimes a statement is true in 
both cases, but the proofs are different, in this case we will present the two different 
proofs together; and sometimes a statement is true only when A-rules are allowed, 
in this case we will emhasize this fact. 

First we examine the role of the first parameter, the number of the agents. 

Lemma 3.1.1 For 1 < k <n <m, C(EE^ (n, = k)) C C(EE^(m,= k)). 

Proof 
We show that for any 1 < k < n < m and for any extended simple EG system 
S = (VE, PE, R i , - - -, RN,U, A ) there exists another extended simple EG system 

= ( VE' ,PE' ,R\', • • • ,RM' ) such that L(E, = k) =L{Y,',= k). Moreover, 
if E does not contain A-rules then £ ' is also A-free. 
Let £ ' be the following: 

• VB' = VE U {£>}, where D <£ VE, 

• PE =PEV{D->D}, 

• Ri = Ri for 1 < i < n, 
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• Ri' = {D-+D} f o r n - I -1 < i < m, 

• U)' = U), 

• A' = A. 

It is clear that L(T.,— k) = L(£',= k) and E' is A-free if and only if E does not 
contain A-rules. • 

The following result shows that the above inclusion is not proper. The statement 
is true with or without A-rules. 

Lemma 3.1.2 For 1 < k < n, C{EE(x\n + 1, = k)) C C(EE^ (n, = k)). 

Proof 
The A-free case 
We will show that we can simulate any A-free extended simple EG system 
£ = ( VE, PB, RI > • - •, RN+1, w, A ) working in mode = k by another A-free extended 
simple EG system E' = ( VE', PE ,R\ , • •., RN', W', A ' ) working also in mode = k. 
Let E' be the following system: 

• VE = VE{1) U VB{2) U VE' U {£>}, where D $ VE, 

• PE' = PBW^(2) U { A^-TAW | A e VB } U { A'-*D \AEVB}U 

U { D->D } , where PE{1)^(2) = { A^^V^ \ A^V 6 PB }, 

. = U R'£LX{2] U {A'^A^ | A £ VE } U 

U { A W - ^ 1 ) \AEVB), 

. Ri ' = R^W u R'^W y | A G V e } for 2 < » < n, 
• where 

^(1)^(2) = { A(l) | yl-^yj e R . j f o r x < j < n 

and 
= { VM-M/™ | v - M « € RN+I } , w h e r e 

u / ( 2 ) = x^ . . . x^^xm' if w = x i . . . xm-ixm, Xi 6 Ve, a n d 1 < i < m, 

• UJ' = 

• A' = A(1>. 

The main idea of this construction is the following. We simulate one derivation 
step of E by two derivation steps of £'. In the first simulation step we use the rules 
corresponding to the derivation of E, the second step checks if the simulation is 
correct. 
In E' the set RN+\ is included in the set of rules of all agents in form of i?'^1^'2^. 
When an agent uses a rule corresponding to RN+\, a primed letter is introduced 
as well. The only agent which is able to make these primed letters disappear is 
i?i'; this construction guarantees (considering the rules of PE) that the derivation 
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cannot terminate with a terminal word if the agents use more than one rule from 
R ' n + i ^ a t the same derivation step. 

If in a derivation step of £ the agents R^,..., Rik work and ij < n for 1 < j < k, 
the simulation goes as follows. 
In the first simulation step in £ ' , the agents i ? i / , . . . , Rik ' work using rules from 

corresponding to the step of £. Then the environment uses the same 
rules as in £ (of the form P b ( 1 ) ^ ( 2 ) ) . 

In the second simulation step the agents R4..., Rlk' rewrite k letters and the en-
vironment rewrites the remaining letters by using the rules of the form A^— 
If i?n+i was among the agents Rn,..., R.k-i-, Rk = Rn+1 in a derivation step in £ , 
the two simulation steps of £ ' are the following. 
In the first simulation step we choose one agent Rs' in £ ' such that s ^ ij for any 
1 < j < k — 1. It is possible because k < n. This agent will simulate the work of 
Rn+1 by using the corresponding rule of R'^^^K 
The agents J?»/, • • • ,R'k-1 simulate the remaining rules of the agents and the en-
vironment rewrites the remaining letters in the same way as in £. 
In the second simulation step Ri' rewrites the primed letter, other k — 1 agents 
rewrite k — 1 other letters and the environment rewrites the remaining letters into 
symbols of VE^ • 
Since we can simulate every derivation step of £ by a derivation sequence of £ ' , we 
obtain that £ ( £ , = k) C L ( £ ' , = k). 

On the other hand, we can simulate by £ the derivation sequences of £ ' resulting 
terminal words, which gives the other inclusion L(£ ' , = k) C ! / (£ , = k). 
We will simulate two derivation steps of these sequences of £ ' by one step of £. 
For each v £ L(£ ' , = k) (which implies v £ because A-rules are not allowed) 
there exists a derivation sequence in £ ' of the form 

0>'=>£<1>1=»E' • • • =>E'Vt = v. 

Since v 
£ VE

{1) , there are neither primed letters nor D in v. 
Considering the possible rules in PE , it is easy to see that there can be at most 
one primed letter in the previous word vt-i-

The fact that there is no primed letter in v t - i means that in the (t — l)th step 
k agents: RiJ, • • • RiJ used rules from the sets R i S 1 ^ ^ with 1 < ij < n. In this 
case we can simulate the last two derivation steps of £ ' by one derivation step of 
£, using the corresponding rules of the agents R ^ , . . . Rik and the environment. 
The other possibility gives that k — 1 agents, R^',..., Rik l' use rules from the 
sets R i M ^ ^ with 1 < ij < n and one agent uses a rule of i ? ' ^ ^ 2 ' -
Then we can simulate the last two steps by one step in £ when the agents 
Rix,..., Rik_t, Rn+i and the environment use the corresponding rules. In both cases vt~2 

£ VE
{1) , thus we can continue the simulation by giving the 

role of v to vt-2- Since the axiom is over V^ 1 ' and t is an even number, we can 
simulate the whole derivation sequence. 



366 Judit Csima 

With A-rules 
The main idea is the same as in the A-free case, we will show that we can simu-
late any extended simple EG system E = ( VE, PE, RI , • • •, RN+I, w, A ) working 
in mode = k by another extended simple EG system 
E' = ( VE',PB ,R\ , • • • , RN',U', A ' ) working also in mode = k. 
Let £ ' be the following system: 

• vE' = VE(1) U V c ( 2 ) U {D,TUT2}, where D,TUT2 £ VE, 

• PB = PE(1)M2) U { | A e VE } U { D^D, 2 W Z ? , T2->A } , 

. Ri = i? ! ( 1 ) ^ ( 2 ) T 2 U R ^ ^ T i U { T W A } U { T2->A }, 

• Ri' = Ri {1 )-> (2 )T2 U R ^ ^ n U { T2->A } for 2 < i < n, 
where 
R.A)M*)T2 = { AM-H0WT2 | A-+W e RJ } for 1 < j < n and 

R(nlT{2)TI = { A^UW^T, I A->W 6 RN+1 }, 

. A' = Ad) . 

The proof that L(E, = k) = L(£ ' , = k) is very similar to that of the A-free case, T\ 
plays the role of the primed letters, it controls the usage of the rules of i i '^+ i*^ , 
T2 letters guarantee that k agents can be active in the second simulation step even 
if in the first simulation step A-rules were applied. • 

We obtain from the two previous lemmas the following corollary, which means 
that the first parameter has no influence on the class of the generated languages. 

Corollary 3.1.1 For 1 < k < n, C(EE^ (n,= k)) = C(EE^{k,= k)). 

We have seen that there is not any hierarchy according to the number of agents. 
Now we turn our attention to the second parameter: the number of the agents 
working in a step. Considering the above corollary, it is enough to examine the 
relation of the language classes C(EE^(k, = k)). 

For the A-free case, it was proved in [5] that C(EE(n + 1, = n + 1)) is included 
in £(EE(n, = ?i)). In the following lemma we present the same result for extended 
simple EG systems with A-rules as well. We give a simulation which is based on 
the construction used in [5], thus in the first part of our proof we briefly summarize 
the construction and the explanation used there for the A-free case. Then in the 
second part of the proof we give the modifications which are necessary to obtain 
the same result when A-rules axe allowed. 

Lemma 3.1.3 For 1 < n, + 1, = n + 1)) C C(EE^(n, = n)). 
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Proof 
The A-free case (from [5]): 

For any extended simple EG system £ = ( Ve, PB, RI, • • •, RN+1, w, A ) we give an-
other extended simple EG system £ ' = ( VE ,PE , -Ri', • • •, RN',U>', A ' ) , such that 
£,(£, = n + 1) = L ( £ ' , = n). 
Let £ ' be the following: 

. VB' = Vk U VB' U {A | A - » a £ # n + i } U {D}, where D # VE, 

• pE' = { | A->a E PE } U { | A->a £ R„+1 } U 

U { | A £ VE } U { A-tD | ¿ - » a € Rn+1 } U { } , 

• i ? / = {A-+a' | £ Ri } U | A-*a £ }, 

• Ri1 = {A->a' | £ Ri } U {A'^A \ A £ VE } for 2 < i < n, 

• Lj' = U, 

• A' = A. 

Let the step 
x = X1Z1X2Z2 • • • xn+1Zn+ixn+2=>y = yxwiy2w2 • • • yn+iU>n+iyn+2 

be a derivation step in £ , where the rules used by the agents are Z ^ W i for 1 < 
z < 7i + l and the derivations Xj=>yj for 1 < j < n + 2 are performed by the 
environment. We can simulate this step by two steps of £ ' in the following way. 
(We suppose that i?n + i used the rule ZN+I-^WN+1.) 

X = X1Z1X2Z2 • • .XN+IZn+1Xn+2=>x' = yiWiy2W2 • • 

=>y = yiWiy2W2 • • • yn+\Wn+\yn+2 

It follows from the construction that the environment cannot introduce two barred 
letters, otherwise the derivation would never result a terminal word. 
Thus, only the sequences consisting of pairs of steps of this type can derive terminal 
words because otherwise the derivation would never result a terminal word because 
of the symbol D. (It follows from the construction of £ ' ) . 

In the case when A-rules are allowed we have to modify the above construction 
in the following way. 

• vE' = VE\J VB' U {A | A^A € i ? n + i } U {D, Z}, where D, Z $ VE, 

• PE' - { A->a' | A-^a £ P_E } U { A->A | A-^a £ Rn+1 }U 
U{ A'->A | A £ VE } U { A-+D \ A-+a € Rn+1 }U 
U{ D->D } U { } , 
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• Ri = {A->a'Z | A->a E Ri } U {A->a \ A-^a E Rn+i }, 

• Ri' = {A->a'Z | A->a E Ri } U {Z->A } for 2 < i < n, 

• U)' = LJ, 

. A ' = A. 

Here the letters Z guarantee that the agents can act in £ ' in the second simulation 
step, even if in the first step A-rules were used. Thus, we have L(H, = n + 1) = 
L(£' , = n) because of the same reason as in the A-free case. • 

From the above lemma we obtain the following corollary. 

Corollary 3.1.2 For 1 <n, C(EE^(n,^n)) C C{EE^{1, = 1)). 

There remains only one relation to examine: whether the language classes 
C(EE^x){n, = n)) are included in £(EE^(n + 1, = n + 1)) or the inclusion in 
Lemma 3.1.3 is strict. 
The answer depends on the A-rules. When A-rules are allowed the two language 
classes are equal. 

Lemma 3.1.4 For 1 <n, £(EEx(n,= n)) C C{EEx{n + 1, = n + 1)). 

Proof 
For any extended simple EG system S = ( VE, PE, RI, - • •, RN, w, A ) we give an-
other extended simple EG system £ ' = ( VB , PE', RI',..., RN+I',OJ', A ' ) contain-
ing A-rules, such that L(E, = n) = L(E', = n + 1). 
Let £ ' be the following: 

• VE' = VEU { D } , where D $ VE, 

. PE' = PEU {D-+D}, 

• Ri' = Ri for 1 < i < n, 

. R'n+1 = A}, 

• w' = u)D, 

• A' = A. 

For any v E L(S, = n) there is a derivation in S of the form 

w=>i;i=> ... =>Vt = v 

where in the ?th step (1 < i < t) the agents Rj use the rules rj i . Let us consider 
the following derivation in E' 

u)D=$>viD=t>... =$>vt-iD=3>vt = v 
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where in the ¿th step (1 < i < t — 1) the agents R/ (1 < j < n) apply the rules rji 

corresponding to the "above derivation and the agent uses the rule D-*D\ in 
the last step R/ use the corresponding rules rjt (for 1 < j < n) and uses the 
rule D-tA. Thus, we can simulate E by £' . 

Now we show that L(E', = n + 1) C L(E, = n). For any v £ L(E', = n + 1) 
there is a derivation in E' of the form 

to' — UjD=$>V . . . =$>Vt-l=>Vt = V 

where in each derivation step all the n + 1 agents work. Since v is over A ' = A, 
there are no D letters in it. But in the last step n + 1 agents must work and the 
last agent can use only the rules D-^D or D—>\. Moreover, considering that ui' 
contains one D and that there is no rule producing new D letters, we get that all 
words in the above derivation, except v, contain exactly one D letter. We also get 
that in the first t— 1 step the (n + l)th agent has to use the rule D ^ D and it has 
to use the rule D->X in the last step. 
But in this case we can simulate this derivation of E' by the following derivation 
in E: 

to = f{cu')=>f{vi)=> . ... =*-/(ut-l)=»/(l>t) =Vt=V 

where / is a homomorphism over VE U {D} defined as follows: 
s j z if z e VE 

f { z ) = z \ X i f z = D 

In the above derivation the agents i?i, R2,..., Rn use the rules corresponding to 
the derivation of E'. • 

We have the following corollary. 

Corollary 3.1.3 For 1 < n, C(EEX( 1,= 1)) C C{EEx(n, = n)). 

In the A-free case the inclusion is proper between the language classes 
C(EE(n, = ?7/)) and C(EE(n + 1, = n + 1)). 

Lemma 3.1.5 For any 1 < n there exists a language L, such that 
L £ C(EE(n, = n)) \ C{EE(n + 1, = n + 1)). 

Proof Let L be the finite language { an, bn } . It is clear that it can be generated 
by an extended simple EG system working in mode = n. Moreover, it cannot be 
generated by using mode = I if I > n because either the letters in the axiom are 
not enough to perform an action of I agents or we should use A-rules which is not 
allowed. • 

Concluding the investigation of the derivation mode = k, from Corollary 3.1.1, 
Corollary 3.1.2 and Corollary 3.1.3 we obtain the following theorem. It shows that 
if A-rules are allowed, neither the number of the agents being in the system nor 
the number of the agents working in a step have any influence on the generated 
language class. 



370 Judit Csima 

Theorem 3.1 For 1 < k < n, £(EEx(n, = k)) = £(EEX( 1, = 1)). 

In the A-free case we use the notation £(EE(= k)) for the class of the languages 
which can be generated by extended simple EG systems working in mode = k, 
without A-rules. From Corollary 3.1.1 we have £(EE(n,= k)) = £(EE(= k)) for 
1 < k < n. 
Using Corollary 3.1.1, Lemma 3.1.3 and Lemma 3.1.5, we can summarize the results 
of the A-free case in the following theorem. 

Theorem 3.2 
£(EE(= 1)) = C{EE(nx,= 1)) D £(EE(= 2)) = £(EE(n2,= 2)) D . . . D 
£{EE(= k)) = £{EE(nk,= k)) D . . . 
where rii > i for 1 < i. 

3.2 The hierarchy of language classes C(EE^(n, < k)) 
In this section we examine the hierarchy of the- language classes generated by using 
derivation mode < k. In most of the cases the statements and proofs of the case 
= k are valid for the derivation mode < k as well, in such cases we refer to the 
previous section. 

The first lemma can be proved by the same construction as in Lemma 3.1.1. 

Lemma 3.2.1 For 1 < k < n < in, C{EE^{n, < k)) C £(EE^(m, < k)% 

The proof of the second lemma uses the same construction and follows the same 
idea as the proof of Lemma 3.1.2, thus we do not give the detailed proof here. 

Lemma 3.2.2 For 1 < k < n, £{EE^(n + 1, < k)) C £(EE^(n, < k)). 

From these two above lemmas we obtain the following corollary: 

Corollary 3.2.1 
For 1 < fc < n, £{EE^ ( n , < k ) ) = £{EE^ (k, <k)). 

Thus, it is enough, similarly to the case = k, to examine the relation of the language 
classes £(EE^{k,< k)) 

We have the same result as in the case of the derivation mode = k. For 
proving this statement, we can use the same construction and explanation as in 
Lemma 3.1.3. 

Lemma 3.2.3 For 1 < n, £{EE<<x\n + 1, < n + 1)) C £(EE^( n, < n)). 

The above lemmas give the following corollary. 

Corollary 3.2.2 For 1 < n, £(EE(x\n, < n)) C £(EE(X>( 1, < 1)). 

In the case of the derivation mode = k the language classes formed a collapsing 
hierarchy if and only if A-rules were allowed in the system. If we consider the 
derivation mode < k, we have different results. 
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Lemma 3.2.4 For 1 < k < n, C(EE^(n,<n)) C C{EE^(n + 1, < n + 1)). 

Proof 
For any extended simple EG system £ = ( VE, PE, Ri,..., Rn: w, A ) we give an-
other extended simple EG system £ ' = ( VE', PE', Ri',..., Rn+i', cu', A ' ) , such 
that L(£, < n) = L(£ ' , < n + 1). Let £ ' be the following: 

• VE' = VE U {D}, where D £ VE, 

. PE' =PEU{D->D}, 

• Ri1 = R i for 1 < i < n, 

. Rn+1' = {D->D}, 

• Uj' = UJ, 

• A' = A. 
The generated language of £ in mode < n is the same as that of £ ' in mode < n + 1 
because in £ ' an < n 4-1 derivation means an < n derivation, considering the struc-
ture of £ ' . • 

From the above lemma we have the following corollary. 
Corollary 3.2.3 For 1 < n, C(EE^( 1,< 1)) C C(EE^x\n,<n)) 

Concluding the investigation of the case < k, from Corollary 3.2.1, Corol-
lary 3.2.2 and Corollary 3.2.3 we obtain that the hierarchy of the generated language 
classes is a collapsing one, both with and without A-rules. 
Theorem 3.3 For 1 < k < n, 

C{EE^\n, < k)) = C(EEM( 1, < 1)) 

We have already seen that only the language classes C{EEX{ 1, = 1)), 
C(EE(k,= k)), C(EEX{ 1, < 1)) and L{EE{ 1, < 1)) are interesting, the other 
classes are equal to one of these language families. 
Thus, the only remaining thing is to examine the relation of these special language 
classes. . 
The following lemma holds by the definition of the derivation modes < 1 and = 1. 
Lemma 3.2.5 C(EE^{ 1, = 1)) = C(EE^( 1, < 1)) 
Moreover, language classes generated without A-rules are included in the language 
classes generated with the same parameters but with A-rules. 
Lemma 3.2.6 C{EEX{ 1, = 1)) D C{EE( 1, = 1)) 

Proof The inclusion holds by definition; it is proper because languages containing 
at least one non-empty word and the empty word A cannot be generated without 
A-rules. • 
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4 Summary and open problems 
We can summarize the results of the paper in the form of a diagram. In this 
diagram, a straight arrow indicates a proper inclusion; the class the arrow leaves is 
included in the class the arrow points at. * 
We use the notation rij for 1 < i, where n* denotes an arbitrary positive integer, 
such that i < 

C(EEx(n,<k)) = C(EEX( !,<!)) = C(EEX(1, = 1)) = C(EEx{n,= k)) 

C(EE(n, < k)) = £(££(!,<!)) = C{EE{1,= 1)) = C{EE{nu= 1)) 

C(EE{ 2, = 2)) = £(EE{n2,= 2)) 

C(EE(k, = k)) = C(EE(nk,= k)) 

The main result of this contribution is that while in the non-extended case the size 
parameters (n and k) and the mode of the derivation have influence on the gener-
ated language classes (see [4]), in the extended case the hierarchy is a collapsing-
one. 

There have remained some open problems. In this paper we investigated only 
the relation of the language classes generated by extended simple EG systems with 
different parameters and derivation modes. The precise place of these language 
classes in a traditional hierarchy, that is their relation to the Lindenmayer or the 
Chomsky language classes will be the subject of future investigation. Some results 
concerning this question were given in [5], it was shown there that the A-free classes 
are between the language families EOL and MATac. 

More new questions arise if we consider another definition (different from Def-
inition 2.3) for the derivation mode < k. By Definition 2.3, in every derivation 
steps at least one agent has to work. By omitting this condition and allowing that 
only the environment works in a derivation step, we obtain a new definition for this 
derivation mode and we obtain new language classes as well. 
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Moreover, similarly to the < k mode we can give the definition of the > k deriva-
tion. 
The relation of the language classes defined by these derivation modes and the 
language classes generated by the original ones can be examined in the future. 
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Descriptional Complexity of Multi-Continuous 
Grammars 

Alexander Meduna * 

Abstract 
The present paper discusses multi-continuous grammars and their descrip-

tional complexity with respect to the number of nonterminals. It proves that 
six-nonterminal multi-continuous grammars characterize the family of recur-
sively enumerable languages. In addition, this paper formulates an open 
problem area closely related to this characterization. 

Key Words: multi-continuous grammaxs; descriptional complexity; non-
terminals; recursively enumerable languages. 

1 Introduction 
The language theory has intensively and systematically investigated the descrip-
tional complexity of grammars (see Chapter 4 in [1] and references therein). This 
investigation has achieved several characterizations of the family of recursively enu-
merable languages by various grammars with a reduced number of nonterminals (see 
[4] through [6]). 

The present paper discusses the descriptional complexity of multi-continuous 
grammars (see [3]). It proves that six-nonterminal multi-continuous grammars 
characterize the family of recursively enumerable languages. In its conclusion, this 
paper points out some open problems closely related to this characterization. 

2 Definitions 
This paper assumes that the reader is familiar with the formal language theory, 
including selective substitution grammars (see Chapter 10 in [1] )). 

Let £ be an alphabet. The cardinality of £ is denoted by Card{H). £* represents 
the free monoid generated by si under the operation of concatenation. The unit of 
£* is denoted by e. Set £ + = £* — £* — {e}; algebraically, £ + is the free semigroup 
generated by £ under the operation of concatenation. For w £ £*, |w| denotes the 
length of w and subword(w) is defined as subword{w) = {x : x G V* and a; is a 
subword of u>}. 
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The bold symbols have special meaning hereafter. If a is a symbol, then a 
means that the original symbol, a, is activated. Analogously, for an alphabet E, 

£ = {a : a £ E} and {x : x £ £+}. 

Define the homomorphism, t, from (E U £)* to £* as 

¿.(a) = a and i(a) = a 

for all a 6 £• 
An EOS system is quadruple 

E = (E,P,S,T), 

where E is an alphabet, T C E, S £ E — T, and P is a finite substitution on E + *. 
An EOS-based s-grammar, G, is a quintuple 

G = (£,P,S,T,K), 

where E ,P ,S , and T have the same meaning as in an EOS system, and K C 
(E U £)*. Let u, v € E*. G directly derives v from u, symbolically denoted as 

u v, 

if either u = S and v £ P(S) or there exists a natural number, n, so 

1. u = ai... an with â  € T for all i = 1 , . . . , n 

2. w = bi.. .bn,w € K, and L(W) = u 

3. v — x\...xn with Xi S P(ai) if bi £ E, and Xi = a, if bi £ E for each 
i = 1,... ,n. 

Instead of x 6 P(a), this paper writes a x hereafter. In the standard manner, 
extend =>to =>n, where n > 0. Based on =>n, define =i>+ and . The language of 
G,L(G), 

is defined as 
L(G) = {w € T* : S =>* w}. 

Let m be a natural number, and let G = (E ,P,S,T,K) be an EOS-based s-
grammar. G is an m-continuous grammar if for some n > 1, 

K = K1U...UKn 

so that for i = 1 , . . . ,n, 

Ki = f i i l l i f ^ • • ^ m n m i ] m + i , 

where 

Clj £ {V* : V C £ } for j = 1 , . . . , in + 1 
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n f c G { W + : W C £ } for k = l , . . . , m . 

G is a multi-continuous grammar if G represents an m-continuous grammar for 
some m > 1. A queue grammar (see [2]) is a sixtuple, Q = (y, T, W, F, R, g), where V 
and W are alphabets satisfying VhW = 0, T C V, F C V, F C W, R G (V-T)(W-
F), and 5 C (V x (W - F)) x (V* x W) is a finite relation such that for any a 6 V, 
there exists an element (a,b,x,c) G g. If there exist u, v G G y, r. z G y* , 
and b:c eW such that (a, b, z,c) E g,u — arb, and v = rzc, then Q directly derives 
v from u, denoted by u =4> v. In the standard manner, define =>n, and =>*. A 
derivation of the form R =>* wf with w G T* and f £ F is a successful derivation. 
The language of QL(Q), is defined as L(Q) = {w G T* : R wf where / G F}. 

3 Results 
The present section demonstrates that the family of recursively enumerable lan-
guages equals the family of languages g 1 by six-nonterminal multicontinuous gram-
mars. 

Lemma 1 Let 
Q = (V,T,W,FR,g) 

be a queue grammar. Then, there exists a six-nonterminal multi-continuous gram-
mar, G, satisfying 

L(G) - {e} = L(Q) - { £ } . 

Proof: Let 
Q = (V,T,W,F,R,g) 

be a queue grammar. Without any loss of generality, assume that 

( y U W) fl {0,1, 2,3, X, Y} = 0. 

Construction: 
For some n > introduce the following four mappings ~(3,p,a, and <5: 

1. Define an injection (3 from (V U W) to ( {0 ,1} {3} ) " . In the standard manner, 
extend ¡3 so it is defined from (V U W)* to (({0,1}{3}) '1)*. P'1 represents 
the inverse of (3. 

2. Let p be the mapping from ( {0 ,1 } {3 } ) " ( ( {0 ,1 } {3 } ) "UT)* to ( ( {0 ,1 } {3 } ) "U 
T)* ( {0 ,1 } {3 } ) " defined as 

p(ax) = xa 

for all a G ( { 0 , l } { 3 } ) n and x G ( ( {0 ,1 } {3 } ) " U T)*. 

3. Let a be the mapping from (T U {0,1,2,3})* to (T U {0,1,3})* defined as 

a (a) = a for all a G T U {0,1,3} and a( 2) = e. 
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4. Let S be the mapping from {0,1,3}* to { X , Y, 3}* defined as 

¿(0) = X, ¿(1) = X and ¿(3) = 3 . 

Set 

m = max{|/0(a;)| : (a, b,x,c) 6 g and some a E W - F,c E W, and b E V"} + 6n + 2. 

Define the following m-continuous grammar 

' G = (TU { 0 , 1 , 2 , 3 , X , Y } , P , 2,T, K), 

where 

P = {2 p(b)2p(a)Xm-2^^-22 : a E V - T,b E W - F, ab = R} 
U { a - > a : a £ T U {0 ,1 ,2 ,3} } 
U {3 ->• 32,2 - » e} 
U {i 5{i) : i = 0,1,3} 
U { a £ : a £ { X , r , 3 } } 
U {2 -> Xj2 : j = 1, . . . ,m - 4n - 2} • 
U {2 -4 Xj : j = 1,..., TO - 2n - 1} 
U {2 /3(c)2 : c e f } 
U {2 -> /3(a;)Xm-^(a6ra)l-22 : x e V*, and (a, 6, x, c) £ </, where 

a, c € W - F and b E V} 
U {2 /3(x)Xm-WabcxM-22 :xEV*,yET+, and (a,b,xy,c) £ .9, for some 

a E W - F,c E W, and b E V} 
U {2yXm~WabcM-22 : y E T*, and {a, b, y, c) £ g, for some 

a E W - F,c E W, and b £ V"}. 

Furthermore, 
K = U K2 U K3 U Ki U K5 U K6 

where K\ through K6 are constructed as follows. Initially, set 

Ki = 0 

for i = 1 , . . . , 6. Then, extend K] through K6 in the following way. 

A. If 
(a, b, x, c) £ g, where b, c E W, a £ V, and x € V* 

then 
Kr := U { { b x } + { 3 } + . . . { b n } + { 3 } + { 2 } + { a 1 } + { 3 } + . . . { a n } + { 3 } + 

({0,1, 3} U T ) * H i . . . H m _ | / 3 ( b a ) | _ 2 {2}+} , 
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where 
di, bi 6 {0,1} for i = 1 , . . . , n 
ai3 ... an3 = f3(a) 
bx3.. ,bn3 = (3(b) 
Hj = { X } + , for all j = 1 , . . . , m - An - 2 

K2 := 2TaU { { b 1 } + { 3 } + . . . { b n } + { 3 } + { a 1 } + { 3 } + . . . { a n } + { 3 } + { 2 } + 
({0,1,3} U I T H i . . . Hm_| /J(ba)|_a{2}+}, 

where 
ai, h € {0,1} for i = 1 , . , n 
ai3 . . . an3 = (3(a) 
b\2>... bn3 = (3(b) 
Hj = {X}+, for all j = 1,..., TO - An - 2 

:= U {¿{(bi)}+{3}+ . . . {¿(b„)}+{3}+{<5(ai)}+{3}+ . . . 
{ ¿ (a n ) }+{3}+{ C l }+{3}+ . . . 
{c n } + {3 } + {2 } + ( {0 ,1 ,3 }* {di } + {3 }+ . . . 
{d| x , }+{3}+Hi. . . Hm_|/3(bacx)|_3{2}+}, 

where 
ai,bi,Ci, di € {0,1}, for % = 1, . . . ,n 
ai3 ... an3 = /3(a) 
b13...bn3 = p(b) 
c i3 . . . cn3 = (3(c) for some c € V 
di3 ... d\x\3 = f3(x) 

Hj = { X } + , for all j = 1 , . . . , m - \j3(bacx)\ - 2. 

B. If ' 

x e V*, y £ T+, and (a, b,xy,c) G g for some b, c € W and a 6 V 

then 
K4 := U {{¿(bx)}+{3}+ . . . {¿(bn)}+{3}+{<5(ai)}+{3}+ . . . 

{¿(a n ) }+{3}+{ci}+{3} . . . 
{ c n } + { 3 } + { 2 } + { 0 , l , 3 r { d i } + { 3 } + . . . 
{d | x | }+{3 }+ {e i }+ . . . 
{ e | y | }+H! . . . . { 2 } + } , 

where 
it, bi £ {0,1}, for i = l,...,n 
ai3 ... an3 = (3(a) 
b13...bn3 = (3(b) 
ci3... cn3 = (3(c) for some c G V 
dx3.. .d|x|3 = p(x) 
ei-..eM =y 
Hj = { X } + , for all j = 1 , . . . ,m - \(3(x)\ - \y\ - 6n - 2. 
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C. If 

x E T* and (a, b, x,c) E g for some b, c E W and a E V 

then 
Kb := Kh U {{¿(bx)}+{3}+ • • • {¿(bn)}+{3}+{<5(a1)}+{3}+ . . . 

{¿(an)}+{3}+{C l}+{3} . . . {cn}+{3}+{2}+{0,1,3}* 
T + { e i } + . . . {e+,T*H! . . . Hm_| /3 (bac)x|_6n_3{2}+}, 

where 
a,i,bi E {0 ,1} , for i = 1 , . . . , n 
ai3 ... a„3 = ¡3(a) 
b13...bn3 = P(b) 
Ci3.. . c„3 = P(c) for some.c E V 
d .. .e|x| = x 
Hj = { X } + , for all j = 1 , . . . ,m - |x| - 6n - 3 

D. If 

b E F 

then 

K6 := K6 U { {¿(b! ) } + {3}+ . . . {¿(bn)}+{3}+H! . . . H m _ 2 n _ ! T + T * } , 

where 
bi E {0,1}, for all i = 1 , . . . ,n 
M ... bn3 = 0{b) 

Hj = {X}+, for all j = 1 , . . . ,m - |/3(6)| - 1. 

Main Idea: 
Observe that G derives no sentential form that contains a subword consisting of two 
identical nonterminals. Considering this essential property, examine the construc-
tion of G to see that every successful derivation simulates a successful derivation in 
Q. To give an insight into this simulation in greater detail, assume that Q makes 
this derivation step 

avb => vxc 
according to (a, b, x, c) E g. By using selectors constructed in A, G simulates avb 
vxc by making the following three steps. 

P{b)2f3{av)Xm-Wba]\-22 => p{ba)2p{ba)2P{v)Xm-^ba^-22 
5{/3{ba))0(c)2/3(vx)Xm-W>acxK-22 

=» P{c) 2P{vx)Xm~4n-22. 

By analogy with these steps, G uses selectors constructed in B and C to simulate 
Q's derivation steps that produce terminals appearing in the generated word. Fi-
nally, it uses a selector constructed in D to complete the simulation. As a result, 
L(Q)=L(G). 
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Formal Proof (Sketch): 
Hereafter, by 

u =>• v [i] 

in G, where i £ { 1 , . . . , 6}, this proof symbolically expresses that G makes u =$> v by 
using a component from Ki. For brevity, the rest of this proof omits some details, 
which the reader can easily fill in. Examine K to see that in G, every successful 
derivation, 2 v with v £ T + , has this form 

x0 

xu [1] xl2 [2] : xl3 M 
x2l [1] 

xtl [1] xt2 [2] Xt3 [3] 
2/1 [1] 2/2 [2] 2/3 [4] 
zu [1] Z12 [2] • zu [5] 
Z2i [1] 

Zhi [1] zh2 [2] zh3 [5] 
r [1] => V [6], 

where 

(i) x0 = /3(b)2f3(a)Xm№(ba^~22 with ab = R 

(ii) t is a non-negative integer, and for all i — 0 , . . . , t, there exist (a,b,v,c) £ g 
and u £ V* so that 

xh = p(ba)2p(u)Xm~^i-ba^~22 
xi2 = 8{p{ba))p{c)2p{uv)Xm~^bacv^~22 
xi3 = p(c)2/3(uv)Xm~2^-22 

(iii) there exist w £ V* and (a, b, vu, c) £ g where v £ V* and u £ T+, so that 

yi = l3(ba)2p(w)Xm-^ba^-22 
y2 = 5{p(ba))p{c)2p{wv)uXm-\^bacv>\-22 
2/3 = p ( c )2p {wv )uX m ~ 2 ^ c ^- 2 2 

(iv) h is a non-negative integer, and for all i = 0 , . . . , h, there exist u £ V*,w £ 
T+, and (a, b, v,c) £ g with v £ T* so that 

zu = P(ba)2P(u)wXm-W>a^-22 
zi2 = 5(P{ba))p(c)2p(u)ivvXm-WbacM-22 
zi3 = P(c)2p{u)wvXm~2^c^-22 

(v) r = SiPibyvX™-^^-1 with b £ F. 
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Observe that there also exists the following derivation 

R => p{p-l{a{xl3)))...^ p{rl{o{xh3))) 

=> PW-H°{V3))) 
=> p(0-1(a(xl3)))...^p(p-1(a(xh3))) 

in Q. Notice that p(y0_1(cr(r))) - v. Thus, if in G, 2 =>* t; with v G T+, then 
v G L(Q)\ therefore, 

L(G)-{e}CL{Q)-{e). 

Notice that in Q, every successful derivation, R =>* vf with v E T+ and / £ F, 
has this form 

R =>* did2 • • • dnyici 
=> d2 ... dnyiy2c2 

=> dnyiy2 ... yncn 

=> y№---ynf, 

where 

n is a natural number 
dk E V, for k = 1 , . . , n 
v = 2/13/2 • • • 2/« 
2/i / e 
yi E T*, for i — 2,... ,n 
Cj E W - F, for j = 1,... ,n 
feF. 

Consider any derivation expressed in this way in Q, and demonstrate that there 
also exists 

2 =>+ v 

in G (a detailed version of this demonstration is left to the reader). Thus 

L(Q)-{e}CL(G)-{e}. 

As L(G) - {e} C L(Q) - {e } and L(Q) - {e } C L(G) - {e } , . 

L{Q)-{e}=L{G)-{e}. 

Because G has only the six nonterminals 0 ,1 ,2 ,3 ,X, and Y, Lemma 1 holds. • 

Theorem 1 The family of languages generated by six-nonterminal multi-
continuous grammars coincides with the family of recursively enumerable languages. 
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Proof: Obviously, every language generated by a six-nonterminal multi-continuous 
grammar represents a recursively enumerable language. The rest of this proof 
demonstrates that every recursively enumerable language is generated by a six-non 
terminal multi-continuous grammar. 

Let L be a recursively enumerable language. Then, there exists a queue gram-
mar, Q, such that L(Q) = L (see Theorem 2.1 in [2]). By Lemma 1, there exists a 
six-nonterminal multi-continuous grammar, 

G=(TU{0,l,2,3,X,Y},P,2,T,K), 

satisfying L(Q) — {e} = L(G) — {e}. Consider the six-nonterminal multi-continuous 
grammar, G', defined as 

G' = (TLi{0,l,2,3,X,Y},PL¡P',2,T,K) 

with 
P' = {2 e} if £ G L(Q), and P' = 0 if £ £ L(Q). 

Observe that L(G) - {e} = L(G') - {e}. Because L(Q) - {e} = L(G) - {e},L(Q) -
{e} = L(G') - {e}. Furthermore, by the definition of P',e G L(Q) if and only if 
£ G L{G'). Therefore, 

L(G') = L(Q). 

As L{Q) = L, 
L = L{G'). 

Therefore, this theorem holds. • 

Consider ¿-nonterminal multi-continuous grammars, where i = 1 , . . . , 5. What 
is their generative power? 

Acknowledgement: The author is indebted to the anonymous referee for useful 
comments concerning the first version of this paper. 
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Decompositions of automata 
semigroups * 

Tatjana Petkovic* Miroslav Ciric* 

Abstract 

The purpose of this paper is to describe structural properties of automata 
whose transition semigroups have a zero, left zero, right zero or bi-zero, or 
are nilpotent extensions of rectangular bands, left zero bands or right zero 
bands, or are nilpotent. To describe the structure of these automata we 
use various well-known decomposition methods of automata theory - direct 
sum decompositions, subdirect and parallel decompositions, and extensions of 
automata. Automata that appear as the components in these decompositions 
belong to some well-known classes of automata, such as directable, definite, 
reverse definite, generalized definite and nilpotent automata. But, we also 
introduce some new classes of automata: generalized directable, trapped, one-
trapped, locally directable, locally one-trapped, locally nilpotent and locally 
definite automata. We explain relationships between the classes of all these 
automata. 

Keywords : automaton, transition semigroup, direct sum decomposition, 
directable automata, trapped automata, generalized directable automata, lo-
cally directable automata, generalized varieties. 

1. Introduction and preliminaries 
Transition semigroups of automata were first defined and studied by V. M. Glushkov 
in [16], 1961. The systematic study of relationships between the structure of au-
tomata and their transition semigroups was initiated by I. Peak in [23], 1964, and 
[24], 1965, and after that many authors worked on this important topic. Many of 
the results concerning this topic were collected in the book of F. Gecseg and I. Peak 
[14], in 1972, and in some other books. 
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The main aim of the present paper is to investigate structural properties of au-
tomata whose transition semigroups have some interesting properties, such as: to 
have a zero, left zero, right zero or bi-zero, to be a nilpotent extension of a rectan-
gular band, left zero band or right zero band, to be nilpotent, etc. To describe the 
structure of these automata we use various well-known decomposition methods of 
automata theory, such as direct sum decompositions, subdirect and parallel decom-
positions, and extensions of automata. Automata that appear as the components 
in these decompositions belong to some well-known classes of automata. These are 
directable automata, introduced by P. H. Starke in [30] and J. Cerny in [7], definite 
automata, defined first by S. C. Kleene in [20], and M. Perles, M. O. Rabin and E. 
Shamir in [25], reverse definite automata, introduced by J. A. Brzozowski in [5], and 
A. Ginzburg in [15], generalized definite automata, defined also by A. Ginzburg in 
[15], and nilpotent automata, that appeared first in the paper of L. N. Shevrin [29], 
and the book [14] by F. Gecseg and I. Peak. These automata were also studied by 
J. Cerny, A. Piricka and B. Rosenauerova in [8], M. Ito and J. Duske in [19], J. E. 
Pin in [26], [27] and [28], M. Steinby in [31], and others. These types of automata 
were recently investigated by B. Imreh and M. Steinby in [18]. 

However, it is also necessary to introduce some new classes of automata. In 
Section 2 we define and study some new types of automata: generalized directable 
automata, trapped automata, one-trapped automata, locally directable automata 
and locally one-trapped automata. In Section 3 we introduce locally nilpotent and 
locally definite automata, and we connect them with nilpotent, definite, reverse 
definite and generalized automata. Relationships between these types of automata 
will be explained in Section 4, where the classes of these automata will be treated 
as generalized varieties. Note that the concept of an automaton 'belonging locally' 
to a given class of automata was introduced by M. Steinby in [32] 

Automata considered throughout this paper will be automata without outputs 
in the sense of the definition from the book of F. Gecseg and I. Peak [14]. It 
is well known that automata without outputs, with the input alphabet X , can be 
considered as unary algebras of type indexed by X (we will say that they are of type 
X). This will be done throughout this paper. The notions such as a congruence, 
subautomaton, generating set etc., will have their usual algebraic meanings. In 
order to simplify notations, an automaton with the state set A will be also denoted 
by the same letter A. For any considered automaton A, its input alphabet will be 
denoted by X . In this paper we will aim our attention only to the case > 2. 
The free monoid over X, i.e. the input monoid of A, is denoted by X* and free 
semigroup over X is denoted by X+. Under action of an input word u £ X*, the 
automaton A goes from a state a into the state that will be denoted by au. For 
an arbitrary k e N, where N denotes the set of all positive integers, we denote by 
Xk the set of all words having the length k, and by X-k the set of all words of the 
length at least k. 

The transition semigroup S = 5(A) of an automaton A, in some origins called 
the characteristic semigroup of A, one can define in two equivalent ways. The first 
one is to define S(A) as a semigroup consisting of all transition mappings on A, 
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by which we mean the mappings rju, u 6 X+, defined by: at]u = au, for a £ A. 
Another way is to define S(A) to be the factor semigroup of the input semigroup 
X+ with respect to the Myhill congruence fi on X+ defined by: (u,v) £ p. if and 
only if au = av, for each a £ A. Note that (u,v) £ ¡i if and only if r)u = rjv. We 
will use the first way mostly. 

Rees congruences, a famous notion of semigroup theory, have their analogues 
in many other theories. It appears that in automata theory they were first defined 
by I. Babcsanyi in [2]. The Rees congruence on an automaton A determined by a 
subautomaton B of A is a congruence 9 defined in the following way: For a, b £ A we 
say that (a, b) £ 9 if and only if either a = 6 or a,b £ B holds. The factor automaton 
A/9 is usually denoted by A/B, and it is called a Rees factor automaton of A with 
respect to B. If B is a subautomaton of an automaton A and the Rees factor 
automaton A/B is isomorphic to an automaton C, we say that A is an extension 
of an automaton B by an automaton C. Clearly, the automaton C can be viewed 
as an automaton obtained from A by contraction of B into a single element. In 
other words, C is isomorphic to the automaton D defined in the following way: 
D — {A \ B) U {ao}, where do does not belong to A, and the transitions in D are 
defined by 

f ax, as in A, if a. ax £ A \ B 
CLX — \ } ao, if a £ A \ B and ax ^ A \ B, or a = ao 

We will usually identify the automata C and D. 
Another notion imported from semigroup theory is the following: If there exists 

a homomorphism ip of an automaton onto its subautomaton B such that aip = a, 
for each a £ B, then this homomorphism is called a retraction of A onto B and we 
say that A is a retractive extension of B by A/B. 

An automaton A is a direct sum of its subautomata Aa, a £ Y, if A = Uaey Aa 

and Aa fl Ap = 0 for all a,/3 € Y such that a /3. The equivalence relation 
that correspond to this partition of A is a congruence and it is called a direct 
sum congruence on A. More information about general properties of direct sum 
decompositions of automata can be found in [10]. Finally, we say that an automaton 
A is a parallel composition of automata B and C if it can be embedded into their 
direct product. 

For the notions and notations which are not explicitly defined here we refer to 
[6], [14] and [17]. 

2. Generalized directable automata 
As it was announced in the introduction, we will investigate automata whose transi-
tion semigroups have some kinds of zeroes. Recall that an element e of a semigroup 
S is called a left zero of S if es = e, for each s £ S, a right zero of S if se = e, 
for each s € S, and a zero of 5, if it is both a left and a right zero of 5. As a 
generalization of these notions we introduce the following notion: An element e of 
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a semigroup S will be called a bi-zero of S if ese = e, for each s £ S. First we 
describe semigroups having left, right or bi-zeroes. 

Lemma 1. A semigroup S has a bi-zero (resp. left zero, right zero) if and only if 
it is an ideal extension of a rectangular (resp. left zero, right zero) band. 

If e and f are bi-zeroes of S, then esf = ef, for each s £ S. 

Proof. Suppose that S has a bi-zero. Let E denote the set of all bi-zeroes of S. 
For an arbitrary e £ E we have e3 = e and e4 = ee2e = e, whence e2 = e. Thus, 
E is a band, and clearly, it is a rectangular band. On the other hand, for e £ E 
and s,t € S we have that (es)t(es) = e(st)es = es and (se)t(se) = se(ts)e = se. 
Therefore, es,se £ E, so E is an ideal of 5, which was to be proved. 

Conversely, let 5 be an ideal extension of a rectangular band E. Assume arbi-
trary e £ E and s £ S. Then es £ E, whence ese = e(es)e = e. Thus, e is a bi-zero 
of 5. 

The assertions concerning left and right zeroes can be proved similarly.. 
In the above notations, assume arbitrary e, / £ E and s £ S. Then sf £ E and 

/ = fef, whence esf = es(fef) = e(sf)ef = ef. This completes the proof of the 
lemma. • 

Using the previous one, we prove another lemma: 

Lemma 2. Let a semigroup S has a left (resp. right) zero. Then the set of all left 
(resp. right) zeroes of S coincides with the set of all bi-zeroes of S. 

If S has a zero, then it is unique and S does not have other left, right or bi-
zeroes. 

Proof. Let L and B denote the set of all left zeroes and the set of all bi-zeroes of 
S, respectively. Obviously, L C. B. Assume an arbitrary / £ B. Then / = fef. 
But, by Lemma 1, L is an ideal of S, whence f £ SLS C L. Therefore, L = B. 

The remaining assertions one proves similarly. • 

Now we are passing from semigroups to automata. First we recall some known 
notions. An automaton A is called a directable automaton if there exists a word 
u £ X* such that au = bu, for all a, b £ A. Such word is called a directable word 
and the set of all directable words of A is denoted by DW(A). 

A state a of A is called a trap of A if au = a, for each u £ A'*, that is, if the set 
{a} is a subautomaton of A [21]. If A has exactly one trap, it is called a one-trap 
automaton [3]. The set of all traps of A will be denoted by Tr(A). An automaton 
whose each state is a trap is called a discrete automaton [13]. 

The first new notion that we introduce is the following: An automaton A will 
be called a trapped automaton if there exists a word u £ A''* such that au £ Tr(A), 
for each a £ A. Such word will be called a trapping word, and the set of all trapping 
words of A will be denoted by TW(A). In other words, u £ TW(A) if and only 
if auv = au, for all a £ A and v £ X*. We also define an automaton A to be a 
one-trapped automaton if it is trapped and has exactly one trap. It is not hard to 
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verify that A is a one-trapped automaton if and only if there exists u £ X* such 
that auv = bu, for all a,b £ A and v £ X*. 

Third, we generalize directable automata as follows: An automaton A will be 
called a locally directable automaton if all monogenic subautomata of A are di-
rectable and they have common directing word. Here by a monogenic subautoma-
ton we call a subautomaton generated by a single state (called also cyclic). The 
condition that all monogenic subautomata must have the same directing word is 
fulfilled in each finite automaton, that is, a finite automaton is locally directable if 
and only if all its monogenic subautomata are directable. Equivalently, A is locally 
directable if there exists u £ X* such that avu = au, for all a £ A and v £ X*. 
Such word will be called a locally directing word, and the set of all locally directing 
words of A will be denoted by LDW(A). 

Similarly, an automaton A will be called a locally one-trapped automaton if all 
monogenic subautomata of A are one-trapped automata and they have common 
trapping word. Such words will be called a locally one-trapping word of A and the 
set of all such words will be denoted by LOTW(A). In other words, A is a locally 
one-trapped automaton if and only if there exists u £ X* such that apuq — au, for 
all a € A and p,q € X*. A finite automaton is locally one-trapped if and only if 
all its monogenic subautomata are one-trapped. 

The fifth new notion that we introduce here is a common generalization of 
directable, locally directable and trapped automata. Namely, an automaton A is 
said to be a generalized directable automaton if there exists u £ X* such that 
auvu = au, for all a £ A and v £ X*. Such word will be called a generalized 
directing word of A. The set of all generalized directing words of an automaton 
A will be denoted by GDW(A). We have chosen these names because an analogy 
with generalized definite automata, that will be considered in the next section. 

The following lemma, that can be easily checked, establishes some relationships 
between these automata and the above considered semigroups. 

Lemma 3. Let A be an automaton and u £ X*. Then u £ GDW(A) (resp. 
u £ TW(A), u £ LDW(A), u £ LOTW(A)) if ajid only if r]u is a bi-zero (resp. 
left zero, right zero, zero) of S(A). 

The next lemma is an immediate consequence of Lemmas 1, 2 and 3. 

Lemma 4. For an automaton A, GDW(A), TW(A) and LDW(A) are ideals of 
X*. Moreover, the following conditions hold: 

(1) TW(A) ± 0 implies TW{A) = GDW(A); 

(2) LDW(A) ± 0 implies LDW(A) = GDW(A); 

(3) LOTW(A) ± 0 implies LOTW{A) = LDW(A) = TW(A) = GDW(A); 

(4) TW(A) ± 0 and LDW(A) ± 0 implies LOTW(A) £ 0 . 

Now we are ready to prove one of the main theorems of the paper. 
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Theorem 1. The following conditions on an automaton A are equivalent: 

(i) S(A) has a bi-zero; 

(ii) A is an extension of a locally directable automaton by an one-trapped automa-
ton; 

(iii) A is a generalized directable automaton. 

Proof. (i)-i=>(iii). This follows by Lemma 3. 
(iii)=>(ii). Let B — {au \a £ A, u £ GDW(A)}. Since GDW(A) is an ideal of 

X*, B is a subautomaton of A. Let a0 be the trap of A/B which is the image of 
B under the natural homomorphism of A onto A/B. For arbitrary a £ A \ B and 
u £ GDW(A) we have that au £ B in A, that is au = a0 in A/B, so A/B is an 
one-trapped automaton. 

Assume arbitrary b £ B, v £ X+ and w £ GDW(A). Then we have that 
b = au, for some a £ A and u £ GDW(A), and now (bv)w = auvui = auw = bw, 
by Lemma 1. This completes the proof of the implication (iii)=>(ii). 

(ii)=>(iii). Let A be an extension of a locally directable automaton B by an 
one-trapped automaton A/B. Let v £ LDW(B) and u £ T W ( A / B ) . Assume 
now arbitrary a £ A and w £ X*. Then au £ B, and since the subautomaton 
S(au) of B generated by au is directable, with v as one of its directing words, and 
au,auviuu £ S(au), then auv = auvwuv. Therefore, uv £ GDW(A) and A is a 
generalized directable automaton. • 

Locally directable automata, that appear in the above theorem, will be charac-
terized by the next theorem. 

Theorem 2. The following conditions on an automaton A are equivalent: 

(i) S(A) has a right zero; 

(ii) A is a direct sum of directable automata with the same directing word; 

(iii) A is a locally directable automaton. 

If A is a finite automaton, then the condition (ii) can be replaced by the following 
condition: 

(ii') A is a direct sum of directable automata. 

Proof. (i)<s>(iii). This follows by Lemma 3. 
(iii)=>(ii). Assume an arbitrary u £ LDW(A) and define a relation g on A by: 

(a, b) £ g <£> au = bu. Obviously, g is an equivalence relation on A and (av, a) £ g, 
for all a 6 A and v £ X*. Therefore, by Lemma 3.1 of [10] we have that Q is a 
direct sum congruence on A. 

Let B be an arbitrary p-class of A. Assume arbitrary a,b £ B. Then au = bu, 
so B is a directable automaton, with u as one of its directing words. This completes 
the proof of the implication (iii) => (ii). 
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(ii)=>(iii). Let A be a direct sum of directable automata Aa, a £ Y, and let 
there exists a word u £ X* such that it is a directing word for all Aa, a £ Y. 
Assume arbitrary a £ A and v £ X*. Then a,av £ Aa, for some a £ Y, and since 
Aa is directable and u £ DW(Aa), then avu = au, which was to be proved. 

If A is finite and if (ii') holds, then A is a direct sum of finitely many directed 
automata A\,..., A\t, and if we assume an arbitrary Uj £ DW(Ai), i £ { 1 , . . . , k}, 
then u = ui • • • uk £ DW(Ai), for each i £ {l,...,k}, by Remark 3.2 of [18]. This ' 
completes the proof of the theorem. • 

The next our goal is to characterize automata whose transition semigroups have 
left zeroes. 

Theorem 3. The folloviing conditions on an automaton A are equivalent: 

(i) S(A) has a left zero; 

(ii) A is an extension of a discrete automaton by an one-trapped automaton; 

(iii) A is a trapped automaton. 

Proof. (i)<=>(iii). This follows by Lemma 3. 
(iii)=>(ii). By (i)<^(iii) and Lemma 4, every trapped automaton A is a gener-

alized directable automaton and TW{A) = GDW(A). As was proved in (iii)=^(ii) 
of Theorem 1, A is an extension of an automaton B = {au | a £ A, u £ GDW(A)} 
by an one-trapped automaton, and since GDW (A) = TW(A), then B is a discrete 
automaton. 

(ii)=>(iii). Let A be an extension of a discrete automaton B by an one-trapped 
automaton A/B and let u £ Tr(A/B). Then for each a £ A we have that au £ 
B = Tr(A), so we have proved that A is trapped. • 

We will finish this section considering automata whose transition semigroups 
have a zero. 

Theorem 4. The following conditions on an automaton A are equivalent: 

(i) S(A) has a zero; 

(ii) A is a retractive extension of a discrete automaton by an one-trapped automa-
ton; 

(iii) A is a direct sum of one-trapped automata with the same trapping word; 

(iv) A is a subdirect product of a discrete automaton and an one-trapped automa-
ton; 

(v) A is a parallel composition of a discrete automaton and an one-trapped au-
tomaton; 

(vi) A is a locally one-trapped automaton; 
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If A is a finite automaton, then the condition (iii) can be replaced by the following 
condition: 

(iii') A is a direct sum of one-trapped automata. 

Proof, (i)^(vi). This follows by Lemma 3. 
(vi)=>(ii). Let A be a locally one-trapped automaton. Assume an arbitrary 

u £ LOTW{A). Then A is trapped, and by Theorem 3, A is an extension of 
a discrete automaton B = Tr(A) by a one-trapped automaton A/B. Define a 
mapping (p of A into B by: for a £ A, cup = au. Since au £ Tr(A) and A is locally 
one-trapped, for each v £ X* we have that (av)ip = avu = au = auv = (aip)v, 
so (/3 is a homomorphism. On the other hand, if a £ B, then it is a trap and 
aip = au = a. Therefore, ip is a retraction of A onto B, which was to be proved. 

(ii)=>(iii). Let A be a retractive extension of a discrete automaton B by a 
one-trapped automaton A/B. Let ip be a retraction of A onto B and let u be an 
arbitrary trapping word of A/B. For b £ B, let Ab = bip"1. Since an inverse 
homomorphic image of a subautomaton is also a subautomaton, then Ab, b £ B, 
are subautomata of A and A is a direct sum of these automata. Clearly, b is the 
unique trap of At, and u is a trapping word of Af>. Thus, we have proved (iii). 

(iii)=>(iv). Let A be a direct sum of one-trapped automata AA, a £ Y, that have 
the same trapping word u. Let a denote the corresponding direct sum congruence 
on A. As we know, A/A is a discrete automaton. On the other hand, B = TR(A) 
is a subautomaton of A. Let g denote the Rees congruence on A determined by 
B. Obviously, A/G is an one-trapped automaton, with u as one of its trapping 
words. Finally, A fl g = A, since each cr-class contains exactly one trap of A. Here 
A denotes the equality relation on A. Therefore, A is a subdirect product of A/A 
and A/Q, so we have proved (iv). 

(iv)=>(v). This implication is obvious. 
(v)=>(vi). Let A be a parallel composition of a discrete automaton B and a 

one-trapped automaton C. Let </> be an embedding of A into B x C, and let u be 
an arbitrary trapping word of C. Assume arbitrary a £ A and p, q £ X*. Then 
a<p = (b, c) for some b £ B and c £ C, so (apuq)<j> = (a<f)puq = (bpuq,cpuq) = 
(b,cu) = (bu,cu) = (acp)u = (au)4), whence apuq = au, which was to be proved. 

If A is finite and if (iii') holds, then A is a direct sum of finitely many one-trapped 
automata A\,..., and if we assume an arbitrary Uj 6 TW(Ai), i £ { 1 , . . . , k}, 
then u = ui • • • Uk £ TW(Ai), for each i £ { 1 , . . . , k], by Lemma 4. This completes 
the proof of the theorem. • 

3. Generalized definite automata 
In this section we study the class of generalized definite automata and some of its 
well-known subclasses, from the aspect of properties of transition semigroups of 
automata belonging to these classes. 

First we recall some known definitions. An automaton A is called a definite 
automaton if there exists fceN such that au = bu, for all a,b £ A and u £ X-k, or 
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equivalently, if X-k C DW(A), for some k £ N. The smallest number having this 
property is called the degree of definiteness of A. Similarly, A is called a reverse 
definite automaton if there exists k £ N such that auv = au, for all a £ A, u £ X-k 

and v £ X*, that is, if X^k C TW(A), for some k £ N. The smallest number 
having this property is called the degree of reverse definiteness of A. 

An automaton A is called a nilpotent automaton if it has a unique trap and 
there exists k £ N such that each word u £ X-k is a trapping word. In other 
words, A is nilpotent if and only if there exists k £ N such that auv = bu, for all 
a,b £ A, u £ X-k and v £ X*. The smallest number having this property is called 
the degree of nilpotency of A. An extension A of an automaton B will be called a 
nilpotent extension of B if the factor automaton A/B is nilpotent. Clearly, A is a 
nilpotent extension of B if and only if there exists k £ N such that au £ B for all 
a £ A and u £ X^k. 

As in the previous section, we give some new definitions regarding some "local" 
properties of automata. An automaton A will be called locally definite if all its 
monogenic subautomata are definite and their degrees of definiteness are bounded. 
For finite automata the second condition is obviously fulfilled and it can be omitted. 
Equivalently, A is locally definite if and only if there exists k £ N such that avu = 
au, for all a £ A, v £ X* and u £ X-k. 

Similarly, A is said to be locally nilpotent if all its monogenic subautomata are 
nilpotent and their degrees of nilpotency are bounded. As in the previous case, the 
second condition can be omitted for finite automata. In other words, A is locally 
nilpotent if and only if there exists k £ N such that apuq — au, for all a £ A, 
p,q £ X* and u £ X^k. 

Finally, by a generalized definite automaton we mean an automaton for which 
there exist k,m £ N such that aupv = auqv, for all a £ A, p,q £ X*, u £ X-k and 
v £ X-m. These automata are described by the following theorem: 

Theorem 5. The following conditions on an automaton A are equivalent: 

(i) S(A) is a nilpotent extension of a rectangular band; 

(ii) A is a nilpotent extension of a locally definite automaton; 

(iii) A is a generalized definite automaton; 

(iv) (3k £ N)(VM G X-F C)(VA G A)(VI> G X*) auvu = au. 

Proof. (i)=i>(iii). Let 5 be a nilpotent extension of a rectangular band E, i.e. 
Sk = E, for some k £ N. Assume arbitrary u,v £ X-k, p,q £ X* and a £ A. Then 
rju,riv £ E, whence r]upv = r}ur]pr]v = r)uriv = rjur]qriv = rjuqv, whence aupv = auqv, 
which was to be proved. 

(iii)=>(iv). If A is generalized definite, then there exist m,n £ N such that 
aupv = auqv, for all a £ A, p,q £ X*, u £ X-m and v £ X-n. Let k — m + n, 
w £ X-k, a £ A and p £ X*. Then w = uv, for some u £ X-m and v £ X-n, 
whence awpw = au{ypu)v = auv = aw. Therefore, (iv) holds. 
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(iv)=>(i). We see that A is a generalized directable automaton, so 5 is an ideal 
extension of a rectangular band E consisting of all bi-zeroes of 5. Moreover, the 
condition (iv) means that X-k.C GDW(A), for some k £ N, so we conclude the 
following: if s £ Sk, then s = rju, where u can be chosen to be in X-k, that is, to 
be in GDW(A). Now by Lemmas 1 and 3 we have that s = G E. Therefore, 
Sk = E, which was to be proved. 

