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The mlmmum of a bmary cubrc form‘)

By L J MORDELL in Cambrldge (England)

1. Let’ » ‘. f’(x-,' )_)).——éax3+bx2y+cxy2—vl—dy3- L |
.be-a. binary cbic form’ with' real coefficlents and of discriminant -
) D= ,—27::1 d®+ lSahcd—!—ch2 4ac3——4atb3
'so that f(x, ) -has one or three real linear factors accordmg as D<O
or D>0. The problem is to-find how small |f(x, y)|. can be made for.

_integer values' of X, y not both zero; i. e. the lower bound of lf(x M)

for these x, y.. .
With- such- questlons it is not dlfflcult nowadays to prove the -

_exrstence of° results that integers x,y- not both. zero exrst for whrch

£ <KDY,
'where kis a numerlcal constant and these have been known for many '
years. Thus if D>0, ARNDT in 1858 and HERMITE in 1859 showed

'

1y - .
that the result holds- w1th k=(2i,’) 2) If D<0 HERMITE showed m' '
" 1859 that we can take k="%. The best possxble' value of k was__’

nerther known nor had anv sugoestlons "about 1ts value been made
until recently by myself when 1 proved the followmg

T heorem.3) If D > 0 zntegers x, y not bath zero exzst sudz that .
4

lf(x y)l_ =

] Lecture held in lhe BUlYal-m stit ute of the 11versrty Szegeu, eceinber

-16 1948. : .
%) Co. HERMITE, Oeuvres IL (Parxs, 1908, pp 93 - 99 i o
%) L. J. MorpeLt, On numbers represented by bmary cubic forms, Proceedmgs” :
London - Math. Society, @) 18 (1943) pp. 198 - 228.. o T
» - A5 .
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ThlS is a best posszble result and the equal:ty sign is necessary when -
and only when .

—f(x y)~x3+xy -2xy? y*

where the rzght hand side has dtscnmmant 49.
' If D <0 mtegers x, y not both zero exist sudz that

1 y)l_Vm

Thls is a best possible result, “and the equaltty sign is necessaly when
and only when | .

[ 23 N 87 g s
| D) ® Ny =y
where the right hand side- has dzscrtmmant ——23

The significance of the numbers 49, —23 is clear Thus 49 is. .
the least positive discriminant of irreducible binary cubic forms with
- integer coefficients, and so the constant 49 cannot be'improved for
such forms, i. e. made larger, as then [f(x,y)]<1 and so would be
zero. This occurs only when x—y 0. Similarly for —23.

°

- 2. Some light may be thrown on the sub;ect if we. con51der the
-quadratlc ‘case when :
g )= ax2+bxy+cy“" ~
of discriminant d =b2—4ac. lti is well known from the work of LAGRANGE:.
and Gauss that the correspondmg "best possible results are when
d< 0, g(x y) |§|
N -equahty ansmg only when :

' ‘/ g y)~x2+xy+y ;

" and from the work of MaRKOFF*), KORKINE and ZOLOTAREFFF’) that when .

d>0, g(x y) V‘

equahty arising only when E I

V—g(x y)~x2+xy —

4) A. MAREOFF, Sur les formes quadratiques bmalres indéfinies, Math Anna-
den, 15 (1879), pp, 281 - 406; 17 (1880),. pp. 379—399.
%) A, KorINE—Q. ZGLOTAREFF, Sur’ les formes quadrathues. Math Annalen,
=6 (1873), pp. 366 389
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f we consrder the frrst of these a result such as g(x y)<Vl

N where [ is d numerrcal constant, has a srmple geometric interpretation.”
‘It means .that a point P whose ‘coordinates are integers x,y; i. e..
a lattrce point, lres in, i. e inside or on -the - boundary ot the ellipse

- gx, M= |/ I%I A value- of l is .given by a fundameptal theorem of

MlNKOWSKl in the geometry of numbers namely the theoremﬁ)
A two dzmensronal closed convex- region, Symmetrical about the
origin O and of area >.4 containg within it a lattice .point: other than O.
More generally, -this theorém is- strll true if we defire a lattice -
point to ‘be one whose.coordmatesox y are of the form

x=aX-+gY, y__yX-l—éY'

where X, Y’ are mtegers and a, 8,7, 6 are’ any ‘real constants wrth de-'_

: terminant. _
'_ad ﬂy>0

if in the, theorem we replace 4 by 44. We then call the aggregate of»’ :

"such points (x, y) a lattice of determinant 4, but here we need only
consider lattices of determinant unity.- S :
' An applrcatron of this result to the elllpse shows that a lattrce
" point. not O lies in it_if ’ ‘

ldl (%) <s”
V__ 4 _ < 2)<3.-~

- This"is: worse. than the best pos<1ble value =3 MlNKOWSKl7)

has shown, however, that the best possible value can be deduced by " -

N fmdmg the. minimum value of the area of a parallelogram with one -
vertex at O and the other three on.the. boundary of the ellipse. There .
is of course no number theory involved in solving the ‘minimum pro-
" blem.” These problems are srmple in theory but generally very. drffrcult
- to-solve. : .

When d>O the regron lg(x BHIES V—— isan mfmrte regron boun-

ded by four hyperbohc arcs havmg for asymptotes the lines” grven by
g(%, y)=0. There is no corresponding theorem for infinite regions, but
an estimate /=4 may be found by inscribing in the region a paralle-
logr am whose eentrc is at the origin wnh vertrces on the asymptutes_

' . 6) H. MrNxowsKI Dzophanttsche Approxrmatronen (Leipzig, 1907), p. 29.
7) H. MINKOWSKI,. Ibrdem, pp. 51—55. :
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-and chooéing [ so that its area is4. Then the parallelogram will contain
-a lattice point not O by MINKOWSKI's -theorem, and so also will the

infinite region. There is also now. o metliod of fmdmg the best possible -

resuft by inscribing minimum parallelograms as’in the case of convex

_ regions. In fact [g(x, y)|<Vd/l was the only simple’ mhmte region for
which a best poss:ble result was known for /.

‘3. The problem’ of the minimum of a bmary cublc can be reduced
to_a question in the geometry of’ numbers. It is easily shown that any
binary cubic f(x, y) of discriminant D can be transformed by a linear

-substitution with real coefficients and determinant unity ifto any other -
“binary cubic g(x, y) of discriminant D. On dividing by an approptiate -

. factor, we may assume_ that D=—23 when D<0 or D—49 when
D >0. We -write : .
g(x y)==x3—xy2—-y3 o of discriminant — 23,
and L -
' h(x, y)—x"—{—x y 2xy-—~y . of discriminant. 49.

__Hence for appropriate real o, 8,7, 0 with aé—ﬁy—l we can wnte
fX, V) =gtaX+BY,7X+dY) " if D<O, '
X, Y)—h(aX—}—ﬁY yX+6Y) : 1fD>'0
Now the pomts .
x—-aX—I—ﬂY y—yX—i—dY

- describe a lattice- 4, say, of determinant umty when X, Y run through
all integer: values Our resylt takes the from: Every lattice A of deter-
‘minant unity. has at. least one of its pomt> other ihan the - orlgm O in

, ‘ each of the regions

g (x, y)|<t |G =1

The' constant. 6n the right hand side is the best possxble as is

obvious from the lattice x=X, y=Y.

Let us consider the region |g(x, ML, say R. This is- an infinite |
region bounded by the two curves g(x, y) =1 which have a common -

asymptote. x — 3y =10- where .¢ is the real root of ##—f—1=0. The
- asymptote’is-a- line of symmetry of the .region. It is soon seen that the

parallelogram, really the square, |x|<1; !)’l%} is of special importance.

The square has all its verfices and all the middie - points of its sides

on the boundary B of R. Its sides x=+1 are tangents to the-boundary -

at x=r1, and further the square lies enhrelv in R except fora small
region R, abutting the line y=1 with 0<x<1,*and of course also
for the image’ of R, in the origin O. This square, having its centre' at O

.and of area 4, contains a point-P other than -O of every lattice™4 of

' determinant unity. If Pis not an-inner point of R, and this we may

~
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assume since otherwrse the theorem is- proved (it must be ‘one of ‘the’
vertices or middle pomts of the sides .of the square, or lie in R: In
the first two cases, it is easily shown that 4 has a point not O as an
inner point of R except wheén - is the critical lattice x=§, Y= .
.- which obviously has points on the boundary of R. In the third case, -
a point ‘P of 4 is contained in R, and we include its boundary - in R,
since we wish to find points of 4 whichare inner points of R.

~We can now apply the same argument to other paral]elograms of
aréa 4 e. g. one whosé srdes are x=-+1 and the tangents at (0, + 1),
-"and find that 4 has a pomt say P, in‘a small curvilinear trrangle near .
. the point (—1, 1). The questlon now suggests. itself whether it is pos-‘
~ sible to-find points. which are linear combinations of 'P,, P,, such as

P, +P, efc., which are’ inner points of R, For this, however a new idea .

is required suggested at-once by the symmetry of the region R about

the asymptote. The binary cubic is transformed into itself, and so also
- the region R, by a linear substitution with real coefficients and of de-
terminant unity. ‘Hence the parallelogram ]x]<1 I[y|=1 is changed
info another one with the same- characteristic ‘properties used in the .
preceding argurient. On considering the vertices, -and middle points’ of
its srdes .we are led to the-further critical lattice ' :

_ (39°—l)x——§—(3+3) n, (39°—1)y —_3&§+1_7;
and it-is- easrly verrfred that -

. 1f(x, y)!—f(E 17)
and-so lf(x y)[>l for integers & # not both zero.
.-~ The new two small - regions. correspondmg to the orrgmal two'
1ow lead to points P, P; of 4 not in R but near to R. These points

" may not be both " different from the previous ‘one, and in fact one of

" - them say P, can be proved to be identical'with the point P,. We have

now far more possibilities in consrdermg linear ‘comibinations of these
points, and in doing so, we require a more detailed - numerical know- )
ledge of the region e.g. the minimum ordinate of the poinis of the
boundary lying in the square [x[<1; [y[<1, but this presents no:
difficulty. After many efforts, I succeeded in fmdmg smaller and smaller
“regions_external and near to R and- containing points of 4, and finally

was able to show that a linear combinafron of these -points led to a
point not O of 4, any lattice. not one of the two cr1t1cal lattices, whrch

was .an inner poirit of. R. :
I considered riext the corresoondmg oroblem for the reglon S,
, _ [h(x, )| =[x ixty— 2xy* =<1 ,
- This, however, mtroduced fresh difficulties. For first, the boundary had
three asymptotes complicating the. shapeof the region. But a much more . -
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important difficulty is the situation of the unit square |x|<1, ly|<1
with respect to S. The square is-contained in S except for two small
regions one abutting x=1 with y <0, and the other y=—1 with
0<x< 1, and of,course their ihages in O. The square contains a point
P not O’ of every lattice 4 of determinant unity and so if P is.not an
inner pomt of S, it may lie in either of two small regions. 1 was able
to show, however, that we could exclude the region  abutting x==1..
Taking "into account now that S was unchanged by three essentially
distinct linear substitutions, I was able to proceed as before and finally
- succeeded in proving the theorem. .

Subsequently much simpler geometncal proofs were glven by
DAvENPORT®) who clothed his proof in arithmetical form, and by myself®).
I have also given a proof when D <0 by considering the more sym-
metrical region [x3--y3 |< 1 and have thus reduced the numerical details
~to a mmlmuml") -

4. After these results were found, DAVENPORT discovered arlthme-
tical proofs of surprlsmg simplicity based on ideas related to those
_ used by HERMITE nearly ninety years ago. There is no loss of gener-
-ality. on dividing out by a factor in writing "

‘ fx; y) = ax® 4 baty - cxytHdys;

and supposing that if D>0, D= 49, and if D <0, D=—23.

.. - Take first’ D>0 Wnte the Hessmn or quadratlc covanant of

flx, y) as , _ '
" Ax*+Bxy-+Cy? '(bx+cy)2—-(30x+by)'(cx'+3dy)-

This is a posmve defmlte form of negative discriminant

, ' B—4AC =—3D; :

and so by the usual method of reduction, we, can transform the- He551an

by a unimodular substitution with integer coeffxcnents into ‘dnother with -

C=A=B>=0. On applying the same substitution to the cubic; we

o may suppose that its’ He551an is so reduced. Then he proved the

Theorem“) Ezlher]f(l 0)|<1 or |f(0 i1, or |f(1 ni=i,
or |f(1, —1)|<1; an inequality sign holds except. when

+f(x, ) =x3+x2y—2xy"—)b or x3+2x%y—xy —)°

2) H. Davexport, The minimum of a binary cubxc form, ]ounzal London
Math. Society, 18 (1943), pp. 168—176. ] .
9 L. J. MorpELL, The minimum of a bmary cubic form, lbtdem, 18 {1943),
pp. 201—210, 210—217.
" 1) L. ]J. MORDELL, Lattxce pomts in - the reglon ]x3—[- y3|£1 Ibidem, 19
(1944), pp 92-—99. ;
* 1) H. DavenporT, The reductxon ofa bmary cubic form. I, Ibzdem, 20 (1945)
pp- 14 -22.
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A similar result holds when D <0, and so we can take D = — 23.
The cubic f(x; y) has now one real linear factor and can be written as,

| F(x, 3)=(x+89){Px + Qxy+RY),
where 9, P, Q, R are real. We may suppose that the quadratlc form

" Px*+-Qxy-+Ry* is positive definite on considering —f(x, y) if need
be mstead of f(x, y), and ‘then_ that it is reduced, i.e.” -

IQI<P<R

) and fmally that Q>0 by wr1tmg -~y for.y if need be. By a unimodular
integral substitution on the cubic; we'may suppose that f(x,y) is such .
that these  conditions ‘are satisfied for the quadratlc Then DAVENPORT

’proved the” & : . , . - .

: Theorem!?), Either fQ, 0)‘<1 or|f(0 DIESE or]f(l —1)|<1 =
_or |f(1,2)|< 1. An ‘mequallty sign holds except when .
S ) =%+ Xy +2x)° 495, :

: whzdz on. putting x—X y=—X-Y becomes X3—XY2—VY3,

5. A flood of results followed from my method for the apphca‘non
of. the .geometry of numbers to the minimum “of a binary cubic meant
. that correspondmg questions for nonconvex regions were no. longer
mtractable An obv1ous region to investigate was

|xjr -yl < 1.

= wh1ch for = >1 is convex and had been studied by MlNKowsxlw) When

p<1, it is not convex. and had not been previously considered by
-mathematicians. 1 found that my methods apphed not only to thls region
but to' the more general one

. Fxh =, | .
Where for x=0,.y=0, f(x, y) is defined, is -symmetrical in- x, y-
and -homogeneous. of drmensron 1 say.. We suppose that the region
f(x, »=f(1,1), x=0, y>0 is convex and terminates in the axes or
has them as asymptotes. Then just as for the binary cubic, "parallelo-.
grams can be’ constructed - -Whose vertices and middle points of sides’
all lie on the boundary of the region. Their existence follows since- -
it can be proved that unique numbers a, b, c wrth a> b>c are dehned
by the equations :
 flatb, a=0)=f, b)—Cf(l b,
. . az—l—b2—2

3 T 1) H, DAVENPORT, The reduction of a binary. cubxc form II, ]ournal London
. Math. Society, 20 (1945), pp.- 139—=157. to-
1f") H. MINEOWSKI, l c. %), pp. 2158,
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By consrdermg various regrons in-which fattice pomts must lie
and utilising the ideas. developed for the binary cubic, | was then able?)
to reduce the quesnon to a minimym problem of the type considéred
by Minkowskl. Further there. existed many regions for which the mini-
mum’ problem could be solved. Thus for lattices of determinant 1, best '
possible results were found of the form 1x|? —|—|y|”< 2¢%,033...<p<1;

{ ~y dE V_ , also for a star shaped oclagon etc. .

Srmrlar methods apply to the region =
e b=y nz4 S
l conclude by saying that ‘the- success of these methods led

" MAHLER to -his ‘general and important theory of Iattice pomts in star.
shaped regions, a fruitful’ theory which has recently added- so much to.

our knowledge of the geometry of numbers and has also been the

- startmg ‘point of many hew results
(Received December. '16‘,_ 1948.) .

‘Note. ln 1945, B. DELAUNAY publrshed a paper entitled “Local-
methods.in the geometry of numbers”, Bulletin. Acad- Sci. URSS, Série
:Math 9'(1945), pp. 241—256 (in. Russran) He finds a-new and simple
solution for-the minimum of a binary cubic of positive. drscrrmmant by an
.extensron of MINKOWSKI's method of continually diminishing the deter-
- minant of a lattice  which has no point other than the origin in a region.

(Added June 20, 1949.)

" 1) L. J. MORDELL, On the geometry of numbers in_some noficonvex - regrons,
' Proceedmgs London Math, Soczety, (2) 48 (1945), pp. 339 390.

0 "
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On the measure of equldrstrlbutlon of pemt sets.

{
By ALFRED RENYI in Budapest

' lnt’roduction. o

Throughout the paper ‘we are concerned wnth measurable pomt
~ sets E lying in the interval (0, 1): The measure of E- shall be denoted - .
- by |E| and the - characteristic functxon of E by F(x). We define F(x) l_ :
- outside the interval (0,1) so as to be. periodic with period 1. We
denote by E, (for any -real t) the set which has the: characteristic
“function F(x-+1). If we 1magme the .interval ©, l) wound on a circle
of. circumference unity, we may say that E, is obtained by rotating
the set E by the angle —t. Let G(t) denote the' measure of -the set
of points .of the . interval (O, . Wthh are. common to E and .E,. We

'have evxdently = - <

r

. - . .

.o G(t)=d} F(x)_F(xél-t)dx.' -

G(t) is a non-negative function, periodic ‘with perlod 1. We have in
view of the penodrcnty of F(x) .

<2~)A”._ - f (e~ ’]F( \
"thus G(t) is an even funchon Further we have
@ 16e+h—GWl= I [F (e ) — P,
Now it is well known‘) that the integral on the rlght srde tends to O

with &, thus G(t) is continuous. -As we have G(O)—[El it follows
from .the contmuuy of G(t) that if {E]> 0, there exists a constant ¢> 0,

for which G(¢) >0 for 0<t<c This is equlvalent to a theorem of -

1) Ct. for ex. A. ZYGMURD, Trtgonometrzcal series (Warszawa, 1935), p 17
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H. STEINHAUSz), who stated it in the form, that the set of the mutual distances
of the points of a set of positive measure contams a whole - interval
(0, ¢). In view of this mterpretatron we shall call G(t) the dzstance.
_ function of the set E. . .

* Now let us denote the. mmrmal value of the continuous functron
G(t) by m(E). As G(t) is non- negative, further as we have -

S S I .
@ faw dt=ﬂ F(x) F(x+1) dxdt=|E|?,
0. 0 »
it follows o 3 .
(5) B O<m(E)<[E|'

‘.'It is easy to: see that m(E)—|E|2 if and. only if- |E[ 0 or,.|E| ==1.
Thus if we put - - : : S

o m(E)

we have 0<,u(E) <1 for 0<|E| <1 In what- follows M(E) shall be -
called the measure of equzdzstrzbutzon of the set E. Of course the notion
“of equrdrstrlbuhon implied by this definition, is different from (but as
" we shall see is closely connected with) the usual definition for sequen--
. -ces, mtroduced by H. WEyL3). The difference is made clear by remark-

ing that" we are concerned. not with the equidistribution ‘of the poznts o

" of E but with the equrdrstrlbutlon of the set of distances of palrs of'
pomts of E.

The purpose of the present paper is to prove that there exist sets
having any prescribed positive measure, and as “hrghly equrdrstrrbuted”- '
“as 'we' please, i. e., having a measure of equidistribution arbitrarily near
to 1. This shall be proved in-§. 2 (Theorem 1). § 1 contains prelim-

" inary discussions of rather- ‘general character, concerning:the FOURIER o

expansion of the. distance- function and some lemmas. The proof of
Theorem 1 is based-on a property of quadratlc resrdues discovered
by. LAGRANGE?). In § 3 the problem is generalized. We introduce the.’
notion of the measure of k-fold equrdrstnbutron and prove a theorem,
analogous to, but somewhat weaker than Theorem 1 (Theorem 2), baged .
< : ) .

' %) H. STLINHAUS, Sur les distances des points des ensembles. de mesure po-
sitive, Fundaménta Math., 1 (1920), pp. 93—104. .Cf. also S. Piccarp, Sur les en-

sembles de distances des ensembles: de points dun espace euchdren Mémorres
Université Neuchatel, 13 (1939), p pp. 212,

3) H. Wevt, Uber die Glerchverterlung von Zahlen ‘mod. Ems, Math Annalen -

77 (1916), pp. 313—325.
© 9 P. Bacamany, Niedere Zahlentheorte, Vol. [l (Lerpzrg, 1910), pPp- 241—-245
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on a generalization of ‘a theorem ‘of THUE®). In §. 4, we point out the
Connection with some problems of number theory, and prove a theorem
concerning: the sequences - of _integers, called drfference bases, construct- -
~ed by SINGERY) (Theorem 3)

& 1. -Fourier"e_xpansion of the distance function. .

Let F(x).denote the characteristic tnnction'of a ‘meastirable set E
in the interval (0 1), ‘Let us consider the FOURIER expansron ot F(x)

F(x)wao—i—z Z (a, cos2nnx—|— b sm2nnx)

Lemma 1L-If G(i) deriotes ‘the dlstance functzon of the set E as
: defmed in the mtroductton we have :

.

G(t) =q2--2 Z (a® +b’)cos2nnt

n=1

" The serzes on the rzglzt converges umformly

Evrdently Lemma 1 follows from Parseval’s theorem
_In what follows we shall consrder some_ special sets _consisting of

a hmte number of intervals of equal length Let by, by, ..., by_, denote .
a sequence of mtegers which ~are all different modulo q. The set
E=E,(by, b,,...;b5.,) shall ‘be defined as the set . consrstmg of the
intervals : (j~ e (j—O 1, N-—l) Evrdent]y, the "set E

s not ehanged if one of the b, is - replaced by a’ number congruent N
‘_to it modulo q, thus we may suppose 0< b, <q. .

Lemma 2. Let G(i‘) denote the distance- functzon of a set E =
=E; (bo, bl, co N_l) Let us denote -

N-F N
(n - . ~ ; 5 (anan\ \
\i) &= Ly BXP |
. =R q

_ Then we have

q

® ‘_.G(t)_2+ 2| (n )cos‘ennt._

5 A. SCHOLZ Emfuhrung m dze Zahlentheorze (Sammlung Goschen Bd. 1131,

Berlin, 1939}, p. 45.

jols) 1y 4900),

9L SINGER A theorem in tmrte prolectrve geometry_ and some apphcatrons
to number theoty, Transactions American Math. Society, 43 (1938), pp. "377: 385,
'Cf: alse: T. VijAvarRacHavaN and S. CHOWLA, Short proof of theorems of Bose

" and Singer, Proceedings National Academy Sciences India, Section A, 15 (1945), p. 194,
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Lemma 2is venfled easﬂy by calculatmg exphcxtly the FOURIER coeffl-_
.cients of the characteristic function of the set E and applying Lemma 1.

Lemma 3.. Let us have 0<h <. We define

(smnnh
nnh

) cos2mnx-

© R,,<x)—h°+2f22
: =1
Then we have '

Ry (x y=h—|x| for [x|< .

R,(x)=0 for |x]>h : -~

‘ Lemma 3 is easily. verified by calculating the FOURIER coefhc1ents
of R,(x). The function R,(x) may be calléd the “RIEMANN kernel”. As’
" a matter of fact, f(x) denoting” a.function,” L-integrable in ©, 1), the -
: summatlon method of RIEMANN consists in forming the second general-
ized derivative of the funclion Y(x), obtained by 1ntegratmg f(x) twnce .
‘and it is easy to- see that we have - :

D oy w(x+2h>+w<x—2h)—2w<x>
(10) Sam ,zgjﬂtm(x—t)dt

N

" e, Ry(x) is the kernel funchon of the RlEMANN summation?). -
1t can be seen from (7) that ¢,=c, 1f n=m mod q. Further as

smnq—n-0 for n—O mod g, the ‘values of ¢, for n__O mod q figure

in the. expansmn ® only formally, and the FOURIER expansion of G(t)
is completely determined if we know. lhe values of - €1y Coy - v oy €y
"Lemma 3 shows that G(t) can easily be calculated if the values of
1e,i? (n=£0) are all equal: The same is true if they show only relatively
small deviations from a common value. This is expressed by the following

Lemma 4. Let E= E, (b, by, ..., by_y) be defmed as above f |
the numbers ¢, defined -by (T)'s: tzsfy the .relatrons

||c}2 Ql<ﬂ21— for n—l 2 L g—1,

. where Q(l-}—t}‘)<N2 ‘we have
' Bz

_Q(H—ﬁ)

Proof We have evndenﬂy from 8):

_ _;(_-") | G(’)—\é'—z,‘f"Q(Rl/q ® —L)— (f—Q—(Ruq ©0) — )

7) ThlS has been already remarked by M. SCHFCH!ER Uber die Summation -
dlvergenter Fourier-Reihen, Monatshefte fiir Math. und Physrk 25 (191D, pp. 224 234,
It was Prof L. Fesér who has kindly called my attenllon to this paper.
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and thus-
an o . .
(12 L mpz =AY

and Lemma 4 follows easily. .- - _— .

, "Of course the situation is the simplest if, in Lemma ‘4, 9 =0.
" Sequences of . mtegers b; for whxch this ho]ds are characterized by the
: followmg : =

Lemma 5. If b, bl, bg, v by denqte a ”sequence of -I;n:’egers.‘
with the property that the differences.b,—b, (r,s =0, 1, ..., N—1;r=£s)
represent every class of residues modulo q (the class O of course excepted)

- exac Iy k-times, we shall call the sequence b, a - difference basis
. of ordef k mod ulo q. The necessary and .sufficient condition for
_ the sequence b;' being a difference basts of order k- modulo q, is that for - .

any n$0 mod qg -

$ o\
(13) Zexp 2mi ;1 ) =N—k
' |r—0 )
L be valzd , .
- It is clear that the condition (13) is necessary Let us prove that
it is also sufficient. Let 4, ({=1,2,...,q4—1) denote the number of

representations of / 'mod ¢ in the.form b, -~ b,. We have
’ N-1 . b q- l
= Zexp( . ) N—{—Z A,exp(Zm——)
. Slr=0 q . q .
~ Let us denote Ay=k, S,=qk and put. .
S,,=ZA,exp_(2ni17), n=1,2...,4—1.
. . g =0 o T : .
»-E\(iden'tly S,=0forn=12_..., q—1. ltfollows that for v==0 modyq

‘ T—-Z S.exp( 2nzT) - So= - SR

n=0

On the other hand, inverting the. order -of s_um'mations, we-Ao'b_tain.k -'

e qzl S A,exp(zm ¢ q”v)”v)_ A,

=0 n=0

Thus it follows A,— k for v=1, 2,...,q—1, Wthh was to be proved.

Lemma 6, If by, b,,..., by, is a dtfference basis of order k
modulo q, and. ,u(E) denotes the measure of equzdzstrtbutzon of 1he set
E E (bs; by, - - -, b- l), we have ’
. . -N-—k

(14) _' o » (E)—l NZ ' . .
Lemma 6 follows from the proof (not the. statement) of Lemma 4
combined w1th Lemma 5 :
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Lemma.7. Let E denote a measurable-set, E the set complementary
fo E. We have

"(15) - 1—;L<E>———’f(—‘?%
- ()

. Proof Evndently ‘
. .(16) m(E)—mmf(l—F(x))(l—— §x+t))dx=1—2|E|+m(E)

“and thus Lemma 7 follows.

c Lemma:8. Ij‘ a(x) is mtegrable in-(0, 1), B(x) bounded and in--.
: tegrabie in the same zm‘erval and perlodzc with penod 1 we have o

an fim ja(x)ﬂ(nx)dx__ofa(x)dxfﬂ(x)dx

Thxs lemma is well knowns)

_ Le mma 9. Let E, and E, denote two sets havmg posztwe measares
_|E\| and IEQ[ characteristic functions Fy(x) and Fy(%), distance functions
G,(x) and Gz(x),arespecttvely, and let the minima of the distance functions
be denoted by m(E,) dnd m(E,) respectively. Let us define the
set E® by its characteristic functwn bemg F "’(x)mF (x) Fy(nx)y
(nml 2 ) 1t follows

(-8 - - hm lE‘”’l !EIHEA
“and - '
(19y. - - lim m(E‘”’)>m(E1)m(E2),

where m(E("’) denotes the mlnmzal value’ of the dzstance functzon G(")(t) '
“'Of E(") .
: " Proof. (18) foHows clearly from Lemma 8 As regards to (!9)

let us suppose ‘the contrary. Thus - we. suppose that there exists an
- infinite sequence of integers m, (k=1,2,...), and a- correspondmg
_sequence of real numbers 7, (O<t,,,‘< 1), for whxch .

G (t,)<m (El) m(E,) —e

holds, for some: flxed £>0. Lef us denote. by <., the fractional part
of- nkt,.k _Clearly we may choose an infinite subsequence a{,,_ (k=12,..0)
ofthe sequence 1,; such that if koo, 't,, and .z,,k tend to limits t* and.7",

8) This lemma . has been proved for some special -cases by L. FEJER Le-
besguesche Konstanten und divergente . Fourierreihen, joumal fur reine und ange-
wandte Math., 138 (1910), pp. 27—28. In the general form “the ‘lemma has been
proved by A. ZveMuxD, 1. c. (1), p. 173, § 8 34. . : '
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: respecttvely Now, puttmg

Gt )_jFl(x)F (x+t )Fz(vkx)F(wkx+z)dx )
“we have .' h

16 ) — Gt r>l<le(x+fv,,) F(x+f ldxt

+J|F2<y+m) Fa(y+w>|dy_

and thus applymg again the theorem by. which - we have proved the-
' contmulty of G(t). (see!)), we obtain ~ = .

R 1) MR lim [G(”k‘(t,k)-—a,,(t* 1)]_
Applymg Lemma 8 agam we obtam . o
{22) " ' llm G,,(t‘ T )——G (* )Gz(z)>m(E)m(E2)
. and thus owmg to (21) it- follows w
;.(23) o . lini a‘"“(ka) >m(E )m(Eg)
: T ‘k>o

But thls clearly contradtcts (20) and thus’ (l9) is. proved
Lem ma’ 10. If I/ze characterzstzc functtons F.(x) and F, (x) of. the

- "measurable séts E, and E, are equal except on. a set of measure —g— .
(O<dx1), we have . ]m(E)—m(Eg)l<6 : -
Lemma 10 follows simply by remarkmg that E(t)‘F (x—l—t) and‘

. Fz(x) Fy(x+1t) are equal‘if neither x nor x-+t does betong to the ex- -

. ceptional set, i.e. except for a set the measure of which . does’ not -

exceed o, and thus- |G, (£) — Gy(f)| < 6 Tor any 1. Let M(a) denote the.

least upper bound of u(E) for all sets Efor whlch lEl—a O<a<t).

~We prove. ' .

; L emm a 1 | PR : :
If M(a)—l and M(ﬂ)—l we - have M(aﬂ)— 1.
Proof. Accordmg to the supposmons of our Lemma, for any ¢>0 '

' there ex1st sets E and E2 with lEl——a lE2|——ﬂ, (E)>1 T. -

™ ds in Lemma9 '

:y(EQ) > l — T Let s defme the sequence of sets E

by v"‘"e uf whtch w: hav:; hm |c( )|— af, and -

n-» o

© lim m(E("))>ap’(1——:—r)'.--' .

‘ n-»on



84 . . A. Rényi
Thus if we cﬁo'ose n suff'iciently.large, both inequalities
HE‘"’léaﬂl.<iZ£ and m(E‘"’)gaﬂ(‘l—%) |

will be satisfied. According to [E™|—af <0 or |[E®|--af>0 we may
add or take away.from E®™ a set of measure not exceeding _f‘ﬁ S0 as

to obtain a set &E™ having its measure equal to a¢f..The charactenshc
 function of the set &" does not differ from that of £ but.on a set the

‘measure of which does not exceed i%ﬁ_ Thus, according to Lemma 10,
we have . o
m(&™) = m(E"')) 298 ap(i—e).

As ¢>0 may be chosen arbltranly, thxs proves" Lemma 1.

. Lemma 12 If lim e, = (0<a<l O<a<1) and M(a)_t

n-r o

for n=1,2,..., then we have M(a)_—l

-Proof. For any £>0, we choose n sufhc1ently large S0 as to;'
obtain

S

«

<L
4

" According to .our suoposmons there exlsts a set E, for Wthh |E,|=e, ‘

-and p(E, )> 1 —T We add. to or take away from E, a set of measure

not exceedmg — 80 .as to obtam a set &, of measure - a. We have,

usmg Lemmia 10 _ . . )
m(é°)>m(E)——-—> (1'—-—48'—)—?8 a(]——e) /

';whlch proves Lemma 12, T - o

Lemma 13. Every real number [’ (0 <a< 1) can be represented .
" as a finite or infinite product of the form :

ey - e=J7(1-5) <1§_nkgna;)»;'
. ) 4 '

Proof. Let us suppose that is not a rational number which
is equal to the product of a finite number .of factors of the form

- (1—5‘—) Let us choose n =1 so that we ‘have

(25) S " 1—21 <a<1——l—'

2m’
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further, if ny, m,, ..-'. ., m,_, are already. found, we choose.n,/, s0 as to'

- ‘obtain : o ‘ . .

(26) _'1 R 2',.1_1 < ¢ _<l—-$.‘
S [1(1-—),.-, s

.'Dmdmg (26) by l-—-EL and applymg agam (26) with k—l—l mstead'

of k, we obtam

en .

It follows from (27) that 11,,, > m,. Thus the sequence n,,- Which . is’
" uniquely . determined : accordmg to the above construction. is ) non-de-
creasing. It is easy to. see, that n,- oo As a matter of fact, in-the
.. opposite case n, would be conistant from ‘some index~k, onwards. But."
~ it would follow from- the .construction that .in this case we shiould have ~
for any N, i. e. we should have =0, contrary to our hypothesns Thus~ o
n,;»oo and 1t follows from (26) that . . .

’

llm .__a_-'_'_ 1

L k—»cn k-1 2 <

{7 25).
Jj= .' . .

which proves our lemma S R N

§ 2, Appllcation of the theorem of Lagrange.
The theorem of LAGRANGE is questlon lS the following : Let p~

denote a prlme number ot the torm 4n +3 let rl,rz, Ty (v_P 21] )

T denote a complete system of quadratrc residués mod p. Let 4 denote - -

any mteger,'d$0 mod p. ’I.'heni th,ere'are- p— ry 3_ quadratic réSidu'es in
the " sequence r;+d (j=1,2,..., g).,-'Accordlng to the terminology
introduced in Lemma 5, this theorein can be stated also_ by saying that

the system of quadratic residues to a prime modulus p=3 mod 4 is

a drfference basis of order 14 43 modulo p. ThlS theorem follows easrly '
~ from ‘Lemma 5 and from-the well known formula for Gaussran sums:

_ ] Dol -p-1 ’

Gy ;_exp_(,. a L =ity

A6
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. for péB mod 4. As every class of quadratic residues is répresente_d
twice among the squares 3 (1 <y<p—1), it follows from (29) that
(30) - 5 exp(anrj):z_V—pffl .

E = p 2

R 27 zk
It follows from (30), usmg Zexp

=0, .that if s, sg,\_i .., S de-

note a complete set of quadrahc non- reeidues mod p, we have
) - » 2 fo . _ .
&) _ Zexp( ’”s’)_—_ ifp—1 |

. A J=1 p 2 .

Now thé sequence nr, (j=1,2,...,#) is congruent to the sequence

. of residues or to the sequence of non-residues, according to the quadratic

- character -of n. Thus it fo”ows from (30) and (31) that for any n==0
mod p we have

.(32). | ("mnr)J . p—|—t

4 -
Thus we can apply Lemma 5, and- obtam .that the differences r,—r;,
p—1_ p+1 _p— 3
o 2 4 4.

" times, which is equlvalent to the theorem of LAGRANGE stated above'
' Now everything is’ ready to prove
Theérem 1. The least upper bound M(a) o/ the measure of -
: equzdtstrzbutlon w(E) of measurable sets E having ﬂze measure |E|—a

iFj represent every-class of resxdues mod p exactly

* - .is identically equal to 1 for 0< a< 1.

Proof of Theorem 1. Letp denote a prnme p—3 mod 4,
~and letir,, Tyy ooy I (v= %) denote a complete system,of quadratlc'
residues mod p. Let us define the. set E,= E (4, rg, Ceo Iy)-as in-§ 1..

It -follows from Lemma 6 that

an - . N p+1
(33) - . (E) 11— (p—1)2" . .
. Let 8 denote a set obtained by adding to E, any “interval of 1ength .
2p As |E [——pl, we hav_e_|<‘p°,,|—'—1— and it follows from (33) that .
(34 - u«?)_l—% |

* Since-there are aii infinity of primes of the form 4n+3, it follows that o

.M(%)_l Applymg ‘Lemma 11 we obfain M(

2")-&— 1 :.for k=1; 27"-': -

-
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further, by Lemma 7, M 1—5,;)—1 (k=1 2,...). Applying Lemma
11 again, we obtam that M(e)="1 if ¢ is a finite product of the’ form

(24). Thus it follows, using ‘Lemma 12 and regarding al$o. Lemma '13,
" that M(a)=l for all e, 0<a<1 Thus Theorem 1is proved*’)

§. 3 The measure of -fold' equrdrstrrbutron

‘Let E, E,, |E| and F(x) have the meanmg as- in -the mtroductron

© - Let G(zfl, fy, ..., t;) denote the measure of thé set “of pomts common

to-E,-E, .E,, ..., E,. We have evrdently
. 1

. (35) d@, f;,.'.. tk)_ fF(x)F(x—l—t)F(x—l—tQ) F('Jr—{—_."z;,‘)dic.

It is' easy to see that "G(4, 12, t,,) is a conhnuous functron of its
“variables. The mmrmal value of G(tl, fo,. ., f,) shall be d_enoted by m(E).
-Owing to . o

I " S ST
e rf J Gl . ) dtydty.. .. dty= |EF7,
' 06 ¢ . R , : s
‘ we have I .
@37y - . o 0< < mk(E) < lEl"“ _ . _
The measure of kfold equldlstrrbutron of the set-E shall be dehned by.
: s m,(E) . :
B o m(E)= 1Ek:|k+1 )

Thus we have owmg to 37y O<pk(E)<1 The, 1east upper bound of', :

u,‘(E) for all measurable sets E with |E| =« will be denoted by Mk(a) O

It seems probable that Mk(a)——l identically in a for- any k. ‘In what
-follow: ‘we " shall prove however only the: followmg » o

Theorem 2. _
. ..' . ) * ) i .
. hm/l:f(a)_—4k+—l.

The most surprrsmg consequence of Theorem - b is perhaps that
there exist measurable sets -with “arbitrary small positive measure .with
the property, that-if the set is “rotated’> in the sense. mentioned in the
“introduction, the set of points, which are common to, the fotating set
"and to the original set, is never void, indeed, its measure exceeds always
4 fixed number during the rotatron Though Theorem 2 is relatively

~ 9 Mr. P UNGAR to whom I commurucated at an earher stage of my mvesh-
- gations some’ of my: results, found mdependently a proof of Theorem l, runmng
essentially on the same lmes
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much Weaker than Theorem I, and is not a “best -possible” result, never-
theless it contains the generalization of that interpretation of Theorem 1
which has been emphasised just now.

~ The proof of Theorem 3" will be based on the following gener-
alization of a theorem of THUE:

Lemma 14. I/ p is a prime, k a posmve mteger further the po-

sitive mtegers e, €, ..., 6, f satisfy

(39) : ' ey...e.f> P :
then for any k—tuple of rntegers (r,, Ty ..., ) there can be foun\a( in-
tegers Xx,, Xy, ..., X, and y for whlch 1 <y<f, }x|< e, (i=1,2,...,k

and r, ———J;— mod p (i=1,2,... k) are valid. _
Proof. Letus consider all k-tuples of integers} of the form (yr; 4+ x,).
i=1,2,...,k where | <x,<e (i=1,2,..7.,k)and 1<y<f The
* number of such k—tuples of mtegers being. ele2 ..e.f, as there are only
p* k-tuples which are different gnod p, owing to (39), there must be at

- least two k-tuples of the form considered. which are congruent mod p.

If we denote the two congruent A-tuples by. (yr; +x) and (nr.+§), ‘
1_1 2,. k we have

‘ Yyt x=r: —}—E mod p, i=12,..., k.

Fromy=nq mod p it would follow x,=E&; mod p for all i= 1, 2,..., k,
thus wé have y=E7 mod p, and it follows- o _
. +1&—x . L

r,=——-—>" mod i=1,2,...,k).
S = o4 )
" As 0= |§—x|<e. (i=1 2., k) and 1=ly— n|<f, our Lemma is
proved. .
Now ‘we prove the followmg.

k

. Lemma 15. SIf.p is a prime, k a positive integer, and Q = [ "“]
o [x] denotes. the integral part of x), a set of 2Q-integers ¢, cy,.. ., Caq N
" can be given, having the property that for any k-tuple of integers
- (b, by, - ., b,), elements c.l, Cigs « - -y Cigy ¢; of the given set can be chosen.

. S0 as to obtam Lo S

b, =c,—c mod (;p—l) for r=1,2,.. .,k

Pr_.oo'f.'P'utting e,.=f=[p"“]+ 1=Q+1 (i=1,2,...,k), con--
dition (39) of Temma 14 is evidently satisfied. Let g denote a primitive
root mod p and let mdx denote the index of the residue class x with.

respect to g. It is easy. fo see that" if ° c—mdz Cori=1nd (—1i) -

(i=1,2,...,Q), the sequence ¢; (1 <i<2Q) has the required pro-
perties. ' S _
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Let us now defme .the set E, consisting of the mtervals
» : e —1 < c, +l
@ e
where the ¢, (r=1,2,...,2Q) are, the elements of the set of mtegers of
Lemma 15 Let F(x) denote the characteristic function of the set E, and
let' G(t,, 4, ..., t,) be defined by (35). If (4, £, ..., 4) is an arbitrary
k-tuple of real numbers, 0<t, <4, we put K
o , b+,
. . b= :
~ p——l
where b denotes the integer - ‘which is nearest to (p—l)z‘,, and thus

y

S r=1,2.., k),

T .we” have

‘ I{),lg%' r=1,2..., /.
. " According .to Lemma 15, we can -choose ¢;,, G, . . ., €y, €; SO that '
- b=c,—c¢; mod(p—1) fer r=1,2,..., k

1t follows according. to (40) that if

.Cj_%'- Ci_'-.'%
: — L x5
, : p—1 T p—1 7
we have - ’ o )
R X o A,
" Thus - . B _
. . .1 ) 1
chh)=1 2 it 2 il
— - . L4 <x< '
F(x+t) or r== 1 if P =x= p—T1 .
_lt follows ‘from’ (35) that _ ’ -
owing 1o 1£1= 2% 'lrfl)-’ n
Owing to |E|,_=_T1 Q=|p"""|), we obtain
N : p . .
A (=%
(42) .‘ - : uu’l» (E) = 4];4-1 .

