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Sur les contractions de l'espace de Hilbert. II. 
Par BÉLA SZ.-NAGY à Szeged. 

1 . 

Dans la Note précédente [1] (voir aussi [2], [3], [4]) nous avons démontré 
que pour toute contraction T de l'espace de Hilbert il existe, dans un 
espace de Hilbert plus vaste 51, une transformation unitaire U telle qu'on ait 

( 1 ) r ^ p r U " ( n = 0 , ± 1 , ± 2 , . . . ) 2 ) 

et que .<t soit sous-tendu par les éléments de la forme U"h (A£i>); ces 
conditions déterminent U d'une manière univoque3). 

Dans ce qui suit on désignera la dimension de toujours par b, elle 
peut être un nombre cardinal quelconque, fini ou infini. 

On aurait croire que si l'on connaît le spectre de U on en peut tirer 
des informations sur le comportement de T. Or cela n'en est point le cas; 
en effet, M . SCHREIBER [ 5 ] vient de démontrer la proposition suivante: 

T h é o r è m e 1. Les transformations unitaires U qui correspondent aux 
contractions au sens strict T {c'est-à-dire telles que j| 71 j < 1) sont toutes unitai-
rement équivalentes à la même transformation unitaire, notamment à la somme 
orthogonale de b répliques de la transformation unitaire Vde l'espace L-{0, 2rr), 
définie par la formule 

V\u{(p)\ = e,<,,u(<p).,) -

' ) Nous n'envisagerons dans la présente Note que des espaces de Hilbert complexes, 
mais les résultats peuvent être étendus mutatis mutàndis aux espaces réels, cf. note4). 

2) Nous employons la notation T("}=T" pour n = 0 , 1 , 2 , . . . et 7"("> = 7"*1"1 pour 
n — — 1 , — 2, Pour deux transformations linéaires bornées, A de £> et B de M 
A = pr B veut dire que, pour tout élément h£io, Ah est la projection orthogonale de 
Bh sur £v 

3 ) A condition qu'on ne distingue pas entre l'es différentes réalisations du prolonge-
ment 9t de £>. 

••) D'ailleurs, en vertu du théorème de R I E S Z — F I S C H E R , V est unitairement équivalente 
à la „translation" —• dans l'espace P des vecteurs j c = {x* } (A: = 0, + 1 , ±2,...) 

A i 
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Dans sa démonstration, M. SCHREIBER se restreint au cas où b N0 et 
fait usage de la théorie de l'intégration forte des fonctions mesurables à 
valeurs dans un espace de Banach. La démonstration que nous allons donner 
diffère de celle de M . S C H R E I B E R principalement en ce qu'elle ne fait usage que 
des intégrales de fonctions ordinaires ; elle est valable pour b quelconque. 

Le résultat s'étend aussi au cas de plusieurs contractions. Contentons-
nous de le formuler seulement pour deux contractions 7i, 72 de l'espace de 
Hilbert On sait (cf. [3]) que si 7"„ T2 sont doublement permutables5), il 
existe, dans un espace plus vaste H, deux transformations unitaires permutables 
U u ¿/. telles qu'on ait 

(2) 7f'> Ti"* = pr U? U? (/»:, n2 = 0, ± 1, ± 2, . . . ) 

et que Ai soit sous-tendu par les éléments de la forme UU>"h (h Ç § ) ; le 
couple {Ui, U-,} est alors déterminé par le couple {7",, T2} de manière univo-
que"). Nous démontrerons le 

T h é o r è m e 2. Les couples {U¡, U2) de transformations unitaires qui 
correspondent aux couples {T,, r2} de contractions au sens strict, doublement 
permutables, sont tous unitairement équivalents au même couple, notamment 
à la somme orthogonale de b répliques du couple des transformations unitaires 
Vi, IA de l'espace ¿ ' [ (0 , 2ri) x (0, 2tt)], définies par les formules 

(3) Vju(<p1,9¿ = ei''iu(<p1,<p¿ ( 7 = 1 , 2 ) . 

Dans le second paragraphe de cette Note nous obtiendrons un résultat 
analogue pour les semi-groupes à un paramètre. 

D é m o n s t r a t i o n du t h é o r è m e 1. Soit r = || 7"|| < 1. Pour toute 
valeur réelle de <¡P posons 

(4) K(<p) =, ¿ <f T<n) = Re [(/ + e-"p T) {I—e* T)"1], 
>1 ~ - CO 

c'est .une transformation autoadjointe bornée de fonction continue en norme 
de <p (cela découle de ce que ||7"<n}|| ^ r1"1). Pour tout h on a, en posant 
h<f> = ([-e"pT)ih, 

<№) h,h) = Re«I + ei,pT)h<p, (l-e-iv T)hv) = ||M|2-||rM2; 

à composantes xk complexes et de norme ||x|j= | x k p j - < oc. On peut démontrer que 

dans cette forme le théorème est vrai aussi pour un espace ô réel : U est alors 
unitairement équivalente à la somme orthogonale de b répliques de la „translation" 

•H--K 
•"•) A et B sont doublement permutables si A est permutable avec S et S * . 
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vu que 

il en résulte que 
(5) c ^ M M Î ^ / z . ^ s i c ^ M ) 
avec les constantes positives 

1— r 1 
c2 = 1 1+r' 2 (1— r f 

Notons la conséquence suivante de la définition (4): 
2» 

( 6 ) . ^ é n * { K { < p ) h , h ' ) d < ? ^ ( T ( n \ h , h ' ) . 
0 

Cela étant, envisageons l'ensemble Êo, évidemment linéaire, des polynomes 
trigonométriques 

0(cp) = Z e " ; v f i n 
n 

à coefficients hn £ muni de la notion suivante de produit scalaire : 
•la 

( 7 ) (<z>,<z>') = ^ [ (®(<p),0'(>p))d9-2;(/in,K); 
o 

on a évidemment ( 0 , (P) s 0, et (<2>, @) = 0 seulement si 0 = 0, c'est-à-dire 
si 0 ( y ) = 0. iï0 est donc un espace préhilbertien. Soit $ l'espace hilbertien, 
complété de iî0-

Définissons dans if0 encore la forme bilinéaire symétrique suivante : 

(8) <0, = ¿ 0(<p), 0'{<p))dcp, 
0 

en vertu de (5) on a les inégalités 

Ci{0, 0)^<0,0>^ Ci{0, 0). 
Par conséquent il existe dans Ë une transformation autoadjointe D telle que 
(9) c J ^ D ^ c J , = 

Désignons par D 2 la racine carrée positive de D. 
La transformation 

(10) u l 0 ( < f ) ] = = e ' " 0 ( < P ) 
applique sur isométriquement, et elle se prolonge alors par continuité 

c) hn = 0 sauf pour un nombre fini d'indices n au plus. 
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en une transformation unitaire U de Si. De plus, U laisse invariante aussi 
la forme <0, 0"}, d'où il résulte par (9) que 

1 ± 
(11) LTDU=D, donc DU=UD, D2U=UD2. 

Faisons correspondre à chaque élément l'élément D 2 0 h ^ R où 
désigne la fonction 0h {(p) = h. Cette correspondance est évidemment 

linéaire, de plus elle est isométrique parce que, en vertu de (9), (8) et (6), 
on a 

2.T 

{ d ï 0 h , D^0h )=(D0h, <2V) = <<Z>„, 0h.y = -^-j(K((r)h, h')d<p = 
o 

= (7(0)A, h') = (h, h'). 

Cela justifie d'identifier h £ ¡q avec D '2 <Z>* Ç fi et de plonger de cette façon 
§ dans fi. 

Pour tout couple d'éléments h, h' Ç $ et pour tout entier n on obtient, 
faisant usage de (9), (10) et (6 ) : 

(<Unff, h') = [u" D^ 0H, D2 0h) = {D U" 0h, 0h ) = 
2.1 

o 

Puisque T(n)h est un élément de cette relation exprime que T{n)h est la 
projection orthogonale de U"h sur £> (sous-espace de 51), donc U vérifie (1). 

Observons encore que les éléments Unh n = 0, + 1 , + 2 , ' . . . ) 
sous-tendent l'espace fi. En effet, on a 

U"h = U"D- 0h = D2Un0h — D2 0n,i, où 0r,ih=0n,h(<p) = ei'"ph ; 

or les D-0n,h sous-tendent D2Ha et alors aussi D 2 f i , mais on a Z?'-fi = fi 
-L i . 

parce que D2, ayant la borne inférieure positive cx2, admet une inverse 
partout définie. 

La transformation unitaire U que nous venons de construire est donc 
celle qui correspond à la contraction Tau sens précisé au début de cette Note. 

Reste à prouver que U est unitairement équivalente à la somme 
orthogonale de b répliques de la transformation unitaire V de. l'espace 
L- = L?(0, 2n). Or, soit {gajû.çe un système orthonôrmal complet d'éléments 
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de l'ensemble ß des indices étant de puissance b. Envisageons la somme 
orthogonale 

S = ^ © ¿ â 

de b répliques de l'espace L2; les éléments de 2 sont les vecteurs 

a = £i&u„ 

où uM = ua{cp) £ Ll et 

. . .9 . 
< oe. 

/.» y • 

(La dernière condition implique que ua = 0 sauf pour un ensemble au plus 
dénombrable d'indices w.) Faisons correspondre à tout élément 

0=0(<p) = £ e^f hn € Ao 
n 

le vecteur u £ 2 ayant les composantes 

-L - J -
= u„(4>) = (2^0 " (#(<?), g») = (2it)"2 Ze"""(hn, gu). 

n 

Cette correspondance, évidemment linéaire, est aussi isométrique : 

n n U> U> rv 
2 n 

o> J n tu 
0 

En particulier pour 0{(p)=ë""f gt on a = 0 pour a> =(= r et u, = (2 j t ) 2 e""'5; 
comme les fonctions eimv sous-tendent l'espace L\ il s'ensuit que les u € S 
correspondant aux 0 £ iïo sous-tendent l'espace S. La correspondance iso-
métrique 0->-+ u s'étend alors par continuité aux espaces Jï et 8 tout entiers. 
Lorsque ©«<*,, on a ¿ " © o ù avec u'a(<p) = efUu((p)r 

il) b) 
fait qui est immédiat pour 0 £ iî0 et s'étend alors à tout 0 £ $ par continuité. 

Cela achève la démonstration du fait que U est unitairement équivalente 
à la somme orthogonale de b répliques de la transformation unitaire V de 
l'espace L1, multiplication par ë*. 

D é m o n s t r a t i o n du t h é o r è m e 2. Soient 7"lf T2 deux contrac-
tions au sens strict de l'espace doublement permutables. Les transformations 
correspondantes K^tfi), A"2(<jp2) sont alors permutables pour des valeurs quel-
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conques des paramètres; les inégalités c^I ^ Kj(<p) s cyI ( c i > > 0 ; y = 1, 2) 
entraînent que 

cnc,J ^ /(ifa,) A ^ ) ë c21cK/. 

En effet, on a p. ex. 

(A"i (yi) Ki((pz) h, h) = (tfifo.,) Af(9>2) h, KÎ(<p2)h) s 

S cu Ul(T2) A, /if (92) h) = C11 (/^2(92) h, h) iÈ en Ci2 (/?, A). 
Le reste de la démonstration se transporte sans difficulté du cas d'une 

seule contraction. 

2. 

Envisageons maintenant le pendant „continu" du problème, cf. [1], [2], 
[3]. A l'analogie de (1), la représentation 

( 1 2 ) 7 ( 5 ) = pr U ( s ) ( — 0 0 < s < ° ° ) 

est possible pour tout semi-groupe à un paramètre {7\s)} ( 0 ^ f s < ° ° ) , 7 ) 
faiblement continu, de contractions de l'espace de Hilbert § ; U(s) est un 
groupe à un paramètre, fortement continu9), de transformations unitaires d'un 
espace plus vaste Si, sous-tendu par les éléments de la forme U(s)h 
{(J(s)\ est déterminé par {T(s)} d'une manière univoque9). 

La question se pose si, à l'analogie avec le fait affirmé par le 
théorème 1, les groupes {¿/(s)} correspondant de cette façon à des semi-
groupes {7 ( s ) } différents peuvent être unitairement équivalents. 

Rappelons le théorème de HILLE et YOSIDA1 0) suivant lequel les semi-
groupes {7 ( s ) } de type envisagé se caractérisent par le fait qu'ils ont comme 
génératrice une transformation linéaire A, à domaine dense, fermée mais en 
général non bornée, et satisfaisant à la condition suivante: 

Condition (a). /—s A admet, pour tout s > Ô, l'inverse partout définie et on a 

I K / - ^ ) - 1 ! ! ^ ! . 

•) On pose T(s) = [7"(—s)]* pour s < 0 ; 7 ( 0 ) = /. 
s ) Cela entraîne que { T ( s ) \ est aussi fortement continu, ce qui est d'ailleurs une 

conséquence aussi des théorèmes 9.2.2 et 9.4.1 de [6]. Continuité est toujours entendue 
aussi au point' s = 0. 

'•') A condition qu'on ne distingue pas entre les différentes réalisations du prolon-
;v>nent â de £>. 

1(l) Cf. [6], théorème 12.2.1, ou [7], nO 143. 
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Cette caractérisation de la génératrice d'un semi-groupe fortement con-
tinu de contractions est valable même pour un espace de Banach quelcon-
que. Nous allons démontrer que dans un espace de Hilbert la condition (a) 
est équivalente à la suivante: 

Condition (b). I—A admet l'inverse partout définie et on a 

¡ ( ( / ^ ( / - ^ - ' ¡ l ^ l . 

La démonstration sera fondée sur le . théorème de VON NEUMANN 

affirmant que 

( 1 3 ) M r ) | j . 3 i m a x \u(z)\ 
m^imi 

pour toute transformation linéaire bornée T de l'espace de Hilbert et pour 
toute fonction u(z) de la variable complexe z = x + iy, holomorphe dans un 
domaine contenant le disque |z| '̂||7"|| dans son intérieur. Plus tard nous 
ferons usage aussi du théorème voisin de HEINZ, affirmant que, sous les 
mêmes conditions, 

(14) [ min Re u(z)]I s R e u ( 7 ) ^ [ max Reu(z)]/. " ) 
M=IITII. M s i m i 

D é m o n s t r a t i o n de l ' é q u i v a l e n c e . 
(a) entraine (b). Par hypothèse, Bt^(I— s A)"1 ( î > 0 ) est partout définie 

et En particulier, (I—A)'1, et alors aussi C — (I+A)(I—A)'1 sont 
partout définies. Or on a 

= { [ ( 1 + t ) B t - 1 ] ( I - e A ) } { [ / - ( 1 - s ) B . ] ( I - e A ) } ' 1 = 

= [(1 + s) B. - / ] [ / - (1 -e) &]1 = 
avec 

1— ( 1 — f ) z " 

Pour 0 < s < 2 cette fonction a son seul point singulier à l'extérieur du cercle 
unité, et sur ce cercle on a 

]u(=w 0+^-2(1+^+1 z = x + iy) 
l u « w l - ( l _ e ) » _ 2 ( l _ i ) j c + l 1 , 2 + 

Le maximum de cette fonction sur le segment —1 ^ x ^ + l est atteint au 

» ) Nous renvoyons le lecteur pour des démonstrations de ces théorèmes à [7], 
no 153, ou à [3], § 4 , où ces théorèmes apparaissent comme des conséquences simples 
de la représentation (1) des puissance; d'une contraction. 
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point x — —1 et 

max|u,(?)| = - J ± ± (0 < « < 2), 

par conséquent on a en vertu de (13) 

||-0||_—||«.№>ll ^ 

Faisant tendre e vers 0 ii en résulte que ||C||^1, c. q. f. d. 
(b) entraîne (a). Par hypothèse faite, B = (I+A)(I—A)'1 est définie 

partout et ||fl||s 1. Partons de la relation évidente 

(.l—A)"' est partout définie puisque B l'est, et ( 1 — e)B + (1 +«)/ = 

= (1 + admet, pour é > 0 , une inverse partout définie et bornée, 

I 1 £ 
< 1. Il s'ensuit que I—sA admet, pour s > 0 , 1—•* o 1 — « parce que g _ 

l'inverse partout définie 

(I-tA)'1 = 2 ( / - 4 ) 1 [ ( l - £ ) B + ( l +b)I)-\ 

Comme on a 

2(I-A)l = [(I-A) + (l + A)](I-Ayl = I + B, 

il en résulte que 
(/—eA)'l~vi(B) 

avec 

Le seul point singulier de cette fonction est situé à l'extérieur du cercle 
unité, et sur ce cercle même on a 

, , \ 1 + 2 X + 1 1 +x ^ 
( 1 — f ) 2 + 2 ( l — + (1 jc> = ' 

puisque - l g j s l . En vertu de (13) on a donc ||(/—«4)'1 || = |jVi(fî)|| s 1, 
c. q. f. d. 

Dans ce qui suit nous envisagerons seulement le cas où la condition 
(b) est vérifiée avec le signe d'inégalité. En posant b = ||(/+>4) (/—.d)"1!! 
on aura dans ce cas 

l l ( / - M ) i r l l ^ ô | l ( / - 4 ) i r l l 
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pour tout g de la forme (/—A)~*h, donc pour tous les éléments g du do-
maine de définition de A. Cette inégalité entraîne que 

l l ^ l l — 1 И + 
d'où il résulte que 

1И*И 11*11-. 

Comme A est fermée et de domaine dense, il s'ensuit que A est définie par-
tout et qu'elle est bornée. 

Pour mieux élucider la nature de notre condition, établissons-en quel-
ques formes équivalentes. 

L e m m e 1. Pour une transformation linéaire bornée A de l'espace 
§ de Hilbert les conditions suivantes sont équivalentes l'une à l'autre: 

(a) I—A admet une inverse partout définie et j | ( / + Д ) ( / — < 1 ; 
(/У) il existe un b< 1 tel que ||(/+Л)Л|| ^ b\\(I— Л)Л|| pour tout h £ £>; 
(y) H existe un c> 0 tel que Re A ^ —cl; 
(d) il existe un d>0 tel que \\A + dI\\< d. 

D . é m o n s t r a t i o n . On procédera par la chaîne logique («) —• (/?) —• 
—* (y) ~~* ~> («)• La première implication est évidente. 

(P) entraîne (y). Puisque ||(/ ± Л)Л||а = ||A ||2 ± 2 Re (Ah, h) +1| Ah\f, il 
s'ensuit de (/3) que 

l l ^ l f + 2 Re (Ah, Л) + ||ЛЛ||2 ^ ¿>2[||Л||"—2 Re (Ah, h) + 
^63[||ЛЦ-—2 Re (ДЛ, Л)] 

d'où il résulte que 
1 1—¿r* 

R e ( A h , h ) ^ — c I avec c = - j } ^ . 

(y) entraîne (d). Posons rf=|| A||2Дг. On a alors pour tout h £ ip 

|| (A + dl)h\f = || Л Л ||2 + 2 d Re (A h, h) + rf2|| h ||2 si 
^(\\A\\2-2dc + d*)\\htf = (dn--dc)\\h\f, 

donc 

\\A + dI\\^(d-—dc)- <d. 

(d) entraîne (a). On a par hypothèse \\A + dl\\ = r <d: Le disque 

\z-\-d\^r étant situé dans l'intérieur du demi-plan ¡gauche, ses points véri-

fient l'inégalité |1+г|< |1—z\, et par conséquent la fonction j z i j a s u r 

ce disque son maximum < 1. Il s'ensuit alors du théorème de VON NEUMANN, 

que la transformation (I+A)(I—A)"1 existe et sa norme est inférieure к ' \ Г 
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Le lemme est ainsi démontré. 
Voici encore quelques conséquences de la condition (d). 

L e m m e 2. Pour tout A vérifiant la condition (d) on a 
<15) ||e,A!| ^ e~"' (s s 0) 

avec une constante a > 0, les points de l'axe imaginaire appartiennent à l'en-
semble résolvant de A, et la résolvante 

R(l) = (lf—i4)"' 

vérifie les inégalités 

( 1 6 ) - j ^ / i R e ^ g - ^ / ( — o o < y < o o ) 

avec des constantes positives c,,c2. 
D é m o n s t r a t i o n . De la condition \\A + dI\\ = r<d il s'ensuit par 

(13) que pour s g 0 on a 
Ile-"'4!! = max \eK\ — e-(i-r*. 

D'autre part, la fonction (icp—z)'1 est, pour <p réel, régulière sur le disque 
¡¿ + î/| S a, et sa partie réelle, —x\irp—z\'2, y vérifie les inégalités 

( \ d~~r ^ -y ^ d + r 
a W ^{\i<p + d\ + rf = \i<p—z|2 = (|/7/> + d| — r f 

Ces fonctions a(<p), ¿>(<¡P) sont positives, continues, et leurs produits par 1 
tendent pour (p —*• oo vers les limites positives d + r. Il s'ensuit qu'il existe 
des constantes positives ci,c2 telles que 

En appliquant (14) il en résulte (16). 
Après ces préliminaires formulons notre 

T h é o r è m e 3. Les groupes unitaires {U(s)} correspondant aux semi-
groupes {7(s)} de contractions de l'espace de Hilbert § dont les génératrices A 
vérifient les conditions du lemme 1, sont tous unitairement équivalents au même 
groupe unitaire, notamment à la somme orthogonale de b répliques du groupe 
unitaire {V(s)} de l'espace ¿ - ( — o o , oo), défini par la formule 

V(s)[u (cp)] = e',v u(<p). 

D é m o n s t r a t i o n . Le semi-groupe {7 (s ) = e"1} (s ^ 0) vérifie l'iné-
galité (15) avec a > 0, ce qui assure la convergence en norme de l'intégrale 

J e-isfT{s)ds; 
o 
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cette intégrale est égale à R(iy) = (i<p—A)'\12) Puisque [7(s)]* = T(—s), 
il en découle que 

2 Re R(itp) = J e-"* T(s)ds. 

2 
— (Re R(i<p)h, h') est donc la Pour tout couple h, h' € Sq la fonction v(q) = 

transformée de Fourier de la fonction ( T ( s ) h , h ' ) . Les inégalités (.16) entraî-
nent que v(<p)(-L(—«>, <»), et comme de plus (T(s)h, h') est fonction con-
tinue de s, on peut appliquer le théorème d'inversion de Fourier: 

œ œ 

(17) (T(s)h, h') = J" é<t°v{cp)dcp = l ' J e-*»(Re R(i<p)h, h ' ) d 9 . 

-œ -oo 

Cela étant, désignons par il,, l'ensemble, évidemment linéaire, des poly-
nomes trigonométriques non nécessairement périodiques 

v 
à coefficients 1S) muni de la notion de produit scalaire: 

oo 

(18) ( 0 , <£') = ( (®(<P), &(<P))drn(<p) avec dm(<p) = [n(l + (p2)]ld<p ; 
-*co 

on a évidemment (0,0)^0, et (0,0) = 0 seulement si 0 — 0, c'est-à-dire 
si 0(cp) = 0. Ai,, est donc un espace préhilbertien ; soit ít son complété. 

Définissons sur encore la forme bilinéaire symétrique suivante: 
CJ 

(19) < i » , 0 ' > = l j ([Re R(i<p)) 0(<p), 0'(<p))dtf! ; 

- œ 

la convergence de cette intégrale découle aisément des inégalités (16), de plus 
celles-ci entraînent que 

c , ( 0 , 0 ) ^ <<P, 0 > ^ Cî(0, 0 ) . 

Par conséquent il existe dans ft une transformation autoadjointe D telle que 

( 2 0 ) c J ^ D ^ Coi, < 0 , 0'y — (D 0 , 0 1 ) ; 

i 
soit D - la racine carrée positive de D. 

•s) Cf. [6], théorème 11.6.1. 
13) hy — 0 sauf pour un nombre fini de valeurs réelles v au plus. 
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Pour s réel, définissons sur fi„ la transformation U(s) par la formule 
(21) .U(s)[®(<p)] = ei"P®(<p); 

U(s) applique Si0 sur ,U„ de manière isométrique et se prolonge alors par 
continuité en une transformation isométrique de fi sur fi, donc en une trans-
formation unitaire de fi. En sa dépendance de s, elle jouit évidemment de 
la propriété de groupe. Elle laisse invariante aussi la forme <(0, 0'y (sur fi0), 

d'où il s'ensuit qu'elle est permutable avec D et alors aussi avec D-. 
i 

Faisons correspondre à chaque élément A £ $ l'élément D - 0 t t ^ 9 L où 
0h désigne la fonction constante 0k((p) = h. Cette correspondance est évi-
demment linéaire, de plus elle est isométrique parce que, en vertu de (20), 
(19), (18) et (17) on a 

[ d 2 0 h , . D 2 0 - ] = { D 0 h , 0 h ) = ^ J ([Re R(i<p))h, h')dcp = 

= (7X0)-M') = ( M ' ) . 
i 

Il est donc légitimé d'identifier h £ $ avec D20h€&: § devient ainsi un 
sous-espace de fi. 

Faisant usage de (21), (20), (19) et (17) on obtient que 

(U(s)h, h') = {u(s)D2 0h, D1 J = (DU(s) 0>,, 0h ) = 
CD 

= ¿ J <[ReR(i<p)]e i srh,h )d<p = (T(s)h,h'); 
- C D 

vu que 7"(s)A£.Ç> cela exprime que T(s)h est la projection orthogonale de 
U(s)h sur L'équation (12) est donc vérifiée. 

Les éléments de la forme U(s)h (hdS>) sous-tendent l'espace fi. En 
effet,- on a 

J. 1 J. 
U(s)h = U(s)D - 0h = D 2 U(s) 0h = D - 0«, k 

i - . i 
avec 0,1h(<p) = é3i'h, or les éléments D - 0s,h sous-tendent évidemment/)2 

J. J. -L 
et alors aussi D 2 f i , mais D'-k coïncide avec fi puisque D2, ayant la borne 

inférieure positive c f , admet une inverse partout définie. 
Cela achève la démonstration du fait que le groupe {¿/(s)} que nous 

venons de construire correspond au semi-groupe {T(s)} au sens précisé au 
début de ce paragraphe. 
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Reste à prouver que {£/(«)} est unitairement équivalent à la somme ortho-
gonale de b répliques du groupe unitaire {V(s)} de l'espace Li = Lr(—°o,°o). 
Soit {g a } u eQ un système orthonormal complet dans Envisageons la somme 
orthogonale 

8 = y, @Ll ' 

de b répliques de l'espace ¿ a ; les éléments de £ sont les vecteurs 

u> 

avec i/» = £/«(?>)€ L2 et 
CD 

u u . 

(//„ = 0 sauf pour un ensemble au plus dénombrable d'indices). Faisons 
correspondre à 

0 = 0{rp) = £ ë r v h r 6 i£„ 

.le vecteur 8 avec les composantes 

u« = ua(<p) = 1 ( 0 ( 9 ) , g . ) = n 2 V " * ( / z „ 

Cette correspondance, évidemment linéaire, est aussi isométrique: 
CD œ 

- œ - œ " 

co CD 

= f ! î / 0 ( y ) = X j | M y ) i 2 r f 9 D = . Z ' l l M : ! = = : ! " ! Î ' -
-'(D W U -00 " 

En particulier, à 0 = 0(<p) — ë^g, il correspond le vecteur u.avec 

uM = 0 pour u r = . - - e""?. ^ M n-9") 
1 

Or les fonctions [ ^ ( l + y ' ; ] 2e"' , í , (*' réel quelconque) sous-tendent l'espace 
L-(—oo,oo). u ) || en résulte que les « Ç 8 correspondant aux <Z>€&o sous-
tendent S. La correspondance isométrique 0 * — u s'étend alors par continuité 

U) En effet, soit i-(gc) une fonction £ ¿ - ( - o o , <x), orthogonale à [«(1 - f <p2)r V " J P 

pour tout v réel. Cela veut dire que la fonction »(«p) — [ " ( ' + y2)] 2 v { f ) a sa transformée 
de Fourier identiquement égale à 0. Puisque w(<f>)£L2, cela entraîne que w(tp) = Q presque 
partout, donc aussi v(<p) = 0 presque partout. 
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aux espaces et S tout entiers. Lorsque on a 
Ci> (i) 

avec ui(<f) = eLsfua((p), fait qui est immédiat pour et s'étend alors 
à tout 0 Ç & par continuité. 

Cela achève la démonstration de ce que {U(s)} est unitairement équi-
valent à la somme orthogonale de b répliques de {^(s ) } , c'est-à-dire la dé-
monstration du théorème 3. 
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15. 

Sur certains théorèmes de J . von Neumann concernant 
les ensembles spectraux. 

Par CIPRIAN FOIAS à Bucarest (Roumanie). 

La notion d'ensemble spectral d'une transformation linéaire bornée d'un 
espace de Hilbert, introduite par J . v. NEUMANN ([2]), a aussi sens dans le 
cas général d'une algèbre de Banach A quelconque, à élément unité e. Nous 
dirons, d'après v. NEUMANN, qu'un ensemble de nombres complexes 5 est un 
ensemble spectral de xÇA si, quel que soit la fonction rationnelle r(X) satis-
faisant à l'inégalité |r(A)|^l pour A^S, r(x) existe et on a ||r(x)||^ 1. La 
question que nous nous posons c'est de caractériser les algèbres A, pour 
lesquelles les théorèmes de v. NEUMANN sur les ensembles spectraux sont 
valables. 

Dans le paragraphe 1 nous envisagerons des algèbres de Banach A 
involutives ([1], § 4 , 2), tandis que dans le paragraphe 2 il s'agira de l'algèbre 
L(X) des opérateurs bornés d'un espace de Banach X. 

1 . La proposition suivante est valable pour une algèbre de Banach 
quelconque A, à élément unité. 

P r o p o s i t i o n (TV,). Si le demi-plan ReAsO est un ensemble spectral 
de x, on a Re/(x) s O pour toute forme linéaire positive f sur A ([1], § 6, 
1 et 2). 

D é m o n s t r a t i o n . Pour r > 0 on a -—^ 
r+X 

ReAsO, et par conséquent \\{re—x)(re + x)~l1| ^ 1 ; comme d'autre part 
i 2x 2x-

{re—x){re + x)~ =e——+ — ( r e + x ) " 1 on a, pour toute forme linéaire 

positive / sur A : 

(1) m - y R e f ( x ) + ^Ref[x\re + xyl] ^ \f[(re-x)(re + xyl]\^f(e), 

^ 1 dans le demi-plan 

où l'on a utilisé le fait que la norme de / est égale à f{e) ([1], § 6 , 2). 
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.Mais Ijrp^'l = 1 413115 l e demi-plan droit, donc |j(re + x)~l|j ^ -y-; on a 

Refaire+ x)1] sz - \ f t f { r e + xyx\\-f(e) i x 
r 

la relation (1) donne 

d'où 

f{e)\\x\f Re f(x). 
i 

Faisant tendre r vers l'infini il en résulte que R e / ( x ) ^ 0 , q. e.d. 
Dans le cas de l'algèbre L(E) des transformations linéaires bornées 

d'un espace de Hilbert E, la proposition (TV,) admet une réciproque ([2], th. 
52); dans le cas général il y correspondrait la 

P r o p o s i t i o n (Ni). Si pour toute forme linéaire positive f sur A on 
a Re f(x) 0, le demi-plan ReA s 0 est un ensemble spectral de x. 

Dans le cas de l'algèbre L(E), les deux propositions (¿V,), (Ni) se 
réduisent au théorème 5.2 de v. Neumann ([2]), équivalent au théorème 
principal 4 . 2 . 

Notre problème est de caractériser les algèbres A, dans lesquelles est 
vraie la proposition (M,). 

T h é o r è m e l . Si dans une algèbre de Banach involutive A, à élément 
unité, la proposition (NS) est toujours vraie, l'algèbre A est isomorphe et 
isométrique à une sous-algèbre fermée de l'algèbre des transformations linéaires 
bornées d'un espace de Hilbert. 

Nous démontrerons ce théorème en utilisant le théorème de représenta-
tion des .algèbres involutives réduites, avec norme régulière, donné par 
GELFAND et NEUMARK ([1], § 8 , 3 , th. 1). Dans ce but nous donnerons quel-
ques propositions simples sur les algèbres de Banach A involutives, à élé-
ment unité et dans lesquelles la proposition (N2) est vraie. (Il sera utile de 
désigner par F l'ensemble des formes linéaires positives sur A.) 

L e m m e 1. L'algèbre A est réduite, c'est-à-dire, que si f (x'x) = 0 pour 
tout fdF, on a x = 0. 

D é m o n s t r a t i o n . Si- /<£F, f(x*x) = 0 entraîne f(x) = 0, donc is 
f(x'x) = 0 pour tout / £ F , on a /(jc) = 0, donc.aussi f(e-wx)=^0, pour 
tout 6 réel et pour tout f i F. En vertu de la proposition (N2), R e i . ^ 0 est 
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alors un ensemble spectral de e'i6x, d'où il s'ensuit évidemment que 
Re ei0l s 0 est un ensemble spectral de x. 11 résulte que pour tout /t<,=}=0 
on a ¡ ¿ ( ¡ ( ¿ o — 1 sur l'un des ensembles spectraux de x ; donc(>t0e—x)'1 

existeetona||(Aoe—x)"1!! ^ ce qui montre d'abord que x est quasinil-
potent; la dernière inégalité et la formule 

x = j H i e - x y ' d i ( 9 > 0 ) 

donnent immédiatement x = 0, q. e. d. 

L e m m e 2 . Si (e + x)"1 existe et si u = (e—x)(e + x)'1, le fait que 
R e / ( x ) ^ 0 pour tout f£F, est équivalent au fait que f(e) a f(u'u) pour 
tout /6 F. 

D é m o n s t r a t i o n . Nous ferons usage de la formule évidente 

<2) f[(e + x)'(e + x)]-f[(e-x)*(e-x)} = 4 Re/(x). 

Supposons que (e + x)"1 existe et que R e / ( x ) s O pour tout f£F. Alors, en 
posant fi(z)=f[(e-\-x*ylz(e-\-x)~l] pour un f£F,on aura f £ F et par 
conséquent R e / , ( x ) s O ; en appliquant (2) à /,(x) au lieu de /(x), il resuite 
que /\e) —f(u* u) = 4 Re f (x) s 0 donc f(e) m f(u* u). Supposons inverse-
ment que la condition / ( e ) s / ( u * u ) est vérifiée pour tout /ÇF. Puisque 
f2(z)=f[{e + x)*z(e + x)] £ F, on aura aussi f,(e)—/2(«*u) ^ 0, d'où il 
s'ensuit, en faisant de nouveau usage de (2), que Re/(x) ^ 0, q. e. d. 

L e m m e 3. Soit u un élément de A pour lequel les deux conditions sui-
vantes sont vérifiées: (/) f(e)^f(u'u) pour tout f i F, (ii) (e + u)'1 existe. On 
a alors ||u|| s 1. . . 

D é m o n s t r a t i o n . Si l'on considère x = (e—u)(e + u)'\ (e + x)"1 

existe car e + x — 2(e + u)'1. Du lemme 2 il résulte que R e / ( x ) s O pour 
tout / é F, donc, en vertu de la proposition (Ni), le demi-plan Re À ^ 0 est 
un ensemble spectral de x. Par conséquent ||«j| = ||(e—jc)(c + x)_1 11 ë 1, 
q. e. d. 

Pour démontrer le théorème énoncé, nous utilisons un théorème de 
représentation dû à GELFAND et NEUMARK ([1], § 8 , 3, th. 1 ) . D'après ce 
théorème, toute algèbre de Banach involutive et réduite est isomorphe à une 
sous-algèbre de transformations linéaires bornées d'un espace de Hilbert. 
La construction, de GELFAND et NEUMARK, de cette isomorphie, a la propriété 
que si x—* Tx est la représentation isomorphique de l'algèbre, on a 
1173.11= /sup/(x*x), le supremum étant pris par rapport à toutes les for-
mes f € F , f ( e ) ^ 1 ([1], § 8 , 3, th. 2). En appliquant ces résultats à notre 

A 2 
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cas, on obtient que l'algèbre A est isomorphe à une sous-algèbre des trans-
formations linéaires bornées d'un espace de Hilbert, et que si x-*Tx est 
cette isomorphie, on a || Tx\\ = K s u p / ( * * * ) , f i F, f(e)^\. En posant 
||jc:||, —-jj7!r||, on voit sans peine que ¡¡-||, est une norme sur A et que 
||*||,.= |!*'||,; ce dernier fait résulte immédiatement de la relation T:r' = (T,)m. 
En plus, si l'on utilise le fait que la norme d'une forme linéaire positive / 
sur A est égale à f(e), on obtient que j|*j |*||. Nous pouvons mainte-
nant passer au 

Lemme 4. Pour tout élément autoadjoint x (** = *) on a ||*||1 = ||*||. 
D é m o n s t r a t i o n . Il suffit de montrer que ||*|| = ||*||i- Dans c.e 

but, "remarquons que si * = * ' , / ( * ) est réelle, quelle que soit la forme f i F; 
on a alors Re/(/*) = Re//(*) = 0 pour tout f i F. D'après la proposition 
N.,), le demi-plan Re / 5 0 est un ensemble spectral de ix, donc l'inégalité 

1 S i , vraie dans tout le demi-plan Re^s^O, entraîne aussi 

'existence de ( e - j - / * ) 1 . Si |j*|J ,^'l, il s'ensuit de la définition de j|-jj, que 
/[(/*)*/*] = /(*'*) S fie), pour toute forme f i F. On voit donc que si 
||*||i3il, l'élément u = ix vérifie les conditions du lemme 3 ; d'après ce 
lemme on a alors |j*j| = \\ix\\^ 1. Nous avons ainsi obtenu que pour les 
éléments autoadjoints l'inégalité ||*||,^1 entraîne ||*||^1. En appliquant 
ce résultat à *'||*||, on obtient que ||*|| ^ ||*||i, q. e. d. 

Reprenons la démonstration du théorème: On voit que l'algèbre A est 
complète aussi par rapport à la norme 
fait que pour tout on a : 

* + ** , . * -

¡•||,. Cela résulte immédiatement du 

¡1*11, * ! I S H 2 
* + ** 

2i 

+ 
' M 

* + ** 
! + 

i X — * * 

H 2 ! + ! 2 i 
* — * * 

< 2 I1 = z II 2 i . 
< 2 I1 = z II 

(on a utilisé d'abord le lemme 4, puis le fait que A est une algèbre normée 
involutive par rapport à la norme ||-||,). 

Soit maintenant xiA, ||*||i< 1; comme -4 est une algèbre de Banach 
par rapport à j| j!,, l'existence de (e + * ) " ' est assurée; d'autre part l'in-
égalité H ^ j C l entraîne / ( * * * ) S f(e) quelle que soit la forme / i F. 
donc * satisfait aux conditions du lemme 3, d'où il résulte que ||*||^ 1. 
Le fait que |!*|j, = {|*|| est alors évident car si l'on avait ||*||i<||*|| pour 
un xiA, on aboutirait, en choisissant o tel que ||*||i < p < ||*||, à la contra-
diction cherchée: ||*/«||i<l, ||*/o||>l. Donc ||x|| = 11*11!= ||r*|| pour 
tout xiA, c'est-à-dire que la représentation *—<• Tx est aussi isométrique, ce 
qui achève la démonstration. 
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2 . Dans ce qui suit, X sera un espace de Banach complexe quelconque, 
X ' son espace dual. 

T h é o r è m e . 2 . Si le disque unité |z| ^ 1 est un ensemble spectral de 
tout opérateur T de X tel que |j 7j j ^ 1, X est nécessairement un espace de 
Hilbert. 

D é m o n s t r a t i o n . Soient xÔ£X*, x0Ç.X,e\ supposons que ||x8||||xo|| = l . 
Alors si Tx = xÔ(x)xo on a ||Tj| ^ 1, donc (en considérant la fonction r(l) = 
= ( ¿ + « ) 0 + \ \a\ < 1 ) 

¡ | ( r + « / ) ( / + « 7 y 1 J c | | ^ | | x | | , x$X, 

ce qui est équivalent à 

. | | ( r + « v ) j q | ^ ||(/ + â ' r ) * | | ; 

Dans notre cas particulier cela signifie que 
( 3 ) ||xS(x)xo + o x | | ^ p x + âx;(*)x6.||. 

Soient maintenant x, y£X, ¡¡x j i? j|j>!| > 0. Il existe un xti^X* tel que 

IX8IIHMI" 1 e t x S ( x ) = l . Si l'on pose Xo = y, ona l l x î l l l l x o l ^ l l x l f 1 ! ^ ! ^ 1, 
donc, d'après (3), 

(4) • + + (|«|<1). 

Cette relation reste évidemment vraie aussi pour |«| = 1. 
Supposons maintenant que ||xjj = ¡¡>>||. Alors, en changeant les rôles de 

x et y, et en remplaçant a par « , on obtient de (4) l'inégalité opposée, donc 
on a 

(5) \\x + âyMy + ax\\ ( | « | 3 i l ) . ' 

Si j«| > 1, on a pour /?= 1/«: . 

donc (5) reste vraie pour tout a. En posant ce = plq, p et q réels, il résulte 

\py+qx\\ = \q\ -y + x = \ q \ y + j x = \\qy+px\\. 

Donc, si ||x|| = ||y|| > 0, on a pour tous p,q réels 

' \\px + qy\\ = \\qx+py\\, 
relation qui est d'ailleurs évidemment vraie aussi pour x = x = 0 . Or, d'après 
un théorème de FICKEN [3} , cette relation est caractéristique pour l'espace de 
Hilbert. Donc X est un espace de Hilbert, q. e. d. 
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A remark on the theorem of Simmons. 
By A. RENYI in Budapest. 

The theorem of SIMMONS in question [1 ] can be formulated as follows: 
If n and h are positive integers, and if we put for O^p ^ 1, q = 1—p 

0 ) / . . W - K ^ r - ^ ^ r , ; 

then we have 

(2) M 4 ) > 0 . 

An ingenious and simple proof of this theorem has been given 
by E. FELDHEIM ([2] and [3]; the proof is reproduced also in the text book 
[4], p. 1 7 1 - 1 7 2 ) . 

The generalization of the inequality of SIMMONS, for the case when np 
is not an integer, has been considered in this journal by CH. JORDAN1) [ 5 ] 

and recently by I . B . HAAZ [6]. 
HAAZ tried to generalize the inequality of Simmons in that he has 

shown that for fixed values of n and h 

(3) f«,h(p)> 0 if 1 Si A si and m i n ( y , - J - ] . 

The aim of this note is to show that the apparent generalization given 
by HAAZ is really a consequence of the original inequality of SIMMONS if 
h 1 — <-7y, and for the remaining cases n — 2h resp. n — 2h—1 it follows 

' ) One of JORDAN'S results expressed by the notations of the present paper runs as 
follows: 

/ % ^ j 2 
fn, h(p) > m p»q»-i> if p < ~ and — - ¿p ä — - — ; 

further-ofor —^—r ^ p ^ — and P < 4 - the reversed inequality is valid. 
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from the evident relations 

(4) / o » . * ( y ) = 0 and ( i - j > 0. 

To prove our assertions we need nothing else than the well known 
formula 

i 

(5) ¿ ( ^ ^ " ^ ( « - ^ ( " j J ^ l - O " " 1 ^ 
p 

(see e. g. [2] p. 110 or [4] p. 133). It follows from (1) and (5) that 
i 

(6) Uh(p)=[^\w-t)+{n-h)t)th \\-tr*-ldt-\. 
V 

It can be seen from (6) without any calculations that /„, h ( p ) is a decreasing 
function of p (0 ^ p ^ 1). Thus it follows from (2) that 

(?) UAp)>o for if A < 4 . , . n n Í 
further it follows from (4) reSp. (5) that 

(8) Uh. h(p)> 0 and f2h-1, h(p)> 0 for p < y . 

Evidently (7) and (8) contain (3) which is thus shown to be a consequence 
of (2) resp. (4). h \ 

We have at the same time shown that for ~ < ~ 2 (3) c a n be replaced 
by the stronger inequality 

(37 / - , » ( / > ) > / n , * ( 4 ) f o r P < T < \ -
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On the compound Poisson distribution. 
By ANDRÁS PRÉKOPA in Budapest. • * 

A probability distribution is called á compound Poisson distribution if 
its characteristic function can be represented in the form 

io a> 

iyu+ ¡(eiu*—\)dM(x) + I \eiUT—\) dN(x) • -co 6 
where / is a constant, M(x) and N(x) are .defined on the intervals (—00,0) 
and (0, 00), respectively, \both are monotone non-decreasing, Ai(— 00)== 
= Af(oo) = 0, further the integrals 

0 1 . 

I* dM(x), jxdN(x) 
exist. We shall.prove that under certain conditions we obtain ( I ) as a limit 
distribution of double sequences of independent and infinitesimal random 
variables and apply this theorem to stochastic processes with independent • 
increments. 

. T h e o r e m 1. Let §„1, |„2, . . . , §„*„ ( / 2 = 1,2, . . . ) be a double sequence 
of random variables. Suppose that the random variables in each row. are 
independent, they are infinitesimal, i. e. for every s > 0 

lim max P(|§„fc| > f) = 0, 
n-*<o 1 

finally, there exists a finite-valued, non-negative random variable rj such that 

(n = 1 , 2 , . . . ) 
k=l 

with probability 1. (This last condition means that the sums of the absolute 
values of the sample summands are uniformly bounded.) Suppose, moreover, 
that the sequence of probability distributions of the variables 

£n = Inl + In2 H + 5nk„ 

converges to a limiting distribution. Then this is a compound Poisson 
distribution. 
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P r o o f . Let us define the functions /\x) , / (x) as follows: 

f * 7 Y \ = i X i f x = 0 ' r < v \ — 1 ° i f x = 0 ' 

, J w ) 0 if * < 0, 7 w — f x if x < 0. 

Clearly / + ( X ) / " ( X ) E E E O and 

x- -
— £ = — Zf'itlk) ^ ij • ( « = 1 , 2 , . . ' . ) , • 

li=l 

with probability 1. Hence it follows that for every K > 0 the- relations 

•P(£ ^ A-) P ^ a / 0 (n = 1,2, .-..), 
( « = 1 , 2 , . . . ) 

hold. This imply that the distributions of the sequences & and £«" are compact 
sets. Let F»(x) and Fn' (x) denote the distribution -functions of the variables 
£ and 'Q, respectively. Let us choose a sequence' of integers nlt n,, . . . for 
which 

lim F„+(x) = F + (x) , 
(2) 

. . lim F„~ (x) = F~ (x) 
t ->• CD « 

. (where F + ( x ) and F " ( x ) are distribution functions) at eveiy point of continuity 
of the latters. Let r be a positive number such that the functions F + ( x ) and 
F~(x) are continuous at T and — r , respectively. Since the random variables 
in the double sequences 

are infinitesimal and independent in each row, moreover the relations (2 ) 
hold, we conclude that if F„t(x) = P(/ f(|„ f r) < x), F;k(x) = P ( / " ( € „ , ) < x), then 
the sequences 

z I xdKik(x), jr f xdF;ik{x) 
*=1 U<I<I fc=l - * < X<0 

are convergent (see [1] § 2 5 , Theorem 4, Remark). This implies that 

h •• / • * k • / \« 
l i m \ Z l J X i / F ^ ( x ) ) = l i m T l T xrfFn - 4 (x)| = 0 . 
i-*® k=lVo<x<« J ' - > - < 0 & \ - x < x < 0 J. '. 
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Thus if 
CO OO 

9Ut)= J eltxdF:k{x), 9;,k{t) = )eudF~k{x), 
- C O - CO 

then from the inequality 

j (e^~\)dG(x) j' |x| dG(x) + 2 j dG(x), 

valid for every distribution function G(x) and every t > 0, it follows (using 
Theorem 4 of [1] § 2 5 ) that 

l i m ^ l ^ f ) —l|s = lim y^\<p'ijk(t)—112 = 0. 

Hence the conditions of Theorem 2 of [2] are fulfilled and thus the variables 
Çîn and Çâ; are asymptotically independent, i . e . 

(3) lim P ( £ < x, Ç-, <y) = F'(x)F. (y). 
¿-•CO 

Let F(x) denote the limiting distribution of the random variables £„. Since 
bn = Çn + we get from (3) 

(4) F(x) = F^x)*F-(x). 

The laws F(x), F + (x) , F'(x) are infinitely divisible. In LÉVY'S formula 

- CO ' II 

there correspond to F(x),F+(x) and F'(x) constants and functions, which we 
denote by /', ylt /2; a1, o f , <A\ M(x), M,(x), M,(x); N(x), N,(x), Nt(x), respec-
tively. According to (4) 

7 = 7i + 7-2, o1 = + ai, 
M(x) = Ml(x) + M,(x), N(x) = Nl(x) + N,(x). 

If <? > 0, then at least one of of and o\ is positive too. This is, however, 
impossible, since F*(x) = 0 if x ^ O and F " ( x ) = ; l if x > 0 . 

We have therefore only to prove that the integrals 

« i 

) x dM(x), ) x dN{x) 
-1 0 

exist. We prove the existence of the second integral, the existence of the 
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first one can be proved similarly. We know that if t , is a point of continuity 
of N(x), then 

p -<5) . J x d Z K A * ) 
o »=i 

•converges ([1], § 2 5 , Theorem 4) hence it is bounded. If 
t 

f * dN(x) = 
oJ 

then we can choose such a number r (0 < t < r , ) that 
»i 

(6) jxdN(x)>L, 
* * 

where L is the upper bound of the terms in the sequence (5) and N(x) is . 
continuous at the point r . But w;e know from the limiting distribution 
theorems (cf. [1] § 2 5 , Theorem 4) that 

lim £(Fnik(x)—\) = N(x) ( j c > 0 ) 

at every point of continuity of N(x), whence 

r k"' r' 
<7) lim I x d Z F » f i ( x ) * = [ x d N ( x ) . 

i-t-m , fc=l , 

Obviously (6) and (7) contain a contradiction. 
Let us separate in Lew's formula the terms 

0 co . 

- a > 0 

and unite them with iy'u, then we obtain the required form of the limiting 
distribution. Thus our theorem is completely proved. 

In the sequel we apply our result to the theory of stochastic processes 
with independent increments. We say that a stochastic process with indepen-
dent increments & is weakly continuous if for every e > 0 

•when A - + 0 , uniformly in t. We suppose that P(^, = 0 ) = 1. „ 

T h e o r e m 2. Let us suppose that the stochastic process with independent 
increments 1« is weakly continuous and its sample functions are of bounded 
variation with probability 1 in every finite time interval. If <p(u, t) is the 
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characteristic function of the random variable then it has the form 

O 00. 

< 8 ) y(u, t) = e x p j iy(t)u + j ( e " " - l ) i / A i ( x , 0 + [ (eiux—\)dN(x,t) J 

where y(t) is a continuous function of bounded variation in every finite time 
interval, M(x, t) and N(x, t) are continuous functions of the variable t and 
the integrals 

0 . 1 

\xdM(x,t), f xdN(x,t) 
-'i 

exist for every t. 

P r o o f . According to our suppositions the double sequence of inde-
pendent random variables 

> lt>t § ( , • • •> it Sn-i, it 

satisfies all the conditions of Theorem 1. Moreover, for every n 

5 = £ $ ± t — £ * z i t 1 

fc=l V II n J 

hence we have only to prove the assertion regarding the functions y(t), 
M(x, t), N(x, t). The continuity in t of these functions follows at once from 
the weak continuity of the process S, and the convergence theorems of infi-
nitely divisible distributions (see e .g . [1] Chapter 3). 

Now we show that for every T> 0 y(t) is of bounded variation in the 
interval 0 i i s 7". Let us consider the sequence of subdivisions 

'k = * - ' X. 
2 " ' 2 n 

( A r = l , 2 , , . . , 2 " ; n = l , 2 , . . . ) 

of the interval [0, 7"] and let us denote the distribution function of the random 
variable —S^i by Ik0)- We know from the limiting distribution 

iheorems that 

- r 

0 V ~lk \z\<-t 
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(cf. [1] § 2 5 , Theorem 4), hence 

(9) £ 
7(f" t)~y (V1"r) !=\x dN{x' т)~$х dM(x'т)+ 

0 -i 

+ lim y f ' x | r f F ( x , 0 . 
N- ш J^i J 

H<> 
The boundedness of the sequence on the right-hand side of (9) is a conse-
quence of the fact that the non-decreasing sequence 

y i s » . - k - i I 

converges with probability 1, and of Theorem 4 of [1] § 2 5 . Since / ( 0 is 
continuous, this implies that it is of bounded variation. Thus Theorem 2 
is proved. 
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Über das Tensorprodukt von Torsionsgruppen. 
Von L. FUCHS in Budapest. 

t 

§ 1 . Es seien G und H zwei Gruppen, deren Komposition (ohne daß 
man die Kommutativität voraussetzt) als Addition geschrieben wird. Der Begriff 
des. Tensorproduktes G ® H von G und H wurde in 1938 von H. W H I T N E Y 

[5] eingeführt; G ® H ist die Gruppe, bestehend aus allen endlichen Summen 

2 ( g i ® h , ) (mit g i Z G . h i t H ) , 

die als formale Ausdrücke anzusehen sind, die nur den Distributivgesetzen 

(g+g')®h = g%h+g'®h, g®{h + h')=g®h+g®h' 

unterworfen sind. [Sind G und H mit demselben Operatorbereich ß versehen, 
so soll für jedes Ä £ Q, g £ G, h £ H noch (¿g)<8>h = g® (kh) = Hg®h) 
vorausgesetzt sein.] ') W H I T N E Y bewies, daß G®H stets eine abelsche Gruppe 
ist. Nun erhebt sich die Frage, welche abelsche Gruppen sich als Tensor-
produkt zweier Gruppen darstellen lassen. Dieses Problem scheint nicht un-
interessant zu sein ; wenn nämlich eine ziemlich große Klasse von abelschen 
Gruppen als Tensorprodukt von Gruppen bekannter, einfacherer Struktur 
darstellbar wäre, so würde der Begriff des Tensorproduktes in der Theorie 
der abelschen Gruppen eine Methode bieten, mittels deren die Struktur einer 
weiteren Klasse abelscher Gruppen beschrieben werden könnte. Wir konnten 
dieses recht allgemeine Problem nicht vollständig lösen; es ist uns nur im 
Falle von Torsionsgruppen G und H gelungen,2) zu zeigen, daß das Heranziehen 
von Tensorprodukten nichts Neues bietet. Es wird sich nämlich die ziemlich 
überraschende Tatsache herausstellen, daß das Tensorprodukt zweier (und 
somit auch endlich vieler) beliebiger Torsionsgruppen die direkte Summe end-
licher zyklischer Gruppen ist. Somit gibt uns das Tensorprodukt von Torsions-

' ) Für eine systematische Behandlung von Tensorprodukten verweisen wir auf 
Bourbaki [1]. 

2 ) Unter einer Torsionsgruppe versteht man eine Gruppe, deren Elemente von end-
, liehen Ordnungen sind. 
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gruppen keine neue Methode zur Beschreibung der Struktur von abelschen 
Gruppen an die Hand. 

§ 2 . Um unser Hauptergebnis beweisen zu können, benötigen wir die fol-
genden bekannten Hilfssätze, für deren Beweis auf die Literatur verwiesen sei. 

H i l f s s a t z 1 (WHITNEY) . Sind G und H beliebige Gruppen und 
bezeichnet-G' bzw. H' deren Kommutatoruntergruppen, so besteht ein (natür-
licher) Isomorphismus: 

H i l f s s a t z 2 (DIEUDONN£) . Bestehen die direkten Zerlegungen 
G=2G>. und H^^Hu, so gilt: 

H i l f s s a t z 3 (DIEUDONN£). Es sei g£G von der Ordnung pn und 
h von der Ordnung q"\ wo p und q Primzahlen bezeichnen. Dann ist das 
Element g @ Ii von G ® H gleich 0 , falls p =j= <7, und ist von der Ordnung 
S Min (p",.q'"), falls p = q. 

Zugleich bemerken wir, daß sich aus Hilfssatz 1 unmittelbar ergibt, daß 
man sich auf Tensorprodukte mit abelschen Faktoren beschränken kann. Da 
abelsche Torsionsgruppen stets als direkte Summen von p-Gruppen (ihren 
p-Komponenten) darstellbar sind, folgt aus Hilfssatz 2, daß es genügt, das 
Tensorprodukt von p-Gruppen zu betrachten. Nach Hilfssatz 3 verschwindet 
aber das Tensorprodukt einer p-Gruppe und einer ^-Gruppe, falls p und q 
verschiedene Primzahlen sind. Somit reduziert sich das Problem bezüglich 
der Struktur von beliebigen Torsionsgruppen auf das von abelschen p-Gruppen 
(mit derselben Primzahl p). -

§ 3 . Nach einem wohlbekannten Satz von L . KULIKOV [4 ] enthält jede 
abelsche p-Gruppe G eine Basisuntergruppe B, die bis auf Isomorphie ein-
deutig bestimmt und durch die folgenden Bedingungen definiert ist : (i) B 
ist die direkte Summe von zyklischen p-Gruppen; (ii) B ist eine Servanz-
untergruppe von G ; (iii) G/ß ist eine vollständige Gruppe3). Es gilt nun für 
unsere Zwecke der wichtigste 

Eine Untergruppe H der abelschen Gruppe G heißt eine Servanzuntergruppe, wenn 
folgendes gilt : für ein a^H und für eine natürliche Zahl n ist die Gleichung nx = a genau 
dann lösbar in G, falls sie auch eine Lösung in H besitzt. Die Vollständigkeit einer abel-
schen Gruppe G bedeutet die Lösbarkeit aller Gleichungen der Form nx = a (a£G). 
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H i l f s s a t z 4 . Ist B bzw. C eine Basisuntergruppe der abelschen 
p-Gruppe G bzw. H, so gilt 

G®H^B®C. 
Dieser Isomorphismus wird durch den Beweis bestätigt, daß jedes 

Element g®h£G®H einem b ® c £ B®C^G®H gleich ist. Nach der 
Definition der Basisuntergruppe gibt es Elemente x£G,y £ H mit phx + b = g 
bzw. pry + c = h für passende b£B,c£C, wobei wir die Exponenten k,r 
gemäß4) pk a 0(h),pr a 0(b) wählen. Dann ergibt sich unter Berücksichtigung 
von n{u® v) = nu® v = u® n v für jede ganze Zahl n, daß 

g®h = (p'x -f b) ® h = (pkx) ®h + b®/i = x®(p'-h) + b® (p'y + c) = 
= (prb)®y + b®c = b®c, 

es gibt also keine Elemente in G®-H, die nicht einem Element von B®C 
gleich wären, w. z. b. w.") t 

§ 4 . Nun sind wir imstande, unser Ergebnis leicht nachzuprüfen. 

S a t z . Sind G und H beliebige Torsionsgruppen, so ist ihr Tensorpro-
dukt G® H eine direkte Summe von zyklischen p-Gruppen. 

Nach § 2 ist G®H der Gruppe isomorph, wo Gß bzw.. 

H,, die /7-Komponente von G/G' bzw. HjH' bedeutet und die direkte Summe 
über alle Primzahlen p zu erstrecken ist. Aus Hilfssatz 4 erhält man, daß 
G,,® H,,^ BP® C,, ist, wo Bp und Cv Basisuntergruppen von G,, bzw. Hp sind. 
Zieht man noch Hilfssatz 2 in Betracht und beachtet, daß gemäß Definition 
B,, und Cp direkte Summen von zyklischen p-Gruppen sind, so folgt sofort 
aus Hilfssatz 3,") daß GP®HV, und somit auch G®H direkte Summen von 
zyklischen p-Gruppen sind, w. z. b. w. 

Falls man eine explizite Darstellung der Basisuntergruppen Bp und Cp. 
kennt: ' ) a „ 

b p = 2 2 ¿(p% c r = 2 2 ^ (Pk), i-lm;(/l) k = lnk(p) 
wo mi(p) und xik(p) irgendwelche Kardinalzahlen sind, so läßt sich auch 
G®H explizit bestimmen. Es folgt nämlich: 

( * ) , ß p ® c P = 2 2 e ( p o , 
j= 1 >jip) 

*) 0(x) bezeichnet die Ordnung des Elementes x. 
5) Für eine ähnliche Schlußweise s. die Arbeit [3], Satz 1. 
6) Das Tensorprodukt von zyklischen Gruppen der Ordnung p" und pm ist ebenfalls 

zyklisch und besitzt die Ordnung Min (pn, pm). 
~').Q(P") bezeichnet eine zyklische Gruppe der Ordnung p«, und 2 ^ bedeutet die 

direkte Summe von m isomorphen Exemplaren der Gruppe A. m 
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wo 

rJ(P) = "V(/P)IV(P) + my(/j)£ M/>) + »V(/>) £ m¡(p). 
fc=J+l i ' = v + l 

Somit ist G<8>H die direkte Summe der Gruppen (* ) für alle p. 
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On quasi nil groups. 
By L. FUCHS in Budapest. 

§ 1. Introduction. 

In his paper [6]1) T . S Z E L E has called an additive abelian2) group G 
a nil group, if there exists up to isomorphism only one ring R whose additive 
group is isomorphic to G, namely the zero ring in which any two elements 
have 0 as product. He has shown that the torsion nil groups coincide with 
the torsion divisible3) groups and that there do not exist mixed nil groups, 
while the problem of characterizing by group invariants the torsion free nil 
groups remained open. In an other paper [7] he investigated those groups G 
over which exactly two non-isomorphic rings may be defined4) (he called 
them quasi nil groups of species 2 ) ; these results are almost complete in 
the sense that the problem is reduced to that of torsion free nil groups. 

Our present aim is to characterize the quasi nil groups (of finite 
species)5), i .e . those abelian groups G over which but a finite number of 
non-isomorphic rings can be defined. We shall discuss the case of torsion, 
torsion free and mixed groups separately. It will turn out that the main 
difficulty lies again in the torsion free case where our results are again far 
from giving an explicit description of the structure of the groups in question. 

Our main results are contained in Theorems 1 — 3. 

' ) The numbers in square brackets refer to the Bibliography given at the end of 
this note. 

2) We shall throughout consider abelian groups, therefore henceforth „group" is used 
for the longer phrase „abelian group" (with additive notation). 

8) For the terminology and basic facts on abelian groups we refer to KUROSH [ 5 ] or 
KAPLANSKY [ 3 ] . 

4) We say the ring R is defined over the group G if the additive group of R is 
isomorphic to G. 

5) There is a simple difference between the terminology used by SZELE and that 
used here: he meant by a quasi nil group a quasi nil group of species 2, while we mean 
thereby one of finite species. 
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§ 2 . T h e t o r s i o n case . 

We begin with the following two lemmas which are essential in the proof 

Lemma 1. If G is a torsion group which is not divisible, or is a 
mixed group whose torsion subgroup is not divisible, then G has a cyclic 
direct summand €(pk) of order pk,k a natural integer*). 

For the proof we refer to KULIKOV [4 ] or SZELE [8 ] . 

L e m m a 2. In a p-ring R the elements of infinite height annihilate 
every element of the ring. 

S e e e . g . SZELE [6] o r FUCHS [2] . 

Now let G be a torsion quasi nil group. G can have but a finite number 
of p-components GP which are not divisible. In fact, in the contrary case, 
in view of Lemma 1, an infinity of GP would be decomposable as 
Gp = í¿(pk) + G¿ and we may define over (2(p*) a ring I(p") [the residue 
class ring of the rational integers modulo p*], while over G'p and over all 
other Gq (q^p) zero rings, and then form their direct sum in order to obtain 
pairwise non-isomorphic rings over G. By Lemma 2, the divisible p-compo-
nents of G_ are zero rings and it is clear that the non-divisible ones must 
again be quasi nil groups. 

Next suppose GP is a quasi nil p-group and let Bp be a basic sub-
group of GP. We shall show that Bp is finite. For, in the contrary case let 
aua2,... be a countable set of basis elements of cyclic subgroups in a 
direct decomposition of Bp. Each 

< = { « : } + • • • + { « „ } ( « = 1 , 2 , . . . ) 

is a direct summand of GP, GP = + Gp°, and if we define over Gp'° the 
zero ring, over each {<?,} ( / ' = ! , . . . , « ) a ring 7(p"') where p"' is the order 
of a¡, then we obtain a ring Rn for each n. It is obvious that these rings 
R„ are not isomorphic for different integers n, because the orders of Bp0 — 
Zip0 may be defined as a complementary direct summand of the annihilator 
GPn) of GP— are different. 

Considering that Bp is thus finite, it follows that it is a direct summand 
of GP, 

GP = BP + Dp 

where Dp is a divisible group. Consequently, a torsion quasi nil group G 
has the form 
(1) G = B + D ( B finite, D divisible). 

>'•) We denote by £ ( n ) the cyclic gr° u P of order n, by ( 2 ( p m ) the group of type p m 

and by cR, the additive group of the rationals. 
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Conversely, assume that G is a torsion group of the form (1) and R 
is a ring with G as additive group. In R, the p-components belonging to 
different primes annihilate one another, hence Lemma 2 implies, that the 
elements of D are annihilators of the v/hole ring R. B as a finite group has 
the form }-{&} where are of prime power orders. Consider 
the group A generated by B and by all products 0,0j (i,j= 1 , . . . , t). 
If didj lies outside B, then its D-component in (1) is an annihilator, so that 
the subring generated by B must coincide with A. Since A is again finite, 
we conclude that there is a divisible subgroup A of finite rank r in D such 
that A ^ B + Di. Each a,-ay increases the rank at most one, thus we have 
r ^ t 2 . Further, mB = 0 implies mA = 0, i .e. A belongs to7) B + D,[m] = A,. 
It results that all the products of the elements of R belong jo a finite sub-
group of G which may be chosen — up to automorphism — independently 
of the product definition of R. Since there is but a finite number of 
possibilities for defining a ring over a finite group, we arrive at 

T h e o r e m 1. A torsion group G is a quasi nil group if and only if 
it is a direct sum of a finite group and a divisible group. 

§ 3 . T h e tors ion f ree case. 

Let G be a torsion free quasi nil group and R a ring, different from 
the zero ring, over G. We may alter the multiplication ab of the elements 
<7, b of R by setting ax„b = nab for some fixed natural integer n. We then 
get rings /?„ ( / i = l , 2 , . . . ) with the same additive group G. No R„ is a zero 
ring and. by hypothesis among the Rn there exists but a finite number of 
non-isomorphic rings; let these be /?„,,, Rm„,..., R,„t. Thus, for each n, R„ is 
isomorphic to some Rmj(j= \ ,...,t). 

Next take into account that, by definition, all the products in Rn belong 
to nG, i .e. R'n^nG. If /?r,,/?r2,... are isomorphic to Rmi, then in Rm, all 
the products a x , , h b = mxab belong to ftnG. Thus if m = m1... mt, then for 

i 
every pair of elements a, b we have mab£(}nG where n ranges over all 

n 
natural integers. (Note that R„ is isomorphic to a certain Rmjl) Therefore mab, 
and hence ab' is divisible by every integer n, i. e., in R every product belongs 
to the maximal divisible subgroup D of G. D-j=0, for G is not a nil group. 

By a known result, D is a direct summand of G, G — D + H where// 
contains no nonzero divisible subgroup (i. e. it is reduced), further D is the 

' ) For a group G, G[m] denotes the set of all x£G with mx = 0. 
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direct sum of groups 5t isomorphic to the additive group of the rationals, 
D = 2 & . Here the number of direct summands cannot exceed 1, for every 
algebraic number field of degree 2 over the rationals has an additive group 
of type 5t + 5t, and there is an infinity of non-jsomorphic such fields. Thus G 
is of the form G = SL + H where the reduced group H must be a nil group, 
for otherwise we could, define over G a ring in which not all the products 
belong to 51. 

The group H must be of finite rank. For, assume H is of infinite rank 
and let [6,, ...,ba,...] be a maximal independent system in H and bu ..., bn,... 
a countable (proper or improper) subsequence of it. For each n we define a 
ring Rn by putting 1. babp = 0 if « and /? are different, 2. ¿>1 = 0 or = b0 

according as « = 0 , 1 , 2 , . . . , n—1 or a is different from these indices. Here 
b„ denotes an arbitrary nonzero element of <01. Knowing the products of 
the ba, the distributive law enables us to extend the multiplication to the 
whole of G (all the products belong to 51!). Since any product of more than 
two factors vanishes, the associative law holds, and we conclude that /?„ is 
indeed a ring. In /?», any element of the form + (-¿»-i&>>-i 
(A, rational) is an annihilator of /?„, while any element containing a summand 
Xaba with ¿„4= 0 and « ={= 0, ],..., n—1, is no annihilator, for it does not 
vanish multiplying it by b«. Thus, the rank of the annihilator ideal of R„ is 
just n, consequently, n =j= m implies that R„ and Rm are not isomorphic and 
thus H is necessarily of finite rank. 

If H — 0, then G = 5t and there are two non-isomorphic rings over 51, 
namely the • rational number field and a zero ring. 

If H-J=0, let the rank of H be the natural integer r. We denote by 
b0 a nonzero element of 51, and by [blt..¿>r] a maximal independent system 
of H. Our aim is to get information on all rings over 51 + //. For this 
purpose it is sufficient to know all products bity. Since they belong to 51, 
we set 

(2) bibj = kijbQ (kij rational) 
for i, j — 0 , . . . , r. The /y may arbitrarily be chosen, only the associative law 
(bibj) bk = b^bjbk) must be fulfilled. This is equivalent to 
(3) hjlok = i-jklio (i,j,k arbitrary), 
and therefore we assume (3) to hold. Now we distinguish two cases according 
as /.a,4=0 or = 0 . • 

Case 1. ¿oo =j= 0. There is no loss of generality in assuming ¿00= 1, 
since this can be achieved by an eventual alteration of the choice of b0 in 51.8) 

8) It suffices to replace b0 by /i^1 b0. 
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Under this assumption, (3) implies for the case k = 0 

(4) ¿ij = kjoXio 
whence it follows that ¡Uj; = Xji, i. e. the ring is necessarily commutative. Write 
¿¡o — = then (2) becomes bibj = XiXjb0 (¿0 = 1) and (3) is automatically 
satisfied. — Let another ring be defined over G with the rule bi X b3 = /i,^ b0 

( f o = l ) where the fii are arbitrary rationals. Define a (group) automorphism 
a of G by putting 

bl^bi+lm-^b, (i=0,1 ,...,r). 

It is obvious that a induces in fact an automorphism of G. Take into 
account that 

= [bi -(- (m—It) b0) [bj + (Vj—Xj) 60J = (Pibo) (pjbJ = u^j b0 = bi x bj 
(note that bi behaves like Xiba under multiplication), and then conclude that 
under a, the rings defined by the U and the .u,, respectively, are isomorphic. 
Thus all rings defined over G with ¿„<,=¡=0 are isomorphic. 

Case 2. = 0. Then from (3) in case Ar = 0, i = j we obtain 
Alo = 0, A,0 = 0, and similarly, Ao; = 0, that is, is an annihilator of the 
ring. (3) shows that Ay (i,j = 1 , . . . , r) are not subject to any condition. Each 
ring R over G thus defines, in view of (2), a square matrix 

(An Mi • • • 

Xrl Xr2 . . . k r r ! 

with arbitrary rational elements. Another ring 5 over G gives rise to a matrix. 

|

>ll.< 12 • • •/» l / 

(lr! (Xrl . . . flrr) 

relative to the same independent set b0, bu ..., br. Let a be a (group) auto-
morphism of G with 

r 
b" = b0, b" =^2)9'kbk ('= 1, ..., r) 

' s=o 
p 

where go, Qik are certain rational numbers. Before passing on we remark that 
r 

a induces an automorphism a* of H by setting bf — 2 9<kbk (i — 1, ..., r), 
k— I 

the matrix of a* is 
(P l l ?12 • • • 9lr\ 

P = 

&r I Qr-2 • • - Qrr) 
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and any automorphism a* of H may be extended (in several ways) to auto-
morphisms a of G, by choosing arbitrary rationals po, P i o , . . . , p*>- The two 
rings R and S defined over G are isomorphic if and only if there is an 
automorphism a of G such that the elements bl may be multiplied in R in 
the same way as the elements 6, in S, i. e. 

bïb'i = 2 Q'k bk L2 ' ji bi = Z 2 Q* Pji hi bo 
*=0 J Ll=0 J k=1 1=1 

is equal to /*;;(p,A) for /,/ = 1 , . . r . The condition obtained may be written 
in the matrix form 

(Qn---Q\r\ /An . . . M (9ii...9ri\ (t*ii---hir\ 

VPrl . . . Qrr) V^rl . . - lrr> W . . • OrrJ Vjllrl . . . flrr) 

that is, 
(5) . PAP' = g0M 
where P' denotes the transpose of P. Calling two matrices A and M 
H-equivalent if there is an automorphism a* of H with the matrix P and 
there is a rational number p0 such that (5) holds, we get an equivalence 
relation among the rxr square matrices with rational elements. Our argu-
ments above show that two rings over G are isomorphic if and only if the 
corresponding matrices A and M are //-equivalent. (The system b0,bu...,br 

may be taken fixed.) Thus the number of equivalence classes under this 
//-equivalence equals the number of non-isomorphic rings over G with 51 
as an annihilator, and we conclude : 

T h e o r e m 2. A torsion free group G is a quasi nil group if and only 
if it is either a nil group or has the form 

G = Sl + H 
where H is a nil group of finite rank r such that the number of classes of 
H-equivalence in the set of rxr square matrices9) with rational elements 
is finite. 

In particular, let us consider the case r= 1. Then both A and M are 
rational numbers and we may take P=l (corresponding to the identity 
automorphism of H) and then conclude that there are two //-equivalence 
classes, namely A = 0 alone forms one class and the nonzero rationals form 
the other class. Thus the group G=Si + H with a nil. group H of rank 1 
is a quasi nil group. Over this G the following non-isomorphic rings may 
be defined: 

®) Of course, relative to a fixed maximal independent system. 
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1. the zero ring; 
2. over H define the rational number field F, and over H a zeroring H, 

and take10) F®H (see Case 1); 
3. define H to be the annihilator of the ring and the products of the 

elements of H to lie in SI. 
This example disproves a conjecture of S Z E L E [ 7 ] which stated that 

besides <& and the nil groups there exist no torsion free quasi nil groups. 

§ 4 . The case of mixed groups. 

Assume G is a mixed quasi nil group. Since Lemma 1 is valid for 
mixed groups too, by the same argument as in § 2 we may conclude that 
almost all /7-components Tp of the torsion subgroup T of G are divisible 
groups and those Tp which are not divisible have a finite basic subgroup Bp. 
Then 7P = Blt + D? with a divisible group DP and 7 is of the type 7 = B + D, 
B a finite, D a divisible group. By a well-known result, if in a mixed group 
the (maximal) torsion subgroup is of this type, then it is a direct summand, 
that is, 
(6) G^B + D+J 
where /=j=0 is torsion free. Evidently, J must again be a quasi nil group, 
hence is of a structure described by Theorem 2. 

Next suppose that D^O, i.e. in G there exists a direct summand of 
the type <2(p®).for some prime p. Then for this prime p necessarily pJ=J 
holds. In fact, if pj is a proper subgroup of J, then pnJ is a proper sub-
group of p" - 1/ (n = 2, 3 , . . . ) , and thus there is a homomorphism J/p"J~ <2(pn) 
and hence a homomorphism J~<S(p"). Let <£(pa)= {clt c2,...} with p c 1 = 0 , 
pc<i = Ci According to (6), each element g of G has a unique representa-
tion g — b + d+a (b£B,d£D,a£j). Define a ring /?„ over G by the 
multiplication rule . 
( 7 ) gigi = (b1 + dl + a,)(bi + d2 + a2) = k1koC„ 

where k^n.k^c» are the images of aua2 under/~(2(p n ) . Since in /?„ any 
product of three elements vanishes, (7) actually implies a ring Rn over G. 
Clearly, by = the /?„ are not isomorphic for different n's, thus the 
hypothesis pjczj contradicts the quasi nil character of G. We have thus 
proved that the presence of Sip 0 0) Sn G implies pJ—J. — Moreover, it 
follows that the rank of J is 1. In order to verify this assertion, take any two 
independent elements u, v in / ; then each element a of / has the form 

10) The s i g n © will be used to denote direct sum in the ring-theoretic sense. 
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a ~ { U + oi'í-x for some x (which identically vanishes if the rank of J is 2 ) 

and rational numbers p, O. If we agree in putting -^¡Ci = Ck+I in (2(p®), then 

may be regarded as a group with rational operators (for pc, Q a rational 
number, c in ő(p®), is a well-defined element in (2(p™)). We define, for 
each p-adic integer ;r,- a ring R(TI) over G by. the rule 

gi g-> = (¿>i + dl + P . U + <7, V + Xi) (bi + dz + QvU + OtV-h x2) = ( o , p 2 + <7, o 2 n ) c x . 

/?(«) is plainly a ring. Consider the elements g which are divisible by every 
a 

power of p. If ~ denotes any element y with pvy = g, then") 

f g f f b d , p a , x \ 2 Q^ + rfn , , , , . 

Thus every g, divisible by all powers of p, defines an endomorphism of 
£(p®) which may be represented by the p-adic integer g2 + <fix. The set of 
these p-adic integers, taken for all g, contains 1 and is countable. If two 
rings are isomorphic, then the corresponding sets of /7-adic integers may 
differ merely by a /7-adic unit factor (inducing an automorphism on (2(/?®)). 
Since 1 was supposed to belong to this set, there is but a countable set of 
p-adic integers belonging to a class of isomorphic rings. The uncountability 
of the p-adic integers implies that there is an infinity of non-isomorphic 
rings R(n) over G. Consequently, J must be of rank 1. 

Next we show that there is but a finite number of primes p for which 
(2(/?m) exists in D. For, in the contrary case there would exist a homo-
morphism i}p of J into each of these <£(pa'), and by the same methods as 
used in the preceding paragraph we could show that each t]p gives rise to 
a ring R(p) over G such that all products "lie in <2(/?®), but not all of them 
vanish. Since G is a quasi nil group, this is impossible. 

Assume that G = B+J where B is finite and J is a nil group, and let 
p be a prime dividing the order-m of B. Then JjpJ is finite, for in the con-
trary case there would exist in J an infinite set of independent elements 
űtjűj , . . . belonging to pairwise different cosets modpJ . Let. b£ B be of 
order p and put af — b if i>n and ű;űy = 0 in all other cases, furthermore, 
for the elements independent of the a; define the multiplication to be identi-
cally 0. Then this definition gives rise to a ring R„ over G and for different 
n's the rings R„ are not isomorphic, for the annihilator of RH mod {B, pJ} is 

» ) For simplicity assume (this can always be done without restricting generality) 
that in the denominator of (> and a the prime p does not occur. 
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of rank n (note that B is the torsion subring and pj is also an invariant for 
all rings over G). It follows that JlpJ and hence J/mJ is finite. 

What we have proved shows that a mixed quasi nil group G has one-
of the forms 

I. G=B-\-J where B is finite of order m,J a torsion free quasi nil. 
group such that JlmJ is finite whenever J is a nil group. 

II. G — B + D+J where B is finite, D a torsion divisible group with 
a finite number of /7-components, J a torsion free quasi nil group of rank 1 
such that pJ=J for the primes p occurring in D. 

Conversely, assume the group G has the form I. We intend to show-
that but a finite number of non-isomorphic rings exists over G. 

It is evident that mJ annihilates B and among the elements of J only 
those outside mj may have a product not belonging to J. In order to know 
a ring R over G, it suffices to know the following products: 1. the elements 
of J by the elements of J ; 2. the elements of B by the elements of B; 3. the 
elements of B by some representatives of J mod mJ. The products 2. and 3. 
lie in B, thus there is but a finite number of possibilities for defining them. 
The products 1. are of the form a-ia1 = az-\-b (a>£j, b£B); here b does not 
alter if we replace aand a2 by other elements of the cosets of ^ and a.2 

mod mJ. Thus to each ring 5 over J Si GjB there is but a finite number of 
rings R over G with S^R/B. If the rings 5, and S2 over J are isomorphic, 
and Ri is a ring over G which corresponds to Si, then we may extend S*. 
such that the S-components of the products in 2. and 3. be the same in R2 

as those of the corresponding elements in /¡\ (we let B fixed). To be more 
explicit, if e .g . a1a2 = a3-\-b (a,£j,b£B) in Ru then tz,a.2 = holds in S l r 

and if <JP is an isomorphism of S j onto S2, then we set afat — aa+b. It is 
easily seen that, since m j is carried onto itself by every automorphism, the 
rings R\ and R2 will be isomorphic, and this establishes what we intended 
to verify in this paragraph. 

Let now G have the form II and consider those rings R over G in 
which all the products lie in the torsion subgroup B-\-D of G. First of all 
observe that -D is an annihilator of G, for besides it annihilates B + D, it so 
does J , considering that pJ=J holds for all p with (2(p®)S£>. 

For a fixed the mapping v—»uv is a homomorphism of J onto a 
subgroup Tu of B + D, and from /"(/) = 1 we conclude that Tu has the form12). 

(7) 7u = e ( p i ® ) + . . . + e ( A » ) + ( S ( 9 i . ) + . . . + ( 2 ( ^ ) 

with different primes p-i,..., p„ qu ..., qt- If pJ=J, then also pTu — T 

l z ) S e e e . g . BEAUMONT a n d ZUCKERMAN [ 1 ] . 
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so that qjf^J and therefore <2.(q?) does not exist in Dr i. e. the "finite part" 
<2(<7i')H 1-£(<7?') of T„ belongs to B. Choose a u£j such that u is not 
divisible by those primes q of the order of B for which qJ^=J, and no 
pr-component of u2 in T„ is zero ( / = 1, ...,s). Then the squares u'/p/" 
already determine all products vw(v, w since v — gu, w = au with rational 
o,o and thus vw — gou2 is a well-defined element of T„ whenever in Tu the 
multiplication by rationals is appropriately defined. Next take into account 
that the multiplications of J by p t , . . . , p r , respectively define automorphisms 
of J , so that only the fact is essential that the components of the squares 
i2(v(:J) in Q(pT), • • Q(pT), respectively, are of odd or even exponents. 
Consequently, there is but a finite number of possibilities for defining the 
multiplication of the elements of J in order to obtain non-isomorphic rings. 
The same holds for the products b i b 2 ( b i £ B ) and the products of the elements 
of B by representatives of J mod mj, since it is irrelevant, which subgroup 
of type S(p®) in D will contain components of products. It results that over 
a group of type II there exists but a finite number of non-isomorphic rings 
with products in the torsion subgroup. 

Let G be again of type II and consider the case when not all the 
products lie in the torsion subgroup B + D. Then the factor ring with respect 
to the ideal B + D is not a zero ring, consequently, J must be isomorphic 
to J t . Now in any ring R over G the products axa.2(ai^J) are divisible by 
every integer, thus they belong to D+J (the maximal divisible subgroup 
of G). It is not hard to verify that (oa)a = ga2 varies over a subgroup K 
of G, K ^ S L , when a is fixed in J and g runs over all rationals. Then any 
product g^gi with gt^K lies in K and B + D must belong to the annihilator 
of K, consequently, A" is a direct summand of R in the ring-theoretic sense: 
R — (B + D)®K. Since B + D is a quasi nil torsion group and the ring 
over K is isomorphic to the rational number field, we arrive at the 
following result. 

T h e o r e m 3. A mixed group G is a quasi nil group if and only if 
it is either of the form I or of the form II. 
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Über die Translationen der Halbverbände. 
Von G. SZÄSZ und J. SZENDREI in Szeged. 

1 . Unter einem Halbverband H versteht man eine kommutative Halb-
gruppe mit lauter idempotenten Elementen. Eine eindeutige Abbildung l 
(x /(x); x£H) eines Halbverbands H in sich heißt eine Translation von H, 
wenn für sie 

k{xy) = k{x)y 

besteht. Ist c ein festgewähltes Element von H, so ist insbesondere die Ab-
bildung x-*cx nach = (ex)y eine Translation von H. Eine solche 
Translation wird speziell genannt und mit es bezeichnet (d. h. c s ( x ) = c x ) . 

Der erstgenannte Verfasser hat neulich einige Ergebnisse über die Trans-
lationen von Halbverbänden gewonnen1). In dieser Arbeit werden wir weitere 
Eigenschaften dieser Abbildungen untersuchen. In § 2 geben wir zwei not-
wendige und hinreichende Bedingungen dafür, daß eine eindeutige Abbildung 
eines Halbverbands in sich eine Translation ist (Satz 1 und 2). Satz 3 be-
schäftigt sich mit der'Struktur der Translationen von H und mit der Ein-
bettung von H in diese Struktur. Satz 4 in § 3 gibt eine notwendige und 
hinreichende Bedingung dafür, daß eine Hüllenoperation2) von H eine Trans-
lation ist. 

2 . Eine Charakterisierung der Translationen von H liefert der folgende 

S a t z 1. Eine eindeutige Abbildung X eines Halbverbands H in sich ist 
dann und nur dann eine Translation von H, wenn 

( 1 ) = 

identisch gilt. 

i) G. SZASZ, Die Translationen der Halbverbände, Acta Sei. Math., 17 (1956), 1 6 5 — 1 6 9 . 
: ) Für die Definition der Hüllenoperationen s. § 3 . 
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B e w e i s . Es sei k eine Translation. Durch wiederholte Anwendung 
der Definition und der Halbverbandsaxiome bekommt man 

k(x)y = k(x)k(x)y = k(x)k(xy) = = 
= X(x)Z(y)x = l(x)xl(y) = k(xx)k(y) = k(x)k(y), 

womit die Notwendigkeit der Bedingung (1) bewiesen ist. 
Umgekehrt folgt aus (1), daß 

Z(Xy) = k(xy)k(xy) = k(xy)xy = k(xy)xy = k(xy)k(x)y = 
= k(x)k(xy)-y = k(x) xy-y = k(x)x-y = k(x)k(x)-y = 

d. h. daß k eine Translation von H ist. Damit haben wir den Satz 1 bewiesen. 
Eine andere Charakterisierung der Translationen gewinnt man durch den 

S a t z 2. Die Translationen eines Halbverbands H sind genau diejenigen 
eindeutigen Abbildungen von H in sich, die mit sämtlichen speziellen Trans-
lationen vertauschbar sind. 

B e w e i s. Ist k eine beliebige und es eine spezielle Translation von H, 
so gilt 

kcs(x) = k(cs(x)) = /.(cx) = k(xc) = k(x)c = ck(x) c s ( / - ( x ) ) = Csk(x) 

für jedes Element x von H, d: h. 

(2) kcs = csk. 

Ist umgekehrt k eine eindeutige Abbildung von H in sich, so daß (2) 
für jede spezielle Translation gilt, dann ergibt sich 

k(xy) = k(yx) = ¿O'sM) = ^s(x) = ysk(x) = yk(x) = k(x)y. 

Das bedeutet, daß k eine Translation von H ist. Der Satz 2 ist bewiesen. 
Ferner beweisen wir den folgenden 

' S a t z 3. Die Menge JH aller Translationen eines Halbverbands H ist 
ein Halbverband, und die Menge SH der speziellen Translaiionen von H bildet 
in JH ein Ideal, das mit H isomorph ist. 

B e w e i s . Zuerst haben wir zu zeigen, daß das Produkt von zwei 
beliebigen Translationen wieder eine Translation ist. Das folgt einfach aus 
der Definition der Translation, .nämlich 

kix(xy) = k(u(xy)) = k(t*(x)y) = ¿0(Jc))y = ku(x)y. 

Zum Beweis der übrigen Behauptungen von Satz 3 brauchen wir die 
in sich selbst interessante Gleichung 

(3) kn(x) = k(x)n(x), 
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die sich sofort aus der Definition der Translation ergibt: 

(((x) = A(.u(xx)) = / (11 (x) x) = / ( x ( x ) ) = /. (x) fi (x). 
Durch Einsetzung ,« = /. in (3) bekommt man /.2(x) = /.(x), d. h. die 

Idempotenz der Translation /. Ferner folgt nach (3) 
Iii (X) = /(x) (< (x) = ft (x)j.(x) = u /.(x), 

was die Kommutativität der Multiplikation in Tw bedeutet. Da die Multiplika-
tion von Abbildungen immer assoziativ ist, haben wir bewiesen, daß T« in 
der Tat ein Halbverband ist. 

Da das Produkt von zwei speziellen Translationen nach 
(4) csds(x) = cs(ds(x)) = c(dx) = (cd)x = (cd)s(x) 
wieder speziell ist, folgt nach dem obigen, daß die Menge SH aller speziellen 
Translationen ein Teilhalbverband von T/f ist. Wir wollen zeigen, daß S« mit 
H isomorph ist, und zwar wird ein geeigneter Isomorphismus durch 

(5) c - > c s (c£//,cs£S«) 
vermittelt. Die Eindeutigkeit der Abbildung (5) ist trivial. Um die Ein-eindeu-
tigkeit der Abbildung (5) zu beweisen, nehmen wir an, daß cs = ds, d. h. 

cx = dx {x£H) • ' 
gilt. Wird in diese Gleichung erstens x = c, zweitens x = rf eingesetzt, so 
entsteht wegen der Idempotenz und Kommutativität 

c = dc = cd = d. 
Das beweist die Ein-eindeutigkeit der Abbildung (5). Endlich folgt die Homo-
morphie der Abbildung (5) einfach aus (4), womit die Isomorphie 

bewiesen ist. 
Wir haben noch zu beweisen, daß Su ein Ideal in Tw ist. Wegen (2) 

genügt es zu zeigen, daß /.CS^SH (¿€T,CS£SH) gilt. Man kann aber diese 
Behauptung von 

/tcs(x) = /(cs(x)) = X(cx) = ¿(c)x = (/.(c))s(x) 
ablesen. Damit haben wir den Beweis des Satzes 3 beendet. 

Auf Grund des Satzes 3 nennen wir L i den Translationshalbverband 
von H. Aus Satz 3 folgt das 

K o r o l l a r 1. Jeder Halbverband läßt sich in seinen Translationshalb-
verband als Ideal einbetten. 

Sätze 1 und 3 geben das folgende 

K o r o l l a r 2. Jede Translation eines Halbverbands ist ein idempotenter 
Endomorphismus. 
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Mit Hilfe der Sätze 2 und 3 bekommt man das 

K o r o 11 a r 3. In der Halbgruppe sämtlicher eindeutiger Abbildungen 
von H in sich ist TH der maximale Halbverband, der SH umfaßt. 

3 . Wie üblich,, definieren wir im Halbverband H eine Halbordnung 
dadurch, d a ß x ^ y (x,y£H) dann und nur dann ist, wenn xj> = }> gilt. Nach 
dieser Definition ist offenbar x, y ^ xy (x-, y £ H). 

Eine eindeutige Abbildung k eines Halbverbands H in sich heißt eine. 
Hüllenoperation, wenn sich die Bedingungen 

(6) x^k(x), 

(7) ¿2(x) = >l(x), 

(8) aus i s j folgt 

für beliebige Elemente x,y von H erfüllen. Nach der Definition der Halbord-
nung von H darf man (6) auch in der Form. 

(9) ¿ ( x ) x = >l(jt) 

schreiben. 
Nach diesen Vorbereitungen beweisen wir den 

S a t z 4. Eine Hüllenoperation k eines Halbverbands H ist dann und 
nur dann eine Translation von H, wenn die Gleichung (1) für jedes Paar 
x<y (x,yiH) gilt. 

B e w e i s . Aus Satz 1 folgt sofort, daß die Bedingung notwendig ist. 
Umgekehrt, sei k eine Hüllenoperation von H, für die die Bedingung 

des Satzes 4 besteht, und seien x, y beliebige Elemente von H. Wegen 
x^kxy gilt dann 

(10) X(x)xy = l(x)X(xy); 

und zwar, im Fall x<xy ergibt sich (10) nach der Voraussetzung bezüglich. 
I und im Fall x = xy einfach aus (9). Da auch y^xy ist, so folgt nach 
(9), (6) und (8) 

( 1 1 ) 

Vergleicht man nun (10) und (11), so gewinnt man, daß im letzteren überall, 
das Gleichheitszeichen stehen muß; insbesondere ist k(x)y = k(x)k(y). Nach, 
Satz 1 ist damit bewiesen, daß die Bedingung auch hinreichend ist. 

(Eingegangen am 19. März 1957.) 
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On relatively complemented lattices. 
By G. SZÁSZ in Szeged. 

1 . Throughout this paper let L denote a relatively complemented lattice 
with greatest and least elements i, o, respectively'). Let further a, b, r be any 
elements of L such that 

(1) a^r^b. 

As usual, by a relative complement of r in [a, b] we mean an element 
s which satisfies the equations 

(2) rr\s = a, r^s = b. 

Clearly, s then also belongs to the interval [a, b\. 
J . v. NEUMANN has proved2) that if L is modular, then, for any com-

plement t of r, the element 

(3) s — (ayjt)rb = a^j(tr^b) 

is a relative complement of r in [a,b]. It is known that this theorem plays 
a very important role in the theory of modular lattices. 

In this paper we shall establish further connections between the com-
plements and relative complements of an element r of L. 

2 . First we state, without assuming the modularity, the following con-
verse of NEUMANN'S Theorem: 

T h e o r e m 1. Let L be any relatively complemented lattice with great-
est and least elements, and let a, b, r be any elements of L such that (1) holds. 
Let further s be any relative complement of r in [a, b]. Then there exists at 
least one complement t of r which satisfies (3). 

' ) For the concepts of lattice theory which will not be defined and for the results 
which will be used without proof in this paper, see G. BIRKHOFF, Lattice theory (Amer. 
Math. Soc. Coll. Publ., vol. 25), revised edition, New York, 1948. 

5) See, for example, G. BIRKHOFF, op. cit., p. 114. References to this theorem will 
L>e made below briefly by the term "NEUMANN'S Theorem". 
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This theorem is an immediate corollary of the second part of the more 
general 

T h e o r e m 2. Let L, a, b, t, s be as in Theorem 1 and let t (£L) be 
any solution of the equation system 

rr\t=-o, 
. rvjt—.i, 

(a t) r~\ b = s, 
a^j(tr\b) = s. 

Then there exists a relative complement y of a in [o, s] and a relative com-
plement z of b in [s, /'] such that t is a relative complement of s in [y, 2]. 

Conversely, if y is any relative complement of a in [0, s] and z is any 
relative complement of b in [5, /], then any relative complement t of s in[y,z] 
satisfies the equation system (4). (See the figure.) 

i 

0 

P r 0 0 f. In order to prove the first part of Theorem 2, let us consider 
any solution t of (4) and let us define two elements y, z by 

(5) y = sr\t, z = swf.. 
Then, by the choice of these elements, t is a relative complement of s in 
[y,z]. Furthermore, by the last two equations of (4), we have 

(6) y — sr^t = (a^ut)r^br\t = br\t, 
(7) ' z = s ^ t = a ^ ( t r ^ b ) < u t = a ^ t . 

We show that 

(8) ar\y = o, a^jy = s 
and 

(9) br>z = s, b^z = i. 
Indeed, (6), (1) and the first equation of (4) imply 

ar\y = ar\(br\t)==(ar\b)r\t — ar^t = rr\t==o, 

(4) 



50 G. Szász 

and (6) and the last equation of (4) imply 

Similarly, by (7), (1) and (4), we obtain (9). Clearly, by (5), (8) and (9), 
the first statement of our theorem is proved. 

Conversely, let y, z, t. be any elements satisfying the equations (5), (8) 
and (9). Then, firstly, 7 is a complement of r. Indeed, by (1), (5), (9), (2), 
(5) and (8), 

rr\t=(rc\b)r\(zrst) = rr^{br^z)r\t — 
= rr^sr\t = (r^\s)r\(sr\t) = ar\y = o, 

and dually, 
r u / = / . 

Moreover, t satisfies the last two equations of (4). For by (5), (8), (5) and (9) 

and by (5), (9), (5) and (8) 

(t r\b) = a^j ((t r\z) r^b) (t r\(z r\b)) = a^ (t == a\u y = s, 
thus completing the proof. 

By Theorems 1 and 2 we have the following 

C o r o l l a r y . Let L, a, b, r, s be as in Theorem 1. Then, by suitable 
choice of the complements a', b', s' of a, b, s, respectively, each solution t of 
(4) may be represented in the form 
(10) t=((a' n s)^s') n ( s u b') = (a' n s ) u (s' n ( s u b')). 

P r o o f . Let / be any solution of (4) and let y, z be defined as in the 
proof of the first part of Theorem 2. Then, with regard to the equations (5), 
(8) and (9), Theorem 1 implies that for some complements a', b', s' of a, b, s, 
respectively, 

y = o^>(a'r- s) = a' r\ s, 
2 = = b', 
t = (y^s')r\z = yKj(s' r^z). 

These representations obviously yield the corollary. 

3 . This section will be concerned with the special case when L is 
modular. We recall the reader that, by NEUMANN'S Theorem, complemented 
modular lattices are also relatively complemented; consequently, Theorem I 
and 2 may be applied for them. 

Using the results of the preceding section, we prove 

T h e o r e m 3. Let L be any complemented modular lattice and let a,b, r 
be any elements of L satisfying (1). Then, s being any relative complement 
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of r in [a, b] and a', b', s being arbitrary complements of a, b, s, respectively, 
the element t of the form (10) is a complement of r. 

Conversely, to each complement t of r there exists at least one relative 
complement s of r in [a, b] such that, by suitable choice of the complements 
a', b', s' of a, b, s, respectively, the equation (10) is satisfied3). 

P r o o f . Let s denote any relative complement of r in [a,b\. Consider 
the elements 

j/ = o u ( a ' n j ) = a ' o , s, 
. z = {s^jb')r\i — s^b', 

t — (y s') r^ z = ( (a ' r^ s) vJs ' ) (s w b') = 
= y\j(s' r\z) = (a' rs s) w (s' ^ (s w b')), 

where a',b',s' denote arbitrary complements of a, b, s, respectively. Then, 
by NEUMANN'S Theorem, 

1. y is a relative complement of a in [0 ,5]; 
2. 2 is a relative complement of b in [s, /]; 
3. / is a relative complement of s in [y, z ] ( = [ a ' r ^ s , 

Hence, by the second part of Theorem 2, t is a complement of r, as asserted. 
Conversely, if / is a complement of r, then, again by NEUMANN'S The-

orem, the element s. of the form (3) is a relative complement of r in [a, b]. 
It follows that, for this s, the element / is a solution of (4). Hence, by the 
Corollary obtained in the preceding section, we conclude that, with some 
complements a', b', s' of a, b, s, respectively, the element t may be represen-
ted in the form (10). This completes the proof of Theorem 3. 

(Received April 8, 1957.) -

8 ) The first part of this theorem may be proved also by a direct, but very tedious 
calculation. 
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On the Jordan—-Dedekind Chain Condition. 
By G. GRÁTZER and E. T. SCHMIDT in Budapest. 

1 . I n t r o d u c t i o n . The well known Jordan—Dedekind theorem of lattice 
theory was firstly generalised by G . BIRKHOFF ( [ L ] 1 ) p. 66) who proved the 
following assertion. 

Let L be a lattice satisfying the following two conditions2): 
(a) xr\y-<.y implies x-cx^jy (x,y£L); 
(/3) all bounded chains in L are finite. 

Then 
i in L all maximal chains between fixed end points have the 

^ ' | same length. 
Some attempts have been made to get a more general form of this 

result. R. CROISOT [2] and G. SZÁSZ [3] proved that if we replace condition 
(/?) by the weaker 

, . \ there exists at least one finite maximal chain between 
\ a and b (a<b; arb£L), 

then it results that ( J D ) holds in (he interval [a, b\. Although under weaker 
conditions, the Croisot—Szász theorem asserts the validity of (JD) only for 
the same family of lattices as the Birkhoff theorem. Therefore we have tried 
to generalise these theorems so that the general theorem be applicable to 
lattices with continuous as well as discrete chains. 

We have also tried to obtain a statement analogous to condition ( J D ) 
in the case of infinite chains of arbitary power. We have shown that with a 
suitable definition of the length and the maximality of an infinite chain, in 
distributive lattices (JD) holds. 

2 . T h e case o f finite chains. First we give a simplified proof3) 
for the 

') Numbers in brackets refer to the Bibliography given at the end of this paper. 
-) a -i b denotes that b covers a. 
') The idea of the proof is the same as of G. SzAsz [3]. 
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T h e o r e m 1 (The Croisot—Szász theorem). Let L be a lattice satisfy-
ing (a), and Ci,C2two finite chains of L with the same end points. If C, is 
a (finite) maximal chain of length r, then 

(a) C2 is a finite chain ; 
(b) the length of C2 is at most r; 
(c) Ca is maximal if and only if its length is r. 

P r o o f . Let 

Ci: a = a0 < аг < • • • < ar — b. 

We use an induction on л The case r = 1 is trivial in any lattice. We assume 
the validity of the statement of the Theorem for r—1. Suppose it is possible 
to choose a subchain of C2 of length r + 1 : 

a = x0<x1< ••• <xr+i^=b. 

Consider the chain 

(*) Q\ gűi^JÍ! ^ ••• ^ al^xT+l = b 

and denote by t the least integer with xi Ш аг (t Ш 1). If i and / + 1 ̂  t, then 
trivially űi wXi < о , ^ x i + i . If i and / + 1 < t, f r o m ' a ^ a , it follows a — xir\a1 = 
= xi+i R\au hence in view of (A) XÍ-ÍXÍ^ÜÍ and x j + i ^ x ^ w a , , excluding 
the possibility x i ^ a l = Xi+i Consequently, x j ^ a 1 = x j l . 1 ^a 1 is impossible 
unless j = t—1. Thus the length of (*) is r and the proof is completed. 

We prove also the following, somewhat generalised form of the Croisot— 
Szász theorem. 

T h e о re m 2. Let L be a lattice satisfying (a), Ci and C2 two finite 
chains of L with the same end points. Then Q and C2 can be refined so that 
the refined chains have the same length. 

Theorem 1 follows at once from Theorem 2. On the other hand, we 
show that Theorem 1 implies Theorem 2. 

In the proof of the Theorem 2 we may assume, without loss of the 
generality, that the length m of C2 is less than or equal to the length n of Ci. 
There exists a maximal chain4) M (with the same end points as Ci and C2) 
which is a refinement of C2. If M has more than n elements, then C2 has a 
refinement of length n and thus the statement of Theorem 2 is obvious. So 
we may suppose that M has at most n elements, but this contradicts 
Theorem 1. 

*) The existence of M is equivalent to the Axiom of Choice of ZERMELO ( [ 1 ] , pp. 42—43).. 
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3 . Counter -examples . G. SzAsz [4] proved that if we define the 
length of an infinite chain as the power of the set of its elements, and call an 
infinite chain maximal, if it is no proper subchain of any other one, then 
even in distributive lattices condition ( J D ) does not hold. This possibility is 
illustrated also by the following 

E x a m p l e 1. Let R be the chain of the rational numbers of the 
interval { 0 , 1 ] and V the chain of all real numbers of [0, 1]. In the lattice 
R- V (i. e. in the cardinal product of R and V, in the sense of [1] p. 7) all 
the elements (x, x) ( x rational) form a maximal chain between ( 0 , 0 ) and 
(1,1) . This follows at once from the fact that in the case y=^z,(y, z) and 
(x, x) are incomparable, where x is an arbitary rational number between y 
and z. Hence in R- V there exists a countable maximal chain between ( 0 , 0 ) 
and (1 ,1 ) . On. the other hand, the elements (x, 0) and (h y) form a maximal 
chain of the power of continuum. 

The following problem arises. Let C\ and C2 be maximal chains (with 
the same end points). Is then Cx a homomorphic image of C2 or C2 a homo-
morphic image of Ci, at least in distributive lattices? In general, this asser-
tion fails to hold as it is shown by the following 

E x a m p l e 2. Let A be a well-ordered and B a dually well-ordered 
infinite bounded chain with the bounds O l f A and 0 2 , h (Ou h i A; 02, h € B). 
In the lattice A-B, all the elements (x, 0 2 ) and (Iuy) form a maximal chain 
Ci, and the elements (0lty) and (x,I2) form a maximal chain C2. Let us 
suppose e .g . that Cs is a homomorphic image of C,. Using the Duality 
Principle we. may assume without loss of generality that the homomorphic 
image of (A, O t) is greater than or equal to (Oi, /2). In this case all the elements 
(Ouy) of C2 form a chain isomorphic with B, which is a convex 
subchain of the homomorphic image of A. Since a homomorphic image of 
a well-ordered chain is a well-ordered chain and a convex subchain of a 
well-ordered chain is again well-ordered, we get that B is a well-ordered 
and at the same time dually well-ordered chain, i. e. B is finite, in con-
tradiction to the hypotheses. 

4. The case of infinite chains. Our aim is to establish an analogon 
of the condition (JD) for infinite chains in distributive lattices. By a cut of 
a chain we mean a subdivision of the chain into two non-void convex sub-
chains and define the length of a chain as the power of the set of its 
different cuts. Thus the length of a finite chain consisting of n -f-1 elements 
is n as usual, while e. g. the length of the chain of all rational' numbers is 
equal to the power of the continuum. 
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A chain C well be called strongly maximal, if 
(a) C is no proper subchain of any other one with the same end points; 
(b) for every homomorphic image of C, (a) is valid. 
With the aid of these notions we prove: 

T h e o r e m 3. If L is a distributive lattice6), then all strongly maximal 
chains between fixed end points have the same length; i. e. an analogon of 
the condition (JD) holds in L. 

P r o o f . Let C be a strongly maximal chain in L with the end points 
a and b ( a < b ) . We cut C into two convex subchains, I and J (a £ /, b £ J). 
We consider the congruence relation 0 of L induced by / = a and J=b. 
In [5] we have shown the following assertion: If z$[x,y\, then z = x(@,,y) 
is false (Qx,y denotes the congruence relation induced by * = >>). This result 
implies at once a^b(0). Clearly from (b) [a, b]j0 ^ 26), hence ©produces 
a cut on all chains between a and b. 0 is the minimal congruence relation 
with a=I and J=b, but from [ o , i j / 0 s 2 it is clear that 0 is the maxi-
mal one with the same property. It implies that in [a, b\ exists one and only 
one congruence relation with I ^ a , J ~ b and a ^ b , hence different con-
gruence relations (which are induced by a cut of C) define different cuts on 
strongly maximal chains between a and b. Thus the length of a strongly 
maximal chain between a and b is equal to the power of the set of all con-
gruence relations on [a, b] which are induced by a cut of C. Thus the proof 
is completed7). 

R e m a r k . If, following A. G. K U R O S [6], we consider only complete 
chains, i. e. chains for which every qut goes through an element (i. e. either 
J has a 1. u. b. or J has a g. 1. b.), then the above notion of length coincides 
with the usual one. Since in a complete lattice every maximal chain is 
complete, we obtain that in complete distributive lattices Theorem 3 holds 
with the usual notion of length (but in general not with the usual notion of 
maximally). 

5) We conjecture that Theorem 3 holds in semi-modular lattices too. 
6) 2 denotes the lattice with two elements. 
") We remark that it is possible that two chains have the same length, 'one of them 

is strongly maxima), the other has not this property. This may be shown by the two 
chains considered in Example 1. 

) 



56 G. Grâtzer and E. T. Schmidt: Jordan—Dedekind Chain Condition. 

Bibliography. 

( L ) G. BIRKHOFF, Lattice Theory, Revised Edition, New York, 1 9 4 8 . 

|2] R. CROISOT, Contribution à l'étude des treillis semi-modulaires de longueur infinie, 
Annales Sci. Ecole Normale Sup., 6 8 (1951), 203—265. 

[3] G. SzAsz, On the structure of semi-modular lattices of infinite length, Acta Sci. Math., 
14 (1951,1952), 239—245 

14] G. SzAsz, Generalization of a theorem of Birkhoff, Acta Sci. Math., 16 (1955), 89—91. 
(Correction, p. 270.) 

|5] G . GRATZER and E. SCHMIDT, Hálók ideáljai és kongruenciarelációi. I (Ideals and con-
gruence relations in lattices. I), Magyar Tud. Akad. Mat. Fiz. Oszt. Közi., 
7 (1957), 9 3 - 1 0 9 . 

[6] А. Г. К у р о ш , Композиционные системы в бесконечных группах, М а т е м . 
С в о р н и к, 16 (1945), 59—72. 

(Received April 2, 1957.) 



5T 

Über die orthogonalen Funktionen. I. 
Von KÂROLY TANDORI in Szeged. 

Einleitung. ') 

D . MENCHOFF [ 1 ] und H . RADEMACHER [ 1 ] haben den folgenden Satz 
bewiesen: 

Wenn die Koeffizientenfolge {a,.} die sogenannte Menchoff—Rademacher-
sehe Bedingung 

CO 

( 1 ) ^ fl* log*/7 < <*> 
n=2 

erfüllt, ist die orthogonale Reihe 
OD 

(2) 2ancpn(x) 
n = 0 

für jedes orthonormierte Funktionensystem {q>n(x)} im Grundintervall fast 
überall konvergent2). 

D . MENCHOFF [ 1 ] hat auch gezeigt, daß die Bedingung ( 1 ) im allge-
meinen nicht geschwächt werden kann, in dem Sinne, daß die Faktorenfolge 
{logn} durch keine langsamer ins Unendliche konvergierende Folge 
ersetzbar ist. Nämlich gilt der folgende 

Menchoff sehe S a t z . Wenn die positive Zahlenfolge {W(n)} die 
Bedingung 

W(n)=o(\ogn) 

erfüllt, dann kann ein orthonormiertes Funktionensystem {0„(x)} und eine Koef-

Diese Arbeit enthält u. a. den ausführlichen Beweis der in den vorläufigen Mit-
teilungen [1], [2], [3] veröffentlichten Resultate, jedoch werden einige Resultate in einer 
allgemeineren Form bewiesen. 

2 ) In dieser Arbeit wird der Logarithmus mit der Basis 2 verwendet, man beschränkt 
sich nur auf reelle orthogonale Reihen und es wird angenommen, daß das Grundintervall 
endlich ist. 
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ßzientenfolge {o„} angegeben werden, für die 
CO 

2 al w\n) < °o 
1 = 0 

ist und die orthogonale Reihe 

<3) ¿ > . 0n(x) 
n=0 

im Grundintervall überall divergiert. 
Später hat D. MENCHOFF [2] gezeigt, daß in seinem Satz das Funktionen-

system {Ö>„(x)} im Grundintervall gleichmäßig beschränkt gewählt werden kann. 
In dieser Arbeit wird • mit Benützung der Grundideen von D. MENCHOFF 

zuerst die folgende Verschärfung des Menchoffschen Satzes bewiesen (Satz I): 
Es sei {#„} eine positive, monoton nichtwachsende Zahlenfolge, die die 

Bedingung 
CD 

(4) 2 a« log2 n = oo 
»=2 

erfüllt. Dann kann ein (von der Folge, {an} abhängiges) orthonormiertes Funk-
tionensystem {0n (*)} angegeben werden, für welches die Reihe (3) im Grund-
intervall überall divergiert. 

Es wird gezeigt, daß dieser Satz den Menchoffschen Satz enthält. 
Man kann leicht einsehen, daß in Satz I die Monotonität wesentlich 

ist; sonst ist die Behauptung im allgemeinen nicht gültig. Es kann nämlich 
eine positive, lakunäre Koeffizientenfolge {a„} angegeben werden, für die (4) 
erfüllt ist, dagegen 

3) 
(5) 2a"< 0 0 

n=0 

ist (es sei z. B. a 0m = A für m= 1 , 2 , . . . und a„ = 0 sonst). Dann ist aber 
2 - m 

•die orthogonale Reihe (2) für jedes orthonormierte System {ynlx)} im 
Grundintervall fast überall absolut konvergent3). 

3) Es sei nämlich {?>„ ( * ) } ein in dem Grundintervall [a, 6] orthonormiertes Funkti-
onensystem. Auf Grund von (5) ist 

b b 
\ 1/2 

2>» [\<Pn^)\dx^{b-af2 [<pl(x)dx ! =(6-a)"2Jran<oo 
n=0 J n=0 \J J n=0 a a 

und so ergibt sich mit Anwendung des B. Levischen Satzes, daß die Reihe 

J > „ I M * ) I 
*=0 

im Grundintervall fast überall konvergiert. 
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Aus Satz I ergibt sich, daß für eine positive, monoton nichtwachsende 
Koeffizientenfolge ,{an} die Menchoff-Rademachersche Bedingung nicht nur 
hinreichend, sondern auch notwendig dafür ist, daß die orthogonale Reihe (2) 
für jedes orthonormierte System {<p„(x)} im Grundintervall fast überall kon-
vergiert. 

In § 2 wird gezeigt, daß in Satz I das Funktionensystem {®n(x)} im 
Grundintervall gleichmäßig beschränkt gewählt werden kann. 

Es sei {<pn(*)} ein beliebiges, im Grundintervall [a, b]. orthonormiertes 
Funktionensystem. Ist {ß„} £ P, d. h. ist 

g? 
£ a 2 n < oo, 

• *=o 

Î an 
j n I die Bedingung (1) und so konvergiert 

die orthogonale Reihe 
00 a 

• S i " 9"» (x) • log n T w 

nach dem Menchoff-Rademacherschen Satz im Grundintervall fast überall. 
Mit Anwendungeines bekannten Kroneckerschen Hilfssatzes4) ergibt sich für 
die Partialsummen . der quadratisch integrierbaren Entwicklungen die folgende 
von H. RADEMACHER stammende Abschätzung: 

/S/ {Ö„} 6 P, so gilt im Grundintervall fast überall 
N 

(6) Z an <pn (x) = o (log N). 
n=0 

{Siehe H . RADEMACHER [ 1 ] , S. 122.) ' 
Es sei {/„} eine positive, monoton nichtabnehmende Zahlenfolge, die 

die Bedingung 

. _ . . N = 2 «„ 

erfüllt. Dann erfüllt sich die Bedingung (1) für die Folge |y-|. u n d s 0 kon-

vergiert die orthogonale Reihe 

v f W 
n - 0 In 

4) Der Kroneckersche Hilfssatz lautet folgenderweise. Es sei {/n} eine positive, mono-
ton nichtabnehmende, ins Unendliche konvergierende Zahlenfolge. Wenn die Reihe 

rn 
konvergent ist, dann gilt Uq + . „ + U S = o(tN) (siehe z. B . A . ZYGMUND [ 1 ] , S. 255). 
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nach dem Menchoff-Rademacherschen Satz im Grundintervall fast überall. 
Daraus ergibt sich mit Anwendung des Kroneckerschen Hilfssatzes die soge-
nannte 

R a d e m a c h e r s c h e A b s c h ä t z u n g . Wenn die positive, monoton 
nichtabnehmende Zahlenfolge {/„} die Bedingung (7) erfüllt, dann gilt im 
Grundintervall fast überall 

(8) Z<Pn(x) = o(b). 
n=0 

(Siehe in weniger scharfer Form, nämlich mit der Abschätzung o (1/N log*** N) 
(e>0) statt o(lN), bei H . RADEMACHER [1 ] , S. 1 2 2 . ) 

In § § 3 — 4 wird mit Hilfe des Menchoffschen Satzes bzw. mit der von 
uns gegebenen Verallgemeinerung bewiesen, daß die Abschätzungen (6) und (8) 
im allgemeinen nicht verbessert werden können. 

Es sei {*„} eine positive, monoton nichtabnehmende Zahlenfolge, die 
die Bedingung 

(9) i j r < 
.. n=0 

erfüllt. Dann ist 
o 

® | r ® J 

n=0 J n=0 Art 
a 

und so ergibt sich mit Anwendung des B. Levischen Satzes, daß die Reihe 
CD 2 / \ 

V- <pn(x) 
"=0 f n 

• fea 
im Grundintervall fast überall konvergiert. Daraus erhalten wir mit Anwen-
dung des Kroneckerschen Hilfssatzes die folgende Abschätzung: 

Wenn die positive, monoton nichtabnehmende Zahlenfolge {¿„} die Bedin-
gung (9) erfüllt, dann ist im Grundintervall fast überall 

( 1 0 ) • i > ; ( x ) = 0 ( & ) . 

n=0 

(Siehe in weniger scharfer Form, mit der Abschätzung o(JVlog1+eJV) ( t > 0 ) 
statt o(A;v), bei S. KACZMARZ [1], S. 99.) 

Von der Abschätzung (10) ergibt sich die folgende Behauptung: 
Wenn die positive, monoton nichtabnehmende Zahlenfolge {¿„} die Bedin-

gung (9) erfüllt, dann ist im Grundinteivall fast überall 
(11) <ps(x) = o(A.v). 
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In § 5 wird gezeigt, daß die Abschätzungen (10) und (11) im allge-
meinen nicht verbessert werden können. 

Betrachten wir nun die Lebesgueschen Funktionen 
» 

.V 

LN(X)= F ¿>«(X)<M0 
J n=0 

dt ( A T = 0 , 1 , . . . ) , 

die zu den Partialsummen der Entwicklungen nach dem in dem Grundin-
tervall [a,b\ orthonormierten Funktionensystem {«¡P*(.X)} gehören. Nach der 
Bunjakowski-Schwarzschen Ungleichung ist . 

b 

J ZMx)<pn(t) tf/ S ( f t — ( 9 » « ( 0 
CT a 

und so gilt im Grundintervall überall 

( 1 2 ) . ^ ^ - ^ ( ¿ ^ w ) 1 ' " ( i V = o , i , . . . > . 

Daraus ergibt sich auf Grund von (10) die folgende Abschätzung: 
Wenn die positive, monoton nichtabnehmende Zahlenfolge {ln} die Bedin-

gung (9) erfüllt, dann ist im Grundintervall fast überall 

( 1 3 ) Lx(x) = o (¿.v). 

(Siehe in weniger scharfer Form, mit der Abschätzung o(l'rJvTogUE N) (S > 0) 
statt o(ky),- bei S . KACZMARZ [1] , S . 9 9 . ) 

In speziellen Fällen kann die Abschätzung (13) verschärft verden: 
Ist das Funktionensystem {</?„(*)} im Grundintervall gleichmäßig be-

schränkt; oder sind die Lebesgueschen Funktionen des Systems im Grundinter-
vall fast überall konstant, so gilt im Grundintervall überall, bzw. fast überall 

<14) LK(x) = 0(N'•*). 
» 

{Siehe S. KACZMARZ [1] , S. 9 9 . und H. RADEMACHER [1] , S. 1 3 0 . ) 

Der erste Teil der Behauptung ist aus der Ungleichung (12) evident, 
der zweite Teil kann mit einer einfachen Rechnung bewiesen werden. In § 6 
wird mit Anwendung der Ergebnisse von H. .RADEMACHER gezeigt, daß die 
Abschätzung (13) im allgemeinen nicht verbessert werden kann. Daß die 
Abschätzung (14) im allgemeinen nicht verbessert werden kann, wurde von 
H . RADEMACHER bewiesen. Das Rademachersche System {/"„(*)} ist nämlich 
im Intervall [0 ,1] gleichmäßig beschränkt, die Lebesgueschen Funktionen 
sind im Grundintervali fast überall je einer Konstante gleich und es gilt im 
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Grunuintervall fast überall 
i 

y 

f 2 r , ( x ) f , ( i ) 
J 1 1 = 0 

dt s ôNm (N = 0 , 1 , . . . ) , 

wo d eine von TV unabhängige positive Zahl ist (H. RADEMACHER [1], S . 130-134) . 
In den folgenden Paragraphen dieser Arbeit werden ähnliche, mit der 

Cesäroschen Summation zusammenhängende Fragen besprochen. 
In § 7 wird mit Anwendung eines Summationssatzes von D. M E N C H O F F 

folgendes bewiesen: --
Für die ( C , « > 0)-Mittel o'f>(x) der quadratisch integrierbaren Entwick-

lungen gilt die Abschätzung 

(15) aj? '(x) = o(log log N) . . . 

im Grundintervall fast überall. 
Dieser Satz ist eine Verschärfung eines Satzes von G . ALEXITS [1]. Wir 

werden zeigen, daß die Abschätzung (15) im allgemeinen nicht verbessert 
werden kann. 

In § 8 wird die Verallgemeinerung eines Satzes von I. S. GÄL bewiesen, 
der sich auf die (C, a > 0)-Mittel der orthonormierten Funktionen bezieht und 
folgenderweise lautet:' " 

Es sei {/>..,}' eine positive, monoton nichtabnehmende Zahlenfolge, die 
die Bedingung (9 ) erfüllt. Ist « > 0 , so gilt im Grundintervall fast überall 

0 6 ) 

Dieser Satz wurde für a — 1 von I. S . GÄL [1] mit der Abschätzung 
o([/'ÄMogI+£ N) (s > 0 ) statt o(iy) bewiesen. Später wurde dieser Satz von 
G . ALEXITS [ 1 ] in einer etwas allgemeineren Form bewiesen. Es wird auch 
gezeigt, daß die Abschätzung (16) im allgemeinen nicht verbessert werden kann. 

In § 9 werden^ die zu der (C, a > 0)-Summation gehörigen Lebesgue-
schen Funktionen 

» 

J I AV » = O 

dt (N= 0 , 1 , . . . ) 

untersucht. Auf Grund der bekannten Eigenschaften der Faktoren Am* ist evi-
dent, daß für a > 0 im Grundintervall überall 

L W ( x ) g m a x L , ( x ) ' ( N = 0 , 1 , . . . ) 
OSJĉ JV 



Über die orthogonalen Funktionen. 
69 

ist. Daraus ergibt sich auf Grund der Abschätzungen (13) und (14) die folgende 
Behauptung: 

Wenn die positive, monoton nichtabnehmende Zahlenfolge {¿„} die Bedin-
gung (9) erfällt, dann ist für a >0 im Grundintervall fast überall 
(17) L(£\x) = o(k»). 
Ist das Funktionensystem {cpn(*)} 'm Grundintervall [a, b] gleichmäßig be-
schränkt, so ist für a > 0 im Grundintervall überall 
(18) Lp(x) = 0(N112). 

Durch eine Modifikation des Grundgedankens von § 6 kann man zeigen,, 
daß im allgemeinen die Abschätzungen (17) und (18) nicht verbessert wer-
den können. Auf Grund dieser Ergebnisse ist ersichtlich, daß von der 
gewöhnlichen Summation zu den Cesàroschen Mitteln übergehend, die Größen-
ordnung der Lebesgueschen Funktionen im allgemeinen nicht abnimmt. 

Wir werden sehen, daß die Fälle a > 0 und a = 0 gleichzeitig behandelt: 
werden können. Trotzdem werden die zwei Fälle gesondert untersucht, weil 
der Fall a > 0 im Vergleich zum Fall a = 0 wesentlich komplizierter ist. 

Ich möchte den Herren Professoren G . ALEXITS und B . SZ.-NAGY meinen: 
aufrichtigen Dank aussprechen für ihre wertvollen Ratschläge bei der Fertig-
stellung der vorliegenden Arbeit. 

§ 1. Die Verallgemeinerung des Menchoffschen Satzes. 

In diesem Paragraphen wird zuerst die folgende, schon in der Einleitung 
erwähnte Verschärfung des Menchoffschen Satzes bewiesen. 

Satz I. Es sei {o,,} eine positive, monoton nichtwachsende Zahlenfolge,, 
für die die Bedingung 

CD 

(1.1) 
n = 2 

erfüllt ist. Dann kann ein im Grundintervall [a, b] orthonormiertes Funktionen-
system {0„(x)} angegeben werden, für welches die orthogonale Reihe 

( 1 . 2 ) j t a * & n ( x ) 
»=o 

im Grundintervall [a, b] überall divergiert. 
Mit anderen Worten, ist für eine positive, monoton nichtwachsende Folge 

{û„} die Menchoff-Rademachersche Bedingung 
00 

£ a l log2/i'< <» 
n=2 
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nicht nur hinreichend, sondern auch notwendig dafür, daß die Reihe 
CO 

2 a«<pn(x) 
«-0 

für jedes orthonormierte System {g>„(x)} fast überall konvergiert. 

Zuerst sei gezeigt, daß aus Satz I der Menchoffsche Satz folgt. Zum 
Beweis dieser Behauptung benötigen wir den folgenden 

H i 1 f s s a t z 1. Es sei {W(n } eine positive Zahlenfolge, für die 

W(n) = o(log n) 

gilt. Es kann eine positive, monoton nichtabnehmende Folge {v(n)} angegeben 
werden, die die Bedingungen 

und 

"-i 1 
(1'4) ü§t{n log n) v2(n)== °° 
erfüllt. 

B e w e i s von H i l f s s a t z I. Nach unserer Annahme ist-

logn w 

Ohne Beschränkung der Allgemeinheit kann angenommen werden, daß 
W(n)(logn)-1 S 1 für jedes n ^ 2 gilt. Da 

^ r 

' n log n 
ist, kann eine Indexfolge {Nk}(N0 = 2) bestimmt werden, so daß die folgen-
den Bedingungen erfüllt werden: 

<h5> (T5g?)2 - F f ü r n ~ N " - 1 • 
und 

. -Vfi-1 , 

( 1 - 6 ) Z — r = 2 — r (A: == 1 , 2 , . . . ) . m log m m log m V ' ' 

Es sei 
L - V * - ' . U / S 

< 1 . 7 ) » ( / ! ) = = \ Z z r r — - für Nk-i ±Hn<Nk ( * = 1 , 2 , . . . ) . 



Über die orthogonalen Funktionen. 65 

Die so definierte Zahlenfolge {¡-(n)} ist positiv und nach (1 .6) monoton 
nichtabnehmend. Nach (1 .5 ) und (1 .7 ) ist 

i ä ( n log8 n)i?(n) Uti»=t, ( " '°g3 nW(n) = ' 

also wird die Bedingung ( j . 3 ) erfüllt. Nach ( 1 . 7 ) gilt für jedes s 

X"1 J y N"* | V | s 

s (n log n)v-(n) ~ ¡Ei „ J ^ . j (n log n)v-(n) ~ fei ' — S' 

woraus (1 .4 ) folgt. 
Damit haben wir den Hilfssatz I bewiesen. 
Es sei {W(n)\ eine positive Zahlenfolge, für die die Bedingung W(n) — 

= o(log/i) erfüllt ist. Mit Anwendung von Hilfssatz 1 ergibt sich eine positive, 
monoton nichtabnehmende Folge {•?;(n)\, die die Bedingungen (1. 3) und (1. 4) 

erfüllt. Es sei nun fl„ = fli — u n d a„ — - = — für n ^ 3. Es ist 
* (2) \!n log1/? v(n) 

klar, daß diese Folge positiv, monoton nichtwachsend ist und danach (1 .4) 
CO OD | 

V 2 , 2 N T " 1 

X a» log n = -—¡——— 00 
^ s log n) r(n) 

gilt, wird die Bedingung (1. 1) erfüllt. So gibt es nach dem Satz I ein im 
Grundintervall [a, b\ orthonormiertes Funktionensystem {&„(x)}, für welches 
die orthogonale Reihe (1 .2) im Grundintervall [a,b\ überall divergiert. Nach 
( 1 . 3 ) gilt aber: 

Zal\V\n)=Z 
W2(n) 

log3 n ) r ( n ) 

Daher erfüllt die Koeffizientenfolge {a,,} und das mit Anwendung von Satz 1 
gewonnene Funktionensystem {<£>„(*)} die in dem Menchoffschen Satz 
vorkommenden Bedingungen.. 

Damit haben wir bewiesen, daß aus Satz 1 der Menchoffsche Satz folgt. 
Zum Beweis des Satzes 1 benötigen wir die folgenden zwei Hilfssätze. 

H i l f s s a t z II. Es seien c ( § . l ) und positive ganze Zahlen. 
Es kann ein im Intervall [0, 5] orthonormiertes System von Treppenfunktionen5) 
{fi(c, p; x)} (/ = 1 2 p ) mit den folgenden Eigenschaften angegeben wer-

den: zu jedem Punkt x £ 
2 3 ^ 

c . gibt es eine von x abhängige natürliche 

5) Eine Funktion in (a, b) heißt eine Treppenfunktion, wenn (a, b) iij endlichviele 
Teilintervalle zerlegt werden kann, so daß die Funktion in jedem Teilintervall kostant ist. 

A 5 
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Zahl m(x)(< p), so daß die Funktionswerte fx(c,p; x ) , p ; x) posi-
tiv sind und 

(1.8) /(c, p;x)-{-••• p; x)^Afcp.log p 

gilt, wo A eine positive, von x, c und p unabhängige Zahl ist. 

Für c = 1 wurde dieser Hilfssatz von S. KACZMARZ [2] bewiesen; der. 
folgende Beweis für beliebiges c ist ähnlich dem Beweis von S. KACZMARZ 

für den Fall c = 1. 

B e w e i s v o n H i 1 f s s a t z II. Es sei 
1 ] M 

fi(c,p;x) — r für — - , — (k=\,...,Acp; l~\,. .,2p). 
k-p—l-~ l c p c p j 

Dann ist 

(fj(c,p;x)dx=27 —!——1 (/ = 1 , . . 2 p), 

o . \ 

woraus folgt 

0 - 9 ) [pi(c,p-,x)dx^ (1= 1 , . . 2 p ) , 
o ' 

wo A' eine von c und p unabhängige Zahl ist. 
Ferner haben wir für />/: 

4 

\fi(c,p-, x)fj(c, p; x)dx=~ 2 
J • cp k=i 

1 1 1 1 

cp i—jk^\ ) , • . 1 . . " . 1 I 
1 2 k - P - J - 2 

| | l (4c-!);>-• j Hc-Up-j j 4 6 U 
Daraus folgt 

CP i—j ) k=l-p-i ,r 1 k=A-p-j 
* 2 2') 

f " - I i i 1 
fi(c,P) x)fj{c, p; x)dx = — j— 21 - Z 

•> cp l J \k=l-f-i. 1 k=(4c-l)p p-ifc k=(4c-l)p-i+l ^ 1_ . 
2 " 
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und so ist 

( 1 . 1 0 ) §Mc,p;x)fj(c,p;x)dx 

1 1 i—J + i—J J 2 
cp p 

Um von den im Intervall [0,4] so definierten Funktionen ft(c,p-,x) 
(/== 1,..., 2p) ein im Intervall [0,5] orthogonales Funktionensystem zu erhal-
ten, sollen diese Funktionen im Intervall [4,5] wie folgt definiert werden. 
Wir teilen das Intervall [4,5] in N=2p(2p—\) Teilintervalle gleicher Länge 
¡¡j ( l S / g 2p, 1 ' s / s 2 p, i^j). Es sei, für 1=1,. ..,2p, 

fl(c,p;x)=< 

1 N\aK] x i f u , 

/ — N\a,j\ sign a,j xi IhU 

i sonst, 
wo 

= J/i(c;p; x)fj(c,p\x)dx 

gesetzt wird. Die so definierten Treppenfunktionen { f i ( c , p ; x)} ( / = 1 , . . . , 2p) 
bilden im Intervall [0,5] offenbar ein orthogonales System, ferner ist 

5 4 • • " 

J , | I l j 2p 

ff(c,p; x)dx= ff(c,p;x)dx+ -=-.Zl«<."l + - y K 4 ~ J £ n=l & «=l+l 
o o • : 

Hieraus folgt auf Grund von (1 .9 ) und (1 .10) 
5 

(1 .11) j f f ( c , p - , x ) d x ^ ( / = l , . . . , 2 / > ) , 
• 0 

wo À" eine von c und p unabhängige positive Zahl ist. 

Ist x £ -^-j, so gibt 'es eine von x abhängige natürliche Zahl m(x) 

(< p) derart, daß 

2p+m(x) 2p + m(x) + 
cp cp 9 
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gilt. Nach der Definition von f(c,p; x) sind die Funktionswerte f(c, p;x),..., 
f„i-m(s>(c, p-, x) positiv und es gilt 

)>rni(.r) _ ;>fm(T) j pi»ix) j 

• Z Mc,p;x)= Z r= 2 —r-. 

Für die normierten Funktionen 
' 5 \-l/2 

ft(c,P',x)=\ J ff(c,p\x)dx > f(c, p; x) (1 = 1,...,2p) 
{0 ) 

ergibt sich dann auf Grund von ( I . 11) die Ungleichung (1.8). 
Damit ist der Hilfssatz II bewiesen. 
Ist I=[u, r j ein beliebiges endliches Intervall, so definieren wir: 

, , , . b f,\c,p-,b-—- f ü r ü < x < r , f,(c,p,I\x> = y l v—u) 
(.0 sonst 

( / = 1 , . . . , 2p) und 

F(c, /) 
i — ü 2 , v—u 3 , . 

+ U, —i- r + " • 5 c 1 ' 5 c 
Dann ist 

( 1 . 1 2 ) \f(c,p, /;x)f}(c,p, f;x)dx-
, 0 für / =j= j, 

für i = j , 

0-13) 

und für x £ F ( c , / ) gibt es nach (1 .8 ) eine von x abhängige natürliche Zahl 
m(x)(<p) derart, daß die Funktionswerte f(c,p, I;x),.. p, l\x) 
positiv sind und die Ungleichung 

(1,14) A(c,p,I;x)+---+fP+mU)(c,p,l;x)^Y~b Afölogp 
besteht. 

H i l f s s a t z III. Es sei {a,,} eine positive, monoton nichtwachsende Koef-
fizientenfolge, die die Bedingung (1.1) erfüllt. Dazu kann man ein im 
Grundintervall [a,b\ orthonormiertes Funktionensystem {0„(x)} mit der folgen-
den Eigenschaft angeben: 

Für fast alle Punkte x des Grundintervalls und für unendlich viele von 
x abhängige natürliche Zahlen m kann eine natürliche Zahl nm(x)(<2m+-—\) 

6) Mit , « ( / / ) wird das Lebesguesche Maß der Menge H bezeichnet. 
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angegeben werden, so daß die Funktionswerte <2>Vm(jc),..., 0yn+>tm(x)(x)gleiches 
Vorzeichen haben und -..'¿' .• 

0 - 1 5 ) h ^ v m + « m < » | > B ± -
-V+l 

gilt; dabei ist N0 = 0', ' Nm = 2(2-\ \-2m) (m ^ 1) und B ist eine von x 
und m unabhängige positive Zahl. 

B e w e i s v o n Hi 1 f s s a t z . I I I . Wir konstruieren in [a,b] zuerst ein 
orthonormiertes System von Treppenfunktionen {0„ (x ) } (n = 0, 1 , . . . ) und meß-
bare Mengen Fm (m = 0, 1 , . . . ) , so daß die folgenden Bedingungen erfüllt sind: 

a) für jedes x £ Fm gibt es eine natürliche Zahl nm(x) (< 2m+- — 1), so 
daß die Funktionswerte 0ym(x),..., 0Xm+nmir)(x) gleiches Vorzeichen haben, 
und (1 .15) mit einer von x und m unabhängigen Konstanten B gültig ist; 

b) die Mengen Fm (m = 0 , 1 , . . . ) sind stochastisch unabhängig7) und 
es gilt 

(1. 16) u(Fm) s ^ ^ m i n {1> Nm+ial-m+l \og2Nm+i}. 

Der Grundgedanke der folgenden Konstruktion wird von den Arbeiten 
von S. KACZMARZ [2] und D. MENCHOFF [1] entnommen. 

Zuerst soll erwähnt werden, daß 

(1 .17) v NM+i < 4Nm (m = 1 , 2 , . . . ) 

ist. Da die Folge {ö„} positiv,, monoton nichtwachsend ist, gilt für jedes 5 

•¡V1 s-l -vk+r' s 1 
2 al l o g 2 « = 2 " 2 log1' n < ^(Nkrl—Nk)aik \og2NM, 

v=Nl k= 1 n—.Vk k= 1 

also folgt auf Grund von (1. 17) 

• - V i • 
2 al log2 n < 16 2 AVa'y,. log2 Nk 

• n=.Vj 1=1 ' 

und so ist nach ( 1 . 1 ) 
03 

2 Nm+la%m+l log2 Nm+1 = 

7) D. h. für jede endliche Indexfolge k1<ki<---< kn gilt 

./'n^n---n Fkn) _ (Fk) ,,(Fh) 
b—a b—ä b—a b—a 
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Daraus entnehmen wir, daß aus (1 .16) die Beziehung 
CD 

( 1 . 1 8 ) Zr(Fm)=<x> 
m=l) 

folgt. 
Hieraus und aus der stochastischen Unabhängigkeit der Mengen Fm 

ergibt sich auf Grund des zweiten Borel-Cantellischen Lemmas8): 

l*(\\m Fm) = b—a. 
M~* CO 

Für lim Fm gilt aber ( 1 . 1 5 ) für unendlich viele m. 
in-»-co . . . 

Damit wird also der Hilfssatz III bewiesen werden. 
Nun gehen wir zur Konstruktion der Funktionen Q>n(x) und der Mengen 

Fni über. 
Wir beginnen mit der Bemerkung, daß aus der Definition der Index-

folge {Nk\ folgt: 

( 1 . 1 9 ) f r T r > 4 - f c , m + \ s 4 - l o g N , „ + 1 (m = 0, 1 , . . . ) . 

. 8 ) Dieses Lemma (siehe z. B. W. F E L L E R [ I ] , S . 155) lautet folgenderweise: 
Sind die meßbaten Mengen Em(^[a, öj) ( / / 7 = 0 , . . . ) stochastisch unabhängig und ist 

»1=0 
so gilt 

/"(Üm Em) = b—a. 
. m-*-co 

Diese Form des Borel-Cantellischen Lemmas kann z. B. auf folgender Weise bewiesen 
werden. Wegen der stochastischen Unabhängigkeit gilt für alle / und s (s^l) 

( > ( U £, .) = ( » - « ) - / < (C U £ t ) = C f t ) = 

wo CH die Menge [a,b\ — H bezeichnet. Auf Grund der Annahme (*) gilt s M S h 
aiso ist 

"(iL E*)=6"a-
Daraus ergibt sich auf Grund der Relation 

m-*-CD i=0 k=1 
unsere Behauptung. 
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Nun wenden wir den Hilfssatz II an, undzwar mit der folgenden Wahl 
der Zahlen c,p: 

c,= 

Es sei 

1 
A ^ I o g * ^ 

1 
9) = 2. 

<P|-l(*) = 
1 

rf'(c1» Pi , [a, ö] ; x ) ( / = ! , . . . , A/i) 

und F0 = F(cu [a, 6]). Nach dem Hilfssatz II sind tf>„(x) (n = = 0 , . . M — 1 ) 
Treppenfunktionen und bilden nach (1.12) ein in [a, b] orthonormiertes Sys-
tem. Auf Grund von (1.13) ist 

fi(F„) = 
1 

1 
b-a AT^log2^ 

5 A ^ l o g ^ + l ' 

woraus folgt, daß (1.16) für m = 0 erfüllt wird. Ist x£F0, so gibt es nach 
(1 .14) eine von x abhängige natürliche Zahl n0(x) (< 22—1), für die die Funk-
tionswerte &0(x),..., <P,,0(x)(x) positiv sind und 

K5 
<2>o(x)+••• + <£>,,„(*>(*) = ]/b-a 

1 

n =-A 

N^og'N, 

n 

r + l ] 2 j \ 

Yb—a fKa^ log M 
ist. Daraus ergibt sich auf Grund von (1.19), daß (1.15) für m = 0 erfüllt 

1 f 5 
ist, wenn B-- A gewählt wird. 

6 1lb=~a 

Es sei rn(sl) ein beliebiger Index. Wir nehmen an, daß die Funktio-
nen <P„(x) (n 0 , . . . , Nm— 1) und die Mengen Fk (k = 0,..., m—l) bereits 
definiert sind, so daß die @»(x) Treppenfunktionen sind, in [a, b] ein ortho-
normiertes System bilden und die Bedingungen a), b) für die Mengen 
F0 Fm-1 erfüllt sind (insbesondere sind also Fü,...,Fm-i stochastisch un-
abhängig). 

Dann kann eine Einteilung des Intervalls [Ö, b\ in endlich viele Teilin-
tervalle /9.(0 = 1 , . . . , / - ) angegeben werden, so daß in den einzelnen Teilin-
tervallen jede Funktion @„(x) (n = 0 , . . . , N,„—1) konstant ist. Die zwei 
Hälften des Intervalls /p werden mit I'Q bzw. /p" bezeichnet (p = l , . . . , r). 

Wir wenden nun den Hilfssatz II mit den Zahlen 

Cm+1 
1 

JVm+i ÖA-m+1 log" Nm+1 

+ 1 > An+1 : 
VM-1 

Im allgemeinen bezeichnen wir mit [o] den ganzen Teil von a. 
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an. E s sei 

1 
<Z>.v„1+i-i(x) = \ y f i (cm+i, pm+i, /<,'; x)—j?f, (cm¥i, /w,, ; x) 

\b—a l.pi „ jsl \ 

(/ = l , . . . , 2 - 2 m + I ) und 

= u ( F ( f m + 1 , i;) U F ( c m + 1 , /p")). 

Auf Grund des Hilfssatzes II ist es klar, daß die Funktionen &„{x) 
(Nm N„,+1) Treppenfunktionen sind. 

Es sei l s / < 2 m + a , Dann ist nach (1.12) 

6 

(1.20) 

¿ ¿ j ) / (C»'+1, pm~\, x)fj (cM+i, pm+1, /;; x)dx + 

+ ^ ) f i (cm+l, Pm* 1, /p' ; x ) / , (c„,+i, pm+1, ; jf) aix[ = 

für i =)=/, 

T T ^ Z W + < " ( ' < : ' ) ) = 1 für /=/. u—a e = i 

Es sei ferner O^n <Nm, Wir bezeichnen mit ce(/i) den im In-
tervall IQ angenommenen Wert der Funktion ®„(x) (p = l , . . . , r ) . Dann ist 

Ii 

f (X) @xm+i-i{x)dx = 1 vce(/i) J / , (cm+,, pm+i, /;; 

( , 2 1 ) _ [ / ¡ (Cm+l.Pm+l, /p"; X)fifx| = 

5 

l r r 

o 

Nach (1.20) und (1 .21) bilden die Funktionen <Pn(x) (n = 0 , . . N m n — 1 ) 
in [a, b] ein orthonormiertes System. 
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Auf Grund von (1 .13) ist 

1 

5 yvm+iö;Vm+1log-jV„,+i 

b—a NIH+ fl2vmtl log'2 iVm+i 

5 Nm+1a'ym+l log" Nm+i + 1 

woraus folgt, daß (1.16) auch für den Index m gilt. Ist x£Fm, so gibt es 
nach (1.14) eine von x abhängige natürliche Zahl nm(x)(< 2m+2—1), für die 
die Funktionswerte <Pxm(x) 0ym+„mir,(x), gleiches Vorzeichen haben- (posi-
tives bzw. negatives jenachdem x£l{, bzw. x£l!,' ist) und 

F 5 J 

w-
1 ' 1 

Nm^a'y log" Nm+i 
2r+íl''(m+í)m 

V 9m->1 

(m+1) 
1 f b—a YNm+iay . log N, »m+l 

ist; daraus folgt auf Grund von (1.19), daß (1.15) auch für den Index m 
gilt, wenn B wie oben gewählt wird. 

Es ist klar, daß die Mengen F0,...,Fm stochastisch unabhängig sind. 
Durch vollständige Induktion erhalten wir also ein im Grundintervall 

[a, b] orthonormiertes Funktionensystem {0„(x)} (n = 0, 1 , . . . ) und Mengen 
Fk (k = 0, 1 , . . . ) , so daß die Bedingungen a) und b) erfüllt sind. 

Damit ist der Hilfssatz III bewiesen. 

B e w e i s v o n S a t z I. Wir nehmen an, daß die positive, monoton 
nichtwachsende Koeffizientenfolge {a„} die Bedingung (1.1) erfüllt. Nach Hilfs-
satz III existiert ein im Grundintervall [a, 6] orthonormiertes Funktionensystem 
{(P : l(x)} mit der Eigenschaft, daß (1.15) in fast allen Punkten x£[a,b] für 
unendlich-viele Indizes m erfüllt ist; dabei ist nm(x)< 2m+2—1 und die Funk-
tionswerte <t>ym(x),..., <Pym+nnt(x>(x) haben gleiches Vorzeichen. 

Auf Grund der Monotonität der Folge {a„} und wegen der Unglei-
chung Nm + nm(x) < Nm + 2m+2 = Nm+i ergibt sich, daß in fast allen Punkten 

b] für unendlich viele m 

(1.22) \aNm0NJx) + • • • + a-vm+>,,„(,) &ym+n„Mx)\> B 

gilt. So divergiert für das erhaltene Funktionensystem die orthogonale Reihe 
(1 .2) fast überall in [a,b]. Wenn man die Werte der Funktionen &„(x) 
( n = = 0 , 1 , . . . ) auf einer Menge vom Maße Null auf geeigneter Weise verän-
dert (es sei z. B. $>„(*) ==1 (/z = 0 , 1 , . . . ) in jedem Punkt xi[a,b\, wo die 
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Reihe (1 .2) konvergiert), kann man erreichen, daß die orthogonale Reihe ( 1 . 2 ) 
in [a, b] überall divergiert. 

Damit ist der Satz I vollständig bewiesen. 
Wir beweisen jetzt die folgende Verallgemeinerung des Satzes I : 

S a t z 11. Es sei {a„} eine positive, monoton nichtwachsende Zahlenfolge, 
für die die Bedingung (1.1) erfüllt wird. Es kann im Grundintervall [a,b] 
ein orthonormiertes Funktionensystem { 0 „ ( x ) } derart angegeben werden, daß 
die Reihe 

(1 .23) ¿ > ; < Z > „ ( X ) 
«=o 

fiir jede Koeffizientenfolge {a'„} mit 

(1 .24) a l ^ n a » (n = 0 , 1 , . . . ; t j > 0 ) 

in [a, b] überall divergiert. 

B e w e i s v o n S a t z II. Wir wenden für die Folge {a„} den Hilfs-
satz III an; es sei {<£»(*)} das so erhaltene, in [a, b] orthonormierte 
Funktionensystem. Aus (1 .22) folgt, da die dort vorkommenden Funktions-
weite gleiches Vorzeichen haben, die Ungleichung 

(1 .25 ) |^m<Z>.ym(x)+ ••• > rtB. 

Da also (1 .25 ) in fast allen Punkten x£[a, b] für unendlich viele Indizes m 
gilt, ist die Reihe (1 .23) in [a,b] fast überall divergent. Mit einer geeigne-
ten Veränderung der Werte von &n(x) {n = 0, 1 , . . . ) auf einer Menge vom 
Maße Null kann erreicht werden, daß die Reihe (1 .23) überall divergiert. 

Damit haben wir den Satz II bewiesen. 
Es soll noch bemerkt werden, daß in Satz I die Monotonität der Koef-

fizientenfolge bzw. in Satz II die Bedingung (1 .24 ) nur dann notwendig ist, 
wenn die genannte Folge zur Klasse /2 gehört. Ist nämlich 

CO 

]£ai=oc,. 
> 1 = 0 

so divergiert die Rademachersche Reihe 
03 

]?anrn(x) 
n=0 

bekanntlich in [ 0 , 1 ] fast überall (siehe J . KHINTCHINE—A. N. KOLMOGOROV . 

[ I ] ) -
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§ 2. Gleichmäßig beschrankte orthonormierte Funktionensysteme. 

In diesem Paragraphen wird gezeigt, daß in den Sätzen I und II gefor-
dert werden kann, daß das orthonormierte Funktionensystem gleichmäßig be-
schränkt ist. 

Der Beweis dieser Behauptung erfolgt mit Benützung der Grundideen 
von D. MENCHOFF. Der Beweis wird nicht ausführlich ausgearbeitet, sondern 
es wird manchmal auf die betreffenden Stellen der Arbeit [2] von D. MENCHOFF 

hingewiesen werden. Er ist dem Beweis von Satz I ähnlich, aber doch davon 
ganz unabhängig, so daß wir also den Satz I in einer verschärften Form noch-
mals beweisen. Der Beweis der verschärften Behauptung ist aber viel kom-
plizierter als der frühere. 

Wir werden das folgende Lemma benützen. 

L e m m a v o n M e n c h o f f (D. MENCHOFF [2], S. 104.) Es seien d 
und q positive ganze Zahlen, 0<d<q. Zu jedem Indexpaar (i,j) mit 
1 g/£¿7,1 und \i—j\ — d soll eine von Null verschiedene Zahl afj 
zugeordnet werden; wir bezeichnen mit ßd das Maximum der absoluten 
Beträge der Zahlen a i t j . In jedem Intervall (u, v) mit 
( 2 . 1 ) v—u> 2ßs 

können dann Funktionen <pt(x) (1 = 1, ...,q) derart definiert werden, daß die 
folgenden Bedingungen er fällt werden: <pt(x) ist eine Treppenfunktion und es 
gilt: 

|9>,(x)| = l - (u<x^v; l=-\,...,q), 
v 

j<P<(x)<Pj(x)dx = —ai,J (\i—j\=d, 1 =j = q), 
U 
V 

¡9i(x)9)(x)dx = 0 .' (I=f=/, i^J^q)-

Mit der Hilfe dieses Lemmas kann der dem Hilfssatz II entsprechende 
folgende Hilfssatz bewiesen werden. 

H i l f s s a t z II'. Es sei p ( s 2) eine natürliche Zahl und es sei 

<2.2) 

Es existiert eine von c und p unabhängige Zahl ß, so daß im Intervall [— \,ß\ 
ein (von c undp abhängiges) orthonormiertes System von den Treppenfunk-

Hohen {gi(c,p; x)} ( / = 1,.. ..p2) angegeben werden kann, welches die folgen-
den Bedingungen erfüllt: 
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es gibt eine von c und p unabhängige positive Zahl M, so daß 

(2.3) \g,(c,p\x)\<M (— 1 ^ x ^ /?; I =},..., f f ) 

ist, es existiert ferner für jeden Punkt x£ -^-j eine von x abhängige na-

türliche Zahl m(x) (< p"), so daß die Funktionswerte gi(c, p\x),..., gm(J)(c, p; x) 
positiv sind lind 

(2. 4) £g'(c,p;x) > C\'cp\0gp 

gilt, wo C eine von c, p und x unabhängige positive Zahl ist. 

Für c = 1 wurde dieser Hilfssatz im wesentlichen von D. M E N C H O F F 

([2], S. 110) bewiesen. 

B e w e i s v o n H i l f s s a t z 11'. Es sei für / = 1 , . . . , /r 

(o,(c,p;x)=. 

UP ,.. / — tur — , 
cp-x — l — ]/cp cpr 

I cp ... I —rr=— für — ^ X < OC . 
cp-x—l+ycp CP~ 

Offenbar ist 

ü)i(C, p;x)> 0 für ^ s x 

und 

(2-5) |cö,(C,/?;X)|=s l (—oc < * < « > ) , 

ferner kann gezeigt werden, daß 

(2.6) o>i(c, p;x)ajj(c, p; x)dx < J 41icp _ • d + \jCp , 2 
•og^ d{d+2\'cp) fcp ~ P' 

ist. (Siehe D . MENCHOFF [2], S. 111.) 

Es sei x £ Dann gibt es eine von x abhängige natürliche Zahl 
J f 

m(x), ~ ^ m(x) < pr, so daß 

x £ 
m(x) m(x) +1 

_ cp ' cp2 ~ 
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ist, und nach (2 .2) 
II.(.T) _ lll(.r) j in(r) j 
2 u>,(c, p;x) = Vcp2 — -—,-=- ^ f c p 2 
(=i <-=1 cp-x—1 + Vcp m(x)—l + VFp+\ 

( 2 . 7 ) ^ ^s 

^ V c p Z , > ^ 1 f * l o g / 7 

besteht. 
Da jede Funktion a>,(c,p;x) mit der Ausnahme eines einzigen Punktes, 

wo sie eine Unstetigkeit von erster Art hat, im Intervall [—1,2] überall stetig 
ist, so gibt es in [—1,2] Funktionen gi(c,p; x) (/ = 1 , . . .,p% die die folgen-
den Bedingungen erfüllen:^(c,/j;x) ist eine Treppenfunktion, für ist 

g,(c,p;x)> 0, 

und es gilt im Intervall [—1,2] überall 

~P 
\g,(c,p;x)—(o,(c,p;x)\<^ min " " 

Auf Grund vpn (2 .5) ist 

• (2:8) < \g,(c,p;x)\<2 (-1.SXS2; l=\,...,p2) 

1 1 
und nach (2 .7 ) kann zu jedem Punkt x£ j-^, y j eine von x abhängige 

natürliche Zahl m(x)(<p-) derart angegeben werden, daß die Funktionswerte 
gx(c,p-,x) g,„(r)(c, p; x) positiv sind und 

m ( x ) | 

(2 .9) Z gi(c, p;x)>-j- fcp logp 
/=1 ** 

gilt. Endlich erhalten wir auf Grund von (2.6) 

< 2 . 1 0 ) \ait}{c,p)\< y„(c,p) (\i—j\ = d; 1 g/^/r; 1 rsy'^/r; d= 

wo 0 

«i,i(c, p) = J gi(c, p; x)gj(c, p\ x)dx, 
-1 _ _ . 

. . . 1 4 ]j'cp . d+Vcp.9 
- ä(ä+2Vcp) + ^ 

sind. 
Es. sei 

u0(c,p) = 2, «d(c,p) = 2[l + 2ri,(c,p)j (d=l,...,p2-l). 
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Dann ist 

(2.11) ui(c,p)-ud.1(c,p)>2yd(c,p) 

ferner kann nach den obigen gezeigt werden, daß 

OD 

0 

gilt, wo /S offenbar eine von c und p unabhängige Zahl ist, ß>2. (Siehe 
D . MENCHOFF [ 2 ] , S . 1 1 3 . ) 

Der übrige Teil des Beweises ist identisch mit dem Beweis des entspre-
chenden Menchoffschen Hilfssatzes (siehe D. MENCHOFF [2 ] , S. 1 1 4 — 1 1 5 ) . Der 
Vollständigkeit halber sei aber auch dieser Schluß in Einzelheiten ausgeführt. 

Es sei l ^ d ^ p 1 — 1. Nach (2 .10 ) und ( 2 . 1 1 ) wird die Bedingung 
( 2 . 1 ) für die Zahlen a,j(c,p) (\i—j\=d, 1 ^ / ^ p2, 1 g j ^ p2) und für das 
Intervall (iid-i(c, p), (u,,(c, p)) erfüllt. So kann man mit Anwendung des Lemmas 
von D. MENCHOFF die Definition der Funktionen gi(c,p;x) ( / = 1 , . . .,/T2) auf 
das Intervall (2, ¿v_i(c, p)) erweitern, derart, daß die folgenden Bedingungen 
erfüllt sind: gt(c,p;x) ist eine Treppenfunktion, ferner ist 
( 2 . 1 2 ) = i . 

"d (f> p) 

J gi(c,p\x)gj(c, p ; x ) d x = — « i j ( c , p) »d -1 (<•' P) (|i-j\ = d\ 1 i / s / r ' i 1 ^J^p2; d = 1,....p2—1) und ><d (c. p) J gi(c,p;x)gj(c,p;x)dx = 0 
"d -1 (,;> P) 

( ' 4 = ; ; \i-j\=¥d; l ^ / ü p 2 ; . l S i y ^ p 2 ; d= l,...,p*-l). 

Schließlich im Intervall («p3-i(c,p), ß] werden die Funktionen gi(c,p; x) 
(/ = 1 , . . . , p2) wie folgt definiert. Es sei 

( 2 - 1 3 ) G { ( C , P ; X ) = ( - \ Y 

(z,.\(c,p; l) < x ^ z,(c,p; [); s= 1 , . . . , 2 ' ; / = ^ . . . . p 2 ) , 
wo 

z,(c, p\ l) = iv- i (c , p) + -ji iß— "*»-i(c ' P)) 

ist. 
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Nach dem obigen ist es klar, daß die so im Intervall [— \,ß) definier-
ten Funktionen gi(c,p\x)Treppenfunktionen sind, zueinander orthogonal sind, 
und für sie (2 .9) erfüllt wird. Ferner gilt nach (2.8), (2 .12) und (2.13) 
(2 .14) . \gi(c,p;x)\<2 

Es sei gesetzt , 

^ ( c , p ; x ) = j (gf(c,p;x)dxj gi(c,p;x) ( / = 

Da nach (2.8), (2. 12) und (2 .13) 

0 < ß—2< | gf(c, p;x)dx< 4(ß + 1) 
- ï 

ist, so folgt für die Funktionen gi(c,p;x) die Ungleichung (2 .3) aus (2 .14 ) 
und die Ungleichung (2 .4) aus (2.9) . 

Damit ist der Hilfssatz II' bewiesen. 
Ist I=[u,v\ ein beliebiges endliches Intervall, so sei 

gl{c,p,/;*)-! (c>P\~) •+ 0*+ r E j ) ^u<x<v, 

( 0 " sonst 

(/== 1 , . . .»p2), und sei 

G(c,I) = 

Es ist klar, daß 

(2 .15) jgi(c,p,I;x)gj(c,p,I;x)dx=^i(i) ^ V^j 

Aus (2.3) folgt ferner die Ungleichung 

( 2 . 1 6 ) \gi(c,p,I-,x)\<](ß+\M ( u Ä i ; ) . 
Endlich ist 

(2 .17) 

und für x € 0(c,I) gibt es nach (2.4) eine von x abhängige natürliche Zahl 
m(x)(<p2), derart, daß die Funktionswerte gi(c,p,I;x),...,gm(x)(c,p,/;x} 
alle positiv sind und 

ffl (x) ' - • • 
(2 .18) 2g,(c,p,I;x)>Vß+iCYcplogp 

i=i . • • • 
gilt. 

Mit Anwendung des Hilfssatzes II' kann das Entsprechende des Hilfs-
satzes III bewiesen werden. 
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H i l f s s a t z III'. Es sei {a,,} eine positive, monoton nichtzunehmende 
Zahlenfolge, die die Bedingung (1.1) erfüllt. Es kann dann eine indexfolge 
(3 <t*,< ••• < /<„, < • • • und ein im Grundintervall [a, b] orthonormiertes 
Funktionensystem {@,,(x)} angegeben werden, so daß die folgenden Bedingun-
gen erfüllt sind: die Funktionen (x) sind gleichmäßig beschränkt: 
(2 .19 ) |<Z>„(x)|<Ai' ( a ^ x ^ b ; n = 0, 1 , . . . ) ; 
zu fast allen Punkten x des Intervalls [a, b] gibt es für unendlich viele Indizes 
rn eine von x und m abhängige natürliche Zahl n,„ (x) (< 4''m+1—1), so daß 
die Funktionswerte 0Xm(x),..., <Z>.vw+„m(.r)(x) gleiches Vorzeichen haben und 

( 2 . 2 0 ) I f A v , „ « + ••• + 0 y M ) ( x ) | > D - L -
m +1 

ist, wobei N0 — 0, Nm = 4"' -\ 1- 4Mm (m 1) bedeutet und D eine von m und 
x unabhängige positive Zahl ist. 

B e w e i s v o n H i l f s s a t z III'. Da die Folge {o„} positiv ünd mo-
noton nichtzunehmend ist und die Bedingung (1. 1) erfüllt, kann mit der bei 
dem Beweis des Hilfssatzes III angewendeten Methode gezeigt werden, daß 

(2.21) ¿ 4 " + , 4 + , l o g 2 4 " + 1 = oo 
n—O 

ist. Es seien f i i < t u i < - - - <,«,„<••• diejenigen Indizes 3), für die 

<2.22) 4"+1 a2„+i log2 4"+1 2B'n 

ist. Da die auf die übrigen Indizes erstreckte Teilsumme der Reihe ( 2 . 2 1 ) 
offenbar endlich ist, so folgt aus (2. 21): 

( 2 . 2 3 ) log24Mm+1 = oo. 
m = l 

Es sei 
c,„ = <4''m+1ö2Ul,1+i log2 4Mm+1) 1 + 1 (m= 1,2,...). 

Da fim ^ 3 (m = 1 , 2 , . . . ) gilt, so ist auf Grund von (2. 22) 

( 2 . 2 4 ) l ^ c m ^ 2 " m " 2 (m = 1 , 2 , , . . . ) . 

Ferner ist 

1 ^ 4 m i n | l , 4 - + ' f l ^ + 1 . o g 2 4 — ( m = 1 , 2 , . . . ) Cm & 

und so ergibt sich nach (2. 23), daß 

<2.25) 
m = l ^m 
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gilt. Es soll noch bemerkt werden, daß 

(2 .26) Nm= 4 M l + + + ( m = l , 2 , . . . ) 

ist. 
Mit der bei dem Beweis des Hilfssatzes III angewendeten Methode 

werden wir nun ein aus Treppenfunktionen bestehendes, im Intervall [a, b] 
orthonormiertes und gleichmäßig beschränktes Funktionensystem {^„(JC)} 
(n = 0,1,...) und eine Folge voh meßbaren Mengen G m £ [ f l , ö ] konstruieren, 
derart, daß die folgenden Bedingungen erfüllt sind: 

a') zu jedem xiGm gibt es eine natürliche Zahl nm(x) (<4M m + 1—1), 
so daß die Funktionswette €>.Vm(x),..., .„,(*>(x) gleiches Vorzeichen haben 
und (2 .20) erfüllt wird; 

b') die Mengen Gm (m — 0 , 1 , . . . ) sind stochastisch unabhängig und es gilt 

Die Konstruktion werden wir mit vollständiger Induktion folgenderweise 
durchführen. 

Nach (2 .24) wird die Bedingung (2. 2) für die Zahlen cup1 = 2H erfüllt 
und daher kann der Hilfssatz II' angewendet werden. Es sei 

(x) = - 7 J = gl(.:uPl,[a,b]-,x) (/ = 1 , . . . , 4"') 
<jb—a 

und G o = G(Cj, [ö, b)). Nach dem Hilfssatz II'sind diese Funktionen Treppen-
funktionen, die nach (2. 15) ein in [a, b\ orthonormiertes System bilden und 

für die infolge (2 .16) die Ungleichung (2.19) mit = M besteht. 

Nach (2. 17) besteht (2. 27) für m = 0 und für x £ G„ existiert es nach (2. 18) 
eine von x abhängige natürliche Zahl n0(x)(< 41*1—1), so daß die Funktions-
werte 0o(x),..., 0no{x)(x) gleiches Vorzeichen haben und 

\0o(x) + • • • + 0„«ix)(x)| > (|±i]1 / 2C|(4^1a2 4 M l + 1 l o g 2 - f l ! " 2 > 

gilt, woraus sich auf Grund der Monotonität der Folge {a„} und der Un-

gleichung (2 .26) ergibt, daß (2.20) für m = 0 mit D = ^ C besteht-

Also wird die Bedingung a') für m = 0 erfüllt. 
Es sei nun Ar(|g 1) eine beliebige natürliche Zahl. Wir nehmen an, daß die 

Funktionen <Pn(x) (« = 0 , . . .,Nk— 1) und die Mengen Gm (m = 0 , . . . , k—1) 

A 6 
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schon definiert wurden: die &n(x) sind Treppenfunktionen, bilden im Intervall 
[a,b\ ein orthonormiertes System und die Bedingung (2 .19) ist erfüllt, ferner 
sind die Bedingungen a'), b') erfüllt, insbesondere sind die Mengen G0, •. .,Gk-1 
stochastisch unabhängig. 

Man kann das Intervall [a, b] in endlich viele Teilintervalle IQ (Q = 1 , . . . , r) 
zerlegen, so daß in den einzelnen Teilintervallen die Funktionen 0n(x) 
(/i = 0 , N h — l ) konstant sind. Bezeichnen wir mit /</ bzw. mit /¿'die 
zwei Hälften des Intervalls It ((>= 1 , . . . , r ) . Auf Grund von (2 .24) wird die 
Bedingung ( 2 . 2 ) für die Zahlen cM, pk+i = 2Pk+I erfüllt und so kann der 
Hilfssatz II' angewendet werden. Es sei gesetzt: 

0.vfc+i-i(x) = -¡7== ¿gi(ck+i,pk+i, *) — ¿Si(cM, pM, /?'; x)\ 
yb—a (c=i ?=i 1 

( / = 1 , . . 4 " * + 1 ) und 

Gk = Ü (G(ck+1,I'()U G(cM,m). 
f=i 

Nach dem Hilfssatz II' sind auch diese Funktionen Treppenfunktionen. 
Mit Anwendung von (2 .15) kann mit der bei dem Beweis'des Hilfssatzes III 
angewendeten Methode gezeigt werden, daß auch die Funktionen 0n(x) 
(n — 0,...,Nk+i — 1) ein orthonormiertes System bilden und nach (2 .16) 
besteht für die Funktionen @„(x) (n = Nk,.. .,NM—1) die Ungleichung (2 .19) 
mit dem gleichen M'. Nach (2 .17) kann leicht eingesehen werden, daß (2 .27) 
auch für m = k besteht. Für x£Gk existiert nach (2 .18) eine von x abhän-
gige natürliche Zahl nk(x)(< 4flk+1— 1), so daß die Funktionswerte &.vk(x),... 
. .0.vk+„k(T)(x) gleiches Vorzeichen haben und 

> { T = ^ ) 1 1 2 log 4 ^ y Y ' + w , 

ist, woraus sich auf Grund der Monotonität der Folge {o„} und der Unglei-
chung (2 .26) ergibt, daß (2.20) auch für m = k besteht, wenn D wie oben 
gewählt wird. Also wird auch für m=k die Bedingung a') erfüllt. Endlich 
ist es klar, daß auch die Mengen G0,...,Gk stochastisch unabhängig sind. 

Damit jst^unsere Konstruktion mit vollständiger Induktion erbracht. 
Ist x € lim Gm, so besteht (2 .20) für unendlich viele Indizes m. Nach 

. m-¥ <o 
(2 .25) und (2 .27) ist 

OD 

.Z'p(Gm)= <*>, 
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hieraus und aus der stochastischen Unabhängigkeit der Mengen Gm mit An-
wendung des zweiten Borel—Cantellischen Lemmas folgt, daß yw(limG«) = 

— b — a ist. 
Damit ist der Hilfssatz III' bewiesen. 
Mit der Anwendung des Hilfssatzes III' können dann die Sätze I, II 

ebenso wie in § 1 bewiesen werden, aber die erhaltenen Funktionensysteme 
sind jetzt gleichmäßig beschränkt. 

§ 3 . P a r t i a l s u m m e n d e r q u a d r a t i s c h i n t e g r i e r b a r e n 
E n t w i c k l u n g e n . 

Um zu zeigen, daß die Abschätzung (6) nicht verbessert werden kann, 
beweisen wir den folgenden Satz. 

S a t z III. Es sei {w(n)} e'ne positive, monoton nichtabnehmende Zahlen-
folge, die die Bedingung 

w(n) = o(log n) 
erfüllt. Es kann eine Koeffizientenfolge {a„} £ P und ein im Intervall [a, b] 
orthonormiertes Funktionensystem {(£>„(*)} derart angegeben werden, daß in [a,b\ 
überall gilt: 

j * 
( 3 . 1 ) lim - 7 T K 2 > « < £ n ( x ) = o o . 

JV->co n=0 

Das Funktionensystem {<£»(*)} kann auch gleichmäßig beschränkt gewählt 
werden. 

B e w e i s v o n S a t z III. Es sei {¡P(/i)} eine positive, monoton nicht-
abnehmende Zahlenfolge, die die Bedingungen 
( 3 . 2 ) w(n) = o(w(n)) 
und 
( 3 . 3 ) w(n) = o(log h) 
erfüllt, z. B. sei 

iv(n) = w ( n ) ( ^ ] ° (n = 2 , 3 , . . . , 0 < « < l ) . 1 0 ) 

Auf Grund von (3 :3) , mit Anwendung von Hilfssatz I gibt es dann eine 
positive, monoton nichtabnehmende Folge {v(n)}, für die 

V 
(n log3 n) v*(n) 

< « 

10) Für n = 0, 1 setze man z. B. vv(0) = w(l) = w(2). 
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und 
œ , 

gelten. Es sei d„ = (^n lo^nv^n))'1 für n s 2 und o0 = û1 = ô2 . Dann ist 
œ 

( 3 . 5 ) Z ö n i v ^ n ) < oo 

und 
CO 

¿ û » l0g2/Z= OO. 

Nach Satz 1 kann ein im Intervall [a, b] orthonormiertes Funktionensystem 
\<P„(x)} angegeben werden, so daß die orthogonale Reihe 

( 3 . 6 ) Z à n ®n(x) 
n=0 

in [a, b\ überall divergiert; das Funktionensystem {0n{x)} kann auch gleich-
mäßig beschränkt gewählt werden. 

Wird die Bezeichnung 
V 

Sv(x) = 2 w(n)ün &n(x) 
,1=0 

eingeführt, so erhalten wir mit einer Abelschen Transformation: 
S ¡V J 2 än 0n(x) = Z -73T ü(n)än 0n(x) = 

n=0 n~0 H'̂ n^ 

= j j - Ö ^ T T ) ) <*> + ^ ¿ V ) S n ( x ) ' 
und so ist 

\ y Y— \ { \ 

v-v
 ( n ) « = £ > - 1 ( é ) - ^ t t ) ] 

Da die Folge {vv(n)} monoton nichtabnehmend ist, so ergibt sich auf Grund 
von (3.5) , daß 

b 

a 

a 
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ist, und so nach dem B. Levischen Satz konvergiert die Reihe 
O f j I y 

fast überall in [a, 6]. 
Da die Reihe (3 .6 ) in [a,b\ überall divergiert, divergiert die rechte Seite 

von (3 .7 ) fast überall und daher ist fast überall 

Daraus ist nach ( 3 . 2 ) klar, daß für die Koeffizientenfolge a„ = w(ri)ä,t 
(n = 0 , 1 , . . . ) und für das oben definierte Funktionensystem {<£>„(*)} die Re-
lation (3 .1 ) fast überall in [a,b] besteht. Nach (3 .5) ist {a„}£/-. 

Wir bezeichnen mit E die Menge der Punkte von [a,b], wo (3.1) nicht 
besteht (/*(£) = 0). Es sei 0n(x) = 1 (n = 0, 1 , . . . ) für xiE. Das so erhaltene 
Funktionensystem {d>„(x)} bleibt in [a, b] orthonormiert und gleichmäßig 
beschränkt, wenn es auch früher gleichmäßig beschränkt war, und für dieses 
System bleibt (3. 1) in den Punkten x $ E gültig. Dann ist 

N -V 

2an<Pn(x)= Za„ 
n=0 .1=0 

für x iE. Nach (3.4) , auf Grund der Definition der Folge {a,,} ergibt sich 
mit einer einfachen Rechnung, daß 

T - 1 V1 lim -j >. a„ = ^ 
-V-»co log N — 

ist. Hieraus folgt nach (3 .2 ) und (3.3), daß für dieses Funktionensystem 
(3. 1) auch in den Punkten von E erfüllt wird. 

Damit haben wir den Satz III vollständig bewiesen. 

§ 4 . Ü b e r die R a d e m a c h e r s c h e Abschätzung. 

Daß die Rademachersche Abschätzung (8) im allgemeinen nicht verbessert 
werden kann, wird durch den folgenden Satz gezeigt. 

S a t z IV. Es sei {/„} eine positive, monoton nichtabnehmende Zahlen-
folge, die die Bedingung 

Ä log2 n 
(4 .1 ) Z - 7 r - = ~ 

n = 2 In 

erfüllt. Es kann im Intervall [a, b] ein orthonormiertes Funktionensystem {5>„(JC)} 
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angegeben werden, so daß in [a, b] überall 

( 4 . 2 ) HiS"-! J > n ( x ) = o c 
A'->-co 'aV n = 0 

is/. D/eses Funktionensystem {£>„(*)} kann sogar gleichmäßig beschränkt 
gewählt werden.. 

B e w e i s v o n S a t z IV. Wir zeigen zuerst, daß es eine positive, 
monoton nichtabnehmende Zahlenfolge {7„} gibt, für die die Bedingungen 

(4 .3 ) k = o(L), 
CO 

(4. 4) 2 In2 log2 n = oo 

und 
CD 

(4 .5 ) ( 0 < « < 1 ) 

erfüllt sind. 
Es sei /* = max {/„, log n} (n = 2, 3 , . . . ) . Offenbar ist 

( 4 . 6 ) L (n = 2,3,...) 
und 
( 4 . 7 ) ft =§/„%, (n = 2 , 3 , . . . ) . 
Wird die Bezeichnung m 

sm = Z ( / * ) " 3 l o g 2 n (n = 2 , 3 , . . . ) 
r.=2 

eigeführt, so folgt aus (4 .1 ) und aus der Definition der Folge {/*}, daß 

( 4 . 8 ) sm < m (m = 2, 3,...) 
und 
( 4 . 9 ) sm < sm+i (m= 2,3,...), lim sm = <x> 

m-yco 
ist. 

Es sei n0(is 2) die kleinste natürliche Zahl, für" die s„0> 2 ist. Es ist 
klar, daß 

l o g 2 n 
( 4 1 0 ) nJ£+i(/;)as„-ilogs„-i ~ 

gilt. Diese Summe ist nämlich eine obere Summe des divergenten Integrals 

1 dx 
X log X ' 

SUO 

die zu der mit den Teilpunkten s,io, s„ 0 + i , . . . angegebenen Einteilung der 
Halbgerade [s»,, <») gehört. 
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Für 0 < « < 1 ist 

( 4 1 1 ) „ ¿ , ( / r i ) 2 S n C g 2 - s „ < ° ° ' 

da diese Summe die untere Summe des konvergenten Integrals 

dx J: X log2"6 x 
S"o 

ist, die zu der mit den Teilpunkten s„0, s„ 0 + i , . . . angegebenen Einteilung der 
Halbgerade [s„0, <*>) gehört. Auf Grund der Definition der Folge { £ } . und der 

Zahl n0 ist es klar, daß für n>n0 s„- i>-^-s„ ist und so folgt nach (4 .11) : 

V ^ < ~ ( 0 < i < l ) . 
n^+i (C)-Sn-1 log2-£s„-i 

So erhalten wir auf Grund von (4 .8 ) : 

(4-12) ± ? ( l ' Y s ] 0 Î n ^ s < ~ ( ° < ê < 1 > -
, 1=W„+1 (In) Sn-l 1 0 g 5 „ - l t i = n 0 + l V « n ) Sn-1 1 0 g S „ - l 

Es sei nun In = 1* Vs„-i log5„-i für n > n0 und /„ = /„„+i für 0 ^ n ^ n^. 
Nach (4. 6), (4. 7), ( 4 . 9 ) und nach der Definition der Zahl ri0 ist es evident, 
daß die Zahlenfolge {/„} positiv, monoton nichtabnehmend ist und die Bedin-
gung ( 4 . 3 ) erfüllt; wegen (4. 10) und (4. 12) werden auch die Bedingungen 
(4. 4) und (4. 5) erfüllt. Nach (4. 5) gilt 

œ 

2 ï~n < 0 0 
n=0 

und so folgt aus der Monotonität der Folge {/„}, daß 

(4 .13) ]fn 7 ; ' = o ( l ) 
ist. 

Da {ln} eine positive, monoton nichtabnehmende Zahlenfolge ist und die 
Bedingung (4 .4 ) erfüllt, existiert nach Satz I ein in [a, b] orthonormiertes 
Funktionensystem {3>„(x)}, für welches die orthogonale Reihe 

(4 .14) • Z 
,n=0 

in [a, b] überall divergiert. 
Wird die Bezeichnung 

V 

n=0 
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eingeführt, so ergibt sich mit einer Abelschen Transformation: 

i r 0 " ( x ) = 2 i i f - 7 L ] s " W + T 
n = 0 In n = 0 V In «11+1/ '-V 

und so gilt 
1 v -v 1 jV-' f 1 ] \ 

(4. i5) 
I.Y H--.Ü u = 0 »n n = O V ' / i 'n+1 J 

Mit einer einfachen Rechnung bekommen wir die folgende Abschätzung: 

¿ ( 7 — j M (\Mx)\äx ^ ( b - a r ± [ l - X ) { ¡¡s;(x)dxr = 
« = « U . UiJJ "=o U . W U J 

(4 .16) 

u = 0 V I n ' ( 1 + 1 / 

Für jedes s ist 

± K i T + T f | - ± ' U ± + i • 1 ( i / i T + T - VÄ) - Z i + T J - , 

U » / „ + J /0 « = ' In 4+1 

woraus sich nach (4.13) ergibt: 

(4 .17) ' > 
" = " \ln /.. + i j h " = ' In 

Mit Anwendung der Cauchyschen Ungleichung erhalten wir auf Grund von 

woraus sich ergibt, daß die Reihe (4.17) konvergent ist. Auf Grund von 
(4. 16) und dem B. Levischen Satz konvergiert die Reihe 

, 1 = 0 V 1,1 ' 1 1 + 1 / 

fast überall in [a, b]. Da die Reihe (4.14) in [fl, 6] überall divergiert, so di-
vergiert auch die rechte Seite von (4. 15) fast überall, und folglich ist fast 
überall 

J - v ^ - M + o O ) . 
i.v n=--0 

Daraus folgt nach (4.3), daß (4 .2 ) fast überall in [a, b] erfüllt wird. 
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Wir bezeichnen mit E die Menge der Punkte von [a, b], wo (4 .2) nicht 
besteht (>(£") = 0). Es sei 0 > n ( x ) = l (n=0,1,...) für x£E. Nach (4 .4) ist 
\ imN/Iy=°° und so besteht (4 .2) für dieses Funktionensystem { ^ „ ( x ) } 
X-t-tB 
überall in [a, b]. 

Damit wurde der Satz IV vollständig bewiesen. 

§ 5 . Ü b e r die Größenordnung der or thonormier ten F u n k t i o n e n . 

In diesem Paragraphen wird gezeigt, daß auch die Abschätzungen (10) 
und (11) im allgemeinen nicht verbessert werden können. Nämlich gilt der 
folgende 

S a t z V. Es sei {¿„} eine positive Zahlenfolge, für die die Bedingung 

( 5 . D 
n= 0 A» 

erfüllt wird. Dazu kann ein im Grundintervall [a, b] orthonormiertes Funktio-
nensystem {0„(x)} angegeben werden, so daß in [a,b] überall 

(5 .2) Hm" — |0,v(x)| = oo 
N-+CD viy 

ist. 

Aus (5 .2) folgt, daß auch die Relation 

1 ^ 
Iim 2, On(x)= oo 

N-<-ai ¿X u=0 

überall in [o, b] besteht. 
Der Satz V kann mit einer einfachen Konstruktion leicht bewiesen werden. 
B e w e i s von S a t z V . Nach einem bekannten Satz") kann auf Grund 

von (5 .1) eine positive, monoton nichtabnehmende Zahlenfolge {I,,} angegeben 
werden, die die Bedingungen 
(5 .3) ln = oß n ) 

! 1) Dieser Satz lautet folgenderweise: Divergiert die Reihe ^ u„ (u„ >0, / ¡ = 0 , 1 , . . . ) , 
n=0 

so existiert eine positive, monoton nichtabnehmende, ins Unendliche strebende Zahlenfolge 
CD 

{t„}, so daß Z u«li" — °° 'st- ( S > E H E Z - B - G - H - H A R D Y — J . E . L I T T L E W O O D — G . PÓLYA [ 1 ] , 
n = 0 

S. 120—121.) 
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und 
<a 

<5.4) <*> 
n=0 

erfüllt. 
Ohne Beschränkung der Allgemeinheit kann angenommen werden, daß 

¿0 ^ ist. 
Es sei 

m 

a - i = 0 , a m = Z ( m = 0 , 1 , . . . ) 
tl = l 

und bezeichnen wir mit /m das Intervall [a m - i , a m ) . Dann ist 

t ' ( L ) = i'm2 (m = 0 , 1 , . . . ) . 

Im folgenden werden wir ein im Grundintervall [a, b] orthonormiertes 
System {(P„(x)} von Treppenfunktionen der Periode ( b — ä ) konstruieren derart, 
daß die Bedingung 

<5.5) 0n (x) =X für (n = 0, 1 , . . . ) 

erfüllt wird. 
Es sei 

U für x i f 0 + l(b-a)12) (/ = 0, ± 1 , . . . ) , 
1 0 sonst. 

Offensichtlich ist &0(x) eine Treppenfunktion der Periode ( b — a ) , gilt 
b 

f02o(x)dx = lij(/x=l 
ö i-,. 

und für n = 0 wird ( 5 . 5 ) erfüllt. 
Es sei n eine beliebige natürliche Zahl. Wir nehmen an, daß die Funk-

tionen 06(x),..., 0„(x) bereits definiert wurden derart, daß sie Treppen-
funktionen der Periode ( b — a ) sind, in \a, b] ein orthonormiertes System 
bilden, und für die Indizes 0,...,n ( 5 .5 ) erfüllt wird. Dann kann eine Ein-
teilung des Intervalls I„+1 in endlich viele Teilintervalle 7P ( p = 1 , . . . , r ) ange-
geben werden derart, daß in den einzelnen Teilintervallen die Funktionen 
0o(x),..., 0n(x) konstant sind. Bezeichnen wir mit die zwei Hälften 
des Intervalls ( p = 1 , . . . , r). Wir setzen 

| Xn+1 für x m + l ( b — a ) (/ = 0, + l , . . . ) , 
tf>„+i(x) = j _ l , + l für xa'9' + l(b—a) (/ = 0, ± 1 , . . . ) , 

' 0 sonst. 

'S) Für / = [u, v] bezeichnet I+l(b—a) das Intervall [u + / (6 —ü), v + l(b—a)}. 
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Offensichtlich ist 0n+i(x) eine Treppenfunktion der Periode (b—a), gilt 
b 

J ( x ) d x = J dx = 1 
a 

und für O ^ / n g n ist 
h 

J 0m (x) 0v+l(x)dx = J <Pm (x) 0„+i (x)dx = 
O /n + 1 

= j 2 j 0m(x)dx-Z J 0m(x)dx\ = 0. 

ri 
Durch vollständige Induktion erhalten wir also ein in [a, b] orthonor-

miertes Funktionensystem { 0 n ( x ) } , für welches (5 .5) erfüllt wird. Für jeden 
Punkt b] ist wegen der Periodizität und nach der Bedingung (5 .4) 
für unendlich viele Indizes 

\0,(X)\ = 1„, 

woraus sich auf Grund von (5.3) ergibt, daß (5 .2) für dieses Funktionen-
system {£>„(*)} überall in [a,b] erfüllt wird. 

Damit haben wir den Satz V vollstäridig bewiesen. 

§ 6 . Ü b e r die Lebesgueschen Funktionen. 

In diesem Paragraphen wird gezeigt, daß die Abschätzung (13) in der 
Einleitung nicht wesentlich verbessert werden kann. Es gilt nämlich der 

S a t z V. Es sei {w(n)} eine positive, monoton nichtabnehmende Zahlen-
folge, für die die Bedingung 

00 j 

erfüllt wird. Es kann ein in dem Grundintervall [a, b] orthonormiertes Funk-
tionensystem {£>„(*)} angegeben werden, so daß in [a, b] überall 

h V 
"Hm -¡~ f I 2 Qn(x)Qn(t) dt=oo , = y N log Nw(N)) 
K-+CD J i n—0 o 

gilt. 
Wir schicken zwei Hilfssätze voraus. 
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H i l f s s a t z IV. Es seien r und x natürliche Zahlen. Ist 

T~ ' 
so gilt für jede natürliche Zahl p die Abschätzung 

Ji *+p-1 

Z rk(x)rk(t) 
J t = * 

2 r 
2* 

dt>\P 

ist rx(x)rx(f) als Funktion von ^betrachtet im Intervall 

die diadisch rationalen Punkte ausgenommen überall, dabei ist rk(x) = 
= sign sin 2k:TX die k-te Rademachersche Funktion (k = 0, 1 , . . .). 

B e w e i s v o n H i f s s a t z IV. Ist JC keine diadisch rationale Zahl, so 
\2r 

streckenweise 

2* + 1 2 r konstant, undzwar ist sein Wert in Intervallen von der Gesamtlänge — — 
gleich - f l , und in Intervallen von der gleichen • Gesamtlänge gleich —1. 
Der Wert der Funktion r„(jc) rx(t) - f rx+1(x)rxU(t) ergibt sich aus demjenigen 
der Funktion r*(x)rx(t) indem man in der ersten Hälfte der einzelnen 
Konstanzintervalle zu dieser Funktion -(-1 addiert und in der zweiten 
Hälfte + 1 subtrahiert. Also nimmt die Funktion rx(x)rx(t)-\-rxJrX(x)rxn(t) die 
Werte + 2 , 0, bzw. — 2 der Reihe nach in Intervallsystemen von den 
Gesamtlängen » 

2*+l—2r 2*+l—2r 2*+1—2r 
-, 2 2*+2 ' 2*+- ' 2* + 2 

an. Mit vollständiger Induktion erhalten wir, daß falls x keine diadisch ratio-
nale Zahl ist, die Funktion 

x + p - l 

Z rk(x)rk(t) 

als Funktion von t betrachtet die Werte p, p — 2 ,...,p—21,...,—p + 2,—p 
in Intervallsystemen von den Gesamtlängen 

P 
, 0 

annimmt. Also ist 

p]2x+1-2r (p)2*+l-2r (p\2x+1-2r 
0 j 2 X + P ' ' " ' l / j 2X+P ' " " ' 1 / > J 2 " ^ 

( 6 - 3 ) j 1 1 i r f c ( x ) r * ( / ) 

2 r 

. . 2 » H - 2 r , 
rf/=—2Ï kP 
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mit 

Für p = 1 , 2 ist kp — 1 und so ergibt sich (6. 2 ) aus ( 6 . 3 ) . H . RADEMACHER 
hat gezeigt, daß 

^ÄR+L = ¿20-+2 (<7 = 0 , 1 , . . . ) 

und 

1 2 < 7 + 1 - L 
= ¿ ^ " « « R (<7 = 1 , 2 , . . . ) 

gilt, wo d- und von <7 abhängigen Zahlen sind (0 ^ 9 - , ^ 1) (siehe 
H. RADEMACHER [ 1 ] , S . 134). Auf Grund von diesen Formeln und (6 .3 ) 
erhalten wir, daß (6. 2) auch im Falle p s 3 erfüllt wird. 

Damit haben wir den Hilfssatz IV bewiesen. 

H i l f s s a t z V. Es seien eine beliebige, natürliche Zahl p und eine 
reelle Zahl c mit 

( 6 . 4 ) 0 < — < 1 c 
vorgegeben. Dann kann ein im Intervall [0,2] orthonormiertes System von 
Treppenfunktionen {h,(c, p; x)} (/ = 1 , . . . , p) derart angegeben werden, daß die 
folgenden Bedingungen erfüllt sind: 

(6 .5 ) 

(6.6) 

J*hi(c,P!x)dx = 0 (/=1, ...,p), 
o 

2 

¡¿h^c, p;x)hi(c,p;t) 
J i~i 

dt<]/2cp ( 0 g x s 2 ) , 

ferner existiert eine meßbare Teilmenge H(c) von [0,2] mit 

( 6 . 7 ) 

für deren Punkte x gilt: 

r(H(c))> T c , 

(6.8) iL'Eh(c,p;x)h,(c,p;t) 
J i=i • 

dt>^f2cp. 
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B e w e i s v o n H i l f s s a t z V. Es seien r und x natürliche Zahlen, 
für die die Ungleichung 

(6 .9 ) 

erfüllt wird. Es sei für / = l , . . . , p 

2 T ̂  1 < 2 r + l 
2 » — c 2 " 

h,(c,p;x) = 

wo 

(6.10) 

und 

0 , ^ . 1 ( x ) f ü r x ( [ | o , | i 

ö2rx+!-i(x) für x £ 2 

e. ' ( 6 - i i ) 

ist. 
Aus der Definition ist es klar, daß die Funktionen hi(c ,p;x) Treppen-

funktionen sind und ein orthonormiertes System in [0, 2] bilden, ferner (6. 5) 
erfüllt wird. 

Nach (6 .9 ) ist 

(6. 12) 
2 r 
2" >2c 

und nach (6. 9) und (6. 10) 

(6 .13) V c > Ö , a 

Ferner ist nach (6.4), (6 .9) und (6. 11) 

(6. 14) 

~2' 

1 a 1 

Da die Funktionen gi(c,p;x) ( / = l , . . . , p ) in [0,2] ein orthonormiertes 
System bilden, so ergibt sich mit Anwendung der Bunjakowski—Schwarz-
schen Ungleichung: 

h(c,p;x)hi(c,p;t) 
J 1=1 

dt^V2j | \Èhl(c,p;x)hl(c,p;Q ) dt[ = 

1 1 , 2 

= K2 \2hî(c,p-,x)\ ^ Y2 max {6U 6,} 
[i=i 

und so auf Grund von (6.4), (6. 13) und (6. 14) erhalten wir (6 .6) . 
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Es sei H(c) die Menge, die so entsteht, daß wir aus dem Intervall 

|o, p^j die diadisch rationalen Punkte weglassen. Dann wird (6 .7 ) nach 

(6 .12) erfüllt und für x 6 H(c) gilt nach (6.13). und (6. 14) 

J|jZ hi(c,p;x)h,(c,p;t) dts x)fh(c,p; t) 
o i 

•>x 

2 2 

= 0 , 0 * J ¿ ^ . . ( x ) ^ ^ / ) dt>^^^+2r*(x)rk(t) 

dt= 

2r 
2* -

Nach (6.4) und (6 .9 ) wird die in dem Hilfssatz IV vorkommende Bedingung 
erfüllt, und so ergibt sich mit Anwendung des Hilfssatzes IV die Abschätzung 
(6.8). 

Also erfüllen die Funktionen hi(c,p;x) (l=\,...,p) alle im Hilfssatz 
V gestellten Bedingungen. Damit haben wir den Hilfssatz V bewiesen. 

Ist I=[u,v\ ein beliebiges endliches Intervall, so sei 

./ / \ ) Î2hi\c,p\2-—- für u <x<v, ,, , . 
h,(c,p,/;x) = < y 'l v—u) ' (l=\,...,p) 

( 0 sonst 
und bezeichnen wir mit H(c,T) das Bild der Menge H(c) bei der Trans-

« 

formation y = V~ x + u. Auf Grund von (6.5), (6.6), (6 .7) und (6.8) ist 

es klar, daß 

(6.15) 

(6.16) 

(6.17) 

JÄI(C, p, I; x)dx = 0, 
i 

Jhi(c, p, I; x)hj(c, p, / ; x) dx = 
i 

i L'SMc.P, / ; x)hi(c,p, I; t) J u=i 

0 für / 4= j, 
f i ( I ) für i = j, 

dt<fi(I)V2cp (u^x^v), 

(6.18) 

ist und für x £ H(c, I) 

(6 .19) 

gilt. 

f p, I; x)hi(c, p, I; t) J i=i 
dt>i*(I)±Y2cï 
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B e w e i s v o n S a t z VI . Nach (6 .1 ) ergibt sich, mit Anwendung des 
in der Fußnote") erwähnten Satzes daß eine positive, monoton nichtabneh-
mende Zahlenfolge {»P(n)} existiert, die die Bedingungen 

<6.20) w(n) = o (w(n)), 

(6.21) Z r ~ ; — , = 
l o g n ) i v ' ( n ) 

erfüllt. 
Es sei fi\ die kleinste natürliche Zahl, für die 

( n . + O ^ g l 

ist. Ferner sei d eine natürliche Zahl mit 
(6 .22) 2 log 64 ^ d 
und man setze 

nm = n , - t - c i ( m — 1) ( m = 1 , 2 , . . . ) . 

Offensichtlich ist wegen der Monotonität von w(n) 
(6 .23) . (nm + \)w\2"m+1)^ 1 (m = 1 , 2 , . . . ) , 
ferner ist 
(6.24). Nm = 2"m-f 2"m~l -| h 2 " ' 2 " ' " + 2"m'd-| h 2"m'(m'1)d< 2"m+1 

<m = l , 2 , . . . ) und wegen nk = nm—d(m—k) 

Z 2"k'2 = 2"m''2 Z 2"i(m'k)/2 = 2"m'2 Z (2" , / a y < 
A=l fc=l . 1=1 

< 2"m ' 2 2 - " - i ; ( 2 " i , 2 y < 2 " m / 2 - 2 ~ d / 2 - 2 ; 
¡=o 

hieraus ergibt sich nach (6.22) die Abschätzung 
IM —1 I 

<6.25) " Z 2"t/2 < ^ 2"m/2 (m = 2, 3 , . . . ) . 
4 = 1 . W 

Da für jedes s 

y 1 = y y L= 1 y 1 

^ (n l0g/!)^(«) (n log n)vf(n) nmw2(2"m) n 

ist, so folgt aus (6.21); 
CD f 

<6.26) 

Im folgenden wird mit Anwendung des Hilfssatzes V ein von der Folge 
{w(n)\ (und so auch von der Folge {w(n)}) abhängiges, im Intervall [a, b] 
orthonormiertes System der Treppenfunktionen {(>„(*)} (n = 0 , 1 , . . . ) und eine 
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Folge {H,„} (m = l , 2 , . . . ) von meßbaren Teilmengen von [a, b] definiert, die 
die folgenden Bedingungen erfüllen: 

ä) für jeden Index m ( s l ) gilt die Ungleichung 
t 

Am-I : 
( 6 . 2 7 ) Z 9n{x)Qn(t) dt < V2"m+l(nm+ l)vv(2"m+1) (a x ^ b; N0 = 0) ; 

J | n=JVm —1 • a 
— • * 

6) für x £ H m besteht die Ungleichung 
& 

C 1>'m~1 1 . / • — = : — 
( 6 . 2 8 ) Z e - O O P - W dt>± K2" m + I (/2m + l ) i v ( 2 " r a + 1 ) ; 

J ..=,v„_j 10 
a 

c) die Mengen //,„ ( m = I , 2 , . . ) sind stochastisch unabhängig und gilt 

( 6 . 2 9 ) > { ( n m + l ) w a ( 2 n " , + 1 ) ) ' \ 

Nach (6 .23) erfüllt die Zahl c, = (/!, + l)w2(2" ,+1) die Bedingung (6.4) , 
so daß für die Zahlen ct und px = 2"' der Hilfssatz V angewendet werden 
kann. Es sei 

= ( / = l , . . . , 2" 1 ) 

und Hi = H(cu[a,b]). Nach dem Hilfssatz V sind die Funktionen Q„(X) 
{ / I = = 0 , — 1 ) Treppenfunktionen und bilden nach (6 .16) ein orthonor-
miertes System im Intervall [a, b], ferner nach (6.17), (6 .18) und (6 .19) werden 
die Ungleichungen (6.27), (6 .28) und (6 .29) für m = l erfüllt. 

Es sei nun k eine beliebige natürliche Zahl > 1. Wir nehmen an, daß 
in [a,b\ die Treppenfunktionen p„(x) (n = 0 , . . . , N k . i — 1) und die meßbaren 
Mengen H i , . . . , H l : - i bereits so definiert wurden, daß die £>„(*) ein ortho-
normiertes System bilden und die Bedingungen ä)—c) für die Indizes 
m=\,...,k—l erfüllt sind, insbesondere sind also die Mengen H1,...,Hk. i 
stochastisch unabhängig. 

Es gibt eine Einteilung des Grundintervalls [a, b) in endlich viele Teilinter-
valle/p (p = 1 , . . . , r), so daß in den einzelnen Teilintervallen jede Funktion 
$ n (x ) (/2 = 0, . . . , J V M - 1 ) konstant ist. Nach (6 .23) wird für die Zahl 
c,. = (nk+ l)iv2(2"k+1) die Bedingung ( 6 . 4 ) erfüllt und so kann für die Zahlen 
ck,pk = 2"1 'der Hilfssatz V angewendet werden. Es sei gesetzt: 

und 

(*) = HO, A , X) (L = 1 , . . . , 2"K) 

H k = U H{ck, 4). 
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Nach dem Hilfssatz V sind auch die Funktionen .?„(*) (Nk.i ^ n < Nk) 
Treppenfunktionen. 

Es seien n und / beliebige Indizes, 0 g n ^ Nk-i — 1, 0 ^ / ^ 2"k. 
Bezeichnen wir mit cP(n) den im Intervall I9 angenommenen Wert der Funk-
tion p„(x) (p = 1 , . . . , f). So ist nach (6.15) 

b 

(6 .30) JV.(*)e.vt_i«-'»(X)dx = jX=2cf(n)jh,(ck, pk, /e; x)dx = 0. 

Es sei i s / s 2"k, l s y g 2"k.' Nach (6.16) ist 
6 

0 

1 

für /+./, 

- Z ( J e ) = 1 für i=j. b—a ¿Ei 
Daraus folgt nach (6.30) daß die Funktionen o„(x) (n = 0 , . . . , Nk— 1) in [a,b] 
ein orthonormiertes System bilden. 

Für x £ [a, b] ist . 
b 

Jl j r ç 2 "k 

Z 9n(x)gn(t) dt = -r—-2' Zh(ck,pk,Ie;x)ht(ck,pk,Ie;t) 
0 — u e=i J i=i 

dt, 

woraus sich nach (6.17) ergibt, daß (6.27) auch für m = k erfüllt wird. 
Es sei endlich x £ H k . Dann existiert ein Index p (1 ^ g ^ r ) , so daß 

x £ H(ck, Ig) gilt. Es sei ¡e = [u„ve] ( p = 1 , . . . , r). Dann erhalten wir mittels 
der Integraltransformationen 

i t t/p 
daß 

b 
r I •"*-! 1 r r I ~ 1 

2 p»(*)p«(0 dt=-r—Z I? ; X) hi(ck,pk, Iv; t) j | «=.vt_l 0 _ a p = i J |êï 
't 

2 

1 fl2"1 ( 2 1 
= b = ï £ . " ( 4 ) J | A," — J ( x - ^ ) j hia, pk; y) 

dt = 

ist. Da 

r(x—ue-)£H(ck) 
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ist, so folgt nach (6.8) , daß die Ungleichung (6 .28 ) auch für m = k erfüllt 
wird. Aus der Konstruktion folgt, daß die Mengen Hl,..., Hk stochastisch 
unabhängig sind. 

Nach (6. 18), ist es klar, daß auch die. Ungleichung (6 .29) für m = k 
besteht. 

Somit haben wir durch vollständige Induktion ein im Intervall [a, b] 
orthonormiertes Funktionensystem {pn(x)} und eine Folge von meßbaren Men-
gen {Hn} konstruiert, so daß die Bedingungen ö ) — c ) erfüllt sind. 

Aus den Bedingungen a) und b) und aus der Ungleichung (6. 25) folgt 
für x £ Hm (m ^ 2) 

Jl -Vra-l r 

2 e „ ( * ) p » ( 0 dt.im n=0 J 
2 P » W P » ( 0 n=N,„ -l 

ö 
m-2 r 

d t - 2 f 
A=0 J 

2 Pn(x)pH(t) dt > 

i« w-1 
-jL f 2 " m ( / 2 m + l ) w ( 2 " m + 1 ) — 2 }'2"k(nk+l)w(2""+1) 

!= ¡ ¿ 2 " » ' - - 2 2"*' sj > ~ V2"m(nm + l ) tv(2"" ' + 1 ) . 

Daraus erhalten wir auf Grund von (6.24), daß für x £ Hm ( m s ] ) 

(9 .31) 

ist. 

J 2 9n(x)g„(t) n=0 

1 dt>^\'Nm\ogNmw(Nm) 

Es sei nun x£l im// m . Dann wird (6 .31) für unendlich viele Indizes 

m erfüllt. Nach (6.26), (6 .29) und der Bedingung c) erhalten wir mit Anwen-
dung des zweiten Borel—Cantellischen Lemmas, daß ,a(lim //„,) = ft—a ist. 

M - * CD 

So ergibt sich auf Grund von (6.20), daß für das so definierte Funktionen-
system (?n(x)} die in der Behauptung des Satzes VI vorkommende Relation 
fast überall in [a, b] erfüllt wird. Wir bezeichnen mit H die Teilmenge vom 
Maße Null des Intervalls [a, b], wo diese Relation nicht erfüllt wird. Wir 
verändern die Funktionen {«»(*)} in der Menge H wie folgt: für x ^ H sei 

Qn{x) •• ' 2 Cm 

b—a ( N m - l ^ t l < N m /71 = 1 , 2 , . . . ) . 

Nach dem obigen ist es klar, daß das so abgeänderte Funktionensystem {(>«(*)} 
orthonörmiert bleibt und die in der Behauptung des Satzes VI vorkommende 
Relation überall in [a, b] erfüllt wird. 
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Damit haben wir den Satz VI vollständig bewiesen. 
Es bleibt offen, ob die im Satz VI vorkommende spezielle Folge i a = = 

= 1in log n w(n) mit einer beliebigen, positiven, monoton, nichtabnehmenden 
Folge {¿„} ersetzt werden kann, für die die Bedingung (5 .1 ) erfüllt wird. 

§ 7. Cesärosche Mittel der quadratisch integrierbaren 
Entwicklungen. 

Es sei {«¡PnOt)} ein im Grundintervall [a, b] orthonormiertes Funktionen-
system. In diesem Paragraphen wird die n-te Teilsumme, bzw. die n-te 
(C, a)-Mittel ( « > 0 ) der orthogonalen Reihe 

CO 

Zav'fv(x) 
v=0 

mit s„(x), bzw. mit a" (JC) bezeichnet, d. h. ist 
n | M 

SN (X) = 2 ÜR<PV(x), o'a \x) = — Z An-Vav(pv(x) (n = 0, 1 , . . . ) 
r = o - 4 ; , ' " = o 

mit 

& = + ( « + - 1 , - 2 , . . . ) . 

Offenbar ist A!?' (JC) = sn(x) (n = 0 , 1 , . . . ) . Der Einfachheit halber bezeich-
nen wir die (C, 1)-Mittel mit o»(x) (n = 0 , 1 , . . . ) . 

Es ist bekannt, daß. 

(7. 1) c , («) ^ c2(a) (m > 0, « > - 1 ) 

gilt, wo cx(a) und c2(a) nur von a abhängige positive Zahlen sind, ferner 
gelten die Relationen 

(7. 2) i4{? > 0 ( m ä O . « > — 1 ) , 

( 7 . 3 ) > № (m 0, a > 0), 
m 

( 7 . 4 ) • 
r = 0 

( 7 . 5 ) ' O H i i : ^ ' ' f « 
•All r=0 

(siehe z . B . A . ZYGMUND [1] , S . 4 2 ) . 

Zuerst werden wir die in der Einleitung erwähnte Abschätzung für 
die (C, a > 0)-Mittel der quadratisch integrierbaren Entwicklungen beweisen. 
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S a t z VII. Ist {a„}£P, so ist für jedes «>0 

( 7 . 6 ) OtP (x) = o (log log N) 
fast überall in [o, b]. 

Um den Satz VII zu beweisen werden einige Hilfssätze vorausgeschickt. 

H i 1 f s s a t z VI. Es sei {,«(/?)} eine positive, monoton nichtabnehmende, 
ins Unendliche strebende Zahlenfolge. Wir nehmen an, daß die Abschätzung 

ox(x) = 0(u(N)) 
für jede Folge {a„} £ P im Intervall [a,b] fast überall gültig ist. Dann ist 
auch die Abschätzung 

oy(x) = o(tu(N)) 

fiir jede Koeffizientenfolge {a„} £ P im Intervall [a, ¿>] fast überall gültig. 

B e w e i s v o n H i l f s s a t z VI. Es sei {a„} (j P eine beliebig gegebene 
Koeffizientenfolge. Man kann eine positive, monoton nichtabnehmende, ins 
Unendliche strebende Zahlenfolge {¿„} derart angeben, daß 

( 7 . 7 ) 
j-=0 

ist, man setze z. B. 

¿ o S l ( r - 0 , 1 , . . . ) . 

Dann ist nämlich die Reihe (7. 7) die untere Summe des konvergenten Integrals 
s 

K S 4 
0 

die zu der mit den Teilpunkten 0, ...,S—(ao + oD, 5 — a i , S angegebenen 
Einteilung des Intervalls [0, S ] gehört. 

Die n-te Teilsumme, bzw. die /i-te (C, 1)-Mittel der orthogonalen Reihe 
CO 

£j.rav(pv(x) 
r=tl 

werden wir mit s*(x), bzw. mit o*,(x) bezeichnen: 

s*(*) = 2 kvavtpv(x), al(x) = 2 1 — —j-f kvav<pv(x) (n = 0 , 1 , . . . ) . 
v—0 r=U " l ' J 

Mit einer doppelten Abelschen Transformation ergibt sich: 

ö v w = I ( 1 - i v T l ) i « = I { l - Ä ^ r ) ( i - ¿ ) s : w + 

• + j v t r l r T ^ (/i + l K t o + A < * ( * ) . /V - ¡ - 1 „=0 v^n+l /MI+2 ! 1 
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Auf Grund von (7. 3) und (7. 7) ist 

<1 (' 

I: fe - * s <6->' "I (x7 - ¿r) (/("•• 
« o 

\r=0 ' J r-l 

und 

< ° c . 

Aus den obigen erhalten wir mit der Anwendung des B. Levischen Satzes, 
daß die Reihen 

z f l - x - W — ^ l i ^ w i / 11=0 *•„+[ An+2 J 

im Intervall [a, b] fast überall konvergieren. 
Da eine konvergente Reihe immer (C, l)-summierbar ist, ist in [a, b\ 

fast überall 

< 7 9 ) K ' - Ä n n K i - i i r ) ^ " 0 ' » -
Ferner ist 

1—)(« + ! ) # ) ^ tMKWI •f" 1 V A,n2 J 11=0 V Art+l a„+2 / N+ 
und so ist in [a, b] fast überall 

<7-10> N T . 
Nach (7. 7) folgt gemäß unserer Annahme, daß fast überall in [a, b\ 

al\x) = 0{ji(N)) 

ist. Daraus ergibt sich die Behauptung auf Grund von (7.8), (7. 9) und (7.10) . 
Damit haben wir den Hilfssatz VI bewiesen. 

H i l f s s a t z VII. Ist {a„}£l2, so besteht für jedes r > 

1 jt(or\x)-oP(x)Y = o( 1) • /v + 1 , f r 0 

fast überall in [a, ft]. 

Dieser Hilfssatz ist bekannt (siehe A. ZYGMUND [2] , S . 3 5 9 ) . 
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H i l f s s a t z VIII. Es sei {t*(n)} eine positive, monoton nichtabnehmende 
Zahlenfolge. Wir nehmen an, daß {a,,} £ /2 ist und 

ox(x) = o(?(N)) 
fast überall in [a, ft] gilt. Dann ist 

j f c g i V - . V M 
fast überall in [a, 6]. 

B e w e i s v o n H i l f s s a t z VIII. Ist {a„} (j /2, so ist nach dem Hilfs-
satz VII 

1 N 

2 (s» (*)—On(x)f = o(l) 

fast überall in [o, b). Mit Anwendung der Ungleichung 
NTI i = NTi „I {s"(x)~°"(x))2+mn S a-ix) 

ergibt sich daraus die Behauptung. 
Auf die Cesäroschen Mittel <7„(r) beliebiger numerischer Reihen bezieht 

sich der 

H i l f s s a t z IX. Es sei {^(n)} eine positive, monoton nichtabnehmende 
Zahlenfolge. Ist für ein r> — 1/2 

so ist für jedes s > 0 

= o(/*(N)). 
Diesen Hilfssatz hat A. ZYGMUND mit o ( l ) statt o(jx(N)) bewiesen. 

(Siehe A. ZYGMUND [2], S. 360—361.) 

B e w e i s v o n H i l f s s a t z IX. Auf Grund von (7.1), (7.2) , ( 7 . 4 ) 
und (7 .5 ) ist 

ZAIJ 
«=o 

N V/2 / N r \2\l/2 
— 5T11 .V 2 / 

( '+-3-+0 1 
OK 

„ ( r + Y + < ) ilt 

^ ( l ^ ) 1 ) " 4 J -
A„ 2 

= o(]/Nft(N)) (Z^^A&rX1^ (Af^yi*, 

Ay Ar 
woraus mit Anwendug von (7 .1) ergibt sich die Behauptung. 
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Mit Anwendung der Hilfssätze VII—IX kann der folgende Hilfssatz be-
wiesen werden. 

H i l f s s a t z X. Es sei {u(rt)} eine positive, monoton nichtabnehmende 
Zahlenfolge. Es sei {a,,} € l'2 und nehmen wir an, daß 

o.v(x) = o(u (/V)) 

fast überall in [a, b] gilt. Dann ist auch die Abschätzung 

( 7 . 1 1 ) a'y\x) = o(fi(N)) 

für jedes u > 0 fast überall in [a, b] gültig. 

Dieser Hilfssatz entspricht dem folgenden Satz von A. ZYGMUND: Ist 
eine quadratisch integrierbare Entwicklung fast überall (C, l)-summierbar, so 
ist die fast überall ( C , a > 0)-summierbar. (Siehe A . ZYGMUND [ 2 ] . ) 

B e w e i s v o n H i l f s s a t z X. Nach unserer Annahme ergibt sich mit 
Anwendung des Hilfssatzes VIII, daß 

fast überall in [a, b] erfüllt wird. Daraus ergibt sich mit Anwendug des Hilfs-

satzes IX für e = , daß fast überall in [a, b) 

(—) 
(7 .12 ) o.v2 '(x) = o(ji(N)) 
ist. Da für jedes N 

fiCR,]2 

gilt, ergibt sich nach (7. 12) mit Anwendung des Hilfssatzes VII, daß 

N+ 

+ 

N+ 

fast überall in [a, b] erfüllt wird. Nach Hilfssatz IX mit f = erhalten wir 

endlich, daß fast überall in [a, 6] 

oia)(x) = o(u(N}) 
ist. 

Damit haben wir den Hilfssatz X bewiesen. 
Nun gehen wir zum Beweis des Satzes VII über. 
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B e w e i s von S a t z Vll. Es sei u „ = l für n= 1 ,2 ,3 und «, ,=loglog/i 
für ( ¡ ä 4 . Es sei ferner {on} £ l1 eine beliebige Koeffizientenfolge. Dann ist 
die orthogonale Reihe 

r=0 u v 

nach einem Satz von D. MENCHOFF fast überall in [a,b] (C, l)-summierbar.ls) 
Mit einer Abelschen Transformation erhalten wir: 

x I i 1 - JVTT) i = \ l i 1 - t t t t ) [ i - " ¿ r ) s " ( x ) + 

(7 .13) N_x 

+ -Jrr 2 h r TT—) + + T T " J\ 1 ,.=0 V tfr+1 Ur+2 j U.v+l 

Nach den obigen Bemerkungen konvergiert die linke Seite vori (7. 13) fast 
überall in [a, b] und daher ist fast überall in [a, ö] 

(7 .14) ¿ ( 1 - ^ ) 1 ^ ) = 0 ( 1 ) . 

Da {a„}Ç/2 ist, so kann man mit der Methode, die bei dem Beweis des 
Hilfssatzes VI angewendet wurde, zeigen, daß die Reihen 

¿(ïï--7T-k<*>' ¿(V -/-W)! 
r=0 ' UV UV+L J r=0 V UV+L UV+2 ) 

in [a, b] fast überall konvergieren und so gilt fast überall 

und 

Nach (7.13), (7.14), (7.15), und (7.16) erhalten wir, daß die Abschätzung 
Ox(x) = O (log logAO 

für {a„} £ P in [a, b] fast überall gültig ist. Daraus ergibt sich nach dem 
Hilfssatz VI, daß für {an} £ P 

a.v(x) = o(log log N) 

fast überall in [a, b] besteht. Schließlich erhalten wir daraus mit Anwendung '3) Dieser Satz lautet wie folgt: Ist £ c» Oog l 0 8 nf < °°>. so isf die Reifle ZCn f" ^ 
n=4 n=0 

für jedes orthonormierte System {<p„(x)} im Grundintervall fast überall (C, \)-summierbar. 
(Siehe D . MENCHOFF [ 3 ] , S. 6 5 — 6 6 . ) 
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<7.18) lim £-j :-Af.rav0v(x) 

des Hilfssatzes X, daß (7 .6 ) im Falle {a„} € P für jedes « > 0 im Intervall 
[a, b] fast überall gilt. 

Damit haben wir den Satz VII vollständig bewiesen. 
Im folgenden wird gezeigt, daß die in dem Satz VII vorkommende Ab-

schätzung im allgemeinen nicht verbessert werden kann. Nämlich gilt der 
folgende 

S a t z VIII. Es sei {iv(n)} eine positive, monoton nichtabnehmende 
Zahlenfolge, die die Bedingung 

<4.17) w(n) = o (log log n) 

erfüllt Dazu kann man eine Koeffizientenfolge {a„} £ P und ein im Grundin-
tervall [a,b\ orthonormiertes Funktionensystem {&n{x)\ angeben, so daß für 
jedes a > 0 überall in [a,b\ 

1 

NX'*, W(N) 

besteht. Das Funktionensystem {<£>„(*)} kann auch gleichmäßig beschränkt 
gewählt werden. 

B e w e i s v o n S a t z VIII. Es sei {iv(n)} eine positive, monoton nichtab-
nehmende Zahlenfolge, die die Bedingungen 

<7.19) w(n) = o(u>(n)), 

( 7 . 2 0 ) ¡v(n) = 0 ( log logn) 

erfüllt; man wähle z. B. die Folge 

= ( " = 4 , 5 , . . . ) 

(es sei etwa w(n) = iP(4) für n = 0 , 1 , 2 , 3). 
Aus (7 .20 ) folgt, daß die positive, monoton nichtabnehmende Zahlen-

folge iP(n) = iv(2n) (n = 0, 1 , . . . ) die Bedingung 

®(n) = o (log n) 

erfüllt. So kann mit Anwendung von Hilfssatz I eine positive, monoton nicht-
abnehmende Zahlenfolge {w*(n)} angegeben werden, die die Bedingungen 

® 1 

( 7 ' 2 1 ) S ( n logn) ( l f * (/ l ) ) 2 ~ °° 
und 

<7.22) y ^ ^ ^ < o o 
£i(n log3 n) (w'(n)f 

erfüllt. 
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Nach (7 .21) kann der Hilfssatz III, bzw. III' angewendet werden und 
so ergibt sich die Existenz eines im Intervall [a,b\ orthonormierten Funktio-
nensystems {3>*(x)}, für welches die Reihe 

( 7 . 2 3 ) ¿ > : < K ( x ) 

mit den Koeffizienten 

= = TT\ ( n = 2 ) wv*) yn log3« w (n) 

fast überall in [a,b\ divergiert. Das Funktionensystem {(PM(x)} kann auch 
gleichmäßig beschränkt gewählt werden. 

Bezeichne 

<7.24) j t ' a ï & U x ) 

die orthogonale Reihe, die wir aus der Reihe (7.23) erhalten, indem wir die 
Glieder mit den Indizes n = Nm — 1 (m— 1 , 2 , . . . ) weglassen (Nm hat die-
selbe Bedeutung wie in den Hilfssätzen III und III'). Nach den Hilfssätzen 
III, III' ist klar, daß auch die Reihe ( 7 . 2 4 ) fast überall" in [a, b\ divergiert. 

Wir ordnen jetzt die Funktionen 0l(x) in eine Reihenfolge um. Die 
Funktionen Î>*(x) mit n 4 = W » > - l (m = 1, 2 , . . . ) werden der Reihe nach mit 
0-i«(x) (n = 0 ( 1 , . . . ) und die Funktionen 0 $ m - i ( x ) (m = l „ 2 , . . . ) der Reihe 
nach mit 0k(x) (Ar = 0 , . . . ; Ar 4 = 2") bezeichnet. Aus der Koeffizientenfolge {a,*} 
erhalten wir eine neue Folge {ö,,}, indem wir die a* mit rt^=Nm — 1 
(m = 1 , 2 , . . . ) fortlaufend mit ä-2» (ri = 0, 1 , . . . ) bezeichnen und für die Indizes 
k + 2n ÛI = 0 setzen. Nach dem obigen ist es klar, daß ä ^ ^ i ^ n log3/IH>*(/I))-1 

(n = 2, 3 , . . . ) gilt. Ferner ist es klar, daß das so erhaltene Funktionensystem 
{<P„(JC)} auch orthonormiert ist, und falls das System {<£>*(x)} gleichmäßig 
beschränkt ist, so ist das System {0n(x)} ebenfalls gleichmäßig beschränkt. 

Betrachten wir nun die Reihe 
03 

( 7 . 2 5 ) Zün0n(x). 

• Nach den obigen ist es evident, daß die 2"-te Teilsumme der Reihe (7 .25) 
mit der n-ten Teilsumme der Reihe (7 .24) übereinstimmt. Da die Reihe (7 .24) 
im Intervall [a, b\ fast überall divergiert, so ist die Reihe ( 7 . 2 5 ) nach einem 
bekannten Satz fast überall in [a, b\ nicht (C, l)-summierbar.14) Auf Grund 

u) Dieser Satz lautet wie folgt: Es sei {<pv(x)} ein orihonormieries Funktionensystem 
und sei {c„K'ä- Die Reihe 2cv<pv{x) ist im Grundintervall dann und nur dann fast überall 
(C, \)-summierbar, wenn die Folge der 2"-ten Teilsummen der Reihe im Gruhdintervall fast 
überall konvergiert. (Siehe A. N. KOLMOOOROFF [1].) 
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von (7 .22) und nach dem obigen ist 

(7 .26) ± 1 
«==2 ..=2 (n log3 n) (w (n)) »=2 (n log3/?) (w*(n)) 

Also ist {o,,} € P und so ergibt sich nach einem im Zusammenhang mit Hilfs-
satz X erwähnten Zygmundschen Satz, daß für jedes a > 0 der Reihe (7. 25) 
mit Ausnahme einer von a abhängigen Teilmenge vom Maße Null des Grund-
intervalls nirgends (C, a)-summierbar ist. (Dieses Ergebnis kann in der Mittei-
lung von D. MENCHOFF [3] gefunden werden; das oben beschriebene Ver-
fahren kann abgesehen von einer kleinen Modifizierung bei S . K A C Z M A R Z — 

H. STEINHAUS [1], S . 191 gefunden werden.) 
Es sei r eine beliebige natürliche Zahl. Wir bezeichnen die n-te Teil-

summe, bzw. die /2-te (C, r)-Mittel der orthogonalen Reihe 
tp 

Zw(v)äv0v(x) 
v=0 

mit s„(x), bzw. mit olr>(x): 

Jl 
tS> V - , . -- V - , A(n~ 

Wir erhalten mit einer r-fachen Abelschen Transformation: 

| —* 
s»(x) = Zw{v)ôv0r(x), öir)(x) = Z^"»Wä, ®v(x). 

A 
(7 .27) 

+ 
i.v j~o . A$ \ w ( f ) w ( r - t - l ) J 

Ê ( « ? ( « ' + / » ) ~~ "IFFT+iy) I+ 

1 i v ( A ^ + r + l ) 
( v g l . K . TANDORI [4 ] , S . 9 3 ) . 

Nach (7.26) kann mit der beim Beweis des Hilfssatzes VI angewendeten 
Methode gezeigt werden, daß die Reihen 

( 7 - 2 8 > M - m ~ w + T ) \ M x ) 

und 

< 7 - 2 9 > g ( g p T 3 - - < " = ' '> 

im Intervall \a, b] fast überall konvergieren. 
Es sei a,b) ein beliebiger Punkt, in dem die Reihen (7 .29) kon-

vergieren und es sei f eine beliebige positive Zahl. Es gibt dann eine Zahl 
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v0 = vc(x) derart, daß 

(7 .30) 2 L \ , _ _ ( f t = 1 r ) 

ist. Für N ^ v a hat man nach (7.1), (7 .2) und (7.30) 

2 Ati'A^ - jp-(r + i i + i ) ) 

( ,w= 1 , . . . , r ) und daraus folgt mit Anwendung von (7 .1) 

* ( , + ' „ + 0 1 < 8 <" = ' '> 

für genügend großes N. Also ist in diesem Punkt x 

lm. - k IA%:" A" »fr +' • + •> ) ~ 0 <"= 
Da die Reihen (7 .29) in [a, b] fast überall konvergieren, so wird diese Rela-
tion in [a, b\ fast überall erfüllt. 

Da die Reihe (7.28) in [a, b\ fast überall konvergiert, und eine konver-
gente Reihe immer (C, /^-summierbar ist, so konvergiert die erste Summe der 
rechten Seite von (7.27) im Grundintervall [a, b\ fast überall. Da die auf der 
linken Seite von (7.27) stehende Summe nach der Annahme für N—-°° in. 
\a, b] überall divergiert, erhalten wir auf Grund der obigen Bemerkungen und 
nach (7. 27), daß in [a, b] fast überall 

1 =<r, 
w(N+r+\) 

ist, mithin gilt in [a, b] fast überall 

ö i P ( x ) 4 = 0 ( 1) 

Wir bezeichnen mit E(r) die meßbare Teilmenge des Grundintervalls 
[a, b\, für die (7 .31) nicht erfüllt wird. 

Es ist klar, daß E(r)SE(r+1). Es gei 

£ = U E(r). 
r=1 

Da für jedes r i*(ß(r)) = Q ist, so gilt jtt(£) = 0, Besteht (7 .31) in einem 
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Punkt x für jede natürliche Zahl 1), so ist nach (7.2), (7 .4 ) und ( 7 . 5 ) 

U m ^ U ¡ l ^ v ' W I > 0 
.Vh-O W ( J V ) 1 W l 

für jedes u> 0. Es sei an = w(n)ält (n = 0, 1 , . . . ) . Es folgt nach (7 .19) , daß 
(7 .18) für das oben definierte Funktionensystem mit jedem a > 0 in der Menge 
CE überall besteht. 

Wir werden beweisen, daß man mit einer geeigneten Veränderung der 
Funktionen {(?>„(*)} in E erreichen kann, daß (7 .18) für jedes a > 0 überall 
in [«, b] besteht. 

Es sei 0„(x)=l für x £ E (n = 0, 1 , . . . ) . Es ist klar, daß das so 
erhaltene Funktionensystem {(£>„(x)} in [a,b\ orthonormiert ist und die Funk-
tionen 0„(x) gleichmäßig beschränkt sind, wenn sie ursprünglich gleichmäßig 
beschränkt waren; ferner besteht (7. 18) für jedes « > 0 überall in CE. 

Wir werden beweisen, daß (7 .18) für das so modifizierte Funktionen-
system bei jedem positiven Parameterwert ci auch in der Menge E erfüllt 
wird. Nach (7 .17) ist es genügend zu zeigen, daß für jedes a > 0 

(7 .32 ) T i m - i — i -
-V->03 log log N AT 

gilt. Nach (7 .1) und auf Grund der obigen Definition der Koeffizientenfolge 
{ö,,} ergibt sich für a > 0 

1 N [.V;2] 
(7 .33) 775. Z ^ c(«) £ ä r ( N = 0 , 1 , . . . ) , Alf y=u ,/=o 

wo c(a) eine nur von « abhängige positive Zahl ist. Ferner folgt aus der 
Definition der Folge {ä„}: 

o . V - y 

(7 .34 ) 

So ergibt sich (7 .32) auf Grund von (7.33) und (7.34), wenn es gezeigt 
wird, daß 

1 N 1 
lim ; y , f = 0 0 

log N ]/n log3 n iv* (n) 

ist. Dies ist aber klar. Im gegengesetzten Fall existierte nämlich eine posi-
tive Zahl K, für die 

1 N 1 
1 <K (N = 2) 
log Ng&yn log»nw'(n) v ' 

ist, woraus auf Grund der Monotonität der Folge {w*(n)} sich ergäbe, daß 
n 1 
2 Yn log3 ./!»>*(/») 

< Ä" log n (/12 4) 
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ist, also würde die Ungleichung 

f ^ 
£i(n\ogn)(w'(n)y. ¡ä «2 

bestehen, die der Bedingung (7 .21) widerspricht. Damit haben wir den Satz VIII vollständig bewiesen. 

§ 8 . Cesarosche Mittel d e r o r t h o g o n a l e n F u n k t i o n e n . 

Es sei {9>n(*)} ein im Grundintervall [a, b] orthonormiertes Funktionen-
system. In diesem Paragraphen werden wir die folgenden Bezeichnungen 
verwenden: 

n 1 t 
•Sil(x) = Z fAx), ola,(x) = £ A(no)„ cpv{x) (n=0,1,...). 

v=0 An' v=0 

Der Einfachheit halber werden die (C, 1)-Mittel mit a„(x) bezeichnet. 
Zuerst werden wir die in der Einleitung erwähnte Abschätzung (16) 

beweisen. 

S a t z IX. Es sei {/„} eine positive, monoton nichtabnehmende Zahlen-
folge, die die Bedingung 

( s . i ) ¿ 4 - < ~ 

erfüllt. Dann gilt für jedes « > 0 die Abschätzung 

( 8 . 2 ) < # > ( * ) = 0 ( ^ v ) 

fast überall im Intervall [a, b]. 

Zum Beweis benötigen wir einige Hilfssätze. 

H i l f s s a t z XI. Wenn die positive, monoton nichtabnehmende Zahlen-
folge {In} die Bedingung (8. 1) erfüllt, dann ist für jedes « > 0 

^TT = o(i%) (r > \ 

fast überall im Intervall [a, b\. 
B e w e i s v o n H i l f s s a t z XI. Da für jedes s 

23 ] s 2m ] 1 s 2™ 
= Z Z — 

u = 2 A„ . ' m=l „ = 2 m " 1 + l " m = l ^ 

gilt, erhalten wir auf Grund von ( 8 . 1 ) : 
CO 2m 

(8 .3 ) 
m = l jiom 
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Nach der Definition der Koeffizienten Alm ist für jedes n 

otl\x)-oir\x) = —L-g ¿(Al^A^-A^A^Mx) = 
An 'Ai,' 

rAV r=u 

und daher ist für jedes n 
b 

J r (AV) r=o 

Daraus ergibt sich mit einer einfachen Rechnung, daß für jedes n 

Лb 2m+1 1 , 2" ,+1 , n 

. « = o ) ' « = o ( / ! ; , ) »-=0 

.. OM+L O,N+L / « ( r -m2 

v=0 n=v > ¿An ' gilt. Da nach (7. 1) 

( 8 . 5 ) Z < V ( " = J> 2'"+1; m = l , 2 , . . . ) 

ist, wo Ai eine von m und v unabhängige positive Zahl bezeichnet15), so er-
halten wir aus (8 .4 ) und (8. 5), daß für jedes l ) 

4 - f ! ^ z W ' (x)-tf(x)f\ dx=0( 1 ) - ^ 
Aom ./ ( Z n=0 ) /.2'" a 

gilt. Daraus und aus (8. 3) ergibt sich mit Anwendung des B. Levischen 
Satzes, daß die Reihe 

OD 1 1 1 c>m+l ) 

m=l A«1" l £ „=0 ) 

im Intervall [a, b] fast überall konvergiert. Nach dem Kroneckerschen Lemma 
besteht also 1 om-f-l 
<8. 6) ~ Z l^M-olPix))2 = o(g«) 

^ ,1=0 

im Intervall [a, b] fast überall. 

15) Siehe z. B . A . ZYGMUND [ 2 J , S . 360. 
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Ist 2 m < N ^ 2 , so hat man 
• i ' 'N i om+l 

1 K - » / J r - n / v —Cr)/„\V2 1 " 
TZ(otl\x)-a^x)f = 0 ( 1 ) ^ 2 : W - ^ ( x ) ) 2 , 
i «=o l r S N+ w " w / 

woraus die Behauptung auf Grund von ( 8 . 6 ) folgt. 
Damit haben wir den Hilfssatz XI bewiesen. 

H i l f s s a t z XII. Es sei {¿n} eine positive, monoton nichtabnehmende 
Zahlenfolge, die die Bedingung (8. 1) erfüllt Ist im Intervall [a, b] fast überall 
(8 .7 ) oN(x) = o(kN), 
so besteht auch 

fast überall in [a,b\. 

B e w e i s v o n H i l f s s a t z XII. Aus der Ungleichung 

NTxSo S I ( X ) = + 

ergibt sich die Behauptung mit Anwendung des Hilfssatzes XI. 
Nun gehen wir zum Beweis des Satzes IX über. 

B e w e i s v o n S a t z IX. Zuerst wird gezeigt, daß ( 8 . 7 ) im Inter-
vall [a, b\ fast überall erfüllt wird. Dieser Beweis wird durch eine kleine 
Abänderung eines Gedankens von G. ALEXITS durchgeführt. (Siehe G. ALEXITS [ 1 ] . ) 

Da 

t i = 0 J '' - 0 /,.>n ¿2" et 
ist, so ergibt sich nach (8. 3) mit Anwendung des B. Levischen Satzes, daß 
die Reihe 

v ob(x) 
n=0 Äq71 • 

im Intervall [a, b\ fast überall konvergiert und so ist fast überall in [a, b\ 

( 8 . 8 ) a 2 „ ( x ) = o ( V ) -

Da für jedes 1) 

ist, gilt nach ( 8 . 1 ) 
b . 

ä ) n l ¿n-i ) a x &\(n(n + l ) f £ > iiH-, 

A 8 
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und so ergibt sich mit Anwendung des B. Levischen Satzes, daß die Reihe 

jr n [ °.(x)—o„-t(x) V 
n=l V ¿»i-l J 

im Intervall [a, b\ fast überall konvergiert. Also ist fast überall in [a, b] 

(R9) n ( |2=0(i) ( „ _ ) . 
„—qm-i V All-1 J n = 2 n , + l 

1*1+1 Für 2 m < N ^ 2 hat man auf Grund von (8. 9) fast überall in [a, b] 

os(x) °2n(x) ^ [ ¡ a n ( x ) l K - i ( x ) l 
— \ l X , K..V K 

orn+1 , / \\2 ¡1 I i i 2 " ' + 1 , ¡ 1 / 2 

n = 2 m + l V » n - 1 J : I n = 2 m + 1 II ; 

•>"'+1 1 / \ / I 2*"+l / , x , ',11-2 [ -jn+l 
" v I M * ) — i ( * ) l 

— i ,1— <>»>+| An-1 

woraus sich nach (8 .8 ) ergibt, daß für a = 1 die Abschätzung (8.2) im 
Intervall [a, b\ fast überall gilt. 

Da (8. 7) im Intervall [a, b] fast überall erfüllt wird, erhalten wir mit 
Anwendung des Hilfssatzes XII, daß 

in [a,b] fast überall gilt. Daraus folgt mit Anwendung des Hilfssatzes IX 
mit t = «/2, daß 
< 8 - , 0 > = 

in [a, b] fast überall ist. Da für jedes N 

i G r ) , A* 2 ( ? ) , , 2 - m , / f 
n+tM'7" (x))=N+JM°" (x)) +N+lMa" (X)J 
gilt, so erhalten wir nach dem obigen und nach (8 .10) , mit Anwendung 
des Hilfssatzes XI, daß fast überall in [a, b] 

N + R À R 

gilt. Deshalb ergibt sich endlich mit Anwendung des Hilfssatzes IX, daß im 
Intervall [a, />] fast überall 

n{?(x) = o(/.\) 
ist. 

Damit haben wir den Satz IX volständig bewiesen. 
Im folgenden wir gezeigt, daß die im Satz IX angegebene Abschätzung 

im wesentlichen nicht verbessert werden kann. 
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S a t z X. Es sei {¿„} eine positive, monoton nichtabnehmende ZahlenfolgeT 

die die Bedingung 

(8.11) 
n=o / „ 

erfüllt. Dazu kann ein im Grundintervall [a, b] orthonormiertes Funktionen-
system {<£>„(x)} angegeben werden, derart, daß für jedes a> 0 

(8 . 1 2 ) i i i _ L I ' j r A $ v 0r{x) = 

im Intervall [a, b] überall gilt. 

B e w e i s v o n S a t z X. Da die Bedingung (8 .11) erfüllt wird, kann 
auf Grund des in der Fußnote11) angeführten Satzes eine positive, monoton 
nichtabnehmende, ins Unendliche strebende Zahlenfolge {X,} angegeben wer-
den, die die Bedingungen 

( 8 . 1 3 ) l„ = o ( L ) 
und 

(8 .14 ) 

erfüllt. Aus (8. 14) folgt 

( 8 . 1 5 ) 
/¿u 

Nach (7. 1) existiert für jede natürliche Zahl r eine positive Zahl c(r) 
mit 

(8 .16) ( O ^ m ^ ^ ; M=\,2,...). 

' Die Zahlen c(r) können auch so gewählt werden, daß die Bedingung 

(8 .17 ) 1 § = c ( r ) ü c ( r + l ) (r = 1, 2 , . . . ) 

erfüllt wird. 
Im folgenden werden wir mit vollständiger Induktion Indexfolgen {Afr} 

und {m„} definieren, die den folgenden Bedingungen genügen: 
(8 .18) 2 N r : , ^ N r ( r = 1 , 2 , . . . ) , 

N. 

(8 .19 ) - ± - < £ ( r = l , 2 , . . . ) 

und 
r-1 _ c / r \ _ 

(8 .20 ) - ~ T hmNr = 1 , 2 , . . . ) . 
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Es sei N0 = 0 und es sei m0 die kleinste natürliche Zahl, für die 
hm0 > (b—a) v- gilt. Wir nehmen an, daß die Indizes A ' 0 , . . N s - i , m 0 , ..., m^ 
(s > 1) bereits definiert sind derart, daß für r = 0 , . . . , s— 1 die Bedingungen 
<8. 18), (8. 19) und ( 8 . 2 0 ) erfüllt werden. Es sei dann Ns die kleinste natür-
liche Zahl, für die die Ungleichungen 

3-1 
<8. 2 1 ) 2 N.-x ^ Ns, £ V v . ^ - ^ r V 

c ( s ) T 

i=i> " 1 2 

gelten, es sei ferner k s ( > WA-,.,) die kleinste natürliche Zahl, für die 

<8. 2 2 ) 4 - < — — 
I», 2(Nt—N,.1)IL, 

ist. Nach (8. 15) ist 
00 , 

Aus (8. 13) folgt, daß /.,, für n-+ °o gegen oo strebt, und folglich kann eine 
unendliche Indexfolge (fo < ••• < < ••• definiert werden, so daß 

® 1 b—a 
<8.23) 2 r T = — 

n = l l l v n i 

besteht. Es existiert also ein Index N3 (wir nehmen den kleinsten), für den 

<8-24) 4 - < 2 " 4 " 

gilt. Aus (8 .23) und (8 .24) folgt: 

• 1 y < > i b a 

2j.2m0 h=1 2 

Ferner ist wegen (8. 22) Ns> Ns und so besteht nach (8 .21) die Ungleichung 
(8 .18) für r s. Es sei , = r„ ( n = 1 , . . . , N, — N,-i), dann wird wegen 
( 8 . 2 5 ) die Bedingung (8 .19) erfüllt, und wegen mNs s Ns und (8 .21) wird 
<8.20) auch für r = s erfüllt. 

Somit haben wir die Indexfolgen {Afr} und {mn} durch vollständige 
Induktion definiert, nach Konstruktion gelten die Bedingungen ( 8 . 1 8 ) — ( 8 . 2 0 ) 
für jedes r. Aus (8 .19) folgt: 

( 8 . 2 6 ) J ; = 
n = l 

Nun wird mit der im Paragraphen 5 angegebenen Methode ein im 
Intervall [a, b] orthonormiertes Funktionensystem {<£>„(*)} (n = 0,1,...) von 



Über die orthogonalen Funktionen. 117 

Treppenfunktionen mit der Periode b—a definiert, für das die folgende 
Bedingung erfüllt wird: für jede natürliche Zahl n ist 

n 

wo/„ = [«„-!,«„) (/1 = 0 ,1 , . . ' . ) , a - i = 0 , ccn = 2 ¿2m.„ (/1 = 0,1, . . . )bedeutet. 
¿=0 

Es sei 
= für x£h + l(b—a) (/ = 0 , ± 1 , . . . ) , 

' fO sonst. 
Es ist klar, daß diese Funktion eine Treppenfunktion von der Periode b — a 
ist, ihre Norm gleich 1 ist und die Bedingung (8.27) für n = 0 erfüllt wird. 

Es sei k eine beliebige natürliche Zahl. Wir nehmen an, daß die Funk-
tionen <P0(x),..., 0k-i(x) bereits definiert wurden, so daß sie Treppenfunk-
tionen von der Periode b—a sind, ein im Intervall [a, b] orthonormiertes 
System bilden und die Bedingung (8.27) für n= 0 , . . . , k—1 erfüllt wird. 

Es gibt eine Einteilung des Intervalls Ik in endlich viele Teilintervalle 
h ( P = l , • ••>?), auf denen die Funktionen 3>u(x),..., 0k-i(x) alle konstant 
sind. Die zwei Hälften des Intervalls IQ seien mit Ig und I't' bezeichnet 
( p = 1 , . . . , r). Es sei 

I L für x£i; + l(b—a) (/ = 0 , + 1 , . . . ) , 

für xirv' + l(b-a) (/ = 0, ± 1 , . . . ) 
Es ist klar, daß auch 0k(x) eine Treppenfunktion von der Periode b—a ist, 
ihre Norm gleich 1 ist und in [a, b] die Funktionen 0o(x),..., 0k(x) ortho-
gonal sind, und für n = k die Bedingung (8.27) auch erfüllt wird. 

Somit haben wir durch vollständige Induktion ein in [a, b] orthonormiertes 
Funktionensystem {(Pn(x)} konstruiert, das aus Funktionen von der Periode 
b—a besteht und für welches (8 27) für jedes n erfüllt wird. Wir zeigen, 
daß für dieses Funktionensystem {<£>«(*)} auch (8.12) für jedes a > 0 überall 
erfüllt wird. Nach (7.2), (7 .4) und (7 .5) ist es klar, daß falls (8.12) für 
« 0 > 0 erfüllt wird, es auch für jedes a g a0 überall erfüllt wird. Daher ist es 
genügend zu zeigen, daß für einen beliebig großen Parameterwert a = r0 (r0 ist 
eine natürliche Zahl) (8 .12) überall gültig ist. Es sei x0 € [a, 6] und seien 
(0 <•••< ns <••• die sämtlichen Indizes, für die die Relation x0£A>s + 
+ l(b—a) mit irgendeiner ganzen Zahl / erfüllt wird; wegen (8-26) gibt es 
unendlich viele solche Indizes. Wir betrachten einen beliebigen solchen Index 
ns(> iVr„) und wählen r derart, daß Nr < ns ^ Nr+i besteht; offenbar ist r s r 0 . 
Auf Grund von (8.18) und (8.19) ergibt sich, daß imFalle ns<n^2ns (^ NT+2) 
die Relation x 0 € / » - f l ( b — a ) für keine ganze Zahl / besteht und n , - i ^ N r - i t 

/i.,-2 =-/Vr-2,... ist (nach (8 .19) ist notwendigerweise s ^ r). 
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Es sei 

= (n = 0 , 1 , . . . ) . 
• An r=0 

Nach den obigen Bemerkungen und auf Grund von (7.3), (8 .16) und (8 .27) ist 
^ < ' 0 ) S - l .1-1 

(8 .28) j ö ^ (XO)| = - ¿ 1 0 * . ( X o ) \ - 2 \ 0ni(xo)\^ c(r0)Jomn - Z W -
A»„ '=0 3 i=o > 

Jedoch nach den obigen Bemerkungen und nach (8 .20) gilt 

(8- 29) Z Z ^ > v = ^ " 
¿=0 » ~ J Z "r 

Da n, g; Nr, so gilt I«,,,, s Xo„,v . D a r ^ r0 ist, so erhalten wir aus (8 .29) nach 

(8 .17) 
C(r0)i>„, — ZÄ<>m„ . 

t"is(| 1 ** 

Da m„s n,, erhalten wir nach (8 .28) : 

ö g f t x o ) ! 

Nach dem obigen ist diese Abschätzung für unendlich viele Indizes n, gültig, 
und so besteht nach (8 .13) 

lim - l ^ W !==«>• 
¡r-nD 

Da x0 € [a, b] beliebig ist, wird diese Relation im Intervall [a, b] überall erfüllt. 
Da auch r„ beliebig ist, so ergibt sich, daß für dieses Funktionensystem 
{<£>„(*)} (8. 12) für jedes « > 0 in [a, b] überall besteht. 

Damit haben wir den Satz X vollständig bewiesen. 
Es bleibt die Frage offen, ob das System (Ф„(х)} gleichmäßig beschränkt 

gewählt werden kann. 

§ 9 . Die Lebesgueschen Funktionen d e r Cesaroschen Summa t i on . 

In diesem Paragraphen werden wir zeigen, daß auch die Abschätzungen 
(17) und (18) im allgemeinen nicht verbessert werden'können. 

S a t z XI. Es sei (w(/i)} eine positive, monoton nichtabnehmende Zah-
lenfolge, für die die Bedingung 

^ 1 
(9. 1) ^ 1 

Г3(л log л) iv2(л) 
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erfüllt wird. Es kann ein im Grundintervall [a, b\ orthonormiertes Funktionen-
system {(>„ (x)} angegeben werden, für welches die Relation 

(9.2) lim * 
A'-CO YNlogNw(N). f 4 > ZA^pv(x)pv(t) J An r=o dt 

für jedes a > 0 und für jedes x in [a, b] besteht. 
Ferner kann auch für jedes a > 0 ein in [a, b) gleichmäßig beschränktes 

orthonormiertes Funktionensystem {rT\x)} angegeben werden, derart, daß in 
[a, ti\ überall 

b 
X 

dt>6(> 0) ( 9 . 3 ) lim - L 
Â CO VN J 1 As "=-0 

« 
gilt. 

F ü r den B e w e i s dieses Satzes benötigen wir den folgenden Hilfssatz. 

H i 1 f s s a t z XIII. Es sei p eine natürliche Zahl und c eine reelle Zahl mit 

( 9 . 4 ) 0 < { i l , 

ferner sei {ai}(i=\,..., 2 p) eine endliche Folge von positiven Zahlen, für 
die die Bedingungen 

( 9 . 5 ) l^a,>0 (/=!,..., 2 p), (i=l,...,p) 

mit einer positiven ganzen Zahl a> erfüllt sind. Es kann dann ein aus Trep-
penfunktionen bestehendes, im Grundintervall [a, b\ orthonormiertes System 
{hi (c, p, { a , } ; x ) } ( / = 1 , . . . , 2 p) angegeben werden, das die folgenden Bedingun-
gen erfüllt: 

( 9 . 6 ) ^hi{c,p,{ai}-,x)dx = 0 (/= \,...,2p), 

für (/= 1,..2p) gilt 
2 

( 9 . 7 ) j\zäMc,p, {a{};x)ht(c,p, { a , } ; 0 dt<2"+lYcp (0^x^2), 

es existiert eine meßbare Menge H(c,w)(c^[a,b]), so daß 

1 1 
( 9 . 8 ) n{H(c, co)) > 22u*- C 
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ist, und für x £ H(c, (o) gilt 
2 
Ç ty 

( 9 . 9 ) Z ûih,(c, p, fa} ; x) h,(c, p, {a,} ; t) 
J i = p ( - l 
0 

und 

dt = 0 

(9. 10) 
H 

Zoihi{c,p, {a,}; x)hi(c,p, {a,};/) dt>j^]f2cp. 

Dieser Hilfssatz ist das Analogon des Hilfssatzes IV. 

B e w e i s v o n H i l f s s a t z XIII. Es seien r und x natürliche Zahlen, 
für die die Ungleichung 

( 9 . 1 1 ) 

besteht. Für l = ] , . . . , p sei 

hl(c,p,{ai};x) = 

2 r - 1 < 2 r + 1 
2* ~ c 2" 

- ^ r K + 2 a + l ( x ) in 

t^r^M) i n 

fo 

2 r 2r\ 
2*+2a,fi' 2 * 1 ' 

^ 2 
2 * ' 

und für l = p+ 1 , . . 2 p sei 

hi(c,p, {Ö,};JC) = -< 

0 in 0, 
2 r 
:+2aM-l 

dabei ist rk(x) (ft = 0 , 1 , . . . ) die fc-te Rademachersche Funktion, 

(9-12) 

( 9 - 1 3 ) = 

ferner sind tu...,tv,d solche nichtnegative Zahlen, für die die Bedingung 

jti(c,p,{ai};x)dx= 1 (l =\,...,2 p) 
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erfüllt wird, die Existenz solcher Zahlen folgt aus (9.4), (9 .5 ) und (9. 11). 
Offenbar ist 
(9 .14) 
und 
(9. 15) 0 < ö s 1. 

2 r 
2*> 2 c 

Nach (9 .11) ist 

(9. 16) 

Daraus folgt nach (9 .11) und (9 .12 ) : 

(9 .17) r o O i ^ j ^ f c . 

Ferner folgt nach (9 .4) und (9 .13 ) : 

(9. 18) 1 -s 1 

Es ist klar, daß die Funktionen hi(c,p, {Ö;} ; X) ( / = 1 , . . . , 2p) Treppen-
funktionen sind und im Intervall [0,2] ein orthonormiertes System bilden. 
Mit Anwendung der Bunjakowski-Schwarzschen Ungleichung kann (9.7) auf 
Grund von (9.4), (9.5), (9.14), (9. 15), (9. 17) und (9 .18) leicht gezeigt 
werden. Endlich folgt (9 .6 ) offenbar aus der Definition. 

Es sei H(c,m) die meßbare Menge, welche aus dem Intervall 
2 r 1 0, 2»+2»h-i 1 durch Weglassen der diadisch rationalen Punkte entsteht. Aus 

(9. 16) folgt (9.8). Nach der Definition ist (9. 9) klar. 
Für x £ H(c, (o) ist nach (9. 17) und (9. 18) 

I 2aifh(c,p, {o,}; x)ht(c,p,-{ai) ;t)\dt ^ 
;=i | 

(9 .19) g= f £aMc, p, {Oi}; x)h,(c, p, {a,}; t) 
J ¡=i 

dt-

p 
Z r«+-»+! (X) Tx+Su+i ( / ) ¡=1 

dt > 
x+2u+p 

Z rk(x)rk(t) 
k = x + 2 u + l 

dt. 
2r 
2* 

Da nach (9 .4 ) und (9 .11) die in dem Hilfssatz IV vorkommende Bedingung 
erfüllt wird, so folgt (9 .10) mit Anwendung des Hilfssatzes IV aus (9 .19) . 
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Damit haben wir den Hilfssatz XIII vollständig bewiesen. 
Ist / = [*/, rj ein beliebiges endliches Intervall, so sei 

( l t e f o k p , {ii,}; 2 — - ] für u 
, (f . p, {«.-},/;x) = ! 1 V ~ U ) 

f 0 sonst 

<X<V, 

sonst 

< / = l , . . . , 2 p ) und bezeichnen wir mit H(c,a>,/) das durch die Transforma-
v—u 

tion y==—2~ x + u sich ergebende Bild der Menge H(c,wi). Dann ist es auf 

Grund von (9.6) , (9.7), (9 .8) , (9 .9 ) und (9. 10) klar, daß die folgenden 
Bedingungen erfüllt sind: 

( 9 . 2 0 ) J hl(c,p,{ai\,l-,x)dx = 0 (/ = 1 , . . . , 2p), 

für 0 S a , S l ( / = ! , . . . , 2p) gilt 

<9.21) ( Z ö M c , P , { ^ } , t ; x ) f i , ( c , p , { a i } , I ; t ) 
J 1=1 

/ 

ferner ist 

( 9 . 2 2 ) 

dt <!*(/)2"uVcp (x$I), 

<9. 23) £ a,h,(c, P, {a,}, /; x)h,(c, p, {a,}, /; t) 
J l—v^rl 

J 
und 

f i '' 
<9. 24) \2<>Mc>P, {a.} ,/;x)A,(c,p, {a,}, / ; * ) 

J | ! = ! 

(x 6 H(C, OJ, / ) ) . 

dt = 0 (x£H(c, w, /)) 

d t > ^ 2 T p 

B e w e i s v o n S a t z XI. Zuerst beschäftigen wir uns mit dem Beweis 
der ersten Behauptung. Mit Anwendung des in der Fußnote " ) zitierten Satzes 
ergibt sich nach (9. 1), daß eine positive, monoton nichtabnehmende Folge 
{vv(n)} existiert, für die die Bedingungen 

<9. 25) 

und 

(9. 26) 

erfüllt sind. 

w(n) = o(w(n)) 

1 
(n log n)w*(n) 
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Nach ( 7 . 1 ) gibt es für jede natürliche Zahl r eine nur von r abhän-
gige natürliche Zahl «(/•), so daß 

(9-27) - J L , - ( o s r ^ j n - o . ! , . . . ) 

ist; die Zahlen m(r) können auch so gewählt werden, daß die Bedingung 

( 9 . 2 8 ) ® ( r ) ^ o » ( r + l ) (r = 1 , 2 , . . . ) 

erfüllt wird. 
Wir werden eine Indexfolge (I < ••• < nm < ••• und eine aus gan-

zen Zahlen bestehende, ins Unendliche strebende Zahlenfolge (1 ^ ••• s 
^ rm ^ ••• definieren, für die die Bedingungen 

( 9 . 2 9 ) ((« I + l ) 5 > 2 ( 2 ^ 1 ) ) : 1 g l , 

( 9 . 3 0 ) Ata = 2"' + b 2"m < 2"m+1 (m = 1 , 2 , . . . ) , 

(9. 31) £ T«i2 < (m = 2, 3 , . . . ) 
*=i 

und 

(9. 32) ¿ 2 - ^ ( ( n , + l)w2(2"m+1)) 1 = -

erfüllt sind. 
Nach (9. 26) kann mit der bei dem Beweis des Satzes VI angeführten Me-

thode eine Indexfolge (1 ••• < ^ { 1 ) < ••• definiert werden, für die die 

( ( » • ' , " + l l i V ' " " ) ) ^ ! , 

>=i 

£ ( ( , ? > + l ) * 2 ( 2 " ' , ) + , ) ) " = ~ 
i=i 

erfüllt sind. Es sei k die kleinste natürliche Zahl, für die 

( 9 . 3 5 ) 2 - ^ 1 > l ( ( V P ' + l ) w 2 ( 2 , ' ' > + 1 ) ) " 1 > i -

besteht. 
Es sei nl = v?\ n = l für / = 1 , . . . , k l . Auf Grund von (9 .33) wird 

(9 .29 ) erfüllt und nach (9 .34 ) wird auch die Bedingung (9 .31) für 

Bedingungen 

(9. 33) 

(9. 34) 

und 
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m = 2 , . . k , erfüllt. Nach (9. 35) ist 

i ; 2 - ^ > ( ( n 1 + l ) w i ( 2 " ' + , ) ) - , > i - . 
1=1 i 

Es sei s > 1 eine beliebige natürliche Zahl. Wir nehmen an, daß die natür-
lichen Zahlen n^ < < • • • < nksund r, ^ r2 ^ • • • ^ rk>_ 1 ( = s—1) bereits 
definiert sind, so daß für die Indizes m = 1 , . . k , - i die Bedingung (9 .31 ) 
erfüllt wird und 

(9-36) 2 2~2ö(rt)((/ii+ 1)H>2(2"!+1)) > 
¡=1 

ist. Es sei as die kleinste natürliche Zahl, für die 

k=l 

gilt; offenbar ist a, > nks i . Wegen (9. 26) ist 

1 oo. 
n=2 logn)uP(n) 

So kann mit der bei dem Beweis des Satzes VI angegebenen Methode eine 
Indexfolge ( a s = ) v l s ) < r f <•••< vjs) <••• definiert werden, derart, daß die 
Bedingungen 

(9 .37) ( / = 2 , 3 , . . . ) 
•=i 

und 

1=1 

erfüllt werden. Es sei ks(> ks-i) die kleinste natürliche Zahl, für die 
7c „ k 0 

(9 .38) 2-2u(s) £ ((v<s) + l)w2(2l' ,<S,+1))1 > i -
i=l z 

besteht. 
Wir setzen /j*s_I+i = r,(s), rks_1+t = s für / = 1 , . . . , ks—Ar«-_i .•- Aus ( 9 . 3 7 ) 

folgt, daß (9 .31) für jedes m = 2, ...,k, besteht. Nach (9 .36) und (9. 38) ist 
ks 

(9. 39) 2 2"2ü(r ') ((ni + 1 )iv2(2" i+1))1 > 4 . 

Wenn dieses Verfahren unbegrenzt fortgesetzt wird, erhalten wir gegen 
<x> strebende Folgen von natürlichen Zahlen n,<---<nm <••• und rx 
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so daß die Bedingung (9 .31) für jeden Index m ( ^ 2 ) erfüllt 
wird, und es gibt eine Indexfolge k , < . . . < Ars < . . . , so daß (9. 39) für jedes 
s besteht. Also wird auch (9. 32) erfüllt. Da die Indexfolge {nm} streng wach-
send ist, besteht auch (9. 30). 

Wir werden ein aus Treppenfunktionen bestehendes und von der Folge 
{iv(/?)} (und so auch von de'r Folge {w(n)}) abhängiges, im Intervall [a, b\ 
orthonormiertes Funktionensystem { M * ) } (« = 0 , 1 , . . . ) und eine Folge von 
meßbaren Mengen //,„c[a, 6] (m == 1, 2 , . . . ) definieren, für die die folgenden 
Bedingungen erfüllt sind: 

a ) für jeden Index 1) gilt 

Nm-1 
(9. 40) I 2 änQn(x)9n(t) dt < Y2 2"*r™)<2"» (nm+ l ) ) " 2 w(2"«+'), 

J I » = ^ - 1 

wenn Ö S f l . s 1 (Nm-i^n<N„; N0=0) ist; 

b) für x £ Hm ist 

(9 .41) 

und 
b 

(9. 42) J 

J Lr." Z K^_nOn(X)Q„(t) 
AK m n -i m 

1 -1 • -

dt=0 

Z A^ 9n(x)Qn(t) V . 4 * m - l - n 
rf/>-l(2"'»(nm + l))1/ävv(2n'«+1); 

c) die Mengen Hm (m = 1 , 2 , . . . ) sind stochastisch unabhängig und 
es gilt; 

(9. 43) p(Hm) > 2-^»»-"((ii, + 1 ) i v 2 ( 2 " ' " + l ) ) ' 1 (b-a). 

Es sei c l = \ n l + l ) t f ( 2 H l + l ) , 2 p l = ri,a\1} = Axl!-ilA%-l(.i==l,.. , A\), 
w i = w(r ,) . Dann werden wegen (7.2), (9 .27) und (9.29) die Bedingungen 
(9 .4 ) und (9. 5) erfüllt, und so kann der Hilfssatz XIII angewendet werden. 
Es sei 

o,.1(x) = - 7 J = / i ( ( c 1 , pu {fli1»}, [a, b];x) ( / = 1 2"1) 
yb—a 

und Hi = H(cu (Di, [a, 6]). 
Nach dem Hilfssatz XIII sind die p„(x) (n = 0,..., JV,— 1) Treppen-

funktionen, die im Intervall [a, b] ein orthonomiertes System bilden, ferner 
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werden (9.40) , (9.41), (9 .42) und (9 .43) nach (9:21), (9.22), (9 .23) und 
(9 .24) für m = 1 erfüllt. 

Es sei s ( > 1) eine beliebige natürliche Zahl. Wir nehmen an, daß die 
Treppenfunktionen gn(x) (n = 0 , . . . , Ne.i— 1) und die meßbaren Mengen 
Hu...,H,-\ bereits definiert sind, so daß diese Funktionen im Intervall 
[«, b] ein orthonormiertes System bilden und die Bedingungen ä)—c) für 
m = 1 , . . . , s— 1 erfüllt sind, insbesondere sind also die Mengen Hy,..., Hs. i 
stochastisch unabhängig. 

Das Intervall [a,b\ kann in endlich viele Teilintervalle /p (¿> = 1 , . . . , r) 
zerlegt werden, so daß die Funktionen (>„(x) (0 ^ n < Ns-i) in den einzelnen 
Teilintervallen konstant sind. 

Wir setzen alsdann c, = (ns + 1 ) ^ ( 2 " ^ ) , 2ps = 2n>, 
(/— 1 , . . . , 2"'), ws = co(rs). Wegen (7.2), (9 .27) und (9 .29) sind die Bedin-
gungen (9 .4 ) und (9 .5 ) erfüllt; folglich kann der Hilfssatz XIII angewendet 
werden. Es sei 

«VI+I., (*) = j f = = £ hi(c„, ps, \ a?}, I, ;x) ( / = ] , . . . , 2"») 

und 
r 

H,= U H(cs,(o3,It). 

Nach Hilfssatz XIII sind auch die Funktionen pn(x) (Ns i ^ n < N s ) 
Treppenfunktionen. Mit der bei dem Beweis des Satzes VI angewendeten 
Methode kann gezeigt werden, daß dieselben ein im Intervall [a, b] ortho-
normiertes System bilden, und wegen (9 .20) zu den Funktionen Qn(x) 
(0 ^ H < Ns i) orthogonal sind. Auf Grund von (9.21), (9 .22) , ( 9 . 2 3 ) und 
(9. 24) kann mit der bei dem Beweis des Satzes VI angewendeten Methode 
gezeigt werden, daß (9 .40) , (9.41), (9 .42) und (9 .43) auch für m = s erfüllt 
werden. Es ist aus der Konstruktion klar, daß auch die Mengen H l t . . . , h s 

stochastisch unabhängig sind. 
Somit haben wir durch vollständige Induktion die unendlichen. Folgen 

von Funktionen gn(x) und Mengen Hm derart definiert, daß die gestellten 
Bedingungen erfüllt sind. 

Es sei nun a eine beliebige positive Zahl. Wegen rm —• <x> ist rm^a 
für genügend großes m. Wir betrachten einen solchen Index m, und sei 
*£//,„. Dann ist nach (7 .2 ) und ( 7 . 3 ) 

( 0 Si n Si N m 1), 
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und so nach (9.27), (9.28), (9.30), (9.31), (9.40), (9 .41) und (9 .42) gilt: 
h 

Ir ...1 

dt g; 

(9 .44) 

f h n i r - S J I A „m . "=o 

a m 1 

C . "m-1+- 1 
l / t „ , in — 1 I a 1 

6 
m-1 >1 . i-

- 2 b r 2 " « p - W p - O > S J U ™ «5?».! m ! 
/1 * ' m " 1 

- »2-1 
> ± ( 2 > ( / i „ - | - 1 ) ) 1 - w ( 2 " » ' + , ) - r 2 l ) ) 1 / " i v ( 2 ' ^ 1 ) 

»i-i 

k-l 

s f 2 2 - ( ' - ) ( n « + l)1'"2 ü ' ( 2 " m + 1 ) 

> ^ ( 2 " - ( n - + 1 )) ,/2ü'(2""'+I) ^ ] § / Ä t a t o g i v ( A f m ) . 

Nach (7. 2), (7 .4) und (7. 5) ergibt sich, daß für genügend großes m 
(rm^u) und für x£H,„ gibt es ein Index Mm, 0 ^ MM < Nm, so daß 

(9. 45) f l ^XAZ-rVr(x)9r(f) dtm 

r 1 ' v - - 1 , » n dt^fflNm\ogNmw(Nm) 
o M 

gilt. 
Ist nun JC £ lim//,„, so wird (9.44) für unendlich viel £ m erfüllt und 

so gibt es für unendlich viele Indizes m eine natürliche Zahl 0 s Mm < A',„, so 
daß (9. 45) besteht. Also gilt nach (9 .25) 

1 

]/Nm log Nm w(Nm) 

0 

dt-
J >lJ/„ r=0 

Daraus folgt, daß (9. 2) in jedem solchen Punkt x besteht. 
Auf Grund von (9. 32), (9 .41) und der stochastischen Unabhängigkeit 

der Mengen Hm ergibt sich aber mit Anwendung des zweiten Borel-Cantel-
lischen Lemmas, daß /¿(lim Hm)=^b—a. Also besteht (9. 2) für jedes a > 0 -

W - * OD 

fast überall in [a,b]. > 
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Wir bezeichnen mit E die Teilmenge vom Maße Null des Grundinter-
valls [a, b\, auf der (9. 2) für irgendeinen Parameterwert a > 0 nicht erfüllt wird. 
Wir verändern auf der Menge E die Werte der Funktionen p„(x) (n = 0, 1 , . . . ) 

wie folgt: für x £ E setzen wir 

i " T F T ~ y^ w e n n = n < + ' o„(x) = < \o — a] Ay1'. 

To 
A'-l-n 

wenn Nm-i + 2"m~l m n<N, 

<m = 1 , 2 , . . . ) . Das so erhaltene Funktionensystem {p«(x)} wird im Grundinter-
vall [a, b] orthonormiert, und wie leicht zu sehen ist, wird ( 9 . 2 ) für jedes 
« > 0 in [a, b] überall erfüllt. 

Damit haben wir die erste Behauptung des Satzes XI bewiesen. 
Nun gehen wir zum Beweis der zweiten Behauptung des Satzes XI 

über. Es kann mit der bei dem Beweis des Satzes VI angewendeten Methode 
eine Indexfolge (1 <•••< i*m <••• angegeben werden, so daß die 
Bedingungen 
<9.46) Nm = 2'1' - f b 2ßm < 2'*m+1 (m = 1 , 2 , . . . ; N0 = 0) 
und 

<9.47) (m = 2, 3,...) 
k= 1 

erfüllt sind, wobei o>(a) eine natürliche Zahl bedeutet, für die 

besteht. 

Wir verrichten die beim Beweis der ersten Behauptung des Satzes XI 
angegebene Konstruktion, so daß der Hilfssatz XIII mit den Zahlen <•„ = ! , = = ( / = 1 , . . . , 2 M m ; m = 1 , 2 , . . . ) , 
& = co(a) angewendet wird; dies ist möglich, da ( 9 . 4 ) erfüllt wird, und 
wegen ( 9 . 4 8 ) auch (9. 5) besteht. 

So erhalten wir ein im Intervall [a, b] orthonormiertes, von a abhän-
giges Funktionensystem {/„a)(x)} und eine Folge vön mel baren Mengen 
On,c[a, b], so da'j die folgenden Bedingungen erfüllt sind: 

3) für jeden Index 1) gilt 

f ! 
J | N=SM_X 
a 

wenn O g f l . ^ 1 (Nm-1 ^ n < Nm) ist; 
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b) für x £ On ist 
6 

1 i 
und gilt 

v 

J i 

n=.Vm.1+2"»'-1 

dt = 0 

2 AZ-^r'fi^it) 
n=AT„ 

dt>~ 2" ¡0 

c) die Mengen Om ( m = l , 2 , . . . ) sind stochastisch unabhängig und 
es gilt 

(9 .49) ,w(0,„) > (b—a)2~~"(a)~z. 

Ferner ist nach (9.5), (9.14), (9.15), (9.17), (9.18), (9 .48) und 
der Konstruktion 

|ri a ) (* )| =§ ( ¿ J V " 0 (n = 0 , 1 / . . . ; a s x ^ b ) . 

Auf Grund der Bedingungen a), b) und nach (9. 46), (9 .47) ergibt sich in 
der oben angegebenen Weise, daß für * £ Om 

b . . . ' . ' 

J 
1 

2 Af^-jywxm D T > Y ^ \ R N M 

gilt. Ist lim Om, so wird diese Ungleichung für unendlich viele m erfüllt, 
m-vco 

also gilt (9. 3). r 

Nach (9 .49) und der stochastischen Unabhängigkeit der Mengen Om 

folgt aber mit Anwendung des zweiten Borel-Cantellischen Lemmas, daß 
lim Om) = ft—a ist, also gilt (9 .3 ) fast überall in [a, b]. Durch eine geeig-

nete Veränderung der Werte der Funktionen /ia)(.x) (n = 0, 1 , . . . ) auf einer 
Menge vom Maße Null kann erreicht werden (siehe den Beweis der ersten 
Behauptung des Satzes XI), daß (9. 3) in [a, b] überall gilt. 

Damit haben wir auch die zweite Behauptung des Satzes XI vollständig 
bewiesen. „ 

Es bleibt die Frage offen, ob die Folge in = fn log n w(n) durch eine 
beliebige, positive, monoton nichtabnehmende Folge {¿„} ersetzt werden 
kann, welche die Bedingung (8 .11) erfüllt. 

A 9 
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Über die Bedeutung der strukturellen Eigenschaften 
einer Funktion für die Konvergenz 

ihrer Orthogonalentwicklungen. 
Von G. ALEXITS und D. KRÄLIK in Budapest. 

1 . Bei Reihenentwicklungen nach Orthogonalfunktionen betrachtet man oft 
Sätze von folgendem Typus: Sei {^„(JC)} ein im Intervall [a, b) vorgegebenes 
Orthonormalsystem; gilt für die reellen Zahlen ca, cx, ..., c„, ... die Beziehung 

CD 

(1) 2cU(n)< x 

»1=0 

mit einer positiven, wachsenden und nach oo strebenden Faktorfolge l(n), 
so ist 'die Reihe 

(2) Zcn<p„(x) 
n- 0 

auf einer Menge E konvergent bzw. summierbar (nach irgendeiner Summa-
tionsart). Eine Konvergenz- bzw. Summierbarkeitsbedingung von der Form 
(1) wollen wir im folgenden eine Koeffizientenbedingung nennen. 

Eine wohlbekannte Koeffizientenbedingung ist z. B. 
CO 

(3) 
n=i 

aus welcher die Konvergenz jeder Orthogonalreihe (2) fast überall folgt 
(RADEMACHER [ 1 4 ] und MENCHOFF [ 1 0 ] ) . Die Koeffizientenbedingung 

g? 

(4) Z c n ( l o g l o g n ) 2 < <X> 
n = 2 

sichert die (C, a)-Summierbarkeit fast überall jeder Orthogonalreihe (2) für 
alle a> 0 (MENCHOFF [ 1 1 ] und KACZMARZ [ 7 ] ) . 

Für trigonometrische Reihen kann (3) durch die schwächere Bedingung 
CO 

(5) + logn < ~ 
n = l 

ersetzt werden (KOLMOGÖROFF—SELIVERSTOFF [ 8 ] und PLESSNER [ 1 3 ] ) . Ähnliches 
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läßt sich auch für eine breite Klasse von Orthogonalpolynomentwicklungen 
behaupten ( B . S Z . - N A G Y [ 1 5 ] ) . 

Diese Koeffizientenbedingungen sagen über die Struktur der in die 
Orthogonalreihe (2) entwickelten Funktion f(x) unmittelbar nichts aus. Daher 
erhebt sich die Frage, ob es sich eine nur auf die entwickelte Funktion f(x) 
beziehende Strukturbedingung angeben läßt, welche die Koeffizientenbedingung 
(1) ersetzen könnte, oder mit ihr sogar gleichwertig wäre, und somit die 
Konvergenz bzw. Summierbarkeit der Entwicklung (2) unmittelbar aus den 
Eigenschaften der Funktion f(x) abzulesen ermöglichte. 

Im Fall spezieller Orthogonalsysteme kennt man derartige Struktur-
bedingungen. So z. B . haben ALEXITS [ 1 ] und STECKIN [ 1 6 ] unabhängig 
voneinander gezeigt, daß die Koeffizientenbedingung (5) für Fourierreihen mit 
folgender Strukturbedingung vollkommen äquivalent ist : Es gibt eine positive, 
monoton wachsende Funktion 0{x) mit der Eigenschaft 

so daß für den quadratischen Stetigkeitsmodul1) w,(d,f) von f(x) die 
Beziehung 

besteht. Diese und auch manche andere Strukturbedingungen haben über die 
entsprechende Koeffi.zientenbedingung den Vorteil, daß sie lokalisiert werden 
können. Wenn nämlich die Funktion f(x) nur über einem Teilintervall [«, 
von [0, 2.T] quadratisch integrierbar ist, und nur der „lokale" quadratische 
Stetigkeitsmodu! 

die Bedingungen rreihe von f(x) 

im Intervall [«, ,i] fast überall, obzwar in diesem Fall auch + 0 0 

sein kann ( A L E X I T S [1] , STECKIN [ 1 6 ] ) . Mit der Bedingung (5) ist auch die 
Strukturbedingung 

CD 

(6) 

0 0 

JJ f f l / ( * + Q - / ( * - Q f dtdx< oo 
t (l 0 

! .T 

{f(x + h)-f(x)Fdx' 
! o 
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äquivalent (PLESSNER [ 1 3 ] ) , welche ebenfalls lokalisiert werden kann (ULJANOV 

[18]). Strukturbedingungen von ähnlichem Typ für die Konvergenz von Ortho-
gonalpolynomentwicklungen haben KOLMOGOROFF [9], ALEXITS [2] und ULJANOV 

[17] angegeben. 
Im folgenden wollen wir die Frage der Ersetzbarkeit der Koeffizienten-

bedingung (1) durch eine entsprechende Strukturbedingung ganz allgemein 
betrachten, um dadurch den Kern der ähnlichen speziellen Untersuchungen 
herauszubekommen. Die bisher erzielten speziellen Ergebnisse sind in unseren 
Resultaten als Korollare enthalten. Natürlich gibt unsere Untersuchung auch 
zur Aufstellung weiterer Strukturbedingungen Anlaß. 

2 . Es sei ?.(x) eine für alle genügend große x definierte positive, 
monoton wachsende, von unten konkave Funktion; wir betrachten die Reihe 

( 8 ) Z c ü H n ) \ Z c » < ' 

wo kn eine entsprechend gewählte natürliche Zahl ist. Wegen 
ii 

l(n)r= \i'(x)dx + i(kj 

läßt sich 
03 II 

0= Zct X'(x)dx + Ä{k.) 2 c ^ Zcr, 0 = 
(y) *•„ 

= ¿ ^ ' ( ' ' > ¿ ^ + 0 ( 1 ) 
v = k,) >t—i' 

schreiben. Handelt es sich um ein Orthonormalsystem {?„(*)} , bei dem die 
Beziehung . ' 

(10) l / W - Z ck<F,(x)t = ! Z ä = o [ o J ± - , f ) ] 
k=o >•=" V V " J J 

besteht, so folgt hieraus, daß die Konvergenz der Reihe' 

(1 .1) Z ¿ W ^ ( 4 - ' / 
—„ V V 

die Konvergenz von (8) nach sich zieht. Die Reihe (11) und das Integral 
u? 

J V ( x ) a > i ( i - , / ) < / x 

sind aber gleichzeitig konvergent oder divergent; aus der Konvergenz dieses 
Integrals folgt also die Bedingung (1). Hiemit ist der folgende Satz bewiesen: 
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S a t z 1. Erfüllt das Orthonormalsystem (9>„(x)} die Beziehung (10), gilt 
ferner für ein /£ L2(a, b) die Strukturbedingung 

mit einem wachsenden 0 (x) > 0, für welches 
' OD 

X 

ist, so ist auch die Koeffizientenbedingung (1) erfüllt; also folgt aus (12) und 
(13) die Konvergenz bzw. Summierbarkeit der Entwicklung (2) in denselben 
Punkten, in welchen sie aus (1) gefolgert werden kann. 

Im Fall des trigonometrischen Systems kann man die Gültigkeit der 
Beziehung (10) leicht einsehen, so daß hier (1) stets durch eine entsprechende 
Strukturbedingung ersetzt werden kann. In diesem Fall läßt sich sogar mehr 
behaupten: 

S a t z 2. Im Fall des trigonometrischen Systems sind die Koeffizienten-
bedingung (1) (mit cl = al + bl) und die Strukturbedingung (12), (13) voll-
kommen äquivalent. 

In diesem Fall besteht nämlich die Ungleichung 

(vgl. z. B. [1], oder [16]). Wir haben daher 
2 Hn) . / ) S 8* ± ± k ± cl = S n ± v ± c l ± ^ + 0(\). 

»!=*o \n ) „=**, n Jfc=i r = f t r=fco k=y n—v n 

Wegen der Konkavität der Funktion X(x) ist X' (x) monoton abnehmend, 
folglich ist . 

n—v n=v » ^ 
woraus 

2 X(n) < o l , / ) =§ Ii6fT Z X(?) £'cl + 0(I) 

folgt. Daraus ergibt sich wegen (9) 

2 l'(n) Cüi f i - , / ) sg 0 ( 1 ) 2 ctm + 0( 1), 
n=fr0 V Ii J »=»(, 
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d. h. die Strukturbedingung ist eine Folge der Koeffizientenbedingung, w. z. 
b. w. 

Wenn für die Entwicklung (2) die Beziehung (10) und außerdem noch 
das Lokalisationsprinzip2) gültig ist, so kann der Satz 1 auch in einer 
lokalisierten Form ausgesprochen werden: 

Bezeichne E die Menge jener Punkte von [a, b], in welchen die Kon-
vergenz von (2) im Fall des Erfülltseins der Koeffizientenbedingung (1) 
gefolgert werden kann. Besteht für die Entwicklung (2) die Beziehung (10) 
und ist für sie auch das Lokalisationsprinzip gültig, erfüllt ferner die Funktion 
/(x) in einem Teilintervall [a,ßJ von [a,b] die Bedingung 

Md, / ; «, ß) = sogj jW + /,) -/(*)]* ** j" = O , 
0 

wo 0(x) der Bedingung (13) genügt, so konvergiert (2) in den Punkten des 
Durchschnittes E n [«, ß}. 

Der Beweis beruht auf der Erweiterbarkeit von der in [a, ß\ betrachteten 
Funktion f(x) zu einer in [a, b] definierten Funktion g(x), welche die Struktur-
bedingung in [a, b] erfüllt (vgl. z .B . [1]). Das Übrige ergibt sich dann durch 
Anwendung des Lokalisationsprinzips und des Satzes 1. 

Aus diesen allgemeinen Sätzen ergeben sich die bekannten speziellen 
Sätze als Korollare: Im Fall des trigonometrischen Systems setze man z. B. 
¿ (x) = logx, dann erhält man einerseits nach Satz 2 die Äquivalenz der 
Koeffizientenbedingung (5) und der Strukturbedingung (6), (7), andererseits 
nach dem soeben bewiesenen die lokalisierte Strukturbedingung von A L E X I T S 

[1] und STECKIN [16]. — Setzt man ¿(x) = x, so folgt aus Satz 2 die Äqui-
valenz der Koeffizientenbedingung 

<0 
(14) 2n(al + bl)<oo 

n=L 

und der Strukturbedingung 
CO 

(15) j o > l { j , f } d x < o o . 
1 

Sind an und bn die Fourierkoeffizienten einer auf der Peripherie des Einheits-
kreises definierten stetigen Funktion f(x), so ist das Erfülltsein von (14) für 

s) Wir verstehen unter dem Ausdruck „für (2) gilt das Lokalisationsprinzip* die 
Gültigkeit des folgenden Satzes: Ist f(x)—g(x) in einem Teilintervall / von [a, 6), so sind 
die Entwicklungen (2) von f(x) und g(x) in I äquikonvergent. 
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die Anwendbarkeit des Dirichletschen Prinzips auf den Einheitskreis notwendig 
und hinreichend (s. z . B . [5]), also ist (15) die notwendige und hinreichende 
Strukturbedingung für die Anwendbarkeit des Dirichletschen Prinzips auf die 
stetige Randfunktion f(x) des Einheitskreises (FREUD und KRÄLIK [6]). 

3 . Sei ? ( x ) s O eine in [a,b\ ¿-integrierbare Funktion, die höchstens 
auf einer Nullmenge verschwindet. Die Belegungsfunktion O(JC) bestimmt 
bekanntlich (bis auf das Vorzeichen) eindeutig ein Orthonormalpolynomsystem. 
Bezeichne jetzt {y„(x)} dieses S y s t e m d a n n gilt bekanntlich für die Entwick-
lung einer stetigen Funktion f(x) nach dem System {<pn(x)} der Jacksonsche 
Satz 

l / W - p , ^ ) ! ^ - « ^ , / ) , ' 

wenn Pn(x) das im Tschebyschewschen Sinn am besten approximierende Polynom 

(n— l)-ten Grades, den Stetigkeitsmodul3) von f(x) und Ci eine 

absolute Konstante bedeutet. Es ist also 
h 

f(x) — Z Ck <f k(x) r ~ ( 1 
I | 9(x) [f(x)-PH(x)fdx j J. 

Daraus folgt durch Anwendung von (9) genau wie im Beweis des Satzes 1 
der 

S a t z 3. Genügt w(d,f)der Strukturbedingung (12), (13), so folgt daraus 
die Konvergenz bzw. Summierbarkeit der Orthogonalpolynomentwicklung (2) 
in denselben Punkten, welche durch die Koeffizientenbedingung (1) bestimmt 
werden. 

Aus diesem Satz ergibt sich als unmittelbares Korollar die folgende 
Behauptung: ist die Strukturbedingung 

( 1 6 ) « > ( < $ , / ) = ( / 1 

v < p ( m-
mit einem <P(x) erfüllt, für welches 

UJ 

J log x (log log x)I+£ , 
6—s - B — dx < oo (e > 0) 

x<P(x) 
3 

gilt, so konvergiert die Orthogonalpolynomentwicklung (2) in jeder Anordnung 

:l) « ( < 5 , / ) = sup |/(x') - / ( * " ) |. 
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fast überall (ULJANOV [ 1 7 ] ) . Man hat ja nur A(x) = log2 x - ( log logx) ' + i zu. 
setzen und einen bekannten Satz von ORLICZ [ 1 2 ] anzuwenden. — Setzt man 
¿(x) = log-x, so ergibt sich als Korollar der folgende Satz von KOLMOGOROFF 

[9]: fst die Strukturbedingung (16) mit einem @(x ) erfüllt, für welches 

3 

gilt, so konvergiert die Orthogonalpolynomentwicklung (2) fast überall. — Ein 
weiteres, bisher explizite vielleicht nicht ausgesprochenes Korollar ist das 
folgende: Ist die Strukturbedingung (16) mit einem @(x) erfüllt, für welches 

(18) dx <00 
v ' J 3>(x)xlogx 

3 

gilt, so ist die Orthogonalpolynomentwicklung (2) der stetigen Funktion f(x) 
fast überall (C, a > 0)-summierbar. 

Sowohl das letzte wie auch das vorangehende Korollar (Kolmogoroff-
scher Satz) kann lokalisiert werden, wenn das Orfhonormalpolynomsystem 
{(p«(x)} in einem Teilintervall [«, ß] von [a, b] gleichmäßig beschränkt ist. 
Dann gilt nämlich, wie leicht ersichtlich, das Lokalisationsprinzip für (<jc>u(x)} 
und daher kann man den Gedankengang der lokalisierten Form, des Satzes 1 
mit (o(ö,f;a,ß) statt a>.2(d,f;a,p) anwenden: 

Ist das Orfhonormalpolynomsystem {<p»(x)} in [«, /?] beschränkt und gilt' 
für den in [cc, /?] definierten Stetigkeitsmodul w(d,f\ a, ß) die Strukturbedingung 
(16) mit einem CP(x), das (17) bzw. (18) erfüllt, so ist die Entwicklung (2) 
der in [a, ß] stetigen, sonst nur bezüglich o(x) quadratisch integrierbaren 
Funktion f(x) in [a, ß] fast überall konvergent bzw. (C,a>0)-summierbar.i) 

4 . Bekanntlich folgt die .Konvergenz fast überall der Reihe (2) schon 
aus der Bedingung 

CO 

( 1 9 ) Z R F L O G K O O , 
»1=1 

falls das Orthonormalpolynomsystem {^„(x)} in jedem ganz im Inneren von 
(ö, b) liegenden abgeschlossenen Teilintervall [a , ß] gleichmäßig beschränkt 
ist [15]. Daher gilt nach Satz3 die folgende Behauptung: Ist das Orthonormal-
polynomsystem {</-„(x)} in [«,/?] beschränkt, genügt ferner co(d, / ) der Bedingung 

4) Setzt man statt der Beschränktheit von {?>n(x)} in [a, ß] die Beschränktheit im 
ganzen Intervall [a, b] voraus, so läßt sich die Voraussetzung der quadratischen Integrier-
barkeit von f(x) in [a, b]—[a,ß] bezüglich $(x) durch die gewöhnliche Integrierbarkeit 
bezüglich Q(X) ersetzen. 
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(16) mit einem &(x), welches die unter (6) geforderte Eigenschaft besitzt, so 
konvergiert (2) fast überall. Auf Grund des Lokalisationsprinzips können wir 
diese Behauptung auch in lokalisierter Form aussprechen, womit wir einen 
Konvergenzsatz von ALEXITS [2] wesentlich v verallgemeinern: 

S a t z 4. Ist das Orthonormalpolynomsystem {^„(x)} in einem ganz im 
Inneren von (a, b) liegenden abgeschlossenen Teilintervall [a, ß\ beschränkt, genügt 
ferner der auf[a,ß] bezogene Stetigkeitsmodul u>(ö,f; a, ß) der i}Q(Xyintegrierbaren 
Funktion f(x) der Bedingung (16) mit einem der Bedingung (6) genügenden 
0{x), so konvergiert die Orthogonalpolynomentwicklung (2) von f(x) in [a, ß] 

fast überall. 

Es sei g(x) die Funktion, die in [a, ß] mit f(x) zusammenfällt und in 
den Intervallen [a,a), (ß, b] die konstanten Werte /(«) bzw. f(ß) annimmt. 
Der Stetigkeitsmodul '<o(ö,g-,a, b) erfüllt die für i o ( i i , f ; a , ß ) geforderte 
Strukturbedingung im ganzen Intervall [a, b\, nach Satz 3 besteht also für die 
Entwicklungskoeffizienten von g(x) die Beziehung (19), woraus die Konvergenz 
der Entwicklung von g(x) in [a, ß\ fast überall folgt (vgl. [4] und [15]). Die 
Konvergenz der Entwicklung von f(x) fast überall in [a,ß\ ergibt sich mithin 
aus dem Lokalisationsprinzip. 

Es ist zu bemerken, daß wir uns von der Stetigkeit der Funktion f(x) 
in [a, ß\ befreien können, wenn wir die Belegungsfunktion ?(JC) durch die 
Bedingung 

( 2 0 ) O s H x ) ^ ™ ^ — 

einschränken, wobei K eine Konstante bedeutet. Durch die Transformation 

x = — - c o s + erhalten wir die Funktion 

4 2 ' 2 

auf welche wir einen Gedankengang von ALEXITS [3] anwenden dürfen, 
woraus sich die folgende Verschärfung der Behauptung des Satzes 4 ergibt: 
Genügt Q(X) der Bedingung (20) und ist {(p„(x)} in [a, /3] beschränkt, erfüllt 
ferner <o2(d,g;ß',a') die Bedingung (7) mit einem durch (6) eingeschränkten 
&(x), wobei a, ß' die auf der 9--Achse liegenden Bildpunkte von a, ß sind, 
so konvergiert die Entwicklung von f(x) in [a, /3] fast überall. 
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B. L. van der Waerden, Erwachende Wissenschaft, Ägyptische, Babylonische und 
Griechische Mathematik. Aus dem Holländischen übersetzt von H . HABICHT, mit Zusätzen 
vom Verfasser. 488 Seiten, Basel—Stuttgart, Birkhäuser-Verlag, 1956. 

Der bekannte Verf. der „Modernen Algebra" veröffentlichte als leidenschaftlich 
interessierter Historiker der Mathematik schon mehrere wichtige Beiträge zur Geschichte 
der exakten Wissenschaften im Altertum. Vorliegendes Werk (1950 holländisch und 1954 
auch englisfch herausgebracht) umfaßt die Geschichte der ägyptischen, babylonischen und 
griechischen Mathematik bis etwa zur Mitte des 6. Jh. Der Schwerpunkt der Behandlung 
fällt — wie es auch im voraus betont wird (S. 16 f.) — auf die Griechen, nach dem ja bei 
ihnen zuerst die Mathematik zur deduktiven Wissenschaft wurde. Der erste Teil des Buches 
(S. 23—130) faßt unsere gegenwärtigen Kenntnisse über die altorientalische Mathematik 
zusammen. Innerhalb dessen überblickt ein Sonderkapitel das Problem „Zahlensysteme-
Ziffern und Rechenkunst" (S. 59—99) bis in das 16. Jh. hinein. Die scheinbare Abschweifung 
wird durch die Tatsache begründet, daß Zahlenschreibweise und zugehörige Rechentechnik 
von.sehr großer Bedeutung für die Entwicklung der Mathematik sind. — Interessant, daß 
nach der Ansicht des Verf. einerseits der verhältnismäßig hohe Entwicklungsstand der 
Zahlenschreibweise und Rechentechnik in Babylonien die höhere Entfaltung der Mathematik 
selbst für diejenigen Griechen erleichterte, die die orientalische Erbschaft übernahmen, 
andrerseits aber eben „technische Unzulänglichkeiten" auch zum Steckenbleiben, ja zum 
Verfall der griechischen Wissenschaft beitrugen (S. 440 f.). — In der Tat sind die großen 
Fortschritte der Mathematik seit der Antike zum wesentlichen Teil mit dadurch bedingt-
daß es gelang einen brauchbaren, leistungsfähigen Formalismus zu schaffen, wie es einen 
in der Antike noch nicht gab. 

Leider, ist- es hier nicht möglich, die neuen Ergebnisse des ausgezeichneten und sehr 
reichhaltigen Buches alle im einzelnen zu besprechen, oder sie auch nur aufzuzählen. 
VAN DER WAERDENS Zusammenfassung wird ja voraussichtlich noch für lange Zukunft Grund-
lage jeder weiteren historischen Forschung auf diesem Gebiete. Ein Rezensent der holländi-
schen Ausgabe hat übrigens schon zusammengestellt, was in der Arbeit gegenüber früheren 
Darstellungen der antiken Mathematik neu ist. Überholt ist diese ältere Rezension ( 0 . B E C K E R , 

Gnomon, 1951) eigentlich' nur deswegen, weil der Verf. auch seitdem sein Buch vervoll-
ständigt hatte. Man denke dabei nicht nur an die Zusätze, Ergänzungen und kleinere 
Verbesserungen, die zum Teil von der Kritik verlangt wurden, sondern noch mehr an jene 
tiefgreifende Auseinandersetzung mit der anderweitigen Forschung, die für den Verf. ermög-
licht, seine Ergebnisse immer mehr zu vervollständigen. 

Der Verf. wendet sich mit besonderem Interesse der Frage zu, wie sich die praktisch-
empirischen Kenntnisse der altorientalischen Völker bei den Griechen zu einer theoretischen 
Wissenschaft entwickelten. Die frühen Ansätze einer solchen Entwicklung werden jedesmal 
mit Recht hervorgehoben. So heißt es z. B. im Zusammenhang mit den sog. Hau-Rechnungen 
der Ägypter (die also nicht Problemen aus der Praxis entspringen): „Sie zeugen von dem 
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rein theoretischen Interesse der ägyptischen Rechenmeister. Sie sind offensichtlich von 
solchen Leuten ausgedacht, die Spaß am reinen Rechnen hatten und ihren Schülern schwere 
Aufgaben zur Übung aufgeben wollten. Wie jede Kunst, so hat auch die Rechenkunst die 
Neigung, sich bis an ihre äußersten Grenzen zu entfalten." Ein andermal wird die Lücken-
haftigkeit unserer Kenntnisse in bezug auf Babylonien betont: „Schade, daß fast alle Texte 
nur Aufgaben und Lösungen, aber keine Herleitungen enthalten. Man gibt die Lösung wie 
eine Art Rezept ohne zu sagen, wie man sie gefunden hat. Und doch müßen diese Rezepte 
irgendwie hergeleitet sein, und die Lehrer müßen ihren Schülern gesagt haben, wie sie 
Unbekannte aus (Jleichungen aufläsen und eine Unbekannte durch eine andere ausdrücken 
konnten". Die Vermutung wird wohl zutreffen, doch müßte man auf der anderen Seite umso 
schärfer betonen, daß solche grundlegenden Begriffe wie Satz, Beweis. Definition, Axiom 
und Postulat in der vorgriechischen Wissenschaft allem Anschein nach noch gar nicht 
existierten. Wie kam es dazu, daß man solche Begriffe schuf ? T- Diese Frage wird im 
Buch nicht gestellt, und doch kann man eben nach VAN DER WAERDENS Vorbild auch solche 
Fragen anpacken, nur muß man dazu die Arbeit des historisch interessierten Mathematikers 
von der Philosophiegeschichte und der Philologie her ergänzen. Um nur ein Beispiel zu 
nennen : der Verf. hat in der Beurteilung der Wissenschaft von THALES wohl Recht (S. 145 f.). 
THALES hat seine Sätze allerdings schon bewiesen. Aber weicher Art seine Beweise gewesen 
sein mögen ? — Schade, daß zu dieser Frage eine Arbeit von K. v. FRITZ (Archiv f . 
Begriffsgesch., 1955) noch nicht berücksichtigt werden konnte. Man hat nämlich inzwischen 
wahrscheinlich machen können, daß die thaletischen Beweise noch vorwiegend empirischer 
Art sein mußten. Diese Vermutung wird auch dadurch noch erhärtet, daß der math. Terminus 
der Giiechen für „beweisen" der Wortbedeutung nach eigentlich „zeigen", „veranschaulichen" 
heißt. Es hat also wohl eine Entwicklungsstufe gegeben, in der die math. Evidenz noch 
unmittelbar empirisch, anschaulich war. Die Forderung nach einer anderen Art (logischer) 
Evidenz wird wohl erst auf der nächsten Entwicklungsstufe ausschlaggebend. 

Gewiß, hat der Verf. Recht, wenn er betont (S. 18), daß man erfolgreich Mathematik-
Geschichte betreiben kann, auch ohne die klassischen Autoren im Urtext zu lesen. Aber 
will man auf demselben Wege, der durch ihn so gangbar gemacht wurde, weiterkommen, 
so wird einiges wohl auch noch die Philologie beisteuern können. VAN DER WAERDEN hat 
z. B. auf die logischen Mängel des 8. Euklidischen Buches hingewiesen ; sein Verf. (ARCHYTAS) 

ränge ständig mit der Ausdrucksweise. „Es macht fast den Eindruck, als hätte er Angst, 
auf den glitschigen Pfaden der Logik auszurutschen" (S. 253). Dagegen rühmte er die 
geschlossen kompakte Einheit und Eleganz des etwas früheren 7. Buches. Nun liest man 
aber das 7. Buch Euklids griechisch, so wird man auch an seiner Logik manches auszu-
sehen haben. Was soll man z. B. zu der sehr ungeschickten Formulierung des 15. Satzes 
sagen — der übrigens nur ein Spezialfall von Satz 9 ist? Die historische Erklärung dieser 
logischen Ungeschicklichkeit könnte wohl manches Licht auf die mathematisch-philosophi-
schen Diskussionen des 5. Jh. werfen. Und von dieser Seite her würde man auch die 
logische Ungeschicklichkeit von ARCHYTAS etwas anders erklären, als es VAN DER WAERDEN tut. 

Hervorgehoben seinen noch — rieben den sehr eindrucksvollen Euklid-Analysen — 
die schönen Kapitel über ARCHIMEDES und APOLLONIOS. Was den Verfall der griechischen 
Math! betrifft, macht der Verf. mit Recht darauf aufmerksam, wie ganz anders die Entwicklung 
in der Astronomie verlaufen ist. Der Rückgang der Mathematik muß also seine „inneren 
Ursachen" haben. 

Das Buch, obwohl streng wissenschaftlich und weitere Nachforschungen anregend, ist 
überall allgemeinverständlich, klar und setzt nirgends mehr als die einfachste Schulmathematik 
v<>raus- Árpád Szabó (Budapest) 
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V. Thébault, Parmi les belles figures de la géométrie dans l'espace (Géométrie 
do tétraèdre), XVI + 287 p., Paris, Vuibert, 1955. 

Comme l'on le soupçonne déjà du titre, l'ouvrage n'est pas un traité au sens étroit. 
Le but de l'auteur est de faire passer quelques moments agréables au lecteur. 

M . V . THÊABULT recherche depuis quarante ans lés analogies existant entre la 
géométrie du triangle et celle du tétraèdre et arrivait à étendre de nombreuses relations 
du plan à l'espace. Après des rappels aux résultats de ses prédécesseurs il nous offre un 
receuil des principaux résultats de ses propres recherches sur le tétraèdre et les polygones 
gauches. Les raisonnements procèdent par assez de calculs ; quant aux "belles figures", 
c'est le lecteur qui doit les construire. 

La part la plus riche du livre est Chapitre III: Points de Lemoine, sphères d'Adams, 
de Tiicker, de Lucas, de Hagge, l'orthopôle d'une droite. 

Les résultats dé l'auteur concernant des tétraèdres spéciaux (par ex. orthocentri ;ues) 
franchiraient les limites du livre, mais entre les questions proposées quelques unes sont 
prises dans ce domaine. 11 est à regretter que le livre ne contient pas une bibliographie 
détaillée et un index. 

T. Bakos (Szeged) 

E. Kamke, Mengenlehre (Sammlung Göschen, Band 999/999a), 192 Seiten, Berlin, 
Walter de Gruyter, 1955. 

Die dritte, neugearbeitete Auflage dieses bekannten und bewährten Büchleins wurde 
gegenüber der zweiten Auflage (1947) mit verschiedenen Ergänzungen wesentlich erweitert: 
Neu ist ein Kapitel über das Rechnen mit Mengen (Formeln von MORGAN, SusuN-Operation), 
ein Abschnitt über die Begründung der Mengenlehre, in dem unter anderem die Bedeutung 
des Auswahlprinzips diskutiert wird und einige Bemerkungen über die intuitionistische 
Mengendefinition von BROUWER gemacht werden. Neu sind ferner die § § 34 und 35 über die 
Zerfällung und Zerlegung von Ordnungszahlen. In einem letzten Abschnitt werden neben 
der ausführlichen Behandlung des Wohlordnungssatzes die Sätze von T U K E Y , HAUSDORFF und 
ZORN behandelt. 

. Inhaltsübersicht: I. Aus den Anfängen der Mengenlehre. II. Über beliebige Mengen 
und ihre Kardinalzahlen. III. Bemerkung über die Begründung der Mengenlehre. IV. Über 
geordnete Mengen und ihre Ordnungstypen. V. Über wohlgeordnete Mengen und ihre 
Ordnungszahlen. VI. Der Wohlordnungssatz, verwandte Sätze und Folgerungen. 

G. Fodor (Szeged) 

H. Bachmann, Transfinite Zahlen (Ergebnisse der Mathematik und ihrer Grenz-
gebiete, neue Folge, Heft 1), VII + 204 Seiten, Berlin—Göttingen—Heidelberg, Springer-
Verlag, 1955. 

Der vorliegende Bericht enthält deutliche und systematische Ausführungen über die 
Ergebnisse und Probleme der Theorie der transfiniten Zahlen (Ordnungszahlen und Mächtig-
keiten). Das ZERMELO—FRAENKELSCHE Axiomensystem der Mengenlehre bildet die Grundlage, 
es wird aber alles in der Sprache der naiven Mengenlehre formuliert. 

In der Einleitung (Kap. I) findet man einen kurzen Abriß über die Mengenlehre und 
das Grundlagenproblem, über die üblichen Axiome der Mengenlehre und die fundamentalen 
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Definitionen der Äquivalenz, Ähnlichkeit, Wohlordnung, der transfiniten Induktion und der 
transfiniten Zahlen. , 

In Kapitel II werden behandelt: die Ordnungszahlen, stetige Funktionen von Ordnungs. 
zahlen, die ordinalen Anfangszahlen, Normalfunktionen, Iteration und kritische Zahlen und 
die Theorie -der regressiven Funktionen. 

• Kapitel III beschäftigt sich mit der Arithmetik der Ordnungszahlen. Zuerst werden 
die arithmetischen Operationen mit Ordnungszahlen auf mengentheoretischer Weise einge-
führt. Sodann folgt die funktionale Theorie der arithmetischen Operationen. In diesem 
Kapitel findet man noch die Polynomdarstellung der Ordnungszahlen, die höheren arithmeti-
schen Operationen, die Theorie der Hauptzahlen, die Umkehrungen der arithmetischen 
Operationen, die Zerlegung einer Ordnungszahl in unzerlegbare Zahlen, die Permutationen 
von Folgen von Ordnungszahlen und die Theorie der vertauschbaren Ordnungszahlen, 

In Kapiteln IV und V wird die Theorie der Mächtigkeiten und Kardinalzahlen 
dargestellt, undzwar in Kapitel IV ohne das Auswahlaxiom zu benutzen, und in Kapitel V 
unter Verwendung des Auswahlaxioms. Es werden behandelt: die Mächtigkeit beliebiger 
Mengen und ihre Arithmetik, Vergleichung von Mächtigkeiten, die Potenzmenge einer 
beliebigen Menge, die Kardinalzahlen und die kardinalen Anfangszahlen, Arithmetik der 
Kardinalzahlen, Ungleichungen für unendliche Summen und Produkte von Kardinalzahlen, 
Beziehungen zwischen Kardinalzahlen und Mächtigkeiten, äquivalente Formen und Kon-
sequenzen des Auswahlaxioms, die Beths, Summen von Beths, die Alephhypothese und 
ihre Folgerungen. 

In Kapitel VI handelt es sich, etwas weniger eingehend, um die Anwendungen der 
transfiniten Zahlen in der Theorie der Punktmengen, das Axiom der Hauptfolgen, die 
formale Darstellung von Ordnungszahlen und schließlich um einige Alternativen zum Aus-
wahlaxiom. 

Das letzte Kapitel beschäftigt sich mit den unerreichbaren Zahlen. 
Zum Schluß werden ausführliche Literaturangaben zu den einzelnen Kapiteln angeführt. 

G Fodor (Szeged) 

R. Courant, Vorlesungen über Differential- und Integralrechnung. Erster Band: 
Funktionen einer Veränderlichen. Dritte, verbesserte Auflage, XI + 450 Seiten. Zweiter 
Band : Funktionen mehrerer Veränderlicher. Dritte, verbesserte Auflage, XI + 468 Seiten. 
Berlin, Göttingen und Heidelberg, Springer-Verlag, 1955. 

COURANTS Vorlesungen sind wohl schon ein klassisches Werk geworden. Dies erweist 
sich auch daraus, daß sie schon in dritter Auflage vorliegen und auch in andere Sprachen 
übersetzt wurden. Dieser Erfolg ist u. a. dem zu danken, daß es dem Verf. gelingt, dem 
Stoff, ohne Verzicht auf Präzision, in einer undogmatischen, lesbaren Form darzustellen 
und abstrakte Begriffe anschaulich zu motivieren. Er hält die Schwierigkeiten der Anfänger 
immer vor den Augen. Darum sind die schwierigeren und engänzenden Probleme, die man 
beim ersten Studium übergehen kann, nur in den Anhängen betrachtet. Charakteristisch ist 
im Aufbau des Materials, daß das bestimmte Integral vor der Ableitung eingeführt wird und 
Differential- und Integralrechnung nebeneinander zur Behandlung kommen. 

Diese dritte Auflage unterscheidet sich von der zweiten hauptsächlich durch die 
Aufnahme einer Reihe von Zusätzen. Diese betreffen u.a. die Intervalleinschachtelung und 
das Zahlenkontinuum, den zweiten Mittelwertsatz der Integralrechnung, den Weierstraßschen 
Approximationssatz (nach H. LEBESOUE), das Iterationsprinzip für die numerische Auflösung. 
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gewisser Gleichungen, die Bernoullischen Polynome und die Eulersçhe Summenformel, das 
Integral von FRESNEL und von DIRICHLET, die Integration der Fourierreihen, das isoperi-
metrische Problem, die Differentiation und Integration von gebrochener Ordnung, die • 
Wellengleichung und die Maxwellschen Gleichungen im leeren Raum. 

In dieser ergänzten Form werden die Vorlesungen von COURANT gewiß einen noch 
größeren Einfluß auf die Ausbildung der neuen Mathematikergenerationen haben. 

J. Berkes (Szeged) 

Arnaud Denjoy, Articles et mémoires. Reproduits et rassemblés avec le concours 
du Centre National de la Recherche Scientifique. VII + 1108 pages, Paris, Gauthier-
Villars, 1955. 

On trouve dans ces deux volumes de remarquable étendue un recueil complet des 
reproductions photographiques des articles et des mémoires, écrits avant 1955, de l'éminent 
analyste. Les notes préliminaires, publiées pour la plupart dans les Comptes Rendus de 
Paris, feront le sujet d'une collection ultérieure. 

Le premier volume embrasse les ouvrages qui traitent de la théorie des fonctions 
d'une variable complexe, le second comprend ceux qui s'occupent des fonctions réelles et 
des questions de la théorie des ensembles, en particulier de la topologie. On y trouve 
encore un article de T. J. BOKS, écrit sous la direction d'A. DENJOY, et trois notices de 
l'auteur qui donnent un aspect général sur son oeuvre, datant des années 1921, 1934 et 
1942. 

Dans nos jours, une grande partie des résultats de l'auteur sont à trouver dans les 
monographies sur la théorie des fonctions réelles, il y en a même qui font-partie des 
manuels. Tous les analystes conviendront de ce que ces faits ne rendent pas superflu l'étude 
des publications originales ; celui qui désire étudier la genèse des idées et s'enfoncer dans 
la profondeur de celles-ci, aura à les consulter dans la forme dans laquelle l'auteur même 
les a présentées. On ne peut donc que saluer avec joie la parution de ce recueil qui 
facilite l'accès des travaux d'un des plus illustres analystes de notre époque. 

Á. Császár (Budapest) 

R. W. Weitzenbock, Der vierdimensionale Raum (Wissenschaft und Kultur, Bd. 10), 
"223 Seiten, mit 54 Figuren, Basel und Stuttgart, Birkhäuser Verlag, 1956. 

Die Entwicklung der Mathematik und der Physik in den letzten hundert Jahren — 
wir denken dabei insbesondere an die Relativitätstheorien von EINSTEIN — hat unsere 
wissenschaftliche Auffassung des Raumes auf grundlegende Weise umgestaltet. Die neu 
entstandenen Begriffe,^wie der der mehrdimensionalen Räume, sind in der Weiterentwicklung 
der Geometrie von entscheidender Bedeutung geworden, die man auch in der mathemati-
schen Beschreibung der Naturgesetze nicht entbehren kann. Die abstrakten Begriffe der 
Wissenschaft sind sogar gewissermaßen auch in die „öffentliche Meinung" eingedrungen ; 
über die „vierte Dimension" hat man z. B. eine Unmenge von Werken, Artikeln, Notizen 
geschrieben, von wissenschaftlichen oder halbwissenschaftlichen bis zu scherzhaften im Stil 
der „Fliegenden Blätter." 

Verf. war ein aktiver Teilnehmer der großen wissenschaftlichen Arbeit, die zur Aus-
gestaltung der neuen Begriffe geführt hat, und so nimmt der Mathematiker-Leser sein 
Buch mit gesteigertem Interesse in die Hände. Das Buch — eine Entwicklung und Um-
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arbeitung des 1929 bei Vieweg in Braunschweig unter demselben Titel erschienenen Werkes 
— ist aber in erster Reihe dem gebildeten großen Publikum bestimmt, sein Hauptziel ist 
die Neugier dieses Publikums zu vertiefen und zu befriedigen. Immerhin wird vom Leser 
eine gewisse Geschultheit im mathematischen Denken gefordert, eine Vertrautheit mit 
einigen mathematischen Begriffen und Sätzen (auf S. 107/108 wird z. B. die Differential-
gleichung der geodätischen Linien in einer gekrümmten Metrik angeführt). Doch kann 
man ja die Mathematik ohne Mathematik — auf dem „Wege der Könige" nicht kennen 
lernen. Jedes Werk, das die Wissenschaft verbreiten will (ich habe absichtlich nicht 
„popularisieren" gesagt), steht vor einem Dilemma: entweder bleibt man an der Ober-
fläche um völlig verständlich zu sein, oder aber spricht man auch über tiefer liegende 
Dinge auf die Gefahr hin, nicht recht verstanden zu werden. 

Kapitel I (Die Grundlagen) dient zur Vorbereitung. Sich vorwiegend auf die koordi-
natengeometrische Methode stützend, zeigt Verf.. daß der vierdimensionale Raum zwar 
eine abstrakte mathematische Konstruktion ist, doch die Struktur gewisser konkreten 
Mannigfaltigkeiten spiegelt. 

Kapitel II (Das Feenreich der Geometer) umfaßt ein recht beträchtliches Erkenntnis-
material. Solche grundlegende Begriffe, wie die der linearen Unterräume des vierdimensio-
nalen Raumes, ihrer Durchschnitts- und Verbindungsräume, ihrer Parallelheit und Ortho-
gonalität usw. werden auf klare Weise eingeführt und verständlich gemacht. Es wird auch 
die Möglichkeit einer Darstellung in der zweidimensionalen Ebene besprochen. Die vier-
dimensionalen Simplexe und Polytope sowie auch einige nichtlineare Gebilde werden 
eingehend behandelt. Man spricht sogar auch über die Einbettung der dreidimensionalen 
hyperbolischen Geometrie in den vierdimensionalen euklidischen Raum. 

Kapitel HI (Raum und Zeit) behandelt die Entwicklung des Begriffs des vier-
dimensionalen Raum-Zeit-Kontinuums, und die Raumbegriffe der speziellen und der 
allgemeinen Relativitätstheorie. Es wird betont, daß die Einsteinsche Geometrie nur ein 
spezieller Fall von allgemeineren Differentialgeometrien ist. 

Die beiden letzten Kapitel (IV. Der R\ und andere Wissensgebiete, V. Der Ri in der 
phantastischen Literatur) sind zwar vielleicht eine zerstreuende Lektüre, haben aber mit 
der Wissenschaft nichts zu tun: sie zeigen nur, zu welchen Phantasmagorien und Dumm-
heiten das Mißverständnis wissenschaftlicher Begriffe unter den Laien führen kann. 

F. Kärteszi (Budapest) 

Carl Ludwig Siegel, Vorlesungen über Himmelsmechanik (Grundlehren d. math.. 
Wissenschaften, Bd. 85), VIII + 2 1 2 Seiten, Berlin, Springer-Verlag, 1956. 

Wie auch im Vorworte betont wird, hat der Verfasser bei seinen Vorlesungen 
hauptsächlich den Zweck verfolgt, diejenigen Sätze und Methoden der Theorie der Differen-
tialgleichungen herauszuarbeiten, welche zur Darstellung der Sundmannschen Ergebnisse, 
der periodischen Lösungen und der Stabilitätsfragen in der Himmelsmechanik nötig sind. 

Das erste Kapitel bringt die notwendigen Vorkenntnisse aus der Transformations-
theorie der kanonischen Differentialgleichungen. Dann wird durch eine von LEVJ-CIVITA. 

herrührende Transformation der binäre Stoß beim Dreikörperproblem regularisiert. Mit den 
so gewonnenen Hilfsmitteln gibt dann der Verf. eine bequem lesbare Darstellung der 
Sundmannschen Ergebnisse zum Dreikörperproblem. Zuerst werden die Hilfssätze über die 
untere Grenze des Dreieckumfanges und die obere Grenze der kleinsten Geschwindigkeit 
hergeleitet. Diese Hilfssätze genügen dann zum Beweis des Hauptsatzes, welcher besagt, 
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daß — im Falle eines nichtverschwindenden Dralles — die Koordinaten der drei Körper 
und die Zeit sich in konvergente Potenzreihen einer Hilfsvariable entwickeln lassen. 

Das zweite Kapitel beginnt mit der Herleitung der Lagrangeschen periodischen 
Lösungen. Nach einem allgemeinen Existenzsatz über periodische Lösungen folgen die 
eigenen Ergebnisse des Verfassers über die periodischen Lösungen des Dreikörperproblems 
in der Nähe der Kreisbahnlösungen. Auch die Poincaresche Fixpunktmethode wird in 
diesem Kapitel geschildert. 

Im dritten Kapitel werden zuerst die klassischen Stabilitätsuntersuchungen • von 
DIHTCHLET und LJAPUNOV erläutert. 

Bei diesen Untersuchungen wird der quadratische Teil der analytisch vorausgesetzten 
Hamiltonschen Funktion in der Umgebung einer Uleichgewichtsstelle durch eine lineare 
kanonische Transformation in eine in den Produkten der konjugierten Variabelpaaren 
homogene lineare Form transformiert. Als naturgemäße Weiterentwickelung dieser Idee 
erscheint beim Verf. die analytische kanonische Transformation in einer solchen Normal-
form, bei welcher die Hamiltonsche Funktion nur von den Produkten der konjugierten 
Variabelpaaren abhängt. Die Konvergenz dieser viel versprechenden und formal immer 
möglichen Transformation wird aber gerade durch die eigene Untersuchungen des Verf. 
als eine Ausnahmefall erwiesen. In diesem Kapitel werden auch topologische Methoden 
(Wiederkehrsatz) besprochen. 

Der Verfasser, der die Entwicklung auf diesem Gebiete durch eigene Arbeiten 
wesentlich gefördert hat, gibt in diesen Vorlesungen einen sehr guten Überblick über die 
neueren Methoden und Resultate der Himmelsmechanik. Die Darstellung ist elegant und 
durch Benützung von Vektoren, Matrizen und komplexer Koordinaten sehr prägnant. Das 
Buch kann, besonders für vorwiegend mathematisch interessierte Leser, wärmstens empfohlen 
werden. _ _ _ , 

E. Egervary (Budapest) 

H. Boerner, Darstellungen von Gruppen (Die Grundlehren der Math. Wissenschaften 
in Einzeldarstellungen, Bd. LXXIV), S. XI - f 287, Berlin—Göttingen-Heidelberg, Springer-
Verlag, 1955. 

. Das Ziel des vorliegenden Buches ist es, eine Einführung in diejenigen Teile der 
Darstellungstheorie der Gruppen zu bieten, die Anwendungen in der Physik haben. 
Stoffauswahl und Behandlungsweise werden demgemäß von praktischen Gesichtspunkten 
geführt; der größte Teil des Buches beschäftigt sich mit der Bestimmung der Darstellungen 
von wichtigeren Gruppen (unimodulare Gruppe, unitäre Gruppe usw.). Unter Darstellung 
ist immer eine endlichdimensionale zu verstehen. Die Entwicklung der allgemeinen Theorie 
(invariantes Integral, Theorie der Lieschen Gruppen) wird immer nur soweit geführt, als 
diese zu diesem Hauptziel des Buches erforderlich ist. Diese starke Abgrenzung der 
Behandlungsweise des Stoffes ist aber nicht immer glücklich zu nennen; gewiß hätte eine 
Einordnung des vorgetragenen Materials in größere Zusammenhänge auch aus dem 
Gesichtspunkt der Zielsetzung des Buches pädagogische Vorteile. Auch die Beschränkung 
auf endlichdimensionale Darstellungen scheint nicht durch die Bedürfnisse der Physik 
begründet zu sein. Trotzdem ist sicherlich zu erwarten, daß dieses äußerst klar und sorg-
fältig geschriebene Buch vielen eine genußreiche wenn auch nicht ganz leichte Anleitung 
zu diesem reizvollen Gebiet der Mathematik geben wird. 

Das Buch besteht aus elf Kapiteln. Vor jedem Kapitel wird der Inhalt desselben mit 
Hinweisen auf den Zusammenhang mit anderen Kapiteln kurz zusammengestellt. Das erste 
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Kapitel behandelt die benötigten Hilfsmittel aus der Theorie der Matrizen. Das zweite 
bringt die Elemente der Theorie der endlichen und kontinuierlichen Gruppen. Im dritten 
Kapitel werden die Hauptsätze der Darstellungstheorie der endlichen Gruppen mit Ver-
wendung der Gruppenalgebra entwickelt, und dann die entsprechenden Tatsachen bei 
kontinuierlichen Gruppen behandelt. Kapitel IV gibt die Darstellungstheorie der symmetri-
schen Gruppen, Kapitel V berechnet die irreduziblen Darstellungen der vollen linearen, 
unimodularen und unitären Gruppen. Kapitel VI beschäftigt sich mit dem Zusammenhang 
•der Charaktere-der symmetrischen Gruppe mit denen der vollen linearen Gruppe. Kapitel 
VII beginnt mit einer Betrachtung über die Zusammenhangsverhältnisse der Drehgruppe; 
dann folgt die Bestimmung der eindeutigen Darstellungen derselben mit Heranziehung von 
transzendenten Methoden. Kapitel Vlll behandelt dann die zweideutigen Darstellungen mit 
Hilfe der Cliffordschen Algebren; auch weitere spezielle Algebren werden betrachtet, die 
in der Physik von Bedeutung sind. Endlich beschäftigt sich Kapitel IX mit der Darstellungs-
theorie der Lorentzgruppe. ' 

Zum Studium des Buches sind wenig Vorkenntnisse erforderlich; fast alle nötigen 
Hilfsmittel werden voll entwickelt. 

L. Pukänszky (Szeged) 

A. Speiser, Die Theorie der Gruppen von endlicher Ordnung. Vierte, erweiterte 
und berichtigte Auflage mit 43 Abbildungen, einer Farbtafel und einem Anhang (Lehrbücher 
und Monographien aus dem Gebiete der exakten Wissenschaften, Math. Reihe Bd. 22), 
XI - f 271 Seiten, Basel und Stuttgart, Birkhäuser Verlag, 1956.. 

Dieses Buch ist von einem Anhang und einigen unwesentlichen Korrektionen ab-
gesehen eine unveränderte Auflage der in der „Gelben Sammlung" von Springer erschienenen 
dritten Auflage. In dem Anhang ist die Herstellung von Gruppenbildern besprochen und 
der Unterschied zwischen der funktionentheoretischen Auffassung und der Substitution 
erörtert. Das Buch ist mit zu dem Siebeneck gehörigen farbigen Kleinschen Kreisfigur (als 
Titelbild) dekoriert. 

Dieses schon klassisch gewordenes Werk wird in seiner schönen neuen äußerlichen 
Gestaltung gewiß noch viele Freunde der Gruppentheorie gewinnen. 

J. Szep (Szeged) 

Michio Suzuki, Structure of a group and the structure of its lattice of subgroups 
<Ergebnisse der Mathematik und ihrer Grenzgebiete, Reihe: Gruppentheorie), 96 pages, 
Berlin—Gottingen—Heidelberg, Springer Verlag, 1956. 

Lattice theory, one of the most recent branches of algebra, has many applications 
in various fields of mathematics, of which perhaps the most important belong to group 
theory. It is a well known fact that the set of all subgroups of a group G form a lattice 
L(G) with respect to the operations of forming unions and intersections. Thus it is a natural 
idea to try getting information about the structure of a group by investigating its subgroup 
lattice. This particular field of investigation within group theory, whose history does not 
go back further than some thirty years, is already rich with important results. The present 
work is the first systematic account on this subject. 
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The first chapter is devoted to groups with a special kind of subgroup lattice. The 
results are concerned mostly with finite groups. Thus for instance the finite groups G with 
modular, lower semi-modular, upper semi-modular, complemented and relatively comple-
mented L(G), respectively, are characterized. Sufficient conditions are given for infinite 
groups to have a modular or upper semi-modular subgroup lattice. The structure of 
distributive groups (groups the subgroup lattice of which is distributive) is determined 
completely. These results lead in particular to a characterization of finite quasi-Hamiltonian 
groups, and to a theorem stating that any quasi-Hamiltonian group is metabelian. 

The second chapter deals with the isomorphisms of subgroup lattices. First projec-
tivities (i.e. isomorphic mappings of a subgroup lattice ¿ ( G ) of a group G onto a sub-
group lattice L(H) of a group H) are discussed. For finite groups a theorem of JONES. 

answers completely the question under what circumstances is a projectivily of G onto H 
induced by a group isomorphism. In this way results concerning abelian, locally free and 
modular groups, respectively, are discussed here. From the results concerning the index 
preserving projectivities of a group (i. e. projectivities such that (U: V) = rp(U): ?>(V)) holds 
for any cyclic subgroup U of G and every subgroup V of U) one obtains also the theorem 
stating that every projectivity maps finite perfect groups onto finite perfect ones. A similar 
result holds for finite solvable groups. This chapter is closed by a section on so called 
"situation preserving mappings", which were investigated first by A . ROTTLANDER, as a matter 
of fact, the theory of subgroup lattices began with her investigations in 1928. 

The third chapter is devoted to the homomorphisms of subgroup lattices. A liomo-
morphic mapping <p of the subgroup lattice L(G) of. G onto a lattice ¿ is called an 
¿-homomorphism of G onto L. <p is called complete, if y ( l\ U^) = f\ <p(U}) and y (U; U}) = 
= Uy <p{U) hold for any number of subgroups. First the complete L-homomorphisms onