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Preface 

This special issue contains papers on topics of the workshop 

"Weighted Automata: Theory and Applications (WATA 2008)" 

which took place at the Technische Universität Dresden, Germany, May 13-16, 
2008. 

As for its predecessors WATA 2002, WATA 2004, and WATA 2006, the goal of 
this workshop was to highlight the field of weighted automata, ranging from the 
theory of formal power series to applications of tree automata, natural language 
processing, XML, and multi-valued logics. 

The workshop was attended by 46 participants from 12 countries. Two tutorials 
were given by 

Z. Esik (Szeged, Hungary and Tarragona, Spain) 
K. Knight (Los Angeles, USA). 

In addition, seven invited lectures were presented by 

F. Drewes (Umeä, Sweden), S. Gaubert (Rocquencourt, France), 
B. Gerla (Varese, Italy), W. Kuich (Vienna, Austria), 
A. Maletti (Berkeley, USA), W. Martens (Dortmund, Germany), 
G. Rahonis (Thessaloniki, Greece) 

Furthermore, 18 talks were selected as contributed communications. 

This workshop was financially supported by the "Gesellschaft von Freunden 
und Förderern der TU Dresden" and the "International Center for Computational 
Logic". 

After the workshop, a call for papers for a special issue of "Acta Cybernetica" 
on "Weighted Automata: Theory and Applications" was issued. Following the 
standard refereeing procedure, we were pleased to accept the present seven papers 
for this special issue. 

Manfred Droste (Leipzig) September 2009 
Heiko Vogler (Dresden) 

247 





Acta Cybernetica 19 (2009) 249-274. 

MAT Learners for 
Recognizable. Tree Languages and Tree Series 

Frank Drewes* 

Abstract 
We review a family of closely related query learning algorithms for un-

weighted and weighted tree automata, all of which are based on adaptations 
of the minimal adequate teacher (MAT) model by Angluin. Rather than pre-
senting new results, the goal is to discuss these algorithms in sufficient detail 
to make their similarities and differences transparent to the reader interested 
in grammatical inference of tree automata. 

Keywords : algorithmic learning, grammatical inference, tree automaton, 
tree language, tree series 

1 Introduction 
This article discusses a family of algorithms for grammatical inference of unweighted 
and weighted tree automata. Traditionally, the area of grammatical inference stud-
ies the problem of learning a formal (string) language L by automatically inferring 
an explicit automata-theoretic or grammatical description A of L from examples 
or some other, type of information about L. In other words, the aim is to come 
up with a learner, an algorithm that exploits a source S of information about L in 
order to construct A. Different so-called learning models are obtained by specifying 
(a) which source S of information the learner is provided with, (b) how the learner 
gets access to this information, and (c) what the exact criterion of success is. 

The three most well-established categories of learning models in grammatical 
inference are Gold's learning from examples with identification in the limit [23], 
Valiants probably approximately correct (PAC) learning [39], and Angluin's query 
learning [4]. 

Here, we focus on query learning. This model, which is also called active learn-
ing, gives the learner access to a teacher, an oracle able to answer certain types of 
queries. Suppose that £ is a regular string language and the goal is to construct 
a corresponding finite-state automaton A. The most well-studied type of teacher 
is the so-called minimal adequate teacher (MAT) [3]. The MAT will answer two 
different sorts of queries regarding L. The first is the membership query, in which 

*Umea University, 906 87 Umea, Sweden, El-mail: drewesQcs.umu.se 
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the learner passes the teacher a string u, and the teacher checks whether u £ L. 
In the second type of query, the equivalence query, the learner passes the teacher a 
proposed automaton A!, and the teacher checks whether A' correctly describes L. 
If so, A! is accepted and the learning process terminates. Otherwise, the teacher 
returns a counterexample to the learner, i.e., an element of the symmetric difference 
of L and the language described by A'. 

A learning model closely related to MAT learning is learning from representative 
samples and membership queries [2]. Here, the learner has access to a weaker 
teacher who will only answer membership queries. To compensate for the lack of' 
equivalence queries, the learner is initially provided with a representative sample, 
a set of strings in L, such that every transition of A is used at least once when 
processing the strings in the sample. 

Here, we want to consider algorithms for learning unweighted and weighted tree 
automata rather than ordinary finite-state automata. Why would such extensions 
be of interest? Apart from theoretical curiosity and the fact that tree languages 
play an important role in many application areas, motivation is provided by the fact 
that almost all results regarding the inference of context-free languages are nega-
tive. However, recognizable (or regular) tree languages may be seen as context-free 
languages whose strings are enriched with explicit structural information. Thus, 
positive results for grammatical inference of recognizable tree languages make it 
possible to learn context-free languages if the learner is provided with the addi-
tional structural information (cf. [32]). 

If we want to use the learning models described above, they have to be adapted. 
This can be done in a straightforward way. In membership queries, trees rather than 
strings must be passed to the teacher, and in equivalence queries, tree automata 
of the type considered must be checked by the teacher. Similarly, a representative 
sample is now a set of trees. Moreover, in the weighted case, membership queries 
must be replaced with coefficient queries (i.e., the teacher returns the coefficient 
of the tree passed, with respect to the sought tree series), and the counterexample 
returned as an answer to an equivalence query must be a tree for which the proposed 
automaton computes a coefficient that differs from the one it should compute. 

The appropriateness of the MAT model is not undisputed. Obviously, the as-
sumption of having access to an oracle able to answer equivalence queries is strong 
and may be considered unrealistic. Moreover, it has been argued in [6] that mem-
bership queries are oversimplified and should be replaced by a type of query yielding 
a more informative result, e.g., so-called correction queries. To a certain extent, 
this criticism is certainly justified. In particular, future research should continue to 
explore reasonable alternative settings. However, in the author's opinion, this does, 
not diminish the value of the algorithms reviewed in the next two sections. In gen-
eral, one should keep in mind that the learning models considered are idealizations 
that - as always in Theoretical Computer Science - trade realism for mathematical 
elegance and simplicity. Having read this paper, the reader who has never seen 
these algorithms before will hopefully acknowledge that they axe based on beauti-
ful formal reasonings. In particular, they make elegant use of Myhill-Nerode-like 
characterizations of the tree languages and series to be learned. 
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Since grammatical inference is an inherently difficult goal, there seem to be only 
two ways to achieve positive results whose correctness can formally be proved. One 
either has to simplify the goal, e.g., by placing severe restrictions on the concepts 
to be learned, or give the learner access to a rather powerful source of information, 
such as a MAT. Clearly, both approaches have their advantages and disadvantages. 
This paper focuses on the second, because we are interested in the grammatical 
inference of unrestricted recognizable tree languages and tree series. For this task, 
there do not yet seem to exist many, algorithms other than the ones discussed here. 
Moreover, these algorithms are all very closely related to each other, which makes 
them interesting (in the authors opinion), because it indicates that they are based 
on "robust" ideas worth being explored. 

As mentioned above, the MAT model is a formal idealization. Therefore, one 
cannot expect that learning algorithms based on a formal setting such as the MAT 
model can directly be applied to learning tasks in, say, natural language processing. 
However, it may be an interesting goal to pursue in future research to identify prac-
tical scenarios in which the teacher can be simulated by, e.g., statistical methods. 
Of course, such an approach would ho more be guaranteed to yield an affirmatively 
correct answer, but it may perform sufficiently well in practice - and hopefully 
much better than an ad-hoc approach. In fact, it may then be a theoretically inter-
esting and practically well-motivated question under which assumptions imperfect 
teachers give rise to reasonably good results, e.g., in a PAC-like setting. -

From what has been said above, it should be clear that this paper is not a 
general survey of the large field of grammatical inference. In fact, it does not even 
attempt to cover the subarea of grammatical inference of tree languages and tree 
series. Readers who wish to obtain a general overview of grammatical inference 
are referred to the various existing survey papers [1, 13, 21, 28, 34]. Readers 
interested in inference of tree languages, using other methods and models than the 
ones discussed here, may also wish to have a look at [33, 27, 20, 29]. 

In the next section, learners for recognizable tree languages based on (variations 
of) the MAT model are discussed. In Section 3, we discuss generalizations of these 
algorithms, that learn recognizable tree series. The paper concludes with some final 
remarks in Section 4. 

2 Learners for Recognizable Tree Languages 
As mentioned above, grammatical inference is the task to construct an automaton 
or a grammar describing a language L, given certain information about L. For 
the moment being, let us consider the string case. Suppose that we are interested 
in learning a class C{A) of string languages, where A is a class of automata, and 
C(A) = {L(A) | A £ A} is the class of languages generated by A. The task of the 
learner is to construct, for a given language L € C(A), an automaton A £ A with 
L{A) = L. For this, the learner needs to have access to information regarding L. 
Here, we mainly want to study the case where this information is provided by a 
MAT [3]. This oracle that will (correctly) answer two different sorts of queries: 



252 Frank Drewes 

Membership query Given a string u £ E* (provided by the learner), the mem-
bership query member(u) will be answered by returning 1 if u £ L, and 0 if 
u £ L. (Thus, member computes the characteristic function of L\ see below.) 

Equivalence query Given an automaton A £ A (provided by the learner), the 
equivalence query eqQuery(A) will be answered by returning the special token 
JL if L{A) = L. Otherwise, a counterexample u £ L(A) A L is returned, where 
the operator A yields the symmetric difference of sets. 

The learner L* proposed in [3] learns the class of regular languages from a MAT 
in polynomial time, where A is the set of total deterministic finite-state automata. 
It makes use of the Myhill-Nerode theorem for regular languages to construct the 
canonical finite-state automaton recognizing L.1 To achieve this goal, the learner 
maintains a so-called observation table, which can be seen as an adapted version 
of the state characterization matrix introduced by Gold [24] for identifying regular 
languages from positive and negative examples in the limit. In the following, we 
discuss extensions and variations of L* that learn tree automata. 

Let us first recall a few basic definitions and facts. A ranked alphabet E is a 
finite set of ranked symbols ( / , k), where / is a symbol and k £ N, its rank, is a 
non-negative integer. We let E^) = { ( / , I) £ E | / = k}. In the following, a ranked 
symbol ( / , k) will simply be denoted by / , or by fW if it is necessary to specify 
its rank. The set Ts of trees over E is the smallest set of formal expressions such 
that / [ i i , . . . ,tk] G Ts, for every /(*> g E (fc G N) and all i i , . . . , tk £ T E . . Here, 
the brackets and commas are special symbols not in E. For k = 0, the tree /[] may 
simply be denoted by / . For a set T of trees, we let E(T) denote the set of all trees 
of the form f[ti,... ,tk], where fW £ E and ti,... ,tk £ T. The set of all subtrees 
of a tree t = f[t\,... ,tk] is given by subtrees(t) = { i } U U*=i subtrees(ii). A tree 
language is a set L C T^. The characteristic function of L is denoted by XL- Thus, 
for i 6 T S l Xi( i ) = 1 iit £ L, and XI(t) = 0, otherwise. 

Definition 2.1. A deterministic bottom-up finite tree automaton (fta) is a tuple 
A = (E ,Q,5 ,F) consisting of a ranked alphabet E, a ranked alphabet Q of states 
such that Q — Q{p), o, transition table 6, and a set F C Q of final states. The 
transition table is a partial function 5: E(Q) —> Q. This extends to trees in the 
canonical way, yielding a partial function 6: T j —> Q. A tree t G T j is accepted by 
A ifS(t) £ F. The language recognized by A consists of all trees accepted by A, i.e., 
L(A) — {t £ Ts | S(t) G F}. and is called a recognizable (or regular) tree language. 

As usual, an fta is said to be total if the transition table S is a total function. 
We note that 6 can also be regarded as a set of transitions f[qi,..., qk] —> q, where 
5(f[qi,... ,qk]) = q. In other words, a transition is a pair in E(Q) x Q. Since 
we consider only the deterministic case, transitions have pairwise distinct left-hand 
sides f[q\,. • •, qk\. However, unless the fta is total, not all left-hand sides need to 
be present. 

1 It may be interesting to note that the class of regular languages is not learnable in polynomial 
time from membership or equivalence queries alone [5]. This provides some justification for calling 
the oracle above a minimal adequate teacher. 
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The first extension of L„ to so-called skeletal tree languages2 was given by Sakak-
ibara [32]. Let us have a look at this learner, which we may call Lj;fta. It constructs 
the canonical total fta recognizing the target language L. In the presentation be-
low, we drop the restriction to skeletal tree languages, since it is not important for 
the correctness of L^fta. In fact, this slight generalization has the advantage that 
L* may be seen as a special case of L'fta, by identifying a string ai • • • an with the 
monadic tree a„[- • • ai[e] • • • ]. (The string case can, of course, even be simulated 
using skeletal trees, but this seems to require the use of a representation that maps 
strings to trees in a non-surjective way, for example, by representing u = a\ • • • an 

as tree(u) = *[•••* [oj, <22], • • • an\. As a consequence, if A is a deterministic finite-
state string automaton, an fta recognizing {tree(it) j u G L(A)} will in general 
contain more states than A.) 

As indicated in the introduction, the idea behind L* and all its descendants 
is to construct an automaton by exploiting the Myhill-Nerode congruence of the 
target language. Let o ' 0 ' ^ E be a special symbol, and let Cs be the set of.all 
trees in TEU{D| with exactly one occurrence of •, called contexts over The 
concatenation c • t of c G CE with t G Ts U Cs is the tree obtained from c by 
replacing • with t. Now, the Myhill-Nerode congruence =L on T E is given by 

t =L t' if and only if XL{C • t) = XL(C • t') for all c G CE-

It is well known that =L is of finite index (i.e., its congruence classes are finite in 
number) if and only if L is recognizable. The canonical (total) fta Â L recognizing 
L can be obtained as usual, by taking the congruence classes \t]=L, t G T E , as 
states and defining <5(/[[ii]=L,..., [ifc]=J) = [f[ti, • •.,ifc]]=t. By the congruence 
property, the choice of the representatives t\,..., ifc does not matter. A state [i]=L' 
is final if t G L. 

Now, let us define an equivalence relation o n T^ by replacing CE in the 
definition of =1 with a finite set of contexts. For C C Cs, let t t' if and only 
if, for all c G C, XL{C • t) = XL(C ' t')- By definition, =L = ^c^- Moreover, if =/, is 
of finite index, there is a finite set C of contexts such that =1 = The learners 
based on L* (and, in fact, several other learners as well), discover such a set C and 
construct the target automaton from it. Note that, for arbitrary C C C j , ~ c is 
not necessarily a congruence. 

Following the same idea as L„, the learner L' fta uses membership and equivalence 
queries to discover trees representing different congruence classes, together with 
suitable separating contexts. The data structure used for this is the previously 
mentioned observation table. Its rows are indexed by the trees in E(S), for a finite 
set S C T E , and its columns are indexed by contexts from a finite set C C C j 
containing •. The cell in row t and column c contains the value XL{C • t), which 
the learner obtains by asking a membership query. For t G £(S), if the observation 
table Q in question is clear from the context, we let (t) denote the C-indexed vector 
given by the row of t in Q. For a set T C E(5), we let (T) = {{t) \ i G T}. 

2A tree language L is skeletal if L C T j for a ranked alphabet E with |S(fc)| < 1 for all k > 1. 
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We require that S be subtree-closed, meaning that s i , . . . , sk G 5 for every tree 
/ [ s i , . . . , Sfc] G S. In other words, S C E(S), which means that Q even contains 
rows for the trees s G S. Note that, for t,t' G E(S), (i) ^ (¿') implies t t', 
because ~ c =L• Moreover, as observed above, there exists an observation table 
for which the converse holds as well. The aim of the learner is to build such an 
observation table. 

During its run, the learner L»fta repeatedly uses the tentative observation table Q 
it has built in order to construct a total fta AQ consistent with the observations in Q. 
This fta is passed to the teacher, and if it is not approved, then the counterexample 
received is used to enlarge FL. To be able to construct AQ from f2, the following 
two properties are needed. 

1. ft is closed, meaning that (t) G (S), for every t G E(S). 

2. Ct is consistent. To define this property, let ED(S) = C E fl E(5 U { • } ) . The 
observation table fi is consistent if (c • s) = (c • s'), for all c G £•(£) and all 
•s, s' G S with (s) = (s'). Note that (c • s) ^ (c • s') would mean that there 
is a d G C such that • c) • s) XL((d • c) • s'), i.e., d • c would be a 
context witnessing that s ^L s', despite the fact that (s) = (s'). Moreover, 
the addition of d • c to C would make the rows of s and s' different, thus 
resolving the inconsistency. • 

If Q. is both closed and consistent, AQ, can be defined by a construction similar 
to the construction of the canonical fta from =£. The set of states is (S), a 
state (s) being final if s G L. For every tree t = f[si,..., sk] G E (S) , we let 
6(f[(si),... ,{sk)]) = (t). Note that, by the closedness of Q, (t) belongs to (S). 
Consistency is needed to ensure that 5(f[{si),... ,{sk))) is uniquely determined. 
Moreover, using subtree-closedness, one can easily verify the following lemma by 
structural induction on t. 

Lemma 2.1. If Q is a closed and consistent observation table, then 5(t) = (t) for 
all t G E(S). In particular, for t G E(S), we have t G L(AQ) if and only ift&L. 

The learner L^fta starts with the observation table given by S = 0 and C = {•}. 
In its main loop, it first makes sure that f2 is closed and consistent. This is done 
by a straightforward procedure complete that adds appropriate trees and contexts 
to S and C, resp., until ft is closed and consistent. Then, L«fta constructs AQ. and 
passes it to the teacher in an equivalence query. If the teacher accepts it, learning 
has been successful. Otherwise, subtrees(i) is added to S and the next iteration 
starts. Whenever elements are added to S or C, the required membership queries 
are asked to fill the new cells (t, c) of the table with the membership information 
xUc-t). 

Below follows the pseudo code of the learner. In this pseudo code, we denote 
an observation table by the components S and C: 
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procedure U f ta where f2 = (S, C) t 

loop 
complete(Q); 
construct An; 
t := eqQuery (yln) ; (ask equivalence query) 
if t = J_ then return. An 
else S := S U subtrees(i) 

procedure complete(S, C) 
loop 

if 3c 6 ED (5), s, s' € S: (s) = (s') A (c • s) (c • s') then (table inconsistent) 
choose d € C with member(d • c • s) ^ member(d • c • s'); 

|_C : = C U {d • c} (add witness to C) 
else if 3i € E(S) such that (i) ^ (S) then (table not closed) 
[ 5 := SU{t } 

else return; 

Clearly, as long as fl is not closed and consistent, each iteration of complete 
enlarges (S). In particular, complete terminates, because the index of L is finite. 
Now, consider the main procedure of L' fta, and let be the new observation 
table fi' obtained by adding subtrees(i) to S (where t is a counterexample). If fi' 
would still be closed and consistent, on the one hand, it could easily be shown that 
AQ = AQ,I. On the other hand, Lemma 2.1 would apply to Aw, stating that t is 
not a counterexample for Aw, contradicting the fact that it is a counterexample for 
An- Thus, ft' cannot be closed and consistent. By the reasoning above, this means 
that the following call of complete enlarges (5). We conclude that L' fta terminates 
after at most n executions of the main loop, where n is the index of L. 

Theorem 2.1 ([32]). Let A\ = (E ,Q,6,F) . The learner L'fta returns an fta 
isomorphic to A\, and runs in time polynomial in mT and |<5[, where m is the 
maximum size of counterexamples returned by the teacher, r is the maximum rank 
of symbols in E, and |5| is the number of transitions. 

Note that the number |<5| of states of AlL (i.e., the index n of L) does not occur 
in the preceding statement, because the totality of the fta implies that |5| > \Q\. 
Let us have a look at an example. 

Example 2.1. Let E = {f^2\ a'0)}, and consider the tree language L consist-
ing of all trees in T E that do not contain two nodes such that one is a child of. the 
other and both are labelled with the same symbol. 

The learner L' f ta starts with the table (0, {• } ) , which is not closed, because 
(5) = 0 does not contain (a), but a € E(S). Thus, complete adds a to S. The 
resulting observation table is the first one shown in Figure 1. Here, the trees in 
S are those above the single horizontal line, and the trees in E(S) \ S are those 
shown below it. The table is obviously closed and consistent, because all trees in 
E(S) have equal rows. The transitions of the resulting automaton AQ are shown 
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to the left of the rows they result from. Since the state (a) is accepting (because 
a £ L, which is signified by the fact that (a) equals 1 at •), we have L(AQ) = Tg. 
Hence, the teacher may give the counterexample t = g[g[a)]. The table resulting 
from the addition of subtrees(t) to S is inconsistent, since the two trees shown in 
boldface letters have equal rows, whereas the trees they are subtrees of do not. 
After the addition of <?[•] to C, the table is closed and consistent. The resulting 
fta is passed to the teacher in another equivalence query, and the teacher returns a 
counterexample. Again, the table needs to be made consistent using complete. As 
the reader may check, the fta AQ obtained from the resulting table is isomorphic 
to A l 

Let us say that a tree t is live (with respect to a recognizable tree language 
L C. Ts) if it occurs as a subtree of at least one tree in L. Otherwise, t is dead. 
As a direct consequence of this definition, the set of dead trees forms a congruence 
class of =L (or is empty). The state of AlL corresponding to this.congruence class is 
said to be the dead state of A^ (if it exists). The canonical partial fta recognizing 
L, denoted by APL, is constructed in the same way as A%L, but taking as its state set 
the set {[f]=L | t £ T E is live}, and restricting the transition function accordingly. 
In other words, A£ is obtained from A\ by deleting its dead state, if it exists, and 
is equal to AlL, otherwise. If a computation of AlL reaches the dead state on one 
of the subtrees of the input tree, then this input tree cannot be accepted. Hence, 
we obviously have L{AVL) = L(ATL) = L. We shall now consider a learner that 
constructs A^ instead of AlL. 

The learner L' fta has the advantage that it asks at most n equivalence queries, 
where n is the index of L. Its major disadvantages are that (a) S potentially 
contains a lot of redundant information, since all subtrees of all counterexamples 
received end up in S, and (b) the observation table contains |E(5)| rows to make 
AQ total. Together, (a) and (b) are responsible for the appearance of mr jn Theo-
rem 2.1. Moreover, AlL always contains at least nr transitions, whereas the number 
of transitions of APL may be much smaller. The learner L*ta developed in [18] avoids 
these disadvantages at the price of potentially asking a considerably larger number 
of equivalence queries. 

Even L»ta uses an observation table. However, rather than indexing the rows by 
the trees in E(S), they are now indexed by trees in a set T such that S C T C E(5). 
Thus, this set T takes the role of E(S), but will typically not contain all trees in 
E (S). As before, columns are indexed by contexts from a finite set C C Cj> 

Since S C T C E(S), both T and S are subtree-closed. In addition to this, 
L j a maintains the invariant that, for every tree t £ T, there is exactly one tree 
s £ S such that (s) = (t). This means that closedness and consistency do not need 
to be checked explicitly, because S never contains redundant information. As a 
consequence, AQ = (Q, E, 5, F) can be defined as before, the only difference being, 
that it is total only if it happens to be the case that T = E (S). As the trees in S 
have pairwise distinct rows, the correspondences between S and Q and between T 
and 5 (viewing 5 as a set of transitions) are bijections. In particular, each transition 
is represented by a unique tree in T. . 
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Figure 1: A run of L' f ta, showing (partial) observation tables, inconsistencies (in 
boldface letters), transitions resulting from the rows of consistent tables (except for 
the final table), and counterexamples that the teacher may choose to return. 



258 Frank Drewes 

Similar to L' f ta, L t̂a starts with the observation table given by S = 0 (and, thus, 
also T = 0), and C — {• } . It repeatedly constructs AQ and asks an equivalence 
query. As long as a counterexample t is received, fi is extended by a tree (and 
possibly a context) extracted from t, and the process continues: 

procedure Ltta where fi = (S, T, C) 
0 := (0,0, {•}) 
loop 

construct An; 
t := eqQuery (An) ; (ask equivalence query) 
if t = _L then return An 
else fi := extend(Q,i) 

The heart of L t̂a is the procedure extend, which examines a counterexample in 
a bottom-up manner to find out where things go wrong, rather than adding all 
subtrees of t to S. The technique used for this was introduced by Shapiro [35] and 
is known as contradiction backtracking. The pseudo code looks like this: 
procedure extend(fi,t) where fl = (S,T,C) 

loop 
decompose t into t = c • t' where t' = f[s\,... ,Sk] 6 £(S) \ S; 
if t' £ T then 

let s be the unique tree in S with (s) = (i') 
if member(c • s) = member(t) then t := c s (case la) 
else return close(S,T, CU {c}) • (case lb) 

else return close(S,TU {t'},C) (caseS) 

Here, the decomposition of t into c • t' can be done by a simple algorithm that 
checks in a bottom-up manner which subtrees of t belong to S, and returns the 
first tree t' encountered which is not in S (but which, therefore, must necessarily 
be in E(5)). The procedure close is a simplified version of the procedure complete 
of L*fta, corresponding to the second case in the latter. It checks the trees t G T 
one by one, and adds t to 5 if S does not yet contain a tree s with (s) = (t). Let S 
be the transition function of AQ. If t' G T, then <5(c • S) = 8(c • T') = S(t), because 
5(s) = (s) = (£') = 5(t'). In other words, AQ returns the same answer if run on t 
and c • s. Together with the condition member(c • s) = member(i), this means that 
c • s is also a counterexample, in case la. In case lb, we have found a context c 
that separates the trees s and t' that have been equivalent according to fi. Finally, 
in case 2, we have found a missing transition. 

The use of contradiction backtracking in extend makes sure that the trees in S 
represent pairwise distinct states, those in T represent pairwise distinct transitions, 
and the total number of contexts added does not exceed the number of states. 
Moreover, it guarantees that no dead tree is ever added to T. Indeed, only case 2 
results in the addition of a tree t' to T. Since the transition represented by t' is not 
in T, we know that AQ rejects t = c-t'. Hence, t must be a positive counterexample, 
which shows that t' is live.3 These properties make L t̂a quite efficient. 

3This fact, showing that c is a so-called sign of life for t', will turn out to be of some importance 
in Section 3. 
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Theorem 2.2 ([18]). The learner returns an fta (E, Q, 5, F) isomorphic to 
AFl, and runs in time 0(r • |Q| • |5| • (|<5| + m)), where m is the maximum size of 
counterexamples returned by the teacher, r is the maximum rank of symbols in E, 
and 15] is the number of transitions. 

The algorithm requires |Q| + |5| + 1 equivalence and m + |Q| • (|5| + 1 ) member-
ship queries. As mentioned above, the number of equivalence queries asked is the 
major disadvantage of L*ta in comparison with L*fta. In practice, the number of 
equivalence queries used by L*ta can often be reduced by re-using counterexamples 
[17]; see also the following example. 

Example 2.2. Let E = be as in Example-2.1, and consider the 
tree language L consisting of all trees of the form c • f[t,a], where c S C{g} and 
t 6 Thus, the trees in L consist of a chain of gs at the top, followed by a 
single / , whose first subtree is a chain of gs (ending in an a), whereas the second 
is a single a. 

In the first step, the teacher will be given the empty automaton, which accepts 
the empty language. Suppose the teacher returns the left-most tree in Figure 2 as 
a counterexample. Searching for a subtree in E(5) \ S in a bottom-up manner, we 
immediately encounter one of the leaves a and observe that it represents a missing 
transition (case 2). Therefore, a is added to T (and close adds it to S, because S 
does not yet contain any tree whose row is 0). Following L?a strictly, we would 
now build the new automaton AQ. and ask the teacher a new equivalence query. 
However, since the current tree is still a counterexample (it is not accepted by the 
new automaton either), we can as well continue using the current tree (see [17]). 
We now find the subtree g[a], which represents again a new transition, but not a 
new state. In the next iteration (again re-using the counterexample), we find that 
g[a] is in T and can be replaced with a without invalidating the counterexample 
(case la). Thus, we continue with the third tree in Figure 2, and find that f\a,a] 
represents a new transition and state. Finally, we also find that g[f[a, a]] represents 
a transition. When this has happened, the automaton correctly accepts the tree, 
so that we have to ask a new equivalence query. 

Suppose the teacher chooses the leftmost tree in the second row of Figure 2. We 
find that p[a] cannot be replaced with a once more, because f[a,a] £ L (case lb). 
Consequently, f[a, •] is a context that distinguishes between a and g[a}. 

Finally, when processing the last counterexample, we first discover that 5[5[a]] 
represents a transition, and then that /[<7[a],a] represents another one. Now, an 
equivalence query reveals that the resulting automaton is the correct one. 

Recently, Besombes and Marion [7] have proposed the learner L«ep (called A L -
T E X in [7]), that avoids the use of equivalence queries. Instead, it exploits a set of 
positive examples in which all the transitions of the sought automaton are required 
to be represented (see also [2]). Intuitively, there is a close relation between the two 
learners, because L t̂a uses equivalence queries precisely in order to discover such 
representatives. It may be interesting to try to find out whether there is a deeper 
formal relationship. 
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Figure 2: A run of L^ta, showing the trees inspected, the resulting observation 
tables, and the transitions. Steps according to case la (preserving the property of 
being a counterexample) are indicated by '—>', whereas / » indicates steps according 
to case lb (yielding a separating context). 
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Let us have a coarse look at L*ep. A set R C T^ is a representative sample 
for L if subtrees(ii) contains, for every live tree t = f[ti,... ,£*], a tree t' = 
f[t'i, • • • ,t'k] such that t[ =L ti,...,t'k =l tk- In other words, the transition 
/ [ [ i i ]= L , . . . , —> [i]=/, of the canonical fta is represented by a subtree of 
at least one of the trees in R. Now, learning starts with the observation table given 
by T = subtrees(-R) and C = {c e C E | 3i € T E : c • t € R}'. The set T is never 
going to change, and there is no distinguished subset S of trees representing states. 

Somewhat similar to the situation in Lf/ta, and in contrast to L^ta, il may 
be inconsistent, which now means that there are trees t = f[ti, • • • ,th] and t' = 
f[t[,...,t'k] in T such that {U) = (i<) for i = 1 ,...,k, but (t) ^ (t'). It can 
be shown that, in this case, there is an inconsistency with TI =L T\ for all but 
one i S { 1 , . . . , * } . With this in mind, the situation becomes entirely similar 
to L^fta: if j is the unique index with tj tj, and d e C is a context sep-
arating t from t' (which exists because (t) ^ (t')), then the context d • c with 
c = f[t\,..., tj-i, C^ij+i, . . . ,tk] separates tj from tj. 

The learner can now choose such a separating context d for every inconsistent 
pair of trees t and t' as above, and ask a membership query for each of the trees 
d • f\t\,..., tj-i^t'j, tj+i,... ,tk] (j £ { 1 , . . . , k}), until the answer differs from the 
table entry for t in column d, to find c. In this way, a context d • c that separates 
tj from tj is obtained.4 Having found such a context, L»ep adds it to C and checks 
again whether the observation table is consistent. Since the index of L is finite, 
the process must eventually terminate, yielding a consistent table! This table gives 
rise to an fta An. in a similar manner as before. For a consistent table, using the 
fact that every transition is represented in T = subtrees(Ti), it can be shown by 
induction on the size of minimal separating contexts that, for t, t' £ T, if (t) = (t'), 
then t =L t'. From this, it follows easily that AQ, is isomorphic to A^.5 

Theorem 2.3 ([7]). The learner L*ep returns an fta (E,Q,S,F) isomorphic to APL 

in time polynomial in X^tefl W (w^ere denotes the size oft). 

Let us have a look at an example. 

Example 2.3. Let S = {/<2\ a<0', 6(0)} and L = T s \(T { / i a } U {6}) , i.e., L contains 
all trees over E of size greater than one that contain at least one b. The canonical 
fta contains states qa,Qb,Qu where qt is final. Its transition table is 

{ qa if t € {a,f[qa,qa]} 

qb Ht = b 
qf otherwise. The set R of trees shown in Figure 3 is a representative sample. Building the 

4Alternatively, following the description in [7], the learner could simply pick any inconsistent 
pair t, t' as above and a separating context d, and add all contexts d-f[ti,..., tj —i, tj+i, • • •, tk] 
to C, because it will eventually also encounter the right one and include it. However, it seems 
clear that this may have a negative impact on the efficiency. 

5 The proof of this fact given in [7, Lemma 5] does not seem to be convincing, but it is easily 
corrected by the inductive argument mentioned, showing that (t) = (t') implies t =L t'. 
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Figure 3: A representative sample R 

corresponding initial observation table, we see that divides T = subtrees(ii) 
into two equivalence classes, namely T\L = {a,b, f\a, a]} and T fl L. The reason 
is that, among the contexts in C, only • separates any trees at all, because every 
c £ C \ { • } (i.e., every context obtained from a tree in R by replacing a proper 
subtree with •) contains a b, which means that XL(C • t) = 1 for all t € Tg. 

Thus, we should be able to find a pair of trees in T revealing an inconsis-
tency. Indeed, there are three, obtained by combining f[a,b],f[b,a],f[b,b] € L 
with f[a,a] L. This gives rise to the context f[a, •] separating a from b. Of 
course, /[•,<!] would do as well, but it may be interesting to note that neither 
/[•,&] nor f[b, •] does (see also footnote 4). As the reader may wish to verify, the 
table Q' enlarged by this context is consistent, and AW is isomorphic to APL. 

3 Learning Tree Series 
It is now a natural step to wonder whether learning of recognizable tree series 
is possible as well. The number of papers addressing this problem is still rather 
small. One may roughly divide them into two categories. The first deals with 
the special case of stochastic tree automata, weighted tree automata (wta) with 
weights in [0,1] that compute a probability distribution on T^. This case is of 
particular interest because stochastic languages play an important role in, e.g., 
natural language processing. To learn stochastic tree languages, it is probably 
most natural to consider a learning-from-text-like setting: positive examples are 
drawn according to a probability distribution D, and the goal is to learn D in the 
limit by, e.g., constructing an appropriate wta. A learner of this kind has recently 
been presented by Denis and Habrard [16]. 

The second category of learners does not assume that the sought wta is a 
stochastic tree automaton. There seem to be only two results of this kind, both 
using the MAT model and the general algorithmic idea explained in the previous 
section. Let us first give some basic definitions. Readers who wish to read a more 
decent introduction to weighted tree automata are referred to the excellent survey 
by Fülöp and Vogler [22]. 

Let S = (§ ,+, - , 0,1) be a (commutative) semiring, i.e., a set § together with 
binary addition and multiplication operations + and • and distinct elements 0,1 6 S 
such that (§, +, 0) and (S, •, 1) are commutative monoids, multiplication distributes 
over addition, and 0 is absorbing with respect to multiplication. From now on, we 



MAT Learners for Recognizable Tree Languages and Tree Series 263 

simply denote S by S. A tree series is a mapping ip'• I s —> S. Given such a tree 
series, we call the set supp(i/>) = {t G TE | tp(t) / 0} the support ofip. 

Below, for a finite index set I, we let S7 denote the set of all vectors over § 
indexed by I. As usual, the zth component of v € S7 is denoted by vt, for i € I. 
The inner product of u, v G SJ is u • v = ^¿e/ ui'Vi-

Definition 3.1. Let § be a semiring. A weighted tree automaton (wta) over § is 
a tuple A = (E, Q, fi, A) consisting of a ranked alphabet E, a ranked alphabet Q of 
states such that Q = Q(Q), a, transition weight table \i € §SWX<3, and a roof weight 
mapping A G Thus. \i assigns a weight /jr to every transition r G E(Q) xQ. A 
is (bottom-up) deterministic (a dwta) if for every I G E(Q), there is at most one 
q G Q such that ^ 0. 

For t = f[t\,...,ife] G TE , we define fi(t) G by setting 

£(*)<? = J 2 ^/[«i-.-.gfc]-« • Ei i 
i= l k 

for all q € Q. 
The tree series recognized by A is given by Vm(£) = A • /!(£), and is called a 

recognizable tree series.. 

In the following, we want to consider the problem of learning a wta in the MAT 
model, first for dwta over a semifield, and then for nondeterministic wta over a field. 
Clearly, for this to be possible, the teacher has to be given appropriate capabilities. 
Thus, if A is the class of wta to be learned, and tp is the target series, membership 
queries become coefficient queries: given a tree t G 7s, the procedure coef(i) will 
return ijj(t). Similarly, equivalence queries have to be extended: the input is a 
wta A G A, and eqQuery(A) will either return _L, indicating that ipA = ip, or a 
counterexample, a tree t G T E such that ipA (t) / ip(t). 

As mentioned, we are first going to have a look at the deterministic case. For 
readers who are not yet familiar with wta, a small example (which will be continued 
later) follows. 

Example 3.1. We consider the semifield S = (Z U {oo},min,+,oo,0). To avoid 
confusion, the reader should keep in mind that + plays the role of multiplication in 
this example, with oo being the absorbing element, and 0 being the neutral element. 

As in Example 2.2, let E = { / ( 2 ) , g ( 1 ) , aW} . For a tree t of the form c • f[t!,a], 
where c G C{g j and t' G T{9 i a} , let ip(t) == 2m + n, where m is the number of 
occurrences of g in c, and n is the size of t'. For all other trees t G Ts , let. 
ip(t) = oo. Thus, the support of ip is the tree language in Example 2.2. 

A dwta over § recognizing ?[> can be constructed by using states qi,q2, <73- Except 
for the addition of weights, the automaton is the same as the one in Example 2,2. 
It will be in state q\ when it has just read an a, in state qi when it has read a 
number of gs above an a, and in state when it has read a tree in supp(ip). For 
the specification of concrete dwta, it is convenient to write /x as a set of rules of the 
form Z—1>q, where I G E(Q) and q is the unique element of Q such that w = 



264 Frank Drewes 

is non-zero (which, in the present case, means that w ^ oo). Using this notation, 
A contains the following rules: 

</[92] ^92, 
1 1 2 

/ [ « l .g i ] - » 93, /[92,9I] ->93, £/[93]->93-
Furthermore, A9l = Xq2 = 00 and Ag3 = 0. 

Now, let us have a look at the MAT learner L»wta for dwta over a (commutative) 
semifield § by Maletti [30]. It extends to the weighted case and generalizes 
an earlier version proposed by Drewes and Vogler [19], which was restricted to the 
class of "all-accepting" dwta. 

The learner L*wta makes use of the Myhill-Nerode theorem for deterministically 
recognizable tree series over commutative semifields [8]. Thus, from now on, every 
a £ § \ {0} is assumed to have a multiplicative inverse. As in L^ta, observation 
tables are given by sets S,T C Te and C C C j . The entry in row t and column 
c is now the coefficient ijj(c • t). The fact that in T, only collects live trees 
becomes now crucial for the correctness of the learner. In the context of tree series, 
a tree t £ Te is live if there exists a sign of life for t, a context c £ Ce such that 

• t) 0. The case of tree series poses a difficulty not present in the language 
case: if fi,(t)g ^ 0 but Xq = 0, then the value of fl{t)q is hidden in the sense that a 
coefficient query on t will yield tp(t) — 0. To determine the right coefficients during 
the construction of AQ, we thus have to make sure that C contains a sign of life, for 
every t £ T. In the algorithm extend, this is easily guaranteed by changing case 2 
in such a way that c is added to C (see footnote 3 on p. 258). 

Thus, the crucial invariant maintained by L^wta is that, as in L*ta, the obser-
vation table fl = (S,T,C ) satisfies S C T C £(«S). In addition, C now contains a 
sign of life for every tree in T. For t, t' £ T, what used to be the equality of (t) and 
(£') in- the unweighted setting, is now replaced by the requirement that one row be 
a multiple of the other. More precisely, let (t) « (t') if and only if there exists an 
a £ § such that (t) = a - (t') (where a • (£') denotes the scalar multiplication of the 
row (t') by a). Note that, due to the existence of signs of life, a is non-zero and 
is uniquely determined for every pair of trees in T (if it exists). Similar to L»ta, 
for every tree t £ T, 5 will always contain exactly one tree s such that (s) « (t). 
Given i £ T, we will denote this particular tree s £ S by repn(i). 

Now, we can assign a weight ipn(t) to every tree t £ T: i>n(t) is the unique 
factor a € § such that {t} = a - (repn(i)). In particular, ipn(s) = 1 for every s £ 5.6 

Using these definitions, an observation table O = (5, T, C) gives rise to the dwta 
AN = (E, Q, N, A), where 

• Q = (S), 

• for every transition r = ( / [ ( s i ) , . . . , (sjt)] —> (t)) : where t = f[s 1 , . . . , s^] £ T, 
we let nT = ipn(t), 

6This definition of ip<n{t) differs from the one given in [30], but fulfills the same purpose. This 
illustrates the fact that there may be several minimal wta recognizing tp, which differ in their 
transition weights (and in A). 
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• all remaining transition weights ¡ir are 0, and 

• A(s) = tp(s) for all s £ S. 

In the same way as Lj,ta, L^wta now starts with the observation table fi = 
(0,0, {• } ) . It repeatedly constructs asks an equivalence query, and passes the 
counterexample received (if any) to the procedure extend. In other words, the main 
procedure of L^wta looks exactly like that of L'ta (although it does now work with 
dwta rather than fta, of course). Even extend looks quite the same as before, the 
major difference being that we now add the context c as a sign of life in case 2: 

procedure extend(Q,i) where Q = (S,T,C) 
loop 

decompose t into t = c-t' where i'=/[si,... ,Sfc] 6 E(S) \ S ; 
let s = repn(i'); 
if t' 6 T then 

if coef(i) = il>n(t') • coef(c • s) then t : = c-s (case la) 
else return close(S, T, C U {c}) (case lb) 

else return close(5,TU{i'},CU{c}) (case 2) 

The following result, similar to Theorem 2.2, holds under the assumption that 
all relevant operations on S (addition, multiplication, and taking inverses) can be 
computed in constant time. Compared to Theorem 2.2, an additional factor \Q\ 
results from the fact that rows are not bit strings anymore, and thus cannot be 
stored as single integers. 

Theorem 3.1 ([30]). The learner L^wta returns a minimal dwta A = (T,,Q,n, X) 
recognizing ip in time 0(r • \Q\2 • |<5| • (|Q| + m)), where m is the maximum size of 
counterexamples returned by the teacher, r is the maximum rank of symbols in E, 
and |<5| is the number of transitions r G E(Q) x Q such that ¡iT ^ 0. 

Let us have a look at an example. 

Example 3.2. Consider the tree series ip in Example 3.1, where,, again, S = 
(Z U {oo},min,+,oo,0). We now apply L^wta in order to construct, by means 
of learning, a dwta over S recognizing ip. The counterexamples used as well as the 
states and transitions discovered are the same as in Example 2.2. In particular, 
counterexamples are re-used if possible. Furthermore, the context c in case 2 of 
extend is not added to the table if the table already contains a sign of life for t'. To 
save space in Figure 4, the very first step, in which a is found to be a new state and 
transition, is omitted. Otherwise, the figure is very similar to Figure 2. Indeed, the 
resulting wta recognizes ip, as the reader may easily check, although the transition 
weights differ from those used in Example 3.1. 

It seems to be clear that the learner L*ep discussed in the previous section carries 
over to deterministic wta over § in quite exactly the same way as L^ta. Thus, the 
resulting learner would use coefficient queries and a representative sample, the latter 
being a subset of supp(^) covering every transition of a minimal dwta recognizing 
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Figure 4: A run of L*wta, similar to the run of"L*ta in Figure 2. 
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ip. Note that, even though there may be various minimal dwta recognizing ip, 
their representative sets coincide, because two minimal dwta recognizing the same 
tree series over S differ only in the weights of their transitions (and in their root 
weights). 

We now turn to the second learner for recognizable tree series, proposed by 
Habrard and Oncina [26]. In contrast to the one explained above (and, in fact, also 
in contrast to all other extensions of L* known to the author), this learner works for 
nondeterministic wta. This becomes possible by making the stronger assumption 
that S, the semiring considered, is a field. Thus, from now on, § is even assumed 
to have additive inverses. Prom the point of view of MAT learning, the important 
consequence of this assumption is that we, again, can make use of a Myhill-Nerode 
theorem; see [22, Theorem 3.31]. 

Below, since we are now dealing with nondeterministic wta A = (E, Q, ¡JL, A), it 
is occasionally convenient to specify /x as a function ¡I: E(Q) —> The connection 
between the two views is, of course, that Hi~>q = n{l)q for all I G E(Q) and q G Q. 

Before turning to the discussion of the learner, let us have a look at an example 
of a nondeterministic wta. 

Example 3.3. Let E = { / ( 2 ) , 3 ( 1\a(°)} and § = Q, where addition and multipli-
cation are as usual. For a tree t G Te , let ip(t) = m + n, where n is the number 
of nodes labelled / in t, and m is the number of nodes labelled / in t that do 
not have a child node labelled / . In other words, we count /s, and those which 
do not have another / as a direct descendant are counted twice. A minimal wta 
A = (E, Q, fi, A) recognizing ip has three states qi,q2, <?3- The intuition behind them 
is as follows. At the root of a (sub-)tree t, state qi carries the weight w = 0 if the 
root of t is labelled / , and w = 1 otherwise. At the same time, q^ carries the weight 
1 — w. State <73 always carries the weight ip(t). Consequently, denoting v G S« as 
(vqi, vq2, %,), the specification of ¡i reads as follows: 

/i(a) = (1 ,0 ,0 ) 
M s M ) = (1.0,0) M/[<7i,<7il) = (0,1,2) 
MffteD = (1,0,0) M/[<7,<?']) = (0 ,1 ,1 ) i fg2e{<z,<z'}c {qi,q2} 
M ^ N ) = (0,0,1) M / M ) = (0 ,0 ,1 ) if{<M'}e{{<zi,<Z3},{<?2,<?3}}. 

The root weights are given by A = (0,0,1). Figure 5 illustrates a computation. 

Now, suppose that ip is a recognizable tree series over a field S. For the mo-
ment, let ft denote the infinite observation table obtained by taking all of T^ as T 
(indexing the rows) and all of C j as C (indexing the columns). Then the rank of 
fi, viewed as a matrix, is finite. Moreover, it is not difficult to show that, for every 
set S C Te , if there exists a tree t G Ts such that (t) is linearly independent of 
(S), then a tree with this property can even be found in E (S). Therefore, there is a 
finite subtree-closed set7 S C Te such that, for all s G S, (s) is linearly independent 
of (S) \ {<«)}, and every row in (Te) is a linear combination of rows in (S). 

TRecall that subtree-closedness of S means that S even contains all subtrees of trees in 5. 
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9 9 9 9 9 
| - » | - > | - » | | —> (1,0,3) 
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/ \ / \ / \ / \ 
f a f (i,o,o) / (i,o,o) (o,i,2) (i,o,o) 

/ \ / \ / \ 
g a 9 (i,o,o) (i,o,o) (i,o,o) 
I I 
a (i,o,o) 

Figure 5: A computation of the wta in Example 3.3. 

Assume that we have discovered such a set 5, and let Q — (S). For every tree 
t G Ts, let ¡5(f) G S*3 be the unique vector such that (f) = J23£s'№)(s) ' (s)-
In other words, ji(t) is the vector of coefficients of (i), if expressed as a linear 
combination of rows in (S). Then, for a tree t and a context c, we have 

ip(c-t) = fi(i,c) = = ^M(i)(s> •V'(c-s). 
ses ses 

In particular, choosing c = • and setting A(s) = ^(s), we get ip(t) = A • jl(t). Since 
this is just the definition of ipA(t), it remains to show how to discover S, together 
with a weight table n such that fi = Ji. 

This is done as follows, again using an observation table. As in L' f ta, rows are 
indexed by the trees in E(5), i.e., E(S) plays the role of T. Each time new contexts 
have been added to C, the learner makes sure that the table is closed, which now 
means that (t) is a linear combination of (S), for every tree t G E(5). Closedness can 
be achieved by an straightforward iterative procedure close that preserves subtree-
closedness. Given that Q is closed, a corresponding wta AQ = (E, Q, /j, A) with 
Q = {S) can be obtained along the lines of the preceding discussion: for every 
tree I = /[(si) , • • •, (sfc)] G E(Q), we let /i(Z) be the unique vector such that (t) = 
SsesMO(s) " (s)- Furthermore, A(3> = tp(s) for all s G S. 

Now, here is the pseudo-code of the main routine of the learner: 

procedure L"ta 

il = (S,C7) := (0,0) 
loop 

construct An; 
t := eqQuery(>ln); (ask equivalence query) 
if t = -L then return An; 
else 

\C := CU{cG CE I 3t' e T S : c-t' = t}\ 
_.\_S := close (5) ; 

Thus, when a counterexample is received, C is enlarged by all contexts obtained 
from this counterexample. Since it can be shown that this increases the rank of fi, 
termination is guaranteed. (In fact, the learner in [26] is slightly more optimized 
than the version described here. Before asking a new equivalence query, it is checked 
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whether there is a tree t € T such that ipAn{t) ''Pit)- In other words, there is 
a context c £ C such that c-t is a counterexample. In this case, the learner can 
obviously proceed by using c-t as a, counterexample, thus avoiding the need to ask 
an equivalence query.) 

Every counterexample increases |S|, which never gets larger than the number 
of states of a minimal wta recognizing ip. Furthermore, every counterexample t 
leads to the inclusion of at most |i| new contexts in C. As all the basic steps in the 
algorithm can be performed in polynomial time in the size of Q (i.e, in |E(5)| + |C|), 
we get the following theorem. 

Theorem 3.2 ([26]). For every recognizable tree series over S, L^ta learns a min-
imal wta A recognizing ip in polynomial time with respect to the size of A and the 
size of the largest counterexample returned by the teacher. 

Again, let us have a look at an example. 

Example 3.4. We apply L" ta to the tree series in Example 3.3. The initial wta, 
without any states, assigns the weight 0 to all trees. The teacher may respond with 
the counterexample f[a,a], which leads to the first observation table in Figure 6. 
In the figure, only as many contexts of C are shown as needed. For example, f[a, •] 
is left out in the first table. Furthermore, for the sake of clarity, the part below the 
horizontal line in each table lists all of T, rather than only T \ S . 

The teacher may now give the counterexample t = f[f[f\a, a], a], f[a, a]], be-
cause ipAn (t) = 27/4 rather than 6. Of the contexts obtained from t, we need only 
/ [ / [ / [• ,a] ,a] , / [a , a]] to distinguish between three states; see the second table in 
Figure 6. AQ, now recognizes IP, even though the "intuition" of the learner differs 
from the one used to construct the (equivalent) wta in Example 3.3. More precisely, 
let root/(i) be the predicate which is true if and only if the root symbol of t is / . 
Then, if fi(t) — (vi,v2,v3), we have 

Indeed, given the choice of A, this means that AQ recognizes ip. 

4 Final Remarks 
We have considered a family of grammatical inference algorithms for tree languages 
and tree series that can be regarded as more or less direct descendants of the learner 
L* proposed by Angluin in [3]. An approach that has not been discussed here is 
the one presented in [6, 38] for string and tree languages, respectively (see also 
[37, 36]). This approach uses so-called correction queries instead of membership 
queries. Given a recognizable tree language L C Tg to be learned, a correction 
query correct(i) (where t £ Ts) is answered by returning the smallest context 
c £ Ce such that c-t £ L. Here, contexts are ordered according to a Knuth-Bendix 
order. A special token is returned if no c with c • t £ L exists, i.e., in case t is 

if rootf(t) 
otherwise. 
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• /[•,<*] 
A(Sl> = 0 
x(s2) = 2 

^(a) = (1,0) 
M5[(si)]) = ( l ,0) 
M # 2 > ] ) = ( i 1) 
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• /[•,«] / [ / [ / [ • , a], a],/[a, a]] 

Si = a 0 2 6 A(si) = 0 
S2 = /[a, a] 2 3 7 A<S2> = 2 
S3 = 0[/[a,a]] 2 4 8 A<*3> = 2 

a 0 2 6 H(a) = (1,0,0) 
f[si] 0 2 6 Mff[(si>]) = (1,0,0) 
s M 2 4 8 M(3[(s2)]) = (0,0,1) 
9 [sa] 2 4 8 MtfKss)]) = (0,0,1) 

/[Sl,Si] 2 3 7 M / K s i M s ! » ) = (0,1,0) 
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/ [s 2 , s i ] 3 4 8 M(/[(s2),<S!)]) = ( - 1 1 V 2 , •L1 2> 
/[S2,S2] 5 6 10 M(/[(s2),(s2)]) = ^ 2' ' 2> 
/ [s2 ,s3 ] 5 6 10 M(/[(s2),(s3)]) = 

Y_3 1 3n V 2> A> 2> 
/[s3,si] 4 5 9 M(/[<S3>,<S1>]) = ( - 1 , 1 ,1 ) 
/[S3,S2] 5 6 10. M/[(s3) , (s2)]) = V 2' ' 2' 
/[S3,S3] 6 7 11 M(/[(s3),(s3)]) = : ( - 2 ,1 ,2 ) 

Figure 6: Applying L^ta to the tree series ip in Example 3.3 

dead. It seems to be an interesting question whether this approach carries over the 
weighted setting in a reasonable way. 

In the case of weighted tree automata, the learners mentioned in Section 3 seem 
to be the only ones known so far. In contrast, a variety of learning approaches for 
stochastic string languages and recognizable string series have been proposed in the 
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literature (see, e.g., [31, 9, 12, 10, 11, 14, 15, 25]). It could be interesting to see 
whether these approaches extend to stochastic tree languages or tree series as well. 

Another question that may be worth studying is whether grammatical inference 
of tree series is easier if some aspects of the target series are already known, such 
as the support or the yield of the support. 
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Weighted Tree-Walking Automata* 

Zoltán Fülöpi and Loránd Muzamel^ 

Abstract 
We define weighted tree-walking automata. We show that the class of tree 

series recognizable by weighted tree-walking automata over a commutative 
semiring K is a subclass of the class of regular tree series over K\ If K is not 
a ring, then the inclusion is strict. 

K e y w o r d s : semirings, regular tree series, weighted tree-walking automata 

1 Introduction 
The concept of a tree-walking automaton (for short: twa) was introduced in [1] 
for modelling syntax-directed translations from strings to strings. Recently its 
importance grew in XML theory, see, e.g. [23, 25, 26]. A twa A is a sequential 
finite-state tree acceptor with finitely many transition rules. Obeying its state-
behaviour, A walks along the edges of an input tree s £ Ts, where E is the input 
ranked alphabet of A. Then A accepts s if there is an accepting run on s, i.e., 
a finite walk on s from the initial state to the accepting state. Tree languages 
recognized by twa are effectively regular. Unfortunately there is no straight proof 
of this fact in the literature, but it can be obtained, e.g., as the special case of the 
main result of [14]. However, there exists a regular tree language that cannot be 
recognized by any twa [4]. There are several extensions of twa which still recognize 
regular tree languages, such as twa with weak pebbles [13], strong pebbles [14], 
invisible pebbles [15], and also the alternating pebble twa of [24]. 

Another kind of automata in which we are interested is the weighted tree au-
tomaton (for short: wta). It is a natural generalization of the classical tree au-
tomaton [10, 19, 20]. The generalization lies in that input trees are supplied with 
weights taken from an underlying semiring K. In fact, each transition rule of the 
wta has a weight represented by an element of K. The weight of a run over an 
input tree s S T s is just the (semiring) product of the transitions which take part 

*The full version of a submission presented at Weighted Automata: Theory and Applications 
(Dresden University of Technology, Germany, May 13-16, 2008). The research was supported by 
the Hungarian Scientific Fund under Grant T 46686 and by the Fund for Teaching and Research 
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t Department of Foundations of Computer Science, University of Szeged, Árpád tér 2., H-6720 
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in that run. Then, the weight of s is the (semiring) sum of all runs over s. In 
this way a wta recognizes a tree series, i.e., a mapping from Ts to K. Tree series 
recognizable by wta are called regular, and the class of regular tree series which are 
recognizable by weighted tree automata over £ and K is denoted by REG(£, K). 
Note that REG(£,B), where IB is the Boolean semiring, is the class of recognizable 
tree languages [19, 20]. Wta were defined and considered in several works, see e.g. 
[3], [2], [8], [5], [16], [11], [22], and the survey paper [18]. 

In this paper we introduce the weighted version of a twa, following the idea that 
led from classical tree automata to wta. In a weighted tree-walking automaton A 
(over £ and K) (for short: wtwa), every transition rule has a weight taken from 
the semiring K. We assume that A is non-looping, i.e., it cannot enter into an 
infinite cycle from the initial configuration. The weight of a run of A on an input 
tree s £ Te is the product of the weights of the applied transition rules, then the 
weight of s computed by A is the sum of the weights of all the accepting runs of A 
on s. Since A is non-looping, it has only finitely many such accepting runs. The 
tree series recognized by A is SA Tz —» K, where SA(S) is the weight of s for 
every input tree s £ T^. We denote the class of tree series which are recognizable by 
non-looping wtwa over £ and K by TWA(E, K). Hence, wtwa with their sequential 
processing are alternative tools besides the classical weighted tree automata, which 
process trees parallelly. We note that arbitrary (i.e., maybe looping) wtwa over B 
are exactly the twa of [1]. 

As the main result, we show that if K is commutative, then TWA(£, K) C 
REG(£, K) (Theorem 17). The proof of that the tree series recognized by a non-
looping wtwa A is regular is performed according to the following steps. We encode 
an accepting run of A by annotating the nodes of the input tree by the rules applied 
in that run. Thus we obtain the concept of a run tree of A. Then we construct 
two twa such that a Boolean combination of the tree languages recognized by them 
turns out to be the set of run trees of A. Hence, the run trees of A form a regular 
tree language (Corollary 15). This implies that the tree series S that associates 
á run tree with the weight of the run it encodes is regular. Finally, we define an 
appropriate relabeling r from the set of run trees of A to the set of input trees 
such that the extension of r to tree series takes S to SA- Since such an extension 
preserves regularity of tree series, we obtain that SA is regular (Theorem 16). 

Then we show that if, in addition, the semiring K is proper, i.e., is not a ring, 
then the inclusion is strict, i.e., REG(£, if)—TWA(£, K) ^ 0. Hereby we generalize 
the main result of [4]. We prove this by taking a surjective homomorphism h: K —» 
B. Now, if TWA(£ , íO = REG(£, K), then also /i(TWA(£, K)) = TWA(E,B) = 
h{REG(E, K)) = REG(£, B) which contradicts the celebrated result TWA(£, B) c 
REG(E,B) of [4]. 

The paper is organized as follows. In Section 2 we introduce the necessary 
notions and notation. In Section 3 we define weighted tree-walking automata, then 
we prove our main results in Section 4. In Section 5 we summarize our results and 
show an open problem. 
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2 Definitions and notation 

2.1 Sets, relations, and strings 
We denote the set of nonnegative integers by N. For every n £ N, we let [n] = 
{ 1 , . . . , n}. The empty set is denoted by 0. 

For a set A, we denote by 2A the power set of A and by A* the set of strings 
over A. We denote empty string by e. Sometimes we write a for a singleton {a}. 

Let p C A x A be a binary relation. The fact that (a, b) € p for some a, b £ A is 
also denoted by apb. Moreover, the transitive closure and the reflexive, transitive 
closure are denoted by p+ and p*, respectively. 

2.2 Trees and tree languages 
A ranked alphabet is an ordered pair (S,rank), where E is a finite, nonempty set 
and rank is a mapping of type E —> N. For every k > 0, we define E ^ = { a £ 2j 
rank(cr) = k}. We define maxrank{E) = max{rank(a) \ a £ E}. In the sequel we 
drop rank and write a ranked alphabet as E. Moreover, in the rest of the paper E 
and A will denote arbitrary ranked alphabets. 

The set of trees over E indexed by A, denoted by T%(A), is the smallest set 
T C (E U { ( , ) } U { , } )* such that U A C T and whenever fc > 1, tr € 
and ti,...,tk € T, then a[t\,..., tk) € T. In case A = 0, we write T2 for TE(A). 
Certainly, T2 ^ 0 if and only if E (0 ) / 0. Every subset L C Ts is called a tree 
language. 

For every tree s £ Te, we define the set pos(s) C N* of the nodes of s as follows. 
We let pos(s) = {e} if s £ £(°\ and pos(s) = {e} U {iu | 1 < i < k, u £ pos(sj)} if 
s = CT(si, . . . , Sfc) for some k > 1, a £ E ^ and s i , . . . , sk £ Is -

Now, for a tree s £ T^ and a node u £ pos(s), the label of s at node u, denoted 
by s(u), is defined in a standard way. By the root of s we mean the node e. A 
node u of s is a leaf if ul 0 pos(s). Moreover, we define the parent of u, denoted 
by parent (u), and the child number of u, denoted by childno(u), as follows: 
(i) if u — e, then childno(u) = 0 and parent (u) is undefined, 
(ii) if u = u'j, where u' £ pos(s) and j £ N, then childno(u) = j and parent (u) = u'. 

We will freely use the concepts of a regular tree language and a (finite) tree 
automaton. The unfamiliar reader can consult the works [19, 20], and [9] for these 
concepts. Moreover, we will need the following known closure properties for regular 
tree languages, see, e.g., Theorem 4.2 of [19]. 

Proposition 1. Regular tree languages are closed under Boolean operations. 

2.3 Semirings and tree series 
A semiring is an algebraic structure (K , +, •, 0,1) with binary operations addition 
+ , multiplication •, and constants 0 and 1 (with 0 / 1 ) such that ( i f ,+ ,0 ) is a 
commutative monoid, (K, -, 1) is a monoid, multiplication distributes over addition 
(both from left and right), and a • 0 = 0 • a = 0 for every a G K. Frequently we 
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will write just K for (K, +, •, 0,1). We say that K is commutative if a • b = b • a for 
each a,b £ K. The semiring K is proper if it is not a ring, i.e., there is no additive 
inverse of 1. 

Examples of commutative semirings are the Boolean semiring B = 
( {0,1} , V, A,0,1) and the arctic semiring Arct = (NU{—oo},max, + , —oo, 0), where 
the operations max and + are extended to N U {—oo} in the obvious way. Note 
that both ® and Arct are proper. 

A tree series (over E and K) is a mapping S :Tz —> K where (S, s) is usually 
written rather than S(s) for s £ We denote by K({Tz)) the set of tree series 
over E and K. Now we give an example of a tree series over Arct. 

Example 2. Let E be such that £ ( 0 ) = {a, /3}. The tree series height^ £ Arct((TE)) 
delivers, for s £Tz, the length of the longest path from the root of s to an a-node. 
More exactly, 

(i) {heigkta,s) = {°_ob fflZfr' 

(ii) (heighta,s) = 1 + max{(heighta, Sj) | 1 < i < k} if s = a(si,..., sk) for some 
k > 1, a £ £(fe), and s i , . . . , s f c € TE. 

In an analogous way, we can define heightp £ Arct((TS)). Now by an a-/3-path in 
s we mean a path from an a-node to a /3-node of s along the edges of s such that 
the a-node precedes the /3-node in the usual lexicographical order of the nodes and 
that every edge is taken at most once in the path. Finally, we define the tree series 
widthap £ Arct((Te)) which delivers, for s £ Tg, the length of the longest a-/3-path 
in s. More exactly, 

(i) (widthap, s) = —oo if s = a or s = p, 

(ii) (widthap, s) = max{ max{(heighta, Si) + (heightp, Sj) + 2 | 1 < i < j < k}, 
max{(widthap,Si) \ 1 < i < A;}} 

if s = c ( s i , . . . , Sk) for some k>l, a £ and sy,...,sk £ T 
In particular, let E = { C T ^ ^ 1 ) ^ 0 ) , / ^ 0 ) } . Then, for the tree s = 

a(a(a(a(f3,a),p),j(a(P,a))),P), we have heightQ(s) = 4, heightp(s) = 4, and 
widthap(s) = 6. The longest a-/3-path in s is visualized in Fig. 1. 

Weighted tree automata were defined in several works in several ways, see e.g. 
[3], [2], [8], [5], [16], [11], [22], and the survey paper [18]. Here we give a definition 
which is equivalent with the standard one and, at the same time, is easy to handle. 

A weighted tree automaton (wta) over K is a system M = (Q, E, R, u), where 
Q is a finite set of states, E is the input ranked alphabet, v is a mapping of type 
Q —> K, and ii is a finite set of (weighted) rules of the form a(qi, • • • q, 
where k > 0, a £ T,(k\ q\,... ,qk, q £ Q, and a £ K. In case k = 0 we write a A q 
rather than cr() A q. 
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cr 

p 

/ \\ \ /3 a /3 a 

Figure l:..The longest a-/?-path in the tree s = a(cr(a(a(f3,a),/3),-y(cr(/3,a))),(3). 

The tree series Sm,q £ K((T^)) recognized by M in a state q £ Q is defined as 
follows. For every input tree s = <r(si,... ,Sk) £ i s with k > 0, a £ and 
Sj,... ,Sfe £ Te, we have 

for every input tree s e T j . 
A tree series is regular if it can be recognized by a weighted tree automaton. 

We denote the class of regular tree series over E and K by REG(E, K). 
Next we define the concept of a characteristic tree series and some operations 

on tree series which we need in the sequel. For a tree language L C Te the 
characteristic tree series of L is XL £ defined by (XL,S) = 1 if s € L and 
(XL, S) = 0 otherwise for every s e T j . 

Let Si,¿>2 £ K((Ts)) be tree series and a £ K. We define the tree series 
aSi £ K({Ts)) by (aSi, s) = a- (Si, s) for every s £ Te. The sum and the Hadamard 
product of Si and S2 are denoted by Si + S2 and Si © S2 in K({Tz)), respectively, 
and are defined as (Si + Si,») = (Si,s) + (S2,s) and (Si 0S2,s) = (Si,s) • (S2,s) 
for each s £ Te-

Regular tree series have the following closure properties. 

Proposition 3. Let K be commutative. 

(a) If L C Te is a regular tree language, then XL £ REG(E, K). 

(b) If Si, S2 G REG(£, K) and a £ K, then aSi, Si + S2, and Si © S2 are also 
in REG(£,Ar). 

For the proof of (a) we refer the reader to Lemma 3.3 of [12]. The closure 
under the multiplication with a, the sum, and the Hadamard product were proved 
in Lemmata 6.3 and 6.4 of [11] (cf. also Lemma 3.3 of [12]), and in Corollary 3.9 

Moreover, the tree series recognized by M is defined by 

{SM, S) = ^ ( S M , g , s ) • V(q) 
geQ 



280 Zoltán Fülöp and Loránd Muzasnel 

of [6]. Let us note that the proof of (a) and of the closure under sum do not need 
commutativity of K. 

Now we define the concept of relabeling. A (deterministic) relabeling is a map-
ping r : E —» A such that for each k > 0 and A G £(fe) we have T(CT) 6 A(fc). Then 
r extends to the mapping r' : —> 7a , where r'(s) = t(o-)(t/(si), . . . , r'(sfc)) for 
every s = er(si,. •., Sfc) with A; > 0, a G £(fc\ and Si,...,S& € For each tree 
i G 7a, the set {s G 7s | i = r ' (s ) } is finite. Finally, r ' (and hence r ) extends to 
the mapping f : if((Ts)) K((TA)), where 

( r ( s ) , i ) = £ (5>s)-
serE ,T ' («)=t 

for each 5 G K((TS)) and t G TA. 

We will need the following result which was proved in Lemma 3.4 of [12]. 

Proposition 4. Let K be commutative. If S G REG(£, K) and r : E —> A is a 
relabeling, then T(S) G REG(A, i f ) . 

Now let K' be another semiring and h : K —> K' a semiring homomorphism. 
Then h extends to the mapping h : K({Ts)) K'{{TE)} by defining h(S) = ho S 
for every S G K((Ts)). We will need the following result, cf. Lemma 3 of [7] and 
Theorem 3.9 of [18]. 

Proposition 5. (a) For every S G REG(£, K) and semiring homomorphism h : 
K K', we have h(S) G REG(£,-K"'), i.e., h(REG(E,K)) C REG(E,X / ) . (b) If, 
in addition, h is surjective, then /i(REG(£, K)) = REG(E, K'). 

3 Weighted tree-walking automata 

In this section we define weighted tree-walking automata. For the definition of the 
classical (unweighted) case, see [1] and [13]. 

Informally, a weighted tree-walking automaton A over a semiring K works as 
follows on input tree s. It is equipped with a pointer that walks on the edges of 
s, obeying its state behaviour. In a given moment of the computation, the current 
node is the node of s pointed by the pointer. Each computation step is determined 
by the state of the given moment, the label, and the child number of the current 
node. Besides, each computation step has a weight over K. An accepting run of 
A on s is a walk starting at the root of s in the initial state and finishing at an 
arbitrary node of s in the (only) accepting state. The weight of an accepting run 
is the product of the weights of the corresponding computation steps. Finally, the 
weight of s, computed by A, is the sum of the weights of the accepting runs of A 
on s. Now we give the exact definition. 
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Syntax 

For each a £ E, the set of instructions determined by a is the set 

j _ f {stay, up, downi | 1 < i < rank(a)} if j > 0, 
\ {stay, downi | 1 < » < rank(a)} if j = 0. 

Let i f be a semiring. A weighted tree-walking automaton (shortly: wtwa) over K 
is a system A = (Q, E, qo, qa, P), where 

• Q is a finite set, the set of states, 

• E is the input ranked alphabet, 

• Qo,Qa € Q are the initial and accepting state, respectively, such that go ^ Qa, 
and 

• P is a finite set of rules of the form (q,<r,j) (q' ,<p), where q £ Q — {q a } , 
a £ E, j £ { 0 , . . . , maxrank{£)}, a £ K such that a ^ 0, q' £ Q — {qo} and 
<p £ I<j,j • 

A rule 7r = {q, a, j) A {q',f} is called both a ¿/-rule and a cr-rule. The left-state, 
right-state, and the weight of it are defined by lstate(-K) — q, rstate(ir) = q', and 
wt(n) = a, respectively. Moreover, we let test(ir) = (a,j) . Rules with left-state qo 
(right-state qa) are called initial rules (accepting rules). 

Computation relation 

Let s £TS be an input tree. For a node u £ pos(s), we define test3(u) = (cr,j), 
where a = s(u) and j = childno(u). If s is clear from the context, then we will 
write test(u) for tests{u). Now assume that test{u) = (cr,j) and let tp £ Iaj be an 
instruction. Then we define the effect of <p on u by 

{ u if <p = stay, 

parent(u) if ip = up, 
ui if (p = downi. 

A configuration (of A over s) is a tuple (q, u), where q £ Q and u £ pos(s). We 
denote the set of configurations of A over s by CA,S and write just CS if A is clear 
from the context. In particular, (qo, e) is the initial configuration and (qa,u) is an 
accepting configuration for every u £ pos(s). 

Let 7r £ P be a rule. The n-transition relation (of A with respect to s) is 
the binary relation I~A,S,TV over CS defined as follows. For arbitrary configurations 
(Q,u), (Q ',u ') £ Cs we have (q, u) Ha.s.tt (Q',U') if and only if • 7r has the form (q,a,j) A (q',ip), 

• test(u) = (a, j), and u' = <p(u). 

If A is clear from the context, then we write bSi7r for Finally, we define the 
transition relation bs (of A with respect to s) as b s = |J hSi7r. 

* eP 
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Looping property 

We define A to be looping if there is an input tree s € 2s and a configuration 
(q,u) € Cs such that (qo,e) h* {q,u) b+ (q,u). Otherwise, A is non-looping. We 
call {q, it) a looping configuration. The looping problem of wtwa is decidable. In 
fact, the decidability of the more general circularity problem is proved in a more 
general setting for pebble macro tree transducers, cf. Section 4. of [17]. 

Accepting runs 

Let s e Te be an input tree. An accepting run (of A on s) is a string 

r= (qo,uo)TTo(qi,ii>i)'iri • • .Trk(qk+i,uk+i) 

over CSUP, where k > 0, (qo,uQ),(qk+1,uk+i) e Cs withu0 = £ and qk+t = qa, -
TTo,...,nk G P, and (qi,Ui) h3i7ri (q i+i,Ui+i) for each 0 < i < k. The weight of r 
is wt(r) = wt(7To) •... • wt(7rk). We denote the set of accepting runs of A on s by 
Accrun3. 

Tree series recognized by non-looping wtwa 

Let A be a non-looping wtwa. The tree series SA € recognized by A is 
defined as 

(SA,s)= J2 wtw-
r€Accruna 

for each s € T^. Note that we need non-looping property to guarantee that the set 
Accrun3 is finite and hereby the above sum has finitely many members. We denote 
by TWA(E, K) the class of tree series that are recognizable by non-looping wtwa 
over E and K. 

Example 

Next we give an example of wtwa which recognizes the tree series widthap defined 
in Example 2. 

Example 6. Let A = ({qo,qa,Qi,Q2^Qup,qup},'S',qo,qa,P) be a wtwa over Arct, 
where E is the particular alphabet in Example 2 and P is the set of the following 
rules. 
Initial rules: 

7rj : (go,o-,0) (qi,doumi) ir2 : (qo,<r,0) (qi,down2) 
7T3 : (9o,7>0) {qi^down-i) 
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Intermediate rules: 
7T4 

TT5 
7T6 
*"7 
7T8 
7T9 
7I"10 
7Tn 
TT12 
71"13 
7T14 

(91,0", 1) 
<9i,0",l) 
<9i,0",2) 
(9i,<7,2) 
(91.7.1) 
(91.7.2) 
<9i,a. 1) " 
<9i.a,2) -
<9«P , 0) 
<9«p,°", 1) 

<9i, downi) 
<9i, down2) 
(q\, downi) 
(qi,down2) 
<9i, downi) 
<9i, downi) 
> (qui, up) 

(qup, up) 
(q2, down2) 
(i52, down2) 
<92, down2) 

7!"15 
7T16 
TT17 
T1"18 
7I"19 
TT20 
" " 2 1 

7T22 
7T23 
71*24 
TT25 
7T26 

(glp, cr, l) 
(gip, c, 2) • 
(gip,cr, 1} 

(qui, up) 
<9& 

(q$,a,2) 
(qui, 7,1) 
<9«p, 7, 2) 
<92, M ) 
<92,0-, 1) 
<92, c, 2) 
<92, cr, 2) 
<92,7,1) 
<92,7,2) 

l 
l 

1 -,(r) 

,up) 
(qip,up) 

(qup,up) 
(qui, up) 
(q{up,up) 

(q2, down{) 
<92, down2) 
(q2, downi) 
(q2, down2) 
(q2, downi) 
(q2, down{) 

Accepting rules: 

TT27 : (92, /?, 1) (9a, Sto/) 2̂8 = (92, /?, 2) (9a, «iaj/) 

Note that A is non-looping. Moreover, A works on an input tree s as follows. 
1) In the first phase, A moves the pointer nondeterministically to an a-node of 

s with its rules 7Ti-7rg. The weights of these steps are 0. 
2) Then A moves its pointer upwards (using ttiq and 7rn), such that states qup 

and qup store whether the previous step was made from the left child or the right 
child, respectively. If A is in state qup and the pointed node is labeled by <7, then 
A nondeterministically decides whether to continue moving up (using 7ris — 7T2o) or 
to move down to the second child in state q2 (using 7ri2 — KIA)- Each of these steps 
has weight 1. (We do not need 7-rules with left-state qup because going up to a 
node labelled by 7 leads to state gup.) 

3) In the third phase, A searches nondeterministically for a /3-node of s by 
descending with its rules Each of these steps has weight 1. If it finds a 
/3-node, then the run terminates in the accepting state qa with the O-weighted rules 
7T27 Or 7T28-

Now it is easy to see that an accepting run r of A on s contains an a-(5 path 
in s and that the weight of r is the length of that a-0 path. Hence we conclude 
that, for each input tree s € 7e, the wtwa A computes (widthap,s) and thus it 
recognizes the tree series widthap. 

An accepting run of A on the input tree s of Example 2 is 

r = (qo,e)ni(qi, l)7r4(gi, ll)7r4(gi, lll)7r5(gi, 1112)7Tii(g$, 111)7Ti7 

<9$, ll)7ri5(g$, l>7ri3<«2,12)7r26(92, 121>7t2i (92,1211)7r27<g., 1211). (3.1) 

In fact, r contains the longest a-(3-path in s, which can be seen in Fig. 1. 
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Tree-walking automata as the Boolean case of wtwa 

Later in the paper we will consider wtwa over B. For such a wtwa A, the weight 
of each rule and hence of each accepting run is 1. Moreover, since 1+1=1 in B, 
we do not need the restriction that A is non-looping to define the semantics of A. 
Hence, we define SA for an (arbitrary) wtwa A over B by the formula used for a 
non-loping one. It is easily seen that (SA,S) = 1, i.e., A accepts s, if and only if 
there is an accepting run of A on the input tree s (even in the case that A has 
infinitely many accepting runs on s, i.e., that Accruna is infinite). In this way A 
can also be considered as a tree recognizer and we obtain the tree-walking automata 
(twa) of [1], cf. also [13]. In fact, we call a wtwa A over B a twa, we drop the 
weight 1 from the specification of its rules, and we denote by L(A) the set of trees 
accepted by A and call it the tree language recognized by A. 

Twa with one pebble 

We will also need a more general tree recognizer, the so called one pebble tree-
walking automata (1-ptwa), see e.g. [13]. 

A 1-ptwa A works as follows on input tree s. Similarly to a twa, A is equipped 
with a pointer that walks on the edges of s. Moreover, A has one pebble that is 
able to mark a node of s, i.e., that can be dropped at and lifted from the current 
node. After marking a node by the pebble, A can walk away from the marked node. 
When accessing a node, A is able to test whether the current node is marked by 
the pebble or not and the further computation of A may depend on the result of 
this test. This gives an extra computation power for A. Like a twa, A will accept 
s if and only if it has at least one accepting run on s, and the set of trees accepted 
by A is denoted by L(A). Again, we call L{A) the tree series recognized by A. For 
a formal definition of a 1-ptwa, the reader is advised to consult [13] or [14]. 

The tree languages recognized by 1-ptwa (and hence by twa) are effectively 
regular, which is proved in [13] for ptwa and also in [24] for the more general pebble 
alternating tree-walking automata. This yields the following proposition. 

Proposition 7. The tree languages recognized by 1-ptwa (and hence by twa) are 
effectively regular. 

4 The recognizing power of non-looping wtwa 
We can prove our main results for non-looping wtwa over commutative semirings. 

Therefore in the rest of this paper K denotes a commutative semiring 
and A = (Q,£,qo,qa,P) denotes a non-looping wtwa over K. 

We will prove that the tree series recognized by A is effectively regular. For this, 
we will consider annotated input trees. These are trees the cr-nodes of which are 
annotated by sets of cr-rules in P, where a € E. The annotation of a node by a set 
of rules intuitively means that those rules may be applied at that node. Since A is 
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non-looping, it will be sufficient to consider consistent annotations. More exactly, 
let P(<r) be the set of all cr-rules in P and define a pair (a, J) £ E x P(cr) with 
J = {tti , • • •, 7rm} to be consistent if the following conditions hold: 

a) test(7Ti) = ... = test(-nm) and 

b) the states lstate(ni),..., lstate(irm) are pairwise different. 

Then, we introduce the ranked alphabet E(P) C £ x P(cr) such that 

E(P)W = {(a, J) £ E(fe) x P(<r) | (a, J) is consistent} 

for every k> 0. Finally we define rules ((a, J)) .= J. 
It is useful to introduce the tree series weight £ K((T^p))) which associates an 

annotated tree t £ Is(/>) with the product of the weights of the rules appearing in 
t. More exactly, for every t £ Te(p), we have 

(weight, t) = JJ wt(ir), 
u € pos(t) 

7r 6 rules(t(u)) 

where the empty product yields weight 1. We will need the following result. 

Lemma 8. The tree series weight is regular. 

Proof. Let M = ({9}, £(P), R, v) be a wta such that v(q) = 1 and R the smallest set 
containing all rules {a, J)(q,... ,q) A q with (a, J) £ £ (P) such that a = wt(tt). 

•n- s j 
It is easy to see that SM — weight. • • 

In particular, we will be interested in those annotated trees which encode an 
accepting run. We call such trees run trees and define them in the following way. 

Let s £ T s be an input tree and 

r= {qo,u0)iTo(qi,u-i)-n-i...{qk,Uk)itk(qa.,uk+i) 

an accepting run on s. The run tree of s and r is the tree rtree(s,r) £ T 2 x 2 p 
defined by the following conditions: 

• pos(rtree(s,r)) = pos(s) and 

• for each u £ pos(rtree(s, r)) we have 

rtree(s, r)(u) = (s(u), {ifi £ P | 0 < i < f c , w ,= u}). 

We say that rtree(s,r) encodes r. Moreover, the set of run trees of s is Rtrees = 
{rtree(s,r) \ r £ Accruns}. In Fig. 2 we visualize the run tree rtree(s,r), where s 
is the input tree of Example 2 and r is the run of A on s appearing in Example 6. 

We can prove easily that run trees are in fact trees over E(P). 



286 Zoltán Fülöp and Loránd Muzasnel 

(a, {̂ 4,̂ 13}) ( M ) 

(<T,{7r4;7ri5}> <7, {"26 }) 

</M> <cr, {TT2i}> 

/ / \ 
(A0> <a.{Tn}> <a,0> 

Figure 2: A run tree. 

Lemma 9. For every s £ T^, we have Rtrees C 

Proo/. Let t € Rtrees be a run tree and u £ pos(t) (= pos(s)) a node. Assume 
that t(u) = (a, {IT-Y,..., 7rm}), where 7Ti,..., 7rm £ P. We show that both a) and 
b) of the definition of consistency hold. Since t £ Rtrees, there is an accepting run 
r £ Accruns such that t = rtree(s,r). 

Condition a) obviously holds because a rule n can be applied at a node u of s 
only if test(ir) = test(u). 

We prove b) by contradiction. Assume that there are q £ Q, fi, and u such 
that I < fj. v < m and q = lstate(7rM) = lstate(7iv). Then it directly follows that 
configuration (q, u) occurs twice in the accepting run r, i.e., (qo,£) s (q,u) bj[ s 

(q,u). This contradicts the fact that A is non-looping. • 

We will also need the following straightforward result. 

Lemma 10. Let s £T% be an input tree. For each accepting run r £ Accruns we 
have wt(r) = (weight, rtree(s,r)). 

Next we show that Accruns and Rtree3 have the same number of elements. For 
this, we define the mapping 6S : Accrun3 —> Rtrees such that 9s(r) = rtree(s, r) for 
each r € Accruns and show that it is a bijection. 

Lemma 11. The mapping 6S is a bijection. 

Proof. It should be clear that 6S is surjective. To show that it is injective, we 
consider 7*1,7*2 £ Accruns with rtree(s,r\) = rtree(s,r2) and show that r 1 = r2. 
Let 

r í = (qo,uo)no(qi,ui)ni... (qk,Uk)TTk(qa,Uk+i) 

and 
r2 = (9o,uó)7r^(gí,u'1)7r;...(^,uí)7rí(g0,u;+1} 

where uq = u'0 = e. 
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First we prove by contradiction that 7Tj = for every 0 < i < min{fc, /}. Assume 
that there is an i such that 7r* ^ n^ and irj = n'j for every 0 < j < i. The latter 
implies qj = q'3 and Uj = u'j for every 0 < j < i. Since 7Tj G rules (rtree(s,r2)(ui)) 
and, in particular, rtree(s,r\)(ui) = rtree(s,r2)(ui), there is an i < m < I such 
that u'm = Ui and Tr'm = 7Tj. If i = 0, this is a contradiction because the left-state 
of 7r'm cannot be qo- If 0 < i, then we get 

(qi,Ui) = <gt'X> b+ (q'm,u'm) = {qum), 

which is a contradiction again because A is non-looping. Hence the statement 
follows. 

This statement and the fact that there are no rules with left-state qa imply that 
k = l. From the latter uk+1 = u'k+\ follows, hence r\ = r2- • 

Thus we obtain the following, which we need later. 

Corollary 12. For each input tree s € Tj; we have ( S A , S ) = ^ (weight, t). 
t€Rtree, 

Proof. 

(SA,s) = £ wt(r) 
r^Accruna 

= (weight, rtree(s^r)) (by Lemma 10) 
r€.Accruns 

— ( w e i g h t ( b y Lemma 11). 
t€Rtreea 

• 
The set of run trees of A is Rtree,4 = (Js6Te Rtrees. 
We will show that RtreeA is a regular tree language. In fact, we will construct 

a twa A' and a 1-ptwa A" and then show that RtreeA is the Boolean combination 
L(A') n L(A") of the tree languages recognized by them. 

The twa A' works on trees over E(P) and accepts all the run trees of A, i.e., 
RtreeA Q L(A'). Let A! = (Q,Z(P),q0,qa,P'), where, for every (a, J) € E(P), the 
set P' contains the rule 

(q,(°,J)d) (g'.v) 

if and only if the rule (q, a,j) —> (q', <p) is in J. Note that A' is deterministic in the 
sense that, due to condition b) of the definition of consistency, it has no different 
rules with the same left-hand side. 

Let us consider an input tree t G p) to A' and let s € T^ be the tree obtained 
from t by dropping the rule sets from its labels. It should be clear that A! simulates 
on t the steps of A on s which apply the rules in the nodes of t in a state-to-state 
and node-to-node manner. Hence A! accepts t if and only if A accepts s applying 
the rules in the nodes oft . In particular, for every s E the twa A' accepts each 
t G Rtrees because such a t encodes an accepting run of s. (Here we use Lemma 9.) 
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(<7, {7r4,7r15}> 
X 

(A, {TT4,TTI 

/ \ 
{a, {?r5,7r17}) </3,0> 

/ \ \ 
(a, 0) 

Figure 3: A tree accepted by A!. The circled rules are superfluous. 

Hence RtreeA Q L(A'). Note that A' may also accept trees which do not encode 
accepting runs because they contain some "superfluous rules" in their labels. 

In Fig. 3 we show a tree which is accepted by A! but is not a run tree of A, 
where A is now the wtwa of Example 6. At the same time, the tree contains the 
accepting run shown in Fig. 2. 

In order to clarify the relation between RtreeA and L(J4/), we define the concept 
of the superfluous rule in an exact way. 

Let t G L(A') be a tree and u G pos(t). A rule IT G rules(t(u)) is superfluous at 
node u (in t) if the tree t' is also in L(A'), where t' is obtained from t by dropping 7r 
from the set rules(t(u)). If this is the case, then we say that t contains a superfluous 
rule. 

Lemma 13. RtreeA = {t G L(A') \ t contains no superfluous rules}. 

Proof. If t G RtreeA, then t G L(A'). We show that t contains no superfluous rules 
by contradiction. For this, let s G Tz and r G Rtrees be such that t = rtree(s,r). 
Consider an accepting run 

of A' on t and let 7r» be the rule of A corresponding to n^, 1 < i < n, see the 
definition of A' above. It should be clear that the sequence obtained from r' by 
replacing If, with 7r* for every 1 < i < n is the accepting run r of A on s. Assume 
that t contains a superfluous rule. Since r contains all rules in the nodes of t there 
is an index i such that 7Tj is superfluous at u,. Assume that i is minimal. Since TTQ 
is the only initial rule in r, we have i > 0. Let t' be the tree obtained from t by 
dropping 7Tj (whose left-state is qt) from rules(t(ui)). Note that, by definition, A! 
accepts t' with an accepting run f. Since i is minimal and the run r' simulates r, 
the first i — 1 rules applied in r are H i , . . . , IIj_i. Then, the left-state of the ith rule 

r' = (go.wo)no(gi,ui)lli...(gfc,ufc)llfc(g0,tife+i) 



Weighted Tree-Walking Automata 289 

of A' in r is also qi. This means, by the definition of Athat there is a rule of A 
in rules(t'(ui)) with left state g,, i.e, there are more than one rules in rules(t(ui)) 
with left-state qi. This contradicts the definition of £(P) , hence t does not contain 
any superfluous rule. 

To prove the other inclusion, assume that t £ L{A') contains no superfluous 
rules. Let s £ T^ be the tree obtained from t by dropping the rule sets from its 
labels. By the above discussion concerning A!, we get that A accepts the tree s 
applying the rules in the nodes of t. Let r be the so obtained accepting run on 
s. Since all rules in the nodes of t are applied, t encodes r, hence t £ Rtrees C 
RtreeA- d 

Next we informally introduce a 1-pebble twa A" that accepts those trees in 
L(A') which contain superfluous rules. Intuitively, the 1-ptwa A" works as follows 
on an input tree t £ 7e(p). 

Phase 1: A!' nondeterministically chooses a node u of t and places the pebble . 
at u. Assume that t(u) = (a, J). If J = 0 then, there is no next step and the 
computation terminates without acceptance. 

Phase 2: If J ^ 0, then A" nondeterministically picks a rule 7r = (q,0,j) —» 
(q',<p) £ J- Let II = (q, {A,J) , j ) —> {q', <p) be the rule of A' corresponding to IT. 
Our A" stores II in its state. 

Phase 3: In the rest, A" computes deterministically. First A" moves back to 
the root node and then it simulates A' on t. However, during the simulation of A', 
our A" is not allowed to use the rule II (stored in its memory) at node u (being 
marked by the pebble). 

It is clear that A" has an accepting computation on t if and only if A' has an 
accepting computation on t which does not apply at least one rule in a label of t. 
Hence, we obtain the following result. 

Lemma 14. L(A") = {t £ T^(p) \ t £ L(A') and t contains a superfluous rule}. 

Now we can prove the following statement easily. 

Corollary 15. The tree language RtreeA is effectively regular. 

Proof. It follows from Lemmata 13 and 14 that RtreeA — L(A') n L(A"). Finally, 
by Propositions 1 and 7, we obtain that RtreeA is effectively regular. • 

Now we are ready to prove our main result. For this we will need the relabeling 
T : E(P) —* E which drops the rule component from each symbol, i.e., which 
is defined by r((<7, J)) = a for every (a, J) £ £(P) . Note, for later use, that 
Rtrees = { i £ RtreeA I i"'(i) = s}. 
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Theorem 16. The tree series Sa is effectively regular. 

Proof. By Corollary 15 and Proposition 3(a), the characteristic tree series XRtreeA : 
T-£(p) —» K is effectively regular. Moreover, since the tree series weight is effectively 
regular (see Lemma 8), we obtain by Proposition 3(b) that the Hadamard product 
S = XfitTeeA O weight is an effectively regular tree series. 

Let us note that for each tree t GT^(P) we have 

/q _ / {weight,t) iitGRtreeA, 
^ ' ' \ 0 otherwise. 

Moreover, T(S) is a tree series in K{{T%)), were r : £ (P ) —> £ is the relabeling 
introduced above, and it follows from Proposition 4 and the fact that S is regular 
that T(S) is effectively regular. Finally, for every tree s E T^, 

( f (S) ,s) = £ (S,t) = E (XRtreeAQ weight, t) 
t€T r ( P ) ,T ' (t)=S t€Ti;(f,),T'(t)=S 

= £ (weight,t) = £ (weight,t) t€RtreeA,T'(t)=s tzRtree„ 

= (SA,S), 

where the last equality is justified by Corollary 12. Hence SA = T(S), which proves 
that SA is also effectively regular. • 

Since A is an arbitrary non-looping wtwa over K, we also proved the following 
result. 

Theorem 17. TWA(E, K) C KEG(E,K). 

In the remainder of the paper we show that the inclusion is strict provided K 
is proper. For this, let K' be another commutative semiring and h : K —> K' a 
semiring homomorphism. Then we can prove easily the analogy of Proposition 5 
for wtwa, i.e., that h preserves recognizability by wtwa. 

Proposition 18. (a) For every S E TWA(£, K) and semiring homomorphism 
h : K ^ K', we have h(S) E TWA(£ ,# ' ) , i.e., /i(TWA(S, K)) C TWA(E,i i / ) . 
(h) If, in addition, h is surjective, then h(TWA(E,K)) = TWA(E, K'). 

Proof. Let A = (Q,Y,,qo,qa,P) be a wtwa over K. Construct the wtwa A = 

(Q,Z,qo,qa,P') such that P' = {(q,a,j) ^ (q',<p) | (q,a,j) A (q>,<p) € P } . It is 
easy to see that SA' = h(SA). Moreover, if h is surjective, then every wtwa over 
K' appears as the "image" of a wtwa over K. • 

Now we recall an important result from [4], namely, that there is a regular tree 
language which cannot be recognized by any twa. It is well known that regular tree 
languages and regular tree series over B can be identified, cf. e.g. [18], and it is 
easy to see that the same holds for tree languages recognizable by twa as well as 
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for tree series recognizable by wtwa over B. Thus, the above mentioned result of [4] 
can be written in the form REG(E,B) - TWA(£,B) =/= 0. Then we can prove the 
following result and thus generalize the main result of [4] for tree series recognizable 
by wtwa over proper commutative semirings. 

Theorem 19. If K is proper, then REG(S,K) - T W A ( Z , K ) ^ 0. 

Proof. Assume, on the contrary, that REG(£, K) C TWA(£, K). Since K is 
proper, by Theorem 2.1 of [27], there is a surjective homomorphism h : K —> B. 
Then obviously we have /i(REG(£,.ftr)) C /i(TWA(X!, K)). On the other hand, by 
Propositions 5 and 18, we have /i(REG(E,i<:)) = REG(E,B) and /i(TWA(E, K)) = 
TWA(E,B), which is a contradiction. • 

5 Conclusion and an open problem 
We generalized tree-walking automata of [1] by equipping each transition rule with 
6 weight taken from a semiring K. For two reasons, we considered the non-looping 
model, i.e., which cannot fall into infinite computation from the initial configura-
tion. The first reason is that the weight of an input tree s is defined as the sum 
of the weights of the accepting runs on s. The second one is that the proofs of 
Corollaries 12 and 15, and hence of Theorem 16 work only for non-looping wtwa. 

If a wtwa is looping, then there may be infinitely many accepting runs on s, 
hence computing the weight of s leads to an infinite sum in the semiring. This 
problem can be handled by considering underlying semirings which are complete, 
i.e., in which the sum of infinitely many elements exists [21, 22]. Therefore, it is an 
open problem whether our main result can be generalized to arbitrary (including 
looping) wtwa over complete semirirfgs. 
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Weighted Automata Define a Hierarchy of 
Terminating String Rewriting Systems 

Andreas Gebhardt* and Johannes Waldmann^ 

Abstract 

The "matrix method" (Hofbauer and Waldmann 2006) proves termination 
of string rewriting via linear monotone interpretation into the domain of vec-
tors over suitable semirings. Equivalently, such an interpretation is given by 
a weighted finite automaton. This is a general method that has as parameters 
the choice of the semiring and the dimension of the matrices (equivalently, 
the number of states of the automaton). We consider the semirings of non-
negative integers, rationals, algebraic numbers, and reals; with the standard 
operations and ordering. Monotone interpretations also allow to prove rel-
ative termination, which can be used for termination proofs that consist of 
several steps. The number of steps gives another hierarchy parameter. We 
formally define the hierarchy and we prove that it is infinite in both directions 
(dimension and steps). 

Keywords : string rewriting, relative termination, weighted automaton, 
matrix interpretation, monotone algebra. 

1 Introduction 
Rewriting is pattern replacement in context. It serves as a model of computation 
that is Turing-complete. Thus all "interesting" semantic properties are undecidable, 
including the very natural question of termination [18]: for a given rewriting system, 
are all derivations finite? Since the problem is significant in practice, e.g. for the 
analysis of software, one is interested in semi-algorithms: computable methods of 
proving termination that are sound, but not complete. 

One method to prove termination of rewriting is "matrix interpretation" [13]. 
These interpretations are in fact N-weighted finite automata. Several automated 
termination provers now implement this method, and indeed the outcome of recent 
Termination Competitions is heavily influenced by "matrix .proofs". 
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Related to that, investigations of matrix method(s) mainly focused on proving 
correctness, and then efficiency of implementation in solving the corresponding 
constraint systems for the matrix entries. 

With the present paper, we intend to start a systematic study of matrix 
method(s) as proof systems. We define a suitable hierarchy of termination problems 
and explore its properties. 

One parameter of this hierarchy is the size of the matrices used in the proof, 
corresponding to the number of states of the automata. 

Another parameter is the underlying (semi)ring. In the present paper, we con-
sider weight rings that include N. In [8] we reported on some experiments with 
non-negative rationals. 

The matrix interpretation method in fact solves a more general problem: that 
of relative termination. A rewriting system R terminates relative to a rewriting 
system S if each mixed derivation (containing R and S steps in any order) contains 
only finitely many R steps. While being an interesting concept in itself [10], 
relative termination helps to solve standard termination problems because it allows 
to compose termination proofs: if R terminates relative to S then termination of 
Rl)S follows from termination of S, and the latter can be proved separately. That 
way, termination of a rewriting system can be shown incrementally, and the number 
of proof steps gives another interesting parameter for the hierarchy. 

In the present paper, we focus on string rewriting. The matrix method has been 
generalized to term rewriting [6], but we leave the investigation of the corresponding 
hierarchy of terminating term rewriting systems for further study. 

After giving preliminaries on string rewriting in Section 2 and on termination 
proofs via weighted word automata in Section 3, we define the corresponding hier-
archy of (relatively) terminating rewriting systems in Section 4. Then we discuss 
the hierarchy with respect to matrix dimension in Section 5 (with a particular case 
in Section 6), choice of the weight semiring in Section 7, and number of proof steps 
in Section 8. 

We obtain these results: 

• the hierarchy is infinite with respect to matrix dimension (Theorem 2) 

• rational weights are strictly more powerful than integral weights (Theorem 5) 

• the hierarchy is infinite with respect to the number of proof steps (Theorem 6). 

Some of the results in this paper have been announced in contributions to the 
Workshop on Termination [8] and to the Workshop on Weighted Automata [9]. 

2 Notation and Preliminaries 
Strings and Rewriting. Given a finite alphabet E, denote by E* the set of 
finite words with letters from E. In fact E* is a monoid under the operation • of 
concatenation, with the empty word e as unit. 
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A string rewriting system [3] is a set R of rules, where a rule is a pair of words. 
We often write the rule (l,r) as (I —> r). A string rewriting system R defines a 
(one-step) rewrite relation over E* by u — V if there exists (I, r) £ R and x, y £ E* 
such that u = x • I • y and v = x • r • y. For example, for R = {ab —> baa} over 
E = {a, 6}, we have abb —>R baab —babaa —>R bbaaaa. We often write R (the 
system) as a shorthand for —>R (the relation). 

Relations and Termination. For a relation —>, we write SN(—>) if this —> is 
well-founded, that is, if there is no infinite chain xq —•> x\ —> . . . We also say that 
—» is terminating. 

We denote the composition of relations —>1 and —»2 by —>i o —>2, the transitive 
closure of a relation —> by —>+, and the transitive and reflexive closure by —•*. 

For relations —>i, —>2, define —>i / —>2 as — o — T h e n SN(—>! / —>2) denotes 
that — i s terminating relative to —>2: there is no ( — U —>2)-chain containing 
infinitely many —>a steps. Note that —>i /0 =—>j. 

By the above remark, we write SN(i?) ("the system R is terminating") for 
SN(—>ij) ("the derivation relation of R is terminating"). 

Semirings. A semiring [11] has a carrier D with operations + (addition) and • 
(multiplication) and designated elements 0 (zero) and 1 (unit), such that (D,+,0) 
is a commutative monoid, and (D, •, 1) is a monoid, addition distributes over mul-
tiplication from both sides, and 0 • a = 0 = a • 0. A semiring is partially ordered [7] 
if there is a relation > on D that is compatible with the operations. In the present 
paper, we use semirings over the domains of natural numbers N, non-negative ra-
tional numbers Q>o, algebraic numbers Alg>0, and real numbers R>o; each with 
standard operations. For N, we use the standard ordering; for the others, see below 
(after Theorem 1). The given domains are in fact positive cones of rings, but we 
rarely subtraction. 

Weighted automata. A weighted automaton [2, 5, 15] A = (Z), 2], <5, A, -y) 
consists of a semiring D, an alphabet E, a set of states Q, and mappings 

A : Q -» D, n : {Q x E x Q) D, 7 : Q -» D. 

We picture such an automaton as a directed labelled graph (possibly with loops 
and parallel edges), with an edge p -™> q for each fi(p, x, q) = w. An incoming edge 
(no source) q denotes X(q) = w, an outgoing edge (no target) p denotes 
7 (p) = w. We omit all edges with weight 0. As an ongoing example for this section, 

a: 1 a : 1 

6 : 1 6 : 3 
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A path in the automaton is a sequence qo ql . . . The label 
of this path is x\x? ... xn £ £*, and the weight of this path is ui\ • ui2 wn € D. 
For instance, the path 1 1 2 —> 2 has label aab and weight 3. For each 
state q, there is an empty path from q to q with label e and weight 1. 

The function fi* : (Q x S* x Q) —> D computes the weight of a word x = 
X\X2 • • -xn from state qo to qn as the sum of the weights of all paths from p to q 
with label x: 

, X\ ... xni 
= £ n Mot-i ,Xk,Qk) 

qi 9 n - i £ < 2 1 <fe<n 
For instance, fi*(l,aab, 2) is computed from the paths 1 1 2 2 and 
1 2 2 2, so the total weight is 6. We identify fi* with /¿, and find it 
convenient to write [i(p, x, q) = d as p -~>A q-

The weight assigned by A to a word w is obtained by considering the functions 
A and 7 that give the weights for entering and leaving a state, 

A(w)= £ AC»)- /i*(t, wj)- 7(/). 
iJeQ 

In the example, A(aab) = A(l, aab, 2) = 6. 
We say that state q G Q is initial if A (q) — 1, and zero elsewhere; and q is 

final if 7(q) — 1, and zero elsewhere. An automaton with unique initial state i and 
unique final state / is called (i, f)-pointed. 

Reduced automata. We say that states p is connected to state q in A if there 
is some w € £* such that fi(p, w, q) ^ 0. We write p —>*A q. An (i, /)-pointed 
automaton is called reduced if for each q e Q, we have i —q — / . For each 
automaton A, there is a reduced automaton A' that computes the same weight 
function as A. This A! can be obtained from A by simply deleting all unconnected 
states. 

Matrices. The function'/x of a weighted automaton can also be visualized as a 
mapping that assigns to each letter x € £ a square matrix, also called /i(x), that 
is indexed by Q x Q. For the example automaton, we have these matrices 

M a ) = ( j J ) . M ( 6 ) = ( J 3 ) 

This mapping can be extended from letters to words, by matrix multiplication: 
p,{x 1 . . . xn) = n(xi) •... • n{xn), and this corresponds with the function /1* defined 
above, that is, the entry at position (p, q) in the matrix product ¡i(xi ... xn) is the 
weight of the word x\.. .xn from p to q, as defined above. • In the example, we 
compute 

fi{aab) = fi(a) • fi{a) • fi(b) = ( * 
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If we view A as a row vector and 7 as a column vector, then A(w) = A • /z(w) • 7. 
For example, 

A(aab) = \-n(aab)-1=(l 0) • ( j 3 ) ' ( ? ) = 6 

For (i, /)-pointed automata, A and 7 are unit vectors, so A(w) is just the entry 
at position (i, / ) in the square matrix fi(w). Usually, i is the first index and / is 
last, so (i, / ) marks the top right position. 

3 Termination Proofs from Weighted Automata 
An (i, /)-pointed automaton A is is called weakly compatible with a rewriting system 
R, if Va G E : fi(i,a,i) > lA/x(/ , a, f) > 1 and for each rule (I —> r) G R, and states 
p,q € Q, we have /i(p, I, q) > n(p, r, q). The automaton is called strictly compatible 
with R if additionally for each rule (Z —> r) G R, n(i,l,f) > [¿(i,r,f). (In this 
paper we only use sub-semirings of M>o, so all weights are non-negative.) 

The main result of [13], written here in the language of weighted automata, is 
Theorem 1. If there is an N-weighted automaton A that is strictly compatible 
with a rewriting system R and weakly compatible with a rewriting system S, then 
SN (R/S). • 

The intution is that for a rewrite step xly —> xry using a rule (Z —> r) G R, each 
path i —> i f f has strictly larger weight than the corresponding path 
i i / / . The total weight of xly (xry, resp.) may include contributions 
from other paths, but for these we require a weak decrease. By strictness of "<" 
w.r.t. addition, we get a total decrease. 

We give an example where Theorem 1 is applied with S = 0. 

Example 1. For the rewriting system R = {ab —> baa}, consider the (1,2)-pointed 
automaton with transition matrices 

" M - G ! ) • < • < » > - [ ; ! ) 

By matrix multiplication, we compute 

M ( a & ) = ( j 3 ) , m W = ( J 3 ) 

and we note p,(i,ab,f) = 3 > 2 = baa, / ) , and weak inequalities (in fact, 
equalities) elsewhere. This shows that the automaton is strictly compatible with 
R. From the theorem, we conclude SN(i?/0), thus SN(ii). . • 

In [8] it was observed that the theorem also holds if we replace N by Q>o, and 
this easily extends to Alg>0 and K>o- Now > is not well-founded on Q>o and 
indeed we use a different ordering: x >e y x > e + y where 

e = inf {fi(i, I, f) - n(i, r, f)\{l-^r)€R}. 
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If the automaton is strictly compatible with a finite system R, then this is a positive 
number, and therefore > e is well-founded. Under the conditions of the theorem, 
we have u —>R V implies fi(i,u,F) >e N(i,v,F). 

The following is' an easy observation: 

Lemma 1. If A fulfills the conditions of Theorem 1, then there is a reduced au-
tomaton A! with the same properties. 

Proof. We take A' as the reduced automaton of A, obtained by deleting states that 
axe unreachable from i or do not reach / . Denote by \x' the transition function of A'. 
For states p, q of A', and letter x £ £, we have fi'{p,x,q) — fi(p,x,q). Therefore, 
also for w € E* we have n'(p,w,q) = fi(p,w,q). Since initial and final state of A 
and coincide (respectively), we are done. • 

The following example shows an application of the theorem with non-empty S. 

Example 2. Take S = {ab —> baa} and R = {cb —> 6cc}, and the (1,2)-pointed 
automaton with matrices 

p ( a ) = ( J /*(&)= (J J ) , M c ) = ( ® J ) 

We compute 

= (o l) ' = (o l) ' = ^baa^
 = (o l) " 

This shows that the automaton is strictly compatible with R and weakly compatible 
with S, thus SN(R/S). • 

Now we introduce an additional notation: 

Definition 1. For rewriting systems R, S we write 

i ? f - S -R 2 S A SN((i? \ S)/S). -

Example 3. Example 1 shows that {ab —> baa} |— 0. Example 2 shows that 
{ab —> baa, cb —> bbc} \-{ab —» baa}. • 

Proposition 1. R |— S if and only if each infinite R-derivation ends with an 
infinite S-derivation. 

Proof. We have SN((R\S)/S) if and only if each /^-derivation contains only finitely 
many steps from R\S. • 

The notation "J—" supports the idea of composing termination proofs. Indeed, 

Proposition 2. The relation \— is transitive. 
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Proof. Given R | S and 5 |— T, we have to show that each infinite ii-derivation 
ends with an infinite T-derivation. Assume there is an /^-derivation with infinitely 
many steps from R\T. If this derivation contains infinitely many steps from R\S, 
then this contradicts R |— S. So it contains only finitely many steps from R\S. 
After the last of these, we have an S-derivation. By S \— T, it contains only finitely 
many steps from S\T, and then continues as an infinite T-derivation. • 

We obtain the following 

Corollary 1. IfR\~* 0, then SN{R). • 

Here is a typical application: 

Example 4. By Example 3, we have 

{ab —> baa, cb —> bbc} \- {ab baa} [- 0, 

thus the rewriting system on the left is terminating. • 

4 A Hierarchy of Relative Termination 

We relate the general idea of relative termination, as denoted by "j—", with the 
idea of matrix interpretations. 

Definition 2. We denote by iUt( W, n) the set of pairs of rewriting systems (R,S) 
for which an automaton exists with weight domain W and n states that is strictly 
compatible with R\S and weakly compatible with S. We also write R\ —— S. 

Indeed 9Jl(W, n) is a relation on rewriting systems, and by Theorem 1, we have 
i m(w,n) -i 

that R| S implies R\~S. 
For relations 9Jt(W, n) we will make use of standard operations on relations like 

composition, iteration (exponentiation) and (reflexive and) transitive closure. 

Example 5. By Example 1 we get {ab —> baa} l9"^'2^ 0. • 

By abuse of notation we sometimes write R € %Ji(W, d) for (R, 0) € 9Jt(W, d). 

Example 6. By Examples 1,2, and the above abuse of notation, 

{ab baa, cb bbc} € 9Jt(N, 2)2. 

The exponent 2 indicates that the termination proof is composed of two steps. • 

Definition 3. The matrix termination hierarchy consists of the classes 9Jl(W, d)s 

of pairs of rewriting systems, where 

• W e {N, Q>o, Alg>0,M>o} is a weight semiring, 
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• d is a natural number > 0 giving the matrix dimension (automaton size), 

• and s is a natural number > 1 counting the proof steps s. 

We abbreviate U„>09Jt(VF, n) by 9Jl(W). Then in our notation 9Jt(N) is the set 
of all rewriting systems that have a one-step termination proof using some natural-
weighted automaton. Using transitivity, 9Jt(N)+ is the set of all systems with a 
multi-step termination proof using such automata. 

We have these immediate observations: 

Proposition 3. 1. If n< n', then for all W, Tt(W, n) C M{W, n'). 

2. If W is a sub-semiring ofW', then for all n, DJl(W, n) C 9Jt(W',n). 

3. If 1 < s < s', then for all W, n 

№(w,n) c m{w,n)^s c c fm(w,n)*. 

Proof. (1) We can introduce useless states in the automaton. (2) Each W-inter-
pretation is also a W-interpretation. (3) Each sequence with < s steps is also a 
sequence with < s' steps. • 

While these statements are obvious, the following problems are not: 

• Which of the obvious inclusions are strict? 

• Are there non-obvious inclusions? 

• Are the hierarchies (w.r.t. number of states, number of steps) infinite? 

• What levels VJl(W, n)s are inhabited? 

We will answer some of them in the rest of the paper. 

5 Number of States 
In this section we present a terminating rewriting system that needs large matrices 
for a termination proof. The construction works for any size, so we infer that the 
"matrix size hierarchy" is infinite. 

We consider, for d> 2, the alphabet E<j = {s, 1 , . . . , d, / } . These are d numbers 
and two extra letters s, f (start and final). We take any enumeration e\,... of even 
permutations of { 1 , . . . , d} and enumeration 0\,... of odd permuations of { 1 , . . . , d}. 
Then consider the string rewriting system 

Rd = {sekf -> sokf \l<k< d\j 2}. 
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Example 7. For d = 4, we get the rule set 

si234/ s2134/, s2314/ s2341/, s3124/ sl324/, 
s3241/ s3214/, sl342/ -> s3142/, s3412/ s3421/, 
s2143/ sl243/, s2431/ s2413/, sl423/ ->s4123/, 
s4213/ -> s4231/, s4132/ -> sl432/, s4321/ ->s4312/. 

Lemma 2. There is no strict subset S of R^d such that (R2d,S) G 9Jt(N, d). 

Proof. We use the Amitsur-Levitzki Theorem [14, 4]. It says that the elementary 
symmetric polynomial in 2d variables 

s(x1,...,x2d)= E ( - l ) s g n ( 7 r )x 7 r ( 1 ) - . . . -x f f ( 2 d) 
7r is a permutation of {1,. . . , 2d} 

is identically zero for d x ¿¿-matrices. 
Any d-dimensional matrix interpretation [•] has 

(l->r)€R 

If [•] is weakly compatible with R2d, then S(;_r)efl2d([Z] — [r]) > 0, and this 
implies V(Z —> r) G R2d '• [Z] = M- So, [•] cannot be strictly compatible with any 
rule of R2d• n 

Lemma 3. For d' = 2d + 3, R2d € ®l(N, d')(2d)!/2 

Proof. For each k, we give a matrix interpretation [•] of dimension d' that is weakly 
compatible with all rules of R2d and strictly compatible with rule sekf —> sokf. 
The interpretation represents an automaton that just counts the number of factors 
sekf. This is a word with 2d + 2 letters, so counting can be done with 2d + 3 
states. The counting automaton consists of loops at initial and final state, and a 
path labelled sekf (and all unit weights) from initial to final state. 

E E 

— — ' - ^ o — ^ o — — • 

This works since sekf is not self-overlapping (no non-trivial prefix is equal to a 
suffix). The count reduces by one at each rewrite step, since there are no overlaps 
between sekf and sok>f either. Applying these interpretations for all k, in any 
order, gives the result: termination of R2d can be shown by a sequence of (2c?)!/2 
matrix interpretations of size d'. • 

Lemma 4. For d' = 2 + (2d + l)(2d)!/2, we have R2d G 9Jt(N,d'). 

Proof. We build an automaton that contains all the automata constructed in the 
proof of Lemma 3 in parallel. 
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1 

It has one initial and one final state, and (2d)\/2 paths each using (2d+l) individual 

As a corollary, we obtain 
Theorem 2. For each W G {N,Q>0, Alg>0,M>0}: The hierarchy VR(W,d)d=0,i,.:. 
is infinite. 

Proof. Assume, to the contrary, that there is d such that VJl(W, d) = dJl(W, d +1) = 
. . . B y Lemma 2, the system R2d is not in M(W,d), and by Lemma 4, R2d £ 
m(W, d') for some d' > d. • 

6 Small Automata 
We have more information on the lower levels of the hierarchy: 
Proposition 4. These inclusions are strict: 

Proof. We prove i?i = {a b} G 9Jt(N, 1) \ fOT(R>o,0). A strictly compatible 
1-dimensional interpretation of the required shape is given by [a] = 2, [6] = 1. Any 
interpretation in 9Jt(N, 0) is necessarily constant, so it is strictly compatible only 
with the empty set of rules, and not with Ri. 

We prove R2 = {ab ba} G 9Jt(N,2) \ OT(R>0,1). A strictly compatible 
2-dimensional interpretation is given by 

Any one-dimensional matrix interpretation [•] is commutative, so [a6] = [6a] and it 
cannot be strictly compatible with R2. 

We prove R3 = {aa aba} G OT(N,3) \ 9Ji(M>0,2). A strictly compatible 
3-dimensional interpretation is 

Any two-dimensional interpretation [•] of the required shape has main diagonal 
entries >.1 and thus [aba] > [aa], contradicting strict compatibility with R3. • 

states. • 

£W(N, 0) C 97Í(N, 1) C QJt(N, 2) C 9K(N, 3). 
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If the automata under consideration have only one state, the weight domain is 
not really important, and the "step hierarchy" collapses. 

Lemma 5. fm(R>0,1) C SEK(N, 1). 

Proof. An interpretation [•] by a one-state R>o-weighted automaton corresponds 
to a multiplicative weight assignment (the weight of a word is the product of the 
weight of its letters). Note that all weights are positive, by definition. Taking loga-
rithms, we get an additive assignment (the weight of a word is the sum of its letter 
weights). The conditions of weak and strict compatibility give rise to a system of 
linear equalities and inequalities between letter weights. The coefficients are natu-
ral numbers (namely, numbers of occurences of letters in sides of rules). If such a 
system has any solution at all, then it also has a rational solution. Since the sys-
tem is moreover homogenous (the linear functions contain no absolute parts), any 
rational solution can be scaled to give an integer solution. In fact the components 
are naturals, since weights must be non-negative. From natural additive weights 
we can get back to multiplicative weights by exponentiation. If we take any natural 
base, then the weights are natural (they are powers of the base). • 

Example 8. For R = {aaa —> bca},S = {b —> cac} we obtain the system of 
inequalities 

log [a] > 0 A log [6] > 0 A log[c] > 0 
A2 log [a] - log [6] - log [c] > 0 A - log [a] + log [6] - 2 log[c] > 0. 

One solution is log[a] = 4, log[6] = 6, log[c] = 1. We can take base 2 and obtain 
multiplicative weights [a] = 16, [6] = 64, [c] = 2. This proves R U S |——— S. • 

As a corollary to Lemma 5, we obtain 

Theorem 3. 9H(N, 1) = 27t(Q>0,1) = 5DT(Alg>0,1) = 97t(R>0,1). • 

Now we consider the number of proof steps when using one-state automata. We 
show that two-step proofs are not stronger than one-step proofs. 

Lemma 6. ©t(N, l)2 = SDt(N, 1) 

Proof. We are given a two-step one-dimensional termination proof, and we need 
to construct an equivalent one-step proof. Assume weight function / is strictly 
compatible with R and weakly compatible with 5 U T , and weight function g is 
strictly compatible with S and weakly compatible with T. We construct a weight 
function h. that is strictly compatible with R U S and weakly compatible with T, 
as follows. (In light of the previous, we write the weight functions additively.) 

We will define 
h(x) = f(x) •c + g(x), 

for a suitable natural number c > 0. Such an interpretation h is weakly compatible 
with T, since both / and g have this property. Interpretation h is strictly compatible 
with 5, since / is weakly compatible with S and g is strictly compatible with S. 
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We put 
c = 1 + sup{max(0, g(r) - g(l)) | (/ -> r) € R) 

This is one plus the maximal increase of g weights, for R rules. 
It remains to check that h is strictly compatible with R. If u —>/j v, then 

f(u) — f(v) > 1 by strict compatibility (and using that weights are natural), and 
g(u) — g(v) > — c + 1 by definition of c. By definition of h we get h{u) — h(v) > 
c + (—c -f 1) = 1, and this proves the claim. • 

Example 9. We have {a2 —» 63 , 65 —> a 3 } {b5 —> a3 } by the interpretation 
/ : a ¡-> 5, b h-> 3; and {b5 —> a3 g : a h-> 0, b >-> 1. Since g(a2) = 
0, g(b3) = 3, we put c = 4 and get {a2 63, b5 a3 } 0 by h : a >-> 20, b 
13. • 

As a corollary to Lemma 6, we obtain 

Theorem 4. VJt(N, 1)* = DJl(N, 1) • 

7 Choice of Weight Domain 
We compare the power of matrix interpretations w.r.t. the weight domain. 

We give an example (R U S, S) S 97i(Q>0,3)2 \ 9JT(N)*, that is, with a two-step 
termination proof of rational-weighted automata of size 3, but no natural-weighted 
termination proof of any size and number of steps. 

The rewriting systems are 

R = {baa —• abc, ca —> ac, cb —> ba}, S = {e —» b}. 

L e m m a 7. {R U 5, S) G 97t(Q>0 ,3) o S0T(N, 1). 

Proof. We use the following interpretation 

M = 10 § 6 1 , [6] 
0̂ 0 

giving these interpretations for the rules: 

[baa] = i o | 4 ) [abc)=(l | | 
\0 0 1 / \0 0 1 
1 6 12 

[ca] = | 0 f f | [ac] 
0 0 1 

1 1 0 \ / 1 1 0 
[cb] = | 0 f 1 [ba] = 0 | 3 

o o l / V o o i 
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1 3 J ! ( Q > o , 3 ) 
This proves R U S | — {cb -> 6a, e ^ 6}. 

By another interpretation [a] = [b] = 1, [c] = 2 we get 

• 
Lemma 8. There is no T C RUS such that (R U S, T) G OT(N). 

Proof. Assume there is a matrix interpretation of any size (an N-weighted automa-
ton with any number of states) that is weakly compatible with R U S and strictly 
compatible with one of the rules from R. (It cannot be strictly compatible with S 
since S is non-terminating.) 

We assume the automaton is reduced. All edges labelled by b are unit loops: 
they go from some state q to q and have weight one. The reason is that weak com-
patibility with S requires [e] > [6], but [e] is the unit matrix, for any interpretation 
[•]• 

The plan of the proof is now: we show that the interpretation of b is indeed the 
unit matrix (each state has a b loop), and then we derive a contradiction from that. 

Consider the subset A of states that are reachable from the initial state i of the 
automaton by a edges. (Here and in the following, when we speak of an edge, then 
we mean that it has a non-zero weight.) 

We claim that state q in A is also reachable from i by c edges, and has a b loop. 
The proof is by induction on the distance to i. Assume the transition p A q has 
weight > 0, and the claim holds true for p. Then we have a path p p A q. 

cb By weak compatibility with rule cb —> ba, there must be a path p —> q. Since b 
c b transitions are loops, this can only take the form of p —* q —> q. 

Every state r reachable from i by any mixture of a and c steps is also in A 
(that is, reachable by a steps alone): assume by induction that there is a transition 
q A r and the claim holds true for q. Then q is in A, so there is a transition p A q, 
thus a path p A q q A r. By weak compatibility with baa —> abc, there must 
be a path p A r. Since a b edge is a loop, there is some q' such that the path is 
p —> p A q' A r. This shows that r is in A, since it is reachable from p G A by a 
steps. 

The final state / does also belong to A: since the interpretation was assumed 
to be strictly compatible with some rule (I r) G R, there must be a path i —> /. 
Since b steps (loops) are irrelevant for reachability, the claim follows. 

Since the automaton was reduced, we have shown that each state belongs to A, 
thus each state has a b loop. This implies that the interpretation of letter b is the 
unit matrix. Now we replace b by e in R, obtaining R' = {aa —> ac, ca —» ac, c —> a}. 
We claim that the automaton is weakly compatible with R' and strictly compatible 
with at least one rule from R'. This holds true since \baa\ = [aa] etc., and the 
automaton was assumed to be weakly compatible with R and strictly compatible 
with at least one rule from R. 
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On the other hand, there is a looping /¿'-derivation 

ggg —> aca —» aac —» aaa —*... 

that uses each rule of R' infinitely often. This contradicts the fact that the au-
tomaton is strictly compatible with at least one rule of R', since this rule must be 
relatively terminating w.r.t. the others. 

In all, this proves that the interpretation (automaton) does not exist. • 

As a corollary to Lemma 7 and Lemma 8, we get 

Theorem 5. 97t(Q>0,3)2 \ 9R(N)* is non-empty. 

8 Number of Proof Steps 
We first recall an example that shows that two-step proofs (even of dimension two) 
are more powerful than one-step proofs (of any dimension). Then we generalize, 
and show that the "step hierarchy" is infinite. The underlying reason is derivational 
complexity. The following is a basic fact of linear algebra: 

Lemma 9. Let A be any finite set of square matrices of - identical shape. The 
coefficients in a product of any k matrices from A are bounded by an exponential 
function of k. • 

This will be used in the following form: 

Corollary 2. For disjoint rewriting systems R andS: if there is a family of RUS-
derivations 

di : witi -y ... -» wi<ni, d2 : w2,i —>...—> w2iTl2,... 

such that the number of R steps in dk is not bounded by an exponential function of 
|u;fc,i|, then (RUS,S) £ 9Jt(R>0). 

Proof. Assume to the contrary that there is some (i, /)-pointed automaton A with 
the given properties: strictly compatible with R and weakly compatible with S. 
Then u -*r v implies fi(i,u,f) > fi(i,v,f), and u —>s v implies n(i,u,f) > 

• fi(i,v,f)-, So the number of R steps in the derivation starting in is bounded 
by fj.(i,Wk,i, f), which is an exponential function by Lemma 9, contradicting the 
assumption. • 

Lemma 10. There is Re 9Jt(N, 2 )2 \ fm(R>0). 

Proof. The following example is already presented in [13]. Let R = {ab —> baa, cb —> 
66c}. There are derivations (for each k > 0): 

akb —>* ba2k,abk —>* bka2k 

cbk —>* b2kc,ckb —>* 62kcfe 

ackb -* ab2k ck —>* 62VV 
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The resulting string has length 22<c, thus the derivation also took this number of 
steps, since each step extends the length by one. 

By Lemma 9, there can be no matrix interpretation that is strictly compatible 
with both rules of R. 

On the other hand we have R £ 2H(N, 2)2 by Example 6. • 

We modify, and generalize this example. For any n > 1, define a rewriting 
system over alphabet En = {1 , . . . , n} by 

Rn = {i(i - 1) (i - lfi \2<i<n}u{(i-l)->(i-2)\3<i<n}. 

For n > 2, this system has 2n — 3 rules. Note that R\ is empty. 

Example 10. R3 = {32 223,21 -> 112,2 1}. • 

Lemma 11. For each i and k, there is a Rn-derivation from ik(i — 1) to some word 
containing (i — l)2 (i — 2) as a factor and using each of the rules i(i — 1) —> (i — l)2i 
and (i — 1) —> (i — 2) at least 2 f e _ 1 times. 

Proof. For each I, we have i(i — 1)' —(i — 1 )2li, and by iteration, 

Now we apply rule (i — 1) —» (i — 2) for 2fe~1 times to get 

(i-lf-1(i-2f~\k. 

• 

Using Lemma 11 repeatedly, we get 

Lemma 12. For each i and k, there is a Rn-derivation from ik(i — 1) using at 
least exp(exp(fc)) steps of each rule j(j — 1) —• (j — l )2 j and (j — 1) —> (j — 2), for 
j<i. • 

Lemma 13. If a matrix interpretation is weakly compatible with Rn and strictly 
compatible with some subset S C Rn, then Rn-i H S — 0. 

Proof. By Lemma 12, there is a family of derivations that uses all rules in Rn-I 
more than exponentially often. By Corollary 2, the claim follows. • 

Lemma 14. Rn+2 15H(R>0)n. 

Proof. R2 $ 9Jl(M>o)° since R2 is non-empty. By Lemma 13, if Rn+i \— ^ R', 
then Rn CI R'. Then the claim follows by induction. • 

Lemma 15. Rn+i £ 2rt(N,2)n. 
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Proof. Ri € 9Jl(K>o, 2)° since R\ is empty. The following interpretation 

(J ; ) , , „ ; ) . 

shows Rn [ 
®l(N,2) 

Rn-j. Then the claim follows by induction. • 

We obtain as a corollary: 

Theorem 6. Each inclusion 9Jt(K>0)s C 97L(R>0)s+1 is strict. The "proof length 
hierarchy" (9rt(K>o)s)ji=i,2,... is infinite. 

9 Discussion 
Summary. Termination proofs by weighted (word and tree) automata are being 
investigated only since 2006. (resp. 2003, if we include the Match Bounds method, 
which later turned out to be related to the Min/Max semiring.) The focus of 
investigation mainly was the construction of automata, with the goal of actually 
implementing and running the algorithms. This has been achieved rather success-
fully: the various "matrix methods" play a decisive role in the regular Termination 
Competitions. 

With the present paper, we start a systematic investigation into the expressive-
ness of these methods as proof systems. 

To this end, we have defined a two-dimensional hierarchy DJl(W, d)s for termi-
nation proofs for string rewriting via weighted word automata, and we proved that 
the hierarchy is infinite in both directions. 

Still, we have no exact information on which levels are actually inhabited (notice 
the "gap" from d to d! in Lemma 4), and which levels (if any) are decidable. These 
questions remain as challenging open problems. Other extensions are at hand, and 
we list a few. 

Decidability. As noted in the proof of Lemma 5, existence of a one-dimensional 
interpretation is equivalent to the feasibility of a system of linear inequalities. 
Therefore, 9H(R>0,1) is decidable. 

For larger dimensions, the weak and strong compatibility conditions give rise 
to a system of inequalities between polynomials, where the unknowns are the ma-
trix entries (the weights of the automaton transitions). Then we can use Tarski's 
decision method [16], and obtain that for each d, 9JÏ(R>o, d) is decidable. 

In fact if the system of polynomial (in)equalities has a solution, then it also has 
a solution in algebraic numbers. So we don't really need real numbers: for each d, 
OTt(Alg>0,d) =m(R>0,d). 

Except for these immediate observations, we have no information (and no intu-
ition) on decidability of any 9Jl(W, d). 
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Non-strict semirings. One can use semirings with non-strict addition for ter-
mination, e.g. the max/plus semiring, or the max/min semiring [17]. Again, a cor-
responding hierarchy can be defined but it needs different methods than presented 
here. If we try the construction of Section 5, using a suitable polynomial identity 
Yl[l»] = £[ri] in the arctic semiring, we can no longer infer from Vz : [Z,] > [r*] 
that Vz : [¿¿J = [r,], since arctic addition is not strictly monotonic in its arguments. 
For the proof step hierarchy we cannot use the methods of Section 8, because of 
the following: Arctic interpretations give a linear bound on derivational complex-
ity, and by the reasoning in Lemma 6, even a combination of such interpretations 
might not achieve more than linear derivation lenghts. So, the "arctic termination 
hierarchy" is a subject of further study. 

Term rewriting. The method of interpretation via weighted automata has been 
generalized to term rewriting [6]. The definition of our hierarchy can be generalized 
as well. Still we note that matrix interpretations for term rewriting use a rather 
restricted form of weighted tree automata. 

Parallel composition of proofs. Our hierarchy uses the concept of combining 
termination proofs sequentially. There are methods of proving termination that cor-
respond to a parallel composition: after the Dependency Pairs transformation [1], 
the resulting relative termination problem can be decomposed into several inde-
pendent sub-problems, corresponding to the strictly connected components of- the 
dependency graph [12]. In all, a termination proof thus gets a tree structure. While 
we presently compare proof sequences by length, proof trees should be compared 
structurally, e.g. with respect to embedding. 
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Statistical Language Models within the Algebra of 
Weighted Rational Languages 

Thomas Hanneforth* and Kay-Michael Wiirzner* 

Abstract 

Statistical language models are an important tool in natural language pro-
cessing. They represent prior knowledge about a certain language which is 
usually gained from a set of samples called a corpus. In this paper, we present 
a novel way of creating Af-gram language models using weighted finite au-
tomata. The construction of these models is formalised within the algebra 
underlying weighted finite automata and expressed in terms of weighted ra-
tional languages and transductions. Besides the algebra we make use of five 
special constant weighted transductions which rely only on the alphabet and 
the model parameter N. In addition, we discuss efficient implementations of 
these transductions in terms of virtual constructions. 

Keywords: computational linguistics, weighted rational transductions, statistical 
language modeling, AA-gram models, weighted finite-state automata 

1 Introduction 
Weighted finite-state acceptors (WFSA) provide a convenient way to compactly 
represent A -̂gram language models (cf. [3]) since they admit equivalence transfor-
mations like determinisation and minimisation [22] which compress common pre-
fixes and suffixes without changing the counts or probabilities associated with an 
individual N-gram. Moreover, it is possible to represent all sub-distributions of 
M-grams (with 1 < M < N) simultaneously with almost no additional space. 

The usual way is to construct the language models on the basis of the manipula-
tion of states and transitions. Since the models are also required to be. robust, it is 
necessary to reserve some probability mass for unseen AT-grams. This is commonly 
achieved by combining a discounting method with a back-off [17] or interpolation 
mechanism [15]. The adjusted probabilities are then reassigned for each Â -gram 
to existing or newly created transitions. The finite automata thus merely serve as 
a data structure. 

'University of Potsdam, E-mail: {tom,wuerzner}01ing.uni-potsdam.de 
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In this paper, we present an approach which treats the creation of TV-gram 
models as a problem of modifying weighted languages rather than states and tran-
sitions. In particular, we only use operations from the algebra of weighted regular 
languages (WRLs) and transductions (WRTs) like union and intersection to get 
from a set of samples to a robust back-off model. Such an algebraic formalisation 
has - at least to our knowledge - never been done before. 

The results outlined in the remainder are by now mainly of theoretical interest. 
We do not aim to replace the many excellent statistical toolkits by the machinery 
proposed here. This work is rather a "case study" in viewing an important tool in 
natural languages processing from a theoretical viewpoint. As such, we describe it 
in a self-contained form. 

This article is organised as follows: In Section 2, we will recall the notion of 
language models in general and TV-gram models in particular (may be skipped by 
readers familiar with the topic). Section 3 introduces the formal preliminaries and 
establishes the notation. The subsequent sections 4-7 deal with the creation of TV-
gram and back-off models from scratch in the manner explained above. Matters of 
complexity and implementation aire discussed in each section. Proofs of correctness 
of the outlined methods have been put in the appendix for reasons of readability. 

2 Language Models 
Language modeling is the task of assigning a probability to sequences of words. 
Pr(w) is the prior probability of the sequence of words w. Language models are 
used in many applications in natural language processing such as speech recognition, 
machine translation, optical character recognition or part-of-speech tagging. See 
[16] for an introduction to these topics and their relation to language models. 

Using conditional probabilities, the joint probability of a sequence of words can 
be decomposed as: 1 

The interdependencies of words are reflected by assuming that the occurrence 
of a word is a consequence of the occurrence of its predecessors. The conditional 
probability of a: sequence of words can be computed by normalising its frequency 
relative to the frequency of its history (C(s) denotes the number of occurrences of a 
substring s in w, E refers to a finite alphabet and the sum operator, respectively): 

(1) 
»=2 

(2) 

aes 

1 Wc denote a substring Wj .. .wj with j > i in a morii compact, way by wIf i = j, wc omit 
the superscript and write simply v>i for the i"' character of w (starting at 1). If the subscript 
excccds the superscript, we implicitly denote the empty string e. 
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Frequency information is obtained from a (text) corpus which is usually defined as 
a large collection of (annotated or unannotated) texts. In the remainder of this 
article, we use the term corpus as denoting a finite disjunction of sentences. A 
sentence roughly corresponds to its linguistic definition, but is not limited to that. 
Some big natural language corpora are the DWDS-Korpus [11] or the Brown corpus 
[18]. A probability distribution with respect to £* is an assignment of probabilities 
to the strings in E* such that all the individual string probabilities sum up to one. 

2.1 iV-Gram Models 

iV-gram models are the most widely used type of language models. Their success 
is based in their simplicity: They can be derived unsupervised, by just counting 
sequences of words in a corpus and computing their relative frequency. 

In the field of language modeling, an iV-gram is a sequence of N elements taken 
from a fixed and finite alphabet £, for example letters [29], words [3], morphemes, 
etc. 

In order to limit the number of possible contexts of a word, it is assumed that 
sequences of words form Markov chains [20]. Thus, only the last TV — 1 words 
(sometimes also called the history of Wi) affect the word Wf. 

P r ^ K f 1 ) « Pr(u;i|^lJJV_1)) . (3) 

The number of possible contexts is then the size of the alphabet to the power of 
N — 1 and therefore finite. The boundary case at the beginning of the sentence is 
handled by N — 1 beginning-of-sentence markers (see Section 6 for details). 

2.2 Smoothing 

While theoretically possible, one will never find all potential iV-grams in a corpus in 
practice. The common solution to this problem is smoothing: Probability mass is 
assigned to unseen events and/or other distributions which account for those events 
are consulted. For ,/V-gram models, this means to change the model in such a way 
that it assigns a probability to any combination of N words of the vocabulary, deals 
adequately with out-of-vocabulary items and, is still a probabilistic model. 

Probabilistic N-gram models are characterised by the property that for every 
context the probabilities of possible continuations sum up to one (h € E^ - 1) : 

Wi£Pr(^|/ i ) = 1 . (4) 
Wi 

Many different smoothing methods for different purposes are available (cf. [6] for 
a detailed summary and comparison of important smoothing methods). 

For the purpose of this work, we recall the notions of discounting and back-off 
smoothing. 
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2.2.1 Discounting 

The main idea behind this class of procedures is to redistribute probability mass 
from seen to unseen events. A simple but effective discounting algorithm is the 
so called Witten-Bell discounting, referring to method C in [30]. Witten-Bell dis-
counting is based on the intuition that the probability of novel events decreases 
with the number of different events that are observed in the corpus. To implement 
this idea, the frequencies of the TV-grams are normalised by the number of different 
TV-grams sharing the same (TV — l)-gram prefix. The number of different events in 
an event space is often called the number of types. 

Definition 1 (Witten-Bell Type Number). Let T be a function E* —> N : 

TK^jv+I) = £ 1 . 
a€S,C(uijlJ,+1-a)#0 

Definition 2 (Witten-Bell Token Number). Let N be a function E* —• N : 

NK i_Jv+i) = E C K = U i - a ) • 
aSE 

With the help of the functions T and N it is possible to discount frequencies, 
denoted by C: 

< 5 > 

Adjusted probabilities Pr can be computed from C [16]. The freed frequency mass 
is computed by: 

E C(wlN+1)-C(wl_N+1) 
•wLn+I^» 

- V c(wi ) T ( w i - " + i ) (6) 

2.2.2 Smoothing by Combining Different Distributions 

Spreading saved probability mass equally among all unseen events is often too 
simple. It seems reasonable to take different distributions into account. A common 
way of doing that is the back-off strategy [17] which recursively uses the (TV — 1)-
gram distribution whenever the TV-gram distribution assigns a zero probability. 
Equation (7) formalises this behavior by defining the back-off probability Pr: 

Pr(ti>i|tu£k+1) =Pi(wi\wlZN+1) 

+ 0 ( P r K K l ] v + 1 ) ) (7) 
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Function <f> indicates the need for backing-off to the immediately lower' ordered 
distribution: 

_ fo i f z ^ O 
1 1 otherwise . 

This ensures that one of the summands in Equation (7) will always be equal to 
0. Pr and a depend on the particular discounting algorithm and represent the 
adjusted probabilities and the normalised freed probability mass, respectively: 

• E ^ P r K i / i ) i f > o 
otherwise . 

The second case in Equation (9) covers.events where the (N — l)-gram history is not 
available. The lower ordered distribution is used unweighted in such cases. Since 
lower ordered distributions are probabilistic by definition, the whole model keeps 
this property. 

The back-off recursion is terminated either by the (undiscounted) unigram dis-
tribution 

PrfaO = Pr(«7i) . (10) 

or by a uniform distribution which handles out-of-vocabulary items. Such a uni-
form distribution involves a non-probabilistic model, since any number of out-of-
vocabulary items is possible: 

Pr(£) = Pr 00 = = J — . (11) 
untf ¿^bez1 

Back-off smoothing is compatible with all discounting algorithms. We use Witten-
Bell discounting as explained above. 

3 Formal Preliminaries 
In this section, we define the formal apparatus used in the remainder of this ar-
ticle. We start with the notion of a semiring, define weighted rational languages 
and transductions, move to the definition of weighted finite-state acceptors and 
transducers and a number of operations defined on them and finally clarify the re-
lationship between weighted languages on the one and finite automata'on the other 
hand. 

3.1 Semirings 
The weights of languages, transductions and automata are expressed in terms of a 
semiring. The advantage in doing so lies in the abstraction and well-definedness of 
operations and algorithms for different types of weights (e.g. [19, 25, 24]). 
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Definition 3 (Semiring). A structure K, = (K, ©,®, 0,1) is a semiring if 

1. (K, ®,0) is a commutative monoid with 0 as the identity element for ©, 

2. (K, (g>, 1) is a monoid with I as the identity element for <S>, 

3. <g> distributes over © (distribution of one operation over another will be de-
noted by y, e.g. <8> y ®) , and 

4- 0 is an annihilator for V a € K , a ® 0 = 0 ® a = 0 . 

Examples for semirings are the boolean semiring B = ({0,1}, V, A, 0,1), the real 
semiring 7Z = (MU{oo), +, 0,1), the log semiring C = (MU{oo}, +iog, +, oo, 0)2 or 
the tropical semiring T = (R+ U {oo}, min, +, oo, 0). A special significance in the 
remainder of this work lays on the probability semiring V = (R+ U {oo}, +, - ,0,1) 
since its properties make it suitable for representing probabilities.3 

To be well-defined, some operations on languages and automata demand partic-
ular properties of the used semirings. See [19] for a detailed summary on semirings 
and their properties. For the scope of this article, we need the definitions of idem-
potency, divisibility, commutativity and completeness. 

Definition 4 (Idempotent Semiring). A semiring K. is called idempotent i/affia = a 
for all a S K . 

Definition 4 means that in case of non-idempotent semirings the © operation 
is effectively additive in a sense that it sums weights. The probability and the log 
semiring are non-idempotent. 

Definition 5 (Division Semiring). A semiring K. is a division semiring iff Va € 
K\ {0}, 3\b e K such that a®b = T. 

Divisibility (cf. [9]) is a formalisation of the demand for closure under multi-
plicative inversion needed for division of elements in K. This property is adapted 
from a special class of rings called the divisible rings. 

Definition 6 (Commutative Semiring). A semiring is said to be commutative when 
the ® operation is commutative; that is Va, 6 s K , a®b = b ® a. 

The requirement that sums of an infinite number of elements are well defined 
is expressed as completeness (e.g. [10]). 

Definition 7 (Complete Semiring). A semiring K. is called complete if it is possible 
to define sums for all families (a^z € I) of elements in K, where I is an arbitrary 
index set, such that the following conditions are satisfied: 

2a +iog b =def - log(2-° + 2~b) . 
3The terms 'probability semiring' and 'real semiring' are interchanged freely in the correspond-

ing literature. The following distinction seems sensible: Since real numbers can be both positive 
and negative, the recil semiring should be defined over R. Probability on the other hand will 
always be positive, thus in R + . 
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ß) ©¿60 ai = Ö> ©¿e{j} ai = ai> ©¿e{j,fc} ai = ai © ak forj ^ k , 

(ä) © j g j ( © i 6 / j a«) = ©¿6/ */ Ujej = I and I0 n Ir = 0 for j ± f , 

(in) © i € J (c <g> en) = c (g> ( 0 i e i ai), © i e /(tii <8> c) = ( 0 i € / aO ® c . 
In the following, we restrict our attention to commutative, divisible, complete 

and non-idempotent semirings. For better transparency, we primarily use the real 
semiring TZ and the probability semiring V in definitions, lemmas and proofs, but 
also use the more general semiring notation with © and <g>.4 

We will denote semirings with capital letters in calligraphic character style like 

3.2 Weighted Rational Languages and Transductions 
Every formal language can be represented as a weighted language. 

Definition 8 (Weighted Language). A weighted language L is a mapping E* —> K., 
where E denotes a finite set of symbols (called the alphabet) and 1C a semiring. 

This definition applies to all formal languages. The different types of languages 
are distinguished by the operations that are allowed to construct the subset of E* 
from the singletons in E (see below). 

Definition 9 (Weighted Transduction). A weighted transduction § is a mapping 
E* x r* —> K, where £ and T denote finite sets of symbols (called the input and the 
output alphabet, resp.) and tC a semiring. 

Weighted rational languages (WRL) and weighted rational transductions (WRT) 
are a proper subset of the weighted languages and transductions. They can be con-
structed from singletons in a finite alphabet E using scaling, union, concatenation, 
composition and closure [26]. In addition to these, we use a set of operations on 
WRLs and WRTs summarised in Table 1. 

Definition 10 equates any WRL with its identity transduction. 

Definition 10 (Identity Transduction). Given a WRL H : E* —> K, its identity 
transduction ID(&) : E* x E* —> K is defined as: 

An often used complex operation is application: 

Definition 11 (Application). The application of a WRTS : E* x T* —> K. to a 
WRL £ : E* —• K, is a mapping S[£] : T* —> K defined by 

V, K. 

V y e r , S[H](y)= 0 £ , ( z ) ® S ( x , y ) . 
i 6 S * 

4In practice, V's isomorphic counter part, the log semiring C would be used instead for reasons 
of numerical stability. 
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Table 1: Operations on WRLs and WRTs 
Let §: E* x A* —> /C, and Q: A* x T* —> K, denote two WRTs and let -Cj: E* —> /C, 
and £>2: E* —> /C, denote two WRLs.° Let a,b and c,d be chosen from the same 
alphabet (augmented with e), respectively. For § (also §1,82)1 let the operands x 
and y range over E* and A*, resp. For Q, let x and y range over A* and F*, resp. 
For £1 and £2, x,y £ E*. 

singleton {(a, c)}(6,d) — T if a = b and c = d, 0 otherwise 
singleton {a} (b) = 1 if a = b, 0 otherwise 

union (sum) (§1 U §2)(x,y) = §1 (x, y) © §2(x,y) 
concatenation (Si-S2)(x,y) = ^ ^ S\(t,v) ® i>2(u,w) 

tu—x,vw=y 
scaling kQ(x,y) = fc <8> Q(x,y) (k £ K.) 
power Q°(e, e) = 1 

Q ° { x ^ e , y ^ e ) = 0 
Q n+1(x,y) = (Q.Q n)(x,y) 

closure Q*(x,y) = у) 
k> 0 

composition (§oQ)(x,y) = ^^ §(ж, z) <g> Q(z, y) 
гед* 

1st projection 7T1(S)(x) = ^ ^ §(x, y) 
ye Д* 

Xd projection 1r2(S)(?/) = 0 8 (x ,y ) 

crossproduct (¿1 x £2)(i,!/) = £i(z) <g> И2(у) 
intersection (¿lfiyW = £а(я) ® &2(x) 

"Using the identity transduction from Definition 10, the operations union, concatenation, 
power, scaling, and closure also apply to weighted rational languages. 

Application is a short-cut for composing the identity transduction of JH with § 
and taking the 2nd projection afterwards. 

Definition 12 (Language Projection). Given a WRL H : E* —> K., the language 
projection of L - denoted by irL(&) - is defined as 

V x . E * , n ^ ) ( x ) = i l ^ ^ ^ 
0 otherwise . 
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Since language projection is an operation which only replaces the weights of its 
operand, WRLs and WRTs are closed under it (see the result for length preserving 
homomorphisms in [8]). 

Definition 13 (^-negation). Given a WRL Z : E* —» fC over a division semiring 
K, the negation of & - denoted by - is defined as 

V . E E = i f ^ ) ^ ® A a ® £ , ( « ) = ! 
I 0 otherwise . 

Further on, we use capital script letters like ? to denote weighted languages 
and transductions. 

3.3 Weighted Finite-State Automata 
Every WRL and every WRT can be represented by at least one weighted finite-state 
acceptor or transducer, respectively. 

Definition 14 (WFSA). A weighted finite-state acceptor (henceforth WFSA, cf. 
124J) 21 = (E, Q, qo, F, E, A, p) over a semiring JC is a 1-tuple with 

1. £, the finite input alphabet, 

2. Q, the finite set of states, 

3. qo € Q, the start state, 

4• F C.Q, the set of final states, 

5. E C Q x Q x (E U {e}) x K, the set of transitions, 

6. A € JC, the initial weight, and 

7. p : F —> IC, the final weight function mapping final states to elements in K,. 

An extension of WFSAs are the weighted finite-state transducers. 

Definition 15 (WFST). A weighted finite-state transducer (henceforth WFST) 
(E, A, Q, qo, F, E, A, p) over a semiring JC is a 8-tuple with 

1. £, Q, qo, F, A and p are defined in the same manner as in the case of WFSAs, 

2. A, the finite output alphabet, and 

3. ECQxQx(Y,\J {e}) x (A U {e}) x JC, the set of transitions. 

The weight assigned by a WFSA 21 to a string x € E* is determined by Defini-
tion 16. 
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Definition 16 (Weight of a String). Let 21 = <E, Q, q0, F, E, A, p) be a WFSA over 
a semiring K.. Let IT be a path in 21, that is, a sequence of adjacent transitions. 
Let n[7r]- denote the state reached at the end of N. Let Y1(QI,X,Q2) denote the set 
of all paths from qi £ Q\ to q2 £ Q2 labeled with x £ E*. Let w(ir) denote the 
<g>-multiplication of the weights of the transitions along the path 1r. The weight 
assigned to a string x £ E* by 21, denoted by is defined as: 

W a = © A®w(7r)®p(n(7r)) . 
»enaio).*^) 

A WFSA is called unambiguous, if there is for each input string x at most a single 
path in 21. As a special case, each state q in a deterministic WFSA has at most a 
single target state for each a £ E. Note that in case of unambiguous/deterministic 
WFSAs, the ©-operation in Definition 16 has no effect, since there is for every 
input string only a single path from go to a final state. 

In addition to the automata-algebraic operations like union, intersection, con-
catenation etc., we use three equivalence operations, e.g. operations which only 
change the structure of a WFSA but not the weighted language it accepts, para-
metrised with respect to a semiring )C: m-£/c for e-removal, det/c for determinisa-
tion of WFSAs, and minic for minimisation. We omit the subscript for the semiring 
if it is understood from the context. 

If K. is a divisible semiring, we denote by neg® the operation, which replaces 
the initial weight A and each transition and final_state weight a of a WFSA 21 by 
its multiplicative inverse, denoted by A -1 and a - 1 respectively. Note that 21 must 
be at least unambiguous to obtain the correct result corresponding to Definition 
13. Although not every WFSA can be determinised [21], those WFSAs to which 
we apply neg® have an equivalent deterministic counterpart. 

Typographically, we will render acceptors and transducers with letters in Gothic 
type, for example (£, 

4 iV-Gram Counting 
As shown in Section 2, frequencies of events are necessary for creating iV-gram 
word models. This section shows how to obtain these frequencies. . . 

4.1 Text Corpora as Weighted Finite-State Automata 
Text corpora can be easily represented as acyclic weighted finite state acceptors 
over the real semiring. This approach is advantageous since acyclic WFSAs always 
admit equivalence transformations like determinisation and minimisation [21]. 
Fig. 1 shows a WFSA £ constructed from a toy corpus.5 

5We adopt the convention that transition labels axe of the form a/w in case of acceptors and 
a : b/w when depicting transducers: a 6 E U {e} denotes the input "symbol of the transition, 
b £ A U { E } is its output symbol and w 6 K its weight. In the context of an VVFST, a;transitiori 
labeled with a stands for the identity transduction a : a. Similax, the final weight p(p). assigned to 
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Figure 1: A toy corpus over E = {a, 6} represented as a WFSA 

The number of occurrences of a given sentence s can be computed along Defi-
nition 16; for example [aa66]]'S = 1 • 8 • 0.5 • 1 • 1 • 1 = 4. 

4.2 N-gram Counting 
An approach for counting TV-grams with WFSTs has been proposed in [2]. We adopt 
this approach and repeat the resulting definitions using the notation introduced in 
Section 3. For the purpose of counting iV-grams, a special transducer which realises 
a rational transduction 3": E* x E* —> TZ is used: 

Vz,y e £*, J(x,y) = ((£ X {£})* • ID{L) • (E x {e})*) (x,y) . (12) 
where £ is a WRL mapping E* to TZ, such that the number of strings x with 
L>(x) / 0 is finite. In the case of N-gram counting, the domain of L needs to 
be T,N (in which case we write y)). To gain some information about which 
words occurred at the beginning or end of a sentence in the corpus, we augment 
the alphabet E with two special symbols <s> and < / s > marking the beginning 
and the end of each sentence, respectively. For that purpose, we prefix our corpus 
WRL with N — 1 <s>-symbols and append N — 1 </s>-symbols at its end (this 
also simplifies the computation of the conditional probabilities, see Section 6). Fig. 
2 shows an example for N = 3. Note that the delimiter symbols are treated in an 
optimised manner. 

Counting is performed by applying the counting WRT to the weighted 
language X given by the corpus: 

Definition 17 (TV-gram counting). Given a WRL 0C : E* —> TZ representing a 
corpus, the N-gram counts G^ : E* —> TZ are obtained by: 

C>c = 3AT [3C] . 

a final state p (printed as a double circle) is stated after /; If the weight is-omitted, it is assumed 
to be 1. ..:. . . 
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Figure 2: Transducer for counting trigrams over E = {a, b, <s>, < /s>} . 

We also call Cx an N-gram count WRL. For details on the procedure and a 
proof of its correctness we refer the reader to [2]. 

The trigram counts for the example corpus (Figure 1) are shown, in Figure 3 
(after optimising - that is removal of e-transitions, determinisation, and minimi-
sation - the. corresponding WFSA). Note that for the purpose of demonstrating 
non-robust language models first (cf. Section 6) we have chosen a corpus over 
E = {a, b, < s > , < / s > } which contains each meaningful trigram in at least 
once resulting in an almost complete WSA.6 Note that trigrams ending in <s> or 
starting with </s> cannot exist. 

To get the count C(wi...W^) associated with a specific A -̂gram W\.. .WN we 
compute Jtui.ti/AfJ^ - the weight assigned to WX... WN by €N according to 
Definition 16. For example, [a6</s>] of Figure 3 is 1 • 28 • 0.5 • 0.5 • 1 = 7. 

4.3 Implementation and Complexity 
The structure and therefore the size of the WFST corresponding to 3jv depends 
on the model parameter N and the size of the underlying alphabet. Its state 
number |<3| equals AT + 1 and the number of transitions is |E|(Ar + 2). Its space 
complexity is within 0(JV|E|), thus the size of SAT may become problematic for 
huge alphabets. As already suggested in [2], a solution to this problem are lazy 
automata, the states and transitions of which are constructed on-demand. Such 
automata are usually obtained from lazy versions of the finite-state algorithms. 
For example, an algorithm for the lazy composition of WRTs is presented in [28]. 
The drawback of such approaches is that the basic operands have to be explicitly 
represented. 

Other, approaches (among others, see [4]) try to construct automata virtually 
right from the beginning. Regularities in their structure are used to define states 

. 6A (W)FSA is called complete with respect to an alphabet E if each state has outgoing tran-
sitions for each symbol a 6 E. 
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a/0.3 

Figure 3: Trigrams in the toy corpus after optimisation. 

and transitions implicitly by some calculation specification. 
The simple structure of makes it suitable for a virtual construction: The 

set of states Q is simply U^LoW N being the only final state. The set of 
transitions E has three different subsets: EI, containing all transitions from the 
initial state, EM, containing all transitions from non-initial and non-final states 
and EF containing all transitions to the final state. Transitions in EM for example 
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lead from state q to state q+1 with each symbol a € £ while emitting this symbol. 
The formal construction of can be found in Definition 35 in Appendix B. 

Definition 35 enables a virtual construction. Implementations of access func-
tions to states and transitions work in 0(1) time while consuming only a constant 
amount of memory. We have implemented this special representation of 3T\T within 
the framework of [12]. 

Given a corpus WFSA A and an TV-gram counter Jjv, counting is performed 
most efficiently by the following sequence of automata operations: 

£n = min(det(rm-£(n2(Si o$N)))) . (13) 

Since the number of TV-gram paths after composition is bounded by and since the 
result is acyclic, c-removal, determinisation (which is essentially the construction 
of a trie from the found TV-grams), and minimisation (including weight-pushing) 
can be performed in 0(|£|) time [27, 25, 24, 13].7 

5 Probabilisation 
The next step in constructing an TV-gram language model is to compute the con-
ditional probabilities of the events according to their frequency. This is done by 
normalising their counts (this equation is also called maximum likelihood estima-
tion, see [16]): 

" " ' V (W) E • a) 

Thus, the frequency of an TV-gram is divided by the sum of the frequencies of 
all TV-grams sharing the same (TV — l)-gram prefix. 

5.1 Conditional Probabilities 
In order to normalise the TV-gram counts as stated in equation (14), the weights of 
all TV-grams sharing the same (TV — l)-gram prefix have to be collected. Both parts 
of the division need to have the same language projection to guarantee that no 
TV-grams are lost. The TV-grams are therefore 'reweighted' by their corresponding 
collected prefix weights. This reweighting is done by a suffix expansion performed 
by a WRT ¿kN : T,N x EjV —> 1Z which maps all TV-gram suffixes of length k to each 
other, what effectively assigns each weight to every symbol. 

Definition 18 (Suffix expansion). Given a finite alphabet E and model parameters 
TV > 0 and k<N, a WRT £% : x E* -> 1Z is defined as 

Vx,y s £kN(x,y) = (ID(ZN~k) • (E x E)k) (x,y) . 
7|2l| = |Qa | + |, that is, the size of a WFSA 21 is measured in terms of the size of its state 

set and its number of transitions. 
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The first TV — k steps of this transduction are an identity mapping. The following 
k steps create - to speak in terms of the underlying WFST - non-deterministic 
paths: The crossproduct of E with E results in |E| transitions for every symbol 
a 6 E. The corresponding transducer for £3 is shown in Figure 4.8 By applying 

Figure 4: The unigram suffix expansion for trigrams (£3 for E = {a, b, <s>, </s>}. 

to the iV-gram counts, the weights of all TV-grams are expanded. The chosen 
k = 1 cares for the summing over the unigram suffixes and the iV-grams bear 
the sum of the weight of the TV-grams sharing the same (TV — l)-gram prefixes as 
demanded by Equation (14). The extended weights are ^-negated and intersected 
with the TV-gram counts to perform the normalisation. Given the TV-gram counts 

as computed in Section 4, ^ ( C ^ ) : -> 7Z,w = w^ Pr^jvl^f - 1 ) 
implements this series of rational operations. 

Definition 19 (Conditional TV-gram probabilisation). Given a WRL Cjv : Ew —> 
TZ, w? ^ C{w), y°N{eN) is defined as9 

= (CJV n (£jv[eAr])_T) • 

An example of the application of Definition 19 is shown in Figure 5. 
In Figure 5, the probability of seeing a b after having seen an ab - that is, 

Pr(6|ab) = [abb] - is 0.4. 
8Again, some transitions related to the delimiters were removed for reasons of clarity. 
®Note that the joint N-gram probabilisation (which reflects the joint probability of each N-

gram), is computed by ^ ( C y v ) = (CN l~l (fij^tejv))"1). The language weight of such an proba-
bilisation, that is © i e e N '33N(<~IV)(x)> equals 1. 
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a/0.3 

Figure 5: Conditional probabilised trigrams from the example corpus. 

Lemma 1 (Correctness of conditional iV-gramprobabilisation). Definition 19 com-
putes the conditional probability of each N-gram as a special case of Equation (14) 
(with i = N): 

Pr ( u > „ K - * ) = fft^j • (15) 
E C K • a) a€£ 
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Proof. See Appendix A. • 

Note that an advantage of the automata/language theoretic approach is that 
Definition 19 computes the conditional probabilities of all found iV-grams simulta-
neously. 

5.1.1 Implementation and Complexity 

The most efficient implementation of Definition 19 in terms of WFSA operations 
is the following: 

£n D neg®{min(det(Tr2(£N o <E )̂))) . (16) 

A problem could arise through the constant factor associated with the alphabet 
size in Definition 18, since the number of transitions in a WFSA corresponding to 
(ExE)fc is |E|2i\ So the approach may become unfeasible in case of the big alphabet 
sizes commonly encountered in corpus linguistics. The composition operation o 
maps every transition t in (£jv leading to a final state to |E| transitions in the 
result. Since the operand of neg® must be deterministic, all transitions resulting 
from suffix expansion must be (additively) combined by determinisation. 

To get rid of the constant introduced by the size of the alphabet, we define a 
special symbol <?>, called the default symbol (see [5]). During intersection and 
composition, <?> matches every unmatched symbol labeling a transition leaving a 
state q. The definition of suffix expansion is then changed to the one in Definition 
20: 

Definition 20 (Revised sufBx expansion). Given two finite alphabets E and A and 
model parameters N > 0 and k < N, a WRT £^A : x (T,N~k • Ak) -> TZ is 
defined as 

Vx,y € E " , £^A(X,J/) = ( /£>(£""*) • (E x A)fe) (x,y) . 

Note that is a special case of Definition 20. The special sufBx expansion 
using < ? > is then 

To reflect the special semantics of <? >, the implementations of fl and o are 
changed to fl<?> and o< ? > , respectively. Equation (16) becomes 

<Ln n < ? > neg®(min{det{-K2(£N o<?> .Cj,)))) . (17) 

The complexity of the suffix expansion, projection, determinisation and minimisa-
tion is then in 0(|Cjv|). If we assume that is deterministic, the complexity of 
the final intersection step is also in 0(|£jv|), since both operands contain exactly 
the same Af-grams (they have the same language projection), thus are isomorphic. 

The possible types of symbols in a (W)FSA may be cross-classified according 
to Table 2. Following Table 2, the default symbol < ? > can be seen as a con-
ditionally interpreted input consuming symbol. We will need its non-consuming 
counterpart, the failure transition symbol 4> (see [1]) in Section 7 to create robust 
back-off language models. 
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+consuming -consuming 
+conditional < ? > <t> 
-conditional a € E £ 

Table 2: A cross-classification of symbols labeling transitions in an FSA 

In parallel to the counting WRT, it is possible to define a calculation for 
which enables its virtual construction. The calculation is given in Definition 36 (see 
Appendix B). 

We move to the creation of non-robust language models. 

6 Creating Non-Robust Language Models 
The result of the counting and the normalisation procedure is a weighted lan-
guage T,N —> TZ. It assigns the conditional probability to every 
iV-gram in the corpus. A maximum likelihood model is characterised by the fol-
lowing equation: 

' m 
P r « ) = n p r ( u , i K : j v + 1 ) . (is) 

¿=i 
It is a weighted language E* —> TZ. Therefore, has to be transformed to accept 
sequences of any length. Simply taking its closure is not sufficient, since the result 
would be a mapping from (T,N)* —> TZ: every ./V-gram could be followed by any other 
TV-gram, every input symbol would have to be processed TV times (as illustrated in 
example 1) and. only strings with a length equal to a multiple of TV would be in its 
domain. 

Example 1 (Illustration of the necessary bigram overlapping). 
Given input a b c 

W\ W2 w3 

Pr(w?) = Pr(a) • Pr(b |a) • Pr(c|b) 
To process (overlap) a ab be 

To correctly reflect Equation (18), TV-grams need to be overlapped in a way 
such that every (TV-l)-gram suffix is simultaneously treated as an (TV —l)-gram 
prefix. In order to achieve this, a specialisation of the concatenation operation 
called overlapping or domino concatenation is introduced. 

Definition 21 (Domino (Overlapping) Concatenation). The overlapping concate-
nation of two WRTs 8 : E* x A* TZ and Q : E* x A* TZ - denoted byS-N Q 
- is a mapping E* x A* —> TZ defined by 

Vz € £*,Vi/£ A*, (§-AT Q)(x,y) = 0 S(u • s) ® Qiv?'1-w,t) . 
X=U-Vi -1 'W,y = st 

The -TV operator is rational, as long as TV is a constant. 
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6.1 TV-Gram Models as WRLs 
With the overlapping concatenation at hand, it is possible to use the closure of the 
conditional probability distribution as the basis of the TV-gram model. It is used to 
filter non-overlapping sequences of TV-grams. A transduction D^ : (T,N)* x E* —> 7Z 
is defined which uses • N in this way. To avoid their multiple processing, Djy deletes 
overlapping prefixes by simply omitting them from its output. 

Definition 22 (TV-gram Concatenator). Given a finite alphabet E, the N-gram 
concatenator is a WRTDN • (EN)* x E* —> 1Z, defined as 

Fig. 6 shows a trigram concatenator for E = {a, b}. Note that the TV-gram con-

Figure 6: Trigram concatenator for E = {a, b}. States are labeled with their 
histories. The dashed transitions correspond to the overlaps. 

catenator factors out the structure of an TV-gram model (cf. [14], p.83) and makes 
it available to the algebraic formalisation independently from the corpus under 
consideration. 

To handle the special cases for 1 < M < TV in Equation (18) uniformly, we 
prefix our input sentence with TV — 1 <s>-symbols marking the sentence begin. 
Additionally, we postfix it with the same number of < /s >-symbols marking its 
end, in order to guarantee that our language model seen as a WFSA has a unique 
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final state (which is reached after reading the last </s>-symbol). For the model's 
structure, this means that only those //-grams starting with (<s>)JV_1 and those 
ending in ( < / s > ) N _ 1 may be accepted in the beginning and at the end, respec-
tively. To reflect this, we unfold the closure of the conditional probabilities 7CN by 
intersecting it with the WRL IIAT. 

Definition 23 (Unfolding TV-grams). Let E be an alphabet and TV the model pa-
rameter. Ujv E* —> 7Z is defined as: 

Vx G (E")*, UaK*) = ( i ^ " - 1 } " E • (£")* * E * {</5>J V _ 1}) (x) . 

Definition 24 applies the N-gram concatenator Djv to the intersection of the 
closure of the probabilised TV-grams and the unfolding WRL. 

Definition 24 (Non-robust language models). Let be an N-gram count WRL as 
defined in Definition 17, such that C/f(x) ^ 0, Vx G EN . The non-robust language 
model MJV(CN) is a weighted rational transduction E* —> V, x G E+ i—> Pr(x) 

MN(eN) = VN[(?cN(eN))* n UJV] . 

Note that for the following theorem, we make the assumption that our input 
corpora are complete, that is, they contain every possible TV-gram w G EN . We 
will relax this condition in Section 7. 

Theorem 1 (Adequacy of Definition 24). MN(CN)(W) correctly computes the de-
composed conditional probability of Equation (18) for each delimited input string 
w. 

Proof. The proof is a special case (the two cases la) of the proof of Theorem 2 (cf. 
Appendix A). • 

There is a relation between automata representing TV-gram models and de 
Bruijn graphs [7]: A de Bruijn graph is a directed graph which represents the 
overlaps of sequences of a certain length n given a finite alphabet E. Each length 
n sequence of symbols in E is represented as a vertex in the graph. Let q denote 
the vertex for a sequence w*+n~1, then q has a single edge for each symbol a G E 
connecting it to the vertex r representing u ; ^ " - 1 • a. Thus, the structure of de 
Bruijn graphs is comparable to that of TV-gram models over complete corpora. 

6.2 Implementation and Complexity 
Again, combining the WFSA for ?CN and the WFST for T>N is basically application 
followed by optimisation: 

9JliV = r7n-e(7r2(((^rnHN)o2)Ar)) • (19) 

If-(^P^)* H iljv is deterministic and since DN is input deterministic by definition, 
their composition will be input deterministic too. After taking the 2nd projection, 
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the e-transitions resulting from the overlaps have to be removed. Although the 
result is a cyclic WFSA, its (unconnected) e-subgraph will be acyclic, in fact, we 
will find a number of unconnected e-chains of length N — I. These e-transitions can 
be removed in linear time with respect to the size of the result of the application 
[23], which in turn is bounded by the size of Thus, the time complexity of 
Equation (19) is in 0(|q3^|). 

Even though DJV depends only on the (constant) alphabet E and the model 
constant N, its space complexity is in 0(E N _ 1 ) , since has to keep track of 
the different histories of length N - 1 to ensure correct overlaps. So, a naive 
implementation runs into difficulties even with moderate alphabet sizes. But we 
can do better if we exploit the regular structure of D ̂  and replace actual states and 
transitions by functions computing them on demand. The trigram concatenator of 
Figure 6 is shown slightly modified in Figure 7. Labels of states have been replaced 
by state numbers and two additional states are introduced to simplify the virtual 
construction. In addition, we assume a bijective function idx : E —> N mapping 
each alphabet symbol to a unique index r, 0 < r < |E|. The labels of the transitions 
are replaced by their corresponding indices. Ignoring state 0, the first part of the 

Figure 7: Trigram concatenator for E = {a, b}. States are labeled with numbers. 

automaton shown in Figure 7 can be seen as a binary tree with root 1, yield 4 . . . 7 
and a consecutive labeling. The successor of a state q given an alphabet symbol a 
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can be calculated by q * |E| + idx(a) — (|E| — 2) in the general case. 

Example 2. Consider state 3 and symbol b with idx(b) = 1 in Figure 7. The 
correct destination state of the transition is state 7. Thus, 

7 = 3*2 + 1 - ( 2 - 2 ) . 

The transitions within the tree part are denoted by Et. 
Transitions from states greater or equal than the first state of the yield qy (state 

4 in Figure 7) perform the overlap. 

Definition 25 (Calculation of qy). Given a finite alphabet E and a model parameter 
N, the state qy is calculated as follows: 

_ | E r - 1 + ( | S | - 2 ) 
Q y ~ |E| — 1 

qy is used to identify the states which do not allow branching. The transitions 
leaving those states are divided into the overlap transitions Ea and the loop transi-
tions Ei. The computation of their destinations is simple, but one has to take care 
of the fact that only one symbol may be processed. 
The complete calculation specification which enables a virtual construction of Q ^ 
is given in Definition 37 in Appendix B. The virtual construction of ii/v is straight-
forward. 
The next section focuses on robust language models. 

7 Robust Language Models 
Up to this point, the achieved models are only robust when based on corpora 
containing all possible iV-grams which is an unrealistic assumption. As described 
in Section 2.2, smoothing methods have to be applied in order to solve this problem. 
Back-off smoothing can be described as 'relying on the highest order distribution 
which is available'. The following figure illustrates this behavior on the automata 
level (taken from [2]): 

Figure 8: A trigram back-off model represented as a schematic FSA. 

As suggested in [2], in those cases where - given a specific history - no transition 
for the next word Wi is available, a failure transition (marked by (j>) to the nearest 
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shorter history is traversed and Wi is processed if possible. If not, the history is 
shortened again until the history-less state is reached. Language models as achieved 
in Section 6 have to be extended to include such failure transitions to the lower 
ordered distributions. Following Section 2.2, it is necessary to apply a discounting 
algorithm in order to free probability mass for them. 

For computing the probability of a (delimited) string in a back-off model, 
we use the Markov probability decomposition as in Equation (18), but replace Pr 
with the back-off probability Pr: 

7.1 Discounting 
From the many existing discounting approaches, it is especially Witten-Bell dis-
counting which is suited for modifying TV-gram counts in a finite-state algebraic 
manner. The calculations for the discounted frequencies as well as for the freed 
frequency mass were given above in equations (5) and (6). 

As explained above, Witten-Bell discounting uses the number of observed types 
following a history to estimate the probability of previously unseen events. Frequen-
cies are discounted in relation to this number. Given a representation of TV-gram 
counts, the number of types for each history can be computed with the help of the 
language projection (Definition 12) and the suffix expansion operator (Defini-
tion 18). The idea is to first map all TV-gram counts to 1 and then sum over the 
1-gram suffixes. 

Definition 26 (Witten-Bell Type Number). Given a WRL £ : ZN TZ, a WRL 
7/v : £jV —* TZ is defined as follows: 

7m directly corresponds to function T from Definition (1). 

Lemma 2 (Correspondence of T and T^). Given a WRL £ : T,N —» 1Z, Vwf G 

Definition 27 defines the analogon to N of Definition 2. 

Definition 27 (Witten-Bell Token Number). Given a WRL £ : T,N -> TZ, a WRL 
: "En —> TZ is defined as follows: 

N n (£) = £]v[£] • 

TO 
(20) 

TJV(£) = £3vbrL(£)] • 

Proof. See Appendix A. • 

Lemma 3 (Correspondence of N and KJV). Given a WRL £ : T,N —> TZ, Vwf G 
: K i v ( £ ) « ) = N « ) . 
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Proof. The proof is analogous to the proof of Lemma 2. • 

The nominator of Equation (5) (which is at the same time the first summand 
of the denominator) has been used for obtaining conditional probabilities before 
(Section 5). Thus, everything needed for Witten-Bell discounting is at hand: we 
reconstruct Equation (5) using corresponding operations on WRLs. To reflect the 
N-gram discounting process, we actually operate on GN. 

Definition 28 (Witten-Bell Discounting). Given a WRL £ : T,N —> 1Z, we define 
Wß(L) : ZN -» K,w e EN H-» C(w) as 

The second part of Definition 28 computes the freed frequency mass by refor-
mulating Equation (6). 

Again, we make use of the fact that the real semiring 7Z is closed under mul-
tiplicative inverses to show that Definition 28 corresponds to the Witten-Bell dis-
counted frequencies (resp. the freed frequency mass). 

Lemma 4 (Reconstruction of Witten-Bell Discounting). Given an N-gram count 
WRL eN : 71, w? i-> maps an N-gram to its Witten-
Bell discounted frequency C(w^). 

Proof. See Appendix A. • 

The following equivalence holds: 

Lemma 5 (Witten-Bell Decomposition). Given an N-gram count WRL £ : 

An example of the discounting process is shown in Figure 9. Both parts of 
the Witten-Bell decomposition are used for reconstructing the back-off strategy as 
explained in the next section. 

The previously reserved frequency mass now has to be reallocated to the lower 
ordered distributions which need to be discounted as well (except the unigram dis-
tribution terminating the recursion). All involved distributions axe then combined 
in a special representation to which the robust overlapping concatenation operator 
is applied. 

The first step is to transform the adjusted frequencies into conditional probabil-
ities. In principle, the procedure from Section 5 can be used with the difference that 

W£(JC0 = XL D CM-C) n (NJVOG) u 0V(£))-T) , 

and W f t ( £ ) : TZ, w e T,N » C{w) - C(to) as 

Wft(£) = £ n (TjvOG) H U Tn(£)) -T) . 

71, W£(£ )UW$(£) = £. 

Proof. See Appendix A. • 

7.2 Back-off 
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Figure 9: Wit ten-Bell decomposition for the bigrams of the corpus. The WFSA 
on the left is the discounted WFSA. Both WFSAs are already probabilised after 
Definition 29. 

both have to be normalised in relation to the original counts instead of normalising 
them in relation to themselves. ycN is therefore modified to use the discounted 
frequencies (resp. the discounts, indicated by a second superscript) as the first 
argument of the integrated intersection operation. 

Definition 29 (Witten-Bell Discounted Probabilities). Let £ denote an N-grarn 
count WRL £jV -> 1Z, then 7%° : EN 11 is defined as 

and yCfjR : £jV —> 7Z is defined as 

T C / ( £ ) = W £ ( £ ) n p M £ ) ) - T . 

and denote the Witten-Bell discounted probabilities and the freed 
probability mass of the -/V-grams when applied to C^, respectively. Note that the 
union of ?%D and yields VCN. 

Lemma 6 (Witten-Bell Discounted Probabilities). Given Cjv : —» 1Z, w = 
lif £ E " H C(u>), y%D{eN)(w) and ?%R{QN)(w) compute Pi(wN\w?'_1) and 
Pr(wAr|wjv_1), the Witten-Bell discounted probabilities and the freed probability 
mass, respectively: 
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Proof. Lemma 6 results from Lemma 1 and Lemma 4. • 

Lemma 7 (Union of and Let £ denote an N-gram count WRL T,N —> 
1Z: 

Proof. See Appendix A. • 

7.2.1 The Unified Distribution 

To create a model which contains all N . . . 1-gram distributions, these have to be 
combined in some way. The aim is to enable the application of an overlapping filter 
- as in the non-back-off case - to the closure of the combination y ¡y which therefore 
must, according to Equation (7), meet some requirements: 

1. The single distributions must be discriminated from each other, since exactly 
one may account for a single event. 

2. The single distributions must be ordered in a way that the back-off strategy 
is reflected. 

3. The discounting factors a() of Equation (7) are context-dependent. They 
have to be assigned correctly. 

The first point is realised by prefixing each M-gram distribution with N — M 
a-symbols. Hence, their difference and hierarchy originates in the number of ccs 
preceding them, a is a special symbol which is not part of £. It has no special 
semantics, is processed as any other symbol and will be deleted later. To comply 
with the third point, an a is appended to every (M — l)-gram prefix (1 < M < N). 
This a will be identified with the back-off weight of the prefix it is attached to. We 
define the unified distribution ^ /v. 

Definition 30 (Unified Distribution ^N)- Given a WRL L : S* —> 1Z representing 
a corpus, the combined representation of all 1... N-gram distributions v(£) : 
T,N —> TZ is defined as: 

M=2 ^ ' 

The base part of is defined by the unigram distribution CP^ î [£]) which 
is prefixed with N—1 a-symbols. Note that in the case of unigrams, conditional and 
joint distributions are the same. The other part of the unified distribution contains 
for every M (with 1 < M < N) a sublanguage which is the union of two weighted 
subsets: first the discounted M-gram probability distribution !P^)d(5'M[£]) and 
second the residual probability mass For the latter, the suffix expan-
sion WRT E.)̂  ensures that it consists of words w\... WM-i • a whose associated 
weight corresponds to the a(iojw_1)-value in Equation (7) and which is computed 
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Figure 10: Unified distribution containing all {l,2,3}-gram subdistributions. 
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by the smoothing method. Note that the strings in ^N(^) are by definition all of 
length TV. 

Fig. 10 shows the unified distribution for the trigrams of the example corpus. 

Lemma 8 (VAT defines a conditional probability distribution over (E U {a})^). 

Proof. All strings in ̂ jv are of length N and are either of the form aA r _ 1E (unigram 
case) or of the form a N _ M E M _ 1 (a|E) (for 1 < M < N) and originate from a 
single subset in Definition 30 since all those subsets are mutually disjoint. In the 
unigram case, for each symbol a 6 CP Ĵi [£,]), aN~17l(3 :i [£]) is associated with the 
conditional probability Pr(a|aiV_1), since ^(Si[£]) is a probability distribution 
by construction. By Lemma 7, the union of T^f and gives a conditional 
probability distribution over (E U {cc})M. Prefixing it with N — M as results in a 
conditional probability distribution over (E U { a } ) • 

7.2.2 Back-off Navigation 

Concerning the second point in the enumeration above, the possible sequences of 
M-grams according to Equation (7) have to be taken into account. 

Example 3. Consider the trigram case and the input abcde, c\ab has been pro-
cessed, thus d\bc is to be read next. If the trigram bed and the bigram cd are not 
available we back-off successively to d\c and to d. Now that d has been processed, e 
comes next. Since we already know that cd does not exist, concatenating e\cd can 
not be correct. The correct continuation is e\d, the second case in Equation (9). 
This motivates why the Wj-transition from the e-state in Figure 8 first traverses a 
bigram state before eventually going back to the trigram level. 

Simply using the closure of y n as the input of the TV-gram concatenator is thus 
not correct. Instead, we define a WRT called back-off navigator which ensures that 
incorrect sequences of M-grams are filtered from (̂ yv)*-

Definition 31 (Back-off Navigator). A WRL "BN : ((£ U {a})N)* 11 is defined 
for a finite alphabet E and the model parameter N as follows: 

The back-off part ¥>M,N (with 0 < M < N) is recursively defined in the following 
way: 

({s} if M = 0 
3M , N = | A N _ M } % M _ I I F F . S M . * if M > o . 

"BM,N accounts for the impossibility of recognizing a symbol in the M + 1-
subdistribution of an TV-gram model (0 < M < TV). This failure - indicated 
by a - may happen after having read M symbols. We then enter the nearest 
subdistribution which .we find in (^jv)* after reading an a-prefix of length TV — M. 
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Here, we may successfully process the TW-gram or recursively back-off to the lower 
ordered distribution. In both cases - motivated by Example 3 and defined in 
Equation (9) - we continue processing in the nearest superdistribution which we 
find in (yN)* after reading a prefix of TV — M — 1 as. Note that the length of all 
strings in BAT is a multiple of TV. 

Fig. 11 shows the trigram navigator implementing the back-off strategy for 
N = 3. Since we prefix the input to the model as well as the sentences of the 
training corpus with N — 1 delimiter symbols, failure can only occur after reading 
N — 1 symbols, because every suffix of an TV-gram of length TV — 1 also acts as a 
prefix of an TV-gram (this can be easily shown by induction). This motivates why 
the back-off navigator in Figure 11 has a transitions only in state 2 (back-off from 
trigrams to bigrams) and state 5 (back-off to the unigrams). The remaining a-
transitions serve to navigate to the nearest sub- (states 3, 6, 7) or superdistribution 
(state 9). 

Figure 11: Back-off Navigator <83. 

Lemma 9 (Backoff-as). Let yff A 
< M < N) be as defined in Definition 29. 

For each string w^1, [CP^/2]) (w1M-:1a) is equal to in Equation (7). 
Proof. As defined in Equation (9), a(u;jli_1) is the residual probability mass com-
puted by the discounting method for history . By Lemma 6, con-
tains exactly that probability mass for all M-grams. By definition of application, 
(¿-M [^a/2]) maps the sum of all conditional probabilities of all strings 
wf _ 1a for a G E to • 

7.2.3 Robust Overlapping Concatenation 

The overlapping concatenation • N is the basis for the operator T>N which filters 
sequences of non-overlapping TV-grams from the closure of all TV-grams (EN)*. In 
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parallel, a robust overlapping concatenation is defined which allows the short-
ening and extension of histories during overlapping. 

Definition 32 (Robust Overlapping Concatenation). The robust overlapping con-
catenation S -jv Q of two weighted transductions § and Q is a mapping (E U {a})* x 
(A U {a})* -» 71 defined by 

\/x e £*,Vy € A*, (S-%Q)(x,y) = §(x,y)^Q(x,y) U 
AT-l 

0 U S(u- < - 2 • a, s) ® Q(a* • -w,t) . 
x = u - v 1 ~~ -a w,y=st 

•% successively increases the number of as to be processed while shortening the 
*r N 

iV-gram history vx 

Example 4. In the trigram case, Definition 32 boils down to the following cases 
for input abc(d):10 

a-be -jv be • d Normal, non-failure case 
a -ba -pf ab • c Processing in the 2-grams by shortening the history to b 
a- bet -jy aa • c Processing in the 1-grams by shortening the history to e 
a - ac • jv ac - d 1-grams —• 2-grams 

Cases 2 and 3 in Example 4 are distinguished from the others by the failure-
indicating a at the last position of the first trigram. Note that the last case is 
handled by the standard overlapping mechanism if a is treated as a normal symbol 
in E. 

Now, everything is prepared to define the WRT which repeatedly applies to 
an input string. The as which trigger the shortening of the histories in Definition 
32 are introduced by occurrences of failure symbols cj> in the input string. 

Definition 33 (Robust JV-gram Concatenator D^). Let T>% be as in Definition 
22 with (Eu{a}) in place of E and instead of-pj. is a mapping (EU{a})* x 
(E U {<£})* 71 defined by 

Di = D%o (ID(E \ {a}) U ({a} x {ft))* . 

Note that T>% outputs - as before - only the last symbol of each JV-gram, 
which may be a in the failure case (cf. Definition 22). then simply replaces 
this occurrence of a by <j>. Observe furthermore that Definition 33 is over-general, 
since it admits more as than necessary. This over-generality is harmless since the 
sequences of as and Es are further constrained by the back-off navigator Hjv (see 
Definition 34). 

Fig. 12 shows the robust version of the trigram concatenator of Figure 6. Dashed 
transitions correspond to backing-off to the lower bigram and unigram distributions. 
Note that the actual implementation of D^ (see Figure 12) uses a weaker equiv-

10These cases axe also the base of the proof of Theorem 2 (cf. Section 7.3). 
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Figure 12: Robust trigram concatenator for £ = {a, 6}. The dashed transitions 
account for the back-off cases. 

alence relation with respect to the states' right relation.11 The implementation 
merges some non-equivalent states to allow for a compact representation of T>̂ N 

which only differs minimally from the non-robust counterpart (following the back-
off scheme, we would have to split for example state 10 in Figure 12 into two states 
to distinguish between the two possible continuations after having failed with the 
last input symbol b or successfully processed it. The concatenator in Figure 12 thus 
accepts for example the sequence bbbaab which is not admissible after the back-off 
scheme in Figure 11). Again, this coarsening is harmless because of the filter HN-

7.3 Putting It All Together 
The back-off language model is obtained by applying "Bjv, 11% and T>̂ N to the unified 
distribution. 

Definition 34 (Robust language model). Let £ be a weighted language over E*. 
Let 11jy be the N-gram unfolder of Definition 23 where (£ U {a}) is used in place 
o/£ . The robust language model is a WRT E* £* >-> Pr(to): 

n{£>)* n U% fl . 
11 The right relation of a state q in a WFST % (right language in the case of WFSAs) is the 

WRT accepted by X when q is taken as the start state. Two states axe equivalent (and can thus 
be merged during minimisation), if they have the same right relation. 
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We assume a mechanism which introduces the special failure symbol <j) at the 
"right" places in w. Since the interpretation of 4> is procedural in nature, we 
delegate this task to a special WFSA intersection algorithm. Note that the length 
of is 0. 
From a procedural viewpoint, Definition 34 works in the following way: 

• Each symbol in the input - a "normal" symbol a € £ or <j> - triggers a full 
cycle through VJV- Symbols a S E are mapped to themselves while <j> is 
mapped to the appropriate a()-value of the back-off Equation (7). 

• An occurrence of <f> is found in the input w (actually, the places where 4> can 
occur are constrained by ^jv)-

• (j> is mapped to a in the upper part of the relation by Definition 33. 

• This a triggers other as to be inserted into the relation's upper part by 
Definition 32. 

• These additional as determine the correct subdistribution in including 
the determination of the correct a()-values of Equation (7). 

• In addition, these as are subject to the filtering of the back-off navigator 
Hwhich also handles the navigation to the correct superdistribution after 
having read a number of </>s. 

Since complete trigram models tend to be large and our focus lies on the demonstra-
tion of the back-off mechanism, we depart from our previous example. Fig. 13 shows 
a back-off model following Definition 34 on the basis of the corpus a I baaaa I baaaa. 
For a better understanding of this example, the states are labeled with their histo-
ries. Also, the two states corresponding to the initial <s>-prefix have been deleted. 

Theorem 2 (Robust language model M^). Given M^(L)(w) as defined in Defi-
nition 34, M,ff(L)(w) computes the correct probability for a delimited input string 
w after equations (20), (7) and (9). 

Proof. See Appendix A. • 

7.4 Implementation and Complexity 
The observations of Section 6.2 carry over to the back-off case. Of course, the 
intersection of 11% and 13jv in Definition.34 can be done by a virtual intersection 
algorithm. Due to their sizes, all three WRTs should be virtually constructed as 
well. 

The application of the language model M r̂ to a (delimited) input string w is as 
usual the intersection of the trivially weighted WFSA for w with the WFSA 
corresponding to M^,. Since contains transitions labeled with the special 
failure symbol cf>, the normal intersection algorithm must be augmented with a 
mechanism which treats 0 as a conditional e-transition. 
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©/0.333 

Figure 13: A back-off trigram model for the corpus (a|6aaaa|6aaaa). 

8 Conclusion and Further Work 
In the previous sections, we have tried to show - to our knowledge for the first time -
that the construction of language models can be defined on the formal language level 
alone without resorting to algorithms which manipulate the underlying WFSAs on 
a state level. We therefore make use of certain semiring properties, as for example 
divisibility, to model arithmetic statements like discounting procedures within the 
algebra of WRLs - an approach which may be applied to many other problems in 
the field of language processing. 

Our formalisation is modular and can be seen as generator - - and a sequence 
of filters: 

• The unified distribution yn accounts for the probabilities and combines dis-
counted and residual probabilities for various values of M without caring 
about the back-off structure and specific iV-gram histories. 

• The iV-gram unfolder ensures the macro structure of the model (cf. [14], 
p.83) with the delimiters at the beginning and end of each sentence. 

• The back-off navigator reproduces the back-off strategy at a very general 



346 Thomas Hanneforth and Kay-Michael Wiirzner 

level, again without distinguishing specific iV-gram histories or calculating 
probabilities. 

• Finally, the robust overlapping concatenation mechanism provides a correct 
handling of iV-gram histories of various length by filtering out illegal ones. 

We gave hints for efficient implementations of the five auxiliary WRTs which depend 
only on £ and N. All steps are already implemented in the framework of [12].12 

As previously pointed out, our work is primarily a theoretical one. The huge 
intermediate automata may prevent its practical application for corpora of the sizes 
currently used in NLP. Future work will therefore have to concentrate on mecha-
nisms which allow the creation of individual language models for small parts of the 
underlying corpus and their subsequent combination. In addition, we currently in-
vestigate parallel versions of the automata algorithms which exploit multi-processor 
technology now available. 

Another task is the reformulation of state-of-the-art discounting and smoothing 
methods and the clarification of the relationship between back-off and the other 
important strategy - interpolation - on a language-theoretic level. 
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A Proofs 
Lemma 1 (Correctness of conditional TV-gram probabilisation). Definition 19 com-
putes the conditional probability of each N-gram as a special case of Equation (14) 
(withi = N): 

P r ^ K " 1 ) = . • (21) 

a€E 
Proof. 

= (Cjy(a;) <g> ¿^(x,«;^)) def. of application 
xes* 

= 0 (ejv(®) ® (ID^-1) • (E x E))(X,W1n)) def. of 
x€E* 

= 0 ( e ^ ( t i ; f - 1 - a ) ® E ; v - 1 ( u ; f - 1 ) ® ( E x E ) ( a , u ; N ) ) def. ID, • 
a€E 

a6E 

® { ( ^ f - 1 ) } ^ - 1 ) ® s ( a ) ® E(WAT)) def. of U and x 

a£E 

® { ( ^ f _ 1 ) } ( < _ 1 ) ® (a}(a) ® {tWivXtu^)) def. of U 
= 0(eAr(wf~1 • a) ® 1) def. of singleton 

aes 
= ^^ C/v^wf-1 • a) neutral element 

a€E 
Since both operands of the intersection in Definition 19 have the same language 

projection, ^-negation replaces each weight of an TV-gram by its multiplicative 
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inverse, and intersection ^-multiplies weights, Definition 19 mimics Equation (15). 
• 

Lemma 2 (Correspondence of T and Tjv). Given a WRL L : T,N —> 1Z, Vtuf G 
E " : ? „ ( £ , ) ( < ) = T ( < ) 

Proof. 

=£]v[7ri(IL)]Kw) def. 26 

= 0 (TTL(L)(X) <g> £ N ( X , W?)) . def. of application 
i 6 E * 

= © ® (IDCE*-1) • (E x E))(x, wf)) def. of 
xeE* 

= • a) ® EAr~1(u;f-1) ® (E x E)(a,wN)) def. ID, • 
aSE 

aes 

® { ( W F _ 1 ) <g> E(A) <g> E(IOJV)) def. of U and x 

= © 6 r L ( < C ) « - 1 - a ) 
a€S 

' ® { ( « j " - 1 ) } ^ - 1 ) ® M(a) ® {wN}{wN)) def. of U 

= © ( 7 r L ( £ ' ) ( w f • a)) def- singleton, T 
a££ 

JV-1 

J—i |0 otherwise . 
def. 71 

• 
Lemma 4 (Reconstruction of Witten-Bell Discounting). Given a WRL G^j : T,N —> 
1Z. Wi i-> C(wi), maps an N-gram to its Witten-Bell discounted 
frequency C(u>i). 

Proof. 

= (e N n (XN(eN) n (JMCJV) U T(e,v))-T)) (tuf) def. 28 

=eJV(tuff) ® {J*N(QN){WI ) ® (Njviejv)^) © 7(eN)(u;f ) ) _ 1 ) def. of U and D 

= C(wf) ® ( N ( < ) ® ( N « ) e T ( < ) ) _ 1 ) . def. ofC, N, T 

Since a - 1 is ^ in the probability semiring, the last line is equal to Equation (5). 
The proof for WjJ is constructed in the same manner. • 
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Lemma 5 (Witten-Bell Decomposition). Given a WRL £ : EN TZ, W$(£) U 
W « ( £ ) = £ . 

Proof. 

W £ ( £ ) U W * ( £ ) 

= (£ n n (Wn(£) U ^ ( £ ) ) - T ) ) u 

(£ n (0V(£) n (XN(L) U 7n (£)) -T ) ) def. of 

= ((£ n tfjvOG)) n (Njv(£) UT JV(£))-T)U 

((£ N 7AT(£)) D (NJV(£) U 7tf(£))_T) assoc. of n 

=((£ n U (£ fl Tiv(£))) n (WJV(£) U Tjv(£))~T n x U 

n U Tw(£)) fl ( % ( £ ) U ^ ( t ) ) " 1 ) n ^ u 

xEC v 

((Xjv(£)(a;) © T N ( L ) ( X ) ) ® ( N ^ X * ) © 7w(£)(x))-T)^ def. of £, U, n 

= 0 ( £ ( x ) ® I ) def. o f - T ' 

=£ def. of £, T 

• 

Lemma 7 (Union of 7%D and V%R). Let £ denote a WRL -» TZ: 

Proof. 

? C / ( £ ) U ? ^ ( £ ) 

= (W#(£) n '(WJV(£))-T) U (W£(£) n (Kjv(£))-T) by def. 29 

= (W^(£)UW^(£))n(N i V(£))-T b y n x U 

= £n(Kjv(£))"T bylem. 5 

= £n(£]v[£])-T by def. 27 = T^(£) by def. 19 • 
Theorem 2 (Robust language model 3Vt̂ ). Given M%(L)(w) as defined in Defi-
nition 34, (£) (w) computes the correct probability for a delimited input string 
w after equations (20), (7) and (9). 
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Proof. Introductory remarks: 

• For reasons of simplicity, we restrict the proof to the case of N = 3. Proofs 
for other values for N are analogous. 

• Observe that the length of all.strings in VAT(-C)*, U%, BJV and 7R1(D r̂) is a 
multiple of N. The back-off navigator H>N places the most specific constraints 
on the form of the strings to which ©^ is applied. Thus, in the trigram case, 
the shortest strings in ^(/L)* fi 13 3 (besides e, which is ruled out by U%) are 
of one of the following forms: £3 or E2a • a£2 or £ 2a • aEa • a 2 £ • a£2 . 

• Note that the length of <j) is 0. 

• For the reader's better understanding, we spell out the three different cases 
of Equation (7) for N = 3: 

{MwAwT-l) if C(wi_2) > 0 
P r ^ K l z ) = a[w\l\) • PritBilttfi-i) if C(iu|_2) = 0 & > 0 

a(wlZ2) • ^(^¿-l) • Pr(«;i) otherwise . 
(22) 

Remember that the values of the as in Equation (22) may be 1 in case the 
history is not present (cf. Equation (9)). 

Since U3 introduces the sentence delimiters, the proof is by induction on the length 
of the string w =<s>2w' </s>2 . 

Induction hypothesis: 
Let w\ =<s>2 w' </s>2 an input string of length k > 4 (= 2(N - 1)): 

fc 
B | [ W n U J n i , ] ( « ) { ) = n PrKK=2) - (23) 

i=3=N 

Induction base: |io| = 0. 

Case la: w = e (this means that the trigram <s>2</s> is in y3(ZL)) 

.©i[0i3)*]«B>2</s>2) 
= © ((Vs)(®) ® D^(x,<s>2</s>2)) def. of appl. 

x € £ * 

=(y3)(<s>2</s> • < s x / s > 2 ) 
® (E3(<s>2</s>) 

® { ( < s x / s > 2 , < / s > ) } ( < s x / s > 2 , < / s > ) ) def. of T>f 
=(yl)(<s>2</s> • < s x / s > 2 ) ID, singleton, T 
=(y3)(<s>2</s>) <g> (y 3 ) (<sX/s> 2 ) closure 
=(^ ' D ) (<s> 2 </s>) ® ( f f ) ( ^ > < / s > 2 ) def. 6f 
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=Pr(</s> I <s>2) ® Pr(</s>|<s></s>) lem. 6 

=Pr(</s> | <s>2) <8> Pr(</s> | <s></s>) eqs. (20), (22, case 1) 

Case lb: w = 4><p (this means that the trigram <s> 2</s> is not in ^(L) , which 
in turn entails that the trigram a < s x / s > will also not be present in ^(.C)). 
Dg will decompose <s>2 (fxp </s>2 into 

(<s>2a, <S>24>) • (a<s>a, (F>) • (a2</s>, </s>) • (a</s>2 , </s>) 

whose first projection is also in U3 fl 15 3. 

y3(<s>2 a • a <s> a • a2 </s> • a </s>2) 

=V3(<s>2 a) ® ¥3(0: <s> a) ® ^ ( a 2 </s>) ® y3(a </s>2) closure 
=?ij'R(<s>2a) ® y^R(<s>a) ® ?\(</s>) ® ?£° (< /s> 2 ) def. 30 
= (a(<s>2) ® a(<s>) ® Pr(</s>)) ® Pr(</s>|</s>) lem. 9, lem. 6 
=Pr(</s>|<s>2) ®Pr(</s>|</s>) eq. (22, case 3) 

=Pr(</s>|<s>2) ® (I ® Pr(</s>|</s>)) neutr. element of ® 

=Pr(</s>|<s>2) ® Pr(</s>|<sx/s>) eqs. (9), (22, case 2) 

Induction step: Assume, the induction hypothesis holds for strings w\ —<s>2 

w' </s>2 with 4 (=2(iV—1)) <i <k. We show that it also holds for k + 1. 
For the proof, there are two possible cases concerning the history of lUfc+i:13 

1. wf = vj"wk_1 or w\ = w"wk~ 1 <j> Wk~- the history is present. Here 
we have three subcases, depending on in which distribution we successfully 
process Wk+1: 

a) = WiWk+i: trigrams 
b) = wfywk+i'- bigrams 
c) wk+1 = Wi4>4>Wk+v unigrams 

2. w\ = w"wk-1 4><j> Wk: the history is not present, since Wk was processed 
(after reading two occurrences of <j)) in the unigram distribution. Here we have 
two subcases to consider, which can only occur after case lc) above or 2b) 
below: 

a) wk+1 = lOj-1 4>4> wkwk+i: bigrams (superdistribution) 
b) = luf -1 <j)<t> Wk <t> Wk+i: unigrams 

In the following, we give proofs for the 5 subcases mentioned above. 
13 Remark: With respect to the back-off navigator in Figure 11, this distinction is reflected in 

the particular state the navigator is after having processed In the first case, this state is 0, 
while it is 9 in the second. In the general case of an iV-gram navigator, there will be N — 1 such 
states, and in turn N — 1 main cases to consider. 
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1. a) Dt maps Wk+1 to wk_1, which is also in T>3. 

Uwkkt\) 

=V%D(wkk±{) def. 30 

=Pr(i0fc+i J) lem. 6 

=PrHH-i|™]fc-i) eq. (22, case 1) 

b) D3 maps <j>wk+1 to wk-1a • awk+1, which is also in S3. 

Tziw^a-aw^1) 

=y3(wk_1a) ® y3(awl+l) def. of closure 

=yC3R(Wk-ia)®y2D(™kk+1) def. 30 
=a(wk_1) ® Pr(ii;fc+i|ti;fc) lem. 9, lem. 6 

=Pr(iyfc+i eq. (22, case 2) 

- c) D3 maps <f><t>wk+1 to wk_la-awkCt-a2wk+\. This string is not in ®3, but 
is a prefix of one of its strings, namely wk_1a • awka • a2wk+i • awk+1. 
The "missing" suffix awk+1 will be covered in case 2a) or 2b), which are 
the only possible cases following lc). 

%(wk-ia ' awkOi • a2wk+1) 
—y3{wk-ia) ®y3(<xwkOt) <8> y3(a2wk+1) def. of closure 
=r3'R(wkk_ia) ® r2'R(wka) ® yUwk+i) def. 30 
=a(wk_1) ® a(wk) ® Pr(u;fe+i) lem. 9, lem. 6 
=Pr(iufc+i|^_1) eq. (22, case 3) 

2. The following subcases cover the "missing" suffix of case lc) above. 

a) D3 maps wk+\ to awk+1. 

r3(awk+1) 

=y3(awk+1) def. of closure 

=<J>c2'D(wk+1) def. 30 

=Pr(iLife+i |tiijt) lem. 6 
=1 ® Pr(iWfc+i eq. (9, case 2) 

=Pr(zwfc+i|ttijt_:1) eq. (22, case 2) 

b) maps 4>wk+1 to awka • a2wk+1. 

%(awka • a2wk+i) 
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=^3(awka) ®^3(c2Wk+i) def. of closure 
=T^R{wka)®?l{wk + x) def. 30 
=a(wk) ®Pr(wk+i) lem. 9, lem. 6 
= 1 ® a(wk) <8> Pi(wk+i) eq. (9, case 2) 
=Pr(wfc+i lit;^!) eq. (22, case 3) 

Combining this with the induction hypothesis, we get 

fc+i 
Df M ^ ) * nli?n B3](™ki+1) = I I P ' K K - a ) • (24) 

i=N 

Note that the N — 1 sentence delimiters </s> ensure that the iV-grams a </s>N~1 

or a < /s> J V _ 1 for some a € E are always present in such that the last step 
of the computation of the decomposed back-off probability of an delimited input 
sentence will always be case la) or case 2a). • 

B Constructions 

Definition 35 (Construction of The weighted finite state transducer wrt 
a semiring 1Z is an 8-tuple {Q, E, E U {e}, 0, F, Ei U Em U Ef, 1, p) where 

Q = \J{i} 
i-0 

F = {N} 

Ei = (J {(0,0, a,'e,I)} U (J {(0,1, a, a,I)} 
A€S ASE 
JV-1 

E™ = (J |J{(t,* + l .a.a.i)} 
i=1 a€E 

Ef= U{(JV,iV,a,e,T)} 
ASE 

VqeF,p(q)= I 

Definition 36 (Construction of <B%). The weighted finite state transducer <EkN wrt 



356 Thomas Hanneforth and Kay-Michael Wiirzner 

a semiring 1Z is an 8-tuple (Q, E, E, 0, F, Em U Ek, 1, p) where 

Q = UW 
»=0 

F={N} 
N-k-l 

«=0 a€E 
TV-1 

E"= U U (J{̂ i+1-a'6'T)> 

i=N-ka 6Eb€E 
VqeF,p(q) = 1 

Definition 37 (Construction of QN)- The weighted finite state transducer SN wrt 
a semiring TZ is an 8-tuple (Q, E, E,0, F,Eo U Et U Ea U Ei, 1, p) where (using qy 

from Definition 25):14. 

9B+|E|JV-1*(Ar-i)-i-
Q= U « 

¿=0 
gv+|E|N-1-l 

F= U « 
i=Qv 

E0= |J{(0,l,a)} 
a£E 

•E*= U U {(i,(i*|S| + idx(a))-(|E|-2),a,a,T)} 
i=l aSE 

Eo= U {(¿,¿4- |X;iAr-1>a,eJT)|idx(a) -
»=?v 

mod |E|} 

iv+IEÎ -1*(AT—1) —1 
Ei= (J {(z, idx(a) + 2,a,£,î)|idx(a) = (i - qy) mod |E|} 

t=g„+|E|"-i*(iV-2) 
p(q) = l,Vq£F. 

Received 15th August 2008 
}4 |a:J denotes the floor value of a number. E.g. [2.34J = 2. 
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Max/Plus -Tree Automata 
for Termination of Term Rewriting 

Adam Koprowski* and Johannes Waldmannt 

Abstract 

We use weighted tree automata as certificates for termination of term 
rewriting systems. The weights are taken from the arctic semiring: natural 
numbers extended with - c o , with the operations "max" and "plus". In order 
to find and validate these certificates automatically, we restrict their transition 
functions to be representable by matrix operations in the semiring. The 
resulting class of weighted tree automata is called path-separated. 

This extends the matrix method for term rewriting and the arctic ma-
trix method for string rewriting. In combination with the dependency pair 
method, this allows for some conceptually simple termination proofs in cases 
where only much more involved proofs were known before. We further gener-
alize to arctic numbers "below zero": integers extended with —oo. This allows 
to treat some termination problems with symbols that require a predecessor 
semantics. 

Correctness of this approach has been formally verified in the Coq proof 
assistant and the formalization has been contributed to the CoLoR library of 
certified termination techniques. This allows formal verification of termina-
tion proofs using the arctic matrix method in combination with the depen-
dency pair transformation. This contribution brought a substantial perfor-
mance gain in the certified category of the 2008 edition of the termination 
competition. 

The method has been implemented by leading termination provers. We 
report on experiments with its implementation in one such tool, Matchbox, 
developed by the second author. 

We also show that our method can simulate a previous method of quasi-
periodic interpretations, if restricted to interpretations of slope one on unary 
signatures. 
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1 Introduction 
One method of proving termination is interpretation into a well-founded algebra. 
Polynomial interpretations (over the naturals) are a well-known example of this 
approach. Another example is the recent development of the matrix method [22,13] 
that uses linear interpretations over vectors of naturals, or equivalently, N-weighted 
automata. In [38, 37] one of the authors extended this method (for string rewriting) 
to arctic automata, i.e., on the max/plus semiring on {—oo}UN. Its implementation 
in the termination prover Matchbox [36] contributed to this prover winning the 
string rewriting division of the 2007 termination competition [31, 1]. 

The first contribution of the present work is a generalization of arctic termi-
nation to term rewriting. We use interpretations given by functions of the form 
( f i , . . . , x n ) i—> M\ • xi + ... + Mn • xn + c. Here, Xi are (column) vector vari-
ables, c is a vector and Mi , . . . , Mn are square matrices, where all entries are arctic 
numbers, and operations are understood in the arctic semiring. 

Functions of this shape compute the transition function of a weighted tree au-
tomaton [10, 9]. The vectors correspond to assignments from states to weights. 

Since the max operation is not strictly monotone in single arguments, we obtain 
monotone interpretations only for the case when all function symbols are at most 
unary, i.e., string rewriting. For symbols of higher arity, arctic interpretations 
are weakly monotone. These cannot prove termination, but only top termination, 
where rewriting steps are only applied at the root of terms. This is a restriction 
but it fits with the framework of the dependency pair, method [4] that transforms 
a termination problem to a top termination problem. 

The second contribution is a generalization from arctic naturals to arctic in-
tegers, i.e., {—oo} U Z. Arctic integers allow for example to interpret function 
symbols by the predecessor function and this matches the "intrinsic" semantics 
of some termination problems. There is previous work on polynomial interpreta-
tions with negative coefficients [19, 20], where the interpretation for predecessor 
is also expressible using ad-hoc max operations. Using arctic integers, we obtain 
verified termination proofs for 10 of the 24 rewrite systems Beerendonk/* from the 
Termination Problem Database [2] (TPDB), simulating imperative computations. 
Previously, they could only be handled by the method of Bounded Increase [17] 
and polynomial interpretations with rational coefficients [30]. 

The third contribution is that we can express quasi-periodic interpretations [39] 
of slope one, another powerful method for proving termination of rewriting, as an 
instance of arctic interpretations for unary signatures. 

The next contribution is the fact that the correctness of this method for proving 
top termination has been formally verified with the proof assistant Coq [34]. This 
extends previous work [27] and is now part of the CoLoR project [7] that gathers 
formalizations of termination techniques and employs them to certify proofs found 
by tools for automatic termination proving. This contribution was crucial in en-
abling CoLoR to win against the competing certification back-end, A3PAT [8], in 
the termination competition of 2008 [1]. 
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A method to search for arctic interpretations is implemented for the termination 
prover Matchbox. It works by transformation to a boolean satisfiability problem 
and application of a state-of-the-art SAT solver (in this case, Minisat [11]). For a 
number of problems Matchbox produced certified termination proofs, where only 
un-certified proofs were available before. Recently the arctic interpretations method 
was also implemented in AProVE [16] and TjT2 [28]. 

The paper is organized as follows. We present notation and basic facts on rewrit-
ing in Section 2 and give an introduction to proving termination of rewriting using 
the monotone algebra framework in Section 3. Then we give preliminaries on the 
arctic semiring in Section 4, and we relate the monotone algebra approach to the 
concept of weighted tree automata in Section 5. We present arctic interpretations 
for termination in Section 6, for top termination in Section 7 and the generalization 
to arctic integers in Section 8. In Section 9 we show that quasi-periodic interpreta-
tions of slope one for proving termination of string rewriting [39] are a special case 
of arctic matrix interpretations. We report on the formal verification in Section 10 
and on performance of our implementation in Section 11. We present some discus-
sion of the method, its limitations and related work in Section 12 and we conclude 
in Section 13. 

Preliminary versions of the results from this paper have been presented at the 
Workshop on Termination [37], at the Workshop on Weighted Automata [26], and 
at the Conference on Rewriting Techniques and Applications [25]. We thank the 
anonymous referees for their comments. 

2 Term Rewriting 
In this section we shortly introduce the basic notions on term rewriting. For more 
details we refer to [5]. 

Let E be a signature, that is, a set of operation symbols each having a fixed 
arity in N. For a set of variable symbols V, disjoint from E, let T(E, V) be the set 
of terms over E and V, that is, the smallest set satisfying 

• x G T (E , V) for all x G V, and 

• if the arity of / G E is n and U G T(E, V) for i = 1, . . . , n, then f(t\,... ,tn) G 
T(£,V). 

Terms are identified with finitely branching labeled trees. We denote a root of a 
term t by root(i) and root(/(ii,..., tn)) = f. By < we denote the sub-term relation 
on terms and we have t < u if t is a sub-tree of u. 

A term rewriting system (TRS) TZ over E, V is a set of pairs (I, r) G T(E, V) x 
T(E,V), for which i V and all variables in r occur in i. Pairs (i, r) are called 
rewrite rules and are usually written as i —» r. 

A TRS with all functions having arity one is called a string rewriting system 
(SRS). For SRSs it is customary to write terms as strings, so ai(a2(- • • (an(^)) • • •)) 
becomes a\02---an and x becomes e. 
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For a substitution a : V —> T(E, V) and a term t the application of a to t, 
denoted by to, is a term defined inductively as: 

• xa = a(x) for all x £ V, and 

• f(ti ,...,tn)cr = / ( i i < 7 , . . . , tna). 

For a TRS TZ the top rewrite relation ^n on T(E, V) ,is defined by t ^n u if 
and only if there is a rewrite rule t —> r £ TZ and a substitution a : V —» T(E, V) 
such that t = £a and u = ra. The rewrite relation — i s defined to be the smallest 
relation satisfying 

• if i —?tz u then t —>n u, and 

• if W — U i and tj = uj for j ^ i, then / (¿ i , . . . , i „ ) —>n / (ui , . . . ,un) for 
every / € E of arity n. 

A relation —» is terminating if it does not admit infinite descending chains 
to —y t\ —>•••, denoted as SN(^). For relations —>1,—»2, we define —>1 / —>2 by 
( — • (—>2)*- If SN(—>1 / —>2), we say that —>1 is terminating relative to —>2. 

When given as arguments to SN we will often identify TRSs with the rewrite 
relations generated by them and hence abbreviate — b y lZt0p and — b y TZ. 

Now we will shortly introduce the dependency pair method [4] — a powerful 
approach for proving termination of rewriting, used by most of the termination 
provers. 

Definition 2.1. [Dependency pairs] Let TZ be a TRS over a signature E. The 
set of defined symbols is defined as T>n — {root(Z) | I —> r £ TZ}. We extend a 
signature E to the signature E*1 by adding symbols f* for every symbol / £ T>ft. If 
t £ T(E, V) with root(i) £ V-JZ then i" denotes the term that is obtained from t by 
replacing its root symbol with root(t)K 

If I —> r £ TZ and t<r with root(i) £ T>n then the rule —> t" is a dependency 
pair of TZ. The set of all dependency pairs of TZ is denoted by DP(7£). o 

The main theorem underlying the dependency pair method is the following. 

Theorem 2.2 ([4]). Let TZ be a TRS. SN(TZ) iff SN(DP(ft)top/ft). • 

In this paper we will consider problems of termination of rewrite relations gen-
erated by some term rewriting systems. Three types of problems will be of interest: 

• Full termination: given a TRS TZ, is it terminating, i.e., does SN(TZ) hold? 

• Relative termination: given two TRSs TZ, S, does TZ terminate relative to S, 
i.e., does SN(ft/<S) hold? 

• Relative top termination: given two TRSs TZ, S does TZ terminate relative to 
S if we allow only top reductions in TZ, i.e., does SN(7^top/lS) hold? 
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Note that termination is a special case of relative termination as SN(7£) 
SN(7?./0), hence we will present results for relative termination only as they are 
immediately applicable for the full termination case. Relative top termination 
is of special interest due to its close relation with the dependency pair method, 
established in Theorem 2.2. 

We will illustrate some term rewriting notions on an example. 

Example 2.3. Consider the following three rules TRS TZ, AG01/#3.41 from the 
TPDB [2], over the signature £ = {0,p,s, fac, times}: 

p(s(x)) x 
fac(0) -> s(0) 

fac(s(x)) —»times(s(a:), fac(p(s(a;)))) 

This TRS represents computation of the factorial function (without the rules for 
addition and multiplication) with natural numbers represented with zero (0), suc-
cessor (s) and predecessor (p) and the factorial function (fac) expressed using mul-
tiplication (times). 

We have the following reduction sequence (with the redex at every step under-
lined): 

fac(s(s(0))) times(s(s(0)), fac(p(s(s(0))))) —>n 

times(s(s(0)),fac(s(0))) times(s(s(0)), times(s(0),fac(p(s(0))))) — 

times(s(s(0)), times(s(0),fac(O))) times(s(s(0)),times(s(0),s(0))) 

calculating that factorial of two equals 2 x (1 x 1). We also have two defined symbols, 
T>n = {p, fac}, extended signature E® = E U {p", fac"} and two dependency pairs: 

fac'(s(z)) fac"(p(s(a:))) 

fac«(s(s)) -»p"(s(®)) 

We will prove termination of this example in the following section. <1 

3 Monotone Algebras 
We will now introduce the definitions and results of monotone algebras, following 
the presentation of [13]. 

Definition 3.1. [Monotonicity] Let A be a non-empty set. An operation [/] : 
A x • • • x A —> A is monotone with respect to a binary relation —> on A if for all 
o i , . . . , aj, a[,... an e A with a* —> a[ we have 

[ /](ai, . . . ,ai , . . . ,an) -»• [/](ai,... . . . ,o„) o 

Definition 3.2. [S-algebra] A T.-algebra, (A, {JA}/es) consists of a non-empty set 
A together with a map [/A] • An —> A for every / S S, where n is the arity of / . o 
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Definition 3.3. [Weakly monotone E-algebra] Let TZ be a TRS over a signature 
E. A well-founded weakly monotone T,-algebra is a quadruple A = (A, {/A}/SE, >, 
>) such that: 

• (A, { / A } / 6 E ) is a E-algebra, 

• all algebra operations are weakly monotone, i.e., monotone with respect to > 

• > is a well-founded relation on A, and 

• relations > and > are compatible, that is: > > C > o r > > C > . 

An extended monotone H-algebra (A, {/A}fez, >, is a weakly monotone E-
algebra (A, {/A}/e£> in which moreover for every / € E the operation [/] is 
strictly monotone, i.e., monotone with respect to >. o 

Definition 3.4. For a weakly monotone E-algebra A = (A, {/A}/eEi >, we 
extend the order > on A to an order > a on terms, as 

t >a U Va:V-»/l : [í]a > Ma 

> is extended to >Q in a similar way. o 

Now we present a slight variant of the main theorem from [13], for proving 
relative (top)-termination with monotone algebras: 

Theorem 3.5. Let TZ,TZ',S,S' be TRSs over a signature E. 

(a) Let (A, [-],>,^) be an extended monotone algebra such that; [C] > a [r] for 
every rule t r e TI U S and [Í] > a [r] for every rule I r G TZ' U S'. Then 
SN(TZ/S) implies SN(TZ U TZ'/S U S'). 

(b) Let (A, [•],>, >) be a weakly monotone algebra such that: [¿] > a [r] for every 
rule £-yre TZUS and [¿] >Q [r] for every rule I r € TZ'. Then SN(^top/<S) 
implies SN(7̂ top WR-'top/S)- 1=1 

We will illustrate the application of this theorem on a simple example using the 
matrix interpretation method [13]. 

Example 3.6. Consider the TRS from Example 2.3. We will show how Theo-
rem 3.5a can be applied to this TRS in order to simplify the related termination 
problem. 

For that we first need to choose a suitable monotone algebra. For the domain 
A we take vectors over N of length 2 with the following orders: 

(ui,u2)>(vi,v2) U-Í > vi A u2 > v2 

iui,u2) > (vi,v2) til > Vi Au2 > v2 
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Compatibility of those orders and well-foundedness of > are immediate. For in-
terpretations we take linear functions over this domain, so an n-ary symbol f is 
interpreted by: 

where xi,..., xn, c 6 N2 and Mi,.:., Mn G N2x2. So an interpretation of a symbol 
of arity n is given by n square matrices Mi,..., Mn of size 2 x 2 and one constant 
vector c of dimension 2. Such interpretations are always weakly monotone. We want 
to use Theorem 3.5a so we need an extended monotone algebra which requires strict 
monotonicity. For that we need some restrictions and it is easy to see that it can 
be guaranteed by requiring Mj[ 1,1] > 0 for 1 < i < n. 

Now our goal is to prove termination of the given TRS and we will do that by 
applying Theorem 3.5a instantiated with the extended monotone algebra that we 
just introduced. We recall that termination is a special case of relative termination 
so we will apply this theorem with S = S' = 0. We need to find interpretations 
for all / € E. Typically this is done automatically by dedicated tools — we will 
address this issue in Section 11. One of such tools, TPA [24], applied on this TRS 
generated the following interpretations: 

Note that the lack of the constant vector c in some of the above interpretations 
indicates that this constant is the zero vector (0,0). 

Let us compute interpretations of the left and right hand side of the second rule 

So using our order on vectors we obtain [fac(0)] > [s(0)]. In a similar way 
we compute interpretations for the remaining rules. Note that the fact that we 
restricted ourselves to linear functions means that their composition is linear too 
and hence all the interpretations that we obtain are of the same shape as in Equa-
tion (1). 

[f(fi,.. .,£„)] = Mixi + . . . + Mnxn + c (1) 

fac(0) s(0). 
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[times(s(x),fac(p(s(x))))]= ( j [s(x)\ + ^ [fec(p(8(x)))] = (J J) x 

For both of the rules it is easy to see that regardless of the assignment to the 
vector x we always obtain that the interpretation of the left hand side is bigger or 
equal than that of the right hand side of a rule. 

All in all we apply Theorem 3.5a with 

V, = { p(s(x)) —• x, fac(s(x)) —> times(s(:r), fac(p(s(:r)))) } 
-R! = { fac(O) -» s(0) } 

S = S' = 0 

This allows us to remove the second rule and conclude termination of the whole 
system from termination of 1Z only, which is easy to show, for instance, with the 
standard method of polynomial interpretations in combination with the dependency 
pair method. <1 

4 The Arctic Semiring 
A commutative semiring [18] consists of a carrier D, two designated elements 
do,d\ G D and two binary operations ©,<8> on D, called semiring addition and 
semiring multiplication, respectively, such that both (D,do,®) and (D,di,<3>) are 
commutative monoids and multiplication distributes over addition: Vx,y,zeD '• x ® 
{y © z) = (x ® y)@(x® z). 

One example of a semiring are the natural numbers with the standard operations 
© = + and <g> = *. We will need the arctic semiring (also called the max/plus 
algebra) [15] with carrier A^ = {—oo} U N, where semiring addition is the max 
operation with neutral element —oo and semiring multiplication is the standard 
plus operation with neutral element 0, so: 

x@y = y if x = —oo, £ <g>y = — oo if x = — oo or y = — oo, 
x®y = x if y = —oo, x®y = x + y otherwise, 
x © y = max(x, y) otherwise. 

We also consider these operations for arctic numbers below zero (i.e., arctic inte-
gers), that is, on the carrier Az = {—oo} U Z. 

For any semiring D, we can consider the space of linear functions (square ma-
trices) on n-dimensional vectors over D. These functions (matrices) again form a 
semiring (though a non-commutative one), and indeed we write © and ® for its 
operations as well. 

A semiring is ordered [14] by > if > is a partial order compatible with the 
operations: VX)!,i2 : x > y ==> x(Bz > y®z and Vx,y,z '• y => x®z > y®z. 
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The standard semiring of natural numbers is ordered by the standard > relation. 
The semiring of arctic naturals and arctic integers is ordered by >, being the 
reflexive closure of > defined a s . . . > l > 0 > — 1 > . . . > —oo. Note that standard 
integers with standard operations form a semiring but it is not ordered in this sense, 
as we have for instance 1 > 0 but 1 * (—1) = —1^0 = 0* (—1). 

We remark that > is the "natural" ordering for the arctic semiring, in the 
following sense: x > y x = x © y. Since arctic addition is idempotent, some 
properties of > follow easily, like the one presented below. 

Lemma 4.1. For arctic integers 01,02,61,62, if ai > 02 A 61 > 62, then ai © 61 > 
a2 ® 62 and ai <g> 61 > a2 <S> b2. • 

Arctic addition (i.e., the max operation) is not strictly monotone in single 
arguments: we have, e.g., 5 > 3 but 5 © 6 = 6 ^ 6 = 3 © 6. It is, however, "half 
strict" in the following sense: a strict increase in both arguments simultaneously 
gives a strict increase in the result, i.e., ai > 61 and a2 > b2 implies ai©02 > 6i©62. 
There is one exception: arctic addition is obviously strict if one argument is arctic 
zero, i.e., —00. This is the motivation for introducing the following relation: 

Below we present some of its properties needed later: 

Lemma 4.2. For arctic integers a,a\,a2,b\,b2, 

1. if ai » a2 A 61 » 62, then a\ © 61 » a2 © b2. 

2. if ai » a2 A bi > b2, then ai ® 61 » a2 <g> b2. 

3. if 61 62, then a <g> 61 a ® b2. 

Proof. By simple case analysis (whether an element is —00 or not) and some prop-
erties of addition and max operations over integers. • 

Note that properties 2 and 3 in the above lemma would not hold if we were to 
replace with >. 

An arctic natural number a £ An is called finite if a ^ —00. An arctic integer 
a £ Az is called positive if a > 0 (that excludes —00 and negative numbers). 

Lemma 4.3. Let m, n € Apj and a, 6 £ Az, then: 

1. if m is finite and n arbitrary, then m © n is finite. 

2. if a is positive and 6 arbitrary, then a © 6 is positive. 

3. if m and n are finite, then m ® n is finite. 

Proof. Direct computation. • 

a > 6 (a > 6) V (a = b = -00) 
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By analogy to linear algebra over (N, +, •), we consider sequences (vectors) and 
rectangular arrays (matrices) of arctic numbers. Sequences Ad form a semimodule 
over A, the elements of which we call arctic vectors. Operations in the semimodule 
are ® : Ad x Ad —» A defined by component-wise addition and component-wise 
multiplication by a scalar value ® : A x Ad —» Ad. Then, arctic matrices represent 
linear functions from vectors to vectors: An arctic matrix M maps a (column) 
vector x to a (column) vector M ® x and this mapping is linear: M ®(x ®y) = 
M ® x ® M ®y. 

We can combine those linear functions (matrices) in the usual way, and we re-
use symbols © and ® for matrix addition and matrix multiplication. Square arctic 
matrices form a non-commutative semiring with these operations. E.g. the 3 x 3 
identity matrix is (0 -oo —oo\ 

-co 0 —oo 
—oo —oo 0 J 

We will be interested in linear functions over arctic vectors of the following 
shape: 

Definition 4.4. Let A be an arctic domain (so either arctic naturals AN or arc-
tic integers Az). An (n-ary) arctic linear function (over A) (with linear factors 
Mi,..., Mn and an absolute part c) is a function of the following shape: 

= Mi®xi © ... © Mn®xn © c 

So an arctic linear function over column vectors xi,..., xn G Ad is described by a 
column vector c € Ad and square matrices M\,..., Mn e Adxd. o 

Note that for brevity from now on we will omit the semiring multiplication sign 
® and use the following notation for arctic linear functions: 

f(xi ,...,£„) = Mixi © ... © Mnxn © c 

Example 4.5. Consider a linear function: 

Evaluation of this function on some exemplary arguments yields: 

«(T)-(4.)>-(I :~)(TM~O°° T) ( -LMTMT) 
<3 

5 Weighted Tree Automata 
In this section we instantiate the monotone algebra framework with the initial 
algebraic semantics of weighted tree automata of a certain shape. This .allows to 
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put the matrix method (Example 3.6) into perspective, and it also is the basis for 
the generalization to arctic matrices (following sections). 

A weighted tree automaton [10, 9] is a finite-state device that computes a map-
ping from trees over some signature into some semiring. This computational model 
is obtained from classical (Boolean) automata by assigning weights to transitions. 

Formally, a £>-weighted tree automaton is a tuple A — (D, Q, E, 5, F) where D 
is a semiring, Q is a finite set of states, E is a ranked signature, 8 is a transition 
function that assigns to any /c-ary symbol / £ E& a function 5f : Qk xQ —» D and 
F is a mapping Q —> D. The idea is that . . . ,qk,q) gives the weight of the 
transition from (qi,...,qk) to q, and F(q) gives the weight of the final state q. 

We use the following tree automaton as an ongoing example for this section. 
This example is related to the matrix interpretation shown in Example 3.6, in a 
way that will be made precise later. 

Example 5.1. For the signature E = {0/0,p/l ,s / l , fac/l ,times/2} (from Ex-
ample 2.3), a N-weighted tree automaton with states Q = {a, b, c} is given by: 

(0) So(b) = 2,5o(c) = 1, 

(p) 6p(a, a) = 5p(a, b) = 5p(c, c) = 1, 
(s) Ss(a, a) = 5s(b, a) = 1, 5s(a, b) = Ss(b, b) = 3, Ss(c, c) = 1, 

(fac) S{ac(a,a) = 1, 5{ac{b,a) = 5{ac(b,b) = Siac(c,b) = 2, ¿fac(c,c) = 1, 

(times) ¿times(a,c,a) = 1, Stimes{c,b,a) = 2, ¿times(c, c, c) = 1, 

F(a) = 1, and all other transitions have weight 0. <1 
For any tree t = f(ti,... ,tk) over E, and q e Q, denote by Aq{t) the weight 

that A assigns to t in state q: 

Aqil) = • • •' Qk, q) • Agi (fx) •... • Aqk (tk) I Qi,..., qk, q G Q} 

and the total weight A(t) is Eí^í? ) • Aq(t) \ q e Q } . 
Example 5.2. (continued) We find Ao(0) = 0,Ab(0) = 2,AC(0) = 1, since the 
symbol 0 is miliary and thus Ag(0) = S0(q)- Then, for example, A¡,(s(0)) = Ss(a, b) • 
Aa(0) + <J8(M) • Ab(0) + (5s(c,b) • Ac(0) = 3- 0 + 3- 2 + 0- l = 6. < 

This is called initial algebra semantics of a tree automaton. Indeed, the au-
tomaton is a E-algebra where the carrier set consists of weight vectors, indexed by 
states. Let V = (Q —> D) be the set of such vectors. Then for each /c-ary symbol / , 
the transition 8j computes a function [¿/] : Vk —> V by [(5/](wi,... ,vk) = w where 

wg = '^2{Sf(q1,...,qk,q)-Vilg1 •... • vk,Qk \qi,...,qk tQ}-

Example 5.3. (continued) For the unary fac symbol, we have the unary function 

[fac] : V1 -> V : (ui,a, vi.i,, i>i,c) (vi,a + 2vi¿, 2u1)6 + 2uliC, ui,c). 

Since 0 is a nullary symbol, its interpretation [0] is of type Vo —» V, that is, it takes 
an empty argument list and produces a vector [0] — (0,2,1). <1 
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By distributivity in the semiring, each function [5/] is multilinear (linear in each 
argument): 

[öf}{. . . ,Vi-i,Vi + v'i:vi+u. . .) . 
= [5/](. . . , Vi-1 ,Vi, Vi+1 ,...) + [£/](..., Vi-1, v'i, vi+1,. . .). 

For a given tree automaton A over £, the collection {[<$/] | / G £} constitutes 
an algebra with carrier V. Therefore, interpretations of function symbols [(5/] can 
be lifted to interpretations of terms. 

Example 5.4. (continued) In the algebra of the automaton: 

[fac(O)] = (0 + 2-2, 2 -2 + 2-1, 1) = (4,6,1). <1 

It is convenient to think of elements of V as column vectors, and F as a row 
vector. Then A(t) is the dot product F • (Ai(t),..., A|Q|( Í)) t. 

Example 5.5. (continued) 4(fac(0)) = (1,0,0) • (4,6,1)T = 4. < 

With these preparations, we can apply the monotone algebra approach for prov-
ing termination of term rewriting, where the algebra is given by a finite weighted 
tree automaton. 

In order to obtain a method that can be automated easily, we restrict the shape 
of the automata transitions, so that the interpretation of each function symbol is a 
sum of linear functions in single arguments, and an absolute part, cf. Equation 1. 

Definition 5.6. A weighted tree automaton A = (D,Q,T,,5,F) is called path-
separated with initial state i G Q if for each fc-ary transition with non-zero weight 
we have that 

• at most one of the initial k arguments is ^ i: 

Sf{qi,---,Qk,q) ^ 0 3<il < j < k : qj ± i. 

• if the target is i, then all sources are i, and the weight is unit: 

őf(qi,..., qk,i) = (ií q-í = ... = qk = i then 1 else 0). o 

Example 5.7. (continued) The given automaton is path-separated, with ¿ = cas 
the initial state. <1 

Proposition 5.8. The following conditions are equivalent for a weighted tree au-
tomaton A = (£>, Q, E, 5, F): 

• A is path-separated with initial state i, 

• each action of [¿/] has the following form: 

[5F\{YI,...,VK) MA • VJ + . . . + MK • VK + A, 

where Mj are square matrices of dimension |Q| x |Q|, with all entries in row 
i and in column i are zero; and a is a vector, with entry one at position i. 
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Proof. Let A be path-separated with an initial state i. For any / E St, we 
have a[q\ = Sf(i,... ,i,q), if none of the first k arguments is ^ i, and Mj[q,p] = 
5f(i,... ,i,p,i,... ,i,q) where p is the single non-z state among the first k arguments. 
By the path-separation restriction, these cases cover all possible transitions. • 

/1 2 0\ /0\ 
Example 5.9. (continued) [fac](€0 = (0 2 0 I w + I 2 I . < 

\0 0 0/ W 
Under these conditions, for each t we have Ai(t) = 1. So we drop the entry at 

i in a, and also each row i and each column i in Mj. Then by Proposition 5.8, .a 
path-separated tree automaton corresponds to a matrix interpretation of shape (1) 
and vice-versa. 

Example 5.10. (continued) [fac](-w) = ^q 2) ^ ( 2 ) ' ^ 

We call these tree automata path-separated because their semantics can be 
computed as the sum of matrix products along all paths of the input, and the 
values along different paths do not influence each other. 

Here, a path is a sequence of function symbols with directions. Formally, for 
any term t = / ( i i , . . . , w e define 

paths(i) = {/0} U {fi op | 1 < i < k,p e paths(ij)}. 

This is a mapping from 7~(E) to nonempty sequences of pairs of symbols and 
numbers, with a pair (f,i) denoted by /¿; actually to a subset of -Ps = (Ex 
N> o)*(Ex{0}) . 

Example 5.11. 

paths(times(0, fac(0))) = {timeso, timesj o Oo, times2 o fac0, times2 o faci o 0o}- <1 

For a path-separated tree automaton A = (D, Q, E, <5, F) and each fc-ary symbol 
/ , where 5f is as in (1), define a mapping [•] from paths in P-£ to vectors by [/0] = c 
and [fi op] = Mi • [p]. Then it follows from distributivity of addition (of vectors) 
over multiplication (with matrices) that for each term t, 

A(t) = ^ { F - [ p ] I p e paths(i)}. 

This illustrates why we call these automata path-separated. 
We briefly comment on the effect of the path-separation restriction. Consider 

a signature with a binary symbol g. A matrix interpretation of dimension one 
interprets g with a function (2:1,0:2) h-> mi^i + 7722X2 + a. This corresponds to a 
path-separated N-weighted automaton with just two states, one of which being the 
initial state. 

The general form of a transition function of a tree automaton with two states, 
one of them initial, is (a:i,X2) m ^ x ^ + TOIXI 4- 7712X2 + a. The "77112X1X2" 
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component cannot be part of a path-separated tree automaton's transition function. 
We really lose expressiveness here, e.g., the tree automaton's transition (zi, x2) > 
X\X2 cannot be expressed by matrix interpretations, even with additional states, 
since .it grows faster (doubly exponential) than any matrix-representable function 
(exponential). 

On!the other hand, if the signature contains no symbols of arity > 1, then each 
tree automaton has an equivalent path-separated automaton (of size \Q\ + 1, since 
in general we need to add the initial state). 

6 Mill Arctic Termination 
In this section, we instantiate the monotone algebra approach for proving termina-
tion of rewriting by using algebras defined by path-separated arctic tree automata. 

The algebra domain consists of vectors of arctic naturals, A^. Every / € £ will 
be interpreted by an arctic linear function (Definition 4.4) and we will refer to such 
interpretations as arctic T,-interpretations. 

•We define orders on arctic vectors and matrices by taking a point-wise extension 
of the orders and > introduced in Section 4. We will use the same notation, i.e., 
~3> and >, for those lifted orders. Now we take the vector extension of and > as, 
respectively, the strict and non-strict order of the algebra. Note that they are com-
patible, i.e., » • > C However with this choice we do not get well-foundedness 
of the strict order as —oo — oo. Therefore we will restrict first components of 
vectors to finite elements (i.e., elements different from — oo, as introduced before 
Lemma 4.3). Effectively our algebra becomes (N x {//i}/eE, 3>, >). 

We will consider arctic linear functions over the domain of our algebra, so we 
must.make sure that evaluation of those functions stays within the domain, i.e., that 
the first vector component is finite. The following definition and lemma address 
this issue. 

Definition 6.1. An n-ary arctic linear function 

f(xi,. ..,£„) = M\Xi © ... © Mnxn © c 

over.-AN;is called somewhere finite if: 

• c [l] is finite, or 

• '-Mi[ 1,1] is finite for some 1 < i < n. o 

Lemma 6.2. Let / be an n-ary arctic linear function over AN, X\,... ,xn £ N x 
and v = f (xi , . . . , xn). If / is somewhere finite then w[l] is finite. 

Proof. 
/ (x i , . . . , f n ) [ l ] = (Mifi)[l] © . . . © (M„fn)[l] © c[l] (2) 

Since f is somewhere finite we have: 
• c [1] is finite, or 
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• for some 1 < i < n, Mi\ 1,1] is finite but then (MjXj)[l] = Mj[ 1, l]ij[l] © . . .© 
Mi[l,d\xi\d\, which is finite by Lemma 4.3, as M,[ 1,1] is finite. 

In either case one of the summands in Equation 2 is finite, making the whole 
expression finite by Lemma 4.3. • 

To apply the monotone algebra theorem, Theorem 3.5, we will need to compare 
arctic linear functions, i.e., we will need some properties ensuring that, for arbitrary 
arguments, one arctic function always gives a vector that is greater (or greater 
equal) than the result of application of some other arctic functions to the same 
arguments. This is addressed in the following lemma, which is the arctic counter-
part of the absolute positiveness criterion used for polynomial interpretations [23]. 

Definition 6.3. Let / , g be arctic linear functions over A: 

f(xi,...,xn) - Mix!©...© Mnxn@c 

g(xi,...,xn) = iVififfi...© Nnxn®d 

We will say that / is greater (resp. greater equal) than g, notation / g (resp. 
/ >A 9) iff: 

• d (resp. c>d) and 

• Vi <i<n : Mi~» Ni (resp. Mi > Ni). o 

We will justify the above definition in Lemma 6.5, but first we need an auxiliary 
result: 

Lemma 6.4. Let M,N £ Adxd and x, y £ Ad. 

1. If M » N and x > y then MS » Ny. 

2. If M > N and x > y then Mx > Ny. 

Proof. Immediate using Lemma 4.1 and the first two properties of Lemma 4.2. • 

Lemma 6.5. Let f,g be arctic linear functions over A and let xi,... ,xn be arbi-
trary vectors. 

1. If / » a g then f{xi,...,xn) g(xi,...,xn). 

2- If / >A 9 then / ( x i , . . . , x n ) > g(x I , . . . , F „ ) . 
Proof. We will prove only the first case — the other one is analogous. 

1 xn) — M\XX© ... © Mnxnffi c 

g(x i,..., xn) - Nixi © ...© Nnxn © d 

We have c » d and Vi<j<n : Mi Ni as / » A 9 and hence Mjfj » NiXi by 
Lemma 6.4. So every vector summand of the evaluation of / is related by 3> with 
a corresponding summand of g and we conclude by Lemma 4.1. • 
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Clearly arctic linear functions are weakly monotone (because so is the max 
operation, i.e., arctic addition) and we establish this property in the following 
lemma. 

Lemma 6.6. Every arctic linear function / over A is monotone with respect to >. 

Proof. Let xi>x\. We have: 

f(xi,...,xi,...,xn) = MiXi®. ..@MiXi®...@Mnxn® c 
f(xi,..., f[,..., xn).= Mxxi®... © M^ © ... ® Mnxn © c 

All the summands are equal except for the one corresponding to the i'th argument, 
where we have Mji;* > MjX- by Lemma 6.4 and we conclude 

f(xi, .... Xi, ... , Xn) > f(xi, . . . , Xj, ..., xn) 

by Lemma 4.1. • 

However, to obtain an extended weakly monotone algebra, and prove full ter-
mination using it, we need strict monotonicity. As remarked in Section 4, arctic 
addition is not strictly monotone. Hence functions introduced in Definition 4.4 are 
strictly monotone only if the © operation is essentially redundant; for instance it is 
immediately lost for functions of more than one argument. This essentially restricts 
our method to unary rewriting [35]; a proper extension of string rewriting. As such, 
it had been described in [37] and had been applied by Matchbox in the 2007 ter-
mination competition. The following theorem provides a termination criterion for 
such systems. In the next section we will look at top termination problems, which 
will allow us to lift this restriction and consider arbitrary TRSs. 

Theorem 6.7. Let TZ,TZ',S,S' be TRSs over a signature £ and [•] be an arctic 
£-interpretation over AN. If: 

• every function symbol has arity at most 1, 

• every constant a € £ is interpreted by [a] = c with c[l] finite, 

• every unary symbol s £ £ is interpreted by [s(x)] = M®x with M[ 1,1] finite, 

• >A M for every rule £ r £ 1ZU S, 

• [¿] » A M for every rule £->r £ll'US' and 

• SN(7Z/S). 

Then SN^UTe' /SuS')-

Proof. By Theorem 3.5a. Note that, by Lemma 6.5, [i] >A [r] (resp. [i] M) 
implies [i] > a [r] (resp. [£] [r]). So we only need to show that (N x A^ - 1 , [•], 2>, 
>) is an extended monotone algebra. The order 3> is well-founded on this domain 
as with every decrease we get a decrease in the first component of the vector, which 
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belongs to N. Arctic functions are always weakly monotone by Lemma 6.6 and it 
is an easy observation that, due to the first three premises of this theorem, the 
interpretations that we allow here are strictly monotone. Finally we stay within 
the domain by Lemma 6.2 as the interpretation functions [/] that we restrict to are 
somewhere finite (again by the first three assumptions). • 

We now present an example illustrating this theorem. 

Example 6.8. The relative termination problem SRS/Waldmann/r2 is 

{cac-»e, aca —> a4 / e —> c4} 

In the 2007 termination competition, it had been solved by Jambox [12] via "self 
labeling" and by Matchbox via essentially the following arctic proof. 

We use the following arctic interpretation 
/0 0 -oo\ / 0 -oo —oo\ 

[a](a;) = I 0 0 —oo I x [c](x) = I —oo —oo 0 ] x 
\1 1 0 / \-oo 0 -oo/ 

It is immediate that [c] is a permutation (it swaps the second and third compo-
nent of its argument vector), so [c]2 = [c]4 is the identity and we have [e] = [c]4. A 
short calculation shows that [a] is idempotent, so [a] = [a4]. We compute 

/0 -oo 0\ /1 1 0\ /0 0 —oo\ 
[cac](£)= 1 0 1 \x [aca](f) = ( 1 1 O x [a4](x) = 0 0 -oo x 

\0 -oo 0/ \2 2 1/ \1 1 0 / 

therefore [cac](x) >a [e](x) and [ac a](x) » a [a4](a;). Note also that all the top 
left entries of matrices are finite. This allows us to remove the strict rule aca. —̂  a 
using Theorem 6.7. The remaining strict rule can be removed by counting letters 
a. < 

7 Arctic Top Termination 
As explained earlier, there are no strictly monotone, linear arctic functions of more 
than one argument. Therefore in this section we change our attention from full 
termination to top termination problems, where only weak monotonicity is required. 
This is not a very severe restriction as it fits with the widely used dependency pair 
method that replaces a full termination problem with an equivalent top termination 
problem, as remarked in Section 2. 

The monotone algebra that we are going to use is the same as in Section 6, 
i.e., (N x A^ -1, { / A } / ££ , >)• However now for proving top termination we will 
employ the second part of Theorem 3.5, so we only need a monotone algebra, 
instead of an extended monotone algebra. This allows us to consider arbitrary 
TRSs, as without the requirement of strict monotonicity we can allow arctic linear 
functions of more than one argument. The following theorem allows us to prove 
top termination in this setting: 
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Theorem 7.1. Let TZ,TZ',S be TRSs over a signature £ and [•] be an arctic £-
interpretation over AN- If: 

• for each / £ £, [/] is somewhere finite, 

• > A M f°r every rule ¿ - » r S K U i , 

• [l] [r] for every rule t —• r S 1Z' and 

• SN(7^op/S). 

Then SN(fttoP U Tl[op/S). . 

Proof. By Theorem 3.5b. By the same argument as in Theorem 6.7, (N x 1, [•], 
>) is a weakly monotone algebra. So we only need to show that the evalua-

tion stays within the algebra domain which follows from Lemma 6.2 and the first 
assumption. • 

We will illustrate this theorem on an example now. 

Example 7.2. Consider the rewriting system secret05/tpa2: 

(l.)f(s(x),y)-W(p(s(x)-y),p(y-s(x))) (3) p(s( l ) ) - .Z 
(2) f(x,s(y)) —> f(p(x — s(j/)), p(s(y) — x)) (4) x - O ^ x 

(5) s(x) - s(y) -> x - y 

It was solved in the 2007 competition by AProVE [16] using narrowing followed by 
polynomial interpretations and by TjT2 [28] using polynomial interpretations with 
negative constants. In 2008 both provers used arctic interpretations to solve this 
problem. 

After the dependency pair transformation, 9 dependency pairs can be removed 
using polynomial interpretations leaving the essential two dependency pairs: 

(1») f»(s(x), y) - f»(p(s(a:) - y),p(y - s(x))) 
(2") f'(x,s(j/)) —> f"(p(x — s(y)),p(s(y) — x)) 

So now, according to the dependency pair Theorem 2.2, we need to consider 
the relative top termination problem SN(7£top/«S), where 1Z = {(l"), (2")} and 
S = {(1), (2), (3), (4), (5)}. For that consider the following arctic interpretation 

»-«-(S T)*«(T T M o ) w«I-(S ~Z)*®(-Z) 

mm - (S (J V® ( _ l ) [sW] - (» ! ) « ( » ) 
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which is somewhere finite and removes the second dependency pair: 

[fW(y))] = ~°°V©( 2 1 )y®( 2 ) i V»//J — 00/ y —OO —00 J J 

It is also weakly compatible with all the rules. The remaining dependency pair can 
be removed by a standard matrix interpretation of dimension two. <1 

8 . . . Below Zero 
In this section we will boldly go below zero: we extend the domain of matrix and 
vector coefficients from AN (arctic naturals) to Az (arctic integers). This allows to 
interpret some function symbols by the "predecessor" function i k i - 1 , and so 
represents their "intrinsic" semantics. This is the same motivation as the one for 
allowing polynomial interpretations with negative coefficients [19, 20]. 

We need to be careful though, as the relation on vectors of arctic integers 
is not well-founded. We will solve it in a similar way as in Sections 6 and 7, 
that is by restricting the first component of the vectors in our domain to nat-
ural numbers, which restores well-foundedness. So we are working in the (N x 
A z - 1 , { / A } / 6 E , » , > ) algebra. 

Again we need to make sure that we do not go outside of the domain, i.e., 
the first vector component needs to be positive. This is ensured by the following 
property: 

Definition 8.1. An n-ary arctic linear function 

f(xi,...,xn) = Mi®xi © ...@Mn®xn © c 

over Az is called absolutely positive if c [1] is positive. o 

Lemma 8.2. Let / be an n-ary arctic linear function over Az, x\,...,xn £ N x 
A^ -1 and v = f(xi,... ,xn). If / is absolutely positive then u[l] £ N. 

Proof. Immediate, as c [1] positive by the definition of absolutely positive function. 

w[ l ]= / ( f i l . . . , f n ) [ l ] = max(?[l], . . .)>0 • 

We can now present the main theorem of this section. 

Theorem 8.3. Let TZ,TZ',S be TRSs over a signature E and [•] be an arctic 
interpretation over Az- If: 

• for each / £ E, [/] is absolutely positive, 

• K ] > A [r] for every rule I r £ TZ U <S, 
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• M ^A M for every rule £ —» r € TZ' and 

• SN(7?.t0p/5). 

Then SN(72.top U 1Z'top/S). 

Proof. By Theorem 3.5b. We proved that (N x >) is a weakly 
monotone algebra in Theorem 7.1 — now the domain is extended from arctic nat-
urals to arctic integers but all the properties carry over easily. The fact that we 
respect the algebra domain is ensured by the first property and Lemma 8.2. • 

We now illustrate this theorem on an example. 

Example 8.4. Let us consider the Beerendonk/2.trs TRS from the TPDB [2], con-
sisting of the following six rules: 

cond(true, x, y) -> cond(gr(x, y),p(x), s(y)) gr(s(x), s(y)) -> gr(x,y) 
gr(0, x) —> false gr(s(x),0) —> true 

p(0) -> 0 p(s(x)) - x 

This is a straightforward encoding of the following imperative program 

while x > y do (x, y) := (x-1, y+1); 

with x, y € N. and the predecessor of 1, defined on this domain, so 
0 — 1 = 0. This program is obviously terminating, however its encoding as the 
above TRS posed a serious challenge for the tools in the termination competition. 
We will now show, a termination proof for this system using an arctic below zero 
interpretation, 

We begin by applying the dependency pair method and obtaining four depen-
dency pairs, three of which can be easily removed (for instance using standard 
matrix or polynomial interpretations) leaving the following single dependency pair: 

cond'(true,z,i/) condB(gr(x,j/),p(x),s(y)) 

Now, consider the following arctic matrix interpretation of dimension 1, so a de-
generated case where arctic vectors and matrices simply become arctic numbers: 

[conds(x,y, z)} = (0)f © (0 )y® ( -oo) f© (0) [0] = (0) 
[cond(x, y, z)\ = (0)x © (2)j/© (-oo)z © (0) [false] = (0) 

[gr(x,$] = ( - l ) f © (-00)y® (0) [true] = (2) 
[p(f)] = ( - l ) f © (0) [s(x)} = (2)x © (3) 

This interpretation is absolutely positive, gives us a decrease for the dependency 
pair 

[cond3(true, x, y)} = ( 0)x © ( -00 )y ® (2) 

[cond"(gr(x, y),p(x), s(y))] = ( - l ) x © (-oo)y © (0) 

and all the original rules axe oriented weakly. < 
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Remark 8.5. We discuss a variant which looks more liberal, but turns out to 
be equivalent to the one given here. We cannot allow Z x for the domain, 
because it is not well-founded for So we can restrict the admissible range of 
negative values by some bound c > —oo, and use the domain Az>c x A^ -1 where 
Az>c := {b £ Az | b > c}. Now to ensure that we stay within this domain we 
would demand that the first position of the constant vector of every interpretation 
is greater or equal than c. 

Note however that this c can be fixed to 0 without any loss of generality as 
every interpretation using lower values in those positions can be "shifted" upwards. 
For any interpretation [•] and arctic number d construct an interpretation [•]' by 
[i]' := [t] ® d. This is obtained by going from [/] = Mxxi © . . . Mkxk © c to 
[/]' = Mixi © ... Mkxk © c <g> d. (A linear function with absolute part can be 
scaled by scaling the absolute part.) • 

9 Quasi-Periodic Interpretations 
Example 9.1. We consider the string rewriting system S = {bab —> a3, a3 —> b3}, 
Waldmann/jwl.srs from TPDB, as a (running) example. Termination could not be 
established automatically by any of the programs taking part in the competition 
2006. Then, Aleksey Nogin and Carl Witty produced a handwritten proof, that 
had been streamlined by Hans Zantema, and it had later been generalized into the 
method of quasi-periodic interpretations [39]. < 

We recall the basic notion: 

Definition 9.2. A function / : N —» N is called quasi-periodic of slope s and period 
p if for all x, we have f(x + p) = f(x) + sp. o 

In [39] it had been shown that quasi-periodic interpretations can prove termi-
nation of some rewrite systems for which no other proof was known (at the time). 
We now relate this approach to arctic matrix interpretations, by showing that they 
can simulate quasi-periodic interpretations of slope one for unary signatures. 

Example 9.3. The dependency pairs transformation reduces the termination prob-
lem for S from Example 9.1 to the top termination problem SN(i?top/5), with 

R — {Bab —> Aaa, Aaa —> Bbb} 

where all length-decreasing dependency pairs have already been removed. The 
proof given in [39] uses these quasi-periodic functions of period 3: 

X 0 1 2 3 4 5 
[a](x) = [A](x) 
[b}(x) = [B](x) 

1 2 3 
0 3 3 

4 5 6 
3 6 6 
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which induce these interpretations of the words in the rules: 

X 0 1 2 3 4 5 
[Bab\(x) = [bab){x) 
(>laa](x) = [aaa](x) 
[Bbb] (x) = [666] (x) 

3 6 6 
3 4 5 
0 3 3 

6 9 9 
6 7 8 
3 6 6 

We infer that for all x, [6a6](x) > [aaa](x) and [aaa](x) > [bbb](x), so there can not 
be infinitely many top applications of Aaa —> Bbb. This is the essential step in the 
termination proof. < 

We give an encoding from weakly monotonic quasi-periodic functions of slope 
one to arctic matrices and show that it is a morphism (it maps composition to 
multiplication) and that it respects weak and strong compatibility with a string 
rewriting system. 

9.1 Basic translation 
Throughout, we fix the natural number p > 0 to be the period. 

Then each x 6 N has a unique representation x = qp + r with 0 <r <p. 
We define a mapping 

av 
av (—oo,..., —oo, q — oo,...,— oo) 

at position T 

In this section, vector indices start from 0 (not 1). 

Example 9.4. For period p = 3, we have av(0) = (0, —oo, —oo) and av(4) = 
(—oo, 1,—oo). < 

For a quasi-periodic function / we define its associated arctic matrix [/] (of size 
p x p) by giving its column vectors: 

[/] = ( av(/(0))T . . . &v(f(p — 1))T ) 

Example 9.5. For period p = 3, consider the quasi-periodic functions 

with associated matrices 

[/] = 

X 0 1 2 3 4 5 
№ 1 2 4 4 5 7 
9(x) 3 3 5 6 6 8 

—oo —oo\ ( 1 ' 1 
—oo 1 [9] = 

-
- 0 0 —oo 

0 — 0 0 / V-- 0 0 —oo 

-00 1 