If "any hxed £> 0 is glven -we can choose P suffncnently large s0 as to
obtam _ . : .
43) - . JEl<e and uk(E) >. 4,,; .
" Thus Theorem 2is proved

-
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§. 4. Some remarks on the sequehces of Singer. '

We have seen in §. 1 that the construction of hlghly equidistri-
buted sets is closely connected with the number-theoretncal problem of
constructing difference bases, i. e. finite sequences of integers, the diffe-
rences of which represent every class of residues to a given modulus g
exactly k times, k being the order of the difference basis. In this di-
rection interesting results have been obtained by 1. SINGER (l. c. %))
- who constructed- difference bases of order .1 for any modulus ¢ of the -
form g=p*4p~+1, p prime. Let a, (j=0O,1,...,p) denote such
a sequence of SINGER; we may suppose evidently : R

0<ag,<a,<...<a,<q.

‘It follows that for any k(1 <k<q) either k or k—gq can be repre-
sented in the form a; — a;, and we may ask which subset of 1, 2,. ,q—l
is represented “actually”, i.e. for which k we have k—a—a This-
“problem, in a somewhat different from, has been raised by’ L. REDEI

‘and is discussed in ‘a joint paper of L. REDEI and.the author'®) where ..

‘the following theorem is proved: If * denotes the minimal .number of -
terms-of a finite sequence of integers with the property that their diffe-

rences represent every number 1, 2 .., n, then -~
(44 o lim o
“a - AU n»mVn |y .

'ex1sts further we have'l)

) - V2+—<IF V_

Now these problems are also connected with the theory of equldrstrl-
- bution of point sets. To establish this connection, we have to " defme
the “asymmetric distance function” g(¢) of a set E as follows: )
Let f(x) denote the characteristic - functlon of the set ‘E.if x is
‘contained in the interval o, 1), and let us define- f(x)—O for xout31de
of (0, 1) We put ©

@ 'e(t)—ff(x)f(x+t)dx (~1sf=+ 0.

10) To be pubhshed in the Mat. Sbornik.

. 1) As Bera Sz.-Nagy- kindly remarked, the lower estimation’ in (45) can be
-improved,. by some numerical refmement by approximately 0,01. A .similar remark
applies to (49). P. .Erpds and I. S. GAL' proved by some ‘modification of the original
proof-‘that (44) and, (45) are valid "also.if the sequence of mtegers in questron is
restricted . by the. condition that it is contained in the ‘sequence’ 1, 2;..., n; cf.
Proceedings Konmkltjke Nederlandsche Akademie van Wetenschappen, 51 (1948),
. pp. 1155—1159 .
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It. is easy to see that g(t) is an even contmuous functlon, further that .' .
g(0)=E, g(l)——O and ‘we have :

@ Jg(t)dt—.%'

We obtam further by some srmple calcu]atrons that -

i (48) Jg(t)cos/ltdt— ‘Uf(x) exp(zlx)dx

: f i. e that the FOURIER cosme transform of g(#).is non- negahve This is.
the idea underlymg the proof of the followmg property of the sequences-
of SINGER:

Théorem 3 Let us denote P= =p" (P prime), q=_P2-{-P—|—:1'. -

- and k——g-—é— If 0< a0 < a1 < a, < q- denotes a SINGER seqnence,
and if 1LA <A <. <A denote the' numbers which are representable o
"_in the form.a;—a, wzth i>j, furtlzer if Ay=k+D (1 e. D denotes how . -
: many numbers are mzssmg from the sequence-1,2,..., A,) then we have
ey . - opxPELE

_2 Tz
Proof We have Y

. SN " p EE
(50 Zexp'(-zm'q,t) P+1+2z cos2n 4, t=

. -sin (24, +I)
= P-- F 2 —.)ZCOSZnBt
. | sm_2~_ . L=l . .

. _.where B, (&= L2,.. D) denote the numbers ' <'A, - which are not. .
" contained in:the se‘quenee A, It follows from (50) that B

sin (2_A,,+_1)7

G 0ZPh———— +2D - .
. Co sin— " ) R
for all values of t Let us choose = 2A3+1 ; usmg srnx<x for x>0
' We obtain . : : .
2D>2‘(2A +1) _p

(B2 e
from which Theorem 3 follows by 51mple calculatlon _
It may be remarked that-though,(49) is not a best possible estim- . -

ate, it gives a rather good ~estimation for small values of P. Thus the
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set A; coincides with the set 1,2,..., k only for P=2 and P=23 (the
_corresponding SINGER sequences-are: 0,1,3 for P=2 and O, 1,4,6
for P=4), further (49) asserts that for P=4 there must bé at least
one “gap” in the sequence A;, and really there is exactly one-‘“‘gap”
_ if we consider the SINGER sequence 0,2,7,8,11. For P=35, owing to
(49), there mftist be at least two numbers missing from the sequence A;,
and there are really two gaps 1f we take the SINGER sequence 0, 1,4,

© 10,12, 17, etc.

' Some further progress could be obtained regardmg the problems
. considered ‘in the present paper if some more difference bases could

" be constructed. A necessary and sufficient condition however for the
,exnstence of a difference basis of order 'k modulo ¢, for gwen k and g,
i is not known.

- We, consxdered only sets E lymo in the interval (0, 1), but it is

“clear that the situation is the. same for any bounded linear set. The- .

problem of unbounded- linear sets however is somewhat different, as it '
is shown by the remark, . that ih this case the. symmetric-and- asymmetnc '
- distance functions G(t) and g(t) comc:de :

. My most sincere thanks are dues to P.- ERDOS and L. REDEI for ~
their valuable remarks. . . _

- (Réceived August 5, 1948,)
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fFarey series: and their connectron wrth the prrme
- . ‘number problem.tl..‘.

By Ml_KLOS MIKOLAS‘ in Budapest.

'Let'x>1 we denote by F, the ascendmg sequence of fractrons’. v

e

i (FAREY series - of order x) for whrch
O<k=n=x; (k /1)—1

_ The 'u-th term of F, will be denoted by 05} the number of tnese.»
fractrons is . : -

)

m

@(x)—Z qo(n)

' <p(n) denoting EULER'S functron : :
: It is well-known that-the 'so-called FAREY dissection of the .conti--
nuum is a.very 1mportant tool in thie addmve theory of numbers; the

sphere of applications extended still . more “when it was. drscovered that o

the- equldlstrrbutron of the: FAREY series is connected “with the validity
_of RIEMANN's’ hypothesrs (i. e with the assumptron that the zeta function

of RlEMANN has no “roots for E}t(s)>—)

In the. first place, it has been proved by ]. E. LlT’l‘LEWOOD‘) that»
RlEMANN S hypothesrs is true if 'and-only if the relation

. C d’(z) ) ( —+8] .

M(x)—z u(ﬂ)~z cos2mge=0\x" "}, |

where u(n) denotes the function “of - MOBIUS, holds for all posrtrve '

" . values of e

" The later result of J. FRANEL?), whrch is. mentroned by E. LANDAU"

. as’ “gin hiibscher Satz”, can -be expressed as follows :

‘ Let us divide the interval <0, 1) into @(x) equal parts further-
more let us mark the fractions of. F we then form the sum of squares

1y’ [l], 263—266 ; see LANDAU [2], vol. 1I, 161—166. (Numbers in brackets []
refer to' the bibliography placed at the end of the paper.) . L
2) [1], 198 - 201, see LANDAU [2], vol. ll 167 77,
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of the differen'ces

G b= 00— w'=.1,2'": Aép(x)

LD (x)

B RIEMANN s hypothe51s is equwalent to the assertion that '

D(x) -

Z‘ 62 O(x*“”’)

" or (as LANDAU added)®)

%%F(v).

£ bemo any posmve number , '.
~Now, we consider - in this . paper the asymptotlcal behavxour for

x—»oo of the sums of type
. B(x)

Z f(o,>,

f(l) denotmg a functlon which is defmed at the pomts O<Q,,<l
: (v_l 2,...,®(x)) and belongs to a class as wide as’ possible.

"By supposmg that f(¢) is bounded, integrable (in RIEMANN’S sense)

for 0<t<1, it follows from the umform dlstrxbutxon of the frac'uons-

of F, (x~oc) that : '

,®_7 | 3 w~@ﬂﬁmm

©.in § 1 we shall show that (I) holds certamly 1f

Jﬂ?ng

ex1sts or if f(t) is contmuous decreasmg, nor- negatlve for O<t=1 and' '

lim ff(t)dt : IR

exnsts ;
To fmd a better bound for the dnfference

AEM—éﬂw—ﬂmﬁmﬂ S

8) See Lanpav [3], 202—206 We mentlon herewith a later result of LANDAU

the relation .

- [51 .

; 1, .
. ~Max O(xg. a) S
1=¢<9 () . N .

g Z"v_'

v=].

. is also equwalent to R[EMANN s hypothes:s ([4);-347—352.)-
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‘ uve.m‘ay suppose..that f(t) has a’ bounded deriuat'ive in the interval '
X0, 1>; it will be proved that in this (particularly important) case the

behaviour of R,(x), concerning its. order of magnitude, is the same as
that of M(x) = Z u(n) or of the remainder of the prime number
theorem. )

x

du

n(x) log u’ .

Towe have name]y, according. to § 2
- (

. ‘where 14 1s any: constant between

°

Ry(x) = O (xe-otosia?)

; %]— excl. and c3>0 depends on

- the ch01ce of y only, by supposing the va11d1ty of RIEMANN s hypothes1s, ‘

it follows that the much sharper- relation -

1 ¢ loglogiogz ) i e -

' )= o (x i )
¢;-denoting another posntlve constant‘*) holds also.

.. For a function f(f) which has continuous derivatives f’(¢), f” (t),

f‘z’”“) ), the “EULER—MACLAURIN sum- formula” furnishes exp11c1t1y

D(z) - ) . .
9” = O(x t + 1 + . r
Zf( = a >ff( yat s (f() f(O)) |
. . [x] N '
awy = L
. B4 (fu/(l) fr/(o))z., ( )_{_ —I— N
(2r); (f‘z’“"(l) 2r-1)(0)) % WM(7)+ U.(x);

where :
1 . .
' N\ S AMrt2

N S
- _ g By (27=1) N | X X4 &9
U?(x) Yarion J e Oy dt P2 M( | M5 ) gt
; . .
(0<8 x, = 1) ‘

' /
. By, By, B, . .. bemg the well-known numbers of BERNOULLI -

 In case of r=0 we have m partxcular

1
B(2)

V) Zf(ev)=@(X) ff(f)dH— 3 (f(l) f(O))+

n—-l

l+2 M( )f(nt—[lzt]—~—)f (t)dt;,’ |
-0

4) Here and later ¢ denotes an arbittary positive number

4
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the last term on the right-hand side may be replaced (on-the basis of
the so-called FRANEL-identity) by the posilive square. root of

D(x) -

f(f (t))ﬂdt(,zw(sc); #] 0=9=9=1.

We obtam rather deep results by drscussmg the question as
follows (§ 3): when does the converse of (IIf) hold also, i. e. for which
functions f(¢), having a bounded derivative in <0, 1), does the validity
" of RIEMANN's- hypothesis follow from. the existence of a relatron of
type (1)?~

"It can be srmply proved

Let A= ; ; RIEMANN'S. hypothesrs is true if and only rf we have
for every positive &
]| 1
- 1 X . <+
3 M(n)—”on(x_ ).

By usihg this lemma, the formulae (IV), (V) and some relations
from the theory of DIRICHLET series respectrvely, we get the fo‘lowrng
“interesting theorems :

1) For any polynomral of second degree

) f(t)"aot2+41t+a2 (a(,:{:O)
the relation . ‘ . B
- - ' jray
o o Rw=o0ls ),-
holdmg of every €> 0, is equrvalent to RlEMANNS hypothesrs
2) Let us take -

‘ f(t)—-a(,t“’-}—alt“’—l—agt—{-a3 (a(,:}=0),
then a necessary and sufficient condition- that D should be equrvalent
- to RIEMANNS hypothesrs is that - -
: : 3
al# 700.
. 3) For every r=2, fhere 1s an mﬁmty of polynomlals
C fO=at T+ et (@+0)
such that (VD) be equivalent to RIEMANN's hypothesis.

4) Suppose that f(f) is defited and has continuous derrvahves
@), @), f"’(t)$0 for 0=t=1, furthermore the condition

FO=F O 350) _gsqs
flf”’(f)ldf o | 5
should be-satisfied. Then (VI) is equlvalent to RIEM,ANNS hypothesrs

A
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In parhcular we have the 51mple relatrons (found to be equxvalent
- to the hypothesis in questlon) '

d@ ,_+:. ‘Pz ' . -LH .
Z’ 92_‘& ( ) ;‘ Qj(x) fO(x-Q )’ .

v

v=1

() 1 1., '
Z\coslgv—%——@( x) =0 ‘(x?f ) thh O</l<—2—
v=1 .

‘These results - show very clearly, how close. the connection is
between the ‘problem of the distribution of: FAREY fractions (i. e..a pro-
. blem of elementary number- theory) and that of the situation of “zeta-

" roots” in the theory of functlons :

T Uniform distributiori and its 'conSequenceé. '

: .Let x be a.positive varlqble and let a, b, k-, mn, r,v denote - ‘
' .throughout posmve integers. : :

We . begm by some fundamenta] _identities.

Lemma 1. We have for any funclron f(t) whzdz is defmed at the
points t———~ (k—l 2,...,n) ‘ '
Zf( )~—m§u(d)2f( ) S ( )Zf( )

x n)=1
where d/n means that z‘he summatzon is extended over all dzvtsors of n.
Proof: It is evident that . S A
, ' k -
> > k)- Zf(?f)~ .
S D=t .

and our assertlon foliows by I\llOblbb inversion. .

Lem ma 2. Let f(n) and g(n) be arbztrary artz‘hmeitcal funcz‘tons ‘
Then we have : ; '
' [_] S [ ]

R ) :
o 3 Zf(d)g( )= Z’f(d)é g(é)—Zg(d)wa)

- in parttcular

- B e - - 1) ' :
@ Z‘Zf(d)—Z][ ] d)_z, Zf(a) -
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Proof We wrrte

). §Zf(d>g( ) Zf(d)g(a)— -

. ddSz
. x
2

[z}

=) 2 EO+f2) 2 g(é) +.. (d) ; g(d) '
On the other hand, by o

el =4 )g(d)

_ f(n) and g(n) may be exchanged under 3). - : .
The combination of Lemma 1 and Lemma 2 (with f(n)—‘u(n),'.

""g(n)—— Z‘f( J) gives

Lemma 3. Let us take M(x)—Zm(n) V(n)——Zf( ) |

n=1

then

) : Bz . N 2] ' [Z] n
@ 'Z’_f(o)—Z’M( )V(n)—Zu(n)ZV(d)

n=l1

' 'provzded that ]’(t) is deftned Jor the values in question of 7ts argument.

We shall see that- the identities (4) are useful in order to find

C asymptotlc formulae for Zf(@v)

, Lemma 4, Let Osbsl and let us denote by h (&, x) the number
—of fraclzons in F. which are not greater: than &, T/zen we have

(’v H n=|

q. [
h(EX)—Zl~j[ﬂ§]M( ) g#t(ﬂ)Z[a’E]

P_roof Using the. fundamental property of. the MOBrUS functron.

we get .
I > t(d)—Zu(d)[ 4 'Zra(i)[dtl
il T 7= )

so that )] furmshes mdeed

- h(E A)—'% Y(dz]u( ) 4 Z.[dt]M( ) g‘u(d)[zl[as}

d/n

In what follows we need also the famrlrar rdentmes, arrsmg im-
.medrately from (l), :
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¢@—$@m—ﬁ t4—4zft]_

n=1}

By use. of (6) it is easy to show that“)
@(x)—.ixz-t— O(xlogx)

'Next we. make use\of a well- known result -of H. WEYLG)

If £, (n——l 2,3,...) is a, sequence such that (t)—-t—[t]'

(n—l 2,3,:.)) s umformly drstrrbuted in <0, 1>, then we. have for B
~ all. RIEMANN mtegrab]e functrons f(t) with. the perrod 1 _

@®) -

~ oL

i —Zf(tk)—f st Zf(tnwn f st

n-»>o 1

In order to apply thrs proposrtron we prove

.. Theorem 1, The dzstrtbutton of F, becomes umform when x oo, '

P r oof: Consrder the sequence: : R
112 T1.3.1 2.3, 4 1.5,
1227337447 5'5'5'5° 676 .

—

-Let 0<§1s5 =1 and suppose that the denommator of the n- th.

term under (8) is [x]+1. Then we have (cf. (7))

n—i"(x)—f&x——?’—xg—!-O(tclovx) (Os&sl),

. on the .other hand the number of fractrons among the frrst n terms
S whrch lie in the mterval <EI,E> is plamly

L ong, ga_ng—h(*éz,x)——h(&x)—}-()x ©0=0=1).
Thus, by Lemma 4 (6) -and (7)," we can write
PR E | ;

- ng—'quE;] [da])M( )+@x -

whence it follows mdeed that

[z ' '
= E—E) B+ o( 2 )+0<x)~—<s—s>n+0<xlogx>

.O(x log x)

——(Ez &)+ §—§1

when n—»eo i. e. X oo,

"5) See e. g. HARDY—-WRIGHT [1], 466
6 [1], 314.



100 M. Mikolas
The above result of WEYL bemg apphcable to FAREY fractions; -
we obtain that - . -

) b (z)
©  Sierarwn e i A—ffﬁt) at,
SifF () is a bounded, RIEMANN mtegrable function in <0 1)
The validity of (9) can be-proved under more general conditions,
by using the following theorem of TOEPLITZ?): :
_ Let 4, t,...,¢,... be a convergent sequence with the limit zero
and suppose that the numbers a,; (k,1=1,2,3,...) satisfy the fol-
lowing conditions : ' '
1) for any frxed 1, a,,,—»O when k- oo,
_ 2) S(k)_lak1|+|ak2[+ +Iakk|_ o).
Then the sequence

CHmouhbaatb ot (k=120 .

.t converges also to-zero. -

’

3 Theorem 2. Let f(t) be a functlon deftned at all. ratzonal pomts
of the- mterval 0<t=189), such that .

o AV(n) —Zf()

- converges when n oo, and has the limit A. Then we have
D (x)

Zf(ov)wA@(x)N—x'*‘

4 ' Proot In v1rtye of (4) and (6) we need only to’ show that 1f
our conditions are satlsfxed then :

¥ on(3)(2 E1(4)-)-o
—A=
T =) 4 @()gz. ngf
when X > o0, A
But thns follows therefrom that, ex hypothesr

| V@) 4s0
moreover (cf. (7)), -
1) for any fixed n
oL x . g .
H\M(F__ X ~ 7 _,O . '] n o0
Blx) .= Dx) 3x L waem XS

7) See e. g. KNorp [1], 75
8) Observe that the point 0 does not belong to the mterval
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" and hence, considering that
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1 & . X o ey
2) S)= B(x ),é"‘M(?J»éé(x)N?’

~and so TOEPLITZ’s theorem may be applied. -

In certain cases it is somewhat more convenient to use the following

Corollar y. If f(t) is continuous, decreasmg (tftmcreases) non-
" negative for 0O<t<l, and lf : -

hm f f(t)dt— J( f(t)dt '

exists, then we Izave .
1
. o -

Zf(ev)N@(X) fit)at.-

Proof: Suppose that f(t) satnsﬁes our condmons

 'We write - A o
2t ) ) f( ) il (%)éj 1k Jeu) 100~
s

-~

k+1

Cocfle
zf( gl )
 Jmae—f sl

the integral : T - : _‘ 

exxsts by hypothesm there ex1sts therefore to any e>0 a number'

AT
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N'= N(¢) such that

for n> N, ‘th‘is implying . .
. : _ |
) - f(;)=0(n)-
On the other hand

jf(t) dt———Jf( )

therefore, usmg (lO) and (ll) we obtam

gf( )—nff(t)dtJr(Zf( ) Jf( )du)——njf(t)dt-{—o(rz)

7I ) ° ﬂ

and SO Theorem 3 tmphes our assertxon : .

We see: that for the vahdlty of 9), the funchon 0] must not’
necessarlly be bounded for Ostsl

E

2 ‘Case of f(t) hav:ng a denvative of first or h:gher order
- -Connection with Riemann’s hypothesns :

Suppose that f(f) has a bounded derivative i in the interval 0 <t<|1,
then, applying the ‘mean value theorem of the dxfferentxal calculus, -we
. can write o

QYT

ﬂ

k .
R O ) :
o=n 02, (Y—t)dl=0("271§) 0(1).
o k-1 - T —

- n

Hence it follows at once for the remainder (cf.. (4) (6))

: ?f«o @(x)ff(t)dt~§ i % )(Zf( )—n J f(t)dt)
-,;o[z":_ ( )|

O(x log x),;;
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Thls result may be easily lmproved by - usmg the tnvxa] relatlon’)

. & (z) » 2
as ;’ (o»——) o(1). .
'-We get namely, by (12), —_— L

D(x)

; fle)— fb(x)ff(t) dt="
_v_ %‘) (f(@v) f( D (%‘)f( ) di(x)ff(t) di)

v= v=1
_515 (=)

’='OZI,‘ o n=0 .(V(D(X)Z’(ev——))+0(l)~ |

~0(x VZ o— )+o<1>,_ |

so that (13) furmshes 1mmedxately

(14)

& (2)

o 27— ff(t)dt-O(x)

- (13) represented hrtherto to our know]edge the sharpest (posmve)
_. result concerning the order of FRANEL’s $um. In a fecent paper'®) we
- have deduced- on the basis .of the so-called FRANEL identity™?)-

o Sl dT- il bl |

a=1 b=1 a
the much better relation g '
P (x)

an . oo 2 ( v‘_,i)z . b(e;;5t1°g’;)7)

v=|

- by. using N. TCHUDAKOV’s result‘z) on the error term of the. prlme'
number theorem . : .

(18) - ._ - n(x)——J‘ logu__O(xe-cl(logz)J’) t DU

More precrsely ‘we use its analogue for the MOBIUS functronls)
(19 M@= O(xe. csﬂ?zz)?)

") See Lawpavu {3], or (2], 01 i1, 176.
10) MigorLAs [1]. ;
.~ 1) FrangL (1], LANDAvw [2], vol. 1I, 173
'12) TcHuparov (1], 591 —602.
13) See FoeeLs [1].":
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{Here y denotes any cdnstant between % and ;: excl., while €,Cs, C3

are positive constants depending on the choice of only.)

‘On the other hand, in case of the validity of RIEMANN’s hypo- . |

thesis, we have the well-known relations, the first implying the second,

) - 1 e logloglogz
(20) M(x) = 0l Tiosings )
: &(z) ogloglogr .
CORS Z( (ev——%);o(x_'“lﬁ’x’zf )
. v=1 . .

where ¢,, c5 denote othet positive constants'?).
Thus applymg (17) and (2l), we' obtain at once from (14)

_ Theorem 3. Let f(t) be a functzon havmg a bounded derzvattve
in the mterval O<t=<1. Then we have the relatton

L (z)

Zf(ev)— ‘D(x)ff(t) dt+ O (xe- cauogxw) ‘

-
. 2 2" 3 >

‘- If RIEMANN s hypotheszs is true, we have bes:des
20 LI M) :

Z"f((’v)'—‘p(X)Jf(t) dt+0( 3 % loglogz

and therefore

© B R
Z f(ev)—'P(x)Jf(t)dt+ O( )
for every e>0. ' :

All these relations may be 1mmedlately -deduced on the- ba51s ‘of
2
the 1dent1t1es 1), W1thout usmg FRANEL’S sum Z(@v——;—) , 1f we
suppose that f’(¢) exists and is continuous for O=t=1. In this case.
we must only apply the EULER—MACLAURIN sum- formula in its 31mp1est
'form .

@) Zg(k)= j £ dut % (50— g<0)>+f(u—[u1—~)g Wdu
'fbr the function g(u) =f(z) we thus obtam (cf (4) (5) (6))

14) See e g LA\:DAU [2}; vol. ll 161—-166 176-177 4
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. .

$(x) -

@) Zf(o»)—w(x)ff(t)dt+—(f(l)—f(0))+

+§ ( )J‘(nt—[nt]—;)f(i)dr |
Since for éuy a,b%) - o
1 .

' oy
@) | Oj(ai—[at]—.—]—)( ~pet] - )dt_%%,

we obtam by inverting the order of summatron and mtegratron and by
applying the inequality ‘of SCHWARTZ, that the last term under (23) may
be replaced by the positive square root of o '
) h . ',x] . . (a b)

@ o wm > (X m(X) @t (osa 99=1),

a, b==1

which, accordmg to (16) is equal to '

'@' o af(f . } 2+@(x>§’(g,,—i')2f'

"~ The form _(25) renders possible, by (19) and (20), an. 1mmed1ate'
- estimation of the remiainder .
. ) ooy

2 )= ew f sty

while (26) shows the connectron wrth FRANEL’s theorem.

, For a function g(u) which has continuous derivatives g’ (u), 8" (u),

L g(2'+‘)(u) (r=0) in the interval l=u=n, the general form of
the EULER —MACLAURIN sum formula“’) o -

Ly

. -
27 Z &) J (U)dll+~—(g(ﬂ) g(O))+

+2,, (28;)" (g(2l 1)(n) g(Zl l)(O))+J‘ P2r+1(u)g(27+l)(u) du -

is vahd where By, B,, ... are ‘the so0- called Bernoullran numbers”) :
defined by : : :

15) LaNDAU {2, vol. I, 170
_15) See e. g. Kvopp [1] 542. :
N ! | 1

1) We have By=1, Bi===, Bi=—,
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(2ot ()bt () B0 =123
while the functions with -period 1 ‘ ‘ -

_ el 2 2sin2knu’ -
o (28) Py (u) = (—1) IZW (r=0,1,2,..))

. are ldentlcal for 0=<u <1 tothe corresporiding Bernoullian- polynomlals.
Takmg agam gu)= f(%) in (27), ‘and using the identities (4),
(5) (6) respectlvely, we obtain after 51mple integral- -transformations _‘

B(z)

2 fled =2 f FO i+ GO SO+

o +2—f(f’(1)'—f’(0))2 _M(—)+

A [z] O

@ RO Y ( )+..+
. (23:),' f(zr-l)(l) f(2r 1(0)) Z n.” < 4 (—)—l—

I'z

o+

~ n?r ( )J‘PQr-i»l(nt) f(21+1)(t) dt
supposmg, of course, that each derivatives. ‘of f(t) which occur here
exist, and that f‘z’“)(t) is continuous for 0=f=1.

To deduce another form for the last (remainder)” term under (29)
we use

Lemma 5 Let 2 be a real number not less than 1. T/zen, takmg

> sin2nmu

pz(ﬂ)—_Z —

we have .
ol [24) (a, b)2*

| Jpz(at)pz(bt)dt ey @A

0o - .

Proof: It follows from PARSEVAL’s theorem, using also the fact
" that ‘positive soluhons of the Diophantine equatxon au=bv (for fixed
a, b) are e
=kt (k=1,2,.. ).
( b) (a,b) :
Now, applymg Lemma 5 ‘and the mequahty of SChWARTZ we
obtain (cf. (28)) :
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. UQ(X) 3Jf(2r+1)(t) (ﬁnir ( A)PQ,H(nt))dttz‘

n=}

”:i n2r ( )lpem(ntl)

@ @

__"1% s o (%) (5 )fP2,+,(at>P2,+l(br)dt¥:'

a=I b=1

, 20(4r+4-2) & d, bytr+2
~ 2 >zM()(-):mz—m—l,

dt=

(27-[)4 r+2
. where

J U orat

Consrdermg that, for posmve mtegral vaiues of A

N 11 321(275)“ S

we see that the square of the remamder term under (29) may be, wrrtten
in- the form . - : : X

[z] \ AR 4742
@, U= (4;;5), f <f‘2*+‘><t)>2 d. ZM(%)M(%)%

" with Os"} 3(x Nt which is an immediate generahzatron of the
expressrons (25) and (26) respectively.

' We draw the attention to the well-estimable sums dependmg upon

"~ x only, which occur on the right-hand side of (29) so to say as

weights; in what follows - this- fact -makes. mainly the formula useful.

CIE £ is a polynomial of degree 2r or. 2r+l U.(x) vanishes; for .

LAa...y.\_, taking f(t)—z-t, B reap .we obtain .
. o ,

o

'(3?‘)‘. . ==y (D(r)—}— 2, T - \
@ ;” 5 + a3 Ly ( )
.(34)_ M)e’v——-@(x)-i- +4'§ ' M(")
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3. The “problem of equivalence”.

Suppose that RlEMANNs hypothesrs is true, then, according to

'Theorem 3, the remainder term Zf(g.,)—ﬁ(x)ff(t)dt is O( ‘E}

for any’ function in questron (i. e. for f(t) havmg a bounded derivative
in' <0, 1)).
Takmg f(t):.cos 2nt, we get from

2kni
2 e = Zcos —u()“‘)
k=n : k=n
(ky n)=1 (%, n) l

the 1dent1t1es

> fle)— @(x)ff(t) dt= 2 fle)= 2 (o) = M),

$O that in virtue of LlTTLEWOOD S theorem the converse of our above

- proposition. is also true m this case: if f(f) =cos2nt, the relatron

Zf(ev)—d’(X)Jf(t)dt— ol

'1mplres the valldrty of RIEMANN’s hypothesis. : '

" On the other hand, it is evident that such a converse proposition.

" does not hold for all f(t) in question ; for example, if f(f) isa function.
- for wich f(t)--.—f(l—t) when 0=<{<1, then we have (with regard -

to oo =1—0s.5; v=1,2,. d"(x)—l)
45(:)

- 2 fled—2(x) f Aty dr=1(1),

mdependently of RIEMANN’s hypothesrs
Therefore it may be raised the’ question : whrch condrtrons must

be satisfied by a function f(t) (having a bounded denvatrve for0<t=<1),

in order that the following assertion be true: “the relation
) 17

270100 [ 10 ar=0(x""

holds for every e if and only zf RIEMANN'S hypothecrs is valid”.

-We shall see that this probiem — it may be called ‘“problem of
equivalence” since we look for relations which ‘are equivalent to RIEMANN’s

18) See e.g. Larpav 1], vol. II, 572—573; [2], vol. I, 188.



Farey' series and’ prime'm'lmber probiem. L L ‘ , 109 .
hypothesis — ‘is not easy to handle in full generahty, we get however,,

) 'mterestmg specnal results.”

‘In what follows ‘a,, b,, ¢, denote real numbers s=o-+4iris a

complex variable, so that o= R(s), ©1=3(s).
Next we need. two well -known proposmons from the theory . of

: DIRICHLET series'?). -

‘@ T"';;_"Z-,,—s=f(s>.g<s>..-

Lemma 6. lf ’
S(x) = i‘ 4, =0 (x*),

‘ Jor every &> O then the serzes Z— converges in the half plane 0> @

and represents here a regular functzon of s.

\
' Lemma7 lffor o>ao '

| ?“ =1(s) and. Z~—g<s)
are absolutety convergent then the sertes ‘with- the coefftctents
‘ : ~Z‘aﬂbn; (n—12 )
. oo dn .
converges also absolutely in the half plane 0> 0y, and one Izas here

o0

v
-

Theorem 4. Let f(t) be -a functton havmg a bounded dertvatzve

in <0 l> lf the relatton

. 45(:1:) .

. _ 1 'l+5.
(36) - ‘;:f(ev')—'@(x)ff(t)d't=Q(x2 ) .
, _ - ; . | |

: .’ZO.’ S 'f\’} ""e"" °/0, mcr’l

2

) the functton F(s) deje ned for o>1 by -

oy F<s>f-2 (Zf( ~),—nff<t)dt)

. 1
B regular for a> 55 s:{:l

2 . unless’ 4t pointsi

e) 5(s)- cannot vanish in the half plane 0>~
where F(sy=0.. o :

19) See e. g. LAND@' [1], vol. I, 121, 131.
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) ) Proof On the basrs of Lemma l and of the Well known iden-
~ tities : )
. . d
@ qo(n):nZ’*f,’ — > au ( g
— e o dfn d/n .
we can write - : :

Zf( ) W(ﬂ)ff(l)dtﬁg;(%)(é}f"(—";—)v—-dj}‘(t)dt) .‘

SO that (35) grves ‘formally

RSP f( ) «p(n)ff(t)dt Zf(~)—nff(t>dt 2 u(n)

. (39) 2(1{, u)_—-l’* R Zl — -
n=1 . . o =1 . .

" since the series on the rrght-hand side’are plainly, by (12) and | u(n)[ <1, - -

. absolutely convergent for ¢ > 1, (39) holds, accordlng to Lemma 7 in

 this -half-plane.
Considering that for o>1

u(n) _L
n=1 ’ C()

. (40)
‘we- have the equality '

@y 'F<s$='c'(s>.2"‘l( Zf( E qo(n) ff(t)dt)

(k, n)=1

Now suppose that (36) is valid. Then the senes on the nght -hand

side. of (41) is. convergent and regular for 0>~ by virtue of Lemma6 o

2 2
On the other hand, as is well-known, C(s) rs recrular in the whole plane _
. except at s=1.. , :
' - Thus the functron '

o 32 25 zw‘;(;)_d,),
(K, m=1

~ which represents according to (41) the analytrcal contmuatron of
F(s)—Z (Zf( )—nff(t)dt) (0> D e

is regular for o> —, except possnbly at s=1; this functron vanishes,

of course, at all pornts of the half-plane a> ; , Where, ?_:(s)#().

We add an 1mportant
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"Corollary. Lef f(t) denote a-fun"ction‘- having a‘bo’unded de'n'vaii've

Jor0=t<1, and such that F(s) zs regular and has 1o zeros for o> —2l—

Then the relatton (36) mvolves the valzdzty of RlEMANN s hypothesis.
This | result- suggests to flnd a f(t), for - whrch we . can- show .v
the' reoularlty and not-vamshmg of F(s) m the half—plane 0>_:T l'_n .
- this drrectron we make good "use of the formulae (33), (29), and the

" well- known fact that, i -4 '2

I
 for a'z% oy

Lem ma 8 Let A be a real number not Iess than % RlEMANN s ..

‘hypotheszs is true if. and only if we have for every poszttve £
[2] W S
b fxy +e S o
znlm(;)fq(xpl. S

'Proof 1. The frrst part .of our . proposition is.a trivial con- -

’ sequence of LITTLEWOODS theorem assummg the validity of RlEMANN s "

T
2+

hypothesrs we have M(x)~ ( ) -and therefore R ' S :
P BT A O 7 DR
_]_ X\ afoate C1 . )T
.«2'12;' M(n)——O(x n; Atg+e )—O (x ) L

2 Suppose that the relatron

5’<43> Bl

= nZ n
. holds for every positive &. '
l]smor lpmma 7 and I we find

w3 B [sdge) g o

" The serres on the left- hand side is, by Lemma 6 and "(43) (cf (l)),

: ! :
: convergent and regular for o>—; as C(s—l—l) is also regular and has’
no zeros here, (44) implies tha (s;*ﬁ in tne nalr-plane o> ?.

o 20) This follows from thé not- vamshmg of ;(s) for a>1 (See e. g. LANDAU )
[1], vol. I, 154, 166) .
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Theorem 5. 1) For every po[y/zomial' .of second- degree
fO=at+at+o,  (a+0) SR
the relatzon (36) “is equwalent to RlEMANN s hypotheszs ' :
- 2) Let :

| (t>=o(,13+alt2+a2t+a3 (@%0), - ¢ .
" then, in order that (36) should be equivalent 10 RIEMANN'S hypothesis,

it is necessary and sufﬂaent that

- - ) al+ 7.00.

Corollar y. RIEMANN s hypotheszs is trie if and only zf we have
- for every positive € . .

ﬁ) 93— ggx—)— =0 (x.%fs-) - or fpﬁ) o _ @‘Ex)zo (x%}'s_) '

Proof: Applymg the 1dentmes (32), (33) (34), we obtam

& (2)

.Zf(éu)—' x)Jf(t)dt_":‘?ol“"""qL”“% M( )

m the flrst

D(zy -

Zf@v)—@(x)ff(f)dt#‘i’i%ﬂ (% ")'Z] e J

) in the second case, so that Lemma 8 mvolves 1mmed1ately our assertxons

Theorem 6 Whatever be r except 1, z‘lzere is an mﬂmty of |
polynomials . :
fO=at +al g v tta (@0

sua‘z tlzaz‘ (36) is equzvalent to RIEMANN s hypothesis.

"Proof: By the theorem just proved, we may suppose that r24
The appllcatnon “of (28) glves now .

v . .
[ (J;)

@ 2= \x)Jf<t>dt—2(ao+al+ ot

i Bueal T () S L )

n=1

UM r
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The last term on the.right-hand side is N

B.- (r\& 1 L (x : L .
B [.(r r—\ & o (x)
l——"‘ (a (r—- )+al(,_2))A£ =i M(—n_) if r 1slodd..

" The coeff1c1ents ap, ay,. . ., d,_,; ean 'plainly be chosen so that the

| system of equations :

el eefisfins
(5)( )§1+ +(§) 7 0 N ..._‘1

N

. ',b\ [( ) (r )el—]-(r_ )52—0 -‘ff.r'is even, '
(fl,n?”” i( ) ( _)z +(r_ AE +(£_'3_'_)23__0 if ris odd

-_where Ek—— (k—l 2 r—-2) should be satxshed when ris odd: -

IR N
o e
. 'Sihce,we .haye‘[%-—l]‘, '_equatioﬁe, for (F—=2) 'u"nk'nownis ~and
I%——l] <r—2 1f r>4 the nhmber.bf .solutio_hsv of (46) 1s in-fiiiite
for -every degree r>4 ‘ ‘ '
If all our conditions are. fulfxlled then each term on the rxght -hand

' Slde of (45) ‘except the Iast vamshes 'S0 that ‘the AperOS'I'tIOH follows
at .once from Lemma 8 , ‘

T heor em 7. Letf(t) be a functzon sudz thatf (t) f”(i) f”’(1)$0 .

/////

.e‘xnsz, S () is continuous for u£131 and mai me conamon

LO=SOL O g5y,

| f £ (@)t
is falﬂlled Then (?6) is equzvalent to RIEMANN 8 hypotheszs

Proof:-Suppose that f(t) is a functlon satxsfymg our condltlons )
1L I RlEMANNs hypothems is true,: then we have by v1rtue of
Theorem 5 T : N . ;

ﬁ(a:)

| o Zf(e»—@(x) J fityde+ O(x?“) '.<"s—,$ 0.
L o . . oo B
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2. -Assume that ‘the relatron (36) holds (for every posrtrve e)
* The use of (22) (cf (30)) shows that

f( ) ff( )d uty (f(l)—f(O))—l-—JPl(U)f’(' ')du.=‘.

k=

-nff(t)dt-l——(f(l)—f(on+lP anf Ot

and $0, by (39) and (40), we- can write for o>1

'.(47) z_l_ g

::|...

fp(nt)f (t)dt— :

- 57 ( () w(n)lf“)d‘) ‘. '<if.<‘.’;‘f"""."'
N : (kml | S

. Consider the function ‘with the penod 1 -

. N cos2knu

BEC ﬂ@=—2—mﬁ—r

Citis contmuous everywhere and ‘we have plamly LR
| | Pw—mw o

1fursnotanmteger“ S
Now, the series on the rrght hand side of (47) is, by hypothesis‘

a (36), regular for a> (cf Lemma’ 6) the series on the. left (con—»'

'verges and so) rs regular m the hall-plane a>0 by

s, f R(nt)_f:(i)ét'——(fa)—f (0))——fPﬂ(nt)f”(t)dt£ .
: 0 T

(lf (1)~f(o)l+j,f~(t)ldt) - (;)

Con'se‘quently,_if we-have for o>‘% S

4 (50) R g JP(nt)f(t)dt:}:O

then it follows that g(s)+o in, thrs half-plane. .
“To verrfy (50), we write using (49) '
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(N) J}’@Of(ﬂdﬂ— (fﬂ)—f%@)ﬂs+1%~.,

-_—Z JPe(nt)f”(f)dt~C(S+1)§,2(f(1)~f -3 il

n—=

: ’Here the coefhclents b, can be easxly determmed by the _condition '

(cf(40)) S

- 1 ; nb =( > “'Z—(ﬂ) ( me JP (nf)f”(t) dt)

n=1, =

' we have namelv by virtue of- Lemma 7, .

. b,,—— ( )JPz(dt)f”(t) dt.

(Both series o the rlcht-hand sxde and.so thexr product too converge -
absolutely for ¢>0.) : . S
Partial mtegratxon shows that (cf (28))

JPz(nt)f”(l) dt—f-——JPg,(nt)f”’(t)dt
_ and applymg (2), we. get _' V

B(u)=_§l|b;ls 3 UPz(ét)f"(i)dt‘—'-. Ce

=n§1[ ]__Up(nt)f"'(t)dt;ug’ J'P(”f)llf”’(t)wf%
: <",.—ml r:2 (Zm: (21{7:)3) J'f"'

On the other hand by _ , _
O [ oy
RSElA ( 1 - ) B(v)
. Z noH 2 B( ) notl (n+ l)"“ + ([v]+l)a+l ’ :

and B(v)——O(v), 1t follows for 6>0 -

) n+l

2= ZB(n) | e +1>f IO

C(3)

flf'"(t)ldt .
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. so that we can write

.w o N
;‘ na+l =

>0
,(52} = (a+1)f L) du<(o+1)“3’Utf"'(t)ldt)

"-’ ns+l

('+ )25,3,3 flf"'(t)ldt (a>0)

: Fmally, using (51) and (52), ‘we obtam for a>— (cf. (42))

)>'

1?_lé’(s+l)l(lf(') f(O)l (I+ )C(s)flf"'(t) dt)

> b,

. nS-H

jP @07 0 dt|>|c<s+ ) (,2 5 (1)

12|c<s+1)|(|f(1) ~roI- 35(3’f|f"'<t>|dt)

~'wh1ch proves (50); and thus our Theorem

. It is easy to fmd such functions f(f) for which the conditious of
- the proposmon just proved are fulfilled; thus, - considering the- cases )

fy=e (Aaro |z|<322’3);1‘74..,) |
and - . o T
i . ..f_(t‘)_=_"cosl‘t (0<4g 2)
we obtain the -

_ Corollary “The relattons (holdmg Jor every &> 0)
, 820 . ) o ( 1 ) ) L - S
(53).2“1’— - o¢ =0l (:;:0 PRI |

and

(54) %)Coslﬂev d’(X)—— .(x%fe) }'(0"(1'5—'721")

are equzvalent to RlEMANN s hypothesrs

’ sml

o In case of f(t)=rcos 2nt implying LITTLEWOODS theorem, our
condrtlons are not satisfied, for

PO =FO=0,
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but -we- have
' "F(e) =1 #0
Tin Theorem 4, so that our Corollary to Theorem 4 and Theorem 3 mvolve-

‘immediately the proposition in question.
By using special properties of e’ t, cos 4, the above condmons

_-for 4 _may be improved to

"

W<2V€(3) £ 4078 24:0 : ((53)
i , S :
a<a |2 —3us2. ., 240, mn)  ((54y)
~ V ks =) 0,
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“est toujours convergente2) Par contre, la série

' existe?). -

118

'Sérles et mtégrales de Fourxer des fonctlons
- ' monotones ‘non bornées.