(iv)=>(ii). Since A is a generalized directable automaton, then by Theorem 1, it 
is an extension of a locally directable automaton B = {au \ a G A, u G GDW(A)} 
by a one-trapped automaton A/B. But, by (iv) we have that X-k C GDW(A), for 
some k G N, so au G B, for any a G A and u G X-k. Therefore, A/B is a nilpotent 
automaton. Assume arbitrary b G B, u G X-k and v G X*. Then b = aw, for some 
w G X-k, so by Lemmas 1 and 3 it follows that bvu = awvu = awu ~ bu, since 
u,w G X^k C GDW(A). Thus, B is locally definite. 

(ii)=>(iii). Let A be a nilpotent extension of a locally definite automaton B. 
Then there exists k G N such that au G B. for all a G A and u G X~k, and there 
exists m G N such that bwv = bv, for all 6 G B, w G X* and v G X-m. Assume 
now arbitrary u G X-k, v G X-m, a £ A and p,q G X*. Then au G B yields 
aupv = (au)pv = (au)v = (au)qv = auqv. Therefore, A is generalized definite. • 

The condition (iv) will be used here as a simpler definition of the generalized 
definiteness. Note again that this condition means that X-k C GDW(A), for some 
k G N. 

Next we intend to describe structure of locally definite automata that -appear 
in the preceding theorem. 

Theorem 6. The following conditions on an automaton A are equivalent: 

(i) 5(A) is a nilpotent extension of a right zero band; 

(ii) A is a direct sum of definite automata with bounded degrees of definiteness; 

(iii) A is a locally definite automaton. 

If A is a finite automaton, then the condition (ii) can be replaced by the following 
condition: 

(ii') A is a direct sum of definite automata. 

Proof. (i)=>(iii). Let 5 be a nilpotent extension of a right zero band E. Assume 
k G N such that Sk = E. In view of Lemmas 1 and 3, Sk = E implies that 
X-k C LDW(A), which is clearly equivalent to the condition (iii). 

(iii)=>(i). Clearly, A is generalized definite, so by Theorem 5 it follows that 5 
is a nilpotent extension of a rectangular band E which consists of all bi-zeroes of 
5. On the other hand, A is locally directable, so by Theorem 2 and Lemmas 1 and 
2 we have that E is also the set of all right zeroes of 5, i.e. it is a right zero band. 

(iii) =>(ii)- Assume k G N such that avu = a,u, for all a G A, u G X-k and 
v £ X*. Let a relation g on A be defined by: (a, b) £ g <=> (Vu G X-k) au = bu. 
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It is easy to see that Q is an equivalence relation on A. On the other hand, the 
definition of local definiteness implies that Q is a direct sum congruence on A. Let 
B be an arbitrary g-class of A and a,b G B. Then au = bu, for each u € X-k, so B 
is a definite automaton whose degree of definiteness does not exceed k. Therefore, 
(ii) holds. 

(ii)=i>(iii). Let A be a direct sum of definite automata Aa, a € Y, and let k 
be a bound of their degrees of definiteness. Assume arbitrary a G A, v G X* and 
v, G X-k. Then a,av G Aa, for some a G Y, so avu = au, since u G DW(Aa). 
This proves (iii). 

As in the proof of Theorem 2 we show that (ii) is equivalent to (ii1) for all finite 
automata. • 

An automaton A is called a reset automaton if it is a definite automaton with 
the degree of definiteness equal to 1, that is if ax = bx, for all a, b G A and x G X. 
If all monogenic subautomata of A are reset, we will say that A is a locally reset 
automaton. In other words, A is locally reset if and only if aux = ax, for all a G A, 
x G X and u G X*. As an immediate consequence of the previous theorem we have 
the following: 

Corollary 1. The following conditions on an automaton A are equivalent: 

(i) S(A) is a right zero band; 

(ii) A is a direct sum of reset automata; 

(iii) A is a locally reset automaton. 

Next we consider automata whose transition semigroups are nilpotent extensions 
of left zero bands. 

Theorem 7. The following conditions on an automaton A are equivalent: 

(i) 5(A) is a nilpotent extension of a left zero band; 

(ii) A is a nilpotent extension of a discrete automaton; 

(iii) A is a reverse definite automaton. 

Proof, (i)o(iii). Assume k G N such that Sk = E is a left zero band. Then s G E 
if and only if s = 7]u, for some u G X-k, and, on the other hand, rju G E if and 
only if u G TW(A). Therefore, Sk is a left zero band, for some k G N, if and only 
if A is reverse definite. 

(iii) =>(ii)- By Theorem 3, A is an extension of a discrete automaton B by a 
one-trapped automaton A/B, and then B = Tr(A). On the other hand, by (iii) it 
follows that there exists k G N such that au G B, for each u G X-k. Thus, A/B is 
a nilpotent automaton, which was to be proved. 

(ii)=>(iii). Let A be a nilpotent extension of a discrete automaton B. Clearly, 
B = Tr(A). Let k be the degree of nilpotency of A/B, and assume arbitrary 
u G X-k, a G A and v G X*. Then au G B, whence auv = au. Thus, A is reverse 
definite. • 
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Theorem 8. The following conditions on an automaton A are equivalent: 

(i) S(A) is a nilpotent semigroup; 

(ii) A is a retractive nilpotent extension of a discrete automaton; 

(iii) A is a direct sum of nilpotent automata with bounded degrees of nilpotency; 

(iv) A is a subdirect product of a discrete automaton and a nilpotent automaton; 

(v) A is a parallel composition of a discrete automaton and a nilpotent automaton; 

(vi) A is a locally nilpotent automaton; 

If A is a finite automaton, then the condition (iii) can be replaced by the following 
condition: 

(iii') A is a direct sum of nilpotent automata. 

Proof. Note that the equivalence of conditions (i) and (iii) was discovered by L. 
N. Shevrin in [29], and one proof of this assertion can be found in the book of F. 
Gecseg and I. Peak [14]. However, here we will give another proof of this assertion. 

( i )o(vi) . We see that A is locally nilpotent if and only if X^k C LOTW{A), 
for some k £ N. But, this holds if and only if S has a zero 0 and Sk = {0} , for 
some k £ N, by Lemma 3. 

(vi)=>(ii). By Theorem 4, A is a retractive extension of a discrete automaton B 
by an one-trapped automaton. On the other.hand, by Theorem 7, A is a nilpotent 
extension of a discrete automaton C. Clearly, B = C, so (ii) is proved. 

(ii)=>(iii). This one proves similarly as the corresponding part of the proof of 
Theorem 4. 

(iii)=>(iv). Let A be a direct sum of nilpotent automata AA, a £ Y, and let 
k be a bound of the degrees of nilpotency of the summands AA, a £ Y. By the 
proof of Theorem 4, A is a subdirect product of a discrete automaton A / a and an 
one-trapped automaton A/Q, where er and g are congruences on A defined as in 
the proof of Theorem 4. It is not hard to check that A/G is a nilpotent automaton 
with the degree of nilpotency which does not exceed k. 

(iv)=>(v). This is obvious. 
(v)=^(vi). Let A be a parallel composition of a discrete automaton B and a 

nilpotent automaton C. Then X-k C LOTW(C), for some k £ N, and if assume 
arbitrary u £ X-k, a £ A and p, q £ X*, as in the proof of Theorem 4 we obtain 
that apuq = au, which was to be proved. 

The rest of the proof can be proved similarly as the related parts of the proof 
of Theorems 4 and 6. • 

Note that finite semigroups which are nilpotent extensions of rectangular bands 
are known as locally trivial semigroups. Languages that correspond to these semi-
groups, in the sense of the Eilenberg's theorem, were characterized in the book [28] 
by J. E. Pin. Languages that correspond to finite nilpotent semigroups, and finite 
semigroups which are nilpotent extensions of left and right zero bands, were also 
described in this book. 
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4. Characterizations through generalized varieties 
Treatment of X-automata as unary algebras of type X gives possibility to study 
varieties of X-automata and certain their generalizations, such as generalized vari-
eties and pseudo-varieties. In this section we use this possibility to characterize the 
classes considered in the previous two sections as generalized varieties of automata. 

A class K of X-automata is called a variety if it is closed under homomorphisms, 
subautomata and direct products, a generalized variety, if it is closed under homo-
morphisms, subautomata, finite direct products and arbitrary direct powers, and 
it is called a pseudo-variety if it consists only of finite automata and it is closed 
under homomorphisms, subautomata and finite direct products. As was proved 
by C. J. Ash in [1], K is a generalized variety if and only if it is a directed union 
of varieties, and it is a pseudo-variety if and only if it is the intersection of some 
generalized variety and the pseudo-variety of all finite X-automata. Generalized 
varieties will be here usually denoted by bold face letters. For a generalized variety 
K, the corresponding pseudo-variety, consisting of all finite automata from K, will 
be denoted by K. 

As known, a class of algebras of a given type r is a variety if and only if it can 
be equationally defined, that is, if it is the class of all algebras of type r that satisfy 
a given set of identities of type r. It is also known that this set of identities can 
be chosen so that at most countably many variables occur in them. For automata, 
this set of variables can be obviously reduced to at most two variables. So we will 
consider identities of type X in at most two variables, that is, the identities of the 
form gu = hv or gu = gv, where u,v G X* and g and h are variables that take their 
values in the set of states of an automaton. If a family {gui = hvl } i e / of identities 
of type X is given, then [gui = hvi \ i G / ] will denote the variety of X-automata 
determined by this family of identities. 

We introduce the following notations: 

Notation Class of automata Notation Class of automata 
GDir generalized directable GDef generalized definite 
LDir locally directable LDef locally definite 
Dir directable Def definite 
Trap trapped RDef reverse definite 
LOTrap locally one-trapped LNilp locally nilpotent 
OTrap one-trapped Nilp nilpotent 
D discrete O trivial 

Table 1 

Let Ki and K> be two classes of X-automata. Then their Mal'cev product K\ o 
K-2 is defined as the class of all X-automata A such that there exists a congruence 
q on A so that A/q belongs to K2 and every £>-class which is a subautomaton of A 
belongs to K\. For example, OTrap o K is the class of all extensions of automata 
from K by one-trapped automata, and D o K denotes the class of all automata that 
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are direct sums of automata from K. Especially, D • Dir will denote all direct sums 
of directable automata with the same directing word, D *Def will denote all direct 
sums of definite automata with bounded degrees of definiteness, D • OTrap will 
denote all direct sums of one-trapped automata with the same trapping word, and 
D • Nilp will denote all direct sums of nilpotent automata with bounded degrees 
of nilpotency. 

Now we are ready to prove the following theorem: 

Theorem 9. The classes defined in Table 1 are pairwise different generalized va-
rieties and the following figure represents their inclusion diagram: 

Trap = OTrap o D 

RDef = Nilp o D 

LOTrap = D 

LNilp = D • Nilp' 

Moreover, they form a semilattice under the set intersection. 

Proof. Clearly, D and O are varieties. Other classes can be represented in the 
following way: 

GDef = \J [guwu = gu\u £ X-k, w £ X*] 
FCGN 

Def = \J [gu = hu\u £ X^k], 
k£N 

RDef = (J [guw = gu I u £ X-k, w £ X * ] , 
fceN 

Nilp = U [guw = hu I u £ X^k, w £ A'*], 
fcew 

LDef = (J [gwu = gu | u e X-k, w £ X*}, 
ken 

GDir = (J [guwu = gu\w £ X* 
«ex« 

Dir = U [gu = hu], 
u€X* 

Trap = (J [guw = gu | w G X*], 
uex* 

OTrap = (J [guw = hu j i u £ l * 
uex• 

LDir = U [gwu = gu | w £ X * ] , 
uEX' 

LOTrap = U [gpuq = gu\p,q£ X*], LNilp =[J [gpuq = gu[u£ X^k, p,q£ X*]. 
uex' fceN 
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On the other hand, since GDW(A), LDW(A) and TW{A) and LOTW(A), if they 
are non-empty, are ideals of X*, for every X-automaton A, we have: 

[guwu = gu \ w £ X*], [gvwv = gv \ w € X*] C [guvwuv = guv | w £ X*], 
[gu = hu], [gv — hv] C [guv = liuv], 
[guw — gu | w £ X*], [gvw = gv\w £ X*] C [guvui = guv | w £ X*], 
[guw = hu | w £ X*], [gvw = hv \ w £ X*] C [guvw = huv \ w € X*], 
[gwu = gu | IU £ X*], [gwv = gv\w £ X*] C [gwuv = guv | w £ X*], 
[gpuq = gu\p,q£ X*j, [gpvq = gv\p,q& X*] C [gpuvq = guv \p,q€ X*], 

and for m, k £ N, m > k implies 

[guwu = gu\u€ X^k, w £ X*] C [guwu = gu\u E w £ X*], 
[gu = hu\ u £ X^ fc] C [gu = hu\u€ X^m], 
[guw = gu\u£ X^k, w £ X*] C [guw = gu\uG X^m, ui £ X*], 
[guw = hu\u€ X^k, w £ X*] C [guw = hu\u€ X^m, w £ X*], 
[gwu = gu\u£ X^k, w £ X*] C [gwu = gu\u € X ^ m , w £ X*], 
[c/pug = £ p,q £ X*] C [^pug = | u £ X ^ m , £>,<?£ X*]. 

Therefore, each of the above given unions is directed, that is, each of the given 
classes is a directed union of varieties, so by Theorem 1 of [1], they are generalized 
varieties. 

It is not hard to verify that the above figure represents the inclusion diagram of 
the considered classes. This follows by the given representation of these generalized 
varieties and by Theorems 1-8. We will give some examples that verify that these 
inclusions are proper. 

Let the input alphabet X be represented in the form X = Xi U X 2 , where 
Xi 0, X2 ^ 0 and Xi fl X 2 = 0 . This is possible since the automata with 
the one-element input alphabets are out of consideration. Consider the automata 
constructed by the following figures: 

Fig. 3 
Fig. 2 

The automaton from Fig. 1 is a two-element reset automaton and it belongs to 
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Def \ Trap, that yields the inclusions 

Nilp C Def, LNilp C LDef, RDef C GDef 
OTrap C Dir, LOTrap C LDir, Trap C GDir. 

The automaton given by Fig. 2 belongs to OTrap \ GDef, whence it follows that 

Nilp C OTrap, LNilp C LOTrap, RDef C Trap 
Def C Dir, LDef C LDir, GDef C GDir. 

The third automaton, defined by Fig. 3, belongs to RDef \ LDir, so we conclude 
that 

LNilp C RDef, LOTrap C Trap, LDef C GDef, LDir C GDir. 

Assume an arbitrary B £ Nilp. Let A be the direct sum of at least two isomorphic 
copies of B. Then A belongs to LNilp \ Dir, and this yields the inclusions 

Nilp C LNilp, OTrap C LOTrap, Def C LDef, Dir C LDir. 

The inclusions O C Nilp, O C D and D C LNilp are obvious. Therefore, we have 
proved that all classes given in the above figure are different. 

Further, assume A £ Trap D Dir. Then TW(A) ^ 0 and LDW(A) 0 , so 
LOTW(A) ^ 0 , by Lemma 4, whence A € LOTrap = D»OTrap. But, A is direct 
sum indecomposable, since A € Dir, so A e OTrap. Thus, Trap n Dir = OTrap. 
By this it also follows that KflDir = OTrap, for each K from the figure such that 
OTrap C K C Trap. 

Let A £ Trap n Def. Then we also have A £ OTrap and LOTW{A) = 
LDW(A) ± 0 . On the other hand, A £ Def implies that X^k C LDW(A), for 
some k e N, and now X-k C LOTW(A), whence A £ Nilp. Thus, we have proved 
Trap n Dir = Nilp, and this implies that K D Def = Nilp, for each K from the 
figure such that Nilp C K C Trap. 

In the same way we prove that Trap fl LDir = LOTrap and Trap n LDef = 
LNilp, that implies that KflLDef = LNilp, for each K from the figure such that 
LNilp C K C Trap. Finally, it is clear that D n K = O, for every K from the 
figure such that K C Dir. 

Therefore, the above diagram represents a semilattice under the set intersection. 
This completes the proof of the theorem. • 

An immediate consequence of the previous theorem is its analogue concerning 
related pseudo-varieties. 
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Corollary 2. The classes given in the following figure are pairwise different pseu-
do-varieties and the figure represents their inclusion diagram: 

Remark 1. Previously we considered only automata with at least two input let-
ters. In the case of autonomous automata, i.e. the automata whose input alphabet 
is one-element, we have that only the classes Nilp, LNilp, O and D are different 
since the transition semigroup of an autonomous automaton is monogenic. 
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On minimal and maximal clones II 

László Szabó ** 

Abstract 
Two minimal clones which generate all operations, and two maximal clones 

with trivial intersection are given on 2p-element sets where p > 5 is a prime 
number. 

1 Introduction 
Let A be a fixed universe with |A| > 2 and let O/t denote the set of all finitary 
operations on A. For 1 < i < n let e™ denote the n-ary '¿-t,h projection (trivial 
operation). Further let J a = {e"|l < i < n < oo}. The operations in 0,4 \ J a are 
called nontrivial operations. By a done we mean a subset of OA which is closed 
under superpositions and contains all projections. The set of clones, ordered by 
inclusion, forms an algebraic lattice L a with least element J a and greatest element 
O^. For A finite LA is an atomic and dually atomic lattice with finitely many 
atoms and coatoms. The atoms and the coatoms of L^ are called minimal clones 
and maximal clones, respectively. 

In [4] we showed that for an at least three element finite set A there are three 
maximal clones with intersection J A , and there are three minimal clones with join 
0,4. If | A | is a prime number then there are two maximal clones and two mini-
mal clones with the above properties. Moreover, we formulated the following two 
problems: 

Problem 1 Find all natural numbers k for which there exist two maximal clones 
on a k-element set A such that their intersection is J a • 

Problem 2 Find all natural numbers k for which there exist two minimal clones 
on a k-element set A such that their join is OA-

This short note is a modest step to answer these problems. Namely, we give 
two maximal clones with intersection J a and two minimal clones with join O^ on 
a 2p-element set A where p is a prime number with p > 5. 

* Research partially supported by Hungarian National Foundation for Scientific Research grants 
no. O T K A T022876, O T K A T026243 and Scientific Research grant of the Hungarian Education 
Ministry no. FKFP 0877/1997. 

^Bolyai Institute, H-6720 Szeged, Aradi vértanúk tere 1, Hungary 
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2 Results 
We need some more notions. A ternary operation / on A is a majority operation 
if for all x,y £ A we have f(x,x,y) = f(x,y,x) = f(y,x,x) = x; / is a Mal'cev 
operation if f(x,y,y) = f(y,y,x) = x for all x,y £ A. An n-ary operation t on A 
is said to be an ¿-th semi-projection (n > 3, 1 < i < n) if for all x\,..., xn £ A we 
have t(xi,..xn) = X{ whenever at least two elements among xi.... ,xn are equal. 

For a finitary relation p on A the set of operations preserving p forms a clone, 
and is denoted by Pol p. 

Theorem 1 Let A = {0 ,1 , . . . , 2p — 1} where p is a prime number with p > 5 and 
put C = {0, l,p,p+ 2}. Let us define a binary relation p and a permutation 7r on 
A as follows: 

p = {(a, fl):a€4}U(CxA)u(ixC) 

and 
7T = (0 1 ... p- l)(p p + 1 ... 2p - 1). 

Then Pol p and Pol ir are maximal clones and Pol p D Pol tt = Pol {p, 7r} = J^. 

Proof: Taking into consideration the list of maximal clones given by I. G. Rosen-
berg (see e.g. [3]) we have that Pol p and Pol TT are maximal clones. We need the 
following fact which follows immediately from the definitions of C and IT: (*) 

For any x,y £ A, x y, there is a k 6 {0 . . . . ,p — 1} such that xnk £ C and 
ynk ^ C. First we establish some properties of the operations in Pol{p,7r}. Let 

/ £ Pol{p, 7r} be an arbitrary n-ary operation, n > 1. 

Claim 1 f(An) 3 {0,1. ...,p- 1} or f(An) D {p,p + 1 . . . . , 2p - 1}. 

This claim follows immediately from the fact that / £ Pol n. 

Claim 2 f(Cn) C C. 

Let c i , . . . , c„ £ C. By Claim 1, there are a\,..., an £ A such that 

/(«!,...,a„) &Cl){f{ci,...,cn)}. 

Then ( c i . a j ) , . . . , (cn,an) € p, and therefore (f(ci,...,cn)1f(ai...,ari)) £ 
p. From this, taking into consideration the definition of p, it follows that 
f(a,. ..,cn)eC. 

Claim 3 / is an idempotent operation. 
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Consider the unary operation g(x) = f(x,... ,x). If g(0) = 0 and g(p) = p then 
g{x) = x for all x £ A and / is an idempotent operation. Indeed, in this case for 
k = 0 , . . . , p - 1 we get that 

g(k) = g(0irk) = g{ 0)nk = OTTk = k 

and 
g{p + k) = g{p-Kk) = g(p)wk = pirk = p + k. 

Therefore we have to show that </(0) = 0 and g(p) = p. By Claim 2, 

g(0),g(l)£C = {0,l,p,p + 2}. 

It follows that ) 

5 ( 0 ) = ^(LTR- 1 ) = ^ L ) * " 1 € C T T 1 = { p - 1 , 0 , 2 ? - l,p+ 1 } 

and 5(0) = 0. Similarly, 

g(p),g(p + 2) G C = {0,l,p,p + 2} 

implies that 

9(p) = g ( ( p + 2 ) T T - 2 ) = g(p + 2 ) T T - 2 € C T T " 2 = { p - 2,p - 1 , 2 p - 2,p} 

and g(p) = p, completing the proof of Claim 3. 

Claim 4 If f is binary then f(x,y) € {x,y} for all x,y £ A. 

^Let^/ be binary and suppose that f(a, b) = c $ {a, b} for some a,b £ A. Then, 
by (*), )ank £ C and cnk £ C for some k. Put u = aivk, w = cirk and v = birk. 
Then 

f{u,v) = f{a-nk,b-Kk) = / (a , b)nk = cnk = w £ C, 

and therefore, by Claim 2, we have that v $ C. Now c ^ b, (u,v), (v,v) £ p imply 
that w ^ v and (w,v) = ( f ( u , v ) , f ( v , v ) ) £ p which is not valid. 

Claim 5 If f is binary then the restrictions of f to {0,1, . . . ,p — 1} and to {p,p + 
1... ,2p — 1} are projections. 

By Claim 4, / (0 ,1) € {0,1}, and without loss of generality we can suppose that 
/ (0 ,1) = 0. Then 

f ( p - 1 , 0 ) = / ( O T T 1 , ITT- 1 ) = / ( 0 , L ) ^ - 1 = O71--1 = p - 1 

and 
f ( p - 2 ,p - 1) = / ( O T T 2 , ITT-2 ) = / ( 0 , 1 ) 7 T ~ 2 = OTT 2 = p - 2. 

Let i £ { 2 , . . . — 2} . From 

( p - l ) 0 ) , ( 0 , i ) e p , {p-l,i)?p and f(0,i) £ {0 , i } 
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it follows that 

(p-l ) /(0>t)) = ( / (p - l > 0) ) / (0 ,0 )ep and / ( 0 , 0 = 0 . 

Similarly, from 

(p — 2,0), (p — l,p — 1) G p, ( p - 2 , p - l ) £ p and / ( 0 , p - l ) e { 0 , p - l } 

it follows that 

(p - 2, / (0 ,p - 1)) = ( / (p - 2,p - 1), / (0 ,p - 1)) G p and / (0 ,p — 1) = 0. 

Hence for any x G {0 ,1 , . . . ,p — 1} we have that / (0, x) = 0, which together with 
the fact that / G Pol 7r imply that the restriction of / to {0 ,1 , . . . ,p — 1} is the first 
projection. One can show by a very similar argument that the restriction of / to 
{p,p + 1 , . . . , 2p — 1} is also projection. 

Claim 6 If f is binary then f is a projection. 

Taking into consideration Claim 5, we can suppose without loss of generality 
that the restriction of / to {0 ,1 , . . . ,p — 1} is the first projection. First we show 
that the restriction of / to {p,p +1 , . •., 2p— 1} is also the first projection. In deed, 
if the restriction of / to {p,p + 1 , . . . , 2p - 1} is the second projection then from 
(2,p), (0,p+ 1) G p we obtain that (2,p + 1) = ( /(2,0), / (p ,p + 1)) G p which is 
not valid. 

If / is not the first projection then for some a G {0 ,1 , . . . ,p — 1} and b G 
{p,p + 1 , . . . , 2p - 1} we have that f(a, b) = b or f(b, a) = a. If / (a , b) = b then 
choose a positive integer k such that ank G C and v — b-Kk £ C. Put u = airk and 
v — birk. Now 

f(u,v) = f{airkMk) = f(a,b)nk = birk = v £ C. 

Since (2,u), (0,v) G p and 2 / v (because of v — birk G {p,p + 1 , . . . , 2p — 1}) it 
follows that (2,v) = (/(2,0), f{u, v)) G p which is not valid. 

If f(b, a) = a then choose a positive integer k such that airk g C and v = birk G 
C. Put u = ank and v = birk. Now 

f{v,u) = f(birk,aitk) = f(b, a)irk = airk = u £ C. 

Since (p + l ,v), (p,u) G p and p + 1 ̂  u (because of u = airk G {0 ,1 , . . . ,p - 1}) it 
follows that (p + 1, u) = (f(p + 1 ,p), f(v, u)) G p which is not valid. Hence / is the 
first projection. 

Claim 7 / cannot be a Mal'cev operation. 

Indeed, if / is a Mal'cev operation, then (2,0), (0,0), (0,3) G p implies that 
(2,3) = ( / (2,0,0) , / (0 ,0,3)) G p which is not valid. . 
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Claim 8 / cannot be a nontrivial semi-projection. 

Let / be a nontrivial n-ary semi-projection (n > 3). We can suppose that / 
is a first semi-projection. Observe that f(c, a2 ..., an) £ C for any c £ C and 
a2,... ,an £ A. Indeed, if c £ C and a2,.. .,an £ A then for any a £ A we have 
(c,a), (a2,c).... ,(an,c) £ p which implies that 

(/(c,<22 ...,an),a) = (f(c,a2,...,an),f(a,c,...,c)) £ p 

and / ( c , a-2 ..., an) £ C. Since / is not the first projection / ( a i , . . . , an ) = a ^ Oi 
for some a i , . . . ,an £ A. Then, by (*), aiirk £ C and airk $ C for some k. It 
follows that 

f(aiTTk,...,anirk) = f(au... ,an)nk = airk, 

a contradiction. 

Claim 9 / cannot be a majority operation. 

Let / be a majority operation. First observe that f(a,b,c) £ C if at least two 
elements among a, b, c belong to C. Indeed, if e.g. a,b £ C then for any x £ A 
from (a,x), (b,x), (x,0) £ p it follows that 

( / (a, b, c), x) = {f {a, b, c),f(x, x, 0))mp 

which implies that f(a,b,c) £ C. 
Now let a,b,c£ A be pairwise distinct elements. Clearly, f(a, b, c) is different 

from at least two of the elements a,b,c, say from a and b. Then, by (*), for some 
k we have u = airk £ C and t = f(a, b, c)irk g C. Put v = birk and w = cnk. Thus 

f(u,v,w) = f(aTTkibiTk,ciTk) = f(a,b,c)irk = t 

and, taking into consideration the above observation, we have that v $ C. Since 
f(a, b, c) ^ b, therefore » / i and (v, t) ^ p. On the other hand (v,u), (v,v), (0, w) £ 
p implies that (v,t) = (f(v,v,0),f(u,v,w)) £ p. This contradiction implies that / 
cannot be a majority operation. Now we are in a position to complete the proof of 

the theorem. If Pol {/?, 7r} ^ J A then there is a nontrivial operation in Pol{p, 7r} 
which is either a unary operation or an idempotent binary operation or a majority 
operation or a Mal'cev operation or a semi-projection (see e.g. [4]). Since , by 
Claims 3, 6, 7, 8 and 9, these cases cannot occur we have that Pol {p, 7r} = J A- D 

Theorem 2 Let A = {0 ,1 , . . . , 2p — 1} where p is a prime number with p > 5 and 
let (A\ V, A) be the lattice given by the following diagram: 
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Let us define a ternary operation d and a permutation IT on A as follows: 

d(x, y, z) = (x A y) V (x A z) V (y A z) 

and 

7r = (0 1 p+2 ... 2p - 2 2p- l ) (p + 1 p 2 . . . p- 2 p- 1). 

Then d and IT generate minimal clones such that the clone generated by d and IT is oA: 

Proof: Suppose that A, p, d and IT satisfy the hypotheses of the theorem. Then 
it is known that nr and d generate minimal clones, respectively (see e.g. [2]). We 
have to show that A = (A\ d,ir) is a primal algebra, i.e., every operation on A is a 
term operation of A. 

First observe that A has no proper subalgebra. Indeed, the proper subalgebras 
of (A; IT) are {0>l,p + 2 , . . . , 2p - 2,2p - 1} and {p,p + 1 ,2 , . . . ,p - 2,p - 1} only. 
Furthermore, 

d(p + 2,p + 3,p + 4) = p ^ {0, l , p + 2 , . . . , 2p — 2,2p — 1} 

and 
d{2,3,4) = 0 ^ { p , p + l , 2 , . . . , p — 2,p — 1}. 

t 
Since d{x, y,0) = x A y and d(x, y, 2p - 1) = x V y for any x, y 6 A, therefore the 

congruence relations of A and (A; V, A , IT) are the same. One can check easily that 
(A\ V , A) has two nontrivial congruence relations only. One of them has two blocks 

B = { 0 , 1 , . . . , p - 1} and C = {p,p + 1 , . . . , 2p — 1}, 

and the blocks of the other are 

{k,p+k}, k = 0, . . . , p - l . 
\ 

It is easy to check that -IT does not preserve these two equivalence relations. Hence 
we have that A is a simple algebra. 
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Next we show that the identity map is the only automorphism of A. To show 
this let r be an automorphism of A. Since r is also an automorphism of the algebra 
(A-,d), for any 0 G Con {A\ d) = Con (A; V, A) we have that Or G Con(A;d). It 
follows that either BT = B or BT = C. Hence T\B is either an automorphism of 
(B; d) or an i somorphism between (5 ; d) and (C; d). For any x G BT we have that 

d(x,0r, (p — 1)T ) = d(xr^1,0,p — 1 )T = (XT~1)T — x. 

Using this fact it is easy to show that either {Or, (p — l ) r } = {0, p — 1} or {Or, (p — 
l ) r } = {p, 2p - 1}. If Or = p - 1 then 

I t = (07r)r = 0(?rr) = 0(r?r) = (0r)?r = (P-L)IR=P+L and BT ± B, C. 

If Or = p then 

l r = (0TT)T = 0(Trr) = 0(TTT) = (OT)TT = pn — 2 and BT ^ B, C. 

If Or = 2p - 1 then 

l r = (0?r)r = 0(TTT) = 0(r7r) = (0r)7r = (2P - 1)TT = 0 and BT ± B, C. 

Taking into consideration that BT — B or BT — C, it follows that Or = 0. Since 
the set of fixed points of r is a subalgebra of A therefore r is the identity map. 

No we are in a position to complete the proof. By [5], every finite, simple, 
surjective algebra without proper subalgebra is either quasiprimal or affine or term 
equivalent to a matrix power of a unary algebra. Since affine algebras and matrix 
powers of unary algebras cannot have majority term operations and d is a majority 
operation, we obtain that A is quasiprimal (i.e. every operation on A admitting 
all isomorphisms beetwen subalgebras of A is a term operation of A). Taking into 
consideration that A has no proper subalgebras and nontrivial automorphisms, it 
follows that A is a primal algebra. • 
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Improving Storage Handling of Interval Methods 
for Global Optimization * 

Csallner A. E. t 

Abstract 
Global nonlinear optimization problems can be solved by interval subdivi-

sion methods with guaranteed reliability. These algorithms are based on the 
branch-and-bound principle and use special storage utilities for the paths not 
pruned from the search tree yet. In this paper the possibilities for the kinds 
of applied storage units are discussed. 

If no ordering is kept in the storage unit then the dependence of the 
number of operations demanded by the storage on the iterations completed 
is quadratic in worst case. On the other hand, ordering the elements as it is 

" necessary for choosing new elements from the storage unit for backtracking, 
the worst case for the number of storage operations done to the fc-th iteration 
has the magnitude k log k. The hybrid method defined in this paper satisfies 
the same complexity properties. It is also proved that the fclogfc magnitude 
is optimal. 

1 Global Optimization and Interval Methods — 
Introduction 

The global optimization problem can be defined in general as follows: 

min f(x) (1) 

where X is a — possibly multidimensional — interval. If we denote the set of real 
intervals by E and / : ]Rn —• 1FL is the objective function of the problem, then 
X 6 ffn. Note, that a great class of real-life bound-constrained global optimization 
problems are covered by (1), e.g., problems where the parameters are given with 
tolerances or if the optimizers are supposed to be inside a parameter region [2]. 

Problem (1) can be solved with verified accuracy with the aid of interval methods 
(see, e.g., [1, 5, 6, 7, 8]). These methods are based on the well-known branch-and-
bound principle. Thus, a search tree is built where the whole search region — the 

•This work has been supported by the Grants O T K A T017241, F025743, and FKFP 0739/1997. 
Presented at the Conference of PhD Students on Computer Science, July 18-22 1998, Szeged. 

tDepartment of Computer Science, Juhász Gyula Teacher Training College, 6725 Szeged, 
Boldogasszony sgt. 6, Hungary, e-mail: csa l lnerSjgyt f .u -szeged .hu 
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interval X — is the root and the particular levels consist of subintervals which are 
partitions of their parents in the tree. Those branches that cannot be pruned have 
to be stored for later treatment. The kind of the storage method used can be of 
great importance in performance if the increase of the number of intervals to be 
stored is considerable. 

The following outlined algorithm is a model algorithm for interval subdivision 
methods for global optimization. 

Algorithm 1 Model algorithm for interval subdivision methods for global opti-
mization. 

Step 1 Let 5 be an empty storage unit, the actual box A := X, and the iteration 
counter k := 1. 

Step 2 Subdivide A into finite number s > 2 of subintervals Ai satisfying A = UAi 
so that int(Aj) fl int(Aj) = 0 for all i j where 'int! denotes the interior of a 
set. 

Step 3 Let S := S U { A , } . 

Step 4 Discard certain elements from 5. 

Step 5 Choose a new A £ S and delete it from S, S := S\ {A} . 

Step 6 While termination criteria do not hold let k := k + 1 and go to Step 2. 

Steps 3, 4, and 5 are using S, and their running time depends obviously on the 
storage handling of the algorithm. In the following we shall concentrate on these 
parts of the algorithm. 

2 Worst Cases in Storage Handling of Interval 
Subdivision Methods 

Because the efficiency of a branch-and-bound method depends highly on which 
branch, i.e., stored element is chosen as next to be treated, two basically different 
principles can be applied to handle the list. The first is to keep the list ordered 
and always pick up the first (or last) element in that ordering, while the second is 
to let the list be unordered and search for the next element in each step a new one 
is needed. The former saves computational time at picking up the elements, the 
latter at storing them. The time necessary for storage handling can be calculated 
in both cases. 

We shall assume that Step 4 is not involved in the considered algorithm. In 
practice, this is the case in most implementations because cleaning up the stored 
elements is usually done when choosing a new A or before storing the new Ai 
intervals. 
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If the stored elements are unordered then Step 3 consumes some cis operations, 
and Step 5 some c-2151. If there is an ordering present which provides a constant 
time operation for finding the new element A in Step 5 then with a most efficient 
method the newly arisen s subintervals are stored in some C3S log |5|'time and the 
new actual interval A is delivered in constant C4 time. We summarize these results 
in the following lemma. 

Lemma 1 The worst case time complexity of storage handling of Algorithm 1 is 

cis + c2\S\ (2) 

if S is unordered, and 
c3slog|S]+c4 (3) 

if S is ordered. The results apply to a single iteration. 

The algorithm keeps running for some k0 iteration steps, and our goal is now to 
determine the total time consumption of the storage handling for the whole running 
time of the algorithm. 

2.1 Unordered Storage Handling 

If the elements are unordered then we can simply consider the storage unit as a 
sequential list. The next theorem says that in this case the number of storage 
operations depends quadratically on the iterations completed. 

Theorem 2 If S of Algorithm 1 is unordered and the process of finding a new 
actual interval A depends on a certain property of the list elements then the time 
complexity of storage operations up to the ko-th iteration is 

T(s,k0) = O{sk20). (4) 

Proof. From (2) of Lemma 1 it follows that a single iteration step uses c\s + C2|S| 
operations for appending the newly arisen intervals to the list and to find a new 
actual interval, where ci and c-2 are independent constants. The total number of 
storage operations done till the fco-th iteration is hence 

fc0 
T(s, ko) = ^ ( c i s + C2|S|). (5) 

k=1 

Let us check how Algorithm 1 works. After the first iteration at most s elements 
are put onto the empty list, and one of them is picked up as the new actual interval 
in the same iteration. Thus, the number of list elements becomes s — 1. The list 
grows in every iteration by at most s — 1. Hence, at the end of some k-th iteration 
in worst case the number of list elements equals 

\S\=k(s- 1). (6) 
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Now putting (5) and (6) together we have 

T(s, ko) = ¿ ( c i s + c2k(s - 1)) = Clsko + c2(s- (7) 
fc=l 

delivering (4) of the assertion. • 

Note, that the proof does not presume the way of either subdividing or choosing 
a new actual box. Hence, all methods covered by the model Algorithm 1 obey 
Theorem 2. 

2.2 Ordered Storage Handling 

The following result is only sharp if in worst case more than a number of operations 
linear in the storage unit's cardinality is needed to keep the elements in the storage 
unit ordered. 

Theorem 3 If S of Algorithm 1 is kept ordered and the selection of the new actual 
intervals presume considering the elements' ordering then the time complexity of 
storage handling up to iteration ko is 

T(s,k0) = O(sk0{logs + \ogk0)). (8) 

Proof . (3) of Lemma 1 says that storage handling costs C3slog|S| + C4 in each 
iteration, where C3 and C4 are independent constants. Hence, summing this to the 
fco-th iteration we get 

fco 
T(S,fco) = X > 3 s l o g l 5 l + c4)- (9) 

k=1 

On the other hand, from (6) of the proof of Theorem 2 (9) can be extended to 

ko 
T(s,k 0) = £ ( c 3 s l o g ( A ( s - l ) ) + C4)= (10) 

k=1 
ko 

= C3s log fc + c3sk0 l og (s - 1) + c4k0. (11) 
fc=l 

The first term of (11) can be bounded from above using the following inequality: 

/-fco + l "•» rK 0 + i J 
Ylogk < / l og\xdx=-—[zlna ; - i]?0-1"1 = 
r~i 1 l n a 

(12) 
it=i 

^ - { k o + l ) H k o + l ) - p ~ , (13) In a In a 
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where a denotes the base of the logarithm function in question. Note, that its value 
cannot influence the magnitude of the formula. 

Substituting (13) into (11) provides the magnitudes that had to be proved. • 

If s is considered as a constant then till finishing the A:o-th iteration the mag-
nitude of storage handling's time consumption is k0 log ko in worst case, provided 
that any element can be inserted to the ordered storage unit in logarithmic time. 

However, the time consumption's dependence on s is higher by a logs factor 
than in the unordered case (see Theorem 2), though this might not mean heavy 
differences by the usually small values of s. 

2.3 Hybrid Storage Handling 

A further storage handling method can be used which has not been mentioned here 
yet. In reality, this is not a new one but a mixture of those from Subsection 2.1 
and 2.2. The idea is [4] to keep some po elements from the storage unit ordered. 
These elements have to be the first ones regarding to the ordering of the whole. 
Hence, the new actual interval can always be chosen as the first of the ordered part. 
When inserting newly arisen intervals, one of them can supply for the ordered part. 
Otherwise a new element for the ordered part can be searched for in the unordered 
part. In worst case it can occur that for a substantial number of iterations the 
ordered part can only be refilled from the unordered part consuming C(|S| — po) 
time in each iteration. 

Therefore, let us consider the following modification; we shall fix the value of 
po and store oiily the first p (1 < p <Po) elements ordered. The remaining |S| — p 
elements are stored in a simple list. 

Thus, every time a new interval is needed, it can be reached in constant time, 
since the first element of the ordered part does it. The other direction, namely, 
storing new elements is a little bit more difficult. For each new element it is 
checked whether it can be inserted into the ordered part of S. If it is the case, the 
element is inserted. If p = po held before the insertion, the last element is moved to 
the unordered part. If the new element is greater at the present ordering than any 
from the ordered part — assuming the ordering is increasing — then it is pushed 
simply onto the unordered part. This procedure can be done in some c5 logp0 time 
in worst case. Since there are at most s new elements to be inserted, the total 
amount of time needed for the storage operations is 

c5s log po 4- c6 (14) 

together with the constant number of operations for picking up the new actual 
interval. If po was considered as an independent constant, (14) could lead to the 
conclusion that for an arbitrary number ko of iterations the time complexity of 
storage operations is linear in the variable ko. In worst case, however, the ordered 
part can become empty forcing the new element to be chosen from the unordered 
part. Theoretically this can occur arbitrary many times. Thus, we should enhance 
the performance, namely, by doing the following two things: 
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1. We compensate the missing elements of the ordered part only if the ordered 
part runs empty, and then it is filled up with po elements from the unordered 
part. 

2. We do not fix po directly as a constant, but say that it is always a k proportion 
of |S|, where K is a constant. 

We shall call this algorithm the hybrid method. The time complexity of this 
method is described in Theorem 4. 

Theorem 4 Let us implement Algorithm 1 with the storage handling described 
above as the hybrid method. Then the time complexity of storage handling opera-
tions is 

T(s,k0) = O{k0\og(sk0)) (15) 

in worst case. 

Proof. Upon the assumptions the elements are stored in two disjunct units, one is 
ordered, the other is not. If the number of all the elements is |S| then the ordered 
part consists of at most po = /c|S| elements, where 0 < k < 1 hold. 

The procedure of storage handling involves two stages. In worst case, the first 
stage is done through po iterations, i.e., until the ordered part becomes empty. The 
next stage consists of a single iteration, where the ordered part is rebuilt. 

In the second stage filling up the ordered part is done as follows. First of all, 
the first po elements are ordered which needs 

k = c5p0 log p0 ( 1 6 ) 

time. After this, the remaining |5| — po elements have to be inserted into the 
ordered part if possible, each with a logpo time complexity. This can be done with 
the following time consumption: 

t-2 =c 6 (|5| -p 0 ) l ogp 0 - (17) 

From (6) of Theorem 2 we know that in worst case the number of list elements 
after the &o-th iteration is |S| = k0(s — 1). Let us apply this to (17) and add it to 
(16): 

t = c5p0 logpo + C6{k0(s - 1) - Po) logpo- (18) 

It is known that at the iteration in question po equals with a given K. But 
citing (6) of the proof of Theorem 2 again we have 

PO = k|S|=KAO(S-1 ) (19) 

Let us use this to (18): 

t = (c5n + c6(l - n))k0(s - 1) log(Kk0(s - 1)) • (20) 
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These t operations only have to be done periodically after each po iterations, where 
po grows monotonously. Applying amortized analysis t can be apportioned among 
the next po iterations to get the time complexity of storage handling for a single 
iteration in average. If for this the actual |5| is used, we get an underestimation 
due to the increasing value of |5| and hence po- Thus, for the time complexity the 
following holds: 

k^1T(s,ko)<— + c7= * n + C 7 , (21) 
Po KKO (s 1) 

where c7 is the time consumption of the first stage. Applying this to the form for 
t calculated in (20) we have 

K'Tis, ko) < C5K + C6(1~/C) log(«Ao(* " 1)) + c7, (22) 
K, 

delivering the magnitude of (15) after ko iterations. • 

The result of Theorem 4 is a nice enhancement in storage handling. To reach it 
we had to make two further assumptions previous to the theorem. None of them 
can be left away unless damaging the bound of (15). Namely, if the ordered part is 
supplied continually then in worst case the time complexity becomes the same as in 
the unordered case (see Theorem 2). On the other hand, if p0 is a value independent 
from |S| then the amortized analysis leaves a term containing fco on first degree in 
the formula also resulting in a quadratic time complexity in ko similar to (4). 

From the three investigated methods the dependence on s is far the best with 
its log s complexity. This magnitude means that in practice — where s > 8 hardly 
ever occurs — the influence of s is unimportant. 

Moreover, for the dependence on the number ko of iterations the following the-
orem holds. 

Theorem 5 For the time complexity dependence on the number ko of iterations 
the magnitude ko log ko is optimal in worst case. 

Proof. It will be proved that if it was not optimal then an algorithm could be 
given to order n elements in less than O(nlogn) time in worst case. 

Let the n data to be ordered be denoted by ai, a-2, . . . , an. We can determine 
the max := maxi=iv.. in a* value in linear time, and let a be greater regarding to the 
ordering than max. Then the algorithm is the following. We take a list handling 
method for interval subdivision methods which has a smaller time complexity than 
fco log fco provided the algorithm is stopped after ko iterations. Now we place the 
data into the storage unit and begin to select elements from it as the ordering desires 
it. Instead of each element removed at least two further instances of the value a is 
put into the storage unit. After n iterations the original data are taken from the 
storage unit in the right order in less than nlogn time which is a contradiction. • 

Corollary 6 The ordered and hybrid list handling methods for interval branch-
and-bound algorithms are both optimal. 
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2.4 List Handling of Hansen Methods 

In the previous three subsections it has been assumed that the sequence of storing 
and recalling elements of the storage unit have not necessarily the same order. 
However, E.R. Hansen's subdivision method [5, 8] selects the oldest element waiting 
in the storage unit — which is a simple FIFO list in this case — in Step 5 of 
Algorithm 1, thus, the time complexity for a single iteration is constant. The time 
complexity after ko iterations is linear in the variable ko. The reason for using the 
algorithm of Hansen yet quite rarely is that its convergence speed is in best case 
the same (see [3]) as of all efficiently converging interval subdivision methods in 
worst case. 

3 Best Cases and Concluding Remarks 
It is obvious that no storage handling can perform better than linearly depending 
on the number of iterations since there must be a few storage handling acts in 
every iteration. A straight consequence of this fact and of the properties discussed 
in Subsection 2.4 is that the Hansen methods achieve this linear dependence. 

Upon the worst cases the unordered and mixed storage handling methods are 
the worst with their quadratic dependence. For the unordered handling this is 
the best case, as well, because looking up all list elements for choosing the new 
actual box cannot be avoided, at all. For the mixed handling it can occur that 
a newly arisen subinterval can always immediately be inserted into the ordered 
part consuming constant time in k0. Thus, the best case behavior shows linear 
dependence. 

The same thoughts lead to the statements about the ordered and hybrid han-
dling methods. These methods both have linear time complexity in best case con-
cerning the number of iterations made. 

The optimal storage handling time complexity is ko log ko — where k0 denotes 
the iteration of termination — for interval branch-and-bound methods if the order 
of the sequence of resulting elements is not necessarily the same as that of the 
recalled elements. 

This optimal complexity is obtained for the ordered storage types and the hybrid 
method. 

If the algorithm itself provides the ordering of new elements then the worst 
case is the same as the best case, i.e., linear regarding to the iterations completed 
(Hansen algorithm). 

The best and worst cases for the rest of the methods are summarized below: 

Method Best Case Worst Case 
Unordered k'2 0 k'1 K0 
Ordered k0 k0 log k0 

Mixed k0 k2 0 
Hybrid k0 k0 log k0 
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Note, that the worst case of the ordered storage handling is only true if a best 
implementation, i.e., a balanced search tree is used. Otherwise the worst case can 
also grow to kg as for the unordered case. 

Average cases cannot be treated simply deriving them from the best and worst 
cases, respectively, since the interval branch-and-bound methods can be applied 
to every programmable function and thus their influence to the storage's behavior 
cannot be predicted in general. Numerical tests are in progress but they are not at 
hand at the present. 
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Minimizing the number of tardy jobs on a single 
machine with batch setup times * 

Günter Rote t Gerhard J. Woeginger* 

Abstract 
This paper investigates a single-machine sequencing problem where the 

jobs are divided into families, and where a setup time is incurred whenever 
there is a switch from a job in one family to a job in another family. This setup 
only depends on the family of the job next to come and hence is sequence 
independent. The jobs are due-dated, and the objective is to find a sequence 
of jobs that minimizes the number of tardy jobs. 

The special case of this problem where in every family the jobs have at 
most two different due dates is known to be A,''P-coniplete [Bruno & Downey, 
1978]. The main result of this paper is a polynomial time algorithm for the 
remaining open case where in every family all the jobs have the same due 
date. This case may be formulated as a dual resource allocation problem 
with a tree-structured constraint system, which can be solved to optimality 
in polynomial time. 

Keywords, sequencing; scheduling; batch setup times; number of tardy jobs. 

1 Introduction 
This paper deals with the following scheduling problem. There are N jobs JI,..., JN 

that are to be processed without interruption on a single machine. All jobs are 
available for processing at time zero. The set of jobs is divided into F families; a 
setup time SJ is associated to each family / = 1 , . . . ,F. Whenever a job in family / 
is processed, this incurs the setup time Sf unless another job from the same family 
is processed immediately before this job. The machine can execute at most one job 
at a time, and it cannot perform any processing while undergoing a setup. Job Jj 
(j = 1,... ,ri) has a positive integer processing time pj, and an integer due date dj. 
In a schedule cr, we denote by Cj(a) the completion time of job Jj ( j = 1 , . . . ,n). 
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If Cj{o) > dj, then job J, is tardy and we set Uj = 1. If Cj(a) < dj, then job Jj is 
processed on-time and we set Uj = 0. The objective is to find a processing order 
of the jobs that minimizes Uj, i.e. the number of tardy jobs. In the standard 
scheduling notation (cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [5] and Potts & 
van Wassenhove [8]), this problem is denoted by 11 sj \ Y,Uj- For related problems 
and for practical applications involving batch setup times, the interested reader is 
referred to Monma & Potts [6], Potts & van Wassenhove [8], and Webster & Baker 
[9]. 

A special case of 11 s/ | Y , U j t h e feasibility testing problem, i.e. the problem 
of deciding whether there is a feasible schedule in which all jobs of a given instance 
are on-time. Bruno & Downey [1] prove that the feasibility testing problem is 
NV-hard, even if there are only two distinct deadlines per family. An instance of 
11 sf I 12 Uj where in every family all jobs have the same due date, is said to have 
uniform family due dates. In this paper we will show that the problem with uniform 
family due dates is solvable in polynomial time. This special case is sufficiently 
general to contain the problem 111 J^Uj without batch setup times (in 111 ^ Uj, 
every jobs forms its own family and all family setup times are zero). Hence, our 
result generalizes the well-known polynomial time algorithm of Moore [7]. 

Our solution approach to 11 s j | Y Uj is as follows: We formulate 11 s/ | J2Uj 
with uniform family due dates as a dual resource allocation problem with tree-
structured constraints (cf. Section 3). Since this dual resource allocation problem 
can be solved in polynomial time by dynamic programming (cf. Section 2), the 
scheduling problem itself can be solved in polynomial time. 

2 A dual resource allocation problem 
The resource allocation problem (cf. Ibaraki & Katoh [3]) is a well-known optimiza-
tion problem with a (possibly) complex objective function under a single, extremely 
simple constraint. In the dual resource allocation problem (cf. Katoh, Ibaraki & 
Mine [4] or Section 10.1 in [3]), the roles are exchanged and the objective function is 
simple whereas the constraint system may be messy. In this section, we investigate 
the following dual resource allocation problem (DAP). 

E / = i ® / 

E / € s 9f(xf) < cs for all S G S 
< 0 < xf <nf f = l,...,F 
„ xf integer / = 1 , . . . ,F 

For 1 < / < F, the function gf.[0,rif] - » IR is an arbitrary function which is 
specified as an ordered list of pairs {x,g/(x)), x = 0 , . . . ,nj. The values n / , 1 < 
/ < F, are positive integers. The set system S is a system of non-empty sets over 
{ 1 , . . . , F } . For every S E S, the value c$ is an arbitrary real number. 

max 

(DAP) 
s.t. 
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Moreover, denote n = Observe that n > F holds and that by the 
specification of the functions <?/, the numbers n/ and n are essentially encoded in 
unary. 

Proposition 2.1 The dual allocation problem (DAP) is an AfV-hard problem. 

Proof. The statement may be proved e.g. via a reduction from INDEPENDENT 
SET IN GRAPHS (cf. Garey k Johnson [2]): Given a graph G = (V,E), find 
the maximum number of pairwise non-adjacent vertices. For every vertex Vf £ V, 
introduce a corresponding variable x j in (DAP) with the interpretation "Xf = 1" 
if Vf belongs to the independent set and "xf = 0" otherwise. Moreover, set n/ = 1, 
<7/(0) = 0 and Qf( 1) = 1. For every edge e = (vf, «/,.)• introduce the set { / , h} in S 
and set C{//,} = 1. Then the optimal objective value of (DAP) yields the size of 
the maximum independent set in G. • 

A set system S is called tree-structured if 0 S and for all S', S" £ S, 

S' C S" or S" C S' or S' n 5 " = 0. 

With a tree-structured set system S, we associate a directed in-forest T(S) as 
follows: For every set S £ S the forest contains a corresponding vertex; in the 
following we will not distinguish between a set 5 and its corresponding vertex. 
There is a directed edge from a set S' to another set S" in !F(S) if and only if 
S' C S" and there is no S'" in S with S' ± S'" ± S' and S' c S'" C 5" . Clearly, 
every vertex in T(S) has out-degree at most one. Adding all singleton sets to 
S does not destroy the tree-structured property. But then, the forest ^"(5) has 
F leaves, and the remaining vertices have indegree at least 2. It follows that a 
tree-structured family S contains at most 2F — 1 sets. 

Lemma 2.2 For any instance I — (n /,()/, S. c,s) of (DAP) with tree-structured 
S, one can construct in 0(n + F2) time another instance /' = (rif,gf,S',c's) of 
(DAP) such that the following conditions are fulfilled. 

(CI) I and V are equivalent, i.e. they have the same set of optimal solutions and 
the same optimal objective value. 

(C2) The set system S' in I' is tree-structured; |<S'| = 2F — 1 holds; the in-forest 
T(S') associated with S' is a binary in-tree. 

Proof. We construct / ' in two steps by adding more sets to S. We set the right-
hand sides c's of all the corresponding new inequalities to the global upper bound 
c* = max{0,maxo<x<n/ g/(x)}, which makes them redundant. Initialize 
S' := S and for all S £ S set c's = cS- 'If { / } $ S' for some f £ {1,...,F} then 
add the new set { / } to <S'. If { 1 , . . . , F} S' then add the new set { 1 , . . . , F} to 
5'. 

In the second step, repeat the following procedure as long as some vertex S in 
J-(S') has three or more in-going edges: Let S^ and Sj2 be two arbitrary children of 
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S in add the set S' = S^ US,2 to S'. By iterating this procedure, eventually 
every interior vertex in !F(S') will have in-degree two and condition (C2) will be 
fulfilled. This completes the construction of instance I ' . It can be verified that / ' 
is equivalent to I and hence, conditions (Cl) and (C2) are both fulfilled. 

It remains to discuss the time complexity. The first step is easily done in 
0(n + F) time. In the beginning of the second step, compute the current forest 
J-(S') as follows. First construct a simple, undirected, loopless auxiliary graph with 
vertex set S': For every / = 1,... ,F and for every S', S" 6 S' with / e S' and 
/ 6 S" , put an edge between S' and S" into the auxiliary graph. The auxiliary 
graph can be constructed in 0(F2) overall time. Then for S € S1, S ^ { 1 , . . . . F } , 
the unique out-going edge in T(S') goes to the set S' where (i) S ' is adjacent to 
S in the auxiliary graph, (ii) |S'| > |S|, and (iii) |S'| is smallest possible under 
these conditions. In this way, the forest F(S') for S' at the beginning of the second 
step can be computed in 0(F2) time from the auxiliary graph. Getting rid of the 
vertices with in-degree greater than two can be done by locally manipulating JF(iS'); 
it is routine to implement it in 0{F2) overall time. • 

Theorem 2.3 The special case of the dual allocation problem (DAP) where S is 
tree-structured is solvable in 0(n2) time. 

Proof. First we apply Lemma 2.2 to get in 0(n + F2) time an equivalent instance 
where 3-(S) is a binary tree. Let S i , . . . , S2F-1 be an enumeration of the sets in S, 
such that Si C Sj implies i < j. For S € S, let n(S) = E / e s nf • 

The remaining argument will be done by dynamic programming. Define a two-
dimensional array A[i,t] where 1 < i < 2F — 1 and 0 < t < n with the following 
meaning: The value A[i, ¿} is the smallest g* for which there exist values x*j. f £ St, 
such that 

(A1) Efes 9f (x*f) ^ c s holds for all S € S C Si. 

(A2) E f € S i * } = * • 
(A3) E / € 5 i .9/(z/) = <?*• 

If no values x*j fulfilling (Al) and (A2) exist, then A\i,i] = +00. This happens 
for example when I > n(Si). Hence from now on, we will only deal with entries 
A[i,i] for which I < n(Si). We compute the entries A[i. £} in increasing order of i. 
If |S»| = 1, let Si = { / } and set for 0 < i < nf 

* M = i " ( 0 i f " W S c s (i) I + 0 0 otherwise. 

If |Si| > 1, let Si = S0 U Sb with a < b < i, where Sa and St are the two children 
of Si in T(S). Then for I < n(Si), 

j min { A[a, k] + A[b, i - k] : 0 < k < n(S„), 0 < t - k < n(Sb) } 
A^i, £\ — \ ( 2 ) 

I + 0 0 if this minimum is greater than cs{ • 
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It can be verified that with the above definitions, (A1)-(A3) are always fulfilled for 
g* = A[i, £}. In the end, the optimal objective value of (DAP) equals the maximum 
I for which A[2F - 1,1] takes a finite value. 

Let us analyze the time needed to compute all values A[i,i], Denote by T(i) 
the total time needed to handle all finite entries A[j,£] with 0 < i < n and Sj C Si. 
Then for |Si| = 1 with S, = { / } , (1) implies that 

T(i) = COnstx-71/ = consti • n(Si). (3) 

If |Sj| > 1, let Sa and St, be the two children of Sj in T(S). Note that a < b < i, 
that Si = Sa U St, and that n(Si.) = n(Stt) + n(St) holds. We claim that 

T(i) = T(a) + T(b) + const2 • n(Sa) • n(Sb). (4) 

This can be seen as follows. The time T(i) consists of the total time for handling 
all entries A[j,£\ with 0 < I < n and Sj C Sa or Sj C St, plus the total time for 
handling all entries A[i,i] with 0 < £ < n. For every a, 0 < a < n(Sa), and for 
every /?, 0 < (3 < n(Sb), in (2) there is exactly one step performed with k = a and 
£ — k = p. Hence, the total time for handling the entries A{i,i) with 0 < I < n(Si) 
is proportional to n(Sa) -n(Sb). Hence, (4) indeed holds. By induction, one proves 
from (3) and (4) that 

T{i) < const • n(Si)2. 

Consequently, the total time T(2F — 1) needed for computing all entries is 0(n2). 
Since F < n, the time spent'on applying Lemma 2.2 is also 0(n2). Summarizing, 
this yields the running time claimed in the statement of the theorem. 

Finally, we remark that by storing appropriate auxiliary information in the 
dynamic program and by doing some backtracking, one can also explicitly compute 
the values xf in an optimal solution; this increases the running time by only a 
constant factor. Since these are standard techniques, we do not elaborate on them. 

• 

3 Solution of the scheduling problem 
In this section we discuss the scheduling problem 11 s / \ Uj that has been de-
fined in the introduction. The following observation follows via straightforward job 
interchange arguments. 

Observation 3.1 For any instance ofl\sf\ Y^Uj with uniform family due dates, 
there is an optimal schedule of the following form. 

(i) For every family, the on-time jobs of that family are processed consecutively; 
hence, the setup for each family is performed at most once. 

(ii) In each family, the on-time jobs are the shortest jobs of the family. • 
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For / = 1 , . . . , F, denote by df the due date of the jobs in family / . Without loss 
of generality assume that d\ < do < • • • < dp. Let n / , / = 1,... ,F, denote the 
number of jobs in family / , and let p/^ < p/,2 < • • • < Pf,n, denote their processing 
times. Moreover, define 

9f(x) = 

For / = 1 ,...,F, introduce 5 / = { 1 , . . . , / } and set cs, = df. Define S = 
{ 5 I , . . . , 5 F } . Finally, denote by Xf the number of on-time jobs from family / , 
f=l,...,F. 

With this choice of parameters, the dual allocation problem (DAP) is equivalent 
to 11 Sf | Y, Uj with uniform family due dates. Moreover, S is tree-structured and 
hence Theorem 2.3 implies the main result of this paper: 

Theorem 3.2 The special case of 11 sj | Uj with uniform family due dates is 
solvable in 0(n2) time. • 

Acknowledgement. The authors thank Bettina Klinz for several valuable discus-
sions and for providing pointers to the literature on allocation problems. 
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Generalized Dependencies in Relational Databases * 
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Abstract 

A new type of dependencies in a relational database model introduced 
in [5] is investigated. If b is an attribute, A is a set of attributes then it is 
said that b (p, g,)-depends on A, in notation A ^^ b, in a database relation 
r if there are no q + 1 tuples in r such that they have at most p different 
values in each column of A, but 9 + 1 different values in 6. (1, l)-dependency 
is the classical functional dependency. Let ¿7{A) denote the set {b: A 
6}. The set function J\ 2n —> 2n becomes a closure if p = q. Results on 
representability of closures by (p, p)-dependencies are presented. 
Keywords : relational database, closure, functional dependency, branching 
dependency, balanced graph 

1 Introduction 
A relational database system of the scheme R(A1} A2,..., An) can be considered 
as a matrix, where the columns correspond to the attributes Ai (for example name, 
date of birth, place of birth etc.), while the rows are the n-tuples of the relation 
r. That is, a row contains the data of a given individual. Let fl denote the set 
of attributes (the set of the columns of the matrix). Let A C il and b £ fi. We 
say that b (functionally) depends on A (see [1, 2]) if the data in the columns of A 
determine the data of b, that is there exist no two rows which agree in A but are 
different in b. We denote this by A —> b. 

Functional dependencies have turned out to be very useful. In the present paper 
we investigate a more general (weaker) dependency, than the functional dependency, 
which was introduced in [5]. 

The general concept to be studied is the (p, g)-dependency of [5] with p = q. 
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Definition 1.1 Let a relational database system of the scheme R(Ai,A2, An) 
be given. Let ACQ and b £ Q. We say that b (p, g)-depends on A if there are no 
q + 1 rows (n-tuples) of r such that they contain at most p different values in each 
column (attribute) of A, but q + 1 different values in b. 

For a given relation r (or its matrix M) we define a function from the family of 
subsets of Cl into itself, as follows. 

Definition 1.2 Let M be the matrix of the given relation r. Let us suppose, that 
1 < P < Q- Then the mapping JMpq-2n 2n is defined by 

We collect two important properties of the mapping JMpq in the following propo-
sition, see [5]. 
Proposition 1.3 Let r, fi, M, p and q as in Definition 1.2. Furthermore, let 
A . B Ç O . Then 

Definition 1.4 Set functions satisfying (i) and (ii) are called increasing-monotone 
functions. We say that such an increasing-monotone function N is (p,q)-
representable if there exists a matrix M such that N = JMpq • 

It was also observed in [5] that in the case p = q the set function JMpq satisfies a 
third property 

Set functions satisfying (i) — (Hi) are called closures and are widely investigated. 
In [6] the minimum representation of closures and increasing-monotone functions 
were investigated. In [7] the connection of the minimum representation and design 
theoretical constructions was described. Also many open problems were posed. 

In the present paper the representability of closures is investigated, in [1] it was 
proved that functional dependencies and closures are equivalent. However, in [5] 
it was pointed out, that this no longer holds for general (p,p)-dependencies. It is 
natural to ask, which closures arise in connection with these weaker dependencies, 
or putting the question in another way, given a closure £, what are those p's, for 
which C is (p,p)- representable. This motivates the following definition. Because 
only (p,p)-dependencies and (p, ̂ -representations are considered, in what follows 
p-dependency and p-representation are written, for the sake of simplicity. 

Definition 1.5 Let C be a closure on the set il. The spectrum SP (£) of C, is 
defined as follows. 

(in) JMpq(JMpq(A)) = JMvq(A) for all ACQ. 

q G SP(£) C is q — representable 

Note that SP(£) Ç N. 
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The following special type of closure plays an important role in the theory. 

Definition 1.6 Let denote the following closure on f2 = n): 

The following theorem was proved in [5] 

Theorem 1.7 

1. {1 ,2} C SP(C) for any closure C. 

2. S P ( 0 = {1 ,2} ifn > 6. 

3. If |fi| = n and 2n - 3 < N e SP(£), then Vq > N q e SP(£) 

The purpose of the present paper is to extend Theorem 1.7. The extension yields 
some quite surprising results about the spectra of closures. The interested reader 
is referred to [3, 4, 6, 7] for further investigations and open problems. 

2 Spectra of closures 
It was shown in [5] that for a matrix M b £ JMpq(A) implies b G J m v - I q - i ( ^ ) 
provided the matrix has at least 9 + 1 distinct entries in each of its columns. This 
may lead to the expectation that the spectrum of a closure is an interval of the 
integers. In this section we show the quite surprising fact that the spectrum of a 
closure may contain an arbitrary number of "holes", i.e., it may be far from being 
an interval. 

Let the TO x n matrix M p-represent the closure C on fi. A mapping w from 
the edges of the complete graph Km to the subsets of Q can be defined, as follows. 
The vertices of Km are identified with the set of rows of M. For an edge e = {i,j} 
of Km, let w(e) be the set of positions where rows i and j agree. If A C ft and 
b £ tt such that b £ C(A), then there exist p + 1 rows ri, r 2 , . . . , rp+1 that contain 
at most p distinct values in columns of A but they are all different in column 
b. Equivalently, b £ Ui<i<j<p+i w({ r i> rj}) -1 The n e x t lemma, which is an 
equivalent formulation of Theorem 2.12 of [5] is explained by the above observation. 

Lemma 2.1 Let C be a closure on fl. C is p-representable if and only if there 
exists a mapping ui:E(Km) —> 2n of the edges of Km for some m (where w(e) is 
called the weight of edge e) that satisfies the following two properties: 

1. For any three edges ei,e2,ez forming a triangle, w(ei) (lw(ej) C w(ek) holds 
for any permutation (i,j, k) of (1, 2,3). 

2. For any p+1 vertices of Km, the union weights of edges spanned by these ver-
tices is closed by C, and every closed set of C can be obtained as intersections 
of sets of this type. 

X if\X\<k 
Q, otherwise 
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Condition 1. is the necessary and sufficient condition for the existence of a matrix 
with prescribed edge weights, while condition 2. is that of the p-representation. 

First some constructions are presented that show that certain values of p are 
in SP(C*). Then we show, that these are all the elements of SP(C£) provided n is 
large enough with respect to k. In what follows, edges of Km of empty weight will 
be omitted for the sake of simplicity, i.e. weightings of not necessarily complete 
graphs will be given with the understanding that edges not mentioned have empty 
weight. 

The following result of Rucinski and Vince [8] is needed for constructions. 
A graph G of e(G) edges and v(G) vertices is called balanced if e(G)/v(G) > 
e(H)/v(H) holds for every subgraph H of G. G is called strongly balanced if 
e{G)/{v{G) - 1) > e(H)/{v(H) - 1) holds for every subgraph H of G. A strongly 
balanced graph is clearly balanced. 

Theorem 2.2 ([8]) There exists a strongly balanced graph with v vertices and e 
edges if and only if 1 < v — 1 < e < (ij). • 

Lemma 2.3 C^ is p representable if p < k — 2. 

Proof of Lemma 2.3 We may assume without loss of generality that p > 2 by 
Theorem 1.7. Let k - 1 = a (p*1) + b where 0 < a and 0 < b < ("+1) are integers. 
Suppose first, that b> p. Let G be a balanced graph of p + 1 vertices and b edges 
provided by Theorem 2.2. For every k — 1-element subset of fI we take Kv+ \ so 
that edges corresponding to edges of G are weighted by a + 1-element subsets, the 
remaining ones by a-element subsets, such that the weights of edges are pairwise 
disjoint sets, and their union is the given k — 1-element subset of ft. We claim 
that the disjoint union of these weighted complete graphs satisfy the conditions of 
Lemma 2.1. 

It is clear that Condition 1. is satisfied, because weights of adjacent edges are 
pairwise disjoint sets. Also clear is that every k — 1-element subset of ft occurs as 
union of weights of edges spanned by some p+ 1-element subset of vertices. The only 
thing to check is that larger subsets of ft do not occur this way. Let us suppose that 
the p + 1-element subset of vertices U is the union of sets Ui, i = 1,2,... ,t, where 
Ui s are the intersections of U with the weighted complete graphs. Let Ui = \Ui\, 
furthermore let ei be the number of edges of the subgraph of balanced graph G 
spanned by vertices corresponding to Ui. Then ei/ui < b/(p + 1) is satisfied. The 
cardinality e of the union of the weights of edges spanned by U can bounded from 
above, as follows: 

e 
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fp + l\ A b 
< a „ + > Wj ~ v 2 / h p + l 
-

On the other hand, if b < p, then a > 0 is satisfied. Let A; - 1 —p = (a - 1 ) (pj '1) +c. 
Then c > p holds. Let us consider two graphs, G and H, on the same p + 1 
vertices, where G is a balanced graph with c edges, and H is a path (which is 
clearly balanced). For every k — 1-element subset of fl we take Kp+X so that edges 
corresponding to edges of G fl H are weighted by a + 1-element subsets, those 
corresponding to edges of G\H and H \ G are weighted by a-element subsets, 
the remaining ones by a — 1-element subsets, such that the weights of edges are 
pairwise disjoint sets, and their union is the given k — 1-element subset of fl. That 
the disjoint union of these weighted complete graphs satisfies the conditions of 
Lemma 2.1 can be proved by a similar argument to the one above. • 

Let us recall that fx] denotes the smallest integer not less than x. 

Lemma 2.4 If 

then p £ SP (C£) 

p + 1 -
p+ 1 = k — 1 for s > 1 

Proof of Lemma 2.4 Take ( s " J paths of s vertices whose edges have one el-
ement weights so that each s — 1-element subset occurs as union of elements of a 
path. Any p + 1 vertices span a forest that has at least f 2 ^ ] components, so at 
most k — 1 edges. • 

Note, that in Lemma 2.4 s < p + 1 may be assumed. Any s > p + 1 gives the 
same p = k — 1 case. 

In the following, non-representability of closures is discussed. The general pat-
tern is that a minimal (non-decreasable) representing matrix is assumed, then it is 
shown that it must contain identical rows^that clearly contradicts to its minimality. 
The next lemma shows that the spectrum of is finite provided n is large enough. 

Lemma 2.5 Let p >2k, — l. If n > k'2 (k — 1), then is not p-representable. 

Proof of Lemma 2.5 Let us assume indirectly that is p-represented by the 
rn, x 71 matrix M, and M is minimal. Immediately follows that every column has 
to contain at least p + 1 pairwise distinct entries, otherwise everything would be 
(p,p)-dependent on that particular column. According to Lemma 2.1 for every 
k — l-element, subset A of fi there exist p+ 1 vertices of Km such that the union 
of weights of edges spanned by these vertices is A. Indeed, A is closed in but 
cannot be an intersection of other closed sets, because the only closed superset of 
A is $7. In particular, for every column a 6 fl there exists and edge ett of Km such 
that a e w(ea). Let ev,e2,..., e^ correspond to k distinct columns { a 1 ; a 2 , . . . 
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Suppose, that there exists a column b containing pairwise distinct entries in rows 
covered by edges e* . The k edges e, cover at most 2k < p + 1 points, or rows, 
so there exist p + 1 points ri,r2, • • - ,?Vi-i such that b contains all different entries 
in these rows, or in other words: Uj=i w(ei) Ui<i<j<,,+i w({n,rj}) $ b. This 
would imply the existence of a closed set of at least k elements which is not ft, 
because b is not in the closure of the set {ai , a2,..., a^}. a contradiction. Thus, 
each column b must contain at least a pair of identical entries on the at most 2 k 
rows covered by e\, e2, • • •, e-k- Now, n > k2 (k — 1) implies that there are k distinct 
columns b\,b2,... ,bk so that they contain identical elements on the same pair of 
rows, say T'I,r2. If there exists a column c containing distinct entries on ri,r2, 
then there exist p+ 1 rows including r\, r2 such that c contains all different entries 
in them, thus a closed set c $ B D b2,..., would exist, a contradiction. 
Consequently, every column must agree on the pair of rows riyr2, i.e., these rows 
are identical, which contradicts the minimality of M. • 

Note that in the above argument the proof of the following proposition is in-
cluded. 

Proposition 2.6 If the matrix M p-represents and minimal subject this condi-
tion, then the weight of an edge iu(e) is at most k — 1 -element set. 

The next proposition considers another property of a minimal representation. 

Proposition 2.7 Letp < 2k—4 andn > (k — 1) (2k—3). Let M p-represented and 
let M be minimal subject to this condition. Then for anyp+l rows ri,r2,... ,rp+i, 

u 
l<i<j'<p+l 

< k - 1. 

Proof of Proposition 2.7 According to Lemma 2.1 the union of edge weights 
of a p + 1-point complete subgraph is either ft or its size is at most k — 1. Suppose 
indirectly, that there is a sub-iip+i P such that the union of its edge weights is 
ft. M p-represents so there is a sub-/C"7J+| Q such that the union of its edge 
weights is a k— 1-element subset. By successively shifting vertices from P \ Q to Q, 
sub-ifp+i P' and Q' are obtained that \P' \ Q'\ = 1, but the union of edge weights 
of P' is still ft, while that of Q' is still a k - 1-element subset. Let {b} = P' \Q'. 
Then the union of edge weights of the p edges between b and P' fl Q' is of size at 
least n — k +1, thus there exists an edge e amongst them such that |w(e)| > k, that 
contradicts to the minimality of M by Proposition 2.6. • 

The next proposition allows considering p-representations of special type. 

Proposition 2.8 Let 2 L^ijr-J > k and suppose that is p-representable. Suppose 
furthermore thatp <2k — 4 andn > (k — l)(2k — 3). Then there exists n' > n — k + 1 
such that Cis p-represented so that each edge weight is at most one element set. 
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Proof of Proposition 2.8 Let M be a matrix p-representing that is minimal 
subject to this condition. A sequence of t 2 ^-] edges is defined . Let ai be the 
largest size of an edge weight, and let ei be an edge of weight of this size. Now 
suppose, that ei, e-2,..., e, are already defined and let aj+i be the maximum of 
|w(e) \ Uj<iw(ej)\ for any edge of K„ and define e^+i to be an edge attaining 

L ^ J this maximum. We claim, that û^e+Ij = 1- Indeed, otherwise | Ui=f w(et)| > k 
would be, which contradicts to Proposition 2.7, because any L 2 ^ ] edges can be 

i p+i | 
embedded into a sub-l^+i. Let fti = ft \ U i = j w(eî). Then |fti | > n — k + 1 and 
M restricted to the columns of fti p-represents C ^ with the property, that each 
edge of Km has weight of size at most one. • 

The next lemma is a sort of converse of Lemma 2.4. 
Lemma 2.9 Let n > (k — 1) (2k — 3) and suppose that there exists integer s > 1 
such that 

p+ 1 -
p+ 1 < f c - l < p + l p+ 1 

s + l 
Then C% is not p-representable. 

Proof of Lemma 2.9 Let us suppose indirectly that C* is p-represented b y m x n 
matrix M. We may assume without loss of generality that each edge weight of Km 

is at most one element set according to Proposition 2.8. In the following "number 
of edges" means "number of edges of pairwise different weights" for the sake of 
simplicity. If there are more than one edges of the same non-empty weight in a 
sub-ifp+i, then an arbitrary one of them can be picked. 

Each k — 1-element subset of ft must occur as union of weights of edges of 
a sub-/i"p+1. By the condition on k and p, the edges of non-empty but pairwise 
different weight of such a sub-/ip+i span a graph that has a non-tree component 
or a tree component of size at least s + 1. Such a component is called big. Let 
B\, £?2, • • •, Bz be big components of different sub-l-sTp+i's corresponding to pairwise 
disjoint k — 1-element subsets. A p + 1- vertices subgraph is constructed as follows. 
First, take as many non-tree components as possible, then big tree components, 
until the number of vertices reaches p + 1. Let this graph be H, and suppose the 
number of vertices of H covered by non-tree components is d, and let u = p+1 — d. 
Then the number of edges e(H) of H satisfies 

e(H) >d + u + 
s + l 

>p+ 1 -
p + 1 
s + l 

> k - 1, 

• that contradicts to Proposition 2.7. 
The above results can be summarized in the following theorem. 

Theorem 2.10 Let n > k2 (k - 1). Then the spectrum SP(C,j) of C* is determined 
by the follovdng formula: 

"p+ 1" 
SP(C£) = {1 ,2 , . . . , fc - 1} U {p: 3s S N p + 1 - = k- 1}. 

• 
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3 Open Problems 
A complete characterization of SP(C*), was given if k is small with respect to n. 
However, it was proved in [6] that C" is p- representable for every positive integer 
p. Thus, the following problem arises naturally. 
Open Problem 1 Determine those k's for which SP(C£) = N holds! 

The constructions used in proving that certain values of p are in the spectrum of 
usually result in very large matrices. Thus, the next problem is also of interest. 

For similar results and problems the reader is referred to [6]. 
Open Problem 2 Determine the minimum number of rows of a matrix p-
representing . provided such a representation exists! 

Finally, the general question is still open. 
Open Problem 3 Determine the spectra of other closures! 

Open Problem 3 is in particular interesting for closures arising in different areas of 
combinatorics, for example for closures coming from matroids. 
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Analysis of the Completion Time of Markov 
Reward Models and its Application* 

Miklós Telek t András Pfening t Gábor Fodor t 

Abstract 
Analysis of Markov Reward Models (MRM) with preemptive resume (prs) 

policy usually results in a double transform expression, whose solution is based 
on the inverse transformations both in time and reward variable domain. This 

. paper discusses the case when the reward rates can be either 0 or positive, and 
analyses the completion time of MRMs. We present a symbolic expression 
of moments of the completion time, from which a computationally effective 
recursive numerical method can be obtained. As a numerical example the 
mean and the standard deviation of the completion time of a Carnegie-Mellon 
multiprocessor system are evaluated by the proposed method. 

K e y words: Markov Reward Models, Preemptive Resume Policy, Com-
pletion Time. 

» 

1 Introduction 
The properties of stochastic reward processes have been studied since along time [9]. 
However, only recently, stochastic reward models (SRM) have received attention as 
a modeling tool in performance and reliability evaluation. Indeed, the possibility 
of associating a reward variable to each structure state increases the descriptive 
power and the flexibility of the model. 

Different interpretations of the structure-state process and of the associated 
reward structure give rise to different applications. Common assignments of the 
reward rates are: execution rates of tasks in computing systems (the computational 
capacity) [1], number of active processors (or processing power), throughput [12], 
available bandwidth average response time or response time distribution. 

Two main different points of view have been assumed in the literature when 
dealing with SRM for degradable systems [11]. In the system oriented point of 
view the most significant measure is the total amount of work done by the system 
in a finite interval. The accumulated reward is a random variable whose distribution 
function is sometimes called performability [12]. Various numerical techniques for 

* A. Pfening and M. Telek thank Hungarian O T K A for grant No. F-23971. 
^Department of Telecommunications and Telematics, Technical University of Budapest, P.O.B. 

91, 1521 Budapest, Hungary 
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the evaluation of the performability have been investigated in recent papers: [10, 
7, 8]. In the user oriented (or task oriented) point of view the system is regarded 
as a server, and the emphasis of the analysis is on the ability of the system to 
accomplish an assigned task in due time. Consequently, the most characterizing 
measure becomes the probability of accomplishing an assigned service in a given 
time. The task oriented point of view is a more direct representation of the quality 
of service. Asymptotic behaviour of some task oriented measures is studied in [16] 
under the assumption of fast service (or repair). 

A unified formulation to the system oriented and the user oriented point of view 
was provided by Kulkarni et al. in [11]. An alternative interpretation of the com-
pletion time problem can be given in terms of the hitting time of an appropriate 
cumulative functional [6] against an absorbing barrier equal to the work require-
ment. The definition of a cumulative functional was first suggested by Kulkarni et 
al. [11] and then explicitly exploited in [4], where the completion time was mod-
elled as a first hitting time against an absorbing barrier. The subclass of MRMs 
with Phase-type distributed random work requirement was studied by Bobbio and 
Trivedi [5]. In this case the completion time is Phase type distributed and they de-
fined the "extended" Continuous Time Markov Chain (CTMC) which characterize 
the distribution of the completion time. 

In this paper, we improve the results of [2, 13] and propose a computationally 
effective approach not only to calculate the mean completion time of on-off MRMs 
(i.e. MRMs with reward rates equal to 0 or 1), but to obtain all the moments of 
the completion time of MRMs with arbitrary non-negative reward rates. 

The paper is organized as follows. Section 2 provides the formal definition of 
SRMs, and introduces the class of MRMs. In Section 3 the completion time analysis 
of MRMs is presented. Section 4 gives an application of the proposed computational 
approach to the task completion time analysis of a Carnegie-Mellon multiprocessor 
system. The paper is concluded in Section 5. 

2 Stochastic Reward Models 
The adopted modeling framework consists of describing the behaviour of the system 
configuration in time by means of a stochastic process, and by associating a non-
negative real constant to each state of the structure-state process representing the 
effective working capacity or performance level or cost or stress of the system in 
that state. The variable associated to each structure-state is called the reward rate 
[9]. 

Let the structure-state process Z(t) (t > 0 ) be a (right continuous) stochastic 
process defined over a discrete and finite state space tt of cardinality n. Let / be 
a non-negative real-valued function defined as: 

f[Z(t)]=n> 0 , if Z(t)=i, (1) 

f[Z(t)] represents the instantaneous reward rate associated to state i. 
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Definition 1 The accumulated reward B(t) is a random variable which repre-
sents the accumulation of reward in time: 

B(t)= f f[Z(T)}dT= frz^dr. 
Jo Jo 

B(t) is a stochastic process that depends on Z(u) for 0 < u < t. According 
to Definition 1 this paper restricts the attention to the class of models in which 
no state transition can entail to a loss of the accumulated reward. A SRM of this 
kind is called preemptive resume (prs) model. The distribution of the accumulated 
reward is defined as 

B(t,w). = Pr{B(t) < w}. 

The complementary question concerning the reward accumulation of SRMs is 
the time needed to complete a given (possibly random) work requirement (i.e., the 
time to accumulate the required amount of reward). 

Definition 2. The completion time C is the random variable representing the 
time to accumulate a reward requirement equal to a random variable W: 

C = min[t> 0 : B(t) = W] . 

C is the time instant at which the work accumulated by the system reaches the 
value W for the first time. Assume, in general, that W is a random variable inde-
pendent from Z(t) with distribution G(w) with support on (0, oo). The degenerate 
case, in which W is deterministic and the distribution G(w) becomes the unit step 
function U(w — u>d), can be considered as well. For a given sample of W = w, the 
completion time C(w) and its cumulative distribution function C(t,w) are defined 
as: 

C(w) = min [t > 0 : B[t) = w] ; C(t,w) = Pr{C{w) < t} . (2) 

The completion time C is characterized by the following distribution: 
/>oo 

C(t) = Pr{C <t} = / C{t,w)dG(w) . (3) 
Jo 

The distribution of the completion time of a prs SRM is closely related to the 
distribution of the accumulated reward by means of the following relation: 

B(t,w) = Pr {B(t) < w} = Pr {C(w) > t) = 1 - C(t,w) . (4) 

For the purposes of the subsequent analysis below we define the following matrix 
functions P ( t ,w) = {Pij(t,w)} and F ( t ,w) = {Fij(t,w)} as: 

Pij(t,w) = Pr{Z(t) = j , B(t) < w\Z(0) =i) , (5) 

Fij^w) = Pr{Z(C(w))=j,C(w)<t\Z(0) = i} , (6) 
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• Pij(t,w) is the joint distribution of the accumulated reward and the structure 
state at time t supposed that the initial state of the structure state process 
is i, 

• Fij(t,u>) is the joint distribution of the completion time and the structure 
state at completion supposed that the initial state of the structure state pro-
cess is i. 

We assume (5) and (6), it follows for any t and i that Y j e n [ >w) + >w) ] = 

1 . 
By these definitions: 

B(t,w) = P(0) P(£, w) hT and C(t,w) = P(0) F(t, w) hT , 

where P(0) = {-Pi(O)} is the row vector of the initial state probabilities of the 
structure-state process (Pr{Z(0) = i} = P;(0)), and is the column vector with 
all the entries equal to 1. 

Given that G(w) is the cumulative distribution function of the random work 
requirement W, the distribution of the completion time is: 

/

OO rOO 

YsY. pMFij(t,w) dG(w) — / P(0)F{t,w)hT dG(w) . 
j=o i e n jen J™=o (7) 

2.1 Markov Reward Models 
Definition 3. The subclass of SRMs in which the structure state process (Z(t)) is 
an ergodic CTMC with any initial probability distribution is called Markov Reward 
Models (MRMJ. 

The introduced matrix functions of a MRMc&n be described in double transform 
domain based on the infinitesimal generator (A) of the structure state process and 
the reward rates. Detailed derivations presented in [11, 17] results in: 

= + £ (8) s + vrl alt keR<klti s + vu au 

P£*(s,v) = Sij + V ^ P^is-v) (9) 
y 3 vis + vn-au) .Jr!.. s + vn-au kj w 

where 6ij is the Kronecker delta. 
The final expressions take the following matrix forms: 

F~*(s,w) = (sI + u R - A ) _ 1 R (10) 

P~*(s,v) = ^ (sI + v R - A ) ' 1 (11) 
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where ~ denotes the Laplace-Stieltjes transform with respect to t(—¥ s), * denotes 
the Laplace transform with respect to w(—> v), I is the identity matrix and R is 
the diagonal matrix of the reward rates (ri); the dimensions of I, R , A, F and P 
are (n x n). 

Starting from equations (10-11), the evaluation of the reward measures of a 
MRM requires the following steps: 

1. symbolic evaluation of the entries of the P*~(s,u) and F*~(s,i;) matrices in 
the double transform domain according to (10) and (11), which requires a 
symbolic inversion of an n x n size matrix; 

2. symbolic inverse Laplace-Stieltjes transformation of P*~(s ,v) and/or 
F*~(s,i;) with respect to s; 

3. numerical inverse Laplace transformation with respect to v; 

4. unconditioning of the result by a numerical integration according to the dis-
tribution of the work requirement defined by (7). 

However, this way of the analysis contains some computationally intensive steps, 
and the whole procedure can be applied to very small scale problems (less than 6-8 
states) only. 

3 Completion time analysis of MRMs 

According to the associated reward rates the states of MRMs can be divided into 
two parts, namely 5 and Sc = 0 — S, where S contains the states with positive 
reward rates and Sc with zero reward rates, i.e., Vi € S, r» > 0 and Vi G Sc, ri = 0. 
Suppose that S contains m states out of n. Thus we can renumber the states 
in fi in a way that the states numbered 1, 2 , . . . , m belong to' S and the states 
numbered m+ 1, m + 2 , . . . , n belong to Sc. By this ordering of the states, A can 

Ai A2 be partitioned into the following form A = . . , where Ai describes the 
[ A 3 A 4 J 

transitions inside S, A2 contains the intensity of the transitions from 5 to S c , A 3 
the transitions from Sc to S, and A4 the transitions inside Sc. Note that according 
to Definition 3 Z(t) is an ergodic CTMC, hence the completion time of a finite work 
requirement w is finite with probability 1 and A^1 exists. By the renumbering of 

Rx 0 
0 0 

where Ri = Diag igS < r» > is the diagonal matrix of the reward rates in S' with 
cardinality m x m. 

states the diagonal matrix of the reward rates has the form R = 

3.1 Moments of the completion time of MRMs 

In this section we calculate the moments of the completion time using the Laplace-
Stieltjes transform, and we propose a recursive method to calculate the moments 



444 Miklós Telek, András Pfening, Gábor Fodor 

in a computationally effective way. We make use of the idea proposed by Iyer et al. 
for the analysis of the accumulated reward [10]. The nth moment of the completion 
time of w amount of work is defined by 

ROO 

M(n) (w) = E{C(w)n} = tn d C(t, w) . 
JT-o 

Theorem 1. The nth moment of the completion time of an MRM with work 
requirement w is: 

MM(w) = n! P(0) LT _ 1 [(Rr; - A ) - ( " + 1 ) R ] hT (12) 

where LT _ 1 means the inverse Laplace transformation with respect to v. 

Proof: The moments can be calculated using the Laplace-Stieltjes transform of 
the completion time and substituting equation (10): 

M(n) (w) = ( - 1 ) 

= ( - 1 ) ' 

n d n LT [C~*(S,-Í;)] 
DS11 

s=0 

dn L T - 1 [P(0) F~*(s ,v ) hTJ 

dsn 

s=0 

dsr< s=0 

= (-i)n0o) d n LT"1 [(si + v R - A ) - ! R ] 
dsn 

s = 0 

(13) 

We assume in the above formula that the order of the inversion and the derivation 
can be changed: 

M ( n ) H = (—l)n£(0) LT - l dn (sI + w R - A ) - X R 
dsn 

s = 0 J 
hT. 

The derivation can be accomplished using Leibniz's rule, and setting the value of s 
to 0: 

M, n) W = n\ P(0) LT"1 [(«R - A ) - ( " + 1 ) r ] hT. 
• 

3.2 Analysis of the mean completion time of MRMs 

Because of the inverse Laplace transformation and matrix inversion contained in 
equation (12) the calculation of the moments is a computationally intensive task. 
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Begain et al. [2] proposed an effective method to calculate the first moment, i.e., 
the mean value of the completion time of on-off reward models. Here we generalize 
that result for the mean completion time of MRMs with general reward structure, 

f" 

Theorem 2 . The expected time while a MRM with general reward rates completes 
w amount of work is: 

E{C{w)}=P(0) 

where 

L M -L(W)A2A4"1 

-A4 1 A3L(u>) - A J 1 + A4-1A3L(w)A2A71 
h T , (14) 

L(iu) = / e ^ ' ^ u R , " 1 and /3 = Al-A2A^1A3 

Proof: rOO nOO 

E{C{w)} = / (1 -C(t,iu))dt= / B(t, w) dt 
J t=0 Jt=0 

= lim -B~(s, w) = lim £(0)TP~(s, w)h1 
s-¥0 S s->0 

= P(0) LT"1 - (vR-A)-

Let us consider the term LT 1 

form R = 

- (wR - A)" 
v 

(15) 

separately using the partitioned 

R j 0 
0 0 

LT" i (uR - A)" = LT~ 
fRi - Ai - A 2 

- A 3 - A 4 

-1 

= LT -1 

= LT - l 

№ - /3)-1 - /3)-1 A2A7 1 

_ - A ^ A a i v R j - / ? ) - 1 A^1 + A4_1A3(wRI - /3) _ 1A2A 

(vh - Rf 1 /3) _ 1Rf 1 

-(vh - R["1/3)-1R^1A2A~1 

A«"1 + A 4 - . 1 A 3 M i - Rr1 /9)-1R1"1A2A. 

-1 4 

L(w) -L{W)A2AJ1 

-A^A3L(w) A41 + A4"1A3LHA2A4-1 _ 
(16) 



446 Miklós Telek, András Pfening, Gábor Fodor 

In (16), the first step is the partitioned description based on the block structure of 
matrices A and R; the second step is the application of the inverse of a partitioned 
matrix ([3, 14]); the third step comes as the product of inverse matrices ([3, 14]); 
while the fourth step is because the Laplace transform of L(w) has the form 

L » = - № - R T 1 ? ) - 1 Rr1-
v 

From (16) the theorem follows. . _ • 
An intuitive proof of Theorem 2 is possible based on the interpretation of matrix 

(3. Define Z'(t') a CTMC over S based on the original structure state process 
Z(t) G ft as follows: 

Z'(t') = Z(t); ^ = 1; if Z(t)eS, 

^ = 0; if Z{t) G il-S , 

i.e., Z'(t') takes the same state as Z(t) when Z(t) G S and the clock t' is switched 
on (off) when Z(t) G S (Z(t ) G 0 — S). /3 is the infinitesimal generator of CTMC 
Z'(t') over S (with the usual properties: Vi,j G S, > 0 and Yjes Pij = 0)-
The multiplication with R f 1 stands for scaling and rescaling the time providing a 
constant reward increment rate as proposed by Beaudry [1]. Z'(t') is the stochastic 
process which characterize the reward accumulation as captured by L(?u). The 
submatrices in (14) account for the time Z(t) spends out of S. 

3.3 A recursive analysis of higher moments 

Here we propose a recursive method to calculate the higher moments. First we 
introduce some notation. Let Mjj(n)(w) be the nth moment of the completion 
time assuming that the process was started in state i, the work requirement was 
completed in state j and the work requirement was w. Let M(rl)(uj) be a matrix 
with entries My(„)(w), and Mjfnj(i;) be the Laplace transform of M(n)(u>). Let 

dsn 
s=0 

Theorem.3. The nth moment (n > 2) of the completion time of an MRM with 
work requirement w can he obtained as 

M(n)H = P(0)M{n)(w)hT 

RW 

= nP(0) / @(w-y)M{n_1](y)hT dy + nP^AM^iw)}/, 
Jy=0 

(17) 
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uihere 

G{w) = 
e n - R r ^ R " 1 - e ^ ' / ^ R ^ A s A , 

- A ^ A a e ^ r ' ^ R f 1 A^ 1 A 3 e , , , I i r 1 ^Rf 1 A 2 A. - l 
4 

and A 
0 0 
0 - A , " 1 

Proof: From equation (10) 

(si + D R - A)F~* (s, v) = R . (18) 

Using Leibniz's rule, the differentiation of equation (18) n + 1 times with respect 
to s and setting s = 0 yields 

F ~ * < N + 1 > ( 0 , I ; ) = — (N + l ) ( R v - A ) - 1 F ~ * ^ ( 0 , I ; ) . (19) 

Because =' ( - l ) n F ~ * ( n ) ( 0 , u) according to equation (13), equation (19) 
can be rewritten as 

M^ n + 1 ) ( « ) = (n + 1) (Rz, - A ) _ 1 M ( n j ( v ) . 

Let us consider the term L T - 1 [(wR — A ) - 1 ] separately. 

(20) 

L T - 1 [ ( «R - A ) " 1 ] = LT - l uRi - A x - A 2 

- A 3 - A 4 

= L T - 1 
(vRi - 0)- (VR! - JD^A-JA; 

= LT"1 

-A 4 -J A3(WRI - P)-1 AJ1 + A^"1A3(i;Ri - (3)~1A2A^X 

№ - R-^r^r 1 

—A^"1A3(i;I1 .— R j " 1 / 3 ) _ 1 R f 1 

№ - R r 1 / 3 ) - 1 R r 1 A 2 A 4 - 1 

A J 1 + A 7 x A 3 ( t ; I i - R r 1 / 3 ) " 1 R r 1 A 2 A 4 " 1 

" « r ^ R ; 1 1 e - R r I ^ R r 1 A 2 A 4 " 1 

-A4-1A3e^RrI/3R-1 AJ1 S(w) + A^Aae^^R^A.A," 
(21) 

The steps in (21) are similar to the steps in (16); the only difference is that here we 
have the inverse Laplace transform of (wli — R j " 1 ^ ) - 1 R f 1 which is e w R i 



448 Miklós Telek, András Pfening, Gábor Fodor 

Hence LT ' 1 [ ( v R - A ) - 1 ] = Q(w) + AS(w), where 5{w) denotes the Dirac 
delta function (a Dirac impulse at w =0 ) , the inversion and the integration yields 
the theorem. • 

To apply the result of Theorem 3 for the evaluation of the first moment we shall 
define in accordance with equation (13) 

M (0)(w) = LT~1 [C~*(0,u)] = LT - 1 [P(0) F~*(0,v) /iT] 

and 
M[o](v)=F~*(0,v). 

To express the first moment we use equation (17) and then equation (20) to obtain 

M ( 1 ) H = LT"1 [p(0) Mfo(t;) hT] 

which is by definition 

= LT"1 [p(0) (Ru - A ) " 1 M*{0)(v) hT] , 

= LT - 1 [p(0) (R« - A ) " 1 F~*(0,t;) h1 

= LT"1 [p(0) (Rv - A)''2 R h 

= LT" P(0) - (Ru - A ) " 1 h1 

since (Rv - A ) " 2 RhT = 1/v (Ru - A ) - 1 hT, because A hT = 0T. The inverse 
transform gives the result of Theorem 2. 

If the system is started from operational states, which is a rather realistic as-
sumption, (i.e., Vi G S c , P j ( 0 ) = 0 ) , then one can neglect the second term of equa-
tion (17). This term stands for the time needed to start the reward accumulation 
(i.e., to enter S) when the system starts from Sc. 

Another important analysis problem of MRMs is the probability distribution of 
the structure state process at completion, i.e., = Pr{Z(C) = j\Z(G) = i}. For 
example, the required maintenance after a mission of a system which started from 
a particular state can be estimated based on this performance measure. A closed 
form expression of the probability distribution at completion, by which its effective 
computation is possible, comes by the following theorem. 

Theorem 4. The probability of being in state j at completion given that the process 
started from state i can be computed as follows: 

R CO 

•/w=0 

ewR r'/3 o 

-A71A3e luRï'1/3 0 
dG{w) (22) 
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Proof: By the known transform domain measures we have: 

< LT - 1 [(i>R — A ) - 1 ] 
Ri 0 

(23) 

0 0 
dG{w) 

J w= 0 

From (23) and (21) the theorem comes. • 

From Theorem 4, = 0 if j € Sc. It is the consequence of that the accu-
mulated reward does not increase in Sc and the completion can not occur while 
Z(t) <E Sc. 

4 Numerical Example 
The results of this paper are demonstrated by the analysis of a simple multiproces-
sor system. The system is similar to the Carnegie-Mellon multiprocessor system, 
presented in [15]. The system consists of N processors, M memories, and an inter-
connection network (i.e., a crossbar switch) that allows any processor to access any 
memory (Figure 1). The failure rates per hour for the system are set to be 0.2, 0.1 
and 0.05 for the processors, memories and the switch, respectively. 

Viewing the interconnecting network as one switch and modeling the system 
at the processor-memory-switch level, the switch becomes essential for the system 
operation. It is also clear that a minimum number of processors and memories are 
necessary for the system to be operational. Each state is thus specified by a triple 
(i,j,k) indicating the number of operating processors, memories, and networks, 
respectively. We augment the states with the nonoperational state F. Events that 
decrease the number of operational units are the failures and events that increase 
the number of operational elements are the repairs. We assume that failures do 
not occur when the system is not operational. When a component fails, a recovery 
action must be taken (e.g., shutting down the a failed processor, etc.), or the whole 
system will fail and enter state F. The probability that the recovery action is 
successfully completed is known as coverage. 

Two kinds of repair actions are considered, global repair which restores the 
system to state (N, M, 1) with rate p, = 0.2 per hour from state F, and local repair, 
which can be thought of as a repair person beginning to fix a component of the 
system as soon as a component failure occurs. We assume that there is only one 
repair person for each component type. Let the local repair rates be 2.0, 1.0 and 
0.5 for the processors, memories and the switch, respectively. 

The studied system has two processors, two memories, and one connections 
network, thus the state space consists of 13 states. For this case, the minimal con-
figuration is supposed to have one processor, one memory and one interconnection 
switch. The value of the coverage was set to 0.90. This is a simple system, however 
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Figure 1: Example system structure 

a system of this size would be untractable using the double transformation method. 
We emphasize that it is just a demonstrative example, the performance of larger 
systems can also be calculated using the proposed method. More work has to be 
done to learn the limitations of the proposed method. 

The mean value and the standard deviation of the completion time were calcu-
lated, the former using Theorem 2, the latter using Theorem 3 and the well known 
formula cr(w) = (M(2)(w) — (Mfj^ui))2)1 /2 . The work requirement was chosen to 
take values from the interval [1,16] (in work hours). In Figures 2, 3 the mean value 
and the standard deviation of the completion time are shown, assuming that the 
system was started from the perfect state ( N , M , 1), from state F and from the 
steady state distribution. The integral values were calculated numerically in an 
iterative way. In each step twice as many sample points were evaluated, and the 
process was stopped when the maximal relative change of the values was less than 
2%. 

The mean completion time is higher if the system is started in the steady state 
instead of the perfect (N, M, 1) state, or if the system is started in the F state 
instead of the steady state. The difference between the perfect and the F initial 
state curves refers to the mean time to get from state F to the perfect state. The 
curves of the standard deviation of the completion time show a similar picture. We 
have to note that the 2% accuracy limit brings more inaccuracy for higher values 
(8,16). The curve referring to the F state at time 0 takes the value of the standard 
deviation of the time to get from state F to the perfect state. 

5 Conclusion 
MRMs have been widely used to model performance and reliability of computer 
and communication systems. We discussed the analytical description of MRMs, 
allowing the assignment of 0 reward rates. A numerically effective computation 
method is described for the evaluation of the moments of the completion time of 
a MRM. Performance parameters of a Carnegie-Mellon multiprocessor system are 
evaluated by the proposed method as an application example. 
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Work Requirement 

Figure 2: The mean value of the completion time 
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Figure 3: The standard deviation of the completion time 
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