
CONTENTS

Khaled El-Fakih. Maxim. Gromov, Natalia Shabaldina, and Nina Yevtushenko:
Distinguishing Experiments for Timed Nondeterministic Finite State Ma-
chines 205

Ville Piirainen: On Shuffe Ideals of General Algebras 223
Outi Sievi-Korte, Erkki Mdkinen, and Timo Poranen: Simulated Annealing

for Aiding Genetic Algorithm in Software Architecture Synthesis 235
Christian Eggermont, Cor Hurkens, and Gerhard J. Woeginger. Realizing

Small Tournaments Through Few Permutations 267
Miklós Újvári: On Closedness Conditions. Strong Separation, and Convex

Duality 273

I S S N 0 3 2 4 — 7 2 1 X

Felelős szerkesztő és kiadó: Csirik János
Nyomdai kivitelezés: E-press Nyomdaipari Kft.

Volume 21 Number 2

ACTA
CYBERNETICA

Editor-in-Chief. János Csirik (Hungary)

Managing Editor. Csanád Imreh (Hungary)

Assistant to the Managing Editor. Attila Tanács (Hungary)

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Hans L. Bodlaender (The Netherlands)
Horst Bunke (Switzerland)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)
Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)

Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Zoltán Kato (Hungary)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2013

EDITORIAL BOARD

Editor-in-Chief: János Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
esi ri k@ i nf. u-szeged. h u

Managing Editor: Csanäd Imreh
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
cimreh@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf. u-szeged. hu

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
f u lop@ i nf. u-szeged. h u

mailto:cimreh@inf.u-szeged.hu
mailto:tanacs@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:hansb@cs.uu.nl
mailto:bunke@iam.unibe.ch
mailto:demetrovics@sztaki.hu
mailto:ze@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@inf. u-szeged. h u

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gy i mothy@ i nf. u-szeged. h u

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
hel m ut@csd. uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@inf. u-szeged. h u

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu .cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi @ wi n. tu e. n I

mailto:gruska@savba.sk
mailto:Alica.Kelemenova@fpf.slu
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:Heiko.Vogler@tu-dresden.de

Acta Cybernetica 21 (2013) 205-222.

Distinguishing Experiments for Timed
Nondeterministic Finite State Machines*

Khaled El-Fakihf Maxim Gromovf Natalia Shabaldinaf
and Nina Yevtushenko*

Abstract

The problem of constructing distinguishing experiments is a fundamental
problem in the area of finite state machines (FSMs), especially for FSM-based
testing. In this paper, the problem is studied for timed nondeterministic FSMs
(TFSMs) with output delays. Given two TFSMs, we derive the TFSM inter-
section of these machines and show that the machines can be distinguished
using an appropriate (untimed) FSM abstraction of the TFSM intersection.
The FSM abstraction is derived by constructing appropriate partitions for
the input and output time domains of the TFSM intersection. Using the
obtained abstraction, a traditional FSM-based preset algorithm can be used
for deriving a separating sequence for the given TFSMs if these machines are
separable. Moreover, as sometimes two non-separable TFSMs can still be
distinguished by an adaptive experiment, based on the FSM abstraction we
present an algorithm for deriving an r-distinguishing TFSM that represents
a corresponding adaptive experiment.

Keywords: nondeterministic untimed and timed finite state machines, pre-
set and adaptive distinguishing experiments, state identification

1 Introduction
Finite State Machines (FSMs) are widely used for modeling systems in many ap-
plication domains. For instance, (Mealy) FSMs are used as the underlying models
for formal description techniques such as SDL and UML State Diagrams. In many
cases, the behavior of a given machine can be considered as a mapping of input se-
quences (sequences of input symbols) to corresponding output sequences (sequences

*This work was partially supported by AUS FRG-III and Russian ministry of Science and High
Education (contract No. 14.B37.21.0622)

1 American University of Sharjah, Department of Computer Science and Engineering, PO Box
26666, Sharjah, UAE, Tel: (971) 06 5152492, Mobile: (971) 050 3073091 Fax: (971) 6 515 2979,
El-mail: kelfakih9aus.edu

1 Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia, E-mail: gromovOsibmail. com,
NataliaMailBoxSmail.ru, ninayevtushenkoQyahoo.com

206 Khaled El-Fakih et a1.

of output symbols). A machine is deterministic if it produces a single output se-
quence in response to an input sequence and a machine is nondeterministic if it can
produce several output sequences.in response to an input sequence. Nondetermin-
ism may occur due to various reasons such as limited controllability, abstraction
level, modeling concurrency and real time systems, etc. [1,7,21].

When distinguishing FSMs, we have a machine under test about which we lack
some information, and we want to deduce this information by conducting experi-
ments on this machine. An experiment consists of applying input sequences to the
machine, observing corresponding output responses and drawing some conclusions
about the machine under test. An experiment is simple if a single input sequence
is applied to a machine under experiment; otherwise, the experiment is referred
to as a multi experiment. An experiment is preset if input sequences are known
before starting the experiment and an experiment is adaptive if at each step of the
experiment the next input is selected based on previously observed outputs. Distin-
guishing experiments with FSMs axe widely used as a basis for solving fundamental
testing problems such as the fault detection (or conformance testing) and/or the
machine identification problems. For related surveys and algorithms on FSM-based
distinguishing experiments, the reader may refer to [2-4,9,11-13].

Unlike deterministic FSMs, for nondeterministic FSMs, there are a number of
distinguishability relations, other than the equivalence relation, such as the non-
reduction, separability, and r-distinguishability relations [1,16,20]. Two machines
can be distinguished by a simple preset experiment if these machines are separable.
The separability relation is defined by Starke in [20] and studied in [1] and [19]. Two
nondeterministic machines are separable if there is an input sequence, called a sepa-
rating sequence, such that the sets of output responses of the machines to the input
sequence axe disjoint. Thus, two separable machines can be distinguished by ap-
plying a separating sequence only once. Two complete non-separable machines still
can be distinguished by a simple adaptive experiment if they are r-distinguishable,
i.e., if they have no common complete reduction [17,23]. A machine is a reduction
of another machine if its behavior is contained in the behavior of the other machine.

Currently, models of many systems such as telecommunication systems, plant
and traffic controllers etc, take into account time constraints and correspondingly
timed FSMs are getting a lot of attention. Merayo et al. [5,14,15] consider a
timed possibly nondeterministic FSM model where time constrains limit a time
elapsed when an output has to be produced after an input has been applied to
the FSM. Hierons et al. [8] introduce a timed stochastic FSM model. Gromov et
al. [6] consider a timed complete nondeterministic FSM model where transitions are
guarded by time constraints over a single clock. The clock is reset at the execution of
a transition. In this paper, we consider a model similar to that in [6], yet extended to
deal with non-zero output delays sometimes called output timeouts. The considered
model can be regarded as a temporal extension of FSMs where a transition is fired
only if a given input is given in time (bounded by given lower and upper bounds)
that is counted from the moment when a current state is reached. Firing a transition
also takes time between the reception of the input and the emission of the output,
i.e., the output delay represents the transition execution/processing time. In the

Distinguishing Experiments for Timed Nondeterministic . 207

considered model, the identification of input and output time domains of a state can
be done independent of time domains of other states, and thus, there are technical
benefits in using the considered model for distinguishability and testing.

Given two possibly nondeterministic timed FSMs, we study the problem of
deriving an input sequence that distinguishes these machines. At the first step,
the TFSM intersection of the given two machines is derived from which an FSM
abstraction is then constructed. It is shown that distinguishing experiments for the
given timed FSMs can be determined based on the constructed FSM abstraction. In
particular, we show how a traditional preset FSM-based method can be adapted for
the FSM abstraction of the intersection when deriving a separating sequence for two
given timed FSMs. In addition, using the FSM abstraction we present an algorithm
for deriving an r-distinguishing TFSM that represents an adaptive distinguishing
experiment for the given two TFSMs if the machines are r-distinguishable.

This paper extends a related preliminary work in [6] to TFSMs which can have
non-zero output delays. Moreover, the presented work provides a simpler strat-
egy for deriving distinguishing experiments. In particular, in [6] two TFSMs are
distinguished based on their intersection using more complex algorithms that in-
herit ideas from traditional untimed FSM methods mixed with the derivation of
appropriate partitions of input domains for handling time constraints. The strat-
egy proposed in this paper is based on a corresponding (untimed) FSM abstraction
of the intersection of two TFSMs and this allows simpler adaptation of existing
traditional FSM-based methods for distinguishing TFSMs. The methods presented
in this paper and in [6] produce experiments of the same length as the FSM ab-
straction has the same number of states as the TFSM intersection of the given two
machines.

We note that another possible strategy for distinguishing two given TFSMs us-
ing algorithms for untimed machines is to first build an FSM abstraction for each
of the given machines, derive the intersection of the obtained FSM abstractions,
and afterwards, tune traditional FSM-based methods for deriving distinguishing
sequences and their corresponding timed sequences using the obtained FSM inter-
section and the given TFSMs. However, in this case, the number of (abstract)
inputs and outputs of the FSM abstractions and their intersection are larger than
those derived using our proposed strategy. This is due to the fact that in this case
the derivation time domains of inputs and outputs has to be carried out considering
all the states of the given machines whereas it is sufficient to consider, as in our
approach, pairs of states that appear in the intersection of the given machines.

Finally, it is worth stating that in [10] some work has been presented for dis-
tinguishing Timed Input/Output Automata (TIOA) with multiple clocks. Given a
TIOA and a clock model, the product of the given automaton with the clock model
is transformed into a so-called Bisimulation Quotient Graph, and afterwards, the
obtained graph is transformed into a special possibly nondeterministic (untimed)
Mealy machine which is actually a tranducer over sequences of abstract inputs and
outputs written as regular languages. However, a distinguishing sequence derived
from the obtained tranducer in [10] cannot be applied to distinguishing states of the
original timed machine since the regular languages (corresponding to sequences of

208 Khaled El-Fakih et a1.

abstract outputs) labeling transitions of the obtained Mealy machine may intersect,
and thus, corresponding states of the initial automaton cannot be separated. In ad-
dition, the obtained Mealy machine can be non-observable, and thus the traditional
FSM method given in [1] cited in [10] cannot be applied.

This paper is organized as follows. Section 2 includes preliminaries and Sec-
tion 3 presents the FSM abstraction and distinguishability algorithms. Section 4
concludes the paper.

2 Preliminaries
An FSM S 1 is a 5-tuple (S, 7,O, As, s) , where S, I and O are finite sets of states,
inputs and outputs, respectively, s is the initial state and XsQSxIxOxS is a
transition relation. A timed FSM (TFSM) S or simply a timed machine is a 5-tuple
(S, 7 , 0 , As, s) with the transition relation As C S x (7 x II) x (O x N) x S, where II is
the set of input time guards and N is the set of output time guards for representing
output delays. Each guard g G II = \min, max) (each guard / G K = ¡min,max])
where min is a nonnegative integer, while max is a nonnegative integer or the
infinity, min ^ max, and [g {(, [} while] G {),]}• From the practical point of
view, we assume that all the output guards have a finite upper bound B. For every
pair (s, i) G S x 7, we use G(s,t) to denote the collection of input time guards g such
that there is a transition (s, (i, g), {o, /) , s') G As and for every pair (s, o) G S x O
we use G(Si0) to denote the collection of output time guards / such that there is a
transition (s, (i, g), (o, /) , s') G As-

The behavior of a TFSM S can be described as follows. If (s, (i, g), (o, f) , s ') G
G As, where g = [mi ,m 2] and / = [ni,ra2], we say that TFSM S being at state
s accepts input i applied at time t G [mi, m2] measured from the moment TFSM
S entered state s; the clock then is set to zero, and S responds with (or produces)
output o after t' time units, t' G \n\, n2], and time is set to zero as S enters state
s'.

A TFSM S is observable if for each two transitions
(s, (i, [mi,m2]) ,(o, [ni ,n 2]) ,s ') G As and (s, (i, ¡m'^m^)), (o, ¡n'^n^)),^') G As
it holds that if [mi,m2] D [m],m'2) 0 and [n i ,n 2] n [n'1:n^] ^ 0 , then o' = o
implies s' = s". In this paper, we consider only observable TFSMs as similar to
untimed FSMs, for every unobservable timed machine there exists an observable
timed machine that has the same behavior.

TFSM S is (time) deterministic if for each two transitions
(s, (i, [mi,m2]) ,(o, [ni ,n 2]) ,s ') G As, (s, (i, [m'j, mí¡~|), (o', [ni, s") G As,
[mi ,m 2] fl \m[, m'2] = 0 . Otherwise, S is (time) nondeterministic.

TFSM S is complete if each input is a defined at each state and for each pair
(s,i) G S x I of S, it holds that the union of all g G G(Sii) equals [0, oo); otherwise,
the machine is called partial. A partial machine can be completed by adding appro-
priate self-loop transitions. In particular, for every time domain g where an input i

xIf there is no ambiguity we will use the notation S for an FSM and S for its set of states.

Distinguishing Experiments for Timed Nondeterministic . 209

at state s is not defined, a self-loop transition (s, (i, g), (o, [0, oo)), s) is added. Con-
sequently, in this paper, we study distinguishing experiments with nondeterministic
complete TFSMs.

Given TFSMs S = (S, J, O, As, s) and P = (P, I, O, \P,p), the intersection SnP
is the largest connected submachine of the TFSM (S x P, I, O, Asnp, {s,p)) where
((s,p),(i, [7711,7712]), (o, [ni, n2~|), (s',p')) £ Agnp if and only if there are transitions
(s,{i, \m'1,m'2~\), (o, \n[,n'2]),s') £ A5 and (p, (i, \m'{,m%]},{o, \n'{,n%]),p') £ AP
such that \M[,TN'2] D [m " , m j] = [mi,7712] and [ni,712] fl [n'/, n^'] = [711,772]. As
a running example, consider TFSM S (Figure 1) with the initial state 1 (hereafter
denoted Si) and the TFSM S with the initial state 3 (hereafter denoted S3). In
the figures, a transition (s, (i, [mi, m2]), (o, [ni, 772]), s') is depicted as s (column),
i (row), and corresponding entry ([mi, m2]), s ' /(o, [711, 772]). The intersection Q =
= Si fl S3 is shown in Figure 2.

s 1 2 3 4

¿1
(í^2),l/(0l,í<3>
(í ̂ 3),2/(02,0 ̂ 7 < 5)
(t>2),3/(oi,0<t<5)

(t^2),l/<Ol,0<t<5)
(2<7^3),2/(oi,0^7<5)
(7 > 3),3/(e>i,0 < 7 < 5)

(7 < 2),3/(oi,í > 2)
(7 > 3),l/(oi,0 ̂ 7 < 5)
(2<t^3),2/(oi,t<2)
(2 < í ^ 3), 4/(02,0 ^ í < 5)

(i < 3), 3/(02,0 ^ í < 5)
(7 > 3), l/(oi,0 ^ 7 < 5)

»2
(7<2),l/(oi,0<7<5)
(i>2),3/(oi,0<t<5)

(7<l),l/(o2,0<7<5)
(1 < 7 < 2),2/(02,0 s; 7 < 5)
(7 »2), 4/(02,0̂ 7< 5)

(7^2),3/(oi,0<7<5)
(t>2),l/(Ol,0^i<5)

(t<l),3/(o2,0<t<5>
(7 > 1), 2/(02,0 ^ í < 5)

Figure 1: TFSM S, TFSM Si is S with initial state 1, and TFSM S3 is S with
initial state 3

Sin S3 (1,3) (3,2) (2,4) (2,2)

•1
(íí 2),(l,3)/(oi,2<7<3)
(2<t<3),(3,2)/(o1,7<2)
(l>3),(ä,l)/{o,,04t<5)
(2 < t 4 3), (2, 4)/(o2,0 í t < 5)

(í í 2), (3,l)/(oi,0 <i < 5)
(2 < í < 3),(2,2)/(oi,í < 2)
(t > 3), (l,3>/(oi,0< í < 5)

(ií 2),(l,l)/(oi,0<t<5)
(2<t<3),(2,2)/(o1,0íi<5)
(t>3),(3,8)/(oi,0<t<5)

>2
(t<2),(l,3)/(m,0<t<5)
(í>2),(3,l)/(oi,0íí<5)

(í « 1), <1,3>/(o2,0 < ! <5)
(1 < i <2),(2,2)/(O2,0«Í < 5)
(t>2),(4,2)/(o2,0<t<5)

(t « l),(l,l)/(o2,0< t < 5)
(1 < í < 2), (2,2)/(t>2,0 < f < 5)
(t>2),(4,4)/(o2,0ít<c»)

Figure 2: The intersection TFSM Q = Si n S 3

Given a TFSM S, a pair (i , t) / {o , t ') , where i £ I, o £ O, t and t' are non-
negative rational numbers, is a timed input-output pair where (i, t) is a timed input
that states that input i is applied at time t measured from the moment when the
machine entered its current state and (o, t') is a timed output that states that output
o is produced at time t' measured from the moment when the timed input (i, t) has
been applied.

Consider a TFSM S and a timed input-output pair {i,t)/{o,t'). Given a
state s, there is a clocked transition {s,{i,t),(o,t'),s') in S if As has a transi-
tion {s,{i,g),{o,f),s'} £ As such that teg and t' € / . A timed input-output
pair (i , t) / (o , t ') is a timed input-output pair at state s if there exists a clocked
transition (s, (i,t), (o,t'),s') in S.

210 Khaled El-FaJdh et a1.

A sequence of timed input-output pairs is a timed trace. A timed trace a/¡3 =
= (i i , i i) / (o i , i i) , . . . , (ik, tk)/(ok,t'k) is a timed trace at state s if there exist states
si , . . . ,sfc+i such that Si = s and for each j — 1 there exists a clocked
transition (sj, (i j , t j) , {Oj,t'j), Sj+1) in S.

By the above definition, given a timed trace a/¡3 =
= (U,ti)/(oi, t'i), • • •, (i f c , a t state s, we assume that the input
sequence a is applied to the TFSM in the following way. For each j, 1 ^ j ^ k,
the input ij is applied at the time instance tj measured from the time when the
TFSM entered the state Sj, the clock starts advancing from 0 and the output Oj is
produced at time tj.

A timed input sequence a is defined at state s if and only if at state s there
exists a timed trace a ¡[3 for some timed output sequence ¡3.

A TFSM S = (S, I, O, As, s) is a submachine of TFSM P = (P , I , 0 , X P , p) if
S C P, s = p, and each clocked transition (s , (i , t) , (o , t ') , s ') of S is a clocked
transition of P.

Two complete TFSMs S and P are separable if there exists a timed input se-
quence for both TFSMs such that the sets of timed output responses to this input
sequence do not intersect and in addition, S and P are r-distinguishable if for each
complete TFSM M it holds that there exists a timed input sequence a such that
the set of output responses of M to a is not a subset of responses of S to a or of
responses of P to a .

3 Distinguishing Timed Finite State Machines
Given two TFSMs S and P, in order to distinguish these machines, as usual, we
first derive the TFSM intersection Q — S fl P. Given the intersection Q, an ab-
stract FSM A(Q) is then constructed for which we can apply the traditional FSM
distinguishability algorithms when deriving distinguishing sequences over abstract
inputs; the distinguishing sequences are then transformed into timed sequences over
timed inputs using the established correspondence between Q and A(Q).

3.1 Deriving an FSM Abstraction
Given TFSM Q = 5 n P, an FSM abstraction A{Q) of Q is derived as follows. For
each input i 6 I of Q, the collection Gi of time guards over all states with an input
i and the corresponding partition IT over [0, oo) is constructed. There is an input
(i, g) in the abstraction if and only if g £ lit. More precisely, given input i 6 I,
let G = {h = 0 > 32) • • • ijm }i ja < ja+1, a = 1 , . . . , m - 1, be the finite ordered set
of boundaries of guards of collection Gi. The finite set lit is defined as the (finite)
set {{ji, j2), • • •, (jm-i,jm), (jm, oo), {ji}, {j2}, { j ' 3 } , • • • {jm}}, i.e., the set H i has
singletons all boundaries and all (infinite) domains with consecutive boundaries of
the set G. For each state q S Q and each gj € IT, the abstraction A(Q) has a
transition from state q under abstract input (i, gj) if and only if it holds that there
exists a transition {q, (i, g), (o, /) , q') € XQ such that g contains gj. For our running

Distinguishing Experiments for Timed Nondeterministic . 211

example, of TFSM Q in Figure 2 equals {{0}, (0,2), {2}, (2,3), {3}, (3, oo)} and
n¿2 = {{0}, (0,1), {1}, (1,2), {2}, (2, oo)}.

Proposition 1. Given a TFSM Q = (Q , I , 0 , \ q , 4) , an input i £ I and a set lit
of time domains for the input i, let g £ IL and t\,t2 £ g. For each q £ Q, there
is a clocked transition {q,(i,ti),(o,f),q') £ AQ if and only if there is a clocked
transition (q, {i,t2}, {o,f),q') 6 AQ.

Similarly, the partition n o of output guards is derived. For each output o £ O of
Q, the collection Fa based on the collections F(g,0) o v e r all states where the output
o can be produced is derived. An output o can be produced at time instances t £ f
if and only if there exists a state q and pair (i,g) such that (q, (i,g), (o , f) , q ') £
£ Aq. Let now F = (j i = 0, j2, • • •,jm}, ja < ja+1, a = 1 , . . . ,ra - 1, be the finite
ordered set of boundaries of guards of the collection F0. Based on F the (finite) set
n o = {O'l, j2), (jm-l,jm), (jm , B), {jl}, {j2}, {j3>, • • • , {jrn}} is built, i.e., the
set n o has singletons for all boundaries and all (infinite) domains with consecutive
boundaries of the set F where the output o can be produced. In our running
example, II0l of TFSM Q (Figure 2) equals {{0}, (0,2), {2}, (2,3), {3}, (3,5)} and
n o 2 = {{0},(0,5)}.

Proposition 2. Given a TFSM Q = {Q, I, O, Aq, q), an output o £ O and a set n o
of output domains for the output o, let f £ Tl0 and t',t" £ f . For each q £ Q and
a timed input (i,t), either TFSM Q cannot produce both timed outputs (o,t') and
(o,t") at state q under (i,t) or there is a clocked transition (q, {i,t), (o,t'),q') £ AQ
if and only if there is a clocked transition (q, (i, t), (o, t"), q') £ AQ.

Given TFSMs S and P, the TFSM intersection Q = (Q,I,0,XQ,q) of
S and P, and partitions Ilj and n o , a corresponding abstract FSM A(Q) —
= (Qi IA{Q)I OA(Q)> ^A, Q) of the intersection can be derived as follows. The FSM
A(Q) has the same set of states and the same initial state as Q, and A((?) has
(abstract) inputs IA(Q) = {(«, g) : i £ I, g £ Ilj}, (abstract) outputs OA(Q) =
= {(o,f) : o £ 0,f £ n o } and transition relation A^; there is a transition
(q, (i, g), (o, f),q') in A A if and only if there is a transition (q, {i, g'), (o, f'),q') £ A Q
such that g C g' and / C / ' . Considering the running example, abstract inputs of
A((?) are the pairs from {ii} x Ilj, and {¿2} x IIj2 and abstract outputs are the
pairs from {01} x n o i and {o2} x II02. A fragment of A(Q) for the TFSM Q in
Figure 2 is shown in Figure 3.

Based on the above construction, the following statements can be established.

Proposition 3. The following statements hold.

1. (a) If TFSMs S and P are observable then TFSM Q = SnP is observable,
(b) TFSM Q is observable if and only if FSM A{Q) is observable.

2. Given a state q of TFSM Q, a timed input-output pair (i,t)/(o,t') is defined
at state q if and only if there exists a transition (q,{i,g),(o,f),q') in the
abstract FSM such that t £ g and t' £ f . Moreover, given a defined (abstract)

212 Khaled El-Fakih et a1.

input-output pair (i,g)/(o,f) at state q of the FSM A(Q), h,t2 G g, t[, t'2 G f ,
there is a clocked transition {q, (i, ti), (o, t[), q') G XQ if and only if there is a
clocked transition (q, (i,t2), (o,t'2),q') G AQ.

3. Given an abstract input-output sequence (i\,gi)/(oi, f f) . . . (ik,9k)/(°k, f k)
at state q of the FSM A(Q), each timed input-output sequence
(h,ti)/(oi,1fl)...(ik,tk)/{ok,lfk) such that tj G gj, t'j G f j , j = l,...,k,
is a timed input-output sequence at state q of TFSM Q, and vice versa, given
a timed trace {i\,ti)/{oi,t[)... (ik,tk)/(ok,t'k) at state q of TFSM Q there
always exists a defined input sequence (ii,gi)/(oi, f\)... (ik,9k)/(ok, f k) ad-
state q of the FSM A(Q) such that tj G gj, t'j G f j , j = 1 , . . . ,k.

4- TFSM Q has a timed trace (ii,ti)/(oi,t[) •. .(ik, tk)/(ok, t'k) at state q if and
only if the FSM A(Q) has a trace (¿i, </i)/(oi, f i) . . . (ik,9k)/(ok-, fk) such that
tj G gj, t'j G f j , j = 1 , . . . , k, at state s.

Proof. 1. (a) If TFSMs S and P are observable, then for every two timed transi-
tions (s,(i,t),(o,t'),s') G As, (s,{i,t),{o,t'),s") G As (or (p, (i , t) , { o , t ') , p ') G
Ap, (p, (i,t), (o,t'),p") G Ap) it holds that s' = s" (or correspondingly p' =
= p"). Thus, there are no timed transitions ((s,p), (i,t), (o,t'), (s ' ,p ')) G AQ
and ((s,p), (i,t), {,o,t'), (s" ,p")) G AQ such that (s ' ,p ') ± (s",p") .

(b) TFSM Q is observable if and only if for every two timed transitions
(q,(i,t),(o,t'),q') G AQ and (q, (i,t), (o,t'),q") G A<j it holds that q' = q".
Correspondingly, by construction of the FSM A((?), for each defined input
(i,g) at state q of the FSM A(Q) it holds that there axe no two transitions
(Q, (i, 9), (o, f),q') € A* and (q, (i, g'), (o, /'), q") G A4 such that g D g' ± 0 ,
f n f ' ^ 0 while q' £ q", i.e., FSM A(Q) is observable if and only if TFSM
Q is observable.

2. Statement 2 of the above proposition is a direct corollary to the definition of
time domains.

3. Statement 3 can be shown by induction on the length of a defined input
sequence.

4. Statement 4 is implied by the definition of the FSM /4(Q) and Statement 3.
•

We recall that an abstract FSM A((?) and TFSM Q have the same number
of states, while, A(Q) has more transitions as it has more inputs. However, the
number of transitions of an A(Q) is polynomial w.r.t. the number of transitions of
Q as it mainly depends on the number of (abstract) inputs IA(Q) which is of order
| / | • m where m is the maximum number of items of partitions Hj.

Distinguishing Experiments for Timed Nondeterministic . 213

3.2 Deriving an ^distinguishing TFSM

In order to check whether nondeterministic machines S and P can be distinguished
by an adaptive experiment a so-called r-distinguishing machine can be used. The
derivation of such a machine is described in [5,16] for complete untimed FSMs and
in [6] for complete TFSMs S and P without output delays. In this paper, such a
machine is derived based on the abstraction /4(Q) for TFSMs S and P with output
delays.

Similar to FSMs [5,16,17], an adaptive experiment is represented by a special
acyclic so-called single-input output-complete TFSM. Given complete observable
TFSMs S = (S, I, O, As, s) and P = (P,I,0,XP,p), let R = {R,I,0,XR,r) be an
acyclic initially connected TFSM such that the set R of states has two designated
deadlock states called rs and rp. If after the experiment the machine R reaches
state rs then the TFSM under experiment is 5 while if the final state is rP then
the TFSM under experiment is P. Only one timed input (i, t) is defined at each
other state of R with all possible outputs, i.e., TFSM R represents an adaptive
experiment with a TFSM over input alphabet I and output alphabet O. TFSM
R is an r-distinguishing TFSM R(s,p) of S and P (or TFSM R(s,P) r-distinguishes
TFSM S and P) if for each state (s, r) of the intersection S fl P(s,p) it holds that
r rp and for each (p, r) of the intersection P f l P(s,p) it holds that r ^ rs-

Similar to FSMs [16], here, we define the notion of k-undefined states in order
to derive R(S, P) using A(Q). Given (complete observable) TFSMs S and P, Q =
S i l P , and FSM abstraction A(Q), state q = {s,p) of A(Q) is 1-undefined if there
exists an undefined (abstract) input (i,g) at state q. Consider k > 1 and assume
that all (k — l)-undefined states of A((?) are determined. State q = {s,p) of A(Q) is
fc-undefined if q is (k—l)-undefined or there exists an abstract input (i, g) defined at
state q such that for each transition (q, (i, g), (o, f),q') £ A^, each state q' is (fc — 1)-
undefined. It can be shown as in [16], that given complete observable TFSMs 5
and P, these TMSMs are r-distinguishable iff there exists an integer k such that
the initial state of the abstraction A(Q) is fc-undefined for some fc > 0.

We use Algorithm 1 in order to derive an r-distinguishing TFSM for two given
TFSMs 5 and P based on the abstract FSM A(Q) of Q = S n P. If an r-
distinguishing FSM over abstract inputs of A(Q) is derived, then the machine is
converted to corresponding timed inputs in order to represent an r-distinguishing
TFSM for TFSMs S and P.

Based on the TFSM R(s,P) an adaptive experiment for distinguishing TFSMs
S and P can be performed in the following way. Given TFSM under test, which
is either TFSM S or P, the experiment starts at the initial state r = q of TFSM
R(S,p)- At any state of R(s,p) ° n ly one timed input (i, t) is defined, in addition, any
state of P(s,p) is always reached at time t = 0. Thus, when reaching a current state
r of R(s,p) the clock advances from 0 and the only defined input (i, t) is applied to
a TFSM under test. In response, the TFSM under test produces a timed output
(o,t'), t' e / , and accordingly the TFSM R(s,p) moves from a current state r to
the next state r' according to the clocked transition (r,(i,[t,t]),{o,f),r'). The
procedure terminates when the TFSM R(s,p) reaches one of the deadlock states rs

214 Khaled El-FaJdh et al.

Algorithm 1 Deriving an r-distinguishing TFSM of two TFSMs

Input: Complete observable TFSMs S = (S, I, O, Xs, s) and P = {P, I, O, XP,p)
Output: A distinguishing TFSM R(s,P) if TFSMs S and P are r-distinguishable

l: Q := 5n P;
2: derive the FSM abstraction
3: R := (R , I , 0 , X R) , where initially XR is empty and R contains two deadlock

states rs and rp\
4: k := 1;
5: Qk '•= Q\ HQ is the set of states of TFSM Q which are pairs of states of S

and P
6: while (q £ Qk and the set Qk has /¡¡-undefined states) do
7: determine all states of the set Qk which are /¡¡-undefined in A((?);
8: for all /¡-undefined states q = (s, p) of the set Qk do
9: if (k = = 1) then

10: determine an abstract input (i, g) such that it is undefined at state q;
li: else
12: determine an abstract input (i, g) such that for each transition

(<?> (iid) i (°) /)> Q1) € XQ, state q' is (k — l)-undefined;
13: e n d if
14: add state q into the set R\
15: for all abstract outputs (o, f) do
16: if there is a transition (q, (i, g), o, f , q') £ A^ t h e n //implies that k > 1
17: add to XR the tuple {(q, (i, [t, t]}, (o, f),q'), t £ g\
18: else
19: add to XR the tuple (q, (i, [i, t]), (o, /) , rs) if for each t £ g the output

o can be produced by S for time instances t' £ /;
20: add to XR the tuple (q, {i, [t, t]), (o, /) , rp) if for each t £ g the output

o can be produced by P for time instances t' £ /;
21: end if
22: end for
23: delete state q from the set Qk',
24: end for
25: k := k+ 1; Qk := Qk-i',
26: end while
27: if q & Qk then
28: convert the tuple R = (R, I, O, XR) into a TFSM R by claiming state q as the

initial state of the TFSM and augment R (if it is necessary) to an output-
complete TFSM by adding transitions to deadlock states;

29: return the largest initially connected submachine of TFSM R as the TFSM
R(S,P)\

30: else
31: return TFSMs S and P are not r-distinguishable.
32: end if

Distinguishing Experiments for Timed Nondeterministic . 215

or rP. Correspondingly, if state rs (rP) of R(s,p) is reached then the TFSM under
test is S (P).

Similar to [6], it can be shown that each trace of a TFSM P(s,P) obtained in the
above algorithm is of order |S| • |P| where S and P are the sets of states of TFSMs
S and P, respectively and only one trace of P(s,P) is used when performing the
experiment. In this paper, as for other distinguishing experiments, the complexity
of an adaptive experiment is measured using the height of the experiment, i.e., the
length of a longest trace to a deadlock state in the (acyclic) TFSM P(s,P)- As
TFSM R(s,p) has at most |Sj • |P| states, this length, and thus, the complexity of
an adaptive experiment, is at most |S| • |P| and this upper bound is reachable as
this upper bound is reachable for two untimed FSMs [22].

Example 1. Consider the running example and TFSMs Si and S3 with the initial
states 1 and 3, respectively. We add into R two deadlock states rs1 and rs3 with
subscripts indicating the initial states of the machines. The intersection Q = S1 nS3
is shown in Figure 2. The FSM abstraction A(Q) is constructed from Q by having
the same states and splitting every transition of (? using the abstract inputs and
outputs given above. A fragment of A(Q) for states (1,3) and (3,2) under the
input i\ of the intersection Q is shown in Figure 3. In particular, Figure 3 includes
the transitions at states (1,3) and (3,2) under ¿1 of Q (in Figure 2) and their
corresponding transitions in A(Q) derived using the partitions 11^, II0l and II02
given above. By applying Algorithm 1, initially, k = 1, the set Qi = Q includes all

A{Q) <1,3) (3,2)

h

(4 = 0), (1,3)/(oi, 2 < 4 < 3); (0 < 4 < 2), (1,3)/(oi, 2 < 4 < 3)
(4 = 2), (l,3)/(oi,2 < 4 < 3); (2 < 4 < 3), (3,2)/(r>i,4 = 2)
(2 < 4 < 3), <3,2)/(o,, 0 < 4 < 2); (t = 3), (3,2)/<0i, 4 = 0)
(! = 3), (3,2)/(o,,0 < 4 < 2); (4 > 3), <3, l)/(oi, 4 = 0)
(4 > 3), <3, l)/(oi,0 < 4 < 2); (4 > 3), (3, l)/(oi, 4 = 2)
(i > 3), <3, l)/(o,, 2 < 4 < 3); (4 > 3), (3, l)/(ou 4 = 3>
(4 > 3),<3,l)/(oi,3 < 4 < 5); (2 < 4 < 3), (2,4)/(02,4 = 0)
(2 < 4 < 3),(2,4)/{02,0 < 4 < 5); (4 = 3), (2,4)/<oj,i = 0)
(4 = 3), <2,4)/{02,0 < 4 < 5)

(4 = 0), (3, l)/(oi, 2 < 4 < 3); (4 = 0), (3, l)/(oi, 4 = 3)
(4 = 0), (3, l)/(oi,3 < 4 < 5); (0 < 4 < 1), (3, l)/(o,,2 < 4 < 3)
(0 < 4 < 1), (3, l)/(o,, 4 = 3); (0 < 4 < 1), (3, l)/(o,,3 < 4 < 5)
(4 = 2), (3, l)/(oi, 2 < 4 < 3); (4 = 2), (3, l)/(o,,4 = 3)
(4 = 2), (3, l)/(o,, 3 < 4 < 5); (2 < 4 < 3), (2,2)/(o,, 4 = 0)
(2 < 4 < 3), (2,2)/(o,,0 < 4 < 2); (4 = 3), (2,2)/(o,,4 = 0)
(4 = 3), (2,2)/(ox,0 < 4 < 2); (4 > 3), (1,3)/(o,, 4 = 0)
(4 > 3), (1,3)/(o,,0 < 4 < 2); (4 > 3), (1,3)/(o,,4 = 2)
(4 > 3),<l,3)/(oi,2 < 4 < 3); (4 > 3),(l,3)/(oi,4 = 3)
(4 > 3), (1,3)/(o,, 3 < 4 < 5)

Figure 3: Fragment of the abstract FSM A(Q)

states of TFSM Q with the initial state (1,3). States 3 and 2 of state (3,2) in Qi
are 1-r-distinguishable by abstract input (¿2,1) and states 2 and 4 of state (2,4) in
Qi are 1-r-distinguishable by (¿1,2). Thus, we add states (3,2) and (2,4) into the
set R, that initially contains only deadlock states and rs3 , remove these states
from Qi, obtain Q2 as Qi \ {(3,2), (2,4)}, and add into (initially empty) AR the
tuples

((3 , 2) , (f 2 , [l , l]) , (O I , [0 , 0]) , R S L) ,
((3 , 2) , (f 2 , [l , l]) , (O l , (0 , 2)) , R S L) ,
((3 , 2) , (f 2 , [l , l]) , (0 L , [2 , 2]) , R S L) ,
<(3,2), (z2, [1,1]), <oi, (2,3)>,
«3,2), (z2) [1,1]), <01, [3,3]>,rSl>,
((3 , 2) , (f 2 , [l , l]) , (0 L , (3 , 5)) , R S L) ,

216 Khaled El-Fakih et a1.

and add the tuples
(<2,4>, <«a, [2,2]>, <olf [0,0]>, rSl>,
((2,4), (z2, [2,2]), (oi, (0,2)) ,rs1) ,
«2,4>, <z2, [2,2]>, <0l, [2,2]), rS l>,
((2,4),<z2 , [2,2]) ,(0 l , (2,3)) ,rS l) ,
((2,4),(z2 ,[2,2]),(o1 ,[3,3]),rS l),
<(2,4),(z2 ,[2,2]),(0 l ,(3,5)>,rS l),
<(2,4>, (¿2, [2,2]), <o2, [0,0]),rS3>,
((2,4),(z2 ,[2,2]),(o2 ,(0,5)),rS 3).

Afterwards, in a second iteration of the loop, we observe that states 1 and 3
of state (1,3) in Q2 are 2-r-distinguishable. In fact, the abstract input (¿i,3)
when applied at state (1,3) of A(Q) reaches only states (3,2) and (2,4) which
are both 1-undefined. Thus, we add state (1,3) into R, add into \R the tuples
((1,3), (ij , [3,3]), <oi, [0,0]), (2,4)), ((1,3), {iu [3,3]), <0l, (0,2)), (3,2)), and add the
tuples, ((1,3), (¿i, [3,3]), (o2, [0,0]), (2,4)), ((1,3), (zj, [3,3]), (o2, (0,5)), (3,2)). Af-
terwards by deleting (1,3), which is the initial state of /4(Q). from Q2 we stop.
Convert the tuple R into TFSM R(slts3) with initial state (1,3) and obtain a par-
tial TFSM as shown in Figure 4.

R(S,,S3) (1,3) (3,2) (2,4) rs,

<'i.|3, 3]>

<3,2)/(Ol,[0,0]>
(3,2)/(oi,0 < t < 2)
<2,4>/<O2i[0,0]>
(2,4)/(O2,0 < £ < 5)

fe [2,2])

i"SI/<0I, [0,0]); rs,/<oi,0 < t < 2)
r s , / (o i , [2 ,2]>; r S l /<oi ,2<i<3>
r S l / (o 1 , [3 , 3]> ; r S l / (o i , 3< t<5)
rs 3 / (o2 , [0 ,0]) ; r S 3 / (o2 ,0<t<5)

FELL])

r s , /<oi , [0 ,0]) ; r S l / (o i ,0<i<2>
r s i /<0i , [2 ,2]) ; r s , /<0i ,2<i<3>
RSI/(°I, [3,3]); rs,/{oi,3 < £ < 5)
rs3/(°2, [0,0]); rs3/(02,0 < £ < 5)

Figure 4: A part of the TFSM P(Sl,s3)

3.3 Deriving a Separating Sequence
In order to derive a separating sequence for two given TFSMs S and P, in the
following, we adapt the algorithm given in [19] to deal with the abstract FSM A(Q)
of Q = S fl P. Correspondingly, a separating sequence (if exists) will be derived for
TFSMs S and P with output delays. If a separating sequence over abstract inputs
(i,g) is derived from A(Q), then the sequence is replaced by a corresponding timed
sequence, over timed inputs (z,t), t £ g, that is a separating sequence for TFSMs
S and P.

Here we define the following notion used in Algorithm 2. Given state s of an
FSM S = {S,1,0, As, s), state s' is an z-successor of state s if there exists is a

Distinguishing Experiments for Timed Nondeterministic . 217

Algorithm 2 Deriving a Separating Sequence of Two TFSMs

Input: Complete observable TFSMs S = (S, I, O, As, s) and P = (P, I, O, AP ,p)
Output: A (shortest) separating sequence of TFSMs S = (S, I, O, As, s) and P =

= (P, I, O, Ap, p) (if such a sequence exists)
l: derive the intersection Q = S fl P;
2: if Q is a complete TFSM t h e n
3: the TFSMs S = (S, I, O, As, s) and P = (P, I, O, \p,p) are non-separable;
4: end Algorithm 2;
5: end if
6: derive from Q = S fl P (with input and output partitions IT and n o) , the

abstract FSM A(Q) with abstract inputs and outputs {(«,g) : i € I,g € IT}
and {(o,f) :oeO,f G IT,};

7: derive a truncated successor tree of the FSM A(Q). The root of this tree, which
is at the 0 t h level, is the initial state (s,p) of A(Q); the nodes of the tree are
labeled with subsets of states of A(Q). Given already derived j tree levels,
j ^ 0, a non-leaf (intermediate) node of the j t h level labeled with a subset C
of states of A(Q) and a abstract input (i,g), there is an outgoing edge from
this non-leaf node labeled with (i, g) to the node with the subset of the (i, g)-
successors of states of the subset C. A current node Current, at the fcth level,
k ^ 0, labeled with the subset C of states, is claimed as a leaf node if one of
the following conditions holds:

8: Rule 1: There exists an input (i,g) such that each state (s,p) of the set
C has no (i, «^-successors in A((J);

9: Rule 2: There exists a node at the j t h level, j < k, labeled with a subset
R of states with the property P C C;

10: if none of the paths of the truncated tree derived at Step 7 is terminated using
Rule 1 then

U: the TFSMs S = (S, I, O, As, s) and P = (P, I, O, Ap,p) are non-separable;
12: end Algorithm 2;
13: end if
14: if there is a leaf node, Leaf, labeled with the subset C of states such that

for some (abstract) input (i,g), each state of the set C has no (i, (^-successors
t h e n

15: select such a path with minimal length, append an input sequence that la-
bels the path with input (i,g) and transform the obtained input sequence
replacing each abstract input of the sequence (i,h) by a timed input (i ,t),

16: the obtained timed input sequence is a shortest separating sequence of
TFSMs S and P;

17: end if

transition (s , i , o , s ') in As. Generally, for a nondeterministic FSM, the set of i-
successors of state s can have several states. Given a set of states M C 5 of the

218 Khaled El-Fakih et a1.

complete FSM S, and an input i, the set M' of states is an ¿-successor of the set
M if M' is the union of the sets of ¿-successors over all states of the set M.

Similar to [19] it can be shown that Algorithm 2 returns a separating sequence
a if and only if the TFSMs S and P axe separable. The separating sequence a
can be applied to a TFSM under experiment (S or P) and since the sets of output
responses of TFSMs S and P do not intersect, after getting the output response to
a the conclusion can be drawn which TFSM is under the experiment. In addition, it
can be shown that the complexity (length of a separating sequence) is exponential
w.r.t. to the number of states of TFSMs S and P as it happens for untimed
FSMs [19]. The length of a separating sequence of two FSMs with n and m states
is at most 2 m n _ 1 [19] and this upper bound is reachable, and thus, it is reachable
for TFSMs as well.

The above algorithm is based on deriving a successor tree using an (FSM)
abstraction A(Q) of the intersection Q = SnP. As A(Q) can have more inputs than
Q, we compare the above approach with another approach where a successor tree
can be derived using Q instead [6]. In both approaches, in the worst case, each path
p from the root node to a leaf node has to be traversed and a number o of elementary
operations (Rule 1 and Rule 2) have to be applied at each node of a path. Let I
be the maximum length of a path, then the complexity of the algorithm equals the
product p • I • o. The maximal length I is the same for the two approaches and I
is of the order 0(2mn) for TFSMs S and P with m and n states, respectively [19].
Further, in both approaches, Rule 1 and Rule 2 of the above algorithm have to
be checked at each node of the derived successor tree where a node is labeled with
the set C of states of a corresponding TFSM Q or of the abstraction FSM A(Q).
Checking these rules using Q — S fl P is more complex since at each node for each
input i and each subset Qkj of states at the node we have to derive the set II as
the intersection of n(^,f) over all states q 6. Qkj while in the approach based on
A(Q), the intersection is calculated only once when deriving A(Q). As the number
of guards we need to intersect is proportional to the product of the finite upper
bound of guards for input i and the number of states of the set Qkj, in the approach
based on Q = 5 fl P, the number of calculations which have to be performed for
deriving the intersection of guards at each node polynomially grows compared with
the approach based on A(Q). On the other hand, the number of inputs of A(Q)
can be larger than that of Q. If B is the maximum finite bound for a given input
1 over all states then for each i, the number of (abstract) inputs of A(Q) can be
2 • B times bigger than that of Q, since in A(Q) time domains for an i are derived
based on the corresponding guards for all states of A((?). As the number p of paths
of the successor tree exponentially depends on the number of inputs considered at
each tree node, this implies that the complexity of the approach based on A(Q) will
exponentially grow compared to the approach based on Q, since p is of the order
0 (| / | ') where | / | is the number of inputs of Q or A(Q), respectively. This difference
between the two approaches can be bypassed by considering for each input i only
guards corresponding to a given state of Q when deriving the abstraction A(Q),
i.e., not taken into account guards under this input over other states of Q. In this
case, it can well happen that A((?) is partially specified. The above algorithm can

Distinguishing Experiments for Timed Nondeterministic . 219

be adapted to partial FSM A(G); however, this is not done in this paper in order to
simplify the presentation of the algorithms and to avoid presenting more complex
FSM related definitions that consider defined and undefined input sequences at
states. If partially specified FSM A(Q) is used, the number p will be the same for
both approaches. Generally, the approach based on the partial FSM abstraction
of the intersection performs less computations than the approach based on the
intersection Q instead. However, the best way to assess any abstraction method
is thorough experimental evaluation with large size specifications and this could
be the topic of another paper. It is worth mentioning that though the length of
a separating sequence can reach length 2mn~1 (for TFSMs S and P with m and
n states) [19]; nevertheless, experiments with various size FSM specifications show
that this length usually does not exceed mn [18].