Par BELA Sz =NAGY a Szeged

lntroduct'ion.
_-Soient . -

°+a1cosx+a2cos2x+ ,_ b smx—i—b23m2x+

-la sérié_des cosinus et Ia sérle des sinus d’une meme fonchon f(x) .

définié et mtégrable‘) dans (0 m). La- série

) ST Z’—
ne converge que'si .

7T

(3)   ; f jf(t)dz

--»0 Co T

‘M. ZYGMUND a cons1deré4) des fonctlons mtegrables f(x) qu1 sont,
positives et décroissantes dans (0,7). La série (1) ‘est alors méme
absolument convergente ; pour que (2) converge absolument, il faut
et il suffit que (3) existe ou, ce qui revient au méme dans ce cas que

‘f(x)log 1/x soit mtégrable dans (0; 7).

1) Dans tout ce qux suit, lmtégrablhté d’une” fonctlon sera entendue au sens

v . de Lebesgue.

2) Cf. par ex.; A. ZYGMUND, Trrgonometrzcal series (Warszaw3, 1935) p- 28.
3).Cf. G. H. HARDY-—-J E. LirrLewoop, Solution of the Cesaro summability
problem for’ .power series and Founer series, Math. Zezlschrtft 19 (1924), pp. 67—S6

'-.(lem_ma 19).

9). Cf. A. ZvaMunD, Sur les fonctlons con]uguées Fundamenta Math 13 (1929),

4pp 284303, en partxculxer pp: 299301,
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‘ Nous "verrons que cette dtfference entre sénes des cosmus et .-
sénes des sinus: dlsparau lorsqu’on consndere les séries’ ’
 a, . b,
> o 2 .
avec un exposant positif y < 1. -Nots, déinontrerons du méme coup le
‘résultat menfionné de M. ZYGMUND, et céla par une méthode différente
de celle suivie par cét auteur: (théoremes I1—II). La partie de ces
théorémes concernant des conditions - suffisanies. pour la convergence'
absolue des séries en question;. s’étend - sans peine- aussi a cerfaines
.fonctions  non- monofones (théoréme Ill) Il en résulte comme corollaire
" une. condmon pour quune fonction périodiqué continue, se composant,
" dans tout mtervalle fini, d’un nombre fini de parties convexes ou concaves' '
axt sa séne de Founer absolument convergente.
Des questxons analogues sé posent "aussi pour les mtégrales de
Fourier ou plutot elles se redoublent En effet, .. -~ -

0

.. F
|a(v)cosxvdu et 2!b(v)sm xvdv

'~etant les développements dans_ (O oo) d’une méme fonction f(x) dé--

croissante dans (0,0) et tendant vers 0 avec 1/x, on a- & rechercher. . -

LUNANTOR

vmsmage de’ 1;——0 et des condmons pour qu elles le soient dans le i
< voisinage de p=oco. . - A

-De telles conditions seront étabhes par nos theoremes lV—Vl Les
résultats -acquis. s'éténdent -aussi A certaines fonchons non-monotones,
tout comme dans le cas des séries . de .- Fourler Il en résulte en. parli- .
. culier une condition suffisante pour la convergence.absolué du déve-
. loppement en mtégrale de Fourier d’une fonction .se composant d’un -
" nombre - fini de parties convexes ou concaves (lheoreme VII) Des
résultats voisins du théoréme VII. ont été publiés par Pauteur déja dans
"un Mém01re antérieiit®) et il en a tiré "parti- pour évaluer I'ordre de
' grandeur ‘des ‘constantes de Lebesgue et des- constantes d’approxxmahonv
~atfachées-a des procédes de sommatlon des sénes de Fourier, d’un
type trés. général ' )

'des conditions’ pour que sment mtégrables dans le

Un lemme. -
Nous nous reporterons frequemment au lemme sulvant

Qownf les forszmﬂc p(x) ef ¢ fx\ defmzes dans .’-’."z*"rv lle 0<x=a,

- la premiére étant crozssante et la seconde décroissante. Supposons.que .

%), ‘Cf. B. Sz.-Naay, Sur une c]asse genérale de procedés de sommatnon pour
les sérles de Founer Hungarlca Acta Math 1 (1948), no. 3, pp 14 -52.
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¢(+0) =0, tandis que P(x) peul aller a l’mfzm Iorsque x-0. Dans
ces conditions, si l'une ou lautre des mtegrales

@ Jw(x) dy(x), [w(x) do ()
~ -existe, elles extstent toutes les deux et on-a
) L limg =0 -

Observons d’abord que grace a la relation

Jcp(x)d¢<x)+ jw(x)dr,a<x)~ @¥(@=7(O¥E

il n’y a qu’a montrer que si 'une ou l'autre des mtegrales (4) existe,
~alors (5) a lieu. -
Soxt O<x<z on a

© 0s¢<x)[¢<x>—w<z>1—¢<x> f d[~¢<t)1< Jso(t)d[—w(t)}
A Lorsque la premiére .des mtégrales (4) existe, il résulte de (6)" que
0=iim sup«p(x)w(x)<j¢(t)d[—w<t)1

: Comme z est arbltraxre cela: entraine (5). :
Lorsque c’est la’ seconde des intégrales (4) dont on suppose
Pexistence, (5) sensult par les méga]xtés :

P V(@)= p(x)¥() = () fd¢<t>< G[ P()dg)

olt on a mtercalé q)(x)wp(x) entre deux forictions tendant vers 0 avec X.

Remarquons que le role de lintervalle-0 < x < a et de ‘son extrémité
0 pourrait étre joué, dans ce lemme, par un infervalle quelconque oc<x<a

ou a<x < oetpar son extrémité o ; ¢ peut méme étre égal d..coou —oo0,

Nous aurons besoin des cas particuliers suivants de ce lemme?

- Soient f(x) monofone dans O<x=ea et g(x) monotfone dans
ﬁsx <eo, de plus soit hm &(x)=0. Si l’une ou lautre des m'z‘egrales s

Jigurant dans la méme ltgne exzste elies existent toutes. les deux et on
a la limite indiquée a la fm de la Izgne oo~

Gf"xrdf(x), ) _Ofx'—‘f(x)dx,:.‘ limxf(x) —0 (r>0); -

[xiogxdf(), [7(logads, . Jim (xlog /()=
0 .. -, . >0 . .
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| dg(x), - g(x)dx Climxrg() =0, . (r>0);.
B x> ® o . . ) ) v
j x log x dg(x),
B.

Y

':u:_.ﬁg 'co:_._ ’

g(x) og x d,  lim (x IOgIX)_g(x)=0-'

bérles de Founer (fonctions monotones)

Théoreme I Sozt g(x) une fonctton décroissante et bornee mfe—
. rzeurement dans I’ intervaile 0 < x < 7. Supposons de plus que xg(x) soit
mtegrable de fagon qu'on puisse formellement developper g(x) en une

‘sérié des sinus Z b,sinnx ‘oit
'x.;"’ o E '_ b -—Jg(x)smnxdx
Pour que. Ia serte ' o Ll
M S > ,’j; ©zy=1)
- ‘ N
sozt absolumem‘ convergente il faut et il sufﬂt que, la fonctzon x7=t g(x)

'~(donc dans le .cas, 7—1 la fonctton g(x) elle meme) soit. zntegrable
o dans (0 n) o X ‘

Théoré me Il Sozt h(x) une fonctzon décrorssante et bornee in-
férzeurement dans Pintervalle. O <x<m Supposons qu'elle soit mtegrable '

" dans (O n) et soit ———I—Za cos nx son developpement en serze des -
cosmus ol : C '
- q —f/z(x) cos nx dx. : . 2
Pour que la serte ‘

.(8)'-' L T e Z,(Z (0<7<1)

soit absolument convergente; il faut et ll suffit, dans le cas 7< 1, que_
“la fonction x7-'h(x), et. dans le cas y=1, qge la fonctton h(x) logx sozt )
mtegrable dans (0, m). - : :

"Pour y=1, ces résultats ‘sont dus 2. M ZYGMUND“)
Pour ‘démontrer I, - observons d’abord qu'on peut supposer
g(#—0)=0; en cas contraire on n’aurait qua remplacer g(x). par
g(x) g("—O), ce qui. ne nmf*-f:e les b, que-par des: quantités 5 de

.lordre de grandeur O( )

°)Lc4)
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“L’hypothése que g(x) est monotone et que xg(x) est mtégrable
entraine, en veriu du lemme, que x2g(x)-.0, donc aus51 :
(1—cos nx) g(x)-0 - pour x~»O0.

En mtégrant par parlies, on obtient -

b,=—-— J(l —cos nx) dg(x)

donc b,,g,o La série

—cosnx- :
Z—’__——ZJ iy -dg 2
converge si ef. seulement si la somme Cy(x) de la série a termes. po-
sitifs .
. 2_1—posnx T v
) e fl“‘?‘ ’ ] . R
est intégrable par rapport 4 la fonction monotone g(x). :
Or C,(x) est une fonction . continue et C,.(x)mxy pour x-07)
En effet, comme l—cosys2 et encore <y%/2; on a d’une part

1+41/x

-Cy(X)éTZ n‘ 742 Z n1+v = J fi- 7d1+2j Sy dtev 3,

n=l/= >z . 1z - 1-

et comme l'— cos 'y; 2(y n)'~’~pour [ylgn- on a d’autre part
) ‘ 1z
e (x)>2(x/n)2 2 n‘ V22(x/n)2 ,|t1 vdt e X,

" On a donc la. séne (7) convergente si et seu.lement si x? _est
. intégrable dans (0, ) par rapport A g(x),ce qui veut dire fe méme,.en
. vertu du lemme, que x?- 1g(x) est intégrable par rapport ax Théoremel
. est donc démontré. '

"Pour démentrer le théoréme II observons dabord que lmtégra-
bilité de h(x)-entrairie, en vertu du lemme, que xh(x)-»O donc aussi
(sinnx) A (x)»0 pour x-»0. En intégrant par parties, on obtient

F 3

S a,==

0

2 Jsin nx dh(x).
n .
-On a donc '

a S sinnx
z _s f“n1+y‘_d[—h<x)1

1) u(x)~v(x) pour x - a veuf dxre qu iy a deux constantes posx’uves A, B
de. sorte que Aga(x)/v {X) < B dans un vmsmage de a. -
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toujours que‘lliniégrale au second membre existe. Or

sinnx S onx - - 1 e
S“ 1+y I— 1'+y+Z lrwé ’
n—l. n . l/ n n>l/x n

1/1:

x?’ ’ (0<y<1)
xlog]/x (yr=1)

j<x(“+J‘ ) ﬂ+/

. -lorsque x»O :
Cela prouve que fla sene (8) -est” absolument convergente si Xx7.

(cas 0<y <1) resp. xlogx (cas r=1) est’ intégrable par rapport a T

© h(x). En-vertu: du lemme, cela veut~dire le méme que x?’ 1h(x) ‘Tesp.
h(x)log x est mtegrable par. rapport a. x. : :

Montrons que cetie condmon est aussn nécessalre ou meme plus .
XY ou xlogx sont selon les cas, mtegrables par rapport a h(x), -méme.

st Pon suppose seulement que Ia serze (8) est sommable parle proeedé de
Cesaro _

Supposons donc que la somme -

<, kY@ 0 2 (o, k) sinkx.
ZWF_Jﬁ—e;.;bquww aiy

5 . Cg =l .

- jconverge vers une hmlte lor=que n—>oo Comme on'a sm kx- ¢,,(x)—

1—cos(2k+1)

s,,_l(x) oir Sk-(i') == 2 uné tra’néfdrma(ion abélienne _

' oL 25m—2—~ S .
. fournit: L e . o
S0 =2 (1 ~7) N (1" F)So(x) +Z S(x) G =. .

k=1 X
o, '

g-@*—%m+nﬂ)

. . A_éw‘: 1——k—— 1 _'l k+l) o —
R O R G UC’H)HT

=) e )
By oo (k1)1 ) n (k—{-l)?
est une quantlté positive,- tendant en cr01ssant vers . . -
‘ - ) 1 - 1.
0y = kl+y (k+ ])1+y _ ) )
' Par: consequent la fonction Tyn(x) st posmve -dans l’mtervalle

lorsque n-+o0,

B (0, ) et tend en cronssant vers - T,(x) = > s,,(x),d(y) .lorsque n-»oo,
' o o R =
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Comme Pintégrale de S,.(x) par rapport a'h(x) converge par hypothése
faite vers une limite, il en de méme de lintégrale de 7,.(x), d’onn il -
résulte- que la fonction-limite T,(x) est aussi intégrable par rapport

: - 2 . : :

a h(x). Oron a s (x)=— 2 (gl—{:t—lx) pour k’—}——l-g-yi», donc T, (x)=
: X 2n = X iR
njx L

2 X7 - (r<1,

“ 0~ < -5 —f 17y~
;nz’,lizsz("“L‘)" = "J’ Jacery I'xlog 1/x (r=1)

2=z

lorsque x-0, ce qui assure que X7 resp. xlogx smt aussi_intégrable
‘ par rapport a h(x), c q f. d. : :

Séries de Fourier_(fonctidné plus générales),”

En tant qu’il s’agit de conditions’ suffisantes, les deux théorémes
ci-dessus s’étendent aisément & certaines fonctions plus générales et cela
tout d’abord atix fonchons qui sont la différence de deux fonctions
monotones. :

" Ainsi, il s’ensuif du théoreme I que si’ g(x) -est a variation bornee

T

.dans tout soas-mlervalle (5, ®) oir £€>0, et que si Jx"ldg(x)l existe pour _

un exposanty O<y<)), g(x) est mtégrable dans (0 ) et la série Z b,,/n?
formse- avec .les coefficients b de sa série des sinus, est absolument con-.
vergente. : e
- "En effet, en dé31gnant par -, (%), '8:(x) -les.. variations posmve et
négative de g dans Vintervalle (x,7),. on a g=g,—g°%) et {dg|=
=|dg|+|dg|. 1| sensuit que x7. est. intégrable aussi par rapport a
g et g,. En vertu dulemme, g, et g, (voire méme leurs produits par x¥-1)
sont intégrables. Donc g est aussi mtégrab]e Ses coefficients -b; étant
les différences” de ceux de g, et g, 11 n’y aqu’d apphquer le théoreme I
aux fonchons monotones g, et g,.-
De la méme facon, on obtient du théoréme II que si A(x) est d

variation bornée ‘dans tout sous- -intervalle (e m) ot >0, et que sz lune
ou Pautre des intégrales

O['x_log'xldh(xﬂ, 'O[x-/(d/z @] O<y<iI)

existe, h(x) est in-tégrable dans (0, =) et on a selon les cas . la se’rt‘ev

 Sa/n, oula série > anv, formées avec les coefficients a, de la série
- des cosinus de h(x), absolument convergente» :

3)4 Du moins si, g(%) =0, ce qu’on peut supposer sans restremdre la générahté



~

'Sérics et intégrales de Foufier. ' 125

Ces proposmons peuvent etre génerallsées de la maniére su1vante
Théoreme Il Soit f(x) (—oo <x< oo) de pérzode 2w, a varia-

- tion bornée dans le voisinage de chaque point sauf peut-étre d’un nombre- '

fini de points “singuliers” a (incongruents mod 2m). En un.tel point a,
f(x) ne doit méme pas étre définie, mais ‘on suppose que les zntegrales A

© fuldgq(u)l,v .f,u 1og.a.ldha<zo| )

existent’ oil

"(10) go(t)=7 [f(a+U)—f(a—u)] ha(u)——[f(a+U)+f(a U)]
X Dans ces condztzons f(x) est mtegrable et Ia Série

an DX ARSI

formee avec: ses coeﬁtczents de Fourzer a, b,, est’ convergente

: Lorsqa on suppose de plus que lés mtegrales

(n“/l L)l (7}7ldh }
. ' g : 0 R
exzsz‘ent pour un exposani 7 0 <y<1, on a méme la série

a2 2 (al+]s, Dinr

convergente R '

Laissant & part le cas évxdent oii il ny a aucun pomt smguher :

. decomposons un mtervalle de longueur 2x dont les extrémités ne sont -

- pas des pomts singuliers, en des intervalles 7, ..., ip‘, chacun contenant
un seul point singulier en'son intérieur. Désignons par f,(x) la fonction

-“de période- 27 . qui est égale a f(x) dans lmtervalle i, et sannule dans

les autres on a alors )
(13) g R X)*—ka(X)
‘ En désxgnant par «.- le poirit. smguher dans i, ]es fonctions

- (149) Gy (1) =5 (@t ~fila—w); Hk(ll)~.— [fk(“k—f-u)—l—ﬁ(ak—ll)] "

‘ont le seul point singuliér u=0 et Coincident dans un voisinage de

" cepoint avec les fonctlonsg“ (1), ha, ()- (cf. (10)). Comme on a supposé .

que _les intégrales (9) exnstent zl résulte -de -ce -qui précede que les
fonctions (14) sont mtégrables, et que si - .

G,,(u) ZB,“, sin'nu, " H, AENE A,‘o—l— >4, cosnu .(0 <u<m),”

on. a les sénes Z —B’;‘—— et 2

' absolument ,cohvergente's.
I .
9) Pour la 11m1te supérxeure de ces 1ntégrales on peut choxsnr une quantlté

arbitraire k>0 telle que lintervalle . (a —k, a}-k) e contienne aucun point
51ngu11er pour f x) ‘sauf a. On fera une telle convention au551 pour ce qux suit,
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La _fonction G,(x—e,)+ H,(x—a,)=f.(x) est donc aussi inté-
.grable; et si a,., b, désignent ses coefficients de Fomrer la. série
D (la,.| -+ bial)n est aussi convergente.

L’intégrabilité de f(x) et la convergence de (11) s’ensuit, grice a
(13), par- addition.

La proposition concernant la série (12) se démontre de la méme
-fagon. . .
Voiciun corollaire de ce théoreme
Soif F(x) une fonction contmue, de pérlode 2n, la courbe y F (x)
.se_composant d’arcs convexes et concaves, en nombre fini sur un intervalle
de’ période. En un point “d’abscisse x=ua, Séparant deux arcs voisins,’
nous permettons les demi- tangentes d’étre verticales,.c est-d-dire que F'(x)
., croisse indéfiniment lorsque x tend ‘vers & de gauche ou de. drozte nous
' exigeons seulement que Uintégrale - .

YO [ulogu|d[F(a+u)+F(a—u)]| 10)

existe. Dans ces condttlons la serze de Fourter de F(x)- est absolumem‘
. convergente.''y -

En effet, la fonction f(x) = F’ (x) vérifie les hypotheses de la
- .premiére’ parti€ du théoréme Ill. L’existence-de 1a seconde mtégrale Y]
est supposée exphcrtement Quant & la premiere, on a . -

Ju AL (a-1) — F'(a—u)]l<fu (dF (@) + fu [dF (@ — 1)}

et Ies mtegrales au second membre exxstent parce que F'(a-u) et
F'(a=-wu) sont intégrables et monotones pour des petites valeurs ‘de u.

Observons que si F'(x) est ““localement symetrrque ‘par rapport
a a, Cela veut dire que si F’(a—l—u)—l—F’(a—u)—O pour u assez petit,
Pexistence de I’ mtégrale (15) est manifeste. En un tel point de “symetrre
locale”, il est donc permise que la demi- 1angente de la courbe y = F(x) -
devienne verticale aussi “rapidement’” qu’on.veut. En d’autres points e, .
"la condition que lintégrale (15) existe, presente une lrmttatron pour'
’ cette raprdlte .

“10) Desrgnons par F'( x) par exemple la denvée symétrrque

lrm——[F(x—i—h) F(x h)]

11y On trouve une lrste de condrtlons plus ou moms comprehenswes pour la
_'convergence absclue de la série de Fourier d’une . fonction F(x) par ex. daos
. HiLLe - | D. TasaggiN, On the summability of Founer series. lll., Math. Annalen,
108 (1933), pp. 525577, en particulier pp. 532—533. Le’ critére (Vl) de ces auteurs.
est le plus apparenté au notre .
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lntégrales- de Fourier (fonctions -monotones).'

_ “ Passons -aux problémes analogues pour- les mtégrales tngono-
: 'métrrques Envnsageons d’abord les mtegrales des smus ‘

N ~Théoréme V. "Soit g(x) O<x< oo) une fonctzon decrozssanle' .
et tendant vers 0 avec 1/x. Supposons que x g(x) soit mtegrable dans fout .
intervalle ftm (0, @). Alors : ‘

T o

b(v) =— [g(,x) sin xv dx

‘exzste Pour que l une ou [’autre des mteg‘rales o
@ J“’“)' - ( >J"’(””d <y

éxisle il faut et il sufﬂt que x7- lg(x) so:t mtegrable selon les cas : )
dans (1,20), ou dans (0, V). , <

Grace a lhypothese faite que xg(x) -est mtegrable

b“(v) =t -—Jg(x) sm xv dx :

.‘

©a un-sens- pour tout (’ hm “En veru du lemme lmtegrale

(16) : ' e _ > fxzdg(x) ‘.
~existe et _ o
an - o ng(x)—»O pour x>0,

D (Jrace 3 {am, on obtnent en mtégrant par partws

-ba (v) _—g(a) (l — cos av)- f—J(l — Cos xv) dg(x)

ralsant alier & vers lmnm, ie- premxer terme du second membre tend’ :
- vers 0 et le second terme converge aussi parce ‘que -

Osju—cosxv)d[—g(x)]szfd[ g(x)]—2[g(u) g(y)]»o
lorsque. u<v et uco.

