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Distinguishing Experiments for Timed 
Nondeterministic Finite State Machines* 

Khaled El-Fakihf Maxim Gromovf Natalia Shabaldinaf 
and Nina Yevtushenko* 

Abstract 

The problem of constructing distinguishing experiments is a fundamental 
problem in the area of finite state machines (FSMs), especially for FSM-based 
testing. In this paper, the problem is studied for timed nondeterministic FSMs 
(TFSMs) with output delays. Given two TFSMs, we derive the TFSM inter-
section of these machines and show that the machines can be distinguished 
using an appropriate (untimed) FSM abstraction of the TFSM intersection. 
The FSM abstraction is derived by constructing appropriate partitions for 
the input and output time domains of the TFSM intersection. Using the 
obtained abstraction, a traditional FSM-based preset algorithm can be used 
for deriving a separating sequence for the given TFSMs if these machines are 
separable. Moreover, as sometimes two non-separable TFSMs can still be 
distinguished by an adaptive experiment, based on the FSM abstraction we 
present an algorithm for deriving an r-distinguishing TFSM that represents 
a corresponding adaptive experiment. 

Keywords: nondeterministic untimed and timed finite state machines, pre-
set and adaptive distinguishing experiments, state identification 

1 Introduction 
Finite State Machines (FSMs) are widely used for modeling systems in many ap-
plication domains. For instance, (Mealy) FSMs are used as the underlying models 
for formal description techniques such as SDL and UML State Diagrams. In many 
cases, the behavior of a given machine can be considered as a mapping of input se-
quences (sequences of input symbols) to corresponding output sequences (sequences 

*This work was partially supported by AUS FRG-III and Russian ministry of Science and High 
Education (contract No. 14.B37.21.0622) 

1 American University of Sharjah, Department of Computer Science and Engineering, PO Box 
26666, Sharjah, UAE, Tel: (971) 06 5152492, Mobile: (971) 050 3073091 Fax: (971) 6 515 2979, 
El-mail: kelfakih9aus.edu 

1 Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia, E-mail: gromovOsibmail. com, 
NataliaMailBoxSmail.ru, ninayevtushenkoQyahoo.com 



206 Khaled El-Fakih et a1. 

of output symbols). A machine is deterministic if it produces a single output se-
quence in response to an input sequence and a machine is nondeterministic if it can 
produce several output sequences.in response to an input sequence. Nondetermin-
ism may occur due to various reasons such as limited controllability, abstraction 
level, modeling concurrency and real time systems, etc. [1,7,21]. 

When distinguishing FSMs, we have a machine under test about which we lack 
some information, and we want to deduce this information by conducting experi-
ments on this machine. An experiment consists of applying input sequences to the 
machine, observing corresponding output responses and drawing some conclusions 
about the machine under test. An experiment is simple if a single input sequence 
is applied to a machine under experiment; otherwise, the experiment is referred 
to as a multi experiment. An experiment is preset if input sequences are known 
before starting the experiment and an experiment is adaptive if at each step of the 
experiment the next input is selected based on previously observed outputs. Distin-
guishing experiments with FSMs axe widely used as a basis for solving fundamental 
testing problems such as the fault detection (or conformance testing) and/or the 
machine identification problems. For related surveys and algorithms on FSM-based 
distinguishing experiments, the reader may refer to [2-4,9,11-13]. 

Unlike deterministic FSMs, for nondeterministic FSMs, there are a number of 
distinguishability relations, other than the equivalence relation, such as the non-
reduction, separability, and r-distinguishability relations [1,16,20]. Two machines 
can be distinguished by a simple preset experiment if these machines are separable. 
The separability relation is defined by Starke in [20] and studied in [1] and [19]. Two 
nondeterministic machines are separable if there is an input sequence, called a sepa-
rating sequence, such that the sets of output responses of the machines to the input 
sequence axe disjoint. Thus, two separable machines can be distinguished by ap-
plying a separating sequence only once. Two complete non-separable machines still 
can be distinguished by a simple adaptive experiment if they are r-distinguishable, 
i.e., if they have no common complete reduction [17,23]. A machine is a reduction 
of another machine if its behavior is contained in the behavior of the other machine. 

Currently, models of many systems such as telecommunication systems, plant 
and traffic controllers etc, take into account time constraints and correspondingly 
timed FSMs are getting a lot of attention. Merayo et al. [5,14,15] consider a 
timed possibly nondeterministic FSM model where time constrains limit a time 
elapsed when an output has to be produced after an input has been applied to 
the FSM. Hierons et al. [8] introduce a timed stochastic FSM model. Gromov et 
al. [6] consider a timed complete nondeterministic FSM model where transitions are 
guarded by time constraints over a single clock. The clock is reset at the execution of 
a transition. In this paper, we consider a model similar to that in [6], yet extended to 
deal with non-zero output delays sometimes called output timeouts. The considered 
model can be regarded as a temporal extension of FSMs where a transition is fired 
only if a given input is given in time (bounded by given lower and upper bounds) 
that is counted from the moment when a current state is reached. Firing a transition 
also takes time between the reception of the input and the emission of the output, 
i.e., the output delay represents the transition execution/processing time. In the 
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considered model, the identification of input and output time domains of a state can 
be done independent of time domains of other states, and thus, there are technical 
benefits in using the considered model for distinguishability and testing. 

Given two possibly nondeterministic timed FSMs, we study the problem of 
deriving an input sequence that distinguishes these machines. At the first step, 
the TFSM intersection of the given two machines is derived from which an FSM 
abstraction is then constructed. It is shown that distinguishing experiments for the 
given timed FSMs can be determined based on the constructed FSM abstraction. In 
particular, we show how a traditional preset FSM-based method can be adapted for 
the FSM abstraction of the intersection when deriving a separating sequence for two 
given timed FSMs. In addition, using the FSM abstraction we present an algorithm 
for deriving an r-distinguishing TFSM that represents an adaptive distinguishing 
experiment for the given two TFSMs if the machines are r-distinguishable. 

This paper extends a related preliminary work in [6] to TFSMs which can have 
non-zero output delays. Moreover, the presented work provides a simpler strat-
egy for deriving distinguishing experiments. In particular, in [6] two TFSMs are 
distinguished based on their intersection using more complex algorithms that in-
herit ideas from traditional untimed FSM methods mixed with the derivation of 
appropriate partitions of input domains for handling time constraints. The strat-
egy proposed in this paper is based on a corresponding (untimed) FSM abstraction 
of the intersection of two TFSMs and this allows simpler adaptation of existing 
traditional FSM-based methods for distinguishing TFSMs. The methods presented 
in this paper and in [6] produce experiments of the same length as the FSM ab-
straction has the same number of states as the TFSM intersection of the given two 
machines. 

We note that another possible strategy for distinguishing two given TFSMs us-
ing algorithms for untimed machines is to first build an FSM abstraction for each 
of the given machines, derive the intersection of the obtained FSM abstractions, 
and afterwards, tune traditional FSM-based methods for deriving distinguishing 
sequences and their corresponding timed sequences using the obtained FSM inter-
section and the given TFSMs. However, in this case, the number of (abstract) 
inputs and outputs of the FSM abstractions and their intersection are larger than 
those derived using our proposed strategy. This is due to the fact that in this case 
the derivation time domains of inputs and outputs has to be carried out considering 
all the states of the given machines whereas it is sufficient to consider, as in our 
approach, pairs of states that appear in the intersection of the given machines. 

Finally, it is worth stating that in [10] some work has been presented for dis-
tinguishing Timed Input/Output Automata (TIOA) with multiple clocks. Given a 
TIOA and a clock model, the product of the given automaton with the clock model 
is transformed into a so-called Bisimulation Quotient Graph, and afterwards, the 
obtained graph is transformed into a special possibly nondeterministic (untimed) 
Mealy machine which is actually a tranducer over sequences of abstract inputs and 
outputs written as regular languages. However, a distinguishing sequence derived 
from the obtained tranducer in [10] cannot be applied to distinguishing states of the 
original timed machine since the regular languages (corresponding to sequences of 
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abstract outputs) labeling transitions of the obtained Mealy machine may intersect, 
and thus, corresponding states of the initial automaton cannot be separated. In ad-
dition, the obtained Mealy machine can be non-observable, and thus the traditional 
FSM method given in [1] cited in [10] cannot be applied. 

This paper is organized as follows. Section 2 includes preliminaries and Sec-
tion 3 presents the FSM abstraction and distinguishability algorithms. Section 4 
concludes the paper. 

2 Preliminaries 
An FSM S 1 is a 5-tuple (S, 7,O, As, s) , where S, I and O are finite sets of states, 
inputs and outputs, respectively, s is the initial state and XsQSxIxOxS is a 
transition relation. A timed FSM (TFSM) S or simply a timed machine is a 5-tuple 
(S, 7 , 0 , As, s) with the transition relation As C S x (7 x II) x (O x N) x S, where II is 
the set of input time guards and N is the set of output time guards for representing 
output delays. Each guard g G II = \min, max) (each guard / G K = ¡min,max]) 
where min is a nonnegative integer, while max is a nonnegative integer or the 
infinity, min ^ max, and [g {(, [} while ] G {),]}• From the practical point of 
view, we assume that all the output guards have a finite upper bound B. For every 
pair (s, i) G S x 7, we use G(s,t) to denote the collection of input time guards g such 
that there is a transition (s, (i, g), {o, / ) , s') G As and for every pair (s, o) G S x O 
we use G(Si0) to denote the collection of output time guards / such that there is a 
transition (s, (i, g), (o, / ) , s') G As-

The behavior of a TFSM S can be described as follows. If (s, (i, g), (o, f ) , s ' ) G 
G As, where g = [mi ,m 2 ] and / = [ni,ra2], we say that TFSM S being at state 
s accepts input i applied at time t G [mi, m2] measured from the moment TFSM 
S entered state s; the clock then is set to zero, and S responds with (or produces) 
output o after t' time units, t' G \n\, n2], and time is set to zero as S enters state 
s'. 

A TFSM S is observable if for each two transitions 
(s, (i, [mi,m2]) ,(o, [ni ,n 2]) ,s ' ) G As and (s, (i, ¡m'^m^)), (o, ¡n'^n^)),^') G As 
it holds that if [mi,m2] D [m],m'2) 0 and [n i ,n 2 ] n [n'1:n^] ^ 0 , then o' = o 
implies s' = s". In this paper, we consider only observable TFSMs as similar to 
untimed FSMs, for every unobservable timed machine there exists an observable 
timed machine that has the same behavior. 

TFSM S is (time) deterministic if for each two transitions 
(s, (i, [mi,m2]) ,(o, [ni ,n 2]) ,s ' ) G As, (s, (i, [m'j, mí¡~|), (o', [ni, s") G As, 
[mi ,m 2 ] fl \m[, m'2] = 0 . Otherwise, S is (time) nondeterministic. 

TFSM S is complete if each input is a defined at each state and for each pair 
(s,i) G S x I of S, it holds that the union of all g G G(Sii) equals [0, oo); otherwise, 
the machine is called partial. A partial machine can be completed by adding appro-
priate self-loop transitions. In particular, for every time domain g where an input i 

xIf there is no ambiguity we will use the notation S for an FSM and S for its set of states. 
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at state s is not defined, a self-loop transition (s, (i, g), (o, [0, oo)), s) is added. Con-
sequently, in this paper, we study distinguishing experiments with nondeterministic 
complete TFSMs. 

Given TFSMs S = (S, J, O, As, s) and P = (P, I, O, \P,p), the intersection SnP 
is the largest connected submachine of the TFSM (S x P, I, O, Asnp, {s,p)) where 
((s,p),(i, [7711,7712]), (o, [ni, n2~|), (s',p')) £ Agnp if and only if there are transitions 
(s,{i, \m'1,m'2~\), (o, \n[,n'2]),s') £ A5 and (p, (i, \m'{,m%]},{o, \n'{,n%]),p') £ AP 
such that \M[,TN'2] D [ m " , m j ] = [mi,7712] and [ni,712] fl [n'/, n^'] = [711,772]. As 
a running example, consider TFSM S (Figure 1) with the initial state 1 (hereafter 
denoted Si) and the TFSM S with the initial state 3 (hereafter denoted S3). In 
the figures, a transition (s, (i, [mi, m2]), (o, [ni, 772]), s') is depicted as s (column), 
i (row), and corresponding entry ( [mi, m2]), s ' /(o, [711, 772]). The intersection Q = 
= Si fl S3 is shown in Figure 2. 

s 1 2 3 4 

¿1 
(í^2),l/(0l,í<3> 
(í ̂  3),2/(02,0 ̂  7 < 5) 
(t>2),3/(oi,0<t<5) 

(t^2),l/<Ol,0<t<5) 
(2<7^3),2/(oi,0^7<5) 
(7 > 3),3/(e>i,0 < 7 < 5) 

(7 < 2),3/(oi,í > 2) 
(7 > 3),l/(oi,0 ̂  7 < 5) 
(2<t^3),2/(oi,t<2) 
(2 < í ^ 3), 4/(02,0 ^ í < 5) 

(i < 3), 3/(02,0 ^ í < 5) 
(7 > 3), l/(oi,0 ^ 7 < 5) 

»2 
(7<2),l/(oi,0<7<5) 
(i>2),3/(oi,0<t<5) 

(7<l),l/(o2,0<7<5) 
(1 < 7 < 2),2/(02,0 s; 7 < 5) 
(7 »2), 4/(02,0̂  7< 5) 

(7^2),3/(oi,0<7<5) 
(t>2),l/(Ol,0^i<5) 

(t<l),3/(o2,0<t<5> 
(7 > 1), 2/(02,0 ^ í < 5) 

Figure 1: TFSM S, TFSM Si is S with initial state 1, and TFSM S3 is S with 
initial state 3 

Sin S3 (1,3) (3,2) (2,4) (2,2) 

•1 
(íí 2),(l,3)/(oi,2<7<3) 
(2<t<3),(3,2)/(o1,7<2) 
(l>3),(ä,l)/{o,,04t<5) 
(2 < t 4 3), (2, 4)/(o2,0 í t < 5) 

(í í 2), (3,l)/(oi,0 <i < 5) 
(2 < í < 3),(2,2)/(oi,í < 2) 
(t > 3), (l,3>/(oi,0< í < 5) 

(ií 2),(l,l)/(oi,0<t<5) 
(2<t<3),(2,2)/(o1,0íi<5) 
(t>3),(3,8)/(oi,0<t<5) 

>2 
(t<2),(l,3)/(m,0<t<5) 
(í>2),(3,l)/(oi,0íí<5) 

(í « 1), <1,3>/(o2,0 < ! <5) 
(1 < i <2),(2,2)/(O2,0«Í < 5) 
(t>2),(4,2)/(o2,0<t<5) 

(t « l),(l,l)/(o2,0< t < 5) 
(1 < í < 2), (2,2)/(t>2,0 < f < 5) 
(t>2),(4,4)/(o2,0ít<c») 

Figure 2: The intersection TFSM Q = Si n S 3 

Given a TFSM S, a pair ( i , t ) / {o , t ' ) , where i £ I, o £ O, t and t' are non-
negative rational numbers, is a timed input-output pair where (i, t) is a timed input 
that states that input i is applied at time t measured from the moment when the 
machine entered its current state and (o, t') is a timed output that states that output 
o is produced at time t' measured from the moment when the timed input (i, t) has 
been applied. 

Consider a TFSM S and a timed input-output pair {i,t)/{o,t'). Given a 
state s, there is a clocked transition {s,{i,t),(o,t'),s') in S if As has a transi-
tion {s,{i,g),{o,f),s'} £ As such that teg and t' € / . A timed input-output 
pair ( i , t ) / ( o , t ' ) is a timed input-output pair at state s if there exists a clocked 
transition (s, (i,t), (o,t'),s') in S. 
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A sequence of timed input-output pairs is a timed trace. A timed trace a/¡3 = 
= ( i i , i i ) / ( o i , i i ) , . . . , (ik, tk)/(ok,t'k) is a timed trace at state s if there exist states 
si , . . . ,sfc+i such that Si = s and for each j — 1 there exists a clocked 
transition (sj, ( i j , t j ) , {Oj,t'j), Sj+1) in S. 

By the above definition, given a timed trace a/¡3 = 
= (U,ti)/(oi, t'i), • • •, ( i f c , a t state s, we assume that the input 
sequence a is applied to the TFSM in the following way. For each j, 1 ^ j ^ k, 
the input ij is applied at the time instance tj measured from the time when the 
TFSM entered the state Sj, the clock starts advancing from 0 and the output Oj is 
produced at time tj. 

A timed input sequence a is defined at state s if and only if at state s there 
exists a timed trace a ¡[3 for some timed output sequence ¡3. 

A TFSM S = (S, I, O, As, s) is a submachine of TFSM P = ( P , I , 0 , X P , p ) if 
S C P, s = p, and each clocked transition ( s , ( i , t ) , ( o , t ' ) , s ' ) of S is a clocked 
transition of P. 

Two complete TFSMs S and P are separable if there exists a timed input se-
quence for both TFSMs such that the sets of timed output responses to this input 
sequence do not intersect and in addition, S and P are r-distinguishable if for each 
complete TFSM M it holds that there exists a timed input sequence a such that 
the set of output responses of M to a is not a subset of responses of S to a or of 
responses of P to a . 

3 Distinguishing Timed Finite State Machines 
Given two TFSMs S and P, in order to distinguish these machines, as usual, we 
first derive the TFSM intersection Q — S fl P. Given the intersection Q, an ab-
stract FSM A(Q) is then constructed for which we can apply the traditional FSM 
distinguishability algorithms when deriving distinguishing sequences over abstract 
inputs; the distinguishing sequences are then transformed into timed sequences over 
timed inputs using the established correspondence between Q and A(Q). 

3.1 Deriving an FSM Abstraction 
Given TFSM Q = 5 n P, an FSM abstraction A{Q) of Q is derived as follows. For 
each input i 6 I of Q, the collection Gi of time guards over all states with an input 
i and the corresponding partition IT over [0, oo) is constructed. There is an input 
(i, g) in the abstraction if and only if g £ lit. More precisely, given input i 6 I, 
let G = {h = 0 > 32) • • • ijm }i ja < ja+1, a = 1 , . . . , m - 1, be the finite ordered set 
of boundaries of guards of collection Gi. The finite set lit is defined as the (finite) 
set {{ji, j2), • • •, (jm-i,jm), ( jm, oo), {ji}, {j2}, { j ' 3 } , • • • {jm}}, i.e., the set H i has 
singletons all boundaries and all (infinite) domains with consecutive boundaries of 
the set G. For each state q S Q and each gj € IT, the abstraction A(Q) has a 
transition from state q under abstract input (i, gj) if and only if it holds that there 
exists a transition {q, (i, g), (o, / ) , q') € XQ such that g contains gj. For our running 
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example, of TFSM Q in Figure 2 equals {{0}, (0,2), {2}, (2,3), {3}, (3, oo)} and 
n¿2 = {{0}, (0,1), {1}, (1,2), {2}, (2, oo)}. 

Proposition 1. Given a TFSM Q = ( Q , I , 0 , \ q , 4 ) , an input i £ I and a set lit 
of time domains for the input i, let g £ IL and t\,t2 £ g. For each q £ Q, there 
is a clocked transition {q,(i,ti),(o,f),q') £ AQ if and only if there is a clocked 
transition (q, {i,t2}, {o,f),q') 6 AQ. 

Similarly, the partition n o of output guards is derived. For each output o £ O of 
Q, the collection Fa based on the collections F(g,0) o v e r all states where the output 
o can be produced is derived. An output o can be produced at time instances t £ f 
if and only if there exists a state q and pair (i,g) such that (q, (i,g), ( o , f ) , q ' ) £ 
£ Aq. Let now F = ( j i = 0, j2, • • •,jm}, ja < ja+1, a = 1 , . . . ,ra - 1, be the finite 
ordered set of boundaries of guards of the collection F0. Based on F the (finite) set 
n o = {O'l, j2), (jm-l,jm), ( jm , B), {jl}, {j2}, {j3>, • • • , {jrn}} is built, i.e., the 
set n o has singletons for all boundaries and all (infinite) domains with consecutive 
boundaries of the set F where the output o can be produced. In our running 
example, II0l of TFSM Q (Figure 2) equals {{0}, (0,2), {2}, (2,3), {3}, (3,5)} and 
n o 2 = {{0},(0,5)}. 

Proposition 2. Given a TFSM Q = {Q, I, O, Aq, q), an output o £ O and a set n o 
of output domains for the output o, let f £ Tl0 and t',t" £ f . For each q £ Q and 
a timed input (i,t), either TFSM Q cannot produce both timed outputs (o,t') and 
(o,t") at state q under (i,t) or there is a clocked transition (q, {i,t), (o,t'),q') £ AQ 
if and only if there is a clocked transition (q, (i, t), (o, t"), q') £ AQ. 

Given TFSMs S and P, the TFSM intersection Q = (Q,I,0,XQ,q) of 
S and P, and partitions Ilj and n o , a corresponding abstract FSM A(Q) — 
= (Qi IA{Q)I OA(Q)> ^A, Q) of the intersection can be derived as follows. The FSM 
A(Q) has the same set of states and the same initial state as Q, and A((?) has 
(abstract) inputs IA(Q) = {(«, g) : i £ I, g £ Ilj}, (abstract) outputs OA(Q) = 
= {(o,f) : o £ 0,f £ n o } and transition relation A^; there is a transition 
(q, (i, g), (o, f),q') in A A if and only if there is a transition (q, {i, g'), (o, f'),q') £ A Q 
such that g C g' and / C / ' . Considering the running example, abstract inputs of 
A((?) are the pairs from {ii} x Ilj, and {¿2} x IIj2 and abstract outputs are the 
pairs from {01} x n o i and {o2} x II02. A fragment of A(Q) for the TFSM Q in 
Figure 2 is shown in Figure 3. 

Based on the above construction, the following statements can be established. 

Proposition 3. The following statements hold. 

1. (a) If TFSMs S and P are observable then TFSM Q = SnP is observable, 
(b) TFSM Q is observable if and only if FSM A{Q) is observable. 

2. Given a state q of TFSM Q, a timed input-output pair (i,t)/(o,t') is defined 
at state q if and only if there exists a transition (q,{i,g),(o,f),q') in the 
abstract FSM such that t £ g and t' £ f . Moreover, given a defined (abstract) 
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input-output pair (i,g)/(o,f) at state q of the FSM A(Q), h,t2 G g, t[, t'2 G f , 
there is a clocked transition {q, (i, ti), (o, t[), q') G XQ if and only if there is a 
clocked transition (q, (i,t2), (o,t'2),q') G AQ. 

3. Given an abstract input-output sequence (i\,gi)/(oi, f f ) . . . (ik,9k)/(°k, f k ) 
at state q of the FSM A(Q), each timed input-output sequence 
(h,ti)/(oi,1fl)...(ik,tk)/{ok,lfk) such that tj G gj, t'j G f j , j = l,...,k, 
is a timed input-output sequence at state q of TFSM Q, and vice versa, given 
a timed trace {i\,ti)/{oi,t[)... (ik,tk)/(ok,t'k) at state q of TFSM Q there 
always exists a defined input sequence (ii,gi)/(oi, f\)... (ik,9k)/(ok, f k ) ad-
state q of the FSM A(Q) such that tj G gj, t'j G f j , j = 1 , . . . ,k. 

4- TFSM Q has a timed trace (ii,ti)/(oi,t[) •. .(ik, tk)/(ok, t'k) at state q if and 
only if the FSM A(Q) has a trace (¿i, </i)/(oi, f i ) . . . (ik,9k)/(ok-, fk) such that 
tj G gj, t'j G f j , j = 1 , . . . , k, at state s. 

Proof. 1. (a) If TFSMs S and P are observable, then for every two timed transi-
tions (s,(i,t),(o,t'),s') G As, (s,{i,t),{o,t'),s") G As (or (p, ( i , t ) , { o , t ' ) , p ' ) G 
Ap, (p, (i,t), (o,t'),p") G Ap) it holds that s' = s" (or correspondingly p' = 
= p"). Thus, there are no timed transitions ((s,p), (i,t), (o,t'), (s ' ,p ' ) ) G AQ 
and ((s,p), (i,t), {,o,t'), (s" ,p") ) G AQ such that (s ' ,p ' ) ± (s",p") . 

(b) TFSM Q is observable if and only if for every two timed transitions 
(q,(i,t),(o,t'),q') G AQ and (q, (i,t), (o,t'),q") G A<j it holds that q' = q". 
Correspondingly, by construction of the FSM A((?), for each defined input 
(i,g) at state q of the FSM A(Q) it holds that there axe no two transitions 
(Q, (i, 9), (o, f),q') € A* and (q, (i, g'), (o, /'), q") G A4 such that g D g' ± 0 , 
f n f ' ^ 0 while q' £ q", i.e., FSM A(Q) is observable if and only if TFSM 
Q is observable. 

2. Statement 2 of the above proposition is a direct corollary to the definition of 
time domains. 

3. Statement 3 can be shown by induction on the length of a defined input 
sequence. 

4. Statement 4 is implied by the definition of the FSM /4(Q) and Statement 3. 
• 

We recall that an abstract FSM A((?) and TFSM Q have the same number 
of states, while, A(Q) has more transitions as it has more inputs. However, the 
number of transitions of an A(Q) is polynomial w.r.t. the number of transitions of 
Q as it mainly depends on the number of (abstract) inputs IA(Q) which is of order 
| / | • m where m is the maximum number of items of partitions Hj. 
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3.2 Deriving an ^distinguishing TFSM 

In order to check whether nondeterministic machines S and P can be distinguished 
by an adaptive experiment a so-called r-distinguishing machine can be used. The 
derivation of such a machine is described in [5,16] for complete untimed FSMs and 
in [6] for complete TFSMs S and P without output delays. In this paper, such a 
machine is derived based on the abstraction /4(Q) for TFSMs S and P with output 
delays. 

Similar to FSMs [5,16,17], an adaptive experiment is represented by a special 
acyclic so-called single-input output-complete TFSM. Given complete observable 
TFSMs S = (S, I, O, As, s) and P = (P,I,0,XP,p), let R = {R,I,0,XR,r) be an 
acyclic initially connected TFSM such that the set R of states has two designated 
deadlock states called rs and rp. If after the experiment the machine R reaches 
state rs then the TFSM under experiment is 5 while if the final state is rP then 
the TFSM under experiment is P. Only one timed input (i, t) is defined at each 
other state of R with all possible outputs, i.e., TFSM R represents an adaptive 
experiment with a TFSM over input alphabet I and output alphabet O. TFSM 
R is an r-distinguishing TFSM R(s,p) of S and P (or TFSM R(s,P) r-distinguishes 
TFSM S and P) if for each state (s, r) of the intersection S fl P(s,p) it holds that 
r rp and for each (p, r) of the intersection P f l P(s,p) it holds that r ^ rs-

Similar to FSMs [16], here, we define the notion of k-undefined states in order 
to derive R(S, P) using A(Q). Given (complete observable) TFSMs S and P, Q = 
S i l P , and FSM abstraction A(Q), state q = {s,p) of A(Q) is 1-undefined if there 
exists an undefined (abstract) input (i,g) at state q. Consider k > 1 and assume 
that all (k — l)-undefined states of A((?) are determined. State q = {s,p) of A(Q) is 
fc-undefined if q is (k—l)-undefined or there exists an abstract input (i, g) defined at 
state q such that for each transition (q, (i, g), (o, f),q') £ A^, each state q' is (fc — 1)-
undefined. It can be shown as in [16], that given complete observable TFSMs 5 
and P, these TMSMs are r-distinguishable iff there exists an integer k such that 
the initial state of the abstraction A(Q) is fc-undefined for some fc > 0. 

We use Algorithm 1 in order to derive an r-distinguishing TFSM for two given 
TFSMs 5 and P based on the abstract FSM A(Q) of Q = S n P. If an r-
distinguishing FSM over abstract inputs of A(Q) is derived, then the machine is 
converted to corresponding timed inputs in order to represent an r-distinguishing 
TFSM for TFSMs S and P. 

Based on the TFSM R(s,P) an adaptive experiment for distinguishing TFSMs 
S and P can be performed in the following way. Given TFSM under test, which 
is either TFSM S or P, the experiment starts at the initial state r = q of TFSM 
R(S,p)- At any state of R(s,p) ° n ly one timed input (i, t) is defined, in addition, any 
state of P(s,p) is always reached at time t = 0. Thus, when reaching a current state 
r of R(s,p) the clock advances from 0 and the only defined input (i, t) is applied to 
a TFSM under test. In response, the TFSM under test produces a timed output 
(o,t'), t' e / , and accordingly the TFSM R(s,p) moves from a current state r to 
the next state r' according to the clocked transition (r,(i,[t,t]),{o,f),r'). The 
procedure terminates when the TFSM R(s,p) reaches one of the deadlock states rs 
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Algorithm 1 Deriving an r-distinguishing TFSM of two TFSMs 

Input: Complete observable TFSMs S = (S, I, O, Xs, s) and P = {P, I, O, XP,p) 
Output: A distinguishing TFSM R(s,P) if TFSMs S and P are r-distinguishable 

l: Q := 5n P; 
2: derive the FSM abstraction 
3: R := ( R , I , 0 , X R ) , where initially XR is empty and R contains two deadlock 

states rs and rp\ 
4: k := 1; 
5: Qk '•= Q\ HQ is the set of states of TFSM Q which are pairs of states of S 

and P 
6: while (q £ Qk and the set Qk has /¡¡-undefined states) do 
7: determine all states of the set Qk which are /¡¡-undefined in A((?); 
8: for all /¡-undefined states q = (s, p) of the set Qk do 
9: if (k = = 1) then 

10: determine an abstract input (i, g) such that it is undefined at state q; 
li: else 
12: determine an abstract input (i, g) such that for each transition 

(<?> (iid) i (°) /)> Q1) € XQ, state q' is (k — l)-undefined; 
13: e n d if 
14: add state q into the set R\ 
15: for all abstract outputs (o, f ) do 
16: if there is a transition (q, (i, g), o, f , q') £ A^ t h e n //implies that k > 1 
17: add to XR the tuple {(q, (i, [t, t]}, (o, f),q'), t £ g\ 
18: else 
19: add to XR the tuple (q, (i, [i, t]), (o, / ) , rs) if for each t £ g the output 

o can be produced by S for time instances t' £ /; 
20: add to XR the tuple (q, {i, [t, t]), (o, / ) , rp) if for each t £ g the output 

o can be produced by P for time instances t' £ /; 
21: end if 
22: end for 
23: delete state q from the set Qk', 
24: end for 
25: k := k+ 1; Qk := Qk-i', 
26: end while 
27: if q & Qk then 
28: convert the tuple R = (R, I, O, XR) into a TFSM R by claiming state q as the 

initial state of the TFSM and augment R (if it is necessary) to an output-
complete TFSM by adding transitions to deadlock states; 

29: return the largest initially connected submachine of TFSM R as the TFSM 
R(S,P)\ 

30: else 
31: return TFSMs S and P are not r-distinguishable. 
32: end if 
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or rP. Correspondingly, if state rs (rP) of R(s,p) is reached then the TFSM under 
test is S (P). 

Similar to [6], it can be shown that each trace of a TFSM P(s,P) obtained in the 
above algorithm is of order |S| • |P| where S and P are the sets of states of TFSMs 
S and P, respectively and only one trace of P(s,P) is used when performing the 
experiment. In this paper, as for other distinguishing experiments, the complexity 
of an adaptive experiment is measured using the height of the experiment, i.e., the 
length of a longest trace to a deadlock state in the (acyclic) TFSM P(s,P)- As 
TFSM R(s,p) has at most |Sj • |P| states, this length, and thus, the complexity of 
an adaptive experiment, is at most |S| • |P| and this upper bound is reachable as 
this upper bound is reachable for two untimed FSMs [22]. 

Example 1. Consider the running example and TFSMs Si and S3 with the initial 
states 1 and 3, respectively. We add into R two deadlock states rs1 and rs3 with 
subscripts indicating the initial states of the machines. The intersection Q = S1 nS3 
is shown in Figure 2. The FSM abstraction A(Q) is constructed from Q by having 
the same states and splitting every transition of (? using the abstract inputs and 
outputs given above. A fragment of A(Q) for states (1,3) and (3,2) under the 
input i\ of the intersection Q is shown in Figure 3. In particular, Figure 3 includes 
the transitions at states (1,3) and (3,2) under ¿1 of Q (in Figure 2) and their 
corresponding transitions in A(Q) derived using the partitions 11^, II0l and II02 
given above. By applying Algorithm 1, initially, k = 1, the set Qi = Q includes all 

A{Q) <1,3) (3,2) 

h 

(4 = 0), (1,3)/(oi, 2 < 4 < 3); (0 < 4 < 2), (1,3)/(oi, 2 < 4 < 3) 
(4 = 2), (l,3)/(oi,2 < 4 < 3); (2 < 4 < 3), (3,2)/(r>i,4 = 2) 
(2 < 4 < 3), <3,2)/(o,, 0 < 4 < 2); (t = 3), (3,2)/<0i, 4 = 0) 
(! = 3), (3,2)/(o,,0 < 4 < 2); (4 > 3), <3, l)/(oi, 4 = 0) 
(4 > 3), <3, l)/(oi,0 < 4 < 2); (4 > 3), (3, l)/(oi, 4 = 2) 
(i > 3), <3, l)/(o,, 2 < 4 < 3); (4 > 3), (3, l)/(ou 4 = 3> 
(4 > 3),<3,l)/(oi,3 < 4 < 5); (2 < 4 < 3), (2,4)/(02,4 = 0) 
(2 < 4 < 3),(2,4)/{02,0 < 4 < 5); (4 = 3), (2,4)/<oj,i = 0) 
(4 = 3), <2,4)/{02,0 < 4 < 5) 

(4 = 0), (3, l)/(oi, 2 < 4 < 3); (4 = 0), (3, l)/(oi, 4 = 3) 
(4 = 0), (3, l)/(oi,3 < 4 < 5); (0 < 4 < 1), (3, l)/(o,,2 < 4 < 3) 
(0 < 4 < 1), (3, l)/(o,, 4 = 3); (0 < 4 < 1), (3, l)/(o,,3 < 4 < 5) 
(4 = 2), (3, l)/(oi, 2 < 4 < 3); (4 = 2), (3, l)/(o,,4 = 3) 
(4 = 2), (3, l)/(o,, 3 < 4 < 5); (2 < 4 < 3), (2,2)/(o,, 4 = 0) 
(2 < 4 < 3), (2,2)/(o,,0 < 4 < 2); (4 = 3), (2,2)/(o,,4 = 0) 
(4 = 3), (2,2)/(ox,0 < 4 < 2); (4 > 3), (1,3)/(o,, 4 = 0) 
(4 > 3), (1,3)/(o,,0 < 4 < 2); (4 > 3), (1,3)/(o,,4 = 2) 
(4 > 3),<l,3)/(oi,2 < 4 < 3); (4 > 3),(l,3)/(oi,4 = 3) 
(4 > 3), (1,3)/(o,, 3 < 4 < 5) 

Figure 3: Fragment of the abstract FSM A(Q) 

states of TFSM Q with the initial state (1,3). States 3 and 2 of state (3,2) in Qi 
are 1-r-distinguishable by abstract input (¿2,1) and states 2 and 4 of state (2,4) in 
Qi are 1-r-distinguishable by (¿1,2). Thus, we add states (3,2) and (2,4) into the 
set R, that initially contains only deadlock states and rs3 , remove these states 
from Qi, obtain Q2 as Qi \ {(3,2), (2,4)}, and add into (initially empty) AR the 
tuples 

( ( 3 , 2 ) , ( f 2 , [ l , l ] ) , ( O I , [ 0 , 0 ] ) , R S L ) , 
( ( 3 , 2 ) , ( f 2 , [ l , l ] ) , ( O l , ( 0 , 2 ) ) , R S L ) , 
( ( 3 , 2 ) , ( f 2 , [ l , l ] ) , ( 0 L , [ 2 , 2 ] ) , R S L ) , 
<(3,2), (z2, [1,1]), <oi, (2,3)>, 
«3,2), (z2) [1,1]), <01, [3,3]>,rSl>, 
( ( 3 , 2 ) , ( f 2 , [ l , l ] ) , ( 0 L , ( 3 , 5 ) ) , R S L ) , 
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and add the tuples 
(<2,4>, <«a, [2,2]>, <olf [0,0]>, rSl>, 
((2,4), (z2, [2,2]), (oi, (0,2)) ,rs1) , 
«2,4>, <z2, [2,2]>, <0l, [2,2]), rS l>, 
((2,4),<z2 , [2,2]) ,(0 l , (2,3)) ,rS l) , 
((2,4),(z2 ,[2,2]),(o1 ,[3,3]),rS l), 
<(2,4),(z2 ,[2,2]),(0 l ,(3,5)>,rS l), 
<(2,4>, (¿2, [2,2]), <o2, [0,0]),rS3>, 
((2,4),(z2 ,[2,2]),(o2 ,(0,5)),rS 3). 

Afterwards, in a second iteration of the loop, we observe that states 1 and 3 
of state (1,3) in Q2 are 2-r-distinguishable. In fact, the abstract input (¿i,3) 
when applied at state (1,3) of A(Q) reaches only states (3,2) and (2,4) which 
are both 1-undefined. Thus, we add state (1,3) into R, add into \R the tuples 
((1,3), (ij , [3,3]), <oi, [0,0]), (2,4)), ((1,3), {iu [3,3]), <0l, (0,2)), (3,2)), and add the 
tuples, ((1,3), (¿i, [3,3]), (o2, [0,0]), (2,4)), ((1,3), (zj, [3,3]), (o2, (0,5)), (3,2)). Af-
terwards by deleting (1,3), which is the initial state of /4(Q). from Q2 we stop. 
Convert the tuple R into TFSM R(slts3) with initial state (1,3) and obtain a par-
tial TFSM as shown in Figure 4. 

R(S,,S3) (1,3) (3,2) (2,4) rs, 

<'i.|3, 3]> 

<3,2)/(Ol,[0,0]> 
(3,2)/(oi,0 < t < 2) 
<2,4>/<O2i[0,0]> 
(2,4)/(O2,0 < £ < 5) 

fe [2,2]) 

i"SI/<0I, [0,0]); rs,/<oi,0 < t < 2) 
r s , / (o i , [2 ,2]>; r S l /<oi ,2<i<3> 
r S l / ( o 1 , [ 3 , 3 ]> ; r S l / ( o i , 3< t<5 ) 
rs 3 / (o2 , [0 ,0] ) ; r S 3 / (o2 ,0<t<5) 

FELL]) 

r s , /<oi , [0 ,0] ) ; r S l / (o i ,0<i<2> 
r s i /<0i , [2 ,2] ) ; r s , /<0i ,2<i<3> 
RSI/(°I, [3,3]); rs,/{oi,3 < £ < 5) 
rs3/(°2, [0,0]); rs3/(02,0 < £ < 5) 

Figure 4: A part of the TFSM P(Sl,s3) 

3.3 Deriving a Separating Sequence 
In order to derive a separating sequence for two given TFSMs S and P, in the 
following, we adapt the algorithm given in [19] to deal with the abstract FSM A(Q) 
of Q = S fl P. Correspondingly, a separating sequence (if exists) will be derived for 
TFSMs S and P with output delays. If a separating sequence over abstract inputs 
(i,g) is derived from A(Q), then the sequence is replaced by a corresponding timed 
sequence, over timed inputs (z,t), t £ g, that is a separating sequence for TFSMs 
S and P. 

Here we define the following notion used in Algorithm 2. Given state s of an 
FSM S = {S,1,0, As, s), state s' is an z-successor of state s if there exists is a 
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Algorithm 2 Deriving a Separating Sequence of Two TFSMs 

Input: Complete observable TFSMs S = (S, I, O, As, s) and P = (P, I, O, AP ,p) 
Output: A (shortest) separating sequence of TFSMs S = (S, I, O, As, s) and P = 

= (P, I, O, Ap, p) (if such a sequence exists) 
l: derive the intersection Q = S fl P; 
2: if Q is a complete TFSM t h e n 
3: the TFSMs S = (S, I, O, As, s) and P = (P, I, O, \p,p) are non-separable; 
4: end Algorithm 2; 
5: end if 
6: derive from Q = S fl P (with input and output partitions IT and n o ) , the 

abstract FSM A(Q) with abstract inputs and outputs {(«,g) : i € I,g € IT} 
and {(o,f) :oeO,f G IT,}; 

7: derive a truncated successor tree of the FSM A(Q). The root of this tree, which 
is at the 0 t h level, is the initial state (s,p) of A(Q); the nodes of the tree are 
labeled with subsets of states of A(Q). Given already derived j tree levels, 
j ^ 0, a non-leaf (intermediate) node of the j t h level labeled with a subset C 
of states of A(Q) and a abstract input (i,g), there is an outgoing edge from 
this non-leaf node labeled with (i, g) to the node with the subset of the (i, g)-
successors of states of the subset C. A current node Current, at the fcth level, 
k ^ 0, labeled with the subset C of states, is claimed as a leaf node if one of 
the following conditions holds: 

8: Rule 1: There exists an input (i,g) such that each state (s,p) of the set 
C has no (i, «^-successors in A((J); 

9: Rule 2: There exists a node at the j t h level, j < k, labeled with a subset 
R of states with the property P C C; 

10: if none of the paths of the truncated tree derived at Step 7 is terminated using 
Rule 1 then 

U: the TFSMs S = (S, I, O, As, s) and P = (P, I, O, Ap,p) are non-separable; 
12: end Algorithm 2; 
13: end if 
14: if there is a leaf node, Leaf, labeled with the subset C of states such that 

for some (abstract) input (i,g), each state of the set C has no (i, (^-successors 
t h e n 

15: select such a path with minimal length, append an input sequence that la-
bels the path with input (i,g) and transform the obtained input sequence 
replacing each abstract input of the sequence (i,h) by a timed input (i ,t), 

16: the obtained timed input sequence is a shortest separating sequence of 
TFSMs S and P; 

17: end if 

transition ( s , i , o , s ' ) in As. Generally, for a nondeterministic FSM, the set of i-
successors of state s can have several states. Given a set of states M C 5 of the 
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complete FSM S, and an input i, the set M' of states is an ¿-successor of the set 
M if M' is the union of the sets of ¿-successors over all states of the set M. 

Similar to [19] it can be shown that Algorithm 2 returns a separating sequence 
a if and only if the TFSMs S and P axe separable. The separating sequence a 
can be applied to a TFSM under experiment (S or P) and since the sets of output 
responses of TFSMs S and P do not intersect, after getting the output response to 
a the conclusion can be drawn which TFSM is under the experiment. In addition, it 
can be shown that the complexity (length of a separating sequence) is exponential 
w.r.t. to the number of states of TFSMs S and P as it happens for untimed 
FSMs [19]. The length of a separating sequence of two FSMs with n and m states 
is at most 2 m n _ 1 [19] and this upper bound is reachable, and thus, it is reachable 
for TFSMs as well. 

The above algorithm is based on deriving a successor tree using an (FSM) 
abstraction A(Q) of the intersection Q = SnP. As A(Q) can have more inputs than 
Q, we compare the above approach with another approach where a successor tree 
can be derived using Q instead [6]. In both approaches, in the worst case, each path 
p from the root node to a leaf node has to be traversed and a number o of elementary 
operations (Rule 1 and Rule 2) have to be applied at each node of a path. Let I 
be the maximum length of a path, then the complexity of the algorithm equals the 
product p • I • o. The maximal length I is the same for the two approaches and I 
is of the order 0(2mn) for TFSMs S and P with m and n states, respectively [19]. 
Further, in both approaches, Rule 1 and Rule 2 of the above algorithm have to 
be checked at each node of the derived successor tree where a node is labeled with 
the set C of states of a corresponding TFSM Q or of the abstraction FSM A(Q). 
Checking these rules using Q — S fl P is more complex since at each node for each 
input i and each subset Qkj of states at the node we have to derive the set II as 
the intersection of n(^,f) over all states q 6. Qkj while in the approach based on 
A(Q), the intersection is calculated only once when deriving A(Q). As the number 
of guards we need to intersect is proportional to the product of the finite upper 
bound of guards for input i and the number of states of the set Qkj, in the approach 
based on Q = 5 fl P, the number of calculations which have to be performed for 
deriving the intersection of guards at each node polynomially grows compared with 
the approach based on A(Q). On the other hand, the number of inputs of A(Q) 
can be larger than that of Q. If B is the maximum finite bound for a given input 
1 over all states then for each i, the number of (abstract) inputs of A(Q) can be 
2 • B times bigger than that of Q, since in A(Q) time domains for an i are derived 
based on the corresponding guards for all states of A((?). As the number p of paths 
of the successor tree exponentially depends on the number of inputs considered at 
each tree node, this implies that the complexity of the approach based on A(Q) will 
exponentially grow compared to the approach based on Q, since p is of the order 
0 ( | / | ' ) where | / | is the number of inputs of Q or A(Q), respectively. This difference 
between the two approaches can be bypassed by considering for each input i only 
guards corresponding to a given state of Q when deriving the abstraction A(Q), 
i.e., not taken into account guards under this input over other states of Q. In this 
case, it can well happen that A((?) is partially specified. The above algorithm can 
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be adapted to partial FSM A(G); however, this is not done in this paper in order to 
simplify the presentation of the algorithms and to avoid presenting more complex 
FSM related definitions that consider defined and undefined input sequences at 
states. If partially specified FSM A(Q) is used, the number p will be the same for 
both approaches. Generally, the approach based on the partial FSM abstraction 
of the intersection performs less computations than the approach based on the 
intersection Q instead. However, the best way to assess any abstraction method 
is thorough experimental evaluation with large size specifications and this could 
be the topic of another paper. It is worth mentioning that though the length of 
a separating sequence can reach length 2mn~1 (for TFSMs S and P with m and 
n states) [19]; nevertheless, experiments with various size FSM specifications show 
that this length usually does not exceed mn [18]. 

As A(G) can have more inputs than Q, here we also compare the approach given 
in this paper (Algorithm 1) based on using /4(G) with another approach [6] based 
on using G instead for deriving an adaptive distinguishing sequence (represented as 
a distinguishing machine). For both approaches, in the worst-case, the maximum 
length I of a path from the initial state of the constructed FSM R(s,p) to the 
deadlock state rs or rp is the same and is of the order 0(mn) for TFSMs S and 
P with m and n states, respectively [5]. In addition, as both approaches are based 
on deriving a submachine of a /4(G) or of Q, the number of paths p included as 
transitions in the tuples of AR in both approaches is the same, and p is of the order 
0(2mn) [22], Moreover, in the approach that is based on the intersection Q, in the 
worst case, for a given input, we have to consider all possible time domains (i,g), 
g £ n , over all states q £ Qk- As the number of guards we need to intersect when 
deriving the set n is proportional to the product of the finite upper bound of guards 
for input i and the number of states of the set Qk, the number of calculations which 
have to be performed at each step almost coincide in both approaches. However, 
unlike the algorithm based on G, the algorithm based on using A(Q) performs less 
computations at each node as the intersection of guards for each input and each 
set Qk of states will be performed only once when deriving A(Q). To the best of 
our knowledge, no experiments were conducted for deriving adaptive distinguishing 
sequences and it would be interesting to assess the length of adaptive distinguishing 
sequences in practice and to evaluate the performance of the above approaches with 
respect to large size FSM specifications. 

4 Conclusion 
In this paper, a method for distinguishing two complete possibly nondeterministic 
TFSMs is presented based on an FSM abstraction of the intersection of the two 
TFSMs. The abstraction is derived by appropriate partitioning the input and out-
put time domains. It is shown how a traditional preset FSM-based method can 
be used for deriving a separating sequence for the given TFSMs using the FSM 
abstraction. In addition, using the FSM abstraction, we present an algorithm for 
deriving an r-distinguishing TFSM that represents a simple adaptive distinguish-
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ing experiment for two given TFSMs. We compare the complexity of a proposed 
approach with that of another approach that is based directly on the intersection 
of two given TFSMs and show that in both approaches, similar to untimed FSMs, 
when distinguishing two TFSMs with m and n states, the length of a longest trace 
of a corresponding r-distinguishing machine is at most mn, while the length of a 
separating sequence is at most 2 m n _ 1 , and these upper bounds are reachable [19,22], 

As a future work, it would be interesting to investigate the possibility of adapting 
the presented work for distinguishing more than two machines as well as for a TFSM 
model with multiple clocks where the main challenge is the derivation of appropriate 
partitions of input and output time domains. In addition, it would be interesting 
to experiment and assess the performance of the proposed methods using large size 
specifications. 
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On Shuffle Ideals of General Algebras 

Ville Piirainen* 

Abstract 
We extend a word language concept called shuffle ideal to general algebras. 

For this purpose, we introduce the relation SH and show that there exists a 
natural connection between this relation and the homeomorphic embedding 
order on trees. We establish connections between shuffle ideals, monotonically 
ordered algebras and automata, and piecewise testable tree languages. 

1 Introduction and preliminaries 
This work is a part of an ongoing study on piecewise testability and related matters 
for tree languages. Piecewise testable languages and their algebraic properties 
have been approached from various directions, and offer a wide field of interesting 
notions for study from the tree language viewpoint. In addition to the ingenious 
combinatorial approach of Simon [10], there have been a few approaches with a 
more algebraic flavour, and this work is inspired most importantly by the papers 
by Straubing and Therien [12], and Henckell and Pin [5]. These works concern, of 
course, word languages, subsets of a free monoid A*, and obviously are not directly 
generalizable for tree languages, subsets of a term algebra 7s (A). However, all these 
papers contain many algebraic insights that can be considered in the tree language 
setting. We are much indebted to the work on ordered monoids in these papers, 
as well as to the related work on varieties of ordered algebras by Bloom [2], and 
Petkovic and Salehi [6]. 

The shuffle operation is a natural operation to consider for the elements of a 
free monoid. Using this operation one obtains so called shuffle ideals, which are 
subsets of a free monoid closed under the shuffle operation. As noted for example 
in [9], by considering all boolean combinations of shuffle ideals on a given free 
monoid, one obtains exactly all piecewise testable languages over that monoid. In 
fact, the shuffle, the class of piecewise testable languages, the Green's ^/-relation 
for semigroups and the class of monotonically ordered monoids are all concepts 
which are strongly connected to each other, and we shall use these connections to 
investigate the notion of shuffling for general algebras. 

The shuffle operation cannot be directly defined for any given EA-trees, since 
even the product of two trees cannot be uniquely defined in a way that would suit 
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all applications. While the operation itself does not generalize directly, the shuffle 
ideals, as languages, have direct counterparts in the tree language setting, as we 
shall see. 

After this first section of introduction and preliminaries, in the second section, 
we introduce the shuffle relation SP and the shuffle ideals, and investigate their 
basic properties. In the third section, we establish a connection between so-called 
monotonically ordered algebras and the <S?f-relation. Finally, we discuss some 
connections between the relation SP and piecewise testable tree languages. 

As a general reference on algebraic tree language theory, we recommend [11]. 
It contains most of the basic theory on which this paper is built, and also some 
discussion on the points one has to take into account when moving from word 
languages to tree languages. However, we recall here a few of the most important 
definitions and notions that we need in this paper, since some of them have various 
different versions in the literature. 

We are mainly interested in trees and their languages, and we follow the theo-
retical framework of [11] which depends heavily on universal algebra. The tree rec-
ognizers, general algebras, have a finite number of named operations, from which all 
other operations of the algebra axe composed. Moreover, the number of arguments 
of each operation is fixed. Hence, trees considered here axe terms over suitable 
alphabets, in which each node of a tree labeled with a given symbol always has a 
fixed number of children. We use the following notation. 

Definition 1.1. A ranked alphabet E is a finite set of function symbols, and for all 
m> 0, E m C E denotes the subset of symbols of rank m. A E-algebra A = (A, E) 
consists of a non-empty set A equipped with operations f A : Am —> A, for all m> 0, 
/ G E m . 

For the rest of the paper, A — (A, E) is an arbitrary given E-algebra. 
In the framework we use, the inner nodes and leafs of a tree have different 

labelings. In addition to ranked alphabets, we use leaf-alphabets, finite sets of 
symbols that axe disjoint from the ranked alphabets. We identify trees with terms 
defined in the following definition. 

Definition 1.2. For a set X, called the leaf alphabet, the set of all EX-terms 
Ts(X) is the smallest set such that X U Eo € T-^(X), and for every m > 0, 
ti,...,tm £ T E ( X ) and f £ E m , f(tu ..., tm) £ T E (X) . 

For transforming a word concept into a tree concept we need a way to regard 
words as special trees. As usual, we regard words over an alphabet A as unary 
trees equipped with a single special leaf symbol and letters of the alphabet A axe 
regarded as unary symbols of the ranked alphabet E. More precisely, let A be an 
alphabet, let X — {£} and let E = Ei = A. Let x '• A* T E (X) be the map such 
that ex = £ a id (wa)x = a(wx) f° r any a £ A and w £ A*. Obviously, x forms a 
bijective correspondence between A* and T%(X). 

For the purpose of generalizing the semigroup concept shuffle for E-algebras, 
we have chosen to follow the convention that the root of a EX-term corresponds 
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to the right end, and the leaf symbols to the left end of a word. This follows 
the usual tradition on how words and terms (trees) axe read by their respective 
ordinary automata, from left to right and from leaf to root. This convention has 
the following consequences. The right translations of semigroups correspond to 
the algebraic translations of the term algebra 7b (X) of EY-trees, while the left 
translations correspond to the endomorphisms of the same term algebra. We use 
the translations in our effort to generalize the ideas of insertion and the shuffle ideal 
for trees in Section 3. 

Definition 1.3. A unary mapp : A —> A is an elementary translation of an algebra 
A, if there exist m > 0, / G £ m , i — 1 , . . . , m, and ai,..., a j_i , Oj+i,... ,am such 
that 

p(a) = / ^ ( a i , . . . , a,_i, a, ai+1,..., am), 

for all a £ A. The set of all elementary translations of A is denoted ETr(A). 
The set of translations of A, denoted TV (A), is the smallest set which includes 
the identity map and the elementary translations, and is closed under functional 
composition. 

The translations of a term algebra lb(X) are induced by the EX-contexts, that 
is, the trees p G T^(X U {£}), where the symbol £ appears exactly once. To simplify 
notation, a context p G TE(X U {£}) and the map p : T S (X) T?(X), t p(t) it 
induces are identified. 

The concept of an ideal is common in algebra, and we introduce here a certain 
type of an ideal. We note that since we consider here general algebras with no 
additional requirements, the ideals presented here might differ from ideals defined 
for different purposes. The theory investigated here is closely related to that of 
ordered algebras, and as a reference concerning notation and points of view, we 
offer [6]. From this paper we adopt the following definition. 

Definition 1.4. An ideal of an algebra A is a non-empty set I C A such that for 
anyp G TV(A), and a £ I, p(a) G I. The ideal generated by an element a is denoted 
1(a). 

In essence, this definition states that if we choose any element from the ideal, any 
n - 1 elements of the algebra (n > 0), and apply to them any n-ary function of the 
algebra, the resulting element is still in this ideal. Hence, the notion resembles that 
of a semigroup ideal, though not that of a Dedekind ideal. Namely, in ring theory 
there is such a distinction between the two operations that cannot be required in 
any given arbitrary E-algebra in a meaningful way. 

In our effort to generalize the idea of shuffling for general algebras, and for 
non-linear trees, we have taken as a starting point the following definition from [9]. 

Definition 1.5. For an alphabet X, a shuffle ideal of the free monoid X* is a 
non-empty set I C X* such that for any words u £ I and v £ X*, their shuffle is 
included in the set I. 
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For any word u £ X*, if u = x\ • • • xn where x\,... ,xn £ X, then the shuffle 
ideal generated by u is the language X*x\X* • • • X*xnX*. 

We connect the shuffle ideal to the homeomorphic embedding relation used in 
term rewriting theory. When words are interpreted as unary trees, it turns out that 
these notions are very naturally related to one another (see Example 2.2). 

Definition 1.6. The homeomorphic embedding relation <emb on T^(X) is defined 
as follows. For any s,t £ T^(X), s <emb t if and only i f , 

(1) ¿ S l U S and s = t, or 

(2) t = f(ti,.. .,tm),s — f(si,.. .,sm) and Si <emb U fori = 1 ,...,m, or 

(3) t = f(ti,.. .,tm) and s <emb U for some i = 1 , . . . ,m. 

If s <emb t (s , i £ Ts(X)), then essentially this means that all the nodes of the 
term s axe embedded in the structure of t, in such a way that they retain their rank 
(arity) and relative position. For example, if X = {x, y}, and E = {g/1, //2, h/2}, 
then 

x <emb f(x,y) <emb f{g(x),h(y,x)) <emb h(f(g(x),h(g(y),x)),h(x,y)). 

2 Shuffle ideal 
What we call a shuffle ideal borrows ideas from the shuffle operation and ideal 
defined for word languages (see [9]) as well as the embedding relation from rewriting 
theory (see [1]). These notions share a common idea: starting from a single element 
of a language, using suitable insertions, obtain the elements which contain the 
original element embedded in their structure. We begin by defining a relation that 
specifies the types of insertions in which we are interested here. 

Definition 2.1. Let =>sn be the relation on A such that for any a,b £ A 

a =>sn b, 

if and only if there exist an element c € A and translations q,r £ Tr(_4) such that 
a = q(c) and b = q(r(c)). 

In essence, we decompose the element a into a product of an element c and 
a translation q, and then insert an another translation r into the middle of the 
product. 

In the next example we show concretely how such insertions work in a term 
algebra 7h(X). The original term, which is embedded in the derived terms, is 
printed in boldface. 

Example 2.1. Let E = {f/2,g/l} and X = {x,y}. Then, for example 

f (x ,y) f(/(2/,x),y) su f(/(2/,x), f l(y)) f(f{f(y, y), x), g{y))-
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Consider for example the second step of the derivation. We can write f ( f ( y , x),y) = 
f ( f ( y , x),€){y), and by applying the context g(£) we obtain f ( f ( y , x),£)(g(£)(y)) = 
f(f(y,x),g(y)). 

In the following example we show how derivations can be made in the free 
monoid generated by the alphabet {a, b}. We denote by e the empty word, and by 
u(v £ Tr(A*), for any u,v £ X*, the (two-sided) translation such that u£v(w) = 
uwv. 

Example 2.2. Let X = {a, 6}, and let w,w',w" £ X*. We have for example the 
following derivation. 

ob =>sn aw'b =>SH waw'bw". 

In the first step we can write that ab — a£b(e), and further apply the trans-
lation w'£e to obtain a£b(w'£e(e)) = aw'b. In the second step, we write first 
aw'b = £(aw'b), and by using the translation w£w" we obtain ((w(w" (aw'b)) = 
^(waw'bw") = waw'bw". In general, it is easy to see, that ab w if and only if 
w £ X*aX*bX*. 

The following lemmas are direct consequences of the Definition 2.1. 

Lemma 2.1. For all a £ A and p £ Tr(A), a p(a). 

Proof. Let a £ A. Then, a = id(a), and id(p(a)) = p(a), for any p £ Tr(A). • 

Lemma 2.2. If a =>SH b, then p(a) =>sn p(b), for any V € Tr(A) and a,b £ A. 

Proof. If a = g(c), and b = q(r(c)), for some c £ A and r, q £ Tr(_4), then p(a) = 
p(q(c)), and p(b) = p(q(r(c))), for any p £ Tr(A), which proves the claim. • 

As usual, we denote 

^ s h = U ^sn • 
n > 0 

Definition 2.2. We call a non-empty subset I C A a shuffle ideal of A= (A, E), 
if for all a,b £ A, 

(SI) a £ I and a =>sn b imply b £ I. 

The following lemma is easy to prove. 

Lemma 2.3. The intersection of a set of shuffle ideals is either empty or a shuffle 
ideal. 

By the previous lemma, for a given element a £ A, we can define the shuffle 
ideal generated by a as the intersection of the shuffle ideals containing a. We denote 
this by SH(a). 

Lemma 2.4. For any a £ A, SH(a) = {b £ A \ a =>sn b}. 

The following lemma is a direct consequence of Lemma 2.1. 
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Lemma 2.5. For all a £ A and p £ TV(A), 577(p(a)) C SH(a). 

Note that a shuffle ideal is always an ideal. The shuffle ideal generated by an 
element contains the ideal generated by the same element, but in general these sets 
are not the same, as demonstrated by the following example. 

Example 2.3. Let A = ({1,2,3}, { / / l , g / l } ) be the algebra described in Figure 
1, originally presented in [7]. A direct calculation shows that 7(3) = {3} but 
577(3) = {2,3}. 

f,g 
o 

Figure 1: The algebra A 

Note that when interpreted for the free monoid X*, the shuffle ideal generated 
by a word w £ X* corresponds exactly to the original notion. Indeed, if X is an 
alphabet, w — x\ • • • xn £ X* and 

u = u\Xiu2 • • • unxnun+i £ X*x±X* • • • X*xnX*, 

then 
x„(- • • zi(£) • • •) un+1(xn(un(- • • (u2(xi(ui(£)))) • • •))), 

by Lemma 2.4. The converse is analogous. 

Lemma 2.4 also gives us a naive algorithm to calculate the shuffle ideals 577(a) 
of a finite algebra. The algorithm works in two parts. First we calculate a 
for each element a £ A, and then the equivalence closure a =>sn-

1. Compute the table of translations for the algebra. 

2. For each element a £ A find all possible decompositions a = p(b) (p £ 
TV(A),b £ A) from the table of translations. 

3. For each decomposition a = p(b), form all elements p(r(b))), where r £ Tr(A). 
These elements form the sets a =>sn-

4. Compute the reflexive transitive closure =>SN relation =>SH-
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Since the algorithm follows exactly the steps of the definitions of the shuffle 
ideal and the shuffle relation, it is obvious that this algorithm produces exactly the 
desired sets SH(a) for all a £ A. 

The complexity of the algorithm depends heavily on the structure of the algebra 
and its translation monoid Tr(A). In most of any meaningful examples E is fixed, 
so we measure complexity based only on |A|. It is worth mentioning though, that 
by choosing a suitable ranked alphabet E, one can easily devise exotic algebras such 
that the complexity of computing the elementary translations of the algebra exceeds 
any given bound which is dependent only on the size |A| of the algebra, and hence 
the following analysis is not applicable universally. However, even in such exotic 
cases the number of different elementary translations has an upper bound which 
depends only on the size of |A|. Hence, we assume that we are given elementary 
translations induced by the algebra as the input for the algorithm. 

If |A| = n, then the size of the translation monoid may equal nu (the full 
transformation monoid on A), and its calculation that starts from the elementary 
translations may have a complexity of as high as 0(n3n+1) depending on the size 
and structure of ETr(A). The size of table of translations may in the worst case 
equal n" + 1 . Hence, the number of calculations generated by the third step of the 
algorithm may equal n 2 n + 1 . The transitive closure can be calculated in 0(n3) time. 

Next we show a concrete example of how the algorithm works. 

Example 2.4. Let E = {/ /1,^/1}, A = {1,2,3,4,5}, and let the operations be 
defined as in Figure 2. 

A direct calculation gives the table of translations for the algebra shown in Table 
1. Note that for simplicity we have identified unary function symbols with the 
translations they define, and denoted fg the operation such that ( f g ) ( a ) = f(g(a)) 
for all a € A. 

O 

Figure 2: The algebra A. 
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Table 1: Table of translations for A. 

l 2 3 4 5 
id l 2 3 4 5 
f 3 4 4 5 5 
9 4 5 3 4 5 

f f 4 5 5 5 5 
fg 5 5 4 5 5 

i f f 5 5 5 5 5 

Consider for example SH(5). We have that 5 = g(2), which implies that 
5 ( / (2)) = 4 £ SH(5), and continuing similarly g(f{ 1)) = 3 £ 5/1(5). By per-
forming the steps of our algorithm for all such decompositions we obtain the sets 

SH( 1) = {1,3,4,5} 
SH( 2) = {2,3,4,5} 

SH{ 3) = SH( 4) = SH{ 5) = {3,4,5} 

We can form a quasi-order on a given algebra based on the inclusion of the ideals 
SH(a). We denote this relation by <sn, mid we define it so that for all a, b £ A, 

a <sn b SH{a) 2 SH{b). 

In fact, <SH = =>*SH-

In the spirit of Green's relations, we define S~H C A2 as the relation such that 

a S7i b SH(a) = SH(b). 

By Lemma 2.2 it is a congruence. We say that A is STi-trivial if a S~H b implies 
a = b. It is clear, that the algebra is 5H-trivial, if and only if <SH is an order. In 
the next section we investigate the properties of this order further. 

As we saw in Example 2.4, the shuffle ideals SH(a) of a given finite algebra can 
be calculated using the algorithm presented earlier in this section. We can then 
calculate the quasi-order <sn-. and also determine whether the algebra is S~H-trivial 
or not. 

3 Monotonically ordered algebras 
In this section we investigate algebras which are equipped with a certain type of 
an order, namely a monotone order (see [3]). We show that algebras equipped with 
an admissible monotone order are bijectively connected to 5/¿-triviality. 
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Definition 3.1. An algebra A is monotone, if there exists an order < on A such 
that for alln> 1, f £ E n and a i , . . . , an £ A, 

(M) ai,... ,an < fA(ai,... ,an). 

Note that the condition (M) can be replaced with an equivalent condition: 
a < p(a) for all a £ A and for all p £ ETr(A). 

Let us recall that a relation on a set is called a pre-order if it is reflexive and 
transitive. 

Definition 3.2. Let 9 be a pre-order on A. It is admissible, if a\ 8 bi,... ,an 6 bn 

imply fA(ai, ...,an) 9 fA(b i, ...,bn) for all n > 0, o i , . . . , an, bi,..., bn £ A and 
/ € £ „ • 

Equivalently, a pre-order 9 is admissible, if for all a,b £ A and for allp £ ETr(A), 
a 9 b implies p(a) 9 p(b). An ordered algebra (A, <) consists of an algebra, and an 
admissible order < on A. 

An ordered algebra (A , <) is monotone if (M) is satisfied for the given order <. 
Following the definition presented in [7] we call an algebra A monotonically ordered 
if there exists an ordered algebra (A, <) which is monotone. Note that in [7] we 
used the term monotonously ordered. 

Before our main result we prove a useful lemma. 

Lemma 3.1. If (A, <) is monotone, then a =>SH b implies a <b for all a,b £ A. 

Proof. Let a, b £ A be such that a =>su b. There exist q, r £ TV (A) and c £ A such 
that a = q(c) and b = q(r(c)). Now, by the properties of the monotone order on A, 
we have that c < r(c), and hence a = q(c) < q(r(c)) = b. • 

Theorem 3.1. An algebra A is monotonically ordered if and only if it is STL-trivial. 

Proof. Assume that A is ¿>%-trivial. Then, <sn is a partial order on A. Also, 
a <sn p(a)i since SH(p(a)) C SH(a) by Lemma 2.5. 

For proving that the order is admissible, let a, b £ A be such that a <sn b. 
Now, b £ SH(a), and hence a =>sn b by Lemma 2.4, which means that for some 
n > 0, a b. By Lemma 2.2, it follows that p(a) =>SH P(b)> which implies that 
p(b) £ SH(p(a)), and therefore p(a) <su p(b)-

For the other direction, let (A, <) be monotone. Assume that SH(a) = SH(b) 
for some a,b £ A. Then, a =>sn b- Now, by Lemma 3.1 we get directly that a <b. 
By a symmetric argument also b < a, which implies a = b, which proves that A is 

-trivial. • 

In the next proposition we show that the order <sn is the least admissible and 
monotone order on a given monotonically ordered algebra. Before that, we give a 
simple example which shows that such an order on an algebra need not be unique. 

Example 3.1. Let E = { / /1} and A = {a, b}. Define the algebra A so that 
fA(a) = a and fA(b) = b. Now, < s u = A a, but the relation {(a, a), (a, 6), (b,b)} 
is also a monotone and admissible ordering for A. 
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Proposition 3.1. If an ordered algebra {A, <) is monotone, then <sn Q 

Proof. If a <SH b, for some a, b € A, then a =>SH b, and Lemma 3.1 implies directly 
that a < b. • 

As we shall see, in the term algebra 7s (X), the relation equals the home-
omorphic embedding relation of terms. Thus, =>SH c a n regarded as a general-
ization of the embedding relation for general algebras. Before the proposition, we 
note an obvious lemma. 

Lemma 3.2. For any leaf alphabet X and ranked alphabet E, the algebra 7 s (X) 
is monotonieally ordered by <emb-

Proposition 3.2. For any X and E, and s,t 6 Ts(X), 

s <emb t if and only if s =>sn b 

Proof. It follows immediately from the previous lemma, and Lemma 3.1, that =>S-H 
G ^emt-

For the other direction, we proceed by structural induction following the defi-
nition of the relation <emb• Note that by the previous lemma, 7s (X) is monotoni-
eally ordered, or equivalently <S7f-trivial (Theorem 3.1), and =>sn an admissible, 
monotone order. Assume that s <emb t. 

1. If s = t, then s =>sfi b. 

2. Assume that s — / ( s i , . . . ,sn) and t = f{h,... ,tn), where Sj <emb U for 
i = 1 , . . . , n , and assume that the claim holds for Si and U for all i = 
1 , . . . , 7i. Then, s* =>*su bi f° r i = 1,...,77, and by the SH-triviality of 

^n!• 

3. Assume that t = f(t\,..., tn) and s <emb U for some i = 1 , . . . , n, and assume 
that the claim holds for s and U. Then, s <emb U implies s ^sn bi t-

• 

We conclude the section by considering some variety properties of monotoni-
eally ordered algebras. The class of 57f-trivial algebras (i.e. that of monotonieally 
ordered algebras) is closed under forming direct products and subalgebras, but 
not homomorphic images [7]. Hence, the class is not a variety. However, in the 
following we show that the class of monotone ordered algebras is closed under 
order-preserving homomorphisms, which makes it a variety of ordered algebras [2], 

In [2] a pre-order on an ordered algebra is said to be admissible, if it is an 
admissible relation, and contains the ordering of the algebra. If ^ is an admissible 
pre-order on A, then ~ = H is a congruence on A, and A/ ~ is ordered by the 
relation -< defined so that for all a, 6 £ A, a / ~ ^ if and only if a ^ b (see [2], 
p. 201). 

Proposition 3.3. The class of monotone ordered algebras is closed under order-
preserving homomorphisms, i. e. homomorphisms of ordered algebras. 
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Proof. Let (A, <) be a monotone ordered algebra. By Proposition 1.3 in [2], it is 
sufficient to look at the quotient algebras with respect to the admissible pre-orders 
on (A, <). Hence, assume that ^ is an admissible pre-order, and consider the order 
^ on A/ ~ derived from where ~ = ^ D 

Now, let n > 0, a i , . . . , an € A, arid / € £ n . For every i = 1 , . . . , n, it follows 
from at < fA(a\,. ..,an) that r< fA(ai,..., an)/~ = fA/~(ai/~,..., a „ / ~ ). • 

Theorem 2.6 in [2] states that every variety of ordered algebras is defined by a 
set of inequalities. In the case of monotone orders such a set is immediately given 
by the definition. 

Example 3.2. If £ = {/ /2}, then the class of monotone ordered E-algeras is 
defined by the set {x < f(x,y), y < f(x,y)}. 

The class of languages corresponding to the class of finite monotonically ordered 
algebras can be characterized as follows. The fc-piecewise testable tree languages 
for some fixed E and X were defined in [7] as the unions of 7rfc-classes, for a certain 
finite congruence nk. It was also proved that the algebra Tb(X)/nk is monotonically 
ordered. Hence, each piecewise testable tree language can be recognized by a finite 
monotonically ordered algebra, and it was shown also in [7], that all languages 
recognized by finite monotonically ordered algebras are piecewise testable. 

It is clear that the languages recognized by finite monotone ordered algebras in 
the sense of [6] are included in the variety of tree languages corresponding to the 
variety of finite algebras generated by the finite monotonically ordered algebras, 
which are exactly the piecewise testable tree languages. Hence, all languages rec-
ognized by finite monotone ordered algebras are piecewise testable. However, for 
example the language {x} C T%(X), where X = {x} and E = {//1}, cannot be 
recognized by a monotone ordered algebra in the sense of [6], even if the language 
is most certainly piecewise testable. 

A shuffle ideal of a term algebra is clearly a piecewise testable tree language. 
Namely, SH(t) contains exactly all the terms which have t as a piecewise subtree. In 
fact, this implies directly that each piecewise testable tree language can be obtained 
as a boolean combination of suitable shuffle ideals. This generalizes the result that 
a piecewise testable word language is a boolean combination of shuffle ideals. 

Further remarks 
We presented here a natural generalization of the shuffle ideal, and we established 
connections between the shuffle relation, the homeomorphic embedding relation 
and monotonically ordered algebras. Monotonically ordered algebras and the em-
bedding relation were very useful in our earlier work on piecewise testability for 
trees [7], and hence it is not surprising, that the shuffle ideals investigated here 
have a similar connection to piecewise testability as in the word case. 

Our definition of the shuffle ideal suggests also a definition for the shuffle oper-
ation, which would be suitable for terms of term algebras and elements of general 
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algebras. Such a product would be defined not between two elements, but rather 
between a translation and an element. Each translation can be decomposed (not 
in a unique way in general) into a product of elementary translations, and each 
element of an algebra can also be decomposed into a product of elementary trans-
lations and a generator of the algebra. By merging these sequences in a similar 
manner as shuffling two words, one obtains elements which form a set that could 
be seen as the shuffle of these objects. 
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Simulated Annealing for Aiding Genetic Algorithm 
in Software Architecture Synthesis* 

Outi Sievi-Kortej Erkki Makinenf and Timo Poranen* 

Abstract 
The dream of software engineers is to be able to automatically produce 

software systems based on their requirements. Automatic synthesis of soft-
ware architecture has already been shown to be feasible with genetic algo-
rithms. Genetic algorithms, however, easily become very slow if the size of 
the problem and complexity of mutations increase as GAs handle a large pop-
ulation with much data. Also, for purely scientific interest it is worthwhile 
to investigate how other search algorithms handle the problem of software 
architecture synthesis. The present paper studies the possibilities of using 
simulated annealing for synthesizing software architecture. For this purpose 
we have two goals: 1) to study whether a simpler search algorithm can handle 
synthesis and 2) if a seeded algorithm can provide quality results faster than a 
simple genetic algorithm. We start from functional requirements which form 
a base architecture and consider three quality attributes, modifiability, effi-
ciency and complexity. Synthesis is performed by adding design patterns and 
architecture styles to the base architecture. The algorithm thus produces a 
software architecture which fulfills the functional requirements and also corre-
sponds to the quality requirements. It is concluded that simulated annealing 
as such does not produce good architectures, but it is useful for speeding up 
the evolution process by quickly fine-tuning a seed solution achieved with a 
genetic algorithm. The main contribution is thus a new seeded algorithm for 
software architecture design. 

Keywords : search-based software engineering, simulated annealing, software 
design, genetic algorithm, software architecture 

1 Introduction 
The ultimate goal of software engineering is to be able to automatically pro-
duce software systems based on their requirements. In Model Driven Architecture 
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(MDA), class level designs of the software can already be transformed straightfor-
wardly into code [10]. However, a human is still required to interpret the given 
quality requirements and build the class level design, or architecture, based on 
which code can be written. This process is time consuming and requires expertise, 
as systems become increasingly large and complex and the quality requirements 
are often conflicting. Errors in design phase are unfortunately common, and have a 
large impact on the functionality of the system. Our goal is to automate the process 
of turning requirements into software architecture, where quality requirements are 
not only met but also optimized to suit the preferences of the client. 

Architectural design largely means the application of known standard solutions 
in a combination that optimizes the quality properties (like modifiability and effi-
ciency) of the software system. These standard solutions are well documented as 
architectural styles [39] and design patterns [11]. We argue that software archi-
tecture comes in parts: the functional requirements, the quality requirements and 
the actual architectural design solutions. The functional and quality requirements 
can only be elicited manually, but combining them to design solutions and, thus, 
producing a complete architecture, which is more than the sum of its parts, can 
be done automatically. Hence, we see the formation of software architecture as a 
series of transformations beginning with a very crude outline of a system with only 
the basic functionalities and ending with a highly sophisticated design. So far, this 
has been accomplished by humans. Thus, as we view that software architecture 
requires combining different entities (design solutions and requirements) and the 
automatic process is synthetic when compared to man made architectures, we refer 
to our approach as architecture synthesis. 

Seeing software architecture as a combination of design solutions makes it an 
optimization problem — what is the best way of combining the solutions, with 
respect to quality requirements? Search-based software engineering (SBSE) studies 
the application of meta-heuristic algorithms to such software engineering problems 
[9]. In this field, genetic algorithms (GAs) [22] have been shown to be a feasible 
method for producing software architectures from functional requirements [29, 33, 
34]. However, experiments with asexual reproduction [30] suggest that the crossover 
operator which is an essential part of GAs might not be critical for producing good 
architectures, supporting the idea of using a simpler search method. Additionally, 
the GA easily becomes very slow if the system is large, or if the search leans 
heavily towards certain mutations (due to preferences of the architect). These 
heavy mutations combined with a large system meant that the GA, which has 
to handle an entire population of solutions simultaneously, had to deal with a 
massive amount of data. It is, thus, natural to ask if other (lighter) search methods 
are capable of producing equally good architectures alone or in co-operation with 
genetic algorithms. The purpose of the present paper is to study the possibilities 
of simulated annealing (SA) in the process of searching good architectures when 
functional requirements are given. 

While GA is already shown to produce reasonable software architectures, it is 
of great interest to study whether SA is capable to do the same, as it explores 
the search space in a completely different way than GA. An affirmative answer 
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would, of course, give us a new competitive practical method for producing software 
architectures. Contrary to GAs, SA is a local search method which intensively 
uses the concept of neighborhood, i.e., the set of possible solutions that are near 
to the current solution. The neighborhood is defined via transformations that 
change an element of the search space (here, software architecture) to another. 
In our application the transformations mean implementing a design pattern or an 
architectural style. Contrary to, for example, hill climbing algorithms, SA does 
allow also temporarily exploring worse solutions than what have been found so 
far. Due to the nature of the fitness landscape (many small peaks and large dips 
which lead to high peaks), this is essential in eventually finding a good architecture. 
Our decision to study SA first is also backed up by the promising studies in related 
fields where SA has been used for software refactoring [23]. Results from our studies 
conducted with SA will give us further information on what is required from the 
synthesis, and we may then possibly study other algorithms, such as particle swarm 
optimization and ant colony optimization. 

It is known that seeding GAs enable them to produce better results faster 
[17, 36]. Our hypothesis is that a SA algorithm could also be used to quickly 
produce a seed. An initial population can be generated based on this seed. A 
significantly smaller number of generations would then suffice to find good solutions 
with the GA. 

As with our GA approach, we begin with the functional requirements of a 
given system. The actual architecture is achieved by the SA algorithm, which 
gradually transforms the system by adding (and removing) design patterns and 
applying architecture styles. The resulting architecture is evaluated from three 
(contradicting) viewpoints: modifiability, efficiency and complexity. As the SA is 
implemented as close to the GA as possible, our set of research questions thus 
becomes: How good are the architectures produced by SA (compared to GA)? 
What kind of fitness values does SA achieve (compared to GA)? How fast is SA 
(compared to GA)? And finally, how well does a seeded algorithm perform in terms 
of both quality and speed (compared to GA)? 

This paper proceeds as follows. In Section 2 we sketch current research in 
the field of search algorithms in software design that is relevant for the present 
paper. In Section 3 we cover the basics of implementing a SA algorithm and 
give the algorithmic presentation for our GA, to be used in the experiments. In 
Section 4 we introduce our method by defining the input for the SA algorithm, the 
transformations and the evaluation function. In Section 5 we present the results 
from our experiments, as we examine different parameters for the SA and combining 
SA with our GA implementation. In Section 6 we discuss the findings and in Section 
7 we give a conclusion of our results. 

2 Related Work 
SBSE considers software related topics as combinatorial search problems. Tradi-
tionally, testing has been the clearly most studied area inside SBSE [13]. Other 
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well studied areas include software clustering and refactoring [9, 13, 26]. Using 
meta-heuristic algorithms in the area of software design, and in particular at soft-
ware architecture design, is quite a novel idea. Only a few studies have been 
published where the algorithm actually attempts to design something new, rather 
than re-designing an existing software system. Approaches dealing with higher 
level structural units, such as patterns, have also recently gained more interest. We 
will briefly discuss the studies with the closest relation to our approach. As our 
method in part combines two algorithms, and the result can be viewed as a seeded 
algorithm (either SA provides a seed for the GA or vice versa), we will also briefly 
discuss approaches using seeding. 

Amoui et al. [2] use the GA approach to improve the reusability of software 
by applying architecture design patterns to a UML model. Their goal is to find 
the best sequence of transformations, i.e., pattern implementations. Used patterns 
come from the collection presented by Gamma et al. [11]. From the software design 
perspective, the transformed designs of the best chromosomes are evolved so that 
abstract packages become more abstract and concrete packages, in turn, become 
more concrete. This approach uses one quality factor (reusability) only, while we 
use three quality factors, and also a more refined starting point than what is used 
in our approach. 

Bowman et al. [7] study the use of a multi-objective genetic algorithm (MOGA) 
in solving the class responsibility assignment problem. The objective is to optimize 
the class structure of a system through the placement of methods and attributes 
within given constraints. So far, they do not demonstrate assigning methods and 
attributes "from scratch" (based on, e.g., use cases), but try to find out whether 
the presented MOGA can fix the structure if it has been modified. Thus, their 
approach currently works for refactoring only, and is not able to do forward design, 
which is our aim. 

Simons et al. [44] study using evolutionary, multi-objective search and software 
agents to aid the software architect in class design. One individual (solution) is 
thus the design containing all methods and attributes (and their class distribution). 
Coupling and cohesion are used to calculate fitness. Simons et al. suggest that a 
global multi-objective search is unnecessary, and the search should be narrowed 
towards the "most useful and interesting candidate designs". They attempt to 
achieve this by isolating discrete zones from the search space, and then using a 
local search within these zones. Local search is conducted using a single-objective 
genetic algorithm, which only considers coupling in the fitness calculations. The 
designer then obtains the results of these local searches. Simons and Parmee [43] 
have further enhanced their studies with elegance metrics, which should conform 
to the desire for symmetry that human designers have. 

Raiha et al. [29] have taken the design of software architecture a step further 
than Simons and Parmee [40, 41] by starting the design from a responsibility de-
pendency graph. The dependency graph can also be achieved from use cases, but 
the architecture is developed further than the class distribution of actions and data. 
A GA is used for the automation of design. Mutations are implemented as adding 
or removing an architectural design pattern [11] or an interface or splitting or join-
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ing class (es). Implemented design patterns are Façade and Strategy, as well as the 
message dispatcher architecture style [39]. 

Ràihà et al. [34] have also applied GAs in model transformations that can 
be understood as pattern-based refinements. In MDA, such transformations can 
be exploited for deriving a Platform Independent Model from a Computationally 
Independent Model. The approach uses design patterns as the basis of mutations 
and exploits various quality metrics for deriving a fitness function. They give a 
genetic representation of models and propose transformations for them. The results 
suggest that GAs provide a feasible vehicle for model transformations, leading to 
convergent and reasonably fast transformation process. Raihà et al. [31] have also 
later on added scenarios, which are common in real world architecture evaluations, 
to evaluate the fitness of their synthesized architectures. Our work differs from the 
work of Raihà et al. [31] by using simulated annealing in addition to GA. 

Jensen and Cheng [15] present an approach based on genetic programming 
(GP) for generating refactoring strategies that introduce design patterns. They 
have implemented a tool, RE-MODEL, which takes as input a UML class diagram 
representing the system under design. The system is refactored by applying mini-
transformations. The encoding is made in tree form (suitable for GP), where each 
node is a transformation. A sequence of mini-transformations can produce a de-
sign pattern; a subset of the patterns specified by Gamma et al. [11] is used to 
identify desirable mini-transformation sequences. Mutations are applied by sim-
ply changing one node (transformation), and crossover is applied as exchanging 
subtrees. The QMOOD [4] metrics suite is used for fitness calculations. In addi-
tion to the QMOOD metrics, the authors also give a penalty based on the number 
of used mini-transformations and reward the existence of (any) design patterns. 
The output consists of a refactored software design as well as the set of steps to 
transform the original design into the refactored design. This way the refactoring 
can be done either automatically or manually; this decision is left for the software 
engineer. This approach is close to those of Ràihà et al. [29] and the approach 
used here, the difference being that Jensen and Cheng have clearly a refactoring 
point of view, while we attempt upstream synthesis, thus expecting less from the 
architect and relying more on the algorithm, which makes our problem setting far 
more complex. Our fitness metrics are also different, as we only reward patterns 
that clearly improve the design — the simple existence of a pattern is not a reason 
for reward itself. 

A higher level approach is studied by Aleti et al. [1], who use AADL models 
as a basis, and attempt to optimize the architecture with respect to Data Transfer 
Reliability and Communication Overhead. They use a GA and a Pareto optimal 
fitness function in their ArcheOptrix tool, but they concentrate on the optimal 
deployment of software components to a given hardware platform rather than how 
the components are actually constructed and how they communicate with one an-
other. Research has also been made on identifying concept boundaries and thus 
automating software comprehension [12] and re-packaging software [5], which can 
be seen as finding working subsets of an existing architecture. These approaches 
are, however, already pushing the boundaries of the concept "software architecture 
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design". As for different aspects on GAs, the role of crossover operations in genetic 
synthesis of software architectures is studied by Raiha et al. [30, 32]. 

SA has been used in the field of search-based software engineering for software 
refactoring [23, 24, 25] and quality prediction [6]. O'Keeffe and O Cinneide [23, 
24, 25] work on the class level and use SA to refactor the class hierarchy and move 
methods in order to increase the quality of software. Their goal is to minimize 
unused, duplicated and rejected methods and unused classes, and to maximize 
abstract classes. The algorithm operates with pure source code, and the outcome 
is given as refactored code as well as a design improvement report. This approach is 
the closest to the one presented here, but it operates on a lower level and backwards 
(re-engineering), while our approach operates on a higher level architecture and 
goes forwards in the design process. Similar studies (class level refactoring) have 
also been made by Seng et al. [37, 38] who use GA as their search algorithm and 
Harman and Tratt [14], who use hill climbing. In the area of quality prediction, 
Bouktif et al. [6] attempt to reuse and adapt quality predictive models, each of 
which is viewed as a set of expertise parts. The search then aims to find the best 
subset of expertise parts, which forms a model with an optimal predictive accuracy. 

In UML software design SA has been used in the context of dynamic parameter 
control in interactive local search by Simons and Parmee [42]. The level of design is 
quite similar, as it also deals with classes, methods and attributes. In this study the 
approach using simulated annealing was shown to be inferior to other method used 
in parameter control, while dynamic parameter control in general proved to be an 
efficient way for improving the results. Our approach differs significantly from that 
of Simons and Parmee, as we use simulated annealing itself in a different way (as 
the actual search algorithm itself, as opposed to controlling the parameters). We 
also have a very different mutation setting and problem domain. We have sixteen 
mutations, while there were only a couple in the presented study, thus the setting 
for dynamically controlling all the probabilities is much more complex, though we 
acknowledge the idea worth pursuing (initial experiments with a similar idea have 
been done in our previous work [34]). All in all, the studies using SA are few, and 
none use this approach for such a high-level design problem as designing software 
architecture from requirements 

Our approach of combining SA and GA can be seen as a seeded algorithm, 
as one algorithm provides a developed seed for the other. Julstrom [17] has used 
the idea of seeding the initial population of a GA with advanced individuals in the 
rectilinear Steiner problem. The seeded algorithm produced more consistent results 
and was significantly faster than the algorithm with a randomly created initial 
population. Ramsey and Greffenstett [36] have studied case-based initialization of 
GAs in learning systems. In their study, the population of the GA is dynamically 
initialized with achieved (good) results, which aids in (intentionally) biasing the 
search towards a certain area, and quickly answering to a changing environment. 
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3 Simulated Annealing 
Simulated annealing is a widely used optimization method for hard combinatorial 
problems. Principles behind the method were originally proposed by Metropolis 
et al. [20] and later Kirkpatrick et al. [18] generalized the idea for combinatorial 
optimization. 

Algorithm 1 simulatedAnnealing 
Input: Responsibility dependency graph G, base architecture M, initial tem-
perature to, frozen temperature t f , cooling ratio a, and temperature constant 
r 
Output: UML class diagram D 
initial Solution <— encode(G, M) 
initialQuality <— evahiate(initialSolution) 
S i 4— initial Solution 
Qi 4— initialQuality ' 
t 4 - t0 

while t > t f do 
n<-0 
while ri < r do 

Si 4— transform (Si) 
Qi 4— evaluate(S^ 
if Qi > Qi then 

S i 4 - Si 
Qi <- Qi 

else 
6+-Qi-Qi 
p 4— UniformProbability 
if p < e~ then 

S i 4- Si 
Qi^Qi 

end if 
end if 
n 4- ri +1 

end while 
14- (1 — a) x t 

end while 
D 4- generateUML(Si) 
return D 

The SA algorithm starts from an initial solution which is enhanced during the 
annealing process by searching and selecting other solutions from the neighborhood 
of the current solution. There are several parameters that guide the annealing. The 
search begins with initial temperature to a n d ends when temperature t is decreased 
to the frozen temperature t f , where 0 < f / < t0. The temperature gives the 
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Algorithm 2 geneticAlgorithm 
1: Input: formalization of solution, initial Solution 
2: population 4— cieatePopulation(initialSolution) 
3: while NOT terminationCondition do 
4: for all chromosome in population do 
5: p 4— randomProbability 
6: if p > mutationProbability then 
7: mutat e(chromosome) 
8: end if 
9: end for 

10: for all chromosome in population do 
11: cp randomProbability 
12: if cp > crossoverProbability then 
13: addToParents(c/iromosome) 
14: end if 
15: end for 
16: for all chromosome in parents do 
17: father 4— chromosome 
18: mother selectNextChromosome(parenis) 
19: offspring 4— crossover (father, mother) 
20: addToPopulation( offspring) 
21: removeFromParents ( father, mother) 
22: end for 
23: for all chromosome in population do 
24: calculatefitness(chromosome) 
25: end for 
26: selectNextPopulation() 
27: end while 

probability of choosing solutions that are worse than the current solution. The 
result of a transformation that worsens the current solution by d, is accepted to 
be the new current solution if a randomly generated real i is less than or equal to 
a limit which depends on the current temperature t. If a transformation improves 
the current solution, it is accepted directly without a test. 

An important parameter of SA is the cooling schedule, i.e., how the temperature 
is decreased. We use the geometric cooling schedule, in which a constant r is used to 
determine when the temperature is decreased, and the next temperature is obtained 
simply by multiplying the current temperature by cooling ratio a (0 < a < 1). This 
is the most frequently used schedule [45]. It was chosen because of its simplicity, 
and because of the fact that all the classical cooling schedules can be tuned so that 
they give the same practical temperatures [45]. 

The SA has been successfully applied for numerous combinatorial optimization 
problems, for an instructive introduction to the use of SA as a tool for experimen-
tal algorithmics, see [3, 16]. In order to determine good parameters for a problem, 
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experimental analysis is often needed. There are also adaptive techniques for de-
tecting the parameters [19]. The SA implementation used in our tests is shown 
in Algorithm 1. The encoding, transformation and evaluation procedures are dis-
cussed in more detail in Section 4. Notice, that our SA only operates with a single 
solution at a time, and the solution is built by transformations (i.e., moving towards 
better neighbors). 

In Section 5 we compare the present SA and our previous GA implementation 
[29]. We assume the reader has knowledge of the basic principles of GA, as given 
by, e.g., Michalewicz [21]. The GA implementation used is given in Algorithm 2. 
Mutation is executed in the same way as a transformation for simulated annealing, 
and more details will be given in Section 4. Crossover is a single-point random 
crossover and selecting the next population is made with a rank-based roulette 
wheel selection. For more details on how crossover and selection is implemented in 
our approach, we refer to [27]. 

The result of GA is the best solution found during the search process. Thus, in 
that sense, both SA and GA are single solution algorithms and their comparison 
is straightforward. In order to be able to fairly compare the implementations, the 
solutions produced by the two methods should be evaluated by the same quality 
functions and the initial solutions should be of the same quality. Hence, we use the 
same method for producing the initial solutions for SA as we have done with GA in 
[29, 31, 33, 34]. The initial solution is achieved by encoding functional requirements 
and thus building a base architecture. The base class structure is derived from the 
base architecture, and the base architecture is achieved by randomly applying a 
transformation. The same approach for creating several solutions for an initial 
population is used in our GA implementation [29, 31, 33, 34], and thus the initial 
quality is the same for both SA and GA, as they both use the same evaluation 
function. 

4 Method 
We begin by creating use cases to define the basic functional requirements. Use 
cases are an intuitive starting point in most software projects, and little domain 
knowledge is required to define them. Thus, use cases are a natural way to begin 
eliciting the functional requirements of a system. Use cases can, in turn, be refined 
into sequence diagrams. The refining process requires some effort from the architect 
but still quite little domain knowledge and is still fairly intuitive, as the architect 
simply needs to think how different use cases proceed on operation level. From 
sequence diagrams it is simple to elicit classes (the participants/owners' of lifelines) 
and operations (calls in the diagram). This results in a base architecture, giving 
a structural view of the functional requirements of the system at hand but not 
dealing with the quality requirements. The base architecture is encoded to a form 
that can be processed by the search algorithm in question. The algorithm produces 
software architecture for the given quality requirements by implementing selected 
architecture styles and design patterns, and produces a UML class diagram as the 
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result. 

4.1 Requirements 

We will use two example systems: the control system for a computerized home, 
called hereafter ehome, and a robot war game simulator, called robo. We will 
demonstrate building input for the search algorithm in the case of ehome; the 
process is similar in the case of robo. 

Figure 1: Adjust temperature use case refined 

Specifying requirements begins with giving use cases. Use cases for the ehome 
system are assumed to consist of, e.g., logging in, changing the room temperature, 
changing the unit of temperature, making coffee, moving drapes, and playing music. 
Here, we will take as an example the adjust room temperature use case. The user 
simply places a command that the temperature should be adjusted (for the sake of 
simplicity, we can here consider elevation), and ehome adjusts the temperature by 
turning on the heater. 



Simulated Annealing for Software Architecture Synthesis 245 

The sequence diagram for the temperature adjustment use case is given in Figure 
1. The process begins with a call from the user to set the temperature to a new level. 
The system then calls the temperature regulation component, which measures the 
current temperature, and then sets the heater on. After the correct temperature is 
reached, the heater is turned off. 

While sequence diagrams already give a good understanding of how the different 
operations depend on each other, a structural view still needs to be obtained, as 
patterns cannot be inserted into sequences of calls. Fortunately, sequence diagrams 
can easily be turned into class diagrams. At this point, the class diagram would not 
consist of anything but the classes, their methods and attributes, and connections 
between classes, as defined in the sequence diagram. We have chosen to use sequence 
diagrams as the basis, as they can be straightforwardly build based on use case 
diagrams, and use case diagrams are the most intuitive way to start formulating 
the requirements. 

Userlnterface 
•make Coffee () 
+adjustTemperature() 

playMusic() 
+alterOrapes() 

loglnQ 

-coffeeState 
CoffeeMachine 

+showCoffeeMachineStatus() 
+chooseCoffeeQuality() 
+chooseCoffeeAmount() 
+calculateCoffeeWaterAmount() 
+setCoffee() 
+setWater{) 
+addCoffeePortion() 
+startCoffeeMachine() 
+setCoffeeMachlneWarm() 
+stopCoffeeMachine() 
»ringBuzzerQ 

UserRegistry 
userOB 

+posswordChock() 
+registryAdmin() 

activatellsertnRegistryO 
+addUserToRegistry() 

changePassword() 
+removeUserFrom RegistryO 

setUserRegistryQ 

Tempe ratureRegutatlon 
-temperatu restate 
+setRoomTemperature() 
+measureTemperature() 
»changeTemperatureToCelsiusQ 

DrapeManager 
•drapeMotorState 
•mnDrapeMotorO 
»stopDrapeMotorQ 

•drapeState 
DrapeRegutatlon 

+measureDrapePosition() 
+calculateOptimalDrape() 
+measureSun() 
+showDrapePosition() 

HeaterWanager 
-heaterS ta te 
+setHeaterOn() 
fsetHeaterOffj) 

MuslcFile8 
-musicDB 
+adminMusicFile() 
+playChosenMusic() 
»stopMusicPtayQ 

MuslcSystem 
-musiclnfo 
+showMusicList() 
+adminMusicUst() 
+pickMusic() 
i-musicToSpeakereQ 

SpeakerManager 
•speakerState 
+chooseSpeaker() 

MainController 
»controllerQ 

Figure 2: Base architecture for ehome 
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The base architecture in Figure 2 for the ehome system can be straightforwardly 
derived from the sequence diagrams. We depict architecture as a class diagram, 
as we consider the architecture to be the classes or components of a system the 
interfaces and other communication mechanisms between them. Thus, a class view 
is natural for our purposes. 

The messages in the sequence diagram become the operations and the ob-
jects/components become the classes. Also, if the need for a data source is detected 
or the object clearly has a state, they will become attributes in the classes. For ex-
ample, in Figure 1 both the Temperature Regulation and Heater Manager 
have states, such as on or off for the Heater Manager. The base architecture 
only contains use relationships, as no more detail is given for the algorithm at this 
point. The base architecture represents the basic functional decomposition of the 
system. A base architecture for robo (which can be achieved by performing the 
same steps as did with ehome) is given in Figure 3. 

>-main() 
•provideUIQ 

SimulatlonObject 
-objectStatus 
+objectControl() 
+objectChoice() 

ID 
¡- ; -idData 

•HdControlQ 

SimulationEngine 
•simulationStatus 
+simulationControl() 
+stopSimulation() 
+startSimulation() 

+simulationTimer() 

StmulationArea 

+simulationAreaControl() 

-timerStatus 
+robotTimerQ 

+combatAreaControl() 

+robotControlQ 

-movementData 
•movementControlQ 

CombatEnglne 

+combatEngine() 
•K»mbatControl() 

-ruleData 
+njleControlQ 

Turn 
7 -tu m Data 

+tumControl() 

-energyStatus 

•joumeyData 
Journey 

-joumeyControl() 
•speed ControlO 
•directionControlQ 

Energy 

•energyControlQ 
•calculateEnergyO 
•HJecreaseEnergyO 
•HncreaseEnergyQ 

Appearance 
-appearanceData 
•appearanceControlQ 

-batUePata 

-accountPata 
-accountControlQ 

-equipmentPata 
Equipment 

+eq uipmentControl() 
+gunControl() 
•radarControlQ 

+motorControl() 
+healtbControl() 
•priceControl() 

•weightControlQ 

-armorOata 

Intelligence 

+intelIigenceControl() 
+shootingControl() 
-f-findRobotQ 

Armor 

+armorControl() 
+hitCalculation() 
•^damageCalculationQ 

ArmorType 
•typePata 
»typeControlQ 

Figine 3: Base architecture for robo 
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After the operations are derived from the use cases, some properties of the 
operations can be estimated to support the synthesis, regarding the amount of 
data an operation needs, frequency of calls, and sensitiveness for variation. For 
example, it is likely that the coffee machine status can be shown in several different 
ways, and thus it is more sensitive to variation (called hereafter the variability of an 
operation) than ringing the buzzer when the coffee is done. Measuring the position 
of drapes requires more information than running the drape motor (which can be 
interpreted as the required parameter size), and playing music quite likely has a 
higher usage frequency than changing the password for the system. Relative values 
for the chosen properties can similarly be estimated for all operations. Here we have 
used the scale of Low (1), Medium (3) and High (5). This optional information, 
together with operation call dependencies, is included in the information subjected 
to encoding. 

4.2 Encoding 
Ultimately, there are two kinds of data regarding each operation Oj. Firstly, 
there is the basic information given as input. This contains the operations Oi = 
{on,Oi2,. . . ,Oik} depending on Oj, its name rij, type di ("f" as in functional for 
methods, "d" as in data for attributes), frequency parameter size Pi and vari-
ability Uj. Secondly, there is the information regarding Oj's place in the architecture: 
the class(es) C, = { C n , C i 2 , . . . , Cj„} it belongs to, the interface L it implements, 
the dispatcher Di it uses, the operations ODi C (Oi) that call it through the 
dispatcher, the design patterns Pi = {Pn,Pi2, • • • ,Pim} it is a part of, and the 
pre-determined base architecture class MCi. The dispatcher is given a separate 
field as opposed to other patterns for efficiency reasons. 

The base architecture is encoded as a vector V < ov i, ov 2,..., ovn > of vectors 
ovi, ov2,..., ovn for the algorithm. Each vector ovk, in turn, contains all data for a 
single operation. Thus, n is the number of operations of a system, and the collection 
of these operation defining vectors depicts the entire system when collected into one 
vector V. Figure 4 depicts an operation vector ouj. The same encoding works for 
both SA and GA. For GA, the chromosome is the vector V, and each vector ovi is 
a supergene, which contains the fields described above. 

Oi rii di ft Pi Vi Ci It Di ODi MCi Pi 

Figure 4: Operation vector ou. 

We will give an example from the ehome system of how the given data structure 
works. In the base architecture phase, if the TemperatureRegulation class is 
given # I D 2 (and the interface # I D 2), for operation measureTemperature (# id 
9) the ov9 would have the following values: Og = {#idSetRoomTemperature}, ng 
= measureTemperature, dg = f, pg = 3, fg = 1, vg = 3, Cg = 2, Ig = 0, Dg = 0, 
ODg = 0, MCg = 2, P9 = 0. The interface has value 0, as measureTemperature 
is only required by setRoomTemperature, which is in the same class, and thus 
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does need an interface to access this operation. The fields for message dispatcher 
and pattern have 0 values, as no architectural solutions are included in the base 
architecture. As the operation is here located in the original base architecture 
class, the values for C and MC are the same. Note, that the encoding is indeed 
operation-centered. Thus, modifications to the architecture are considered from the 
viewpoint of how a particular operation can be accessed, and not how two classes 
communicate with each other. In practice, the base architecture is encoded into a 
text file, which is given as input for the algorithm, with each operation in its own 
line. 

4.3 Transformations 
An architecture is transformed (i.e., one of its neighbors is found) by implementing 
architecture styles and design patterns to a given solution. The patterns we have 
chosen include very high-level architectural styles [39] (message dispatcher and 
client-server), medium-level design patterns [11] ( F a ç a d e and Mediator), and 
low-level design patterns [11] (Strategy, Adapter and Template Method). 
This selection of patterns and styles allows us to see how well the algorithm handles 
different types of changes. High-level patterns have a larger impact, as they usually 
affect large parts of the architecture, while lower level patterns only affect small 
parts. The transformations are implemented in pairs of introducing a pattern or 
removing a pattern. This ensures a wider traverse through the search space, as 
while implementing a pattern might improve the quality of architecture at one 
point, it might become redundant over the course of development. The dispatcher 
architecture style makes a small exception to this rule: the actual dispatcher must 
first be introduced to the system, after which the responsibilities can communicate 
through it. The transformations are the following, and each of them has a certain 
probability with which it is selected: 

• introduce/remove message dispatcher 

• communicate/remove communication through dispatcher 

• introduce/remove server 

• introduce/remove Façade 

• introduce/remove Mediator 

• introduce/remove Strategy 

• introduce/remove Adapter 

• introduce/remove Template Method. 

The legality of applying a pattern is always checked before transformations by 
giving pre-conditions. For example, the structure of the T e m p l a t e Method de-
mands that depending operations are in the same class. In addition, a corrective 
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function is added to check that the solution conforms to certain architectural laws, 
and that no anomalies are brought to the architecture. These laws demand uniform 
calls between two classes (e.g., through an interface or a dispatcher but not both), 
and state some basic rules regarding architectures (e.g., no operation can implement 
more than one interface). The corrective function, for example, discards interfaces 
that are not used by any class, and adds dispatcher connections between opera-
tions in two classes, if such a connection already exists between some operations in 
those classes. For example, if the "add S t r a t e g y " transformation is chosen, it is 
checked that the operation Oj is called by some other operation in the same class c 
and that it is not a part of another pattern already (pattern field is empty). Then, 
a S t r a t e g y pattern instance spi is created. It contains information of the new 
class(es) scj where the different versions of the operation are placed, and the com-
mon interface sii they implement. It also contains information of all the classes and 
operations that are dependent on Oi, and thus use the S t r a t e g y interface. Then, 
the value in the class field in the vector ovi (representing o,) would be changed 
from c to sci, the interface field would be given value sii and the pattern field the 
value spi. Adding other patterns is done similarly. Removing a pattern is done in 
reverse: the operation placed in a pattern class would be returned to its original 
base architecture class, and the pattern found in the supergenes pattern field would 
be deleted, as well as any classes and interfaces related to it. 

4.4 Quality Function 
In the case of software architecture design, selecting an appropriate evaluation func-
tion is particularly difficult, as there is no clear value to measure in the solutions. 
In real world, evaluation of software architecture is almost always done manually 
by human designers, and metric calculations are only used as guidelines. Also, two 
architects rarely agree on a unique quality for certain architecture, as evaluation 
is bound to be subjective, and different values and backgrounds will influence the 
outcome of any evaluation process. However, for a search algorithm to be able to 
evaluate the architecture, a purely numerical quality value must be calculated. 

In a fully automated approach, no human interception is allowed, and the eval-
uation function needs to be based on metrics. The selection of metrics may be 
as arguable as the evaluations of two architects on a single software architecture. 
The rationale behind the selected metrics in this approach is that they have been 
widely used and recognized to accurately measure some quality aspects of software 
architecture. Hence, the metrics are chosen so that they measure quality aspects 
that can be seen as most agreed upon in the real world, and singular values can 
be seen as accurate as possible. However, the combination of metrics and multiple 
optimization is another problem entirely. For many metrics, it may be arguable 
what quality attribute they measure, and may be seen as measurements for several 
different quality attributes. Many of these quality attributes, however, are contro-
versial. A perfect example is the selected quality attribute pair: modifiability and 
efficiency. The problem of multiple optimization is a direct result of the contra-
dictive aims of the two quality attributes: when attempting to optimize one, the 
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quality will decrease in view of the other. In our GA approach we have imple-
mented Pareto optimality [33] to conquer this problem. However, when evaluating 
the applicability of simulated annealing, we found it more practical to use a single 
weighted fitness, as we wanted to maintain SA as "pure" as possible (local and 
efficient), even though there are multi-objective versions of SA as well (e.g., [46]). 

The chosen quality function is based on well-known software metrics [8]. These 
metrics, especially coupling and cohesion, have been used as a starting point for 
the quality function, and have been further developed and grouped to achieve clear 
sub-functions for modifiability and efficiency, both of which are measured with a 
positive and negative metric. The biggest modifications to the basic metrics include 
taking into account the positive effect of interfaces and the dispatcher and client-
server architecture styles in terms of modifiability, as well as the negative effect of 
the dispatcher and server in terms of efficiency. Choosing and grouping the metrics 
this way makes sure that all architectural decisions are always considered from all 
viewpoints. Adding a pattern always adds a class or an interface (or both), and 
is thus considered by complexity. As the calls to an operation are also affected, 
the change is always also considered positive or negative by both modifiability and 
efficiency. 

Dividing the evaluation function into sub-functions also answers the demands 
of the real world. Hardly any architecture can be optimized from all quality view-
points, but some viewpoints are ranked higher than others, depending on the de-
mands regarding the architecture. By separating efficiency and modifiability, which 
are especially difficult to optimize simultaneously, we can assign a bigger weight to 
the more desired quality aspect, if we want to. When Wi is the weight for the respec-
tive sub-function sfi, the evaluation function / c ( x ) (which should be maximized) 
for solution x can be expressed as 

fc(x) —WiX s f i ~W2X s f 2 + W3X s f 3 - Wi x s f i -w5x s f 5 . (1) 

Here, s f i measures positive modifiability, s f 2 negative modifiability, s f 3 positive 
efficiency, s f i negative efficiency and finally s/5 measures complexity. All the sub-
functions are normalized so that they have the same range. The sub-functions are 
defined as follows ( |X| denotes the cardinality of X): 

i d 
sfi = \calis to interfaces| x J^(ufe) + |calls through dispatcher|) x y^(ufc), 

k=0 k=0 

s f 2 = |direct calls between operations in different classes| x 
k=0 

3 
+ \calls between operations within same classj x 5~~ (̂vk) x 2, 

fc=0 
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w 
sfa = |operations dependent of each other within same class\ x 

fc=0 
u 

|used operations in same dass| x 
fc=o 

e 
| depending operations in same ciass| x ^^(pfc), 

fc=o 

s/4 = ^ |Classlnstabilities\ + (2 x \dispatcherCalls\ + | server Cal/s|) x 
ds 

+ |calls between operations in different classes\, and 
k=0 

s/5 = |classes| + |interfaces|. 

In s f i , i is the number of operations called through an interface, d is the number 
of operations called through dispatcher, and v is the variability value of an operation 
(as in Fig. 4). The variability values v of those operations that are involved in 
interface or dispatcher calls, respectively, are summed. In s/2, c is the number of 
calls from a different class to an operation with no interface and with variability 
value Vk, sc is the number calls from within the same class to an operation with 
variability value Vk- The calculation is similar to that in s f i , as variability values of 
operations are summed if said operations are called based on given criteria. Calls 
within class are given a constant multiplier 2, as it is considered that a call within 
class bonds two operations and thus has double the negative effect on modifiability. 
The w, u and e in s/3 are the numbers of the types of calls as specified in s/3, 
similarly as in sfi and s/2. In s/3, however, the parameter size values p are 
summed instead of variability values. It should also be noted, that in s f i , most 
patterns also contain an interface. In s/3, "used operations in same class" means 
a set of operations in class C, which are all used by the same operation from class 
D. Similarly, "depending operations in same class" mean a set of operations in 
class K, which all use the same operations in class L. In s/4, ds is the number of 
calls through dispatcher or server where the called operation's frequency value is 
fk• The multiplier 2 for calls relayed by the message dispatcher is given as there 
are always two calls when the message dispatcher is used - one from the calling 
class to the dispatcher and one from the dispatcher to the receiving class. 

5 Experiments 
In this section we present the results from the preliminary experiments done with 
our approach. Tests were made using the ehome and robo example systems (intro-
duced before). The selected two systems are very different in nature and structure, 
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which would lead to very different architectures. Choosing these two different sys-
tems shows that the algorithm is not confined to any particular system, but can 
be generally used for any type of system. Most of the parameters used in our tests 
originate from the previous tests reported in [29, 31, 34], and give promising results 
with the GA approach. The implementation was made with Java 1.5. The tests 
were rim on a DELL laptop with 2,95 GB of RAM and 2,26 GHz processor, running 
with Windows XP. 

All tests were made with the constant r set to 20, and frozen (final) temperature 
tf set to 1. The weights for all sub-functions of the quality evaluation function were 
set to the same, i.e., all weights W{ were set to 1, as we did not want to favor any 
particular quality attribute over another, but aimed for balanced designs. Also, 
by setting the weights to 1 we do not need to consider the effect of the weights in 
fitness curves. 

The GA used in the combination experiments is based on our previous imple-
mentations [29, 31, 34]. The GA uses the same encoding, transformations (mu-
tations) and quality function as defined here for the SA. As stated in Section 3, 
the crossover operator is a single-point random crossover and selection is made 
with a rank-based roulette wheel method. As this paper concentrates on simulated 
annealing, the particularities of the GA implementation are not discussed further 
here; details can be found in [29, 31, 34, 27]. 

5.1 Using SA First 
The standard tests were made with 7500 as starting temperature and 0.05 as cool-
ing ratio. A longer annealing was also experimented with by setting the starting 
temperature to 10 000 (cooling ratio 0.05), and a faster annealing was tested by 
setting the cooling ratio to 0.15 (starting temperature 7500). A lower starting tem-
perature had also been tested previously with no obvious benefits [35]. The values 
were selected based on trial-and-error experiments. However, the results were un-
satisfactory for both systems, and there were no significant differences between 
the results achieved with different SA parameters. The trend of the quality curve 
for the SA was descending, and the end quality value was worse than the initial 
value (the initial value is the same as where the GA starts in the curves given in 
the following section). The high temperature tests for both systems took approxi-
mately 10 seconds per run and the fast annealing tests less than 5 seconds per run, 
standard test runtime is reported in the following. We then tried to build a base 
solution with a short and fast annealing (starting temperature 2500 and cooling 
ratio 0.15), and then continue the search with a genetic algorithm, which ran for 
250 generations and had a population of 100 (combination SAGA). This approach 
did not produce much better results: the SA curves were quite similar than with 
longer and slower runs, and while the quality curve for the GA portion did increase 
for a short while, it began to quickly descend drastically. Also in this case the end 
quality value was worse than the value for the initial solution. Again, the runtime 
for the SAGA seeded algorithm is reported in the following when compared to other 
approached. All experiments were run for 20 times. 
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5.2 Using a Combination of GA and SA 
As using the SA alone or for producing a seed did not produce good results, we 
tried using GA for creating a good base solution (again, with 250 generations and 
a population of 100), and then applying SA (starting temperature 2500, cooling 
ratio 0.15) for further tuning the solution (combination GASA). The experiments 
were run for 20 times and presented fitness curves are the average curves of the 20 
runs. We have chosen to show average curves, as we are, after all, interested in 
how the algorithms behave in general, not individual runs. In this case, the results 
were much better. The GA does a good basic work, and the SA is able to further 
improve the solution very quickly. 

EKome, GASA - 6A 
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Figure 5: GA portion of GASA quality curve for ehome 

Figure 5 presents the GA portion and Figure 6 the SA portion of the GASA 
quality curve for ehome. Figures 7 and 8 present the respective curves for robo. 
The GA curves represent the average of the elite (top 10% of the population) (given 
as an average over the 20 runs), and the SA curves are naturally simply the average 
of fitness values of the 20 runs, Note that the SA algorithm starts where the GA 
ends: the difference in the GA end value and SA start value is due to the fact that 
quality values are not recorded until one round of transformations has already been 
completed and because the GA curve is the average of elite, while SA handles only 
one solution. 

As can be seen in Figure 5, the GA begins with a short plummet, after which 
the quality (fitness) begins to develop steadily. We expect the plummet to be an 
effect of using the message dispatcher very early on. When the message dispatcher 
is used sparingly (as is the case after only a few mutations), its penalty is greater 
than its reward. After about 100 generations the fitness appears to stabilize, i.e., 
the curve is not increasing, and it does not seem likely to further develop. In Figure 
6, the SA begins to develop the solution from where the GA left off, and the curve 
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Ehome, GASA • SA 
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Temperature 

Figure 6: SA portion of GAS A quality curve for ehome 

develops rapidly until quite near the end of the SA process. 
In Figure 7, depicting the GA portion for the robo system, the GA first plum-

mets similarly as in the curve for ehome, but after it starts ascending, the devel-
opment seems more rapid and steady than for the ehome, and it appears as if the 
quality could still increase after the GA finishes. The SA portion of the GASA 
curve for robo, in Figure 8, appears quite similar to the GA curve at first, but look-
ing at the actual quality values reveals that the SA develops much more quickly 
than the GA. In the end the curve has reached a plateau, giving reason to believe 
that some optimum has been found. 
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Figure 7: GA portion of GASA quality curve for robo 
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Robo, GASA -SA 

Temperature 

Figure 8: SA portion of GASA quality curve for robo 

We have calculated the average fitnesses and standard deviations of GASA runs 
in Table 1. The average of the (averages of) elite is naturally the value where GA 
fitness curves end (Figures 5 and 7). The average of best (seed) is the average 
of the absolute best individuals provided by GA, which are then given as a seed 
for SA for further development. For SA we only have one value, as the algorithm 
only handles one individual at a time. From Table 1 we can see that the deviation 
especially in the case of GA is quite large, and the algorithm is not as stable as 
could be hoped. However, the deviation within the solutions after the SA (i.e., 
the final solutions from the seeded algorithm) is much smaller. There was no clear 
correlation between the elite fitness after GA and the fitness value after SA. 

System GA SA-System 
Elite Best (seed) 

SA-

Ehome "Average. 898.7 2695.5 25536.8 Ehome 
Stv,"deviation .390.7; 984.8 1233.6 

Rpb.o ; -Average; 1558.6 4456.5 37921.8. Rpb.o ; 
St. deviation 776.6 2127.3 7559.9 

Table 1: Statistical markers 

Finally, we have compared the runtimes of GA and SA and their combinations 
to random search (RS) and hill climbing (HC). The runtimes have been collected 
in Table 2. RS was run for 3500 iterations (same amount of iterations as SA 
with standard parameters) and HC was allowed 150 attemps of finding a neighbor 
after each ascent. All algorithms were run 20 times. The average fitness value 
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achieved with RS was -1915 for ehome and -4266 for robo. For HC, in 50% of 
the cases the algorithm only managed to ascend once, after which the algorithm 
terminated as 150 attempts at finding a better neighbor failed. In the rest of 
the cases HC was able to ascend 6-12 times. Due to such inconsistent results, 
average fitness values do not provide good information. However, HC is clearly 
not a suitable algorithm for this problem. As can be seen in Table 2, all local 
searches are significantly faster than GA or combinations with GA. It should be 
noticed, though, that the GA performs at least 25000 fitness evaluations (100 in 
a population times 250 generations and additionally the evaluations of offspring), 
while the SA only performs 3500 fitness evaluations (with the selected parameters). 
Also, crossover is a very time consuming operation for the GA. As a conclusion, 
GA and GASA are clearly the slowest algorithms, but produced just as clearly the 
best results. 

GA •SA ; GASA SAGA HC- RS 
Ehome -45s - 5 s -100s -50S ~6s -4 s 
Robo ~35S' ~6S -4 0s -40s ~2S ~4S 

Table 2: Runtimes for different algorithms 

6 Discussion 
In Section 5 we discussed the quality curves of the experiments made with the SA 
algorithm. Naturally, the UML graphs given as output should also be examined 
to get a wholesome idea of whether the results with extreme quality values are 
actually good. In addition to discussing the class diagrams related to the test 
graphs presented in Section 5 (the GASA tests), we will also discuss the UML 
graphs achieved when SA was used primarily. The example solutions are given in 
a simplified format high-level where the design solutions are emphasized, rather 
than giving the actual class diagrams given by the algorithm, as they would be too 
space consuming and difficult to interpret. As the format is free form, we have not 
included class relations, but simple use relations only. There are no methods or 
attributes present in the solutions that were not there in the base architecture. 

6.1 Proposed Architectures with GASA 
Using the GASA approach produced very similar solutions for both ehome and 
robo systems. The solutions were built around the message dispatcher, as nearly all 
communication between classes (in different base architecture classes) was handled 
through it. The dispatcher makes the system highly modifiable, as classes do not 
need to know any details of other classes; they merely send and receive messages 
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through the dispatcher. The architecture is also easy to understand quickly, as the 
message dispatcher creates a logical center for the system and separates different 
model classes. However, the message dispatcher creates huge loss in efficiency, as 
the increased message traffic greatly affects the performance of the system. Thus, 
it should be used as the primary method for communication or not be used at all, 
as in the case where it is only partially used the cost in efficiency is bigger than the 
gain in modifiability. 

In addition to the message dispatcher, all solutions achieved with the GASA 
approach had several instances of the Adapter pattern. The Adapter pattern 
is easy to apply, as it has very loose preconditions, but it is more costly in terms 
of efficiency than other patterns. There were usually also several instances of the 
Template Method pattern, which, in turn, is very low cost in terms of both effi-
ciency (it does not increase the number of calls) and complexity (only one class, no 
interface). In some cases, however, the algorithm had preferred the Strategy pat-
tern, and there would be many instances of Strategy, while only a few Template 
Method instances. 

An example solution for ehome achieved with GASA is presented in Figure 9. 
As can be seen, nearly all connections are handled via the message dispatcher, as 
only calls from the Main component to Music System and Coffee Machine, 
and from Music Sy stem to Music Files are handled directly between the com-
ponents. The example also shows that the Template Method is used very much 
to create low-level modifiability. The ehome is particularly suitable for a message 
dispatcher architecture style, and achieving a high level of message-based commu-
nication between components is desirable, as the message dispatcher is then used to 
its full potential and enables independency between components. The Adapters 
for Water Control and Speaker Manager are also particularly well placed, as 
these components are intuitively such that they could be replaced with new ones 
(in an ehome we may want to change the water faucet or upgrade to better speakers 
without changing the underlying kitchen or music systems), and thus the interface 
might change. The Template Methods for Coffee Machine, Temperature 
Regulation and Music System are also well chosen, as the specialized oper-
ations are such that alternative versions are easily conjured. Other Adapters, 
Template Methods and Strategies are acceptable, but a human designer 
would probably not apply them. 

A similar example solution for robo (also achieved with GASA) is presented 
in Figure 10. As can be seen, the message dispatcher is used here even more in-
tensely than in the case of ehome, as only connections between CombatEngine 
and Rules and some connections involving the SimulationOb ject are not us-
ing the message dispatcher, even though the amount of components is larger than 
in the case of ehome. However, while using the message dispatcher in these pro-
portions is desirable if it is chosen as the primary architecture style, if we consider 
the type of system the robo is (a framework), in real life a message dispatcher 
would probably not be the best option. All the components are actually tightly 
linked, and the design should concentrate more on extendibility and the actual 
functionality of the system. Also, as robo is a gaming application, using the mes-
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Figure 9: Example architecture for ehome, with GASA algorithm combination 

sage dispatcher in this extent would probably lead to significant disadvantage in 
terms of efficiency, which is particularly undesirable when the system needs to re-
spond quickly. The SA (or GA), however, does not have such high-level knowledge 
of the type of system it is dealing with and bases the design simply on the quality 
values, which are achieved from general structural decisions only. For robo, there 
are also several A d a p t e r , TemplateMethod and Strategy patterns, and the 
usage of these different patterns is more balanced than in the case of ehome, where 
the Template Method was the dominating pattern. In the proposed solution for 
robo, the Template Method and Strategy patterns are all intelligently used, 
as they consider operations and classes where the need for specialization is easily 



Simulated Annealing for Software Architecture Synthesis 259 

Simula tionObject 

TemplateMethod: 
simulationObjectControl 

Message 
Dispatcher 

Appearance 4 

Strategy. 
caiculateEnergy Energy 

ï 
Adapter 

Journey 
Adapter 

Strategy, 
speed Control 

>. Adapter Intelligence 

Strategy: 
findRobot 

SimulationEngine 

Adapter Simulât» nArea 

TemplateMethod: 
destructionCalcutation 

hitCatoulation 

TemplateMethod: 
weightControl 

Rules 

—I— 

CombatEngine 

Strategy: 
combatControl 

Strategy 
gunControl 

"TemplateMethod" 
healthControl 
priceCcwitro] 

Armortype 

Figure 10: Example architecture for robo, with GASA algorithm combination 
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seen. The Adapters, however, are not used particularly well. To summarize, us-
ing the message dispatcher gives a clear focal point in the solutions, and the full 
potential of the message dispatcher is used. It should also be pointed out that 
solutions achieved after only running the GA (i.e., the seeds for the SA) often had 
the message dispatcher, but its usage was mostly quite minimal, as only a couple of 
components were communicating via the dispatcher. Thus, the SA algorithm has a 
significant influence in achieving a much better level of usage in the final solution. 
In addition, low-level design patterns are used to further fine-tune the solution at 
class-level. 

6.2 Proposed Architectures Based on SA 
As mentioned, we also performed tests with only SA and by combining SA to GA 
by using the SA produced solution as a seed for the GA. The produced solutions 
were very similar for all cases of the SA (high temperature, standard, and fast 
annealing) and the SAGA approach. 

In these cases, the message dispatcher architecture style did not appear in any 
of the solutions for either system. As for the patterns, the Adapter pattern was 
clearly the most popular in all the solutions for both systems. For the robo sys-
tem, there were very few instances of other patterns; only a couple of Template 
Method or Strategy patterns could be found in the solutions. The solutions for 
robo seemed quite difficult to understand at a glance; the structure depends greatly 
on the base architecture, and as all classes are "by default" given an interface, the 
minimum amount of classes/inter faces is 44 for the robo system. When the pat-
terns are added (even if only a few) the architecture easily becomes quite complex. 
The solutions for ehome were significantly easier to understand, as the amount of 
classes/interfaces that appear by default is roughly half the amount of classes for 
robo system. Curiously enough, there seemed to also be slightly more appearances 
of the Strategy and Template Method patterns in the ehome solutions than 
in robo, but the ehome solutions still seemed more understandable. 

It appears that the S A by itself is incapable of introducing solutions that produce 
delayed reward, such as the message dispatcher architecture style. Also, even if the 
GA is able to introduce such solutions after being given the seed from the SA, it 
will take exceptionally long before the reward will overcome the cost, as the SA has 
already developed the solutions a great deal, and the GA may have to reverse the 
design process (i.e., apply the remove-transformations) in order to apply needed 
changes. The results of merely SA based systems axe, thus, unsatisfactory. 

7 Conclusions and Future Work 
We have presented an approach that uses SA in software architecture synthesis. A 
base architecture is given as input and architecture styles and design patterns are 
used as transformations when searching for a better solution in the neighborhood. 
The solution is evaluated with regard to modifiability, efficiency and complexity. 
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The experimental results achieved with this approach show that SA on its own is 
not able to produce good quality solutions in terms of quality values or the re-
sulting UML class diagrams. Attempts of improving the SA based solution with 
GA were also unsuccessful in increasing the quality values. However, when com-
bining GA and SA so that the SA fine-tunes a basic solution achieved with the 
GA, both the quality values and the class diagrams are very good. Moreover, as 
SA is significantly faster than the GA, the result was obtained much quicker than 
would have been possible by using only GA. Thus, it is concluded that while SA is 
not sophisticated enough to be able to introduce complex alterations that require 
several transformations and produce delayed reward, it is able to quickly improve 
solutions where the base for such alteration has already been made. 

It should be noted though, that SA seems to act very "single-mindedly". When 
SA was used on its own, no solutions contained the message dispatcher architecture 
style. When SA was used after the GA, all the solutions used the message dispatcher 
architecture style very heavily, whether it was actually desired or not. Thus, it 
appears that the mechanism in SA that should prevent it from being stuck to a local 
optimum is not sufficient to divert the search in the case of software architecture 
synthesis. 

When compared to the manual process, any of the presented algorithms (GA, 
SA, GASA or SAGA) performs significantly faster than a human designer. A 
human designer would need several hours to peform the design task, while our 
algorithms manage in mere minutes. In terms of quality, the GA and GASA come 
quite close to results from a human designer. Previous studies have shown that GA 
is at a level of a college student [28], and GASA manages to produce better quality 
and faster results. Thus, in relation to the ultimate goal of automating software 
engineering, this paper brings us closer to that goal by providing a more efficient 
way of automating software architecture design while also producing better quality 
results than what have been previously achieved with GA alone. 

In our future work we will concentrate on practical issues, and improve our basic 
implementation so that patterns (which are currently hardcoded), could be added 
at will. This will significantly increase the search space, but will also make the need 
for an algorithm to handle a large amount of patterns even greater. Moreover, the 
larger the system is and the more computation is required, the more there will also 
be need for a way to quicken the evolutionary process. Thus, we will also be doing 
experiments on very large systems to further see how much the seeded algorithm 
can outperform the GA in terms of time. 

8 Acknowledgements 

The authors would like to thank professor Kai Koskimies for helpful discussions 
and the anonymous referees for their valuable comments. 



262 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen 

References 
[1] Aleti, A., Bjornander, S., Grunske, L., and Meedeniya, I. Archeopterix: an 

extendable tool for architecture optimization of AADL models. In Proceed-
ings of the ICSE Workshop on Model-Based Methodologies for Pervasive and 
Embedded Software, pages 61-71, 2009. 

[2] Amoui, M., Mirarab, S., Ansari, S., and Lucas, C. A genetic algorithm 
approach to design evolution using design pattern transformation. Interna-
tional Journal of Information Technology and Intelligent Computing, 1:235-
245, 2007. 

[3] Aragon, C. R., Johnson, D. S., McGeoch, L. A., and Schevon, C. Optimization 
by simulated annealing: An experimental evaluation; part II, graph coloring 
and number partitioning. Operations Research, 39(3):378-406, 1991. 

[4] Bansiya, J. and Davis, C. G. A hierarchical model for object-oriented design 
quality assessment. IEEE Transactions on Software Engineering, 28(1):4-17, 
2002. 

[5] Bodhuin, T., Di Penta, M., and Troiano, L. A search-based approach for dy-
namically re-packaging downloadable applications. In Proceedings of the Con-
ference of the Center for Advanced Studies on Collaborative Research (CAS-
CON07), pages 27-41, 2007. 

[6] Bouktif, S., Sahraoui, H., and Antoniol, G. Simulated annealing for improving 
software quality prediction. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO 2006), pages 1893-1900. ACM, 2006. 

[7] Bowman, M., Briand, L. C., and Labiche, Y. Solving the class responsibility 
assignment problem in object-oriented analysis with multi-objective genetic 
algorithms. IEEE Transaction on Software Engineering, 36(6):817-837, 2010. 

[8] Chidamber, S. R. and Kemerer, C. F. A metrics suite for object oriented 
design. IEEE Transaction on Software Engineering, 20(6):476-492, 1994. 

[9] Clarke, J., Dolado, J. J., Harman, M., Hierons, R. M., Jones, B., Lumkin, 
M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., and Shepperd, M. 
Reformulating software engineering as a search problem. IEE Proceedings -
Software, 150(3):161-175, 2003. 

[10] Frankel, D. S. Model Driven Architecture - Applying MDA to Enterprise Com-
puting. Wiley Publishing, Inc., 2003. 

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995. 

[12] Gold, N., Harman, M., Li, Z., and Mahdavi, K. A search based approach 
to overlapping concept boundaries. In Proceedings of the 22nd International 
Conference on Software Maintenance (ICSM 06), pages 310-319. IEEE, 2006. 



Simulated Annealing for Software Architecture Synthesis 263 

13] Harman, M., Mansouri, S. A., and Zhang, Y. Search based software engineer-
ing: a comprehensive review of trends, techniques and applications. Technical 
report TR-09-03, King's College, London, United Kingdom, 2009. 

141 Harman, M. and Tratt, L. Pareto optimal search based refactoring at the 
design level. In Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO 2007), pages 1106-1113. ACM, 2007. 

151 Jensen, A. C. and Cheng, B. H. C. On the use of genetic programming for 
automated refactoring and the introduction of design patterns. In Proceedings 
of the Genetic and Evolutionary Computation Conference (GECCO 2010), 
pages 1341-1348. ACM, 2010. 

161 Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. Optimization 
by simulated annealing: An experimental evaluation; part I, graph partition-
ing. Operations Research, 37(6):865-892, 1989. 

171 Julstrom, B. A. Seeding the population: improved performance in a genetic 
algorithm for the rectilinear Steiner problem. In Proceedings of the ACM 
Symposium on Applied Computing (SAC94), pages 222-226. ACM, 1994. 

18] Kirkpatrick, S., Gelatt, C., and Vecchi, M. Optimization by simulated anneal-
ing. Science, 220:671-680, 1983. 

191 Laarhoven van, P. J. M. and Aarts, E. Simulated Annealing: Theory and 
Applications. Kluwer, 1987. 

201 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and 
Teller, E. Equation of state calculation by fast computing machines. Journal 
of Chemical Physics, 21:32-40, 1953. 

211 Michalewicz, Z. Genetic Algorithms + Data Structures = Evolutionary Pro-
grams. Springer-Verlag, 1992. 

22] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, 1996. 

231 O'Keeffe, M. and O Cinneide, M. Towards automated design improvements 
through combinatorial optimization. In Workshop on Directions in Software 
Engineering Environments (WoDiSEE2004), W2S Workshop - 26th Interna-
tional Conference on Software Engineering, pages 75-82. IEEE, 2004. 

241 O'Keeffe, M. and 0 Cinneide, M. Search-based software maintenance. 
In Proceedings of Conference on Software Maintenance and Re-engineering 
(CSMR '06), pages 249-260. IEEE, 2006. 

251 O'Keeffe, M. and O Cinneide, M. Search-based refactoring for software main-
tenance. Journal of Systems and Software, 81(4):502-516, 2008. 

261 Raiha, O. A survey on search-based software design. Computer Science Review, 
4(4):203-249, 2010. 



264 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen 

[27] Räihä, O. Genetic Algorithms in Software Architecture Synthesis. PhD thesis, 
University of Tampere, 2011. 

[28] Räihä, O., Hadaytullah, Koskimies, K., and Mäkinen, E. Synthesizing archi-
tecture from requirements: A genetic approach,. In Relating Software Require-
ments and Architectures, pages 307-331. Springer, 2011. 

[29] Räihä, O., Koskimies, K., and Mäkinen, E. Genetic synthesis of software 
architecture. In Proceedings of the 7th International Conference on Simulated 
Evolution and Learning (SEAL08), pages 565-574. Springer, 2008. 

[30] Räihä, O., Koskimies, K., and Mäkinen, E. Empirical study on the effect 
of crossover in genetic software architecture synthesis. In Proceedings of the 
World Congress on Nature and Biologically Inspired Computing (NaBIC09), 
pages 619-625. IEEE, 2009. 

[31] Räihä, O., Koskimies, K., and Mäkinen, E. Scenario-based genetic synthesis 
of software architecture. In Proceedings of the 4th International Conference on 
Software Engineering Advances (ICSEA09), pages 437-445. IEEE, 2009. 

[32] Räihä, O., Koskimies, K., and Mäkinen, E. Complementary crossover for 
genetic software architecture synthesis. In Proceedings of the 10th International 
Conference on Intelligent Systems Design and Applications (ISDA10), pages 
359-366. IEEE, 2010. 

[33] Räihä, O., Koskimies, K., and Mäkinen, E. Generating software architecture 
spectrum with multi-objective genetic algorithms. In Proceedings of the Third 
World Congress on Nature and Biologically Inspired Computing (NaBICll), 
pages 29-36. IEEE, 2011. 

[34] Räihä, O., Koskimies, K., Mäkinen, E., and Systä, T. Pattern-based genetic 
model refinements in MDA. Nordic Journal of Computing, 14(4):322-339, 
2008. 

[35] Räihä, O., Mäkinen, E., and Poranen, T. Using simulated annealing for pro-
ducing software architectures. Technical Report D-2009-2, University of Tam-
pere, Tampere, Finland, 2009. 

[36] Ramsey, C. L. and Grefenstett, J . J. Case-based initialization of genetic algo-
rithms. In Proceedings of the 5th International Conference on Genetic Algo-
rithms, pages 84-91. Morgan Kaufmann Publishers, 1993. 

[37] Seng, O., Bauyer, M., Biehl, M., and Pache, G. Search-based improvement 
of subsystem decomposition. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO 2005), pages 1045-1051. ACM, 2005. 

[38] Seng, O., Stammel, J., and Burkhart, D. Search-based determination of refac-
torings for improving the class structure of object-oriented systems. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 
2006), pages 1909-1926. ACM, 2006. 



Simulated Annealing for Software Architecture Synthesis 265 

[39] Shaw, M. and Garlan, D. Software Architecture - Perspectives on an Emerging 
Discipline. Prentice Hall, 1996. 

[40] Simons, C. L. and Parmee, I. C. A cross-disciplinary technology transfer 
for search-based evolutionary computing: from engineering design to software 
engineering design. Engineering Optimization, 39(5):631-648, 2007. 

[41] Simons, C. L. and Parmee, I. C. Single and multi-objective genetic operators 
in object-oriented conceptual software design. In Proceedings of the Genetic 
and Evolutionary Computation Conference (GECCO 2007), pages 1957-1958. 
ACM, 2007. 

[42] Simons, C. L. and Parmee, I. C. Dynamic parameter control of interactive 
local search in UML software design. In Proceedings of IEEE International 
Conference on Systems, Man and Cybernetics, pages 3397-3404. IEEE Press, 
2010. 

[43] Simons, C. L. and Parmee, I. C. Elegant object-oriented software design via 
interactive, evolutionary computation. IEEE Transactions on Systems, Man 
and Cybernetics, Part C Applications and Reviews, 42(6):1797-1805, 2012. 

[44] Simons, C. L., Parmee, I. C., and Gwynllyw, R. Interactive, evolutionary 
search in upstream object-oriented class design. IEEE Transactions on Soft-
ware Engineering, 36(6):798816, 2010. 

[45] Trikia, E., Colletteb, Y., and Siarry, R A theoretical study on the behavior of 
simulated annealing leading to a new cooling schedule. European Journal of 
Operational Research, 166:77-92, 2005. 

[46] Varadharajan, T. K. and Rajendran, C. A multi-objective simulated-annealing 
algorithm for scheduling in flowshops to minimize the makespan and total 
flowtime of jobs. European Journal of Operational Research, 167:772-795, 
2005. 

Received 20th August 2012 





Acta Cybernetica 21 (2013) 267-271. 

Realizing Small Tournaments Through 
Few Permutations* 

Christian Eggermontj Cor Hurkensj and Gerhard J. Woeginger^ 

Abstract 
Every tournament on 7 vertices is the majority relation of a 3-permutation 

profile, and there exist tournaments on 8 vertices that do not have this prop-
erty. Furthermore every tournament on 8 or 9 vertices is the majority relation 
of a 5-permutation profile. 

Keywords: voting systems; digraph realization; extremal combinatorics 

1 Introduction 
A tournament T = (V, A) is a directed graph on a vertex set V whose arc set A 
contains exactly one arc between any pair of distinct vertices. A finite family of (not 
necessarily distinct) permutations of V forms a realization of the tournament, if for 
every arc uv € A vertex u precedes vertex v in more than half of the permutations. 
A realization of the tournament by k permutations is called a k-permutation profile. 
McGarvey [2] proved that every tournament has a realization by a finite number of 
permutations. Subsequent results by Stearns [6] and Erdos & Moser [1] yield that 
every tournament on n vertices can be realized by 0(n/ log n) permutations, and 
that some tournaments on n vertices cannot be realized by fewer than f l(n/ log n) 
permutations. We define the McGarvey number McG(T) of a tournament T as 
the size of the smallest possible permutation family that realizes the tournament; 
note that McG(T) always is an odd integer. 

Shepaxdson & Tovey [5] analyzed several combinatorial questions on the so-
called predictability number of tournaments, a parameter closely related to realiza-
tions of tournaments. Page 502 of [5] formulates the conjecture that every 7-vertex 
tournament T has McG(T) < 3. In this technical note we confirm this conjec-
ture, and we also discuss a number of related questions. Our results confirm this 
conjecture: 
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• Every 7-vertex tournament T satisfies McG(T) < 3. 

• Every 8-vertex and every 9-vertex tournament T satisfies McG(T) < 5. 

• There exist 96 non-isomorphic 8-vertex tournaments T with McG(T) = 5. 

• There exist 17.674 non-isomorphic 9-vertex tournaments with McG(T) = 5. 

All our results have been derived with the help of computer programs, and in 
particular with the help of the software packages AIMMS and CPLEX. 

2 Mathematical model and computational results 
We express every permutation of the vertex set V = {1 ,2 , . . . ,n} by a a transitive 
tournament, which can be considered as a permutation (total order) of V. It is well-
known (see for instance Moon [4]) that a tournament without directed triangles is 
transitive. We use n2 integer variables xuv € {0,1} with u, v = 1 , . . . ,n to encode 
the arcs of the tournament, and we impose the following two families of linear 
inequalities. 

xuv + xvu = 1 for all u.v £ V 

xuv + xvw + xwu < 2 for all u,v,w £V 

The first constraint family enforces that for every two vertices u, v there is either 
an arc uv or an arc vu but not both. The second constraint family forbids the 
occurrence of directed triangles (and thus makes the tournament transitive). 

In order to decide whether a given tournament T = (V, A) can be realized by 
three permutations, we introduce three such sets of integer variables xuv, x'uv, x"v 
together with the corresponding families of constraints. Furthermore we add the 
constraints 

Xuv + x'uv + x([„ > 2 for all uv £ A. 

These constraints ensure that vertex u precedes vertex v in more than half of the 
three permutations. McKay [3] gives a fist that enumerates all 456 non-isomorphic 
tournaments on seven vertices. We worked through the tournaments on this list one 
by one, and for each of them the software package AIMMS managed to find a feasi-
ble solution to the corresponding linear integer program. We also worked through 
the list of 6,880 non-isomorphic tournaments on eight vertices and through the list 
of 191,536 non-isomorphic tournaments on nine vertices; for all these tournaments 
AIMMS found a realization by five permutations. 

Theorem 1. Every tournament on n <1 vertices has a realization by three per-
mutations. Every tournament on n <9 vertices has a realization by five permuta-
tions. • 
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0000110.011000.00010.0001.100.10.1 
0000110.101000.10010.0001.100.10.1 
0001010.011000.00100.0001.110.10.1 
0001100.101000.10010.0001.100.10.1 
0001100.101000.10100.0010.110.11.1 
0010001.010100.00010.0110.000.10.1 
0010001.110000.01010.0110.100.10.1 
0010010.101000.00110.0001.100.10.1 
0010010.101000.10100.1001.110.10.1 
0010100.101000.00011.0001.100.10.0 
0010100.101000.10010.1001.110.10.1 
0011000.000011.00100.1010.101.10.1 
0011000.000110.10000.0111.100.11.1 
0011000.000110.10000.1101.011.10.1 
0011000.000110.10000.1101.110.11.1 
0011000.010010.00100.1110.011.01.1 
0011000.010010.00100.1110.101.11.1 
0011000.100100.01010.0001.110.10.1 
0011000.100100.10100.0011.010.10.1 
0011000.101000.10100.0011.110.10.1 
0011100.110000.00110.1010.001.10.1 
0011100.110000.01010.0110.001.10.1 
0100010.001100.10010.0001.100.10.1 
0100010.011000.10010.0101.100.10.1 
0100010.101000.10101.0001.100.10.0 
0100100.010000.01010.0110.100.11.1 
0100100.010010.00110.0001.000.10.1 
0100100.101000.10011.0001.100.10.0 
0101000.110000.10110.0011.100.10.1 
0101100.010100.01010.0010.001.10.1 
0101100.011000.01010.0010.101.10.1 
0110000.001100.10010.1001.110.10.1 
0110000.101000.10110.0011.100.10.1 
0110010.100001.10101.1001.100.10.0 
0110100.100001.10011.1001.100.10.0 
0110100.101000.11010.0101.001.10.0 
0111000.100100.11010.1010.110.01.1 
1000010.110100.11000.0101.010.10.1 
1000010.111000.00110.0001.100.10.1 
1000100.010110.01000.0010.100.11.1 
1000100.110010.11000.1100.110.11.1 
1000100.110100.10010.1001.010.10.1 
1001000.100100.00011.1000.110.10.1 
1001000.100110.10010.0100.100.11.1 
1001000.101100.00110.0000.110.11.1 
1001000.110010.10001.1100.100.10.1 
1001000.110100.01100.0010.110.11.1 
1001000.110100.11000.0011.110.10.1 

1001010.110010.11000.0101.001.00.0 
1001100.110010.10010.1010.001.00.1 
1001100.111000.01010.0010.101.10.1 
1010000.000111.01000.1100.101.11.0 
1010000.001101.00010.1100.101.11.0 
1010000.100011.00101.1100.010.01.0 
1010000.100011.10100.1110.100.11.1 
1010000.100101.00011.1100.010.01.0 
1010000.100101.01001.1100.110.11.0 
1010000.100101.10010.1110.100.11.1 
1010000.101001.00101.1100.110.11.0 
1010000.101001.00110.1100.101.11.0 
1010000.101100.10001.1110.110.11.1 
1010000.111000.01100.1110.111.11.1 
1010001.110001.00110.0011.000.00.0 
1010001.110001.00110.1010.010.00.1 
1010001.110001.00110.1010.100.10.1 
1010001.110010.00011.1100.100.01.0 
1010001.110010.00101.0110.000.01.0 
1010001.110010.10100.1011.001.00.0 
1010001.110010.10100.1011.010.00.1 
1010001.110100.00011.1010.001.00.0 
1010001.110100.00011.1010.100.10.1 
1010001.110100.01010.0011.010.00.1 
1010001.110100.01010.0011.100.01.0 
1010010.110001.00011.1100.100.01.0 
1010010.110001.00101.0110.000.01.0 
1010100.101010.01100.0001.001.10.0 
1010100.110001.00011.1010.010.00.1 
1010100.110001.01010.0011.001.00.0 
1010100.111000.01010.0110.001.10.1 
1010100.111000.01010.1010.101.10.1 
1100000.010110.11000.0111.100.11.1 
1100000.011010.00110.0001.100.10.1 
1100000.101010.10110.1000.110.01.1 
1100000.110010.10110.1100.010.01.1 
1100000.110100.10110.0011.000.10.1 
1100000.110100.11010.1001.110.10.1 
1100000.111000.10101.0011.100.10.0 
1100100.110010.11010.1010.001.00.1 
1101000.011100.00110.0010.001.10.1 
1101000.101010.11010.0001.101.00.0 
1101000.110010.11100.0101.001.10.0 
1110000.100110.11001.0011.100.01.0 
1110000.101010.10101.0011.100.01.0 
1110000.101010.11010.0101.001.00.0 
1110000.110001.10011.1110.100.01.0 
1110000.111000.11100.1110.011.10.1 

Table 1: The 96 non-isomorphic 8-vertex tournaments T with McG(T) = 5. 
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0 1 2 3 4 5 6 7 
0 - * 1 1 0 0 * * 

1 * - * 1 1 0 0 * 

2 0 * - * 1 1 0 * 

3 0 0 * - 1 1 1 0 
4 1 0 0 0 - * 1 1 
5 1 1 0 0 * - 1 0 
6 * 1 1 0 0 0 - 1 
7 * * * 1 0 1 0 -

Table 2: The adjacency matrix of the directed graph Gg. 

In our computational experiments, we detected that 96 of the 6.880 non-
isomorphic 8-vertex tournaments cannot be realized by three permutations. These 
tournaments are listed in Table 1. Each tournament is represented as the upper 
triangle of the adjacency matrix in row order, and consecutive rows are always 
separated by dots (this is the representation used in McKay's list [3]). 

We also took a closer look at these 96 exceptional tournaments, and tried to 
understand their common properties. We used CPLEX to analyze their structure, 
and to identify minimal infeasible subsystems of the underlying linear integer pro-
grams. It tinned out that all 96 tournaments contain the directed subgraph Gg 
whose adjacency matrix is depicted in Table 2. The arcs marked by '*' are un-
specified, and their orientation can be set arbitrarily in the tournaments. (Note: 
Since there are eight vertex pairs with unspecified arcs, this would yield 256 corre-
sponding 8-vertex tournaments; however symmetries and isomorphisms reduce this 
number to 96.) 

Observation 2 . If a tournament T contains the graph Gg as a subgraph on eight 
vertices, then T has no realization by three permutations. • 

We stress that the copyright on this graph Gg belongs to Shepardson & Tovey [5] 
who established that any tournament containing a subgraph Gg has a predictability 
number of at most 13/20. 

Finally, our programs detected that 17,674 out of 191,536 non-isomorphic 9-
vertex tournaments cannot be realized by three permutations. 

3 Conclusions 
The computational approach described in this note is strong enough to handle all 
tournaments with n < 9 vertices. For n = 10 vertices the running times would still 
be manageable, but we did not spend much time on McKay's list [3] with 9,733,056 
non-isomorphic tournaments on ten vertices: we do not expect any surprises from 
them, and we firmly believe that all of them will be realizable by five permutations. 
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It might be interesting to determine the smallest tournament that has no re-
alization by five permutations. We randomly explored a (tiny) fraction of the set 
of 20-vertex tournaments, but we did not succeed in finding anything (for n > 20 
the computation times become prohibitively large). The counting argument of 
Stearns [6] yields the existence of a 41-vertex tournament T41 with McG(T4i) > 7. 
However, for small tournaments the asymptotic bounds implied by [6] seem to be 
rather loose: The same counting argument only yields the existence of a 19-vertex 
tournament X19 with McG(Tig) > 5, whereas we know that there exist 8-vertex 
tournaments with that property. 
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On Closedness Conditions, Strong Separation, 
and Convex Duality 

Miklós Újvári* 

Abstract 

In the paper, we describe various applications of closedness and duality 
theorems from previous works of the author. First, the strong separability 
of a polyhedron and a linear image of a convex set is characterized. Then, 
it is shown how stability conditions (known from the generalized Fenchel-
Rockafellar duality theory) can be reformulated as closedness conditions. Fi-
nally, we present a generalized Lagrangian duality theorem for Lagrangian 
programs described with cone-convex/cone-polyhedral mappings. 

Keywords: regularity condition, strong separation, convex duality 

1 Introduction 
Closedness conditions require the closedness of convex sets of the form 

(ACi) + C2 ••= [Ax + y : x £ C\, y £ C72} 

or 
C I + A _ 1 ( C 2 ) := {x + v : x £ C\, Av £ C2}, 

where A is an m by n real matrix, C\ and C2 are convex sets in lZn and lZm, 
respectively. These conditions play an important role in the theory of duality in 
convex programming, see [7] and [8]. In this paper our aim is to describe further 
applications. 

We begin this paper with stating the main results of [7] and [8]. First we fix 
some notation. 

Let us denote by rec C and bar C the recession cone and the barrier cone of a 
convex set C in lZd, respectively, that is let 

recC := {u G Kd : x + Xv £ C (x £ C, X > 0)} , 

ba rC := {u; G TZd : inf {wTx : x £ C] > -00} . 

Then rec C and bar C are convex cones. 
"H-2600 Vác, Szent János utca 1., Hungary. E-mail: ujvarimScs.elte.hu 
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Let us denote by ri C (resp. clC) the relative interior (resp. closure) of the 
convex set C in lZd. The relative interior of a convex set C is convex, and is 
nonempty if the convex set C is nonempty. (See [4] for the definition and properties 
of the relative interior.) 

The main result of [7] and [8] is the following closedness theorem. See [8] for an 
extension of Theorem 1.1 with statements concerning the recession cones. See [3], 
[7] for further closedness theorems. 

Theorem 1.1. Let A be an m by n real matrix. Let Ci be a closed convex set in 
1Zn, and let P2 be a polyhedron in lZm. Then between the statements 
a) (ATbar P2)ll ri (bar Ci) ^ 0, 
b) j4_1(—recP2) n (recCi) C - r e c C i , 
c) (AC\) + P2 is closed, 
d) G\ + A~1(P2) is closed, 
hold the following logical relations: a) is equivalent to b); c) is equivalent to d); a) 
or b) implies c) and d). 

In [7] two applications of Theorem 1.1 are mentioned. These duality theorems 
axe stated in Theorems 1.2 and 1.3. 

We will use the terminology and notations of [5] here. Let / : lZn —> 1ZU {+00} 
be a convex function, and let g : lZm 77 U {—00} be a concave function. Let 
A G 7Zmxn be a matrix, and let a e lln, b G 1Zm be vectors. We will consider the 
following pair of programs from [5]: 

(P) : Find inf{/(«) - g{Ax -b) + aTx:x G 1Zn}, 
(D): Find sup{9

c(y) - fc(ATy - a) + bTy : y € 11™}. 

Here fc and gc denote the convex conjugate function of / and the concave conjugate 
function of g, respectively, that is let 

fc(w) := sup { w T x - f{x) : xSPP), gc(y) := inf {yTz - g(z) : * G 11™} . 

Let [/] and [<7] denote the epigraph of / and the hypograph of g, respectively, that 
is let 

[ / ] := { (x , /z ) G 1ln+1 : f { x ) < M}, [g] := {(z, v) G 1lm+1 : g(z) > v}. 

The function / is closed whenever its epigraph [/] is closed, and / is a polyhedral 
convex function when its epigraph [/] is a polyhedron. Let F { f ) and F(g) denote 
the domain of finiteness of the functions / and g, respectively, that is let 

F ( f ) := {xe1Zn: f(x) < +00}, Fig) := {z£llm: g(z) > -00} . 

The points of the set 

P : = F ( f ) D {x : Ax - b G F(g)} 
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axe called the feasible solutions of program (P). We denote by vP the optimal value 
of program (P), that is let 

vP := inf {/(x) - g(Ax - b) + aTx : x 6 P } . 

For the program (D) the set D and the value vp> can be defined similarly. 
With this notation the main duality results of [7] can be stated as follows. 

Theorem 1.2. Let f be a convex function on TZn, and let —g be a polyhedral convex 
function on TZm. Then between the statements 
a) the function f is closed, and there exists a strictly feasible solution of the program 
(D), that is a point yo € lZm such that j/o € F(g°) and ATy0 — a £ ri F(fc), 
b) it holds that P U D / 0, and the primal closedness assumption is satisfied, that 

is closed, 
c) the optimal values of programs (P) and (D) are equal, and the primal optimal 
value vp is attained if it is finite, 
hold the following logical relations: a) implies b); b) implies c). 

The next theorem is a counterpart of Theorem 1.2, as for closed convex functions 
/ and — g the equations fcc = f and gcc — g hold, so Theorem 1.2 can be dualized. 

Theorem 1.3. Let f be a closed convex function on 1Zn, and let —g be a polyhedral 
convex function on lZm. Then between the statements 
a) there exists a strictly feasible solution of the program (P), that is a point XQ £ lZn 

such that XQ £ ri F ( f ) and Axo — b £ F(g), 
b) it holds that P l l D / 0 , and the dual closedness assumption is satisfied, that is 
the set 

is closed, 
c) the optimal values of programs (P) and (D) are equal, and the dual optimal value 
VD is attained if it is finite, 
hold the following logical relations: a) implies b); b) implies c). 

In the paper, we describe various applications of these closedness and duality 
theorems: Theorems 1.1, 1.2, and 1.3 will be applied in Sections 2, 3, and 4, 
respectively. In Section 2 an analogue of Theorem 1.1 is proved, where the property 
closedness is replaced by strong separability. In Section 3 we reformulate stability 
conditions (known from the generalized Fenchel-Rockafellar duality theory, see [5]) 
as closedness conditions. Generalized Lagrangian duality (for programs with cone-
convex constraints) is the topic of several papers, see for example [9], [2], and [1]. 
Our approach is different: in Section 4 we study Lagrangian programs described 
with cone-convex/cone-polyhedral mappings. 

is the set 
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2 Strong separation 
In this section we will prove an analogue of Theorem 1.1 for strong separation, 
where the property "closed" is replaced with the property "the origin is not an 
element of the closure". 

Two nonempty convex sets C\ and C2 in lZn are called strongly separable if 
there exists a vector ai G lZn such that 

sup {a^x i : x i G C i } < inf{a^X2 : x2 G C 2 } . 

It is well-known (see [4], Theorem 11.4) that the sets C\ and C2 are strongly 
separable if and only if 0 0 cl(C2 + (—Ci)). (Note that the sets C\ and C2 are 
disjoint if and only if 0 & C2 + (-Ci).) This fact implies the following lemma (see 
Corollaries 11.4.2 and 19.3.3 in [4]). 

Lemma 2.1. Let C\ be a convex set in 7Zn, and let P\,P2 be polyhedrons in 7Zn. 
Then, the following statements hold: 
a) If 0 ^ cl C\ then the sets {0} and C\ are strongly separable. 
b) If P\ ilP2 — 0 then the sets Pi and P2 are strongly separable. 

The next theorem is an immediate consequence of Theorem 1.1. 

Theorem 2.1. Let A be an m by n real matrix. Let C\ be a convex set in 7Zn, and 
let P2 be a polyhedron in 7Zm. Then between the statements 
a) 0 £ (ACi) + P2 (that is the sets AC\ and —P2 are disjoint), 
b) 0 ^ Ci + A~1(P2) (that is the sets —C\ and A~l(P2) are disjoint), 
c) 0 ^ cl ((AC\) + P2) (that is the sets AC\ and —P2 are strongly separable), 
d) 0 ^ cl (Ci + A~1(P2)) (that is the sets —C\ and A _ 1 (P 2 ) are strongly separable), 

hold the following logical relations: a) is equivalent to b); a) is equivalent to c) if 
the set (ACi) + P2 is closed; b) is equivalent to d) if the set C\ + A~1(P2) is closed. 

Specially, all the four statements are equivalent if from Theorem 1.1 statement 
a), b), c) or d) holds. • 

The statements c) and d) in Theorem 2.1 are equivalent in the general case as 
well, as the following theorem shows. 

Theorem 2.2. Let A be an m by n real matrix. Let C\ and C2 be convex sets in 
7Zn and 7Zm, respectively. Then, 
a) if 0 ^ cl ((ACi) + C2) then 0 £ cl(Ci + A~l(C2)) (in other words the strong 
separability of the sets ACy and —C2 implies the strong separability of the sets — C\ 
and A-yCOJ, 
b) the statement a) can be reversed if C2 C A(7Zn), 
c) the statement a) can be reversed if the set C2 is a polyhedron. 
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Proof, a) The proof is indirect: We will show that 0 £ cl {C\ + A - 1 (C 2 ) ) implies 
0 € cl((ACi) + C2). Let x* € Ci, Vi £ A_ 1(C2) for i = 1,2,..., and suppose that 
Xi + Vi —> 0 (i —• oo). Then A(x{ + Vi)-+0 (i oo) also holds. As Avi £ C2 for 
1 = 1 ,2 , . . . by definition, we can see that 0 £ cl ((ACi) + C2); the statement a) is 
proved. 

b) Let us suppose now that the set C2 is a subset of the image space of the matrix 
A. We will show that then 0 £ cl (Ci + A_ 1(C2)) implies 0 £ cl {(ACi) + C2). By 
Lemma 2.1, the origin can be strongly separated from the convex set Ci + A_ 1(C2) , 
that is there exists a vector ai £ lZn such that 

0 < inf{ofx : x £ Ci + A" 1 (G2)}. (1) 

As the recession cone of the set A - 1(C2) contains the null space of the matrix 
A, the inequality (1) implies that the vector ai is an element of the image space 
AT(lZm): there exists a vector z £ lZm such that ai = ATz. 

Suppose indirectly, that 0 £ cl ({ACi) + C2). Then there exist points x, £ Ci, 
Vi £ C2 (¿ = 1,2, . . . ) such that 

Axi + yi —> 0 (i —> oo). 

By assumption, the set C2 is a subset of the image space of the matrix A, so for 
some vectors V, £ TZN (actually, Vi £ A_ 1(C2)), the equalities Y, = AVI (¿ = 1,2, . . . ) 
hold. But then 

0\{xi + Vi) = zT(Axi + yi) ->• 0 (i oo), 

contradicting (1). Hence, 0 ^ cl {{ACpj + C2); statement b) is proved as well. 
c) Let us suppose that the set C2 is a polyhedron. We will show that then the 

strong separability of the sets —Ci and A - 1 (C 2 ) implies the strong separability of 
the sets ACi and — C2. Notice that 

A-1{C2) = A-\C2CA{Jln)). 

Here the set C2 fl A(7Zn) is a subset of the image space of the matrix A, so by 
the statement b) the strong separability of the sets —Ci and A - 1 (C 2 ) implies the 
strong separability of the sets ACi and —C2 fl A(lZn). Hence, there exist a vector 
&2 £ Pm and a constant 6 £ TZ such that the set AC\ is a subset of the closed 
halfspace H+ := {y : b%y < and the polyhedrons H+ fl A(TZn) and —C2 are 
disjoint. By Lemma 2.1, two disjoint polyhedrons are strongly separable, so the 
strong separability of the sets AC\ and —C2 follows, which finishes the proof of the 
theorem. • 

Finally, we remark that the statement a) in Theorem 2.2 can not be reversed 
generally, even if the sets Ci and C2 are supposed to be closed and convex: there 
exist closed convex sets C\ and C2 such that 

0 £ cl ((ACi) + C2), 0 £ cl (Ci + A - 1 (C 2 ) ) 

for some linear mapping A. 
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In fact, let 

A:(A,,Í)->A(| } ) + M ( J ^ ) ( A ^ e f t ) ; 

Ca := U x {0} C ft2; C2 := PSD2 - ( ^ ) , 

where PSD2 denotes the closed convex cone of the 2 by 2 real symmetric positive 
semidelinite matrices, that is (see [6]), 

Hence, 0 € cl ((ACi) + C2). 
On the other hand, it can be easily verified that 

A- i (C 2 ) = {(A,/z) : A > - 1 / 2 , p = - 1 / 2 } , 

thus indeed 0 ^ cl(Ci + A_ 1(C2)) ; the sets Ci and C2 meet the requirements. 

3 Stable points 
In this section, after describing a geometric and an equivalent algebraic definition 
of stable points, we reformulate the stability condition as a closedness condition. 

The following lemma, concerning the programs (P) and (D), will be used. 

Lemma 3.1. Let us suppose that D ^ 0. Then the primal closedness assumption 
is satisfied (that is the set Cp is closed) if and only if for every vector b £ ftm the 
optimal values of programs (P) and (D) are equal, and the primal optimal value vp 
is attained if it is finite. 

Proof. As the definition of the set Cp does not depend on the vector b, so the "only 
if" part of the lemma is a consequence of Theorem 1.2. 

On the other hand, with minor modification of the proof of Theorem 4.1 in [7], 
it can be shown that: 

Then. 

shows that 

(6, á) £ CP & 3x £ Kn : f{x) - g(Ax - b) + aTx < 6; 
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and, in case of P U D ^ 0, 

(6,6) ? cl CP 3y e 71™ : gc{y) - fc{ATy - a) + bTy > 6. 

Hence, to prove the "if" part of the lemma, it is enough to verify that for every 
vector b € 77m and for every constant 5 £71, 

3x £ Tln : f{x) - giAx -b)+aTx<S (2) 

or 
3y£llm:gciy)-fciATy-a)+bTy>6 (3) 

holds. For a given vector b £ 7Zm two cases are possible: 

Case 1: P = 0. Then vp =VQ = oo, and (3) holds for every S £ 72.. 
Case 2: P ^ 0. Then by assumption vp = vp with primal attainment, so (2) holds 
for 6 > vp, and (3) holds for 6 < vp. 
This way we have proved the "if" part of the lemma as well. • 

The following stability conditions appear in the generalized Fenchel-Rockafel-
lar duality theory concerning programs (P) and (£)), see [5]. First, we recall the 
geometric definition of stability. 

Let C be a convex set in 1Zd, and let e £ rec C. A point xo £ C is called a stable 
point of the set C if for every affine set M in 7Zd satisfying 

M fl ({xo} + Re) 0 and M fl (C + TZ++e) = 0, (4) 

there exists a hyperplane H in lZd such that 

M C H and H n (C + R++e) = 0. (5) 

(Here let 1Z++e := {Ae : 0 < A £ It), and let Tie := {pe : p £ IT). It can be easily 
seen that (4) implies e ^ rec M, and that (5) implies e 0 rec H.) 

For example, let us define the convex sets 

Ci := {(xi,x2) £ R2 : xi > 0, x2 > 
C2 := {(xi ,x2) G Tl2 : Xi > 0, x2 > —y/xi}. 

Then, the origin xo = (0,0) (with e = (0,1)) is a stable point of the set C\ but is 
not a stable point of the set C2. 

For a convex function h defined on 7Zn the point uo £ F(/i) is called a stable 
point of the function h, if (uo, po) is a stable point of the epigraph [h] (with e\ := 
(0,1) £ rec [h]) for some p0 £ TZ. In this case the function h is called UQ-stable. For 
example, it is proved in [5], that for every uo £ r iP(h) , the function h is u0-stable. 

The next lemma, describing an algebraic characterization of uo-stability, can 
also be found in [5], see Lemma 5.5.8. 
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Lemma 3.2. Let UQ £ F(h). A convex junction h on ft" is UQ-stable if and only 
if for every n x m-matrix B and for every vector w £ ft" with UQ = Byo — w for 
some yo £ ftm, the relation 

hc(v) = min{/ic(x) + wTx : BTx = u} (6) 

holds for all v £ ftm. Here h(y) := h(By - w). 

Now, we can derive, as an immediate consequence of Lemmas 3.1 and 3.2, 

Theorem 3.1. Letuo £ F(h). A closed convex function h on ft" is uo-stable if and 
only if for every n x m-matrix B and for every vector w € ft" with uo = Byo — w 
for some yo £ ftm, the set 

Bt 0 
wT 1 M (7) 

is closed. 

Proof. Apply Lemma 3.1 to the programs 

(P0) : Find inf{/o(x) — go(Aox — bo) + OQX : x £ ft"}, 
(D0) : Find sup{5§(v) - /0

c(A^y - a0) + bly:ye ft7"}, 

where 

fo - := { ^ ^ ^ (* £ 

A0 := BT, b0 :- v, a0 := w. 

We obtain that the set in (7) is closed if and only if for all bo £ ft7" the optimal 
values of programs (Po) and (-Do) axe equal, and the primal optimal value vp0 is 
attained if it is finite. This means that the set in (7) is closed if and only if (6) holds 
for all v £ ft7". (Note that hc(v) is the optimal value of the dual program (Do), 
while the minimum on the right hand side of the equation in (6) is the optimal 
value of the program (Po).) Then, Lemma 3.2 gives the statement. • 

Specially, let p be a polyhedral convex function on ft". Then the conjugate 
function pc is also a polyhedral convex function. In other words, the epigraph 
\p°] and its linear images axe polyhedrons. Hence, by Theorem 3.1, for any vector 
uo £ F(p), the function p is uo-stable. For another proof of this fact, see [5], 
Theorem 5.5.9. 

As special polyhedral convex functions, partially linear functions —gM are uo-
stable for every uq £ P(<7m). Here gM '• P-" —7 ft U {—oo} is defined as follows: 

( \ . = / Ah i f (u> AO e M> 
9M( ) •— I _ 0 0 otherwise, 

where M C ft"+1 is an affine set. 
The following proposition describes a characterization of stable points in terms 

of duality, see Theorems 5.3.12 and 5.3.13 in [5]. 
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Proposition 3.1. Let f be a convex function on TZn, and let UQ be a point of F ( f ) . 
Then, f is UQ-stable if and only if 

inf(/(x) - gM(x)) = max(g c
M(y) - fc(y)) 

x y 

holds for every partially linear convex function —gM with uo G F(<7m)-

We conclude this section with a general duality theorem (Theorem 5.7.5 in [5]) 
which is based on the notion of stable points. As we will see in the following section, 
Theorem 3.2 and Theorem 1.3 have a common special case: a duality theorem for 
generalized Lagrangian programs (Theorem 4.1). 

We call program (P) stably consistent if there are feasible points Xf and xg 
of program (P) such that the function / is x/-stable and g is zg-stable, where 
zg Axg — b. Stable consistency is similarly defined for program (D). 

Theorem 3.2. (Rockafellar) Assume that f is a convex function on lZn and —g 
is a convex function on 1Zm. Then, the following statements hold: 
a) If program (P) is stably consistent (in particular, if it has a strictly feasible 
solution), then vp = vp, and the dual optimal value vp is attained if it is finite. 
b) Assume that f , —g are both closed functions. If program (D) is stably consistent 
(in particular, if it has a strictly feasible solution), then vp> — vp, and the primal 
optimal value vp is attained if it is finite. 

4 Lagrangian duality 
In this section a strong duality theorem concerning generalized Lagrangian pro-
grams will be derived from a strengthened version of Theorem 1.3. 

Let us begin with describing a well-known property of convex functions, see [4], 
Theorem 7.5 and Corollary 7.5.1. 

Lemma 4.1. Let f be a convex function on 1Zn. Then, its closure elf = (f°)c 

satisfies 
(cl f ) ( y ) = lira f((l-X)x + Xy) (8) 

for every x G ri F ( f ) , y G 1Zn. Furthermore, if f is a polyhedral convex function, 
then cl f = f and formula (8) holds for every x G F ( f ) , y G 1Zn. 

The following lemma shows that the implication "a)=>c)" in Theorem 1.3 can 
also be proved without the assumption that the function / is closed. 

Lemma 4.2. Let f be a convex function on 1Zn, and let —g be a polyhedral convex 
function on 1Zm. Let us suppose that the program (P) has a strictly feasible solution: 
a point xo G TZn such that x0 G ri F ( f ) and Ax0 -be F(g). Then, the optimal 
values of programs (P) and (D) are equal. Furthermore, the dual optimal value vp, 
is attained if it is finite. 
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Proof. Let us denote by (P) the program, which we obtain by replacing the func-
tions / and g with their closures cl / and cl g = g, that is let 

(P) : Find inf{cl f ) ( x ) - g(Ax - 6) + a r x : x £ Rn}. 

Then the dual of program (P) is program (D). The point XQ is also a strictly 
feasible solution of program (P), so by Theorem 1.3 the optimal values of programs 
(P) and (P) are equal, and the optimal value of program (D) is attained if it is 
finite. 

We will show that the optimal values of programs (P) and (P) are equal. It is 
obvious, that vp < vp, as cl / < / . On the other hand, for a given p > vp, let X\ 
be a feasible solution of program (P) with corresponding value 

Pi := (cl / )(xi) — g(Axi — b) + aTxi < p. 

Then, for 0 < A < 1 the point x\ := Axi + (1 — A)xo is a strictly feasible solution 
of program (P). Moreover, by Lemma 4.1, 

/ (xA) (cl /)(xi) , g{Axx - 6) g{Axi - b) (0 < A < 1, A 1). 

Consequently, we have for all p > vp, 

vp < vP < / (xA) - g(Axx -b) + aTx\ pi < p (0 < A < 1, A 1). 

Thus vp = up, which proves the statement. • 

Now, we describe the definition of the generalized Lagrangian programs. 
Let C C lZn be a convex set, and let P C 7Zn be a polyhedron. Let K C Rm be 

a convex cone, and let R C R} be a polyhedral cone. Let / : C —> R be a convex 
function, and let p : P —» R be a polyhedral convex function. Let g : C —> Rm be a 
K-convex mapping, and let h : P —> Rl be an P-polyhedral mapping. (A mapping 
g : C —» Rm is K-convex, if the epigraph 

[g]K := {(x,y) eRnxRm:xeC, g{x) <K y} 

is convex. A mapping h : P —> Rl is R-polyhedral, if the epigraph is a 
polyhedron. For example, every affine mapping is P-polyhedral. Here x <K y 
denotes that y — x G K. Note that if K C Rm is a closed convex cone, and 
pointed also - that is, K fl —K — {0} holds - , then x <K y is the cone-generated, 
partial order on Rm. However, in what follows we do not assume closedness and 
pointedness of the convex cone K.) 

Let us consider the following program pair: 

(LP) : Find inf{/(x) + p{x) : g{x) <K 0, h(x) <R 0, x £ C D P}, 
(LP) : Find sup{mf{(f + p + yTg + zTh)(x) : x € C n P} : y e K*, z e R*}, 

where K* denotes the dual cone of K, that is K* :— {y : yTx > 0 (x £ K)}. 
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The program (LP) is equivalent to the following program (P): 

(P) : Find inf{/(x) - g(x) : x = (x, 61, h2,h3,h4)}. 

Here 

f(x), if x e Ci, 
00 otherwise, 

—p(x), if x G C2, 
—00 otherwise, 

where 

Ci := {x : x G C, y(x) + hi <K 0, b2 = 64, h3 G K}, 
C2 := {x : x G P, h(x) + b2 <R 0, hi = h3, h4 G R}. 

Note that due to our assumptions on the defining functions and mappings, / is a 
convex function, —g is a polyhedral convex function, finite on the convex set C\ 
and the polyhedron C2, respectively. 

The dual of the program (P) is 

(D) : Find s\xp{gc(y) - fc(y) : y = (a1,y1,y2,y3,y4)}. 

It can be easily seen, that 

(inf{aix + p(x) + y2b2 : x G P, h(x) + h2 < R 0}, 

if 2/1 = -2/3, 2/4 G R*, 
-co otherwise, 

and similarly 

{sup{af x - / (x) + yf hi : x G C, g(x) + hi <K 0}, 

if 2/2 = -2/4, 2/3 € -K\ 
00 otherwise. 

Hence, 
gc(y) - / c(y) = 

inf{afx + p(x) + y2b2 : x G P, h(x) + b2 <R 0}+ 
= + inf{-of® + /(x) + yfhi : x G C, g(x) + h <K 0}, 

if - 2/3 = 2/1 E A"*, - y 2 = y4 G P*, 
—00 otherwise 
inf{af x + p(®) + y jh(x) : x G P } + 

+ inf{-of x + / (x) + yfy(x) : x G C}, 
if - 2/3 = 2/i S K*, —y2 = y4 G P*, 

k —00 otherwise. 

/ (*) := 

y(x) := 
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We can see that the program (LD) is a relaxation of the program (D): if the vector 
y is a feasible solution of the program (D) then y := y\, z := y\ is a feasible solution 
of the program (LD), for which between the corresponding values the inequality 

gc(y) - f°(y) < inf {(/ + P + yTg + zTh)(x) -.xeCnP} 

holds. 
From these considerations immediately follows 

Lemma 4.3. For the optimal values of the programs (LP), (LD), (P), and (D) 
defined above, the following statements hold: 
a) vp = VLP > via > vp (weak duality), 
b) ifvp = vp, then VLP = vLD, 

c) ifvp = vp and the optimal value of the program (D) is attained, then the optimal 
value of program (LD) is attained as well. • 

Now, we can state our strong duality result. The program (LP) is said to satisfy 
the weak Slater condition if there exists a point xq £ TZn such that 

x0 € P n r i C , g(x0) <K 0, h(x0) <R 0. 

Then xo is called a weak Slater point. (Here x <K y denotes that y — x £ ri K.) 

Theorem 4.1. Let us suppose that the program (LP) satisfies the weak Slater 
condition. Then the optimal values of programs (LP) and (LD) are equal. Fur-
thermore, the dual optimal value VLD is attained if it is finite. 

Proof. It is proved in [1] (see Theorem 2.3) that 

ri {(x, &i) : x £ C, g(x) + bj. <K 0} = {(x, h) : x £ r iC, g(x) + h <K 0}. 

Consequently, 

ri C\ — {x : x £ riC, g(x) + b\ <K 0, b2 = 64, 6 ri K}, 

and we can see that 

x0 := (XQ, -G(xo) /2 , -h (x 0 ) , -y (x 0 ) /2 , - h ( x 0 ) ) £ (r iCi) n C2 

for any weak Slater point xo of the program (LP). Hence, xo is a strictly feasible 
solution of program (P), and we can apply Lemma 4.2 to the programs (P) and 
(D). We obtain that vp = vp, and that the optimal value of the program (D) is 
attained if it is finite. The statement now follows from Lemma 4.3. • 

We remark that an analogue of Corollary 4.1 in [2], for programs (LP) and (LD), 
can be derived as a consequence of Theorem 4.1: the existence of a weak Slater point 
xq and a primal optimal solution x implies the existence of a saddle point (x, y, z) 
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of the Lagrangian function. (The Lagrangian function L : (CnP) x K* x R* —¥ TZ 
is defined as 

L(x, y, z) := f(x) + p(x) + yTg(x) + zTh(x). 
A point (x, y, z) € ( C n P ) x K* x R* is called a saddle point of the Lagrangian 
function L if 

L(x,y,z) < L(x,y,z) < L(x,y,z), 
for every x £ C n P , y € K*, z 6 R*.) The proof is an adaptation of the proof of 
Corollary 4.1 in [2], and is left to the reader. 

Finally, we mention an open problem: Similarly as in the case of the weak Slater 
condition in Theorem 4.1 (sufficient for the strict solvability condition), find suffi-
cient conditions for the stability and closedness conditions in the duality theorems 
1.2, 1.3, and 3.2 for the special case of programs (P) and (D), which are formulated 
in terms of the data describing the programs (LP) and (LD). 
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