As A(G) can have more inputs than Q, here we also compare the approach given
in this paper (Algorithm 1) based on using /4(G) with another approach [6] based
on using G instead for deriving an adaptive distinguishing sequence (represented as
a distinguishing machine). For both approaches, in the worst-case, the maximum
length I of a path from the initial state of the constructed FSM R(s,p) to the
deadlock state rs or rp is the same and is of the order 0(mn) for TFSMs S and
P with m and n states, respectively [5]. In addition, as both approaches are based
on deriving a submachine of a /4(G) or of Q, the number of paths p included as
transitions in the tuples of AR in both approaches is the same, and p is of the order
0(2mn) [22], Moreover, in the approach that is based on the intersection Q, in the
worst case, for a given input, we have to consider all possible time domains (i,g),
g £ n , over all states q £ Qk- As the number of guards we need to intersect when
deriving the set n is proportional to the product of the finite upper bound of guards
for input i and the number of states of the set Qk, the number of calculations which
have to be performed at each step almost coincide in both approaches. However,
unlike the algorithm based on G, the algorithm based on using A(Q) performs less
computations at each node as the intersection of guards for each input and each
set Qk of states will be performed only once when deriving A(Q). To the best of
our knowledge, no experiments were conducted for deriving adaptive distinguishing
sequences and it would be interesting to assess the length of adaptive distinguishing
sequences in practice and to evaluate the performance of the above approaches with
respect to large size FSM specifications.

4 Conclusion
In this paper, a method for distinguishing two complete possibly nondeterministic
TFSMs is presented based on an FSM abstraction of the intersection of the two
TFSMs. The abstraction is derived by appropriate partitioning the input and out-
put time domains. It is shown how a traditional preset FSM-based method can
be used for deriving a separating sequence for the given TFSMs using the FSM
abstraction. In addition, using the FSM abstraction, we present an algorithm for
deriving an r-distinguishing TFSM that represents a simple adaptive distinguish-

220 Khaled El-Fakih et a1.

ing experiment for two given TFSMs. We compare the complexity of a proposed
approach with that of another approach that is based directly on the intersection
of two given TFSMs and show that in both approaches, similar to untimed FSMs,
when distinguishing two TFSMs with m and n states, the length of a longest trace
of a corresponding r-distinguishing machine is at most mn, while the length of a
separating sequence is at most 2 m n _ 1 , and these upper bounds are reachable [19,22],

As a future work, it would be interesting to investigate the possibility of adapting
the presented work for distinguishing more than two machines as well as for a TFSM
model with multiple clocks where the main challenge is the derivation of appropriate
partitions of input and output time domains. In addition, it would be interesting
to experiment and assess the performance of the proposed methods using large size
specifications.

Acknowledgements
The authors would like to thank Dr. Zoltán Esik and the anonymous reviewers for
their helpful comments for improving the manuscript.

References
[1] Alur, Rajeev, Courcoubetis, Costas, and Yannakakis, Mihalis. Distinguishing

tests for nondeterministic and probabilistic machines. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of computing, STOC '95,
pages 363-372, New York, NY, USA, 1995. ACM.

[2] Bochmann, Gregor V. and Petrenko, Alexandre. Protocol testing: review of
methods and relevance for software testing. In Proceedings of the 1994 ACM
SIGSOFT international symposium on Software testing and analysis, ISSTA
'94, pages 109-124, New York, NY, USA, 1994. ACM.

[3] Dorofeeva, Rita, El-Fakih, Khaled, Maag, Stephane, Cavalli, Ana R., and Yev-
tushenko, Nina. Fsm-based conformance testing methods: A survey annotated
with experimental evaluation. Inf. Softw. Technol., 52(12):1286-1297, Decem-
ber 2010.

[4] Gill, Arthur. Sate-identification experiments in finite automata. Information
and Control, 4(2-3):132-154, 1961.

[5] Gromov, M. L., Evtushenko, N. V., and Kolomeets, A. V. On the synthesis of
adaptive tests for nondeterministic finite state machines. Program. Comput.
Softw., 34(6):322-329, 2008.

[6] Gromov, Maxim, El-Fakih, Khaled, Shabaldina, Natalia, and Yevtushenko,
Nina. Distinguing non-deterministic timed finite state machines. In Proceedings
of the Joint 11th IF IP WG 6.1 International Conference FMOODS '09 and

Distinguishing Experiments for Timed Nondeterministic . 221

29th IFIP WG 6.1 International Conference FORTE '09 on Formal Techniques
for Distributed Systems, FMOODS '09/FORTE '09, pages 137-151, Berlin,
Heidelberg, 2009. Springer-Verlag.

[7] Hierons, Rob M. Testing from a nondeterministic finite state machine using
adaptive state counting. IEEE Trans. Comput., 53(10):1330-1342, October
2004.

[8] Hierons, Robert M., Merayo, Mercedes G., and Nunez, Manuel. Testing from a
stochastic timed system with a fault model. J. Log. Algebr. Program., 78(2):98-
115, 2009.

[9] Kohavi, Zvi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[10] Krichen, Moez and Tripakis, Stavros. State identification problems for timed
automata. In Proceedings of the 17th IFIP TC6/WG 6.1 international con-
ference on Testing of Communicating Systems, TestCom'05, pages 175-191,
Berlin, Heidelberg, 2005. Springer-Verlag.

[11] Lee, David and Yannakakis, Mihalis. Testing finite-state machines: State
identification and verification. IEEE Trans. Comput., 43(3):306-320, March
1994.

[12] Lee, David and Yannakakis, Mihalis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

[13] Mathur, Aditya P. Foundations of Software Testing. Addison-Wesley Profes-
sional, 1st edition, 2008.

[14] Merayo, Mercedes G., Nunez, Manuel, and Rodriguez, Ismael. Extending
efsms to specify and test timed systems with action durations and timeouts.
In Proceedings of the 26th IFIP WG 6.1 international conference on Formal
Techniques for Networked and Distributed Systems, FORTE'06, pages 372-387,
Berlin, Heidelberg, 2006. Springer-Verlag.

[15] Merayo, Mercedes G., Nunez, Manuel, and Rodriguez, Ismael. Formal testing
from timed finite state machines. Computer Networks, 52(2):432-460, 2008.

[16] Petrenko, Alexandre and Yevtushenko, Nina. Conformance tests as checking
experiments for partial nondeterministic fsm. In Proceedings of the 5th in-
ternational conference on Formal Approaches to Software Testing, FATES'05,
pages 118-133, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] Petrenko, Alexandre and Yevtushenko, Nina. Adaptive testing of deterministic
implementations specified by nondeterministic fsms. In Proceedings of the
23rd IFIP WG 6.1 international conference on Testing software and systems,
ICTSS'll, pages 162-178, Berlin, Heidelberg, 2011. Springer-Verlag.

222 Khaled El-Fakih et a1.

[18] Shabaldina, Natalia, El-Fakih, Khaled, and Yevtushenko, Nina. Testing non-
deterministic finite state machines with respect to the separability relation. In
Proceedings of the 19th IFIP TC6/WG6.1 international conference, and 7th
international conference on Testing of Software and Communicating Systems,
TestCom'07/FATES'07, pages 305-318, Berlin, Heidelberg, 2007. Springer-
Verlag.

[19] Spitsyna, Natalia, El-Fakih, Khaled, and Yevtushenko, Nina. Studying the
separability relation between finite state machines. Softw. Test. Verif. Reliab.,
17(4):227-241, December 2007.

[20] Starke, Peter H. Abstract Automata. Elsevier, 1972.

[21] Tanenbaum, Andrew S. Computer networks. Prentice-Hall, 3 edition, 1996.

[22] Yevtushenko, Nina and Spitsyna, Natalia. On the upper of length of sepa-
rating and r-distinguishing sequences for observable nondeterministic FSMs.
In Proceedings of Artificial intelligence systems and computer sciences, pages
124-126, 2005. (in Russian).

[23] Yevtushenko, Nina, Vetrova, Maria, and Petrenko, Alexandre. Analysis and
synthesis of nondeterministic FSMs: operators and relations. Tomsk State
University publishing, 2006. (in Russian).

Received 9th May 2012

Acta Cybernetica 21 (2013) 223-234.

On Shuffle Ideals of General Algebras

Ville Piirainen*

Abstract
We extend a word language concept called shuffle ideal to general algebras.

For this purpose, we introduce the relation SH and show that there exists a
natural connection between this relation and the homeomorphic embedding
order on trees. We establish connections between shuffle ideals, monotonically
ordered algebras and automata, and piecewise testable tree languages.

1 Introduction and preliminaries
This work is a part of an ongoing study on piecewise testability and related matters
for tree languages. Piecewise testable languages and their algebraic properties
have been approached from various directions, and offer a wide field of interesting
notions for study from the tree language viewpoint. In addition to the ingenious
combinatorial approach of Simon [10], there have been a few approaches with a
more algebraic flavour, and this work is inspired most importantly by the papers
by Straubing and Therien [12], and Henckell and Pin [5]. These works concern, of
course, word languages, subsets of a free monoid A*, and obviously are not directly
generalizable for tree languages, subsets of a term algebra 7s (A). However, all these
papers contain many algebraic insights that can be considered in the tree language
setting. We are much indebted to the work on ordered monoids in these papers,
as well as to the related work on varieties of ordered algebras by Bloom [2], and
Petkovic and Salehi [6].

The shuffle operation is a natural operation to consider for the elements of a
free monoid. Using this operation one obtains so called shuffle ideals, which are
subsets of a free monoid closed under the shuffle operation. As noted for example
in [9], by considering all boolean combinations of shuffle ideals on a given free
monoid, one obtains exactly all piecewise testable languages over that monoid. In
fact, the shuffle, the class of piecewise testable languages, the Green's ^/-relation
for semigroups and the class of monotonically ordered monoids are all concepts
which are strongly connected to each other, and we shall use these connections to
investigate the notion of shuffling for general algebras.

The shuffle operation cannot be directly defined for any given EA-trees, since
even the product of two trees cannot be uniquely defined in a way that would suit

'University of Turku, E-mail: v i l l e .p i i ra inen0utu . f i

224 Ville Piirainen

all applications. While the operation itself does not generalize directly, the shuffle
ideals, as languages, have direct counterparts in the tree language setting, as we
shall see.

After this first section of introduction and preliminaries, in the second section,
we introduce the shuffle relation SP and the shuffle ideals, and investigate their
basic properties. In the third section, we establish a connection between so-called
monotonically ordered algebras and the <S?f-relation. Finally, we discuss some
connections between the relation SP and piecewise testable tree languages.

As a general reference on algebraic tree language theory, we recommend [11].
It contains most of the basic theory on which this paper is built, and also some
discussion on the points one has to take into account when moving from word
languages to tree languages. However, we recall here a few of the most important
definitions and notions that we need in this paper, since some of them have various
different versions in the literature.

We are mainly interested in trees and their languages, and we follow the theo-
retical framework of [11] which depends heavily on universal algebra. The tree rec-
ognizers, general algebras, have a finite number of named operations, from which all
other operations of the algebra axe composed. Moreover, the number of arguments
of each operation is fixed. Hence, trees considered here axe terms over suitable
alphabets, in which each node of a tree labeled with a given symbol always has a
fixed number of children. We use the following notation.

Definition 1.1. A ranked alphabet E is a finite set of function symbols, and for all
m> 0, E m C E denotes the subset of symbols of rank m. A E-algebra A = (A, E)
consists of a non-empty set A equipped with operations f A : Am —> A, for all m> 0,
/ G E m .

For the rest of the paper, A — (A, E) is an arbitrary given E-algebra.
In the framework we use, the inner nodes and leafs of a tree have different

labelings. In addition to ranked alphabets, we use leaf-alphabets, finite sets of
symbols that axe disjoint from the ranked alphabets. We identify trees with terms
defined in the following definition.

Definition 1.2. For a set X, called the leaf alphabet, the set of all EX-terms
Ts(X) is the smallest set such that X U Eo € T-^(X), and for every m > 0,
ti,...,tm £ T E (X) and f £ E m , f(tu ..., tm) £ T E (X) .

For transforming a word concept into a tree concept we need a way to regard
words as special trees. As usual, we regard words over an alphabet A as unary
trees equipped with a single special leaf symbol and letters of the alphabet A axe
regarded as unary symbols of the ranked alphabet E. More precisely, let A be an
alphabet, let X — {£} and let E = Ei = A. Let x '• A* T E (X) be the map such
that ex = £ a id (wa)x = a(wx) f° r any a £ A and w £ A*. Obviously, x forms a
bijective correspondence between A* and T%(X).

For the purpose of generalizing the semigroup concept shuffle for E-algebras,
we have chosen to follow the convention that the root of a EX-term corresponds

On Shuffle Ideals of General Algebras 225

to the right end, and the leaf symbols to the left end of a word. This follows
the usual tradition on how words and terms (trees) axe read by their respective
ordinary automata, from left to right and from leaf to root. This convention has
the following consequences. The right translations of semigroups correspond to
the algebraic translations of the term algebra 7b (X) of EY-trees, while the left
translations correspond to the endomorphisms of the same term algebra. We use
the translations in our effort to generalize the ideas of insertion and the shuffle ideal
for trees in Section 3.

Definition 1.3. A unary mapp : A —> A is an elementary translation of an algebra
A, if there exist m > 0, / G £ m , i — 1 , . . . , m, and ai,..., a j_i , Oj+i,... ,am such
that

p(a) = / ^ (a i , . . . , a,_i, a, ai+1,..., am),

for all a £ A. The set of all elementary translations of A is denoted ETr(A).
The set of translations of A, denoted TV (A), is the smallest set which includes
the identity map and the elementary translations, and is closed under functional
composition.

The translations of a term algebra lb(X) are induced by the EX-contexts, that
is, the trees p G T^(X U {£}), where the symbol £ appears exactly once. To simplify
notation, a context p G TE(X U {£}) and the map p : T S (X) T?(X), t p(t) it
induces are identified.

The concept of an ideal is common in algebra, and we introduce here a certain
type of an ideal. We note that since we consider here general algebras with no
additional requirements, the ideals presented here might differ from ideals defined
for different purposes. The theory investigated here is closely related to that of
ordered algebras, and as a reference concerning notation and points of view, we
offer [6]. From this paper we adopt the following definition.

Definition 1.4. An ideal of an algebra A is a non-empty set I C A such that for
anyp G TV(A), and a £ I, p(a) G I. The ideal generated by an element a is denoted
1(a).

In essence, this definition states that if we choose any element from the ideal, any
n - 1 elements of the algebra (n > 0), and apply to them any n-ary function of the
algebra, the resulting element is still in this ideal. Hence, the notion resembles that
of a semigroup ideal, though not that of a Dedekind ideal. Namely, in ring theory
there is such a distinction between the two operations that cannot be required in
any given arbitrary E-algebra in a meaningful way.

In our effort to generalize the idea of shuffling for general algebras, and for
non-linear trees, we have taken as a starting point the following definition from [9].

Definition 1.5. For an alphabet X, a shuffle ideal of the free monoid X* is a
non-empty set I C X* such that for any words u £ I and v £ X*, their shuffle is
included in the set I.

226 Ville Piirainen

For any word u £ X*, if u = x\ • • • xn where x\,... ,xn £ X, then the shuffle
ideal generated by u is the language X*x\X* • • • X*xnX*.

We connect the shuffle ideal to the homeomorphic embedding relation used in
term rewriting theory. When words are interpreted as unary trees, it turns out that
these notions are very naturally related to one another (see Example 2.2).

Definition 1.6. The homeomorphic embedding relation <emb on T^(X) is defined
as follows. For any s,t £ T^(X), s <emb t if and only i f ,

(1) ¿ S l U S and s = t, or

(2) t = f(ti,.. .,tm),s — f(si,.. .,sm) and Si <emb U fori = 1 ,...,m, or

(3) t = f(ti,.. .,tm) and s <emb U for some i = 1 , . . . ,m.

If s <emb t (s , i £ Ts(X)), then essentially this means that all the nodes of the
term s axe embedded in the structure of t, in such a way that they retain their rank
(arity) and relative position. For example, if X = {x, y}, and E = {g/1, //2, h/2},
then

x <emb f(x,y) <emb f{g(x),h(y,x)) <emb h(f(g(x),h(g(y),x)),h(x,y)).

2 Shuffle ideal
What we call a shuffle ideal borrows ideas from the shuffle operation and ideal
defined for word languages (see [9]) as well as the embedding relation from rewriting
theory (see [1]). These notions share a common idea: starting from a single element
of a language, using suitable insertions, obtain the elements which contain the
original element embedded in their structure. We begin by defining a relation that
specifies the types of insertions in which we are interested here.

Definition 2.1. Let =>sn be the relation on A such that for any a,b £ A

a =>sn b,

if and only if there exist an element c € A and translations q,r £ Tr(_4) such that
a = q(c) and b = q(r(c)).

In essence, we decompose the element a into a product of an element c and
a translation q, and then insert an another translation r into the middle of the
product.

In the next example we show concretely how such insertions work in a term
algebra 7h(X). The original term, which is embedded in the derived terms, is
printed in boldface.

Example 2.1. Let E = {f/2,g/l} and X = {x,y}. Then, for example

f (x ,y) f(/(2/,x),y) su f(/(2/,x), f l(y)) f(f{f(y, y), x), g{y))-

On Shuffle Ideals of General Algebras 227

Consider for example the second step of the derivation. We can write f (f (y , x),y) =
f (f (y , x),€){y), and by applying the context g(£) we obtain f (f (y , x),£)(g(£)(y)) =
f(f(y,x),g(y)).

In the following example we show how derivations can be made in the free
monoid generated by the alphabet {a, b}. We denote by e the empty word, and by
u(v £ Tr(A*), for any u,v £ X*, the (two-sided) translation such that u£v(w) =
uwv.

Example 2.2. Let X = {a, 6}, and let w,w',w" £ X*. We have for example the
following derivation.

ob =>sn aw'b =>SH waw'bw".

In the first step we can write that ab — a£b(e), and further apply the trans-
lation w'£e to obtain a£b(w'£e(e)) = aw'b. In the second step, we write first
aw'b = £(aw'b), and by using the translation w£w" we obtain ((w(w" (aw'b)) =
^(waw'bw") = waw'bw". In general, it is easy to see, that ab w if and only if
w £ X*aX*bX*.

The following lemmas are direct consequences of the Definition 2.1.

Lemma 2.1. For all a £ A and p £ Tr(A), a p(a).

Proof. Let a £ A. Then, a = id(a), and id(p(a)) = p(a), for any p £ Tr(A). •

Lemma 2.2. If a =>SH b, then p(a) =>sn p(b), for any V € Tr(A) and a,b £ A.

Proof. If a = g(c), and b = q(r(c)), for some c £ A and r, q £ Tr(_4), then p(a) =
p(q(c)), and p(b) = p(q(r(c))), for any p £ Tr(A), which proves the claim. •

As usual, we denote

^ s h = U ^sn •
n > 0

Definition 2.2. We call a non-empty subset I C A a shuffle ideal of A= (A, E),
if for all a,b £ A,

(SI) a £ I and a =>sn b imply b £ I.

The following lemma is easy to prove.

Lemma 2.3. The intersection of a set of shuffle ideals is either empty or a shuffle
ideal.

By the previous lemma, for a given element a £ A, we can define the shuffle
ideal generated by a as the intersection of the shuffle ideals containing a. We denote
this by SH(a).

Lemma 2.4. For any a £ A, SH(a) = {b £ A \ a =>sn b}.

The following lemma is a direct consequence of Lemma 2.1.

228 Ville Piirainen

Lemma 2.5. For all a £ A and p £ TV(A), 577(p(a)) C SH(a).

Note that a shuffle ideal is always an ideal. The shuffle ideal generated by an
element contains the ideal generated by the same element, but in general these sets
are not the same, as demonstrated by the following example.

Example 2.3. Let A = ({1,2,3}, { / / l , g / l }) be the algebra described in Figure
1, originally presented in [7]. A direct calculation shows that 7(3) = {3} but
577(3) = {2,3}.

f,g
o

Figure 1: The algebra A

Note that when interpreted for the free monoid X*, the shuffle ideal generated
by a word w £ X* corresponds exactly to the original notion. Indeed, if X is an
alphabet, w — x\ • • • xn £ X* and

u = u\Xiu2 • • • unxnun+i £ X*x±X* • • • X*xnX*,

then
x„(- • • zi(£) • • •) un+1(xn(un(- • • (u2(xi(ui(£)))) • • •))),

by Lemma 2.4. The converse is analogous.

Lemma 2.4 also gives us a naive algorithm to calculate the shuffle ideals 577(a)
of a finite algebra. The algorithm works in two parts. First we calculate a
for each element a £ A, and then the equivalence closure a =>sn-

1. Compute the table of translations for the algebra.

2. For each element a £ A find all possible decompositions a = p(b) (p £
TV(A),b £ A) from the table of translations.

3. For each decomposition a = p(b), form all elements p(r(b))), where r £ Tr(A).
These elements form the sets a =>sn-

4. Compute the reflexive transitive closure =>SN relation =>SH-

On Shuffle Ideals of General Algebras 229

Since the algorithm follows exactly the steps of the definitions of the shuffle
ideal and the shuffle relation, it is obvious that this algorithm produces exactly the
desired sets SH(a) for all a £ A.

The complexity of the algorithm depends heavily on the structure of the algebra
and its translation monoid Tr(A). In most of any meaningful examples E is fixed,
so we measure complexity based only on |A|. It is worth mentioning though, that
by choosing a suitable ranked alphabet E, one can easily devise exotic algebras such
that the complexity of computing the elementary translations of the algebra exceeds
any given bound which is dependent only on the size |A| of the algebra, and hence
the following analysis is not applicable universally. However, even in such exotic
cases the number of different elementary translations has an upper bound which
depends only on the size of |A|. Hence, we assume that we are given elementary
translations induced by the algebra as the input for the algorithm.

If |A| = n, then the size of the translation monoid may equal nu (the full
transformation monoid on A), and its calculation that starts from the elementary
translations may have a complexity of as high as 0(n3n+1) depending on the size
and structure of ETr(A). The size of table of translations may in the worst case
equal n" + 1 . Hence, the number of calculations generated by the third step of the
algorithm may equal n 2 n + 1 . The transitive closure can be calculated in 0(n3) time.

Next we show a concrete example of how the algorithm works.

Example 2.4. Let E = {/ /1,^/1}, A = {1,2,3,4,5}, and let the operations be
defined as in Figure 2.

A direct calculation gives the table of translations for the algebra shown in Table
1. Note that for simplicity we have identified unary function symbols with the
translations they define, and denoted fg the operation such that (f g) (a) = f(g(a))
for all a € A.

O

Figure 2: The algebra A.

230 Ville Piirainen

Table 1: Table of translations for A.

l 2 3 4 5
id l 2 3 4 5
f 3 4 4 5 5
9 4 5 3 4 5

f f 4 5 5 5 5
fg 5 5 4 5 5

i f f 5 5 5 5 5

Consider for example SH(5). We have that 5 = g(2), which implies that
5 (/ (2)) = 4 £ SH(5), and continuing similarly g(f{ 1)) = 3 £ 5/1(5). By per-
forming the steps of our algorithm for all such decompositions we obtain the sets

SH(1) = {1,3,4,5}
SH(2) = {2,3,4,5}

SH{ 3) = SH(4) = SH{ 5) = {3,4,5}

We can form a quasi-order on a given algebra based on the inclusion of the ideals
SH(a). We denote this relation by <sn, mid we define it so that for all a, b £ A,

a <sn b SH{a) 2 SH{b).

In fact, <SH = =>*SH-

In the spirit of Green's relations, we define S~H C A2 as the relation such that

a S7i b SH(a) = SH(b).

By Lemma 2.2 it is a congruence. We say that A is STi-trivial if a S~H b implies
a = b. It is clear, that the algebra is 5H-trivial, if and only if <SH is an order. In
the next section we investigate the properties of this order further.

As we saw in Example 2.4, the shuffle ideals SH(a) of a given finite algebra can
be calculated using the algorithm presented earlier in this section. We can then
calculate the quasi-order <sn-. and also determine whether the algebra is S~H-trivial
or not.

3 Monotonically ordered algebras
In this section we investigate algebras which are equipped with a certain type of
an order, namely a monotone order (see [3]). We show that algebras equipped with
an admissible monotone order are bijectively connected to 5/¿-triviality.

On Shuffle Ideals of General Algebras 231

Definition 3.1. An algebra A is monotone, if there exists an order < on A such
that for alln> 1, f £ E n and a i , . . . , an £ A,

(M) ai,... ,an < fA(ai,... ,an).

Note that the condition (M) can be replaced with an equivalent condition:
a < p(a) for all a £ A and for all p £ ETr(A).

Let us recall that a relation on a set is called a pre-order if it is reflexive and
transitive.

Definition 3.2. Let 9 be a pre-order on A. It is admissible, if a\ 8 bi,... ,an 6 bn

imply fA(ai, ...,an) 9 fA(b i, ...,bn) for all n > 0, o i , . . . , an, bi,..., bn £ A and
/ € £ „ •

Equivalently, a pre-order 9 is admissible, if for all a,b £ A and for allp £ ETr(A),
a 9 b implies p(a) 9 p(b). An ordered algebra (A, <) consists of an algebra, and an
admissible order < on A.

An ordered algebra (A , <) is monotone if (M) is satisfied for the given order <.
Following the definition presented in [7] we call an algebra A monotonically ordered
if there exists an ordered algebra (A, <) which is monotone. Note that in [7] we
used the term monotonously ordered.

Before our main result we prove a useful lemma.

Lemma 3.1. If (A, <) is monotone, then a =>SH b implies a <b for all a,b £ A.

Proof. Let a, b £ A be such that a =>su b. There exist q, r £ TV (A) and c £ A such
that a = q(c) and b = q(r(c)). Now, by the properties of the monotone order on A,
we have that c < r(c), and hence a = q(c) < q(r(c)) = b. •

Theorem 3.1. An algebra A is monotonically ordered if and only if it is STL-trivial.

Proof. Assume that A is ¿>%-trivial. Then, <sn is a partial order on A. Also,
a <sn p(a)i since SH(p(a)) C SH(a) by Lemma 2.5.

For proving that the order is admissible, let a, b £ A be such that a <sn b.
Now, b £ SH(a), and hence a =>sn b by Lemma 2.4, which means that for some
n > 0, a b. By Lemma 2.2, it follows that p(a) =>SH P(b)> which implies that
p(b) £ SH(p(a)), and therefore p(a) <su p(b)-

For the other direction, let (A, <) be monotone. Assume that SH(a) = SH(b)
for some a,b £ A. Then, a =>sn b- Now, by Lemma 3.1 we get directly that a <b.
By a symmetric argument also b < a, which implies a = b, which proves that A is

-trivial. •

In the next proposition we show that the order <sn is the least admissible and
monotone order on a given monotonically ordered algebra. Before that, we give a
simple example which shows that such an order on an algebra need not be unique.

Example 3.1. Let E = { / /1} and A = {a, b}. Define the algebra A so that
fA(a) = a and fA(b) = b. Now, < s u = A a, but the relation {(a, a), (a, 6), (b,b)}
is also a monotone and admissible ordering for A.

232 Ville Piirainen

Proposition 3.1. If an ordered algebra {A, <) is monotone, then <sn Q

Proof. If a <SH b, for some a, b € A, then a =>SH b, and Lemma 3.1 implies directly
that a < b. •

As we shall see, in the term algebra 7s (X), the relation equals the home-
omorphic embedding relation of terms. Thus, =>SH c a n regarded as a general-
ization of the embedding relation for general algebras. Before the proposition, we
note an obvious lemma.

Lemma 3.2. For any leaf alphabet X and ranked alphabet E, the algebra 7 s (X)
is monotonieally ordered by <emb-

Proposition 3.2. For any X and E, and s,t 6 Ts(X),

s <emb t if and only if s =>sn b

Proof. It follows immediately from the previous lemma, and Lemma 3.1, that =>S-H
G ^emt-

For the other direction, we proceed by structural induction following the defi-
nition of the relation <emb• Note that by the previous lemma, 7s (X) is monotoni-
eally ordered, or equivalently <S7f-trivial (Theorem 3.1), and =>sn an admissible,
monotone order. Assume that s <emb t.

1. If s = t, then s =>sfi b.

2. Assume that s — / (s i , . . . ,sn) and t = f{h,... ,tn), where Sj <emb U for
i = 1 , . . . , n , and assume that the claim holds for Si and U for all i =
1 , . . . , 7i. Then, s* =>*su bi f° r i = 1,...,77, and by the SH-triviality of

^n!•

3. Assume that t = f(t\,..., tn) and s <emb U for some i = 1 , . . . , n, and assume
that the claim holds for s and U. Then, s <emb U implies s ^sn bi t-

•

We conclude the section by considering some variety properties of monotoni-
eally ordered algebras. The class of 57f-trivial algebras (i.e. that of monotonieally
ordered algebras) is closed under forming direct products and subalgebras, but
not homomorphic images [7]. Hence, the class is not a variety. However, in the
following we show that the class of monotone ordered algebras is closed under
order-preserving homomorphisms, which makes it a variety of ordered algebras [2],

In [2] a pre-order on an ordered algebra is said to be admissible, if it is an
admissible relation, and contains the ordering of the algebra. If ^ is an admissible
pre-order on A, then ~ = H is a congruence on A, and A/ ~ is ordered by the
relation -< defined so that for all a, 6 £ A, a / ~ ^ if and only if a ^ b (see [2],
p. 201).

Proposition 3.3. The class of monotone ordered algebras is closed under order-
preserving homomorphisms, i. e. homomorphisms of ordered algebras.

On Shuffle Ideals of General Algebras 233

Proof. Let (A, <) be a monotone ordered algebra. By Proposition 1.3 in [2], it is
sufficient to look at the quotient algebras with respect to the admissible pre-orders
on (A, <). Hence, assume that ^ is an admissible pre-order, and consider the order
^ on A/ ~ derived from where ~ = ^ D

Now, let n > 0, a i , . . . , an € A, arid / € £ n . For every i = 1 , . . . , n, it follows
from at < fA(a\,. ..,an) that r< fA(ai,..., an)/~ = fA/~(ai/~,..., a „ / ~). •

Theorem 2.6 in [2] states that every variety of ordered algebras is defined by a
set of inequalities. In the case of monotone orders such a set is immediately given
by the definition.

Example 3.2. If £ = {/ /2}, then the class of monotone ordered E-algeras is
defined by the set {x < f(x,y), y < f(x,y)}.

The class of languages corresponding to the class of finite monotonically ordered
algebras can be characterized as follows. The fc-piecewise testable tree languages
for some fixed E and X were defined in [7] as the unions of 7rfc-classes, for a certain
finite congruence nk. It was also proved that the algebra Tb(X)/nk is monotonically
ordered. Hence, each piecewise testable tree language can be recognized by a finite
monotonically ordered algebra, and it was shown also in [7], that all languages
recognized by finite monotonically ordered algebras are piecewise testable.

It is clear that the languages recognized by finite monotone ordered algebras in
the sense of [6] are included in the variety of tree languages corresponding to the
variety of finite algebras generated by the finite monotonically ordered algebras,
which are exactly the piecewise testable tree languages. Hence, all languages rec-
ognized by finite monotone ordered algebras are piecewise testable. However, for
example the language {x} C T%(X), where X = {x} and E = {//1}, cannot be
recognized by a monotone ordered algebra in the sense of [6], even if the language
is most certainly piecewise testable.

A shuffle ideal of a term algebra is clearly a piecewise testable tree language.
Namely, SH(t) contains exactly all the terms which have t as a piecewise subtree. In
fact, this implies directly that each piecewise testable tree language can be obtained
as a boolean combination of suitable shuffle ideals. This generalizes the result that
a piecewise testable word language is a boolean combination of shuffle ideals.

Further remarks
We presented here a natural generalization of the shuffle ideal, and we established
connections between the shuffle relation, the homeomorphic embedding relation
and monotonically ordered algebras. Monotonically ordered algebras and the em-
bedding relation were very useful in our earlier work on piecewise testability for
trees [7], and hence it is not surprising, that the shuffle ideals investigated here
have a similar connection to piecewise testability as in the word case.

Our definition of the shuffle ideal suggests also a definition for the shuffle oper-
ation, which would be suitable for terms of term algebras and elements of general

234 Ville Piirainen

algebras. Such a product would be defined not between two elements, but rather
between a translation and an element. Each translation can be decomposed (not
in a unique way in general) into a product of elementary translations, and each
element of an algebra can also be decomposed into a product of elementary trans-
lations and a generator of the algebra. By merging these sequences in a similar
manner as shuffling two words, one obtains elements which form a set that could
be seen as the shuffle of these objects.

References
Avenhaus, J. Reduktionssysteme. Springer-Verlag, Berlin, 1995.

Bloom, S. Varieties of ordered algebras. Journal of Computer and System
Sciences 13:200-212, 1976.

Gecseg, F., and Imreh, B. On monotone automata and monotone languages.
Journal of Automata, Languages and Combinatorics, 7(l):71-82, 2002.

Gratzer, G. Universal Algebra. Van Nostrand Company, 1968.

Henckell, K., and Pin, J.-E. Ordered monoids and ^-trivial monoids. In
Birget, J.-C. et al, editors, Algorithmic Problems in Groups and Semigroups,
pages 121-137, Birkhauser, Boston, 2000.

Petkovic, T., and Salehi, S. Positive varieties of tree languages. Theoretical
Computer Science, 347(1-2): 1-35, 2005.

Piirainen, V. Piecewise testable tree languages. TUCS Technical Reports 634,
Turku Centre for Computer Science, Turku, Finland, 2004.

Piirainen, V. Monotone algebras, 77,-trivial monoids and a variety of tree
languages. Bulletin of the EATCS, 84:189-194, 2004.

Pin, J.-E. Syntactic semigroups. In Rozenberg, G., and Salomaa, A., editors,
Handbook of Formal Languages, Vol. 1.: Word, language, grammar, pages
679-746, Springer-Verlag, New York, 1997.

Simon, I. Piecewise testable events. In Automata Theory and Formal Lan-
guages, (Proc. 2nd GI conf), Lecture Notes in Computer Science 33:214-222,
Springer-Verlag, Berlin, 1975.

Steinby, M. Algebraic classifications of regular tree languages. In Kudryavtsev,
V., and Rosenberg, I., editors, Structural Theory of Automata, Semigroups and
Universal Algebra, pages 381-432, Springer, 2005.

[12] Straubing, H., and Therien, D. Partially Ordered Finite Monoids and a The-
orem of I. Simon. Journal of Algebra, 119:393-399, 1988.

[1

[2

[3

[4

[5

[6

[7

[8

[9

[10

[11

Received 11th May 2012

Acta Cybernetica 21 (2013) 235-265.

Simulated Annealing for Aiding Genetic Algorithm
in Software Architecture Synthesis*

Outi Sievi-Kortej Erkki Makinenf and Timo Poranen*

Abstract
The dream of software engineers is to be able to automatically produce

software systems based on their requirements. Automatic synthesis of soft-
ware architecture has already been shown to be feasible with genetic algo-
rithms. Genetic algorithms, however, easily become very slow if the size of
the problem and complexity of mutations increase as GAs handle a large pop-
ulation with much data. Also, for purely scientific interest it is worthwhile
to investigate how other search algorithms handle the problem of software
architecture synthesis. The present paper studies the possibilities of using
simulated annealing for synthesizing software architecture. For this purpose
we have two goals: 1) to study whether a simpler search algorithm can handle
synthesis and 2) if a seeded algorithm can provide quality results faster than a
simple genetic algorithm. We start from functional requirements which form
a base architecture and consider three quality attributes, modifiability, effi-
ciency and complexity. Synthesis is performed by adding design patterns and
architecture styles to the base architecture. The algorithm thus produces a
software architecture which fulfills the functional requirements and also corre-
sponds to the quality requirements. It is concluded that simulated annealing
as such does not produce good architectures, but it is useful for speeding up
the evolution process by quickly fine-tuning a seed solution achieved with a
genetic algorithm. The main contribution is thus a new seeded algorithm for
software architecture design.

Keywords : search-based software engineering, simulated annealing, software
design, genetic algorithm, software architecture

1 Introduction
The ultimate goal of software engineering is to be able to automatically pro-
duce software systems based on their requirements. In Model Driven Architecture

"This work was funded by the Academy of Finland (project Darwin).
t Tampere University of Technology - corresponding author, E-mail:

o u t i . s i e v i - k o r t e @ t u t . f i , Address: Department of Software Systems, Korkeakoulunkatu 1,
P.O.Box 553, 33101 Tampere, Finland

1 University of Tampere, E-mail: {erkki .makinen, timo. t .poranen}@uta. f i

mailto:outi.sievi-korte@tut.fi

236 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

(MDA), class level designs of the software can already be transformed straightfor-
wardly into code [10]. However, a human is still required to interpret the given
quality requirements and build the class level design, or architecture, based on
which code can be written. This process is time consuming and requires expertise,
as systems become increasingly large and complex and the quality requirements
are often conflicting. Errors in design phase are unfortunately common, and have a
large impact on the functionality of the system. Our goal is to automate the process
of turning requirements into software architecture, where quality requirements are
not only met but also optimized to suit the preferences of the client.

Architectural design largely means the application of known standard solutions
in a combination that optimizes the quality properties (like modifiability and effi-
ciency) of the software system. These standard solutions are well documented as
architectural styles [39] and design patterns [11]. We argue that software archi-
tecture comes in parts: the functional requirements, the quality requirements and
the actual architectural design solutions. The functional and quality requirements
can only be elicited manually, but combining them to design solutions and, thus,
producing a complete architecture, which is more than the sum of its parts, can
be done automatically. Hence, we see the formation of software architecture as a
series of transformations beginning with a very crude outline of a system with only
the basic functionalities and ending with a highly sophisticated design. So far, this
has been accomplished by humans. Thus, as we view that software architecture
requires combining different entities (design solutions and requirements) and the
automatic process is synthetic when compared to man made architectures, we refer
to our approach as architecture synthesis.

Seeing software architecture as a combination of design solutions makes it an
optimization problem — what is the best way of combining the solutions, with
respect to quality requirements? Search-based software engineering (SBSE) studies
the application of meta-heuristic algorithms to such software engineering problems
[9]. In this field, genetic algorithms (GAs) [22] have been shown to be a feasible
method for producing software architectures from functional requirements [29, 33,
34]. However, experiments with asexual reproduction [30] suggest that the crossover
operator which is an essential part of GAs might not be critical for producing good
architectures, supporting the idea of using a simpler search method. Additionally,
the GA easily becomes very slow if the system is large, or if the search leans
heavily towards certain mutations (due to preferences of the architect). These
heavy mutations combined with a large system meant that the GA, which has
to handle an entire population of solutions simultaneously, had to deal with a
massive amount of data. It is, thus, natural to ask if other (lighter) search methods
are capable of producing equally good architectures alone or in co-operation with
genetic algorithms. The purpose of the present paper is to study the possibilities
of simulated annealing (SA) in the process of searching good architectures when
functional requirements are given.

While GA is already shown to produce reasonable software architectures, it is
of great interest to study whether SA is capable to do the same, as it explores
the search space in a completely different way than GA. An affirmative answer

Simulated Annealing for Software Architecture Synthesis 237

would, of course, give us a new competitive practical method for producing software
architectures. Contrary to GAs, SA is a local search method which intensively
uses the concept of neighborhood, i.e., the set of possible solutions that are near
to the current solution. The neighborhood is defined via transformations that
change an element of the search space (here, software architecture) to another.
In our application the transformations mean implementing a design pattern or an
architectural style. Contrary to, for example, hill climbing algorithms, SA does
allow also temporarily exploring worse solutions than what have been found so
far. Due to the nature of the fitness landscape (many small peaks and large dips
which lead to high peaks), this is essential in eventually finding a good architecture.
Our decision to study SA first is also backed up by the promising studies in related
fields where SA has been used for software refactoring [23]. Results from our studies
conducted with SA will give us further information on what is required from the
synthesis, and we may then possibly study other algorithms, such as particle swarm
optimization and ant colony optimization.

It is known that seeding GAs enable them to produce better results faster
[17, 36]. Our hypothesis is that a SA algorithm could also be used to quickly
produce a seed. An initial population can be generated based on this seed. A
significantly smaller number of generations would then suffice to find good solutions
with the GA.

As with our GA approach, we begin with the functional requirements of a
given system. The actual architecture is achieved by the SA algorithm, which
gradually transforms the system by adding (and removing) design patterns and
applying architecture styles. The resulting architecture is evaluated from three
(contradicting) viewpoints: modifiability, efficiency and complexity. As the SA is
implemented as close to the GA as possible, our set of research questions thus
becomes: How good are the architectures produced by SA (compared to GA)?
What kind of fitness values does SA achieve (compared to GA)? How fast is SA
(compared to GA)? And finally, how well does a seeded algorithm perform in terms
of both quality and speed (compared to GA)?

This paper proceeds as follows. In Section 2 we sketch current research in
the field of search algorithms in software design that is relevant for the present
paper. In Section 3 we cover the basics of implementing a SA algorithm and
give the algorithmic presentation for our GA, to be used in the experiments. In
Section 4 we introduce our method by defining the input for the SA algorithm, the
transformations and the evaluation function. In Section 5 we present the results
from our experiments, as we examine different parameters for the SA and combining
SA with our GA implementation. In Section 6 we discuss the findings and in Section
7 we give a conclusion of our results.

2 Related Work
SBSE considers software related topics as combinatorial search problems. Tradi-
tionally, testing has been the clearly most studied area inside SBSE [13]. Other

238 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

well studied areas include software clustering and refactoring [9, 13, 26]. Using
meta-heuristic algorithms in the area of software design, and in particular at soft-
ware architecture design, is quite a novel idea. Only a few studies have been
published where the algorithm actually attempts to design something new, rather
than re-designing an existing software system. Approaches dealing with higher
level structural units, such as patterns, have also recently gained more interest. We
will briefly discuss the studies with the closest relation to our approach. As our
method in part combines two algorithms, and the result can be viewed as a seeded
algorithm (either SA provides a seed for the GA or vice versa), we will also briefly
discuss approaches using seeding.

Amoui et al. [2] use the GA approach to improve the reusability of software
by applying architecture design patterns to a UML model. Their goal is to find
the best sequence of transformations, i.e., pattern implementations. Used patterns
come from the collection presented by Gamma et al. [11]. From the software design
perspective, the transformed designs of the best chromosomes are evolved so that
abstract packages become more abstract and concrete packages, in turn, become
more concrete. This approach uses one quality factor (reusability) only, while we
use three quality factors, and also a more refined starting point than what is used
in our approach.

Bowman et al. [7] study the use of a multi-objective genetic algorithm (MOGA)
in solving the class responsibility assignment problem. The objective is to optimize
the class structure of a system through the placement of methods and attributes
within given constraints. So far, they do not demonstrate assigning methods and
attributes "from scratch" (based on, e.g., use cases), but try to find out whether
the presented MOGA can fix the structure if it has been modified. Thus, their
approach currently works for refactoring only, and is not able to do forward design,
which is our aim.

Simons et al. [44] study using evolutionary, multi-objective search and software
agents to aid the software architect in class design. One individual (solution) is
thus the design containing all methods and attributes (and their class distribution).
Coupling and cohesion are used to calculate fitness. Simons et al. suggest that a
global multi-objective search is unnecessary, and the search should be narrowed
towards the "most useful and interesting candidate designs". They attempt to
achieve this by isolating discrete zones from the search space, and then using a
local search within these zones. Local search is conducted using a single-objective
genetic algorithm, which only considers coupling in the fitness calculations. The
designer then obtains the results of these local searches. Simons and Parmee [43]
have further enhanced their studies with elegance metrics, which should conform
to the desire for symmetry that human designers have.

Raiha et al. [29] have taken the design of software architecture a step further
than Simons and Parmee [40, 41] by starting the design from a responsibility de-
pendency graph. The dependency graph can also be achieved from use cases, but
the architecture is developed further than the class distribution of actions and data.
A GA is used for the automation of design. Mutations are implemented as adding
or removing an architectural design pattern [11] or an interface or splitting or join-

Simulated Annealing for Software Architecture Synthesis 239

ing class (es). Implemented design patterns are Façade and Strategy, as well as the
message dispatcher architecture style [39].

Ràihà et al. [34] have also applied GAs in model transformations that can
be understood as pattern-based refinements. In MDA, such transformations can
be exploited for deriving a Platform Independent Model from a Computationally
Independent Model. The approach uses design patterns as the basis of mutations
and exploits various quality metrics for deriving a fitness function. They give a
genetic representation of models and propose transformations for them. The results
suggest that GAs provide a feasible vehicle for model transformations, leading to
convergent and reasonably fast transformation process. Raihà et al. [31] have also
later on added scenarios, which are common in real world architecture evaluations,
to evaluate the fitness of their synthesized architectures. Our work differs from the
work of Raihà et al. [31] by using simulated annealing in addition to GA.

Jensen and Cheng [15] present an approach based on genetic programming
(GP) for generating refactoring strategies that introduce design patterns. They
have implemented a tool, RE-MODEL, which takes as input a UML class diagram
representing the system under design. The system is refactored by applying mini-
transformations. The encoding is made in tree form (suitable for GP), where each
node is a transformation. A sequence of mini-transformations can produce a de-
sign pattern; a subset of the patterns specified by Gamma et al. [11] is used to
identify desirable mini-transformation sequences. Mutations are applied by sim-
ply changing one node (transformation), and crossover is applied as exchanging
subtrees. The QMOOD [4] metrics suite is used for fitness calculations. In addi-
tion to the QMOOD metrics, the authors also give a penalty based on the number
of used mini-transformations and reward the existence of (any) design patterns.
The output consists of a refactored software design as well as the set of steps to
transform the original design into the refactored design. This way the refactoring
can be done either automatically or manually; this decision is left for the software
engineer. This approach is close to those of Ràihà et al. [29] and the approach
used here, the difference being that Jensen and Cheng have clearly a refactoring
point of view, while we attempt upstream synthesis, thus expecting less from the
architect and relying more on the algorithm, which makes our problem setting far
more complex. Our fitness metrics are also different, as we only reward patterns
that clearly improve the design — the simple existence of a pattern is not a reason
for reward itself.

A higher level approach is studied by Aleti et al. [1], who use AADL models
as a basis, and attempt to optimize the architecture with respect to Data Transfer
Reliability and Communication Overhead. They use a GA and a Pareto optimal
fitness function in their ArcheOptrix tool, but they concentrate on the optimal
deployment of software components to a given hardware platform rather than how
the components are actually constructed and how they communicate with one an-
other. Research has also been made on identifying concept boundaries and thus
automating software comprehension [12] and re-packaging software [5], which can
be seen as finding working subsets of an existing architecture. These approaches
are, however, already pushing the boundaries of the concept "software architecture

240 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

design". As for different aspects on GAs, the role of crossover operations in genetic
synthesis of software architectures is studied by Raiha et al. [30, 32].

SA has been used in the field of search-based software engineering for software
refactoring [23, 24, 25] and quality prediction [6]. O'Keeffe and O Cinneide [23,
24, 25] work on the class level and use SA to refactor the class hierarchy and move
methods in order to increase the quality of software. Their goal is to minimize
unused, duplicated and rejected methods and unused classes, and to maximize
abstract classes. The algorithm operates with pure source code, and the outcome
is given as refactored code as well as a design improvement report. This approach is
the closest to the one presented here, but it operates on a lower level and backwards
(re-engineering), while our approach operates on a higher level architecture and
goes forwards in the design process. Similar studies (class level refactoring) have
also been made by Seng et al. [37, 38] who use GA as their search algorithm and
Harman and Tratt [14], who use hill climbing. In the area of quality prediction,
Bouktif et al. [6] attempt to reuse and adapt quality predictive models, each of
which is viewed as a set of expertise parts. The search then aims to find the best
subset of expertise parts, which forms a model with an optimal predictive accuracy.

In UML software design SA has been used in the context of dynamic parameter
control in interactive local search by Simons and Parmee [42]. The level of design is
quite similar, as it also deals with classes, methods and attributes. In this study the
approach using simulated annealing was shown to be inferior to other method used
in parameter control, while dynamic parameter control in general proved to be an
efficient way for improving the results. Our approach differs significantly from that
of Simons and Parmee, as we use simulated annealing itself in a different way (as
the actual search algorithm itself, as opposed to controlling the parameters). We
also have a very different mutation setting and problem domain. We have sixteen
mutations, while there were only a couple in the presented study, thus the setting
for dynamically controlling all the probabilities is much more complex, though we
acknowledge the idea worth pursuing (initial experiments with a similar idea have
been done in our previous work [34]). All in all, the studies using SA are few, and
none use this approach for such a high-level design problem as designing software
architecture from requirements

Our approach of combining SA and GA can be seen as a seeded algorithm,
as one algorithm provides a developed seed for the other. Julstrom [17] has used
the idea of seeding the initial population of a GA with advanced individuals in the
rectilinear Steiner problem. The seeded algorithm produced more consistent results
and was significantly faster than the algorithm with a randomly created initial
population. Ramsey and Greffenstett [36] have studied case-based initialization of
GAs in learning systems. In their study, the population of the GA is dynamically
initialized with achieved (good) results, which aids in (intentionally) biasing the
search towards a certain area, and quickly answering to a changing environment.

Simulated Annealing for Software Architecture Synthesis 241

3 Simulated Annealing
Simulated annealing is a widely used optimization method for hard combinatorial
problems. Principles behind the method were originally proposed by Metropolis
et al. [20] and later Kirkpatrick et al. [18] generalized the idea for combinatorial
optimization.

Algorithm 1 simulatedAnnealing
Input: Responsibility dependency graph G, base architecture M, initial tem-
perature to, frozen temperature t f , cooling ratio a, and temperature constant
r
Output: UML class diagram D
initial Solution <— encode(G, M)
initialQuality <— evahiate(initialSolution)
S i 4— initial Solution
Qi 4— initialQuality '
t 4 - t0

while t > t f do
n<-0
while ri < r do

Si 4— transform (Si)
Qi 4— evaluate(S^
if Qi > Qi then

S i 4 - Si
Qi <- Qi

else
6+-Qi-Qi
p 4— UniformProbability
if p < e~ then

S i 4- Si
Qi^Qi

end if
end if
n 4- ri +1

end while
14- (1 — a) x t

end while
D 4- generateUML(Si)
return D

The SA algorithm starts from an initial solution which is enhanced during the
annealing process by searching and selecting other solutions from the neighborhood
of the current solution. There are several parameters that guide the annealing. The
search begins with initial temperature to a n d ends when temperature t is decreased
to the frozen temperature t f , where 0 < f / < t0. The temperature gives the

242 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

Algorithm 2 geneticAlgorithm
1: Input: formalization of solution, initial Solution
2: population 4— cieatePopulation(initialSolution)
3: while NOT terminationCondition do
4: for all chromosome in population do
5: p 4— randomProbability
6: if p > mutationProbability then
7: mutat e(chromosome)
8: end if
9: end for

10: for all chromosome in population do
11: cp randomProbability
12: if cp > crossoverProbability then
13: addToParents(c/iromosome)
14: end if
15: end for
16: for all chromosome in parents do
17: father 4— chromosome
18: mother selectNextChromosome(parenis)
19: offspring 4— crossover (father, mother)
20: addToPopulation(offspring)
21: removeFromParents (father, mother)
22: end for
23: for all chromosome in population do
24: calculatefitness(chromosome)
25: end for
26: selectNextPopulation()
27: end while

probability of choosing solutions that are worse than the current solution. The
result of a transformation that worsens the current solution by d, is accepted to
be the new current solution if a randomly generated real i is less than or equal to
a limit which depends on the current temperature t. If a transformation improves
the current solution, it is accepted directly without a test.

An important parameter of SA is the cooling schedule, i.e., how the temperature
is decreased. We use the geometric cooling schedule, in which a constant r is used to
determine when the temperature is decreased, and the next temperature is obtained
simply by multiplying the current temperature by cooling ratio a (0 < a < 1). This
is the most frequently used schedule [45]. It was chosen because of its simplicity,
and because of the fact that all the classical cooling schedules can be tuned so that
they give the same practical temperatures [45].

The SA has been successfully applied for numerous combinatorial optimization
problems, for an instructive introduction to the use of SA as a tool for experimen-
tal algorithmics, see [3, 16]. In order to determine good parameters for a problem,

Simulated Annealing for Software Architecture Synthesis 243

experimental analysis is often needed. There are also adaptive techniques for de-
tecting the parameters [19]. The SA implementation used in our tests is shown
in Algorithm 1. The encoding, transformation and evaluation procedures are dis-
cussed in more detail in Section 4. Notice, that our SA only operates with a single
solution at a time, and the solution is built by transformations (i.e., moving towards
better neighbors).

In Section 5 we compare the present SA and our previous GA implementation
[29]. We assume the reader has knowledge of the basic principles of GA, as given
by, e.g., Michalewicz [21]. The GA implementation used is given in Algorithm 2.
Mutation is executed in the same way as a transformation for simulated annealing,
and more details will be given in Section 4. Crossover is a single-point random
crossover and selecting the next population is made with a rank-based roulette
wheel selection. For more details on how crossover and selection is implemented in
our approach, we refer to [27].

The result of GA is the best solution found during the search process. Thus, in
that sense, both SA and GA are single solution algorithms and their comparison
is straightforward. In order to be able to fairly compare the implementations, the
solutions produced by the two methods should be evaluated by the same quality
functions and the initial solutions should be of the same quality. Hence, we use the
same method for producing the initial solutions for SA as we have done with GA in
[29, 31, 33, 34]. The initial solution is achieved by encoding functional requirements
and thus building a base architecture. The base class structure is derived from the
base architecture, and the base architecture is achieved by randomly applying a
transformation. The same approach for creating several solutions for an initial
population is used in our GA implementation [29, 31, 33, 34], and thus the initial
quality is the same for both SA and GA, as they both use the same evaluation
function.

4 Method
We begin by creating use cases to define the basic functional requirements. Use
cases are an intuitive starting point in most software projects, and little domain
knowledge is required to define them. Thus, use cases are a natural way to begin
eliciting the functional requirements of a system. Use cases can, in turn, be refined
into sequence diagrams. The refining process requires some effort from the architect
but still quite little domain knowledge and is still fairly intuitive, as the architect
simply needs to think how different use cases proceed on operation level. From
sequence diagrams it is simple to elicit classes (the participants/owners' of lifelines)
and operations (calls in the diagram). This results in a base architecture, giving
a structural view of the functional requirements of the system at hand but not
dealing with the quality requirements. The base architecture is encoded to a form
that can be processed by the search algorithm in question. The algorithm produces
software architecture for the given quality requirements by implementing selected
architecture styles and design patterns, and produces a UML class diagram as the

244 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

result.

4.1 Requirements

We will use two example systems: the control system for a computerized home,
called hereafter ehome, and a robot war game simulator, called robo. We will
demonstrate building input for the search algorithm in the case of ehome; the
process is similar in the case of robo.

Figure 1: Adjust temperature use case refined

Specifying requirements begins with giving use cases. Use cases for the ehome
system are assumed to consist of, e.g., logging in, changing the room temperature,
changing the unit of temperature, making coffee, moving drapes, and playing music.
Here, we will take as an example the adjust room temperature use case. The user
simply places a command that the temperature should be adjusted (for the sake of
simplicity, we can here consider elevation), and ehome adjusts the temperature by
turning on the heater.

Simulated Annealing for Software Architecture Synthesis 245

The sequence diagram for the temperature adjustment use case is given in Figure
1. The process begins with a call from the user to set the temperature to a new level.
The system then calls the temperature regulation component, which measures the
current temperature, and then sets the heater on. After the correct temperature is
reached, the heater is turned off.

While sequence diagrams already give a good understanding of how the different
operations depend on each other, a structural view still needs to be obtained, as
patterns cannot be inserted into sequences of calls. Fortunately, sequence diagrams
can easily be turned into class diagrams. At this point, the class diagram would not
consist of anything but the classes, their methods and attributes, and connections
between classes, as defined in the sequence diagram. We have chosen to use sequence
diagrams as the basis, as they can be straightforwardly build based on use case
diagrams, and use case diagrams are the most intuitive way to start formulating
the requirements.

Userlnterface
•make Coffee ()
+adjustTemperature()

playMusic()
+alterOrapes()

loglnQ

-coffeeState
CoffeeMachine

+showCoffeeMachineStatus()
+chooseCoffeeQuality()
+chooseCoffeeAmount()
+calculateCoffeeWaterAmount()
+setCoffee()
+setWater{)
+addCoffeePortion()
+startCoffeeMachine()
+setCoffeeMachlneWarm()
+stopCoffeeMachine()
»ringBuzzerQ

UserRegistry
userOB

+posswordChock()
+registryAdmin()

activatellsertnRegistryO
+addUserToRegistry()

changePassword()
+removeUserFrom RegistryO

setUserRegistryQ

Tempe ratureRegutatlon
-temperatu restate
+setRoomTemperature()
+measureTemperature()
»changeTemperatureToCelsiusQ

DrapeManager
•drapeMotorState
•mnDrapeMotorO
»stopDrapeMotorQ

•drapeState
DrapeRegutatlon

+measureDrapePosition()
+calculateOptimalDrape()
+measureSun()
+showDrapePosition()

HeaterWanager
-heaterS ta te
+setHeaterOn()
fsetHeaterOffj)

MuslcFile8
-musicDB
+adminMusicFile()
+playChosenMusic()
»stopMusicPtayQ

MuslcSystem
-musiclnfo
+showMusicList()
+adminMusicUst()
+pickMusic()
i-musicToSpeakereQ

SpeakerManager
•speakerState
+chooseSpeaker()

MainController
»controllerQ

Figure 2: Base architecture for ehome

246 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

The base architecture in Figure 2 for the ehome system can be straightforwardly
derived from the sequence diagrams. We depict architecture as a class diagram,
as we consider the architecture to be the classes or components of a system the
interfaces and other communication mechanisms between them. Thus, a class view
is natural for our purposes.

The messages in the sequence diagram become the operations and the ob-
jects/components become the classes. Also, if the need for a data source is detected
or the object clearly has a state, they will become attributes in the classes. For ex-
ample, in Figure 1 both the Temperature Regulation and Heater Manager
have states, such as on or off for the Heater Manager. The base architecture
only contains use relationships, as no more detail is given for the algorithm at this
point. The base architecture represents the basic functional decomposition of the
system. A base architecture for robo (which can be achieved by performing the
same steps as did with ehome) is given in Figure 3.

>-main()
•provideUIQ

SimulatlonObject
-objectStatus
+objectControl()
+objectChoice()

ID
¡- ; -idData

•HdControlQ

SimulationEngine
•simulationStatus
+simulationControl()
+stopSimulation()
+startSimulation()

+simulationTimer()

StmulationArea

+simulationAreaControl()

-timerStatus
+robotTimerQ

+combatAreaControl()

+robotControlQ

-movementData
•movementControlQ

CombatEnglne

+combatEngine()
•K»mbatControl()

-ruleData
+njleControlQ

Turn
7 -tu m Data

+tumControl()

-energyStatus

•joumeyData
Journey

-joumeyControl()
•speed ControlO
•directionControlQ

Energy

•energyControlQ
•calculateEnergyO
•HJecreaseEnergyO
•HncreaseEnergyQ

Appearance
-appearanceData
•appearanceControlQ

-batUePata

-accountPata
-accountControlQ

-equipmentPata
Equipment

+eq uipmentControl()
+gunControl()
•radarControlQ

+motorControl()
+healtbControl()
•priceControl()

•weightControlQ

-armorOata

Intelligence

+intelIigenceControl()
+shootingControl()
-f-findRobotQ

Armor

+armorControl()
+hitCalculation()
•^damageCalculationQ

ArmorType
•typePata
»typeControlQ

Figine 3: Base architecture for robo

Simulated Annealing for Software Architecture Synthesis 247

After the operations are derived from the use cases, some properties of the
operations can be estimated to support the synthesis, regarding the amount of
data an operation needs, frequency of calls, and sensitiveness for variation. For
example, it is likely that the coffee machine status can be shown in several different
ways, and thus it is more sensitive to variation (called hereafter the variability of an
operation) than ringing the buzzer when the coffee is done. Measuring the position
of drapes requires more information than running the drape motor (which can be
interpreted as the required parameter size), and playing music quite likely has a
higher usage frequency than changing the password for the system. Relative values
for the chosen properties can similarly be estimated for all operations. Here we have
used the scale of Low (1), Medium (3) and High (5). This optional information,
together with operation call dependencies, is included in the information subjected
to encoding.

4.2 Encoding
Ultimately, there are two kinds of data regarding each operation Oj. Firstly,
there is the basic information given as input. This contains the operations Oi =
{on,Oi2,. . . ,Oik} depending on Oj, its name rij, type di ("f" as in functional for
methods, "d" as in data for attributes), frequency parameter size Pi and vari-
ability Uj. Secondly, there is the information regarding Oj's place in the architecture:
the class(es) C, = { C n , C i 2 , . . . , Cj„} it belongs to, the interface L it implements,
the dispatcher Di it uses, the operations ODi C (Oi) that call it through the
dispatcher, the design patterns Pi = {Pn,Pi2, • • • ,Pim} it is a part of, and the
pre-determined base architecture class MCi. The dispatcher is given a separate
field as opposed to other patterns for efficiency reasons.

The base architecture is encoded as a vector V < ov i, ov 2,..., ovn > of vectors
ovi, ov2,..., ovn for the algorithm. Each vector ovk, in turn, contains all data for a
single operation. Thus, n is the number of operations of a system, and the collection
of these operation defining vectors depicts the entire system when collected into one
vector V. Figure 4 depicts an operation vector ouj. The same encoding works for
both SA and GA. For GA, the chromosome is the vector V, and each vector ovi is
a supergene, which contains the fields described above.

Oi rii di ft Pi Vi Ci It Di ODi MCi Pi

Figure 4: Operation vector ou.

We will give an example from the ehome system of how the given data structure
works. In the base architecture phase, if the TemperatureRegulation class is
given # I D 2 (and the interface # I D 2), for operation measureTemperature (# id
9) the ov9 would have the following values: Og = {#idSetRoomTemperature}, ng
= measureTemperature, dg = f, pg = 3, fg = 1, vg = 3, Cg = 2, Ig = 0, Dg = 0,
ODg = 0, MCg = 2, P9 = 0. The interface has value 0, as measureTemperature
is only required by setRoomTemperature, which is in the same class, and thus

248 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

does need an interface to access this operation. The fields for message dispatcher
and pattern have 0 values, as no architectural solutions are included in the base
architecture. As the operation is here located in the original base architecture
class, the values for C and MC are the same. Note, that the encoding is indeed
operation-centered. Thus, modifications to the architecture are considered from the
viewpoint of how a particular operation can be accessed, and not how two classes
communicate with each other. In practice, the base architecture is encoded into a
text file, which is given as input for the algorithm, with each operation in its own
line.

4.3 Transformations
An architecture is transformed (i.e., one of its neighbors is found) by implementing
architecture styles and design patterns to a given solution. The patterns we have
chosen include very high-level architectural styles [39] (message dispatcher and
client-server), medium-level design patterns [11] (F a ç a d e and Mediator), and
low-level design patterns [11] (Strategy, Adapter and Template Method).
This selection of patterns and styles allows us to see how well the algorithm handles
different types of changes. High-level patterns have a larger impact, as they usually
affect large parts of the architecture, while lower level patterns only affect small
parts. The transformations are implemented in pairs of introducing a pattern or
removing a pattern. This ensures a wider traverse through the search space, as
while implementing a pattern might improve the quality of architecture at one
point, it might become redundant over the course of development. The dispatcher
architecture style makes a small exception to this rule: the actual dispatcher must
first be introduced to the system, after which the responsibilities can communicate
through it. The transformations are the following, and each of them has a certain
probability with which it is selected:

• introduce/remove message dispatcher

• communicate/remove communication through dispatcher

• introduce/remove server

• introduce/remove Façade

• introduce/remove Mediator

• introduce/remove Strategy

• introduce/remove Adapter

• introduce/remove Template Method.

The legality of applying a pattern is always checked before transformations by
giving pre-conditions. For example, the structure of the T e m p l a t e Method de-
mands that depending operations are in the same class. In addition, a corrective

Simulated Annealing for Software Architecture Synthesis 249

function is added to check that the solution conforms to certain architectural laws,
and that no anomalies are brought to the architecture. These laws demand uniform
calls between two classes (e.g., through an interface or a dispatcher but not both),
and state some basic rules regarding architectures (e.g., no operation can implement
more than one interface). The corrective function, for example, discards interfaces
that are not used by any class, and adds dispatcher connections between opera-
tions in two classes, if such a connection already exists between some operations in
those classes. For example, if the "add S t r a t e g y " transformation is chosen, it is
checked that the operation Oj is called by some other operation in the same class c
and that it is not a part of another pattern already (pattern field is empty). Then,
a S t r a t e g y pattern instance spi is created. It contains information of the new
class(es) scj where the different versions of the operation are placed, and the com-
mon interface sii they implement. It also contains information of all the classes and
operations that are dependent on Oi, and thus use the S t r a t e g y interface. Then,
the value in the class field in the vector ovi (representing o,) would be changed
from c to sci, the interface field would be given value sii and the pattern field the
value spi. Adding other patterns is done similarly. Removing a pattern is done in
reverse: the operation placed in a pattern class would be returned to its original
base architecture class, and the pattern found in the supergenes pattern field would
be deleted, as well as any classes and interfaces related to it.

4.4 Quality Function
In the case of software architecture design, selecting an appropriate evaluation func-
tion is particularly difficult, as there is no clear value to measure in the solutions.
In real world, evaluation of software architecture is almost always done manually
by human designers, and metric calculations are only used as guidelines. Also, two
architects rarely agree on a unique quality for certain architecture, as evaluation
is bound to be subjective, and different values and backgrounds will influence the
outcome of any evaluation process. However, for a search algorithm to be able to
evaluate the architecture, a purely numerical quality value must be calculated.

In a fully automated approach, no human interception is allowed, and the eval-
uation function needs to be based on metrics. The selection of metrics may be
as arguable as the evaluations of two architects on a single software architecture.
The rationale behind the selected metrics in this approach is that they have been
widely used and recognized to accurately measure some quality aspects of software
architecture. Hence, the metrics are chosen so that they measure quality aspects
that can be seen as most agreed upon in the real world, and singular values can
be seen as accurate as possible. However, the combination of metrics and multiple
optimization is another problem entirely. For many metrics, it may be arguable
what quality attribute they measure, and may be seen as measurements for several
different quality attributes. Many of these quality attributes, however, are contro-
versial. A perfect example is the selected quality attribute pair: modifiability and
efficiency. The problem of multiple optimization is a direct result of the contra-
dictive aims of the two quality attributes: when attempting to optimize one, the

250 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

quality will decrease in view of the other. In our GA approach we have imple-
mented Pareto optimality [33] to conquer this problem. However, when evaluating
the applicability of simulated annealing, we found it more practical to use a single
weighted fitness, as we wanted to maintain SA as "pure" as possible (local and
efficient), even though there are multi-objective versions of SA as well (e.g., [46]).

The chosen quality function is based on well-known software metrics [8]. These
metrics, especially coupling and cohesion, have been used as a starting point for
the quality function, and have been further developed and grouped to achieve clear
sub-functions for modifiability and efficiency, both of which are measured with a
positive and negative metric. The biggest modifications to the basic metrics include
taking into account the positive effect of interfaces and the dispatcher and client-
server architecture styles in terms of modifiability, as well as the negative effect of
the dispatcher and server in terms of efficiency. Choosing and grouping the metrics
this way makes sure that all architectural decisions are always considered from all
viewpoints. Adding a pattern always adds a class or an interface (or both), and
is thus considered by complexity. As the calls to an operation are also affected,
the change is always also considered positive or negative by both modifiability and
efficiency.

Dividing the evaluation function into sub-functions also answers the demands
of the real world. Hardly any architecture can be optimized from all quality view-
points, but some viewpoints are ranked higher than others, depending on the de-
mands regarding the architecture. By separating efficiency and modifiability, which
are especially difficult to optimize simultaneously, we can assign a bigger weight to
the more desired quality aspect, if we want to. When Wi is the weight for the respec-
tive sub-function sfi, the evaluation function / c (x) (which should be maximized)
for solution x can be expressed as

fc(x) —WiX s f i ~W2X s f 2 + W3X s f 3 - Wi x s f i -w5x s f 5 . (1)

Here, s f i measures positive modifiability, s f 2 negative modifiability, s f 3 positive
efficiency, s f i negative efficiency and finally s/5 measures complexity. All the sub-
functions are normalized so that they have the same range. The sub-functions are
defined as follows (|X| denotes the cardinality of X):

i d
sfi = \calis to interfaces| x J^(ufe) + |calls through dispatcher|) x y^(ufc),

k=0 k=0

s f 2 = |direct calls between operations in different classes| x
k=0

3
+ \calls between operations within same classj x 5~~ (̂vk) x 2,

fc=0

Simulated Annealing for Software Architecture Synthesis 251

w
sfa = |operations dependent of each other within same class\ x

fc=0
u

|used operations in same dass| x
fc=o

e
| depending operations in same ciass| x ^^(pfc),

fc=o

s/4 = ^ |Classlnstabilities\ + (2 x \dispatcherCalls\ + | server Cal/s|) x
ds

+ |calls between operations in different classes\, and
k=0

s/5 = |classes| + |interfaces|.

In s f i , i is the number of operations called through an interface, d is the number
of operations called through dispatcher, and v is the variability value of an operation
(as in Fig. 4). The variability values v of those operations that are involved in
interface or dispatcher calls, respectively, are summed. In s/2, c is the number of
calls from a different class to an operation with no interface and with variability
value Vk, sc is the number calls from within the same class to an operation with
variability value Vk- The calculation is similar to that in s f i , as variability values of
operations are summed if said operations are called based on given criteria. Calls
within class are given a constant multiplier 2, as it is considered that a call within
class bonds two operations and thus has double the negative effect on modifiability.
The w, u and e in s/3 are the numbers of the types of calls as specified in s/3,
similarly as in sfi and s/2. In s/3, however, the parameter size values p are
summed instead of variability values. It should also be noted, that in s f i , most
patterns also contain an interface. In s/3, "used operations in same class" means
a set of operations in class C, which are all used by the same operation from class
D. Similarly, "depending operations in same class" mean a set of operations in
class K, which all use the same operations in class L. In s/4, ds is the number of
calls through dispatcher or server where the called operation's frequency value is
fk• The multiplier 2 for calls relayed by the message dispatcher is given as there
are always two calls when the message dispatcher is used - one from the calling
class to the dispatcher and one from the dispatcher to the receiving class.

5 Experiments
In this section we present the results from the preliminary experiments done with
our approach. Tests were made using the ehome and robo example systems (intro-
duced before). The selected two systems are very different in nature and structure,

252 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

which would lead to very different architectures. Choosing these two different sys-
tems shows that the algorithm is not confined to any particular system, but can
be generally used for any type of system. Most of the parameters used in our tests
originate from the previous tests reported in [29, 31, 34], and give promising results
with the GA approach. The implementation was made with Java 1.5. The tests
were rim on a DELL laptop with 2,95 GB of RAM and 2,26 GHz processor, running
with Windows XP.

All tests were made with the constant r set to 20, and frozen (final) temperature
tf set to 1. The weights for all sub-functions of the quality evaluation function were
set to the same, i.e., all weights W{ were set to 1, as we did not want to favor any
particular quality attribute over another, but aimed for balanced designs. Also,
by setting the weights to 1 we do not need to consider the effect of the weights in
fitness curves.

The GA used in the combination experiments is based on our previous imple-
mentations [29, 31, 34]. The GA uses the same encoding, transformations (mu-
tations) and quality function as defined here for the SA. As stated in Section 3,
the crossover operator is a single-point random crossover and selection is made
with a rank-based roulette wheel method. As this paper concentrates on simulated
annealing, the particularities of the GA implementation are not discussed further
here; details can be found in [29, 31, 34, 27].

5.1 Using SA First
The standard tests were made with 7500 as starting temperature and 0.05 as cool-
ing ratio. A longer annealing was also experimented with by setting the starting
temperature to 10 000 (cooling ratio 0.05), and a faster annealing was tested by
setting the cooling ratio to 0.15 (starting temperature 7500). A lower starting tem-
perature had also been tested previously with no obvious benefits [35]. The values
were selected based on trial-and-error experiments. However, the results were un-
satisfactory for both systems, and there were no significant differences between
the results achieved with different SA parameters. The trend of the quality curve
for the SA was descending, and the end quality value was worse than the initial
value (the initial value is the same as where the GA starts in the curves given in
the following section). The high temperature tests for both systems took approxi-
mately 10 seconds per run and the fast annealing tests less than 5 seconds per run,
standard test runtime is reported in the following. We then tried to build a base
solution with a short and fast annealing (starting temperature 2500 and cooling
ratio 0.15), and then continue the search with a genetic algorithm, which ran for
250 generations and had a population of 100 (combination SAGA). This approach
did not produce much better results: the SA curves were quite similar than with
longer and slower runs, and while the quality curve for the GA portion did increase
for a short while, it began to quickly descend drastically. Also in this case the end
quality value was worse than the value for the initial solution. Again, the runtime
for the SAGA seeded algorithm is reported in the following when compared to other
approached. All experiments were run for 20 times.

Simulated Annealing for Software Architecture Synthesis 253

5.2 Using a Combination of GA and SA
As using the SA alone or for producing a seed did not produce good results, we
tried using GA for creating a good base solution (again, with 250 generations and
a population of 100), and then applying SA (starting temperature 2500, cooling
ratio 0.15) for further tuning the solution (combination GASA). The experiments
were run for 20 times and presented fitness curves are the average curves of the 20
runs. We have chosen to show average curves, as we are, after all, interested in
how the algorithms behave in general, not individual runs. In this case, the results
were much better. The GA does a good basic work, and the SA is able to further
improve the solution very quickly.

EKome, GASA - 6A

1200 -

1M0 -

800 -

6 0 0 -

400 -

200 -

a -
1 16 21 46 61 76 81 106 121 126 151 1 6 6 " i e i 166 211 226 241

Generation

Figure 5: GA portion of GASA quality curve for ehome

Figure 5 presents the GA portion and Figure 6 the SA portion of the GASA
quality curve for ehome. Figures 7 and 8 present the respective curves for robo.
The GA curves represent the average of the elite (top 10% of the population) (given
as an average over the 20 runs), and the SA curves are naturally simply the average
of fitness values of the 20 runs, Note that the SA algorithm starts where the GA
ends: the difference in the GA end value and SA start value is due to the fact that
quality values are not recorded until one round of transformations has already been
completed and because the GA curve is the average of elite, while SA handles only
one solution.

As can be seen in Figure 5, the GA begins with a short plummet, after which
the quality (fitness) begins to develop steadily. We expect the plummet to be an
effect of using the message dispatcher very early on. When the message dispatcher
is used sparingly (as is the case after only a few mutations), its penalty is greater
than its reward. After about 100 generations the fitness appears to stabilize, i.e.,
the curve is not increasing, and it does not seem likely to further develop. In Figure
6, the SA begins to develop the solution from where the GA left off, and the curve

254 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

Ehome, GASA • SA

— —

Temperature

Figure 6: SA portion of GAS A quality curve for ehome

develops rapidly until quite near the end of the SA process.
In Figure 7, depicting the GA portion for the robo system, the GA first plum-

mets similarly as in the curve for ehome, but after it starts ascending, the devel-
opment seems more rapid and steady than for the ehome, and it appears as if the
quality could still increase after the GA finishes. The SA portion of the GASA
curve for robo, in Figure 8, appears quite similar to the GA curve at first, but look-
ing at the actual quality values reveals that the SA develops much more quickly
than the GA. In the end the curve has reached a plateau, giving reason to believe
that some optimum has been found.

2000

1500
1000

£ 5 0 0

3

O o

•500
-1000

-1500

Robo, GASA-GA

Generation

Figure 7: GA portion of GASA quality curve for robo

Simulated Annealing for Software Architecture Synthesis 255

Robo, GASA -SA

Temperature

Figure 8: SA portion of GASA quality curve for robo

We have calculated the average fitnesses and standard deviations of GASA runs
in Table 1. The average of the (averages of) elite is naturally the value where GA
fitness curves end (Figures 5 and 7). The average of best (seed) is the average
of the absolute best individuals provided by GA, which are then given as a seed
for SA for further development. For SA we only have one value, as the algorithm
only handles one individual at a time. From Table 1 we can see that the deviation
especially in the case of GA is quite large, and the algorithm is not as stable as
could be hoped. However, the deviation within the solutions after the SA (i.e.,
the final solutions from the seeded algorithm) is much smaller. There was no clear
correlation between the elite fitness after GA and the fitness value after SA.

System GA SA-System
Elite Best (seed)

SA-

Ehome "Average. 898.7 2695.5 25536.8 Ehome
Stv,"deviation .390.7; 984.8 1233.6

Rpb.o ; -Average; 1558.6 4456.5 37921.8. Rpb.o ;
St. deviation 776.6 2127.3 7559.9

Table 1: Statistical markers

Finally, we have compared the runtimes of GA and SA and their combinations
to random search (RS) and hill climbing (HC). The runtimes have been collected
in Table 2. RS was run for 3500 iterations (same amount of iterations as SA
with standard parameters) and HC was allowed 150 attemps of finding a neighbor
after each ascent. All algorithms were run 20 times. The average fitness value

256 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

achieved with RS was -1915 for ehome and -4266 for robo. For HC, in 50% of
the cases the algorithm only managed to ascend once, after which the algorithm
terminated as 150 attempts at finding a better neighbor failed. In the rest of
the cases HC was able to ascend 6-12 times. Due to such inconsistent results,
average fitness values do not provide good information. However, HC is clearly
not a suitable algorithm for this problem. As can be seen in Table 2, all local
searches are significantly faster than GA or combinations with GA. It should be
noticed, though, that the GA performs at least 25000 fitness evaluations (100 in
a population times 250 generations and additionally the evaluations of offspring),
while the SA only performs 3500 fitness evaluations (with the selected parameters).
Also, crossover is a very time consuming operation for the GA. As a conclusion,
GA and GASA are clearly the slowest algorithms, but produced just as clearly the
best results.

GA •SA ; GASA SAGA HC- RS
Ehome -45s - 5 s -100s -50S ~6s -4 s
Robo ~35S' ~6S -4 0s -40s ~2S ~4S

Table 2: Runtimes for different algorithms

6 Discussion
In Section 5 we discussed the quality curves of the experiments made with the SA
algorithm. Naturally, the UML graphs given as output should also be examined
to get a wholesome idea of whether the results with extreme quality values are
actually good. In addition to discussing the class diagrams related to the test
graphs presented in Section 5 (the GASA tests), we will also discuss the UML
graphs achieved when SA was used primarily. The example solutions are given in
a simplified format high-level where the design solutions are emphasized, rather
than giving the actual class diagrams given by the algorithm, as they would be too
space consuming and difficult to interpret. As the format is free form, we have not
included class relations, but simple use relations only. There are no methods or
attributes present in the solutions that were not there in the base architecture.

6.1 Proposed Architectures with GASA
Using the GASA approach produced very similar solutions for both ehome and
robo systems. The solutions were built around the message dispatcher, as nearly all
communication between classes (in different base architecture classes) was handled
through it. The dispatcher makes the system highly modifiable, as classes do not
need to know any details of other classes; they merely send and receive messages

Simulated Annealing for Software Architecture Synthesis 257

through the dispatcher. The architecture is also easy to understand quickly, as the
message dispatcher creates a logical center for the system and separates different
model classes. However, the message dispatcher creates huge loss in efficiency, as
the increased message traffic greatly affects the performance of the system. Thus,
it should be used as the primary method for communication or not be used at all,
as in the case where it is only partially used the cost in efficiency is bigger than the
gain in modifiability.

In addition to the message dispatcher, all solutions achieved with the GASA
approach had several instances of the Adapter pattern. The Adapter pattern
is easy to apply, as it has very loose preconditions, but it is more costly in terms
of efficiency than other patterns. There were usually also several instances of the
Template Method pattern, which, in turn, is very low cost in terms of both effi-
ciency (it does not increase the number of calls) and complexity (only one class, no
interface). In some cases, however, the algorithm had preferred the Strategy pat-
tern, and there would be many instances of Strategy, while only a few Template
Method instances.

An example solution for ehome achieved with GASA is presented in Figure 9.
As can be seen, nearly all connections are handled via the message dispatcher, as
only calls from the Main component to Music System and Coffee Machine,
and from Music Sy stem to Music Files are handled directly between the com-
ponents. The example also shows that the Template Method is used very much
to create low-level modifiability. The ehome is particularly suitable for a message
dispatcher architecture style, and achieving a high level of message-based commu-
nication between components is desirable, as the message dispatcher is then used to
its full potential and enables independency between components. The Adapters
for Water Control and Speaker Manager are also particularly well placed, as
these components are intuitively such that they could be replaced with new ones
(in an ehome we may want to change the water faucet or upgrade to better speakers
without changing the underlying kitchen or music systems), and thus the interface
might change. The Template Methods for Coffee Machine, Temperature
Regulation and Music System are also well chosen, as the specialized oper-
ations are such that alternative versions are easily conjured. Other Adapters,
Template Methods and Strategies are acceptable, but a human designer
would probably not apply them.

A similar example solution for robo (also achieved with GASA) is presented
in Figure 10. As can be seen, the message dispatcher is used here even more in-
tensely than in the case of ehome, as only connections between CombatEngine
and Rules and some connections involving the SimulationOb ject are not us-
ing the message dispatcher, even though the amount of components is larger than
in the case of ehome. However, while using the message dispatcher in these pro-
portions is desirable if it is chosen as the primary architecture style, if we consider
the type of system the robo is (a framework), in real life a message dispatcher
would probably not be the best option. All the components are actually tightly
linked, and the design should concentrate more on extendibility and the actual
functionality of the system. Also, as robo is a gaming application, using the mes-

258 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

¡ TemptateMethod: :
setCoffee s
setWater j

: TençtateMethod: :
I addCoffeePortion, i_
j showCoffeeMachi •

neStatus :

¡ TemplataMethod: Í
j ringBuzzer :

TemplateMethod:
calcutateCoffeeWaterAmount

_J TemplateMethod: j
i setCoffee MachineWarm]

Temperature
Regulation

Heater Manager

Coffee Machine

r.

i Adapter

TemplateMethod:
openWater,
doseWater

Drape Manager

Dispatcher

A

User Registry

Strategy:
registiyAdmJn j "

; Strategy:
• password Check

Drape
Regulation

; TemplateMethod:
measureSun

TemplateMethod:
! measure Drape Position

Adapter

'AT

Adapter |

Speaker Manager

TemplateMethod:
edminMusicRle

Music System TemplateMethod:
showMusicüst

Figure 9: Example architecture for ehome, with GASA algorithm combination

sage dispatcher in this extent would probably lead to significant disadvantage in
terms of efficiency, which is particularly undesirable when the system needs to re-
spond quickly. The SA (or GA), however, does not have such high-level knowledge
of the type of system it is dealing with and bases the design simply on the quality
values, which are achieved from general structural decisions only. For robo, there
are also several A d a p t e r , TemplateMethod and Strategy patterns, and the
usage of these different patterns is more balanced than in the case of ehome, where
the Template Method was the dominating pattern. In the proposed solution for
robo, the Template Method and Strategy patterns are all intelligently used,
as they consider operations and classes where the need for specialization is easily

Simulated Annealing for Software Architecture Synthesis 259

Simula tionObject

TemplateMethod:
simulationObjectControl

Message
Dispatcher

Appearance 4

Strategy.
caiculateEnergy Energy

ï
Adapter

Journey
Adapter

Strategy,
speed Control

>. Adapter Intelligence

Strategy:
findRobot

SimulationEngine

Adapter Simulât» nArea

TemplateMethod:
destructionCalcutation

hitCatoulation

TemplateMethod:
weightControl

Rules

—I—

CombatEngine

Strategy:
combatControl

Strategy
gunControl

"TemplateMethod"
healthControl
priceCcwitro]

Armortype

Figure 10: Example architecture for robo, with GASA algorithm combination

260 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

seen. The Adapters, however, are not used particularly well. To summarize, us-
ing the message dispatcher gives a clear focal point in the solutions, and the full
potential of the message dispatcher is used. It should also be pointed out that
solutions achieved after only running the GA (i.e., the seeds for the SA) often had
the message dispatcher, but its usage was mostly quite minimal, as only a couple of
components were communicating via the dispatcher. Thus, the SA algorithm has a
significant influence in achieving a much better level of usage in the final solution.
In addition, low-level design patterns are used to further fine-tune the solution at
class-level.

6.2 Proposed Architectures Based on SA
As mentioned, we also performed tests with only SA and by combining SA to GA
by using the SA produced solution as a seed for the GA. The produced solutions
were very similar for all cases of the SA (high temperature, standard, and fast
annealing) and the SAGA approach.

In these cases, the message dispatcher architecture style did not appear in any
of the solutions for either system. As for the patterns, the Adapter pattern was
clearly the most popular in all the solutions for both systems. For the robo sys-
tem, there were very few instances of other patterns; only a couple of Template
Method or Strategy patterns could be found in the solutions. The solutions for
robo seemed quite difficult to understand at a glance; the structure depends greatly
on the base architecture, and as all classes are "by default" given an interface, the
minimum amount of classes/inter faces is 44 for the robo system. When the pat-
terns are added (even if only a few) the architecture easily becomes quite complex.
The solutions for ehome were significantly easier to understand, as the amount of
classes/interfaces that appear by default is roughly half the amount of classes for
robo system. Curiously enough, there seemed to also be slightly more appearances
of the Strategy and Template Method patterns in the ehome solutions than
in robo, but the ehome solutions still seemed more understandable.

It appears that the S A by itself is incapable of introducing solutions that produce
delayed reward, such as the message dispatcher architecture style. Also, even if the
GA is able to introduce such solutions after being given the seed from the SA, it
will take exceptionally long before the reward will overcome the cost, as the SA has
already developed the solutions a great deal, and the GA may have to reverse the
design process (i.e., apply the remove-transformations) in order to apply needed
changes. The results of merely SA based systems axe, thus, unsatisfactory.

7 Conclusions and Future Work
We have presented an approach that uses SA in software architecture synthesis. A
base architecture is given as input and architecture styles and design patterns are
used as transformations when searching for a better solution in the neighborhood.
The solution is evaluated with regard to modifiability, efficiency and complexity.

Simulated Annealing for Software Architecture Synthesis 261

The experimental results achieved with this approach show that SA on its own is
not able to produce good quality solutions in terms of quality values or the re-
sulting UML class diagrams. Attempts of improving the SA based solution with
GA were also unsuccessful in increasing the quality values. However, when com-
bining GA and SA so that the SA fine-tunes a basic solution achieved with the
GA, both the quality values and the class diagrams are very good. Moreover, as
SA is significantly faster than the GA, the result was obtained much quicker than
would have been possible by using only GA. Thus, it is concluded that while SA is
not sophisticated enough to be able to introduce complex alterations that require
several transformations and produce delayed reward, it is able to quickly improve
solutions where the base for such alteration has already been made.

It should be noted though, that SA seems to act very "single-mindedly". When
SA was used on its own, no solutions contained the message dispatcher architecture
style. When SA was used after the GA, all the solutions used the message dispatcher
architecture style very heavily, whether it was actually desired or not. Thus, it
appears that the mechanism in SA that should prevent it from being stuck to a local
optimum is not sufficient to divert the search in the case of software architecture
synthesis.

When compared to the manual process, any of the presented algorithms (GA,
SA, GASA or SAGA) performs significantly faster than a human designer. A
human designer would need several hours to peform the design task, while our
algorithms manage in mere minutes. In terms of quality, the GA and GASA come
quite close to results from a human designer. Previous studies have shown that GA
is at a level of a college student [28], and GASA manages to produce better quality
and faster results. Thus, in relation to the ultimate goal of automating software
engineering, this paper brings us closer to that goal by providing a more efficient
way of automating software architecture design while also producing better quality
results than what have been previously achieved with GA alone.

In our future work we will concentrate on practical issues, and improve our basic
implementation so that patterns (which are currently hardcoded), could be added
at will. This will significantly increase the search space, but will also make the need
for an algorithm to handle a large amount of patterns even greater. Moreover, the
larger the system is and the more computation is required, the more there will also
be need for a way to quicken the evolutionary process. Thus, we will also be doing
experiments on very large systems to further see how much the seeded algorithm
can outperform the GA in terms of time.

8 Acknowledgements

The authors would like to thank professor Kai Koskimies for helpful discussions
and the anonymous referees for their valuable comments.

262 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

References
[1] Aleti, A., Bjornander, S., Grunske, L., and Meedeniya, I. Archeopterix: an

extendable tool for architecture optimization of AADL models. In Proceed-
ings of the ICSE Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, pages 61-71, 2009.

[2] Amoui, M., Mirarab, S., Ansari, S., and Lucas, C. A genetic algorithm
approach to design evolution using design pattern transformation. Interna-
tional Journal of Information Technology and Intelligent Computing, 1:235-
245, 2007.

[3] Aragon, C. R., Johnson, D. S., McGeoch, L. A., and Schevon, C. Optimization
by simulated annealing: An experimental evaluation; part II, graph coloring
and number partitioning. Operations Research, 39(3):378-406, 1991.

[4] Bansiya, J. and Davis, C. G. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering, 28(1):4-17,
2002.

[5] Bodhuin, T., Di Penta, M., and Troiano, L. A search-based approach for dy-
namically re-packaging downloadable applications. In Proceedings of the Con-
ference of the Center for Advanced Studies on Collaborative Research (CAS-
CON07), pages 27-41, 2007.

[6] Bouktif, S., Sahraoui, H., and Antoniol, G. Simulated annealing for improving
software quality prediction. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2006), pages 1893-1900. ACM, 2006.

[7] Bowman, M., Briand, L. C., and Labiche, Y. Solving the class responsibility
assignment problem in object-oriented analysis with multi-objective genetic
algorithms. IEEE Transaction on Software Engineering, 36(6):817-837, 2010.

[8] Chidamber, S. R. and Kemerer, C. F. A metrics suite for object oriented
design. IEEE Transaction on Software Engineering, 20(6):476-492, 1994.

[9] Clarke, J., Dolado, J. J., Harman, M., Hierons, R. M., Jones, B., Lumkin,
M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., and Shepperd, M.
Reformulating software engineering as a search problem. IEE Proceedings -
Software, 150(3):161-175, 2003.

[10] Frankel, D. S. Model Driven Architecture - Applying MDA to Enterprise Com-
puting. Wiley Publishing, Inc., 2003.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] Gold, N., Harman, M., Li, Z., and Mahdavi, K. A search based approach
to overlapping concept boundaries. In Proceedings of the 22nd International
Conference on Software Maintenance (ICSM 06), pages 310-319. IEEE, 2006.

Simulated Annealing for Software Architecture Synthesis 263

13] Harman, M., Mansouri, S. A., and Zhang, Y. Search based software engineer-
ing: a comprehensive review of trends, techniques and applications. Technical
report TR-09-03, King's College, London, United Kingdom, 2009.

141 Harman, M. and Tratt, L. Pareto optimal search based refactoring at the
design level. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2007), pages 1106-1113. ACM, 2007.

151 Jensen, A. C. and Cheng, B. H. C. On the use of genetic programming for
automated refactoring and the introduction of design patterns. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2010),
pages 1341-1348. ACM, 2010.

161 Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. Optimization
by simulated annealing: An experimental evaluation; part I, graph partition-
ing. Operations Research, 37(6):865-892, 1989.

171 Julstrom, B. A. Seeding the population: improved performance in a genetic
algorithm for the rectilinear Steiner problem. In Proceedings of the ACM
Symposium on Applied Computing (SAC94), pages 222-226. ACM, 1994.

18] Kirkpatrick, S., Gelatt, C., and Vecchi, M. Optimization by simulated anneal-
ing. Science, 220:671-680, 1983.

191 Laarhoven van, P. J. M. and Aarts, E. Simulated Annealing: Theory and
Applications. Kluwer, 1987.

201 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. Equation of state calculation by fast computing machines. Journal
of Chemical Physics, 21:32-40, 1953.

211 Michalewicz, Z. Genetic Algorithms + Data Structures = Evolutionary Pro-
grams. Springer-Verlag, 1992.

22] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, 1996.

231 O'Keeffe, M. and O Cinneide, M. Towards automated design improvements
through combinatorial optimization. In Workshop on Directions in Software
Engineering Environments (WoDiSEE2004), W2S Workshop - 26th Interna-
tional Conference on Software Engineering, pages 75-82. IEEE, 2004.

241 O'Keeffe, M. and 0 Cinneide, M. Search-based software maintenance.
In Proceedings of Conference on Software Maintenance and Re-engineering
(CSMR '06), pages 249-260. IEEE, 2006.

251 O'Keeffe, M. and O Cinneide, M. Search-based refactoring for software main-
tenance. Journal of Systems and Software, 81(4):502-516, 2008.

261 Raiha, O. A survey on search-based software design. Computer Science Review,
4(4):203-249, 2010.

264 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen

[27] Räihä, O. Genetic Algorithms in Software Architecture Synthesis. PhD thesis,
University of Tampere, 2011.

[28] Räihä, O., Hadaytullah, Koskimies, K., and Mäkinen, E. Synthesizing archi-
tecture from requirements: A genetic approach,. In Relating Software Require-
ments and Architectures, pages 307-331. Springer, 2011.

[29] Räihä, O., Koskimies, K., and Mäkinen, E. Genetic synthesis of software
architecture. In Proceedings of the 7th International Conference on Simulated
Evolution and Learning (SEAL08), pages 565-574. Springer, 2008.

[30] Räihä, O., Koskimies, K., and Mäkinen, E. Empirical study on the effect
of crossover in genetic software architecture synthesis. In Proceedings of the
World Congress on Nature and Biologically Inspired Computing (NaBIC09),
pages 619-625. IEEE, 2009.

[31] Räihä, O., Koskimies, K., and Mäkinen, E. Scenario-based genetic synthesis
of software architecture. In Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA09), pages 437-445. IEEE, 2009.

[32] Räihä, O., Koskimies, K., and Mäkinen, E. Complementary crossover for
genetic software architecture synthesis. In Proceedings of the 10th International
Conference on Intelligent Systems Design and Applications (ISDA10), pages
359-366. IEEE, 2010.

[33] Räihä, O., Koskimies, K., and Mäkinen, E. Generating software architecture
spectrum with multi-objective genetic algorithms. In Proceedings of the Third
World Congress on Nature and Biologically Inspired Computing (NaBICll),
pages 29-36. IEEE, 2011.

[34] Räihä, O., Koskimies, K., Mäkinen, E., and Systä, T. Pattern-based genetic
model refinements in MDA. Nordic Journal of Computing, 14(4):322-339,
2008.

[35] Räihä, O., Mäkinen, E., and Poranen, T. Using simulated annealing for pro-
ducing software architectures. Technical Report D-2009-2, University of Tam-
pere, Tampere, Finland, 2009.

[36] Ramsey, C. L. and Grefenstett, J . J. Case-based initialization of genetic algo-
rithms. In Proceedings of the 5th International Conference on Genetic Algo-
rithms, pages 84-91. Morgan Kaufmann Publishers, 1993.

[37] Seng, O., Bauyer, M., Biehl, M., and Pache, G. Search-based improvement
of subsystem decomposition. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2005), pages 1045-1051. ACM, 2005.

[38] Seng, O., Stammel, J., and Burkhart, D. Search-based determination of refac-
torings for improving the class structure of object-oriented systems. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO
2006), pages 1909-1926. ACM, 2006.

Simulated Annealing for Software Architecture Synthesis 265

[39] Shaw, M. and Garlan, D. Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[40] Simons, C. L. and Parmee, I. C. A cross-disciplinary technology transfer
for search-based evolutionary computing: from engineering design to software
engineering design. Engineering Optimization, 39(5):631-648, 2007.

[41] Simons, C. L. and Parmee, I. C. Single and multi-objective genetic operators
in object-oriented conceptual software design. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2007), pages 1957-1958.
ACM, 2007.

[42] Simons, C. L. and Parmee, I. C. Dynamic parameter control of interactive
local search in UML software design. In Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pages 3397-3404. IEEE Press,
2010.

[43] Simons, C. L. and Parmee, I. C. Elegant object-oriented software design via
interactive, evolutionary computation. IEEE Transactions on Systems, Man
and Cybernetics, Part C Applications and Reviews, 42(6):1797-1805, 2012.

[44] Simons, C. L., Parmee, I. C., and Gwynllyw, R. Interactive, evolutionary
search in upstream object-oriented class design. IEEE Transactions on Soft-
ware Engineering, 36(6):798816, 2010.

[45] Trikia, E., Colletteb, Y., and Siarry, R A theoretical study on the behavior of
simulated annealing leading to a new cooling schedule. European Journal of
Operational Research, 166:77-92, 2005.

[46] Varadharajan, T. K. and Rajendran, C. A multi-objective simulated-annealing
algorithm for scheduling in flowshops to minimize the makespan and total
flowtime of jobs. European Journal of Operational Research, 167:772-795,
2005.

Received 20th August 2012

Acta Cybernetica 21 (2013) 267-271.

Realizing Small Tournaments Through
Few Permutations*

Christian Eggermontj Cor Hurkensj and Gerhard J. Woeginger^

Abstract
Every tournament on 7 vertices is the majority relation of a 3-permutation

profile, and there exist tournaments on 8 vertices that do not have this prop-
erty. Furthermore every tournament on 8 or 9 vertices is the majority relation
of a 5-permutation profile.

Keywords: voting systems; digraph realization; extremal combinatorics

1 Introduction
A tournament T = (V, A) is a directed graph on a vertex set V whose arc set A
contains exactly one arc between any pair of distinct vertices. A finite family of (not
necessarily distinct) permutations of V forms a realization of the tournament, if for
every arc uv € A vertex u precedes vertex v in more than half of the permutations.
A realization of the tournament by k permutations is called a k-permutation profile.
McGarvey [2] proved that every tournament has a realization by a finite number of
permutations. Subsequent results by Stearns [6] and Erdos & Moser [1] yield that
every tournament on n vertices can be realized by 0(n/ log n) permutations, and
that some tournaments on n vertices cannot be realized by fewer than f l(n/ log n)
permutations. We define the McGarvey number McG(T) of a tournament T as
the size of the smallest possible permutation family that realizes the tournament;
note that McG(T) always is an odd integer.

Shepaxdson & Tovey [5] analyzed several combinatorial questions on the so-
called predictability number of tournaments, a parameter closely related to realiza-
tions of tournaments. Page 502 of [5] formulates the conjecture that every 7-vertex
tournament T has McG(T) < 3. In this technical note we confirm this conjec-
ture, and we also discuss a number of related questions. Our results confirm this
conjecture:

"This work was supported bythe Netherlands Organisation for Scientific Research (NWO),
grant 639.033.403; by DIAMANT (an NWO mathematics cluster); by the Future and Emerging
Technologies unit of the European Community (1ST priority), under contract no. FP6-021235-2
(project ARRIVAL).

^Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB
Eindhoven, Netherlands, E-mail: {c .e . j .eggermont.wscor,gwoegijSwin.tue.nl

268 Christian Eggermont, Cor Hurkens, and Gerhard J. Woeginger

• Every 7-vertex tournament T satisfies McG(T) < 3.

• Every 8-vertex and every 9-vertex tournament T satisfies McG(T) < 5.

• There exist 96 non-isomorphic 8-vertex tournaments T with McG(T) = 5.

• There exist 17.674 non-isomorphic 9-vertex tournaments with McG(T) = 5.

All our results have been derived with the help of computer programs, and in
particular with the help of the software packages AIMMS and CPLEX.

2 Mathematical model and computational results
We express every permutation of the vertex set V = {1 ,2 , . . . ,n} by a a transitive
tournament, which can be considered as a permutation (total order) of V. It is well-
known (see for instance Moon [4]) that a tournament without directed triangles is
transitive. We use n2 integer variables xuv € {0,1} with u, v = 1 , . . . ,n to encode
the arcs of the tournament, and we impose the following two families of linear
inequalities.

xuv + xvu = 1 for all u.v £ V

xuv + xvw + xwu < 2 for all u,v,w £V

The first constraint family enforces that for every two vertices u, v there is either
an arc uv or an arc vu but not both. The second constraint family forbids the
occurrence of directed triangles (and thus makes the tournament transitive).

In order to decide whether a given tournament T = (V, A) can be realized by
three permutations, we introduce three such sets of integer variables xuv, x'uv, x"v
together with the corresponding families of constraints. Furthermore we add the
constraints

Xuv + x'uv + x([„ > 2 for all uv £ A.

These constraints ensure that vertex u precedes vertex v in more than half of the
three permutations. McKay [3] gives a fist that enumerates all 456 non-isomorphic
tournaments on seven vertices. We worked through the tournaments on this list one
by one, and for each of them the software package AIMMS managed to find a feasi-
ble solution to the corresponding linear integer program. We also worked through
the list of 6,880 non-isomorphic tournaments on eight vertices and through the list
of 191,536 non-isomorphic tournaments on nine vertices; for all these tournaments
AIMMS found a realization by five permutations.

Theorem 1. Every tournament on n <1 vertices has a realization by three per-
mutations. Every tournament on n <9 vertices has a realization by five permuta-
tions. •

Realizing Small Tournaments Through Few Permutations 269

0000110.011000.00010.0001.100.10.1
0000110.101000.10010.0001.100.10.1
0001010.011000.00100.0001.110.10.1
0001100.101000.10010.0001.100.10.1
0001100.101000.10100.0010.110.11.1
0010001.010100.00010.0110.000.10.1
0010001.110000.01010.0110.100.10.1
0010010.101000.00110.0001.100.10.1
0010010.101000.10100.1001.110.10.1
0010100.101000.00011.0001.100.10.0
0010100.101000.10010.1001.110.10.1
0011000.000011.00100.1010.101.10.1
0011000.000110.10000.0111.100.11.1
0011000.000110.10000.1101.011.10.1
0011000.000110.10000.1101.110.11.1
0011000.010010.00100.1110.011.01.1
0011000.010010.00100.1110.101.11.1
0011000.100100.01010.0001.110.10.1
0011000.100100.10100.0011.010.10.1
0011000.101000.10100.0011.110.10.1
0011100.110000.00110.1010.001.10.1
0011100.110000.01010.0110.001.10.1
0100010.001100.10010.0001.100.10.1
0100010.011000.10010.0101.100.10.1
0100010.101000.10101.0001.100.10.0
0100100.010000.01010.0110.100.11.1
0100100.010010.00110.0001.000.10.1
0100100.101000.10011.0001.100.10.0
0101000.110000.10110.0011.100.10.1
0101100.010100.01010.0010.001.10.1
0101100.011000.01010.0010.101.10.1
0110000.001100.10010.1001.110.10.1
0110000.101000.10110.0011.100.10.1
0110010.100001.10101.1001.100.10.0
0110100.100001.10011.1001.100.10.0
0110100.101000.11010.0101.001.10.0
0111000.100100.11010.1010.110.01.1
1000010.110100.11000.0101.010.10.1
1000010.111000.00110.0001.100.10.1
1000100.010110.01000.0010.100.11.1
1000100.110010.11000.1100.110.11.1
1000100.110100.10010.1001.010.10.1
1001000.100100.00011.1000.110.10.1
1001000.100110.10010.0100.100.11.1
1001000.101100.00110.0000.110.11.1
1001000.110010.10001.1100.100.10.1
1001000.110100.01100.0010.110.11.1
1001000.110100.11000.0011.110.10.1

1001010.110010.11000.0101.001.00.0
1001100.110010.10010.1010.001.00.1
1001100.111000.01010.0010.101.10.1
1010000.000111.01000.1100.101.11.0
1010000.001101.00010.1100.101.11.0
1010000.100011.00101.1100.010.01.0
1010000.100011.10100.1110.100.11.1
1010000.100101.00011.1100.010.01.0
1010000.100101.01001.1100.110.11.0
1010000.100101.10010.1110.100.11.1
1010000.101001.00101.1100.110.11.0
1010000.101001.00110.1100.101.11.0
1010000.101100.10001.1110.110.11.1
1010000.111000.01100.1110.111.11.1
1010001.110001.00110.0011.000.00.0
1010001.110001.00110.1010.010.00.1
1010001.110001.00110.1010.100.10.1
1010001.110010.00011.1100.100.01.0
1010001.110010.00101.0110.000.01.0
1010001.110010.10100.1011.001.00.0
1010001.110010.10100.1011.010.00.1
1010001.110100.00011.1010.001.00.0
1010001.110100.00011.1010.100.10.1
1010001.110100.01010.0011.010.00.1
1010001.110100.01010.0011.100.01.0
1010010.110001.00011.1100.100.01.0
1010010.110001.00101.0110.000.01.0
1010100.101010.01100.0001.001.10.0
1010100.110001.00011.1010.010.00.1
1010100.110001.01010.0011.001.00.0
1010100.111000.01010.0110.001.10.1
1010100.111000.01010.1010.101.10.1
1100000.010110.11000.0111.100.11.1
1100000.011010.00110.0001.100.10.1
1100000.101010.10110.1000.110.01.1
1100000.110010.10110.1100.010.01.1
1100000.110100.10110.0011.000.10.1
1100000.110100.11010.1001.110.10.1
1100000.111000.10101.0011.100.10.0
1100100.110010.11010.1010.001.00.1
1101000.011100.00110.0010.001.10.1
1101000.101010.11010.0001.101.00.0
1101000.110010.11100.0101.001.10.0
1110000.100110.11001.0011.100.01.0
1110000.101010.10101.0011.100.01.0
1110000.101010.11010.0101.001.00.0
1110000.110001.10011.1110.100.01.0
1110000.111000.11100.1110.011.10.1

Table 1: The 96 non-isomorphic 8-vertex tournaments T with McG(T) = 5.

270 Christian Eggermont, Cor Hurkens, and Gerhard J. Woeginger

0 1 2 3 4 5 6 7
0 - * 1 1 0 0 * *

1 * - * 1 1 0 0 *

2 0 * - * 1 1 0 *

3 0 0 * - 1 1 1 0
4 1 0 0 0 - * 1 1
5 1 1 0 0 * - 1 0
6 * 1 1 0 0 0 - 1
7 * * * 1 0 1 0 -

Table 2: The adjacency matrix of the directed graph Gg.

In our computational experiments, we detected that 96 of the 6.880 non-
isomorphic 8-vertex tournaments cannot be realized by three permutations. These
tournaments are listed in Table 1. Each tournament is represented as the upper
triangle of the adjacency matrix in row order, and consecutive rows are always
separated by dots (this is the representation used in McKay's list [3]).

We also took a closer look at these 96 exceptional tournaments, and tried to
understand their common properties. We used CPLEX to analyze their structure,
and to identify minimal infeasible subsystems of the underlying linear integer pro-
grams. It tinned out that all 96 tournaments contain the directed subgraph Gg
whose adjacency matrix is depicted in Table 2. The arcs marked by '*' are un-
specified, and their orientation can be set arbitrarily in the tournaments. (Note:
Since there are eight vertex pairs with unspecified arcs, this would yield 256 corre-
sponding 8-vertex tournaments; however symmetries and isomorphisms reduce this
number to 96.)

Observation 2 . If a tournament T contains the graph Gg as a subgraph on eight
vertices, then T has no realization by three permutations. •

We stress that the copyright on this graph Gg belongs to Shepardson & Tovey [5]
who established that any tournament containing a subgraph Gg has a predictability
number of at most 13/20.

Finally, our programs detected that 17,674 out of 191,536 non-isomorphic 9-
vertex tournaments cannot be realized by three permutations.

3 Conclusions
The computational approach described in this note is strong enough to handle all
tournaments with n < 9 vertices. For n = 10 vertices the running times would still
be manageable, but we did not spend much time on McKay's list [3] with 9,733,056
non-isomorphic tournaments on ten vertices: we do not expect any surprises from
them, and we firmly believe that all of them will be realizable by five permutations.

Realizing Small Tournaments Through Few Permutations 271

It might be interesting to determine the smallest tournament that has no re-
alization by five permutations. We randomly explored a (tiny) fraction of the set
of 20-vertex tournaments, but we did not succeed in finding anything (for n > 20
the computation times become prohibitively large). The counting argument of
Stearns [6] yields the existence of a 41-vertex tournament T41 with McG(T4i) > 7.
However, for small tournaments the asymptotic bounds implied by [6] seem to be
rather loose: The same counting argument only yields the existence of a 19-vertex
tournament X19 with McG(Tig) > 5, whereas we know that there exist 8-vertex
tournaments with that property.

References
[1] P. Erdos and L. Moser. On the representation of directed graphs as unions of

orderings. Publications of the Mathematical Institute of the Hungarian Academy
of Sciences, Series A9, 125-132, 1964.

[2] D.C. McGarvey. A theorem on the construction of voting paradoxes. Econo-
metrica 21, 608-610, 1953.

[3] B. McKay. Combinatorial data — Catalogue of non-isomorphic tournaments
up to 10 vertices. 2008. h t tp : / / c s . anu .edu .au / -bdm/da ta /d ig raphs .h tml

[4] J.W. Moon. Topics on tournaments. Holt, Rinehart, and Winston, New York,
1968.

[5] D. Shepardson and C.A. Tovey. Smallest tournaments not realizable by | -
majority voting. Social Choice and Welfare 33, 495-503, 2009.

[6] R. Stearns. The voting problem. American Mathematical Monthly 66, 761-763,
1959.

Received 18th January 2013

http://cs.anu.edu.au/-bdm/data/digraphs.html

Acta Cybernetica 21 (2013) 273-285.

On Closedness Conditions, Strong Separation,
and Convex Duality

Miklós Újvári*

Abstract

In the paper, we describe various applications of closedness and duality
theorems from previous works of the author. First, the strong separability
of a polyhedron and a linear image of a convex set is characterized. Then,
it is shown how stability conditions (known from the generalized Fenchel-
Rockafellar duality theory) can be reformulated as closedness conditions. Fi-
nally, we present a generalized Lagrangian duality theorem for Lagrangian
programs described with cone-convex/cone-polyhedral mappings.

Keywords: regularity condition, strong separation, convex duality

1 Introduction
Closedness conditions require the closedness of convex sets of the form

(ACi) + C2 ••= [Ax + y : x £ C\, y £ C72}

or
C I + A _ 1 (C 2) := {x + v : x £ C\, Av £ C2},

where A is an m by n real matrix, C\ and C2 are convex sets in lZn and lZm,
respectively. These conditions play an important role in the theory of duality in
convex programming, see [7] and [8]. In this paper our aim is to describe further
applications.

We begin this paper with stating the main results of [7] and [8]. First we fix
some notation.

Let us denote by rec C and bar C the recession cone and the barrier cone of a
convex set C in lZd, respectively, that is let

recC := {u G Kd : x + Xv £ C (x £ C, X > 0)} ,

ba rC := {u; G TZd : inf {wTx : x £ C] > -00} .

Then rec C and bar C are convex cones.
"H-2600 Vác, Szent János utca 1., Hungary. E-mail: ujvarimScs.elte.hu

274 Miklós Újvári

Let us denote by ri C (resp. clC) the relative interior (resp. closure) of the
convex set C in lZd. The relative interior of a convex set C is convex, and is
nonempty if the convex set C is nonempty. (See [4] for the definition and properties
of the relative interior.)

The main result of [7] and [8] is the following closedness theorem. See [8] for an
extension of Theorem 1.1 with statements concerning the recession cones. See [3],
[7] for further closedness theorems.

Theorem 1.1. Let A be an m by n real matrix. Let Ci be a closed convex set in
1Zn, and let P2 be a polyhedron in lZm. Then between the statements
a) (ATbar P2)ll ri (bar Ci) ^ 0,
b) j4_1(—recP2) n (recCi) C - r e c C i ,
c) (AC\) + P2 is closed,
d) G\ + A~1(P2) is closed,
hold the following logical relations: a) is equivalent to b); c) is equivalent to d); a)
or b) implies c) and d).

In [7] two applications of Theorem 1.1 are mentioned. These duality theorems
axe stated in Theorems 1.2 and 1.3.

We will use the terminology and notations of [5] here. Let / : lZn —> 1ZU {+00}
be a convex function, and let g : lZm 77 U {—00} be a concave function. Let
A G 7Zmxn be a matrix, and let a e lln, b G 1Zm be vectors. We will consider the
following pair of programs from [5]:

(P) : Find inf{/(«) - g{Ax -b) + aTx:x G 1Zn},
(D): Find sup{9

c(y) - fc(ATy - a) + bTy : y € 11™}.

Here fc and gc denote the convex conjugate function of / and the concave conjugate
function of g, respectively, that is let

fc(w) := sup { w T x - f{x) : xSPP), gc(y) := inf {yTz - g(z) : * G 11™} .

Let [/] and [<7] denote the epigraph of / and the hypograph of g, respectively, that
is let

[/] := { (x , /z) G 1ln+1 : f { x) < M}, [g] := {(z, v) G 1lm+1 : g(z) > v}.

The function / is closed whenever its epigraph [/] is closed, and / is a polyhedral
convex function when its epigraph [/] is a polyhedron. Let F { f) and F(g) denote
the domain of finiteness of the functions / and g, respectively, that is let

F (f) := {xe1Zn: f(x) < +00}, Fig) := {z£llm: g(z) > -00} .

The points of the set

P : = F (f) D {x : Ax - b G F(g)}

On Closedness Conditions, Strong Separation, and Convex Duality 275

axe called the feasible solutions of program (P). We denote by vP the optimal value
of program (P), that is let

vP := inf {/(x) - g(Ax - b) + aTx : x 6 P } .

For the program (D) the set D and the value vp> can be defined similarly.
With this notation the main duality results of [7] can be stated as follows.

Theorem 1.2. Let f be a convex function on TZn, and let —g be a polyhedral convex
function on TZm. Then between the statements
a) the function f is closed, and there exists a strictly feasible solution of the program
(D), that is a point yo € lZm such that j/o € F(g°) and ATy0 — a £ ri F(fc),
b) it holds that P U D / 0, and the primal closedness assumption is satisfied, that

is closed,
c) the optimal values of programs (P) and (D) are equal, and the primal optimal
value vp is attained if it is finite,
hold the following logical relations: a) implies b); b) implies c).

The next theorem is a counterpart of Theorem 1.2, as for closed convex functions
/ and — g the equations fcc = f and gcc — g hold, so Theorem 1.2 can be dualized.

Theorem 1.3. Let f be a closed convex function on 1Zn, and let —g be a polyhedral
convex function on lZm. Then between the statements
a) there exists a strictly feasible solution of the program (P), that is a point XQ £ lZn

such that XQ £ ri F (f) and Axo — b £ F(g),
b) it holds that P l l D / 0 , and the dual closedness assumption is satisfied, that is
the set

is closed,
c) the optimal values of programs (P) and (D) are equal, and the dual optimal value
VD is attained if it is finite,
hold the following logical relations: a) implies b); b) implies c).

In the paper, we describe various applications of these closedness and duality
theorems: Theorems 1.1, 1.2, and 1.3 will be applied in Sections 2, 3, and 4,
respectively. In Section 2 an analogue of Theorem 1.1 is proved, where the property
closedness is replaced by strong separability. In Section 3 we reformulate stability
conditions (known from the generalized Fenchel-Rockafellar duality theory, see [5])
as closedness conditions. Generalized Lagrangian duality (for programs with cone-
convex constraints) is the topic of several papers, see for example [9], [2], and [1].
Our approach is different: in Section 4 we study Lagrangian programs described
with cone-convex/cone-polyhedral mappings.

is the set

276 Miklós Újvári

2 Strong separation
In this section we will prove an analogue of Theorem 1.1 for strong separation,
where the property "closed" is replaced with the property "the origin is not an
element of the closure".

Two nonempty convex sets C\ and C2 in lZn are called strongly separable if
there exists a vector ai G lZn such that

sup {a^x i : x i G C i } < inf{a^X2 : x2 G C 2 } .

It is well-known (see [4], Theorem 11.4) that the sets C\ and C2 are strongly
separable if and only if 0 0 cl(C2 + (—Ci)). (Note that the sets C\ and C2 are
disjoint if and only if 0 & C2 + (-Ci).) This fact implies the following lemma (see
Corollaries 11.4.2 and 19.3.3 in [4]).

Lemma 2.1. Let C\ be a convex set in 7Zn, and let P\,P2 be polyhedrons in 7Zn.
Then, the following statements hold:
a) If 0 ^ cl C\ then the sets {0} and C\ are strongly separable.
b) If P\ ilP2 — 0 then the sets Pi and P2 are strongly separable.

The next theorem is an immediate consequence of Theorem 1.1.

Theorem 2.1. Let A be an m by n real matrix. Let C\ be a convex set in 7Zn, and
let P2 be a polyhedron in 7Zm. Then between the statements
a) 0 £ (ACi) + P2 (that is the sets AC\ and —P2 are disjoint),
b) 0 ^ Ci + A~1(P2) (that is the sets —C\ and A~l(P2) are disjoint),
c) 0 ^ cl ((AC\) + P2) (that is the sets AC\ and —P2 are strongly separable),
d) 0 ^ cl (Ci + A~1(P2)) (that is the sets —C\ and A _ 1 (P 2) are strongly separable),

hold the following logical relations: a) is equivalent to b); a) is equivalent to c) if
the set (ACi) + P2 is closed; b) is equivalent to d) if the set C\ + A~1(P2) is closed.

Specially, all the four statements are equivalent if from Theorem 1.1 statement
a), b), c) or d) holds. •

The statements c) and d) in Theorem 2.1 are equivalent in the general case as
well, as the following theorem shows.

Theorem 2.2. Let A be an m by n real matrix. Let C\ and C2 be convex sets in
7Zn and 7Zm, respectively. Then,
a) if 0 ^ cl ((ACi) + C2) then 0 £ cl(Ci + A~l(C2)) (in other words the strong
separability of the sets ACy and —C2 implies the strong separability of the sets — C\
and A-yCOJ,
b) the statement a) can be reversed if C2 C A(7Zn),
c) the statement a) can be reversed if the set C2 is a polyhedron.

On Closedness Conditions, Strong Separation, and Convex Duality 277

Proof, a) The proof is indirect: We will show that 0 £ cl {C\ + A - 1 (C 2)) implies
0 € cl((ACi) + C2). Let x* € Ci, Vi £ A_ 1(C2) for i = 1,2,..., and suppose that
Xi + Vi —> 0 (i —• oo). Then A(x{ + Vi)-+0 (i oo) also holds. As Avi £ C2 for
1 = 1 ,2 , . . . by definition, we can see that 0 £ cl ((ACi) + C2); the statement a) is
proved.

b) Let us suppose now that the set C2 is a subset of the image space of the matrix
A. We will show that then 0 £ cl (Ci + A_ 1(C2)) implies 0 £ cl {(ACi) + C2). By
Lemma 2.1, the origin can be strongly separated from the convex set Ci + A_ 1(C2) ,
that is there exists a vector ai £ lZn such that

0 < inf{ofx : x £ Ci + A" 1 (G2)}. (1)

As the recession cone of the set A - 1(C2) contains the null space of the matrix
A, the inequality (1) implies that the vector ai is an element of the image space
AT(lZm): there exists a vector z £ lZm such that ai = ATz.

Suppose indirectly, that 0 £ cl ({ACi) + C2). Then there exist points x, £ Ci,
Vi £ C2 (¿ = 1,2, . . .) such that

Axi + yi —> 0 (i —> oo).

By assumption, the set C2 is a subset of the image space of the matrix A, so for
some vectors V, £ TZN (actually, Vi £ A_ 1(C2)), the equalities Y, = AVI (¿ = 1,2, . . .)
hold. But then

0\{xi + Vi) = zT(Axi + yi) ->• 0 (i oo),

contradicting (1). Hence, 0 ^ cl {{ACpj + C2); statement b) is proved as well.
c) Let us suppose that the set C2 is a polyhedron. We will show that then the

strong separability of the sets —Ci and A - 1 (C 2) implies the strong separability of
the sets ACi and — C2. Notice that

A-1{C2) = A-\C2CA{Jln)).

Here the set C2 fl A(7Zn) is a subset of the image space of the matrix A, so by
the statement b) the strong separability of the sets —Ci and A - 1 (C 2) implies the
strong separability of the sets ACi and —C2 fl A(lZn). Hence, there exist a vector
&2 £ Pm and a constant 6 £ TZ such that the set AC\ is a subset of the closed
halfspace H+ := {y : b%y < and the polyhedrons H+ fl A(TZn) and —C2 are
disjoint. By Lemma 2.1, two disjoint polyhedrons are strongly separable, so the
strong separability of the sets AC\ and —C2 follows, which finishes the proof of the
theorem. •

Finally, we remark that the statement a) in Theorem 2.2 can not be reversed
generally, even if the sets Ci and C2 are supposed to be closed and convex: there
exist closed convex sets C\ and C2 such that

0 £ cl ((ACi) + C2), 0 £ cl (Ci + A - 1 (C 2))

for some linear mapping A.

278 Miklós Újvári

In fact, let

A:(A,,Í)->A(| }) + M (J ^) (A ^ e f t) ;

Ca := U x {0} C ft2; C2 := PSD2 - (^) ,

where PSD2 denotes the closed convex cone of the 2 by 2 real symmetric positive
semidelinite matrices, that is (see [6]),

Hence, 0 € cl ((ACi) + C2).
On the other hand, it can be easily verified that

A- i (C 2) = {(A,/z) : A > - 1 / 2 , p = - 1 / 2 } ,

thus indeed 0 ^ cl(Ci + A_ 1(C2)) ; the sets Ci and C2 meet the requirements.

3 Stable points
In this section, after describing a geometric and an equivalent algebraic definition
of stable points, we reformulate the stability condition as a closedness condition.

The following lemma, concerning the programs (P) and (D), will be used.

Lemma 3.1. Let us suppose that D ^ 0. Then the primal closedness assumption
is satisfied (that is the set Cp is closed) if and only if for every vector b £ ftm the
optimal values of programs (P) and (D) are equal, and the primal optimal value vp
is attained if it is finite.

Proof. As the definition of the set Cp does not depend on the vector b, so the "only
if" part of the lemma is a consequence of Theorem 1.2.

On the other hand, with minor modification of the proof of Theorem 4.1 in [7],
it can be shown that:

Then.

shows that

(6, á) £ CP & 3x £ Kn : f{x) - g(Ax - b) + aTx < 6;

On Closedness Conditions, Strong Separation, and Convex Duality 279

and, in case of P U D ^ 0,

(6,6) ? cl CP 3y e 71™ : gc{y) - fc{ATy - a) + bTy > 6.

Hence, to prove the "if" part of the lemma, it is enough to verify that for every
vector b € 77m and for every constant 5 £71,

3x £ Tln : f{x) - giAx -b)+aTx<S (2)

or
3y£llm:gciy)-fciATy-a)+bTy>6 (3)

holds. For a given vector b £ 7Zm two cases are possible:

Case 1: P = 0. Then vp =VQ = oo, and (3) holds for every S £ 72..
Case 2: P ^ 0. Then by assumption vp = vp with primal attainment, so (2) holds
for 6 > vp, and (3) holds for 6 < vp.
This way we have proved the "if" part of the lemma as well. •

The following stability conditions appear in the generalized Fenchel-Rockafel-
lar duality theory concerning programs (P) and (£)), see [5]. First, we recall the
geometric definition of stability.

Let C be a convex set in 1Zd, and let e £ rec C. A point xo £ C is called a stable
point of the set C if for every affine set M in 7Zd satisfying

M fl ({xo} + Re) 0 and M fl (C + TZ++e) = 0, (4)

there exists a hyperplane H in lZd such that

M C H and H n (C + R++e) = 0. (5)

(Here let 1Z++e := {Ae : 0 < A £ It), and let Tie := {pe : p £ IT). It can be easily
seen that (4) implies e ^ rec M, and that (5) implies e 0 rec H.)

For example, let us define the convex sets

Ci := {(xi,x2) £ R2 : xi > 0, x2 >
C2 := {(xi ,x2) G Tl2 : Xi > 0, x2 > —y/xi}.

Then, the origin xo = (0,0) (with e = (0,1)) is a stable point of the set C\ but is
not a stable point of the set C2.

For a convex function h defined on 7Zn the point uo £ F(/i) is called a stable
point of the function h, if (uo, po) is a stable point of the epigraph [h] (with e\ :=
(0,1) £ rec [h]) for some p0 £ TZ. In this case the function h is called UQ-stable. For
example, it is proved in [5], that for every uo £ r iP(h) , the function h is u0-stable.

The next lemma, describing an algebraic characterization of uo-stability, can
also be found in [5], see Lemma 5.5.8.

280 Miklós Újvári

Lemma 3.2. Let UQ £ F(h). A convex junction h on ft" is UQ-stable if and only
if for every n x m-matrix B and for every vector w £ ft" with UQ = Byo — w for
some yo £ ftm, the relation

hc(v) = min{/ic(x) + wTx : BTx = u} (6)

holds for all v £ ftm. Here h(y) := h(By - w).

Now, we can derive, as an immediate consequence of Lemmas 3.1 and 3.2,

Theorem 3.1. Letuo £ F(h). A closed convex function h on ft" is uo-stable if and
only if for every n x m-matrix B and for every vector w € ft" with uo = Byo — w
for some yo £ ftm, the set

Bt 0
wT 1 M (7)

is closed.

Proof. Apply Lemma 3.1 to the programs

(P0) : Find inf{/o(x) — go(Aox — bo) + OQX : x £ ft"},
(D0) : Find sup{5§(v) - /0

c(A^y - a0) + bly:ye ft7"},

where

fo - := { ^ ^ ^ (* £

A0 := BT, b0 :- v, a0 := w.

We obtain that the set in (7) is closed if and only if for all bo £ ft7" the optimal
values of programs (Po) and (-Do) axe equal, and the primal optimal value vp0 is
attained if it is finite. This means that the set in (7) is closed if and only if (6) holds
for all v £ ft7". (Note that hc(v) is the optimal value of the dual program (Do),
while the minimum on the right hand side of the equation in (6) is the optimal
value of the program (Po).) Then, Lemma 3.2 gives the statement. •

Specially, let p be a polyhedral convex function on ft". Then the conjugate
function pc is also a polyhedral convex function. In other words, the epigraph
\p°] and its linear images axe polyhedrons. Hence, by Theorem 3.1, for any vector
uo £ F(p), the function p is uo-stable. For another proof of this fact, see [5],
Theorem 5.5.9.

As special polyhedral convex functions, partially linear functions —gM are uo-
stable for every uq £ P(<7m). Here gM '• P-" —7 ft U {—oo} is defined as follows:

(\ . = / Ah i f (u> AO e M>
9M() •— I _ 0 0 otherwise,

where M C ft"+1 is an affine set.
The following proposition describes a characterization of stable points in terms

of duality, see Theorems 5.3.12 and 5.3.13 in [5].

On Closedness Conditions, Strong Separation, and Convex Duality 281

Proposition 3.1. Let f be a convex function on TZn, and let UQ be a point of F (f) .
Then, f is UQ-stable if and only if

inf(/(x) - gM(x)) = max(g c
M(y) - fc(y))

x y

holds for every partially linear convex function —gM with uo G F(<7m)-

We conclude this section with a general duality theorem (Theorem 5.7.5 in [5])
which is based on the notion of stable points. As we will see in the following section,
Theorem 3.2 and Theorem 1.3 have a common special case: a duality theorem for
generalized Lagrangian programs (Theorem 4.1).

We call program (P) stably consistent if there are feasible points Xf and xg
of program (P) such that the function / is x/-stable and g is zg-stable, where
zg Axg — b. Stable consistency is similarly defined for program (D).

Theorem 3.2. (Rockafellar) Assume that f is a convex function on lZn and —g
is a convex function on 1Zm. Then, the following statements hold:
a) If program (P) is stably consistent (in particular, if it has a strictly feasible
solution), then vp = vp, and the dual optimal value vp is attained if it is finite.
b) Assume that f , —g are both closed functions. If program (D) is stably consistent
(in particular, if it has a strictly feasible solution), then vp> — vp, and the primal
optimal value vp is attained if it is finite.

4 Lagrangian duality
In this section a strong duality theorem concerning generalized Lagrangian pro-
grams will be derived from a strengthened version of Theorem 1.3.

Let us begin with describing a well-known property of convex functions, see [4],
Theorem 7.5 and Corollary 7.5.1.

Lemma 4.1. Let f be a convex function on 1Zn. Then, its closure elf = (f°)c

satisfies
(cl f) (y) = lira f((l-X)x + Xy) (8)

for every x G ri F (f) , y G 1Zn. Furthermore, if f is a polyhedral convex function,
then cl f = f and formula (8) holds for every x G F (f) , y G 1Zn.

The following lemma shows that the implication "a)=>c)" in Theorem 1.3 can
also be proved without the assumption that the function / is closed.

Lemma 4.2. Let f be a convex function on 1Zn, and let —g be a polyhedral convex
function on 1Zm. Let us suppose that the program (P) has a strictly feasible solution:
a point xo G TZn such that x0 G ri F (f) and Ax0 -be F(g). Then, the optimal
values of programs (P) and (D) are equal. Furthermore, the dual optimal value vp,
is attained if it is finite.

282 Miklós Újvári

Proof. Let us denote by (P) the program, which we obtain by replacing the func-
tions / and g with their closures cl / and cl g = g, that is let

(P) : Find inf{cl f) (x) - g(Ax - 6) + a r x : x £ Rn}.

Then the dual of program (P) is program (D). The point XQ is also a strictly
feasible solution of program (P), so by Theorem 1.3 the optimal values of programs
(P) and (P) are equal, and the optimal value of program (D) is attained if it is
finite.

We will show that the optimal values of programs (P) and (P) are equal. It is
obvious, that vp < vp, as cl / < / . On the other hand, for a given p > vp, let X\
be a feasible solution of program (P) with corresponding value

Pi := (cl /)(xi) — g(Axi — b) + aTxi < p.

Then, for 0 < A < 1 the point x\ := Axi + (1 — A)xo is a strictly feasible solution
of program (P). Moreover, by Lemma 4.1,

/ (xA) (cl /)(xi) , g{Axx - 6) g{Axi - b) (0 < A < 1, A 1).

Consequently, we have for all p > vp,

vp < vP < / (xA) - g(Axx -b) + aTx\ pi < p (0 < A < 1, A 1).

Thus vp = up, which proves the statement. •

Now, we describe the definition of the generalized Lagrangian programs.
Let C C lZn be a convex set, and let P C 7Zn be a polyhedron. Let K C Rm be

a convex cone, and let R C R} be a polyhedral cone. Let / : C —> R be a convex
function, and let p : P —» R be a polyhedral convex function. Let g : C —> Rm be a
K-convex mapping, and let h : P —> Rl be an P-polyhedral mapping. (A mapping
g : C —» Rm is K-convex, if the epigraph

[g]K := {(x,y) eRnxRm:xeC, g{x) <K y}

is convex. A mapping h : P —> Rl is R-polyhedral, if the epigraph is a
polyhedron. For example, every affine mapping is P-polyhedral. Here x <K y
denotes that y — x G K. Note that if K C Rm is a closed convex cone, and
pointed also - that is, K fl —K — {0} holds - , then x <K y is the cone-generated,
partial order on Rm. However, in what follows we do not assume closedness and
pointedness of the convex cone K.)

Let us consider the following program pair:

(LP) : Find inf{/(x) + p{x) : g{x) <K 0, h(x) <R 0, x £ C D P},
(LP) : Find sup{mf{(f + p + yTg + zTh)(x) : x € C n P} : y e K*, z e R*},

where K* denotes the dual cone of K, that is K* :— {y : yTx > 0 (x £ K)}.

On Closedness Conditions, Strong Separation, and Convex Duality 283

The program (LP) is equivalent to the following program (P):

(P) : Find inf{/(x) - g(x) : x = (x, 61, h2,h3,h4)}.

Here

f(x), if x e Ci,
00 otherwise,

—p(x), if x G C2,
—00 otherwise,

where

Ci := {x : x G C, y(x) + hi <K 0, b2 = 64, h3 G K},
C2 := {x : x G P, h(x) + b2 <R 0, hi = h3, h4 G R}.

Note that due to our assumptions on the defining functions and mappings, / is a
convex function, —g is a polyhedral convex function, finite on the convex set C\
and the polyhedron C2, respectively.

The dual of the program (P) is

(D) : Find s\xp{gc(y) - fc(y) : y = (a1,y1,y2,y3,y4)}.

It can be easily seen, that

(inf{aix + p(x) + y2b2 : x G P, h(x) + h2 < R 0},

if 2/1 = -2/3, 2/4 G R*,
-co otherwise,

and similarly

{sup{af x - / (x) + yf hi : x G C, g(x) + hi <K 0},

if 2/2 = -2/4, 2/3 € -K\
00 otherwise.

Hence,
gc(y) - / c(y) =

inf{afx + p(x) + y2b2 : x G P, h(x) + b2 <R 0}+
= + inf{-of® + /(x) + yfhi : x G C, g(x) + h <K 0},

if - 2/3 = 2/1 E A"*, - y 2 = y4 G P*,
—00 otherwise
inf{af x + p(®) + y jh(x) : x G P } +

+ inf{-of x + / (x) + yfy(x) : x G C},
if - 2/3 = 2/i S K*, —y2 = y4 G P*,

k —00 otherwise.

/ (*) :=

y(x) :=

284 Miklós Újvári

We can see that the program (LD) is a relaxation of the program (D): if the vector
y is a feasible solution of the program (D) then y := y\, z := y\ is a feasible solution
of the program (LD), for which between the corresponding values the inequality

gc(y) - f°(y) < inf {(/ + P + yTg + zTh)(x) -.xeCnP}

holds.
From these considerations immediately follows

Lemma 4.3. For the optimal values of the programs (LP), (LD), (P), and (D)
defined above, the following statements hold:
a) vp = VLP > via > vp (weak duality),
b) ifvp = vp, then VLP = vLD,

c) ifvp = vp and the optimal value of the program (D) is attained, then the optimal
value of program (LD) is attained as well. •

Now, we can state our strong duality result. The program (LP) is said to satisfy
the weak Slater condition if there exists a point xq £ TZn such that

x0 € P n r i C , g(x0) <K 0, h(x0) <R 0.

Then xo is called a weak Slater point. (Here x <K y denotes that y — x £ ri K.)

Theorem 4.1. Let us suppose that the program (LP) satisfies the weak Slater
condition. Then the optimal values of programs (LP) and (LD) are equal. Fur-
thermore, the dual optimal value VLD is attained if it is finite.

Proof. It is proved in [1] (see Theorem 2.3) that

ri {(x, &i) : x £ C, g(x) + bj. <K 0} = {(x, h) : x £ r iC, g(x) + h <K 0}.

Consequently,

ri C\ — {x : x £ riC, g(x) + b\ <K 0, b2 = 64, 6 ri K},

and we can see that

x0 := (XQ, -G(xo) /2 , -h (x 0) , -y (x 0) /2 , - h (x 0)) £ (r iCi) n C2

for any weak Slater point xo of the program (LP). Hence, xo is a strictly feasible
solution of program (P), and we can apply Lemma 4.2 to the programs (P) and
(D). We obtain that vp = vp, and that the optimal value of the program (D) is
attained if it is finite. The statement now follows from Lemma 4.3. •

We remark that an analogue of Corollary 4.1 in [2], for programs (LP) and (LD),
can be derived as a consequence of Theorem 4.1: the existence of a weak Slater point
xq and a primal optimal solution x implies the existence of a saddle point (x, y, z)

On Closedness Conditions, Strong Separation, and Convex Duality 285

of the Lagrangian function. (The Lagrangian function L : (CnP) x K* x R* —¥ TZ
is defined as

L(x, y, z) := f(x) + p(x) + yTg(x) + zTh(x).
A point (x, y, z) € (C n P) x K* x R* is called a saddle point of the Lagrangian
function L if

L(x,y,z) < L(x,y,z) < L(x,y,z),
for every x £ C n P , y € K*, z 6 R*.) The proof is an adaptation of the proof of
Corollary 4.1 in [2], and is left to the reader.

Finally, we mention an open problem: Similarly as in the case of the weak Slater
condition in Theorem 4.1 (sufficient for the strict solvability condition), find suffi-
cient conditions for the stability and closedness conditions in the duality theorems
1.2, 1.3, and 3.2 for the special case of programs (P) and (D), which are formulated
in terms of the data describing the programs (LP) and (LD).
Acknowledgements. I am indebted to Margit Kovács for the several consulta-
tions. I thank the two anonymous referees for their remarks that helped me to
improve the presentation of the paper.

References
Bot;, R.I., Grad, S.M., and Wanka, G. A new constraint qualification and
conjugate duality for composed convex optimization problems. Journal of Op-
timization Theory and Applications, 135(2) :241-255, 2007.

Frenk, J.B.G., and Kassay, G. On classes of generalized convex functions,
Gordan-Farkas type theorems, and Lagrangian duality. Journal of Optimization
Theory and Applications, 102(2): 315-343, 1999.

Pataki, G. On the closedness of the linear image of a closed convex cone.
Mathematics of Operations Research, 32(2):395-412, 2007.

Rockafellar, R.T. Convex Analysis. Princeton University Press, Princeton, 1970.

Stoer, J., and Witzgall, C. Convexity and Optimization in Finite Dimensions
I. Springer-Verlag, Berlin, 1970.

Strang, G. Linear Algebra and its Applications. Academic Press, New York,
1980.

Újvári, M. On a closedness theorem. Pure Mathematics and Applications,
15(4):469-486, 2006.

Újvári, M. On Abrams' theorem. Pure Mathematics and Applications, 18(1-
2): 177-187, 2008.

Wolkowicz, H. Some applications of optimization in matrix theory. Linear
Algebra and its Applications, 40:101-118, 1981.

Received 10th July 2012

A C T A C Y B E R N E T I C A

I n f o r m a t i o n for authors . Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be writ ten in good English. Contributions are
accepted for review with the understanding tha t the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided tha t the author informs the Editor at the time of
submission and tha t the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the time
it takes to locate qualified reviewers. Usually, a review process takes 6 months to be
completed. There are no page charges. An electronic version of the puplished paper is
provided for the authors in P D F format.

M a n u s c r i p t F o r m a t t i n g R e q u i r e m e n t s . All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly s tat ing the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or P D F file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single a t tachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text . When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in DT^jX format.

S u b s c r i p t i o n In format ion . Acta Cybernetica is published by the Inst i tute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Inst i tute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: a c t a S i n f . u - s z e g e d . h u

W e b access . The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage h t t p : / / w w w . i n f . u - s z e g e d . h u / a c t a c y b e r n e t i c a / .

I-

http://www.inf.u-szeged.hu/actacybernetica/

CONTENTS

Khaled El-Fakih. Maxim Gromov. Natalia Shabaldina. and Nina Yevtushenko:
Distinguishing Experiments for Timed Nondeterministic Finite State Ma-
chines 205

Ville Piirainen: On Shuffe Ideals of General Algebras 223
Outi Sievi-Korte. Erkki Mäkinen, and Timo Poranen: Simulated Annealing

for Aiding Genetic Algorithm in Software Architecture Synthesis 235
Christian Eggermont. Cor Hurkens. and Gerhard J. Woeginger. Realizing

Small Tournaments Through Few Permutations 267
Miklós Újvári: On Closedness Conditions. Strong Separation, and Convex

Duality . . . 273

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
Nyomdai kivitelezés: E-press Nyomdaipari Kft.

Volume 21 N u m b e r 2

ACTA
CYBERNETICA

Editor-in-Chief. János Csirik (Hungary)

Managing Editor. Csanád Imreh (Hungary)

Assistant to the Managing Editor. Attila Tanács (Hungary)

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Hans L. Bodlaender (The Netherlands)
Horst Bunke (Switzerland)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Esik (Hungary)
Zoltán Fülöp (Hungary)
Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)

Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Zoltán Kato (Hungary)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2013