Donc b(v) hm ba(y) existe et on a

- b(v)'_i: '—%J(l —'oos x;v). dg'(x);‘O. . '
- 0 . . . - . ..
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Il en résulte que (1,) ou (zy) existe si, et seulement si

l (x)~j ~ COS Xv dv ou I°°(x)=fl cos xv - v,

l+y ,Ul+y

- selon les cas, est 1ntégrable dans (0 o0) par rapport a g(x). Or on a

l—cosw , . }xg pour x-0,
Iy(x)-—xy —-——wm AWl our xom,
o . "
o —cosw xr  pour x>0, .
1" ()= xVJ wi+y , pour x-»o,

Comme X2 est. mtégrable par rapport a g(x) dans (0, l)‘[cf (16)J ‘
et comme fl dg(x) existe aussi [etant égale. a —g(l)] on vort que- -

(i) ou (1,,) existe si, et seulement si X7 est 1ntégrable par rapport a
£(x) dans (1, oo) ou " dans (0, 1), selon les. cas. En vertu du lemme,
. cela est équrvalent avec l’mtegrablhte de x7- 1g(x) dans (1, c0), ou dans'
(0, 1); c.q.f.d. .
"~ Quant aux mtégra]es des cosmus, 1l conv1ent d’étudier -les cas
r<tlety=1 separément . : .
Théoréme V. Soif hex) 0 <x< oo) une fonction décrozssante

. et tendant vers © avec 1/x. Supposons que h(x) sozt mtégrable dans tout
' .mtervalle fini (0 ). Alors .

a(v) —;jh(x) cos vx dx .

existe. Pour que l’une ou l autre des mtegrales N

- .

v )J 0L g, ey j LIOTIP ©O<r<

existe, il faut et il suffit, que x?- l/z(x) sort mtegrable selon les cas, dans
(1, 00), ou dans- (0, 1). :
~ La fonction monotone h(x) étant intégrable dans (O, a), on a, en
verfu du lemme, la fonction x .(donc aussi la fonction sin vx) mtégrable
par rapport a h(x) dans (0, @) et xh(x)»O [donc aussi sin vx. h(x)—»O]
lorsque x-O0.
‘En mtégrant par parhes on obhent que

a.,,(v) = —Jh(x) Cos vX dx= ——h(a) sin ax— %J sinvx dh(x),
g -

’ 0
donc

| (18) S a(v)= lim a,,(v).= —%J'si.n,vx dh(x).
. . - e - .Jl §
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Pour que (]y) ou ( 1,,) exrste il suffit donc, selon les cas,. que :
sin xv, sin xv -
]y()—JI ,wld ou jy(x) Jl 1+y]d
' sort mtégrable dans (0 oo) par rapport a lz(x) Or on a:

- f 'S‘ILZ”' dw

{x - pour x»O,.
X" ,pour_x.»oo T

xV ' _pour x~0,"
I B pour x-co.

N <x>-xyf ASI8L

Comme X est mtégrable par rapport a h(x)"aans (0, 1), et la con-' -
" stante est intégrable par rapport a'h(x) ‘dans (1, o), on voit que -
jy(x) et /" (x) sont mtégrables dans- (0, o0) par rapport a. h(x), si. (et |
snu!emem si) x” ‘est int égrab par ‘rapport a- h(x) respectivement dans
(1, 00) et dans (0, I). En vertit du lemme, cela est équrvalent avec mtégra-h
brlrté‘de X7Lh(x). par rapport a.x, dans Piritervalle” respectrf

La suffisance - des conditions ainsi :démontr ée, passons ala dé-' o

monstration de leur nécessité. Nous- verrons méme plus, notammem que
XV 1h(x) est intégrable dans (l ) . .ol dans (0 l) méme sr 'on suppose
seulement que, selon les cas, . _ S :
- L e
| f"‘”’ @, f"‘”) dv
D I 1 - v
existe comme intégrale rmpropre voire méme sous l’hypothese encore,
_'plus faible que . . :

. . I N . ° '.‘ T » ’
| -(19) Ay<_m=fer<v>, ©:iy ot eufe) =
ou . .'0‘ " | 'v } .

SR S a,'(v) .
(20) S By('v) ={1~ 7 — dv
e 1 : .
. .converge . lorsque u-»() v-00.- Observons que Iexrstence des mtégrales
A (y), B,(») est assurée parce que, d’apres (18), on a -
: l .

v/u pour 0<v5y,
1 pour v>,u, .

ta(v)ls—Jx |dh(x)l+ jxdhoc)r—c o

1
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Faisons d’abord I’ hypothese que A,,(u) converge Iorsque ,u->0 On a,
par (18) : ~ .
o oy .
(u)_ —%J (Jsin Xv dh(x))drf=
0. ’ T

ey - -1
dh(x),

snxvdv

Pinterversion des mtégratrons etant légmme parce que la fonctron sous
. le signe d’mtegrale admet la majorante -
‘ eu(?/)x/?/ ‘- (O<x§l)»r
Fou@p, x) = e, (v)/vlﬂ, N (1 <x <o),
mtegrable dans le domaine OSUSI 0<x. < oo, par rapport 4 la me-
“sure  dv. |dh(x)]. '
: Une intégration par. parties montre que lmtégrale entre { } dans _
le dermer membre de (21) est egalea

) C; 70 (X)

— COS X 1— cos xv dv ! cos xv dv
—J v1+y+(]+ )f—_—v%w

'qur ‘est évrdemment une fonctlon posrttve de x et lend vers .

; ,: cosx l cos xv
lorsque u~0. Lintégrale de C,,,,(x) par rapport a h(x) étant égale',
a — % A(w), converge vers. ane limite lorsque u-»O Cela entraine, "en - -
vertu du lemme- de FaTou, que Ia -fonction- limite Cy(x) est aussr
mtégrable par rapport a h(x). Comme ona .

x

i Cy(x)_=‘, —Cosx +(l -{-y)x?'jw—%swdw ~ X7 pou“r‘x-;oo,.-
'la fonclion x7 est aussi mtégrable dans (1,oo) par rapport a4 A(x), ou,
. ce qui revient au méme, x?-1A(x) est intég‘rable dans_cet intervalle
- par rapport & x, c.q.f.d.
. Envisageons maintenant les conséquences de I hypothese que B(v),
définie par (20), converge vers une hmrte lorsque »->co, Par (18)

B (v)————f(r——') (f—s;;',‘—j‘-}—dh(x))dv =
0 - .
- *J U ( 3 ) 5"33" ofanr;

C@)
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"Pinterversion des mtégrahons étant légitime parce que la fonchon sous }
le s1gne d’ mtegrale admet la malorante
. xfv' . (0<x = 1),
G’”(U X)= oivr (N <x < o0), r
intégrable dans le domame l<v$'u 0<x<oo par rapport a la me=
. sure dv.|dh(x)].
" - En intégrant par. parties, on- vort que lmtégrale entre {} dans le
dermer membre de. (23) est égale a .

o

@ Dyv(x)—— ;os x(l ___)+J'l—cos xv lv;};yy (l. l:_y )dv |
L’mtegrale de Dyv(x) par rapport a h(x) étant egale 3 ——B(v) converge |
vers une limite lorsque »- oo, .donc il en est de'méme de Vintégrale de
o ,v(x>—Dyv(x)+—ﬂ’f—j(l 1.

4 Or E,,(x) tend vademrrwr'f e crorssan‘ vexs,"

o

I—cosvx cos w
E,.(x)—(l-l— )f—;c—;rd/—(wy)xff—,—w—d-w
. > e . - x L
- lorsque =00, Par conséquent E (x) est aussi- intégrable dans (0 oo)
par .rapport & h(x). Comme E,{x)~ x? pour x-0,- la fonction x7 est |
aussi mtégrable dans (0, 1) par rapport a h(x), ou, ce qui revient au_
méme grace au lemme x7-Vh(x) est intégrable dans (0,1) par rapport ax

' ‘Cela achéve la démonstration du théoréme.
L’hypothése qae la fonction envisagee -soit monofone a’ans tout

Uintervalle (0, o0), aurait pu étre remplacée, dans les théorémes IV et v,

‘par Uhypothése plus génerale que la fonction soit monotone du moins

dans les voisinages de 0 el oo et qu'elle sozt a varzaizon bornee dans
la. partte complementazre de (O ‘o0). _ .

Dans la proposition- suivante, nous sommes meme contraints A

' envisager ce. cas plus. general parce ‘que l’mtegrale d’une fonction -

monotone positive.ne pourrait s’annuler, condmon qui va jouer cependant
-un role essentiel dans.ce qui suit. .

Théoréme VL Sozt h(xy O<x< oo) monotone pour x assezv
_ petit et pour x assez grand par ex. pour Ox<sea ef f=x<oo 1)
.oit @<, a variation bornée dans asxsﬂ, et soit lim lz(x)—O De\

plus h(x) so:t integrable dans (O oo) l"') Soit T

b4

-

: 12) Dans ces mtervalles le sens de la monotome peut: etre égal ou oppose
B) En ce qui- concerfie lmtégrale (jr ), 1] suffirait de supposer que h(x) est
mtégrable dans (0 a). ,
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-

a(v)——fh(x) cosvxdx . -

et envzsageons les mtegrales

Y Jla(v)l o U )' Jla(@)l

" Pour que (j; ) existe, il faut et il suffit que h(x) logx soit mtégrable
dans (0, 1). Pour que (ji) existe, il faut et ll suffzt que h(x) Iogx
- Soit mtegrable dans (l o) et qu on ait

e Jh(x)dx—

Envisageons d’abord (j). On.a par (18)
[La0l 4,2 f G

(x) J]smxuld J|sn‘:w| P

T

ol
xlog 1/x. pour x+0
I pour X->0d,
' . ®

"Il en resulte vu aussi le’ lemme que si fi(x) log x est mtégrab]e dans -
0, 1), (j&) existe. '
Inversement Jlorsque (), ou du moms lim B, (v) exnste [cf 20)],

vh'mJE,y(x) 'dh(x) existe aussi oil El,,(x) 2J_1_‘“_£9.5_x2(1___)dv_'-

[cf. (24) ef (25)] Lorsque V-»00, E,,,(x) tend en crozssant vers

w -

o
El(x)—~—2j———-—] °°Sx”d _'z;cf—————l OB Y aw.
o owe .

xZ.

. Cette fonctlon étant< 2/x, est mtégrable dans ‘@ <x <oo par rapport .
A la mesure th(x)l donc on a nécessairement
' lim f Eu(%) dh(x)—- f E®) d/z(x)

S oy
T a

Par conséquent hm [E,,,(x) dh(x) exxste aussi, et comme h(x) est mo- -

notone dans (0, a) cela entraine'que la. fonchon limite E (x) est intégrable
‘aussi dans (0, ). Or Ei(x) ~ xlog 1/x pour x+0, donc- .xlogx est -
intégrable dans (0, @) -par rapport 3 h(x) et, par le lemme, h(x) logx est
intégrable dans-(0, @) par rapport 2 :x.

! Passons au probleme de (D). Falsons lhypothese (26), ce qul

revxent en vertu du lemine, 2 -supposer que fxdh(x)—_o On peut
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oo

alors écrire, au lieu de (18),

o
@) ° a(v)——J( Sin x”)dh( x),
s d’ott il vient que R
* 1 o 1 '
@8 J’-‘%’i)—'dvg%f f’“’—_vi‘—"ﬂdv dh(x).
0 6 0 .

Comme on a
xv—sin xv ~ (w—sinw x? (x~0),

(29) K(x)—j———dv=xj—;v~2— 4w e xlogx (x-o00),
“le second membre de (28) exnste dés qu’on suppoge encore que xlog x
_est intégrable dans (8, o) par rapport & h(x), ou, en vertu du lemme,
que h(x) log x est intégrable dans (B, ) par rapport a x.

Ces conditions sont aussi nécessaires; elles. s’ensuivent déja de
Phypothése que lim A,(u) existe [cf. (19)]. - :

Tout d’abord, comme nous avons supposé fi(x) intégrable dans
(0, ), la fonction a(v) est continue méme au point v=0. On a né-
cessairement a(0) =0, puisque en cas contraire, A,(u) ne pourrait pas
converger lorsque u~0. Donc on a (26) et alors on peut se servir de
la formule (27). Cela donne : s

30 A (M)—-j(J——Mdh( )) dv—

lmterversxon des mtégratxons etant legmme puxsque la fonction sous l
mgnn r||nh.'\n'rn|n admet la "";0"3:1!\, X/u, ‘n‘égrable dans le do ?
p=sv=l, 0<x<oo par- rapport a la mesure dv|dh(x)].

. Llintégrale entre { } dans le dernier membre de (30) est une fonction
non-négative K,(x), qui tend, lorsque u--+0, vers la fonction K(x) dé-
finie par (29) et cela en croissant. Comme K (x) est évidemment intégrable
dans (0,8) par rapport a la mesure [dh(x)l, on a nécessanrement

sm X?J v\dn (x);

Fn

tim JKH(x) dh(x) = 0[ K() dh(¥).

Par conséquent, Iin:) f K.(x) dh(x) existe aussi, et comme h(x) -est -
u>03 ’ :

monotone dans (§,o), cela entraine que ia fonction-limite K(x) est
intégrable dans (8, o) par rapport & h(x). Or K(x)~ xlogx pour x-eo,
d’ol1 il résulte, eu égard aussi au lemme, que A(x)log x est intégrable
dans (ﬂ, o) par rapport a x, ce qui achéve la démonstratlon du théoréme.
A9
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9

14

Intégrales de Fouri&r (fonctions plus générales).

En tant que conditions suffisantes, les théorémes IVe-VI s’étendent

a certaines fonctions plus générales, tout comme c’était le cas pour les

théoremes [—II, notamment aux fonctions qui sont la différence de

- deux fonc ions du type envxsage dans le théoreme respectif. .On arrive
ainsi aux résultats suivatits : 4 : -

Supposons que la fonction F(x) (0 < x < oo) soit a variation bornée
dans touf sous- mtervalle (s =), €>0, tende vers 0 avec 1/x, et que

e |x, ldfl -

'

— o

exzste pour un exposant positif y=1. Alors b(@) —‘ f(x) sin xv dx

existe et |b(v)/v”| est intégrable dans (0, ).

= ®

~ Dans le cas oit y <1, a(u)=3 [f(x) cosxv dx existe aussi et
] o .

la(v)/v?| est intégrable dans (0O, o).
Si Pon suppose, au lieu de lexzstence de (3 l) celle de

: I x log x |df(x)],

ef si I’mIegrale de h(x) dans (0, o) s'annule, on peut foujours. affirmer -

que a(v) existe et |a(w)/v| est mtegrable dans (0, o).
Ces pr0posmons sont crompnses, a leur tour tour dans la sui-
vanie phfs générale:.. - : : .

Théoréme Vll. Soit f(x) (—oo < x < ) @ variation bornée dans

le voisinage de chaque point x sauf peut-étre d’un nombre fini de point,sA :
“singuliers”, oit f(x) peut méme ne pas éire définie, et supposons que,

f(x) tende vers O avec 1fx. En posant -

Lo =g [fle+u) = fle—w)}, ha(ﬂ)—sz(a+U)—f(a—u)]

supposons que les iniégrales
. ) [ w dg. W), f u |dha(a)| )

existent avec un exposant positif y < 1, et cela méme pour les points
singuliers e. Supposons de plus que les intégrales

[urlagai, [ 1an@n)
existent. Dans ces conditions, . A

) Pour la limite supérieure de ces intégrales, “voir note 9.
13) Pour la limite inférieure de ces intégrales, on peut choisir une guantité
arbitraire k, plus grande que le module de chaque point singulier pour fix).

-

O TERTIN

+.

“
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_a(v) =% ff(&c) cosvxdx, b@) = ;:— ff(x) sinvx dx
existent et [la(w)|+|b(w) Vv est intégrable dans (O, o).
Sirau lien des mt( grales cz-dessus avec u¥, on suppose que les
mtegrales - :

Ju1ag.wl [unogawha(u)]i [ulagw), [ulogu anyu)]

extstent et de p[us que | intégrale de f(x) dans (— oo, 00) S’annule, on peut
toujours affirmer que a(v), b(v) existent, et que la fonction [|a(v)| +|6(v)|]fv
est intégrable dans (0, o).

Pour le démontrer, décomposons J(x) suivant ses points smguhers a,
¢tk=1,...,p). La fonction f.(x) soit choisie de facon qu’elle coincide
avec f x) dans un voisinage de «, s’annule pour des grandes valeurs -
-de |x| et qu'elle n’ait que le seul point singulier «,. En écrivant f(x)=

_.Zf,,(x)-,-f (%), fo(x) naura aucun pomt singulier et coincidera

avec f(x) pour des grandes valeurs de lxl (Si, en particulier, il n’y a
aucun pomt singulier, on posera f_(x) =f(x).) Dans le cas oil I'intégrale
de f(x) dans (—o0, 00) s’annule, on aura encore le soin de définir f,(x)
(k=1,...,p) de sorte que son mtegrale s’annule aussi. Cela étant, on
peut appliquer les résuitats que nous venons d’énoncer, aux fonctions
fi(x—e), f,(x), ou pludt aux fonctions g, & qui s’en dérivent, et on
conclut comme dans la démonstration du théoréme IIL.’

Voici encore un cordllaire du théorgéme VII; .

Soit F(x) (—oo < x < o0) une fonction continue, fendant vers O avec
1/x-et se composant d’un nombre fini de parties convexes ou concaves. - -
A lextrémité a d’un intervalle de convexits. ou de concavité, on permet que
F(x) devzenne '+oo ou —oe, INaGis on suppose que

- ’ fuloguld(F’(a—}—u)-l—-F’(a—-u))!
extste On suppose. enfm que h
o JuegaE @+

existe. F(x) admet-alors une représentatzon de Fourier absolument con=-
vergente Cest-a-dire quon a F (x)=f FA (v) cos xv -+ B(w)sin xv]dv et
1A(v)| |B@®)| sont - -intégrables dans (0 o). 16) \

(Recu - Ie I Sfévrier 1949) -
18) On trouve une liste de conditions pour la convergence\absolue des inté-
- -grales de Fourier dans Varticle cité 11) de M..HiLLE et TAMARKIN. La condition
ci-dessus est apparentée a celles de ces anteurs contenue dans leurs théorémes 7.1, 7.2,
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On some’sequences defined by recurrence.*
By J. ACZEL in Szeged.

1.1, We start from the well known fact‘), that the sequence
defined by the recurrence formula

t)) an‘_—_..'i'g_a':l. (a, and a, are arbitrary)
can be written in the form ’ e N
- a+2a 2 Iyt

2 a"=_L+_3__9+_3_(al~__a’) (— -2—) .

In fact, let us make an attempt with a,=a+ b2"-'. Substituting
this in (1), we obtain 2a+4-2b2"'=a -+ bz +a+b2"? 22°—2—1=0.

n—-1
The roots of this equation are 1 and ——i. Thus a-,,—-—fa—l—b(—- —;-) ,

2

: 2
and 'in parficular @,=a-6 and a,=a—~b2—. Thus a——:—_—‘l%—‘IQ—,
b——f—%—(al—ag) and this gives the result announced.

(2) implies that a, converges and lim a,,=gli32—02—.2)

I.2. This can be proved also without using the explicit form (2). -

Let a,<a,, then we have evidently a,<a;<...<a, ,<0,,=.. -,
dy=a=. >g%~ga2m;..., and ay_,<a,,. So both a,;_, and a,; are
convergent, Ay ,— 0, 0;—A; ea<A. But e<A is impossible, for

a2,+1=%(d2,_1+a2,) woud imply a=%(a+A)> a. Thus a=A=a=lima,,
I.3. The value of the limit a as a function x(a,, a,) of the initial
values a,, @, can be found as follows. It has to satisfy the functional
equation u(a,, a,) = u(a,, as), i.e. ‘u(al,ag)=y(a,,—;f(a,+a2)]. _
We might seek g in the form ‘ . . )
) B : e ) =aqx+qy @ta=1),

* The essenhally new parts of this paper are iI1.2 and lll. — The parts I

and (partly) IL I contain weilknown-results ‘which can be found in almost any book
on Finite Defferences. They serve here for better understanding of what follows.
1) Cf. e. g.E. Cesiro—G. KowaLewsKy, Elementares Lehrbuch der algebraischen
Analysis und der Infm:leszmalrechnung (Leipzig, 1904), p. 105.
2) (2) shows that the difference in the approximation a, of lim a, forms a geo-

metric sequence with the quotient qa—-%

W
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-

for the linearity of the process implies that of u and evndently u(a,a)=a.

. This glves .0, + g.a, = q1a2+(}2—‘1—‘¥“‘—, thus q1_1/3, q.==2/3,

#(a,, @)= ‘5 (0, +2a). | _ R
A more elementary proof is the following:
We multiply both sides of (1) by 2 and add a,,_1 to both sides.~
We get a,_,4-2a,=a,_,+ 24a,_,. Repeating the recurrenceéwe have finally
a,_ 1-}—2a ——al+2a2 This gives for n>oo: a-<4-2a=a,+2a,, thus
== 3 (01’\" 20") 3) . ‘ .
I. 4. Our results hold not only for the arithmetic mean, but also for any

(f ) -2i~f ) ) ( ];

function of f), e. g. for the geometric mean where f(t)=logt, the
harmonic mean where f(¢) = 1/¢ and the root-mean-power where f(f)=t~

) f (f(cn-—ﬁ) "Zf(cn-l) ), fe)= flc. ) ;_f(cn—l) ,

““quasi-arithmetic” mean‘ m(x, y)=f-} t is the inverse

hen

In fact, if ¢,=

- fle) =a,,.satisﬁes a, :—a-":ﬁ"—‘. Thus

¢, =f" [M ( fle)— f(%))( .)"‘1] ;

" ¢, converges and .lim c,,=f’1( . E.g., for the geometric mean

n-271 3
— ¢ 5. A
Vc,,_‘,c,,_l, we have c,,——[clcg( 2}( 7) ] , lime,=Ve .
} By .

L5
. _ : :
II. 1.-We generalize our problem as follows. Let -
{4) qn=p1gn—k A Poln it P 1an_2+pkya,._1' ;

PPt Pre 17+ Pre
@, a,...,a, are arbitrary; py,...,p,=0.)

" Let us tr_v, the methods of 1.1 and conjecture -

(5) | a, : a-4-b,27 b, z"_l AT o MY+t B
Substituting (5) in (4) we get : o
(Pitpat . PP =P —p 2~ —pyz—p, =0

As z=1 is a root, we can divide by (2—1) and get
©) (p1+p2+-"+pk—1+p_k)zk_']+(p1+p2+---+pk_—l)zk_2'i—"'+(pl+p2)z+px20- .
The roots of this equation are the numbeis z,, z,, . . ., Z,_; occurring in (5).
The constants in (5) are solutions of the _lineaf system
a,=a+ b2+ bzt b2 (i_==1,2,...‘,k).

© 8) It was St. FeNYG who called the author's attention to the problem L 3.
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Multiplying the i-th equation by p,p,+-.. +p, and adding all equatlons

we get

-

pa+(pi+pas+-. . -+(p1+P2+-'- . +pl:)ak=
=a[p+(ptp)+.. FHptp+ - PN
+olp+ (o +p)a+. (o tpt o P
+oalp+ (o +p) 2+ (P04 )2

As 2(,2,,...,2,_, are roots of (6), the coefficients of b;, b,,..., b,_, are O;
thus

— D010+ (D, P) A+ ... (D Pt D) O —
P (pp)+ (o Pt )
_Pat ()t A (Pt Pda
: kpi+ (k= VD) pot.. 4200+ D

The coefficients of the equation (6) are positive and decreasing

and thus by a well known theorem of ENEsTROM and KAKEYA*) all its

roots 2,,2,,...,%_, are of ‘an absolute value less than 1. This implies

that if n>oco, all members on the right of (5) tend to O except a®);
thus a, converges and

p1a1+(p1 +p2)ao+ A tpet . +pk)ak -

» HOFD) (Pt R) T

lfeg a=@..+a_ ..+ .. +a,_,+a.)k then ' )

a,+-2at.. .+ (k- 1)a,_,+ka, __al+20:,—{— +(k——1)aL l-i—ka,L
124, . Fk—D)+k. k(k+1)i2

IL. 2. The convergence of a, can dgam be proved also directly. We

give the proof not only for arithmetic means, not even-only for quasi-arith-
metic ones, but for any sequence defined by a,=m(a,_;, Gu_zsz,--.. Qur)

lima,=—a=

where we postulate only that the mesn -m(x,, x,,. .., X;) be 3) reflexive.

m(x, x,...,x)=x, b) strictly increasing, c) con!muoas The first 1wo
propertles 1mp1y also d) internity: ‘
min (X, Xa,. .., X) SM(Xy, Xoy « - ., %)< MAX (X1, Xobo ooy K)o -
To prove the convergence of a,, consider ;
an_ mln (an—k! n—k+17 LI ) ﬂ 1) and A == max (an——L) n k+1y 2+ ) an—l),;

clearly @,<a,<'A, Using d) and the fact, that if we drop one of the
numbers the minimum of the rem?inder can not be smaller, we get

1) G. ExesTrOM, Hiérledning af en allmidn formel for antalet pensionidrer som
vid en godtycklig’ tldpunkt forefinnas -inom en sluten pensionskassa, Ofversigt af”
Kongl. Svenska Vetenskaps-Akademien Firhandlingar, 50 (1893) pp. 405- 415; Re-
marque sur un théoréme relatif aux racines de l'équation ol tous les coefficients )
sont réels et positifs, Tohdku Math. Journal, 18 (1920), pp. 34-36. S. Kakeva, On
the limits of the roots -of an algebraic equation with positive coeffxc:ents, Ibzdem, 2:

. (1912), pp. -40—142.

5) We have counted throughout 1II. 1. as if (6) had only simple roots, but also
the presence of multiple roots makes no difficulty-as also nizn> 0 with n > if |2} <1.
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. e, = min (Q,_;, Qu_ys1y. . A1) = N
=Min [@ gy Qors1r- + 01y m(b,,_,_.,a,,_m,. c @)= )
=Min [@, ;, Qs> -+ oy Qpe1y Q] = MIN(Q,_piqy e oy Ougy Q) = Cpis
thus e, increases. One sees similarly that A, decreases. Thus e, and A,
are both convergent: e,~a, A, +A;e<A. Bugg< A is.impossible, because
if a,=a, is the smallest among a,_;, @,_441,-..,a,_; and a,=A; is the ™
greatest among @;_, @;_t41,---,@,_,, then by b) R
=i (A, o s Ar) =C=M(Q;_, Q;_ps1, 0,03, Ay a,'H....,‘a,.'_l)g
=m(a;, ..., ¢,A; ... ).
If n>o0, also j~oo and by ¢) we would have e =m (e, a,..,q, A, @,...,¢) > a.
- This is-impossible and therefore e=A, which completes our proof.

The weighted aritmethic mean m (x,,..., %) =(2.p:x,){ 2'p} satisfies
a) b), ¢) and-this assures the convergence of the sequence (4).

The result of II. 2 holds also if in the recurrence formula
a,=m(a,_,,...,a,,) the mean value function m iS not the same for
every n,supposed that either only a finite number of mean value func-
. tions vary, or if in the infinity of/ m-s there is only a finite* number of
functions which*do not occur infinitely many times.

Also the analogues of . 3 and of 1. 4 can be constructed similarly

as those of 1. 1 in 1. 1. We leave the details to the.reader.

III. We ‘point out the interesting fact, that the theorem of ENESTROM
-and KAKEYA*) is a consequence of Il: 2 (and equivalent to it).
* . In fact, every equation with positive decreasing coefficients can be
written in the form (py+ Py =+ ... + P+ P2+ (PrFPot o D) P2
+... 4+ (p+p:)2+p=0. It is immediate that z==1 can not saisfy
our equation and so-the theorem is proved if we show that the sequence
w,=2" converges. Of course, itis enough to show that the real part and
_the imaginary part of w, are both-convergent. If we multipiy the equation’
by 2—1 we get (pl+po+ APt P 2= =P = P B 2= =0
P2 g2, lz"" o LA
Ditpt+ . p o _’ Leo
DWW, + Dy n—k+1‘|' W,
= pitpettp . The
parts of w, satisfy evidently the same recurrence formula, thus, by
H. 2 they are convergent. This completes our proof of f{he theorem of -
;,NESTROM and KakevA. (I1. 2 holds only for real numbers, therefore we
could not apply it directly to w,.) E
The well known direct proof?) of the theorem of ENESTROM and
KAKEYA is of course shorter than that one given above in Il. 2 and 1I, but
there is perhaps some interest in the fact, that such seemingly distant
domains as the theory of mean_ values and the theory of algebraic
equations are so closely connected.

or what is the same zm

real and the imaginary

(Received November 2, 1948.) =

I
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A polyhedron without diagonals.

- By Akos CsASzZAR in Budapest.

_ It is simple to prove that the tetrahedron is the only polyhedrom
homeomorphic to the sphere and having the properly that every two of
its vertices are joined by an edge. In fact, such a polyhedron must be
triangle-faced ; and 'if we denote by v the number of its vertices, then

. : Q .
it has(g) edges and %(g) faces, so_that the theorem of EULER gives

G- o

_This equation furnishes v=3 or v==4; the first solution has no
geometrical meaning and the second gives the tetrahedron.

The question arises, whether this proposition remains true or not
by omitting the restriction- concerning the topological type of the
polyhedron. We shall give in this paper a négative answer to this
question by showmg the existence of a polyhedron homeomorphlc to
the torus with the property mentioned above.

For the case of the torus, we have to put O instead of 2 on the
“-right side of (1) and we obtain from this equation v==7. We first shall -
draw the 7 vertices and the 21 edges of our polyhedron on the torus.

Let us represent the torus on a rectangle ABCD. The opposite
points lying on the sides of this rectangle are the images of the same
point of the torus. Let us take seven points 1,2,3,...7 in this order
. ofi the side AB; they appear naturally on the opposite side CD too.
By drawing the straight segments joining the point 1 (on AB) to the
points 3 and 4 (on CD), then those joining the point 2 (on AB) to the
points 4 and 5 (on CD) and so on in the cyclic order of the vertices;
" these segments together with the segments of AB (and CD) joining two-
neighbouring vertices, form a system of lines containing 21 edges -
which joins every pair of the seven vertices by an edge and divides the
torus represented by the rectangle ABCD in 14 triangles. Table 1
enumerates the vertices of these 14 triangles.
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Table 1. )
126 235 t’%\ 356 346 467 237 267 )
156 245 X124 134 137 457 157

We shali now construct a polyhed'ron whi'qh realizes_this topolo-
gical scheme.

Table 2 shows the coordmates of the T '
able 2.
seven vertices of our polyhedron in a rectan-
gular system of coordinates. The values of x y z
a and & will be given later on. This system .
of vertices shows an axial' symmetry with | 1 | —3 310
respect to the z-axis, 1 and 6, 2 and 5, 3 2 -3 =3 a
and 4 corresponding to each other. As table 3- | —1 ). -2 3
1 shows, the faces of the polyhedron show 4 1] 271 3
the same symmetry. We have to choose the 5 3| 3 A
. g . . TN, a
values @ and b in the way that no pair of o 3 3
the faces intersect each other: : -7 =310
In we put for a moment a=0 and’ v 0 01 ¢

=--o0, a short computation shows that
the plane passing “through the vertices 356 divides the space-in two
half-spaces in the way. that the points 1-and 2 lie in the first half-space
and the points 4 and 7 in the second. We can use for the abbreviation
of this fact the symbol . '

12356 | 47 .. . .A.

We get similarly N a
: 125 | 346 | 7 - . B
145|236 | 7 . C

145 | 237 | 6 . D ’
23 | 167 | 45 . E
36 | 257 | 14 .-F.

These propositions remain valid eyen if we give to @ a suffncxently'
small and to b a suffxcnently large positive value, '

Denoting by 25 the plane passing through' the pomts 2 and 5
and perpendicular to the z-axis, we have moreover -

1625)347 ° .. . .G

We can now show that no two of the faces of our polyhedron
iniersect each other. Because of the symmelry with respect to the z-axis
it suffices to consider pairs of faces formed by a face in the upper
line of table 1 and an other whlch\xs written before it or under it in
Athls table. Table 3 nges now for every pair of this type one of the
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. ‘ 4 - d [ 4
propositions A — G which shows that these two faces cannot intersect

each other.

4 -
Table 3.
) . . ~
126 — 156 E 346—245B  237—126-C 267 — 156 C
235—126 G 356 B - 156 C 235 C
. 7 156G 124 B 235 D 245 C
M5 F 134 B 245 D . 356 C
356'— 126 A 467 - 126 B ' 356 C 124 C
156 A ; 156.B 124 D 346 C
2%A 238 346 C 134 C
245 F 245 B 134.D 467 E
124 F 356 B <67 E - 131D
346 — 126 B 124 B 13D . 231D
156 B 346 B . 457D - 457D
235 B 134 B 267 — 126 C 157 D
13TE - .

Longer calculation shows that. a=d4and b=15 sahsfy our above
. conditions.

We mention finally that the generalized "theorem of EULER shows
the ‘existence of an infinity of topological types for a polyhedron with
the property that every two of its vertices are jomed by an edge. It
would be of some interest-to investigate if all'these types can be realized
with polyhedra havmg plane faces and stralght edges. :

-

(Received Februaky 10, 1949.) B -
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. G. Vranceahu, Lecons de géométrie différentielle, “Vol. l..,
422 pages. Bucurest, 1947.. : ‘

La théorie des équations différentielles et- celle des groupes- contmus sont &’

la base des recherches actuelles de la géométrie différentielle, La plupart des -

livres sur ce sujet ne tiennent pas compte de ce fait en tant qu'ls renvoient le

lecteur 2 des oeuvres spéciales traitant ces problémes, Ainsi on ne trouve pas -

de base solide pour la compréhension des tliéories - géométriques esse\n‘ielles
A cet“égard, les Lecons de M. VRANCEANU ferment une exception remarquable.

Le ‘livce se divise essentiellement en deux ‘parties dont la premiéré& com-

prend Pappareil analytique et la deuxiéme s’occupe.des problémes géométriques..
La premiére partie se divise en trois chapitres qui contlennent la théorie des-
formes de PFAFF et les congruences, la théorie des (broupes continus et ¢nfin
les problémes=d’ equlvalence et dinvariants, Vu la richesse des matiéres traitées,
ce serait un vain effort d’entrer dans les détails, Nous nous contenterons de quel-
ques détails de prmcu‘e Dans les® chapztres qui sont consacrés aux formes de
PFAFF ¢t 4 la théorie des groupes continus! 'auteur ne se borne pas a I’exposi-
tion des q?estxons indispensables pour la compxehensmn des applications ulte-’_
rieures, mals il traite aussi des théorémes fondamentaux de ces théories, inté-
ressantes en elles-mémes, et cet ouvrage peut servir aussi-coinme une introduction
dans ces -théories. Les problemes d’équivalence et d’invariants également impor-
tants pour la théorie des groupes comme pour celle des espaces de la géométrie
différentielle, soni traités de plusieurs points de vue. Ici se trouvent exposées les,
recherhes intéressantes de l'auteur sur ce sujet. Les Questions de ces chapitres
soni traitées par la méthode des syiimes de congruences indépendantes, Cette.
méthode dont I'importance a été mise en évidence par les remarquables recherches
de lauteur concernant les systémes anholcnomes contnbue beaucoup & faciliter
la compréhension des matiéres traitées. -

La partie géométrique s’occupe des cspaces & connexion affine, des espaces
de RIEMANN et enfin des espaces & connexion projective. Comme dans la- pre-
miére partié, I’ auteur a réussi par un choix judicieux 2 traiter des théorémes lg's
plus importants dans la théorie de ces espaces, La méthode utilisée est d’ure
part le caléul absolu de Rrccy, de l’autre le calcul des c'mdmonces quon doii
a lauteur, Cette méthode jette un pont entre le calcul de. Riccr- et les métho=
des bien connues de’ M. Evig CarraN. Clest ainsi que le lecteur accéde aux
méthodes de M. CARTAN sans que celles-ci-soient developpees

Le grand mérite de l'ouvrage est de faire connaiire au lecteur diverses
parties intéressantes de la géométrie et plusieurs méthodes d’une grande impor-

. tance. La lucidité de T'exposition augmente encore la' valeur de l'ouvrage qui -

vaut certainement un enrichissement considérable a la litlérature de _géométrie -
différentielle, : )

0. Varga,

N\
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G. Birkhoff, Latfice theory (American Mathematical Society
Colloquium Publications, Volume XXV), revised edition, XIV 286
pages, New York, American Math. Society, 1948.

If somebody asked, some years ago, what the most unifying concepts of
mathematics are, the answer was ,sets and” groups™. Today this answer needs
a completion with the term lattices”, this being the consequence of the fact
that in the last twenty years lattices have turned out to be of fundamental
" significance for many branches of mathematics, :

Historically, the first lattice-theoretical notion is due to BOOLE in 1847
who has defined the algebra of ,attributes” in his logic. The concept of a lattice,
in its present form, goes back essentially to DEDEKIND (in 1879). He dicovered
it in connection with the theory of ideals, but his resulis have been left out of
<onsideration, The first years of the third decade of this century can be
considered as the actual beginning of lattice theory, when several mathematicians
from quite different fields of mathematics were led independently and almost
simultaneously to lattices; let us mention the names of the author, Fr. KLEIN,
" K. MexGer and E. NOETHER.® :

This splendid book of (. BIRKHOFF .is. a revised and a nearly doubled
«edition of the author’s first book on latlice theory published in 1940. The rapid
advances in lattice theory!within the last ten years made it necessary to emlarge
esséntially the size of the book in order to give an adequate account of new
discoveries on this subject.

The book begins with 2 foreword on algebra and topology summarizing
the fundamental algebraic and topological ideas needed throughout the work, A

partly ordered system is defined in the first chapter as a sysﬁm with - a
bmary relation = satisfying the law of reflexivity, antisymmetry (x=y and
y=x xmply x= y) and transitivity, The elements 0 and I (satisfying 0 = x <1
for all x), if exist, play a distinguished rcle in partly ordered sets, Chapter II
deals with tlic definition and main properties of lattices defined as partly oder-
ed seis with the property that for any two elements x, y, therc exist a greatest
|0\_v‘er bound or ,meet” and’ a least upper bound or ,join”, in symbols
X 0y and x uy, respectively. Almost every part of mathematics abounds with

" instances of lattices, one meets them mainly in algebra, set theory, functional
analysis, projective geometry, logic and probability theory.

The next chapters are devoted to the most important, more and more re-
strictive types of lattices. The simplest of them are chains where for any two,
clements x, y one has either x =y or y = x. The chain conditions of "abstract
algebra are discussed together with several equivalent formulations of the well-
“ordering axiom. In the following chapter the author is concerned with complete
lattices, i. e. lattices in which every subset has a meet and a join, giving at the
same time the method of closure operation for constructing complete lattices. It
is shown that in a complete lattice it is possible to introduce intrinsic topologies
defined in terms of the order relation. The modular or Dedekind axiom is
assumed in the subsequent chapter' if x =z then xu(ynz)=(xuy)nz, satis-
fied by many important lattices such as normal subgroups of a group, ideals of
an integrity domain, etc. The sixth chapter contains applications to~algebra, of .
which the most important are the generalized Jordan-Hélder theorem on principai
series and the Kurosh-Ore theorem on the decomposition of elements. Two
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chapters are devoted to semi-modular and complemented modular lattices
(complemented means that each x has a complement x* such that xnx' =0
and x u X =1I), including many interesting results on plane and projective geo-
metry, in particular on continuous-dimensional projective geometries discovered

by J. von NEUMANN. In Chapter IX the important type of distributive lattice,

(in which (x uyin‘,z=(x n2u(ynz) for any x, y, 2z) is developed. Then
the author deals with Boolean algebras defined as complemented distributive
lattices, and discusses STONE’s theorem on the one-one correspondence between
Boolean algebras and BoGlean rings with unit, the latter -being rings whose ele-
ments are all idempotent. It is shown that ideals of Boolean algebras are hke
normal subgroups in group theory, namely, they correspond one-one to the

congruence relations. The next two chapters apply lattices to set theory, logic and -

probability, Chapters XIII—XV contain the theory of lattice-ordered semi-

groups and groups as well as vector lattices. The book ends with a discussion of

ergodic theorems. o N :
Each section in the book closes with numerous — sometimes difficulf,
but always very interesting — exercises which serve to give the reader an oppor-

tunity to test his grasp of-the subject and at the same time to state many

-remarkable theorems, there being no place for a detailed discussion. Many of
the results of a large variety of problems' conlained in this took are the author’s
own work, some of them being published here for the first tlme The book also
contains 111 unsolved problems on lattice theory,

At the end of the book there is a blbllography af the most important
works on the subject; a complete reference is given in footnotes. The subject-
and author-indices make easier the "handling of this concisely and clearly writ-
ten excellent work. _

: ’ L. Fuchs
.

- Tibor Rad6, Length and area’ (American Mathematical Society
Colloquium’ Publications, Volume XXX), VI-+4572 pages, New York,
American Mathematical Society, 1948. . .

The chief aim of the book is to present the actual state of the theory of»

surface aera. This is a difficult task, the moment being not especially apted for.

" such an enterprise, because —‘as the author himself admits —>,there exists at
preseni no unified general theory of surface area”, Nevertheless in the past 50
years, starting from the fundamental ideas of LEBESGUE and GEOGCZE and:
owing to the researches of several authors, and in a great part io the work of
RADO himself, the principal notions of the theory have been .made clear in a great
extenf, many important results were achieved and a great number of paradox

phenomena discussed. We emphasize the role of paradoxes because — as the

author puts it — frequently ,an apparent paradox turns out to be the source of
essentially new insight”. For instance the famous example of H. A.ScHWARZ, or
the example given by GEOCZE of a cube filling surface of zero area were really
- starting points of further progress. In view of the complexity of the subject, a

clear survey of our present knowledge, with much emphasis laid on the funda- ~

mental difficulties and ofi the different possible points of depart, as given in the
book, may serve as a basis of further progress towards the elucidation of the
problem,

1S9
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The theory of arc-length plays only a secondary rtle in the book and serves

primarily as an introduction and a source of analogies (which however are some- ~
times misleading but nevertheless instructive’— as it is pointed out by the author)'

for the theory of surface area. The theory of arc length, which may be regarded
as complete compared with the theory of area, as presented by the author, may be
summarized as follows: A curve C is defined as an equivalence class (in the
sense of FRECHET) of continuous transformations of an interval. A curve C admits
of different parametic representations by a continuous vector function v (1) =
= (x (u), y (1), z (1)) defined in an interval « = u = B. The arc length L (C) of
C is defined as the Burkill integral over (@,8) of the interval function
F (v, l)=[ v (b) —v (a) ] where I=(q,b). It is proved that if L (C) < %0, the
.componerits 6f v (u) arg of bounded variation and, conversely if the components
of a representation of C are of bounded variation then so are the components of
any representation of C, furher-L (C) is finite and its value does not depend on
the choice of the representation. In this case, v (1) being of bounded variation,
v'(u) exists almost everywhere, and it is proved that the integral of | v’ (u) |- over
(¢, B) does rot'exceed -L (C), and is equal to the latter if and only if v (u) is
absolutely continuous, For any curve C with L (C) <% an absolutely continuous
representation can be: given (e.g. if the arc-length is chosen as parameter) but
there exists also always a pu;ely singular representation with »'(u) =0 almost
-everywhere. Finally L (C) when considered as a functional in the space of contl—

nuous Curves lS lower Semlcontmuous

- The last mentionéd fact is, as it is emphasized by the author, ,one of the
few clear cut analogies between arc length and surface area" on which the theory
of surface, initiated by LERESGUE and GEOGCZE and developed further Ry the

author, is based. Generally the analogies lie deep, while the discrepancies are

conspicuous, Let us mention- the most important discrepancies: it is clear that a
short curve may be enclosed in a small sphere, but it is easy to see, that by
folding properly a very narrow and long rectangle we obtain a surface with area
as small as we pleasc which passes within ¢ of every point of the unit cube and
can not be enclosed in a smaller cenvex domain. An other essential difference
concerns the inequality of STEINER. If the vector functions v, (@) and v, (u)

. represent the curves C; and C, and if C; is the curve represenfed by

v, (1) = v, (U) + v, (1), we have L (C,) Z L(C,) +:L(C,). As it has been remark-
ed by FEJER, the same does not hold for surfaces in general. Nevertheless the
inequality of STEINER admits of a straightforward generalization to surfaces ha-
ving a representatign z =/ (x, y) and this is the reason why the theory of such
surfaces may be developed, by the use of the Burkill integral, without any topo-
gical apparatus. In the general case, however, topological difficulties of a high or-
der are inevitable, if the notion of a surface is understood in the generality pro-
posed by the author, A great part of the book is devoted -to the study<of the
topological problems mentioned, Part I furnishes background material in topology
and analysis, Part II gives a study of the topological concepts of curve and sur-
face, Part III contains the theory of arc length, while Part IV discusses topolo-

" gical and analytical questions regarding plane transformations: The proper theory

of surface area is presented, after these preliminaries, in Part V., The study of
area is concentrated around the theory of the'Lebesgue area but other alternative

N
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ap{)roaches, especially different definitions of lower area given by GESCzE, R4D6 and
REICHELDERFER are also treated in extenso, The concept of a @irface is interpre-
ted as a path-surface rather than a point-surface, i. e. a point set may be multiply
covered by a surface.”The Lebesgue area A (S) i$ defined as the.greatest lower
bound of the elementary surfaces of polyhedra, converging in the sense of FRECHET

to the surface S. An alternative descriptive definition is the following: A (S) is '

a functional defined 'in the space of surfaces (i. e. equivalence classes of topologi-
cal ‘transformations of a 2-cell), nonnegative (eventually infinite), which coincides
with the elementary value of the area’ for polyhedra, is lower semi-continuous
and for ‘every S there exists a sequence of polyhedra P,——'S with A(P,)— A(S).
The preference given by the author-te the Lebesgue area.is motivated by the
necessities of applications, especially in the calculus of varxafons for instance in
the problem of PLATEAU. Attention is called on several unsolved p_roblems regarding
the equivalence of different definitions of surface area, amorg which we mention
only the so-called Gedcze problem whether the Lebesgue area A (S) .concides
always with the functional A (S) which is defined in the same way as A (S) by
the additional restriction that only inscr‘ivbed polyhedra are admitted,

In view of the complexity of the subject, a section, entitled ,General Com-
ments” is added at the end of each part of the book, containing -a survey of
results obtained and important methodical and critical comments, which facilita-
tes oversight; nevertheless the book remains rather difficult to read- It is to be

regretted that the theory of arc length is mixed up — as regards the preparatory -

chaptets — with the theory of surface area, and thus it is difficult for a reader
interested only in the first subject to ‘gather the material needed, especially as
topological concepts are developed more deeply as necessary for the applications
in differentjal geometry, in the calculus of variations, where the concept of a sur.

face does not present itself in its full generality, ‘and in a second advanced part_,.
. for specialists. From the point of view of specialists; however, the book contains .

a rich material presented in a systematic manner and in a clear and concise
style, and $lirely it will greatly contribute to the success of further researches in

the subject. 7°
A, Renyl

Bmar Hille, Functlonal Analysis and Sémi- Groups (Amencan

‘Matih. Society Cglloquium Pubhcauons Volume XXXI), Xi4-528 pages

New York, 1948. P .

An abstract semi-group is a system of elements in which an associative
multiplication is defined Such systems were first studied by DE SEGUIER (1904)
and L. E, DICKSOI{ (1905): - they assumed also the law of cancellation: if either
@b = ac or ba=rca, then b == ¢. Some sporadic papers on the algebraic theory of
se/fni-groups followed, However, the main importahce of the semi-group concept
does not seem to lie in the algebraic field, but rather in. the applications to
Analysis where topological semi groups and in particular. one- parameter semi-
6roups of linear iransiormations of a iunct\on space to itself come up in the most
diversified connections. For such semi- groups, topological and analytical meth-
ods are available and a much richer theory results. In these connections, the

law of cancellation is never supposed;-on the other hand, commutativity is fre-

quently assumed. .

\ . : -

<
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The author has greai merits in having laid the foundations of, and deve~
loped with much success, this new mathematical discipline, He presents now the
first monography on this subject, The high compelence of the author, his enthou-
siasm in the subject and his clear slyle produced a work of ‘unusual value not
only for its rich content bui also for ils impressive and suggestive effect,

He has taken up his task in its most comprehensive sense, Guided by the
desire o offer a practically self-contained presentation of the theory, he has
incorporated in his book an elaborate introduction to modern functional analysis
with special emphasis on function theory in Banach spaces and Banach alge-
bras, This occupies Part One and Appendix; these can be read separately from the
rest and present a valuable continuation of the original monography of BANAOH:
One finds there a very delailed discussion of the different extensions of the Ie~
beésgue integral, and of the differentiability and analyticity, fo funciions of real
or complex variables having their range in a Banach space, or fo functions ha-
ving both domain and range in a Banach space or in a Banach algebra, By a
Banach algebra there is meant a Banach space in which an associative multipli~
cation of the elements is defined such that ||xy|| =S ||x|| || ¥||. Since the fundamen-
fal papers of 1. GELPAND in the Maf. Sbornik (1941) who called them ,normed
rings,” Banach algebras were intensively studied in particular by Soviet and
Americdn mathematicians and it is very likely that this field will stand in one
of the centers of mathematical interest in the next future, The Appendix of
the book presents some very recent results on algebraic properties of Banach
algebras,

The major part of the book, Parts Two and Three are devoted to the
analytical theory of semi-groups and to. special semi-groups, The main problent
is the study of bofinded transformations T(#) of a Banach space, satisfying
T(a¢)T(8)==T(e¢-}p) for all values @, B of the paramenter in an open semj.
module of real or complex numbers having ¢==0 as a limit point, When & ~— 0,
two entirely different cases arise according as T (¢) tends to the identity in the
uniform or in the strong sense. Particular interest lies in the study of the infini-
tesimal generator of the semi-group, A = lim[T(¢)—I)/e¢ (¢~>0), its resolvent
is the Laplace transform -of T («¢). The converse problem of constructing a
semi-group with given infinitesimal generator is also investigated, The im-
portant case of analytic semi-groups deserves particular interest, Ergodic theory
may be regardled as a question of the behavior of such a T'(¢) when ¢-+0 or oo;
this theory is shown to be closely related to a Tauberian theory of Laplace in-
tegrals, applied to the resolvent of the infinitesimal generator,

The part on special semi-groups consists of six chapters: Translations and
Powers; Trigonometric Semi-Groups; Semi-Groups in Ly (— 00, 00) ; Semi-Groups
in Hilbert-Space; Semi-Groups and Partial Differential Equations; and Summa-
hility, Stochastic Processes, Fractional Integration, This part is by the great
variety of its contents and by the unity of the underlying ideas, perhaps the most
instructive part of the book,

We are convinced that this work will influence and stimulate in a consi-
derable extent the future development of Functional Analysis, especially what
. regards its algebraic aspects,

B. Sz.-N.

.
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Paul Lévy, Processus stochastiques et mouvement brownien,
Suivi d’'une Note de M. LoEvE (Monographies des Probabilités, Fasci-
cule V1), 365 pages, Paris, Gauthier-Viilars, 1948.

Parmi les progrés récents du calcul des probabilités, c'est la théorie des
fenctions aléatoires 'qui .n'a pas encore regu une exposition monographique, Le
présent imporiant ouvrage dc M. LEvY comble cette lacune,

Précédée par une étude générale des processus stochastiques et en parti-
culier ceux stationnaires la majeure partie du travail est un exposé d'ensemble
des résultats ohtenus par l'autetr de 1934 & 1939 sur les processus additives et
sur le mouvement brownien, La retardation de la publication a permis a lauteur
d'y incorporer aussi quelques résultats plus récents de KHINTCHINE, CRAMBR, LOBVE,
Kampet: de Firint, BLANG-LAPIERRE et FORTET sur les processtts stationnaires, En
une note extensive terminant le livve M Lo&ive donne un résumé clair de la
théorie des fonctions aléatoires duv second ordie, cest-i-dire avec covariance
finie,

Cest impossible de donner ici wne image satisfaisante du conlenu riche
de l'ouvrage, Nous nous contentons d'une esquisse & grands traits,

Aprés un bref rappel de quelques définitions et des résultats fondamen-
taux du-calcul des probabilités et de deux exemples simples de processus sto-
chastiques, le chapitre II a pour objet la définition générale des processus stochasti-
ques, les différentés modes de continuité et les différentes sortes de dérivées des fonc.
tions aléatoires ainsi qu’une condition suffisante pour qu'une équation différentielle
stochastique conduise & une telle fonction, La définition donnée d’aprés SLuTsky
est sans doufe seulement intuitive, mais on connait les difficultés d'une défini-
tion fondée sur la théorie de la mesure, — Le chapitre III est consacré aux pro-
cessts de MARKOFF, c’esl-a-dire non heréditaires, Il monire le role de I'équation
intégrale de CHAPHAN-KOLMOGOROFV et celui des équations aux dérivées partielles
de la diffusion de la probabilité de KoLmMoGOROFF dans le cas des fonctions presquz
siirement continues, Dans le cas du mouvement brownien, I’équation correspon-
dante est celle de la chaleur -— Le chapitre IV expose la théorie des processus
stationnaires commengant avec le théoréme classique de KHINTCHINE et terminant
avec les travaux plus récents indigqués, On trouve ici une application de la remar-
quable nouvelle théorie des operateurs de L.SQHWARTZ, — La plus grande partie
du chapitre V est comsacrée a la théorie des processus additifs d’aprés le livre
conhu de l'auteur, Les chapitres VI, ViI, VIII sont exclusivement consacrés au
mouvement brownien de rotation resp, & celui dans un, deux et plusieurs dimen-
sions, de propriétés trés différentes et surprenantes, On trouve ici non seulement
la loi du logarithme itéré de KHiNrOHINEavec indication aux recherches de FELLER,
mais aussi les résultats de l'auteur publiés en 1939 et 1940 dans la Compositio
Math. et dans 'American Journal of Math,

Sans doute le livre de M. LEvY fera son mieux pour populariser cette belle
et importante théorie,

T. Szentmartony.

AY
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Hermann Athen, Ebene und sphérische Trigonometrie (Bﬁcher
der Mathematik und Nawrwissenschaften), 112 S, Wolfenbuttel und
Hannover, Wolfenbiitteler Ver}agsanslalt 1948.

_ Dieses Lehrbuch enthilt alles aus der Tngonometrle was theoretisch oder
fir die praktischen Anwendungen in der Mathematischen Geographie und in der
Astronomie von Wichtigkeit ist. Die Darstellung strebt sich nicht méglichst ein-
fach zu sein. Die vekiorielle Darstellung der Grundformen scheint uns nicht ein-
facher, als die iibliche, Wir glauben, .dass der Halbwinkelsatz fiir die Tangenten
in einem Dreieck sich aus den Radien der Beriihrungskreise einfacher ableiten
Yasst, als aus dem Cosinussatz. Mit der Methode der Berithrungskreise wiirde sich

“ avch eine Arzahl von tngonometrlschen Formeln, z. B. fiir den Flicheninhalt,
Umfang, fir die Radien der verschiedenen Kreise eines Dreiecks leicht ergeben.
Dieselbe Methode liesse sich auch in der spharlschen Trlgonometne mit Erfolg
anwenden. ' : .

Das Lehrbuch enthilt eine reiche Sammluno von gliicklich’ gewihlten prak-
tischen Aufgaken. :
, ¢ Gy. Sz.-N.

L. Lo.cher-Emst Differentiél und Integralrechnung im Hin-
blick auf ihre Anwendungen, 595 Seiten, Basel, Verlag B1rkhauser
1948.

) Das vorligende Buch gibt eine Einﬁihrung in, die Differentialrechnung, die
Integralrechnung und in die analytische Geometrie mit besonderer Beriicksichti-
gung. ihrer. Acwendungen und in Verbindung mit einem umfassenden Ubﬁngsmate-
rial. das iiber 1000 geschickt gcwihlten Ubungen mit Lésungen umfasst. Graphische
und numerische Verfahren werden besonders beriicksichtigt.

Verfasser betritt die padagogische Ansicht, dass es dem Anfdnger unméglich
ist. umfassende Begriffe -sich mit einer . einzigen Anstrengung anzueigen und
dass also solche Begrifle so dargebacht werden miiissen, dass sie erst in der Folge
der Entwicklungen ihre strenge Konturierung erhalten, Demgemiss werden z, B.
Difierentialquotient und bestimmies Integral zuerst anschaulich an einfachen
Beispielen erldutert, Im Hinblick auf die Anwendungen in der Physik und Technik ;
wird durchwegs mit Differentialen gearbeitet, Abweichend von der iiblichen stren-
dgen Definition wird das Differential als', eine werdende Nu]l“ d. h. ,eine varlable
- Groésse. die-unbegrenzt dem Werte Null zustrebt” definiert.

Wenn auch die konsequente Durchfiihrung dieser padagogischen Gesnchts-
f)unkte manchmal etwas iibertrieben erscheint, muss man zugeben, dass diese- Ge- .
-sichtspunkte Berechtigt sind, besonders wo es um' Anfdnger handelt, die die héhere.

. Mathematik nur als ein Werkzeug in der Physik, Technik usw. studieren wollen.

. Damit wollen wir aber keineswegs sagen dass der gleiche Cesichtspunkt im Falle
der Kandidaten der .Mathematik unrichtig wire, Gewiss ist er auch dann berech:l
tigf nur muss man besonders <darauf achten, dass die ,anschauliche” Einfithrung
der Beﬁrlff'e die strenge” nicht erseizen, sondern dlese vorzuberelten und ihre
Notwendigkeit erkennen Iassen soll, :

Das Buch wird sich gewiss, und mit gutem Grund eine- grosse Anerkennunq
“von Lehrern und Studierenden erwerben. : i

. o I B. Sz-N.
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Pierre Humbert et Serge Colombo, Introduction mathéma}
tique a I'étude des théories éiectromagnétiques. Fascicule [: Analyse
vectorielle. Transformation conforme. Théorie du potentlel V4149
pages,- Paris, Giuthier—Villars, 1949.

‘L’ouvrage est destiné principalement aux ingénieurs et aux physiciens qui

. éprouvent le besoin de préciser et d’é¢tendre leurs connaissances en analyse afin

de pouvoir lire sans trop de difficulté les traités spécialisés et les mémoires
originaux relatifs & Délectromagnétisme. Ils ont besoin notamment de I'analyse
vectorielle, des éléments de la théorie des fonctions analytiques (séries de Taylor
et de-Laurent, calcul des résidus), des. iransformations conformes, de quelques .
fonctions spéciales (polynomes de Legendre et d’Hermite, fonctions de Bessel et
dc Mathieu, fonclions’ ellitiques), de la. théorie, du potentiel et de la théorie des
equatxons différentielles, en partlculler de lequatlon de Laplace, des equatlonsA

_des ondes et de la chaleur, et de ’équation deés télégraphistes,

Les aufeurs présentent une introduclion a ces domaines quji peut servir de
répertoire bien' maniable aussi pour ‘le mathématicien. Des exercises, des notlr‘cs

‘historiques et une bxbhodraphle augmement la valeur de louvrade

= . ) . B, SZ.'N.

_K_urze'Mathematiker;Biographien. jakob- Steiner par Louis

Kollros.. Leonhard Euler von Rudolf Fueter. Ludwig Schléfli von

] ] Burckhardt Jost Biirgi und die Logarithmen von E. Voellmy. .
Beihefte Nr. 2—5 zur Zeitschrift - Elemente der Mathematik“, Basel,
Birkhduser, 1947_—48. o L

) Jede Kurzbiogrép}iie enthilt _ein Portréit ein Facsxmlle, die Angaben der
wichtigsten Daten, die Charakleristik der Persénlichkeit und einige Beispielen aus
den mathematischen Werken des betreffenden Mathematikers und hat den Umfang
von 24 Seiten. Das:He‘ft iiber Steiner ist franzosisch, die iibrig'en aber sind deutsch
_oeschrleoen , -
a Von jedem: Hefte l)onnen wir nur anerkennende Worte sagen Dle Zusam~
menstellung der riesigen Arbeitsamkeit von Euler und der reichen Titigkeit von
‘Steiner- ist ausgezeichnet. Auch die Biographien _der weniger bekannten Mathe-
maliker Schldfli und Biirgi sind gut gelungen.

In -Vorbereitung befmdet sich eine Kurzblographle von Johann und Jacob
Bernoulli. Nach einer brieflichen Mitieilung vom Redaitor wird diese Sammiung
auch Kurzbiog‘réphien nichtschweizerischet "Mathematiker enthalten, wie Abel,
Gauss, Fermat, Galois, Monge, Bolyai usw. ' o ’

' " Gy. Sz.-N.
_ Wilhelm Blaschke, Projektive Geometrie (Biicher der Mathema-
tik und Naturwissenschaften); 160 S, 61 Abbildunden, Wolfenbu!teler
Verlagsanstalt, Wolfenbiittel und Hannover 1047.

L "Nach dem Vorwort des ausgezeichneten Verfassers soll dleses Biichlein den

Studierenden der Anfangssemester mit den wesentlichen Gedanken und F16uAen»
des Gegenstandes vertraut machen, Dieses Lehrbuch liefert aber auch den Fachleu-
ten Neues ebenso im Inhalt, wié auch in der. Zusammenstellung, Die wichtigsten
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Kapiteln behandeln . Kegelschnitte, . Quadriken, Liniengeometrie, nichteuklidische
Geometrie und Mébivssche Vierflachpaare. Auch die geschlchthchen Daten vegrés-
sern die Lebendigkeit des Gegenstandes.

- Der Verfasser bestrebt sich die Begrilfe und Lehrsitze mbglichst kurz ein-
zufiihren-bzw, zu bewiesen, Demgemiss ist die angewandte Methode bald syntetisch
bald analytisch. Nur auf diesem Wege gelang es dem Verfasser einen sehr reichen
Stoff ‘in bloss 146 Steiten (abgerechnet das Vorwort und den Namen- und Sach-'
weiser) ibersichtlich, leicht verstindlich und originell darzustellen,

: _ Gy. Sz,-N.

Wolfgang Griébner —Nikolaus Hofreiter, Integraltafel. Erster

"' Teil.-Unbestimmte Integrale, VIl - 166 Sexten Wien und Innsbruck, .-
Springer-Verlag, 1949. :

© . Der Zweck dieser Inteoxfaliafel ist, den Mathematikern, Physikern und
Ingenieuren zeitraubende Ausrechnungen von Integraformeln nach Maglichkeit zu

" ersparen; sie soll auch einen Uberblick-iker alle in den einzelnen Fillen brauch-
baren Methoden geben.” . :

Die Verfasser haben auch dle)emden Formeln, die aus alteren. Formel-
sammlungen iibernommen sind, vollstindig neu uerechneL und iiberpriift; allen
Formeln sind genaue Angaben iiber ihren Geltunosberelch hinzugefiigt. Die Ein--
teilung der Integrale erfolgt nach den Integranden; die drei Hauptabschnitte der

' rationalen, algebraisch, xrratlonalen und transzendenten Integrandeén sind 1ex1ko-

graphisch untertexlt
Wir begriissen diese niitzliche, schon ausgestattete und handhabhche ‘Tafel,
und hoifen, dass der zweite Teil, der die bestimmten Integrale “enthalten soll,

<h in Ki schei wird, Q.
auch in Kurze erscheinen . d . ) . B. Sz-N.

. N: W. McLachlan et Pierre Humbert, 'Formulaire pour le .
caicul symbolique (Mémorial des Sciences Math Fascxcule 100) 67
pages, Paris, Gauthier—Villars, 1941. .

Le calcul operatmre d’Heaviside fait usage des transiormées de Laplace

or.

P(p)=p ] e-rfit)dt,

Pour qu'on pulsse manier ce calcul, 11 est donc. apsolument nécessaire quon
possede un -, dictionnajre” ‘indiquant autant de fonetions correspondantes’ f ({),
¢ (p) que possxble On trouve ici pres de 700 formules de calcul symbolique, soit
régles opératoires ou correspondances, ces. derniéres " classees d’apres la nature

.B. Sz.-N.

de la fonction originale.

Lous de Broglne, La mécanique ondulatoire des systemes
de corpuscules (Collection de Physique Math., fascicule V), deuxneme
~ édition, VI--223 ‘pages, Paris, Gauthler—anlars 1950. ’
Réédition avee des mineurs chahgements de la premi‘ére édition, parume en
1639 et analysée dans ces Acta; 11 (1946), p. 126—127. B. Sz.-N.
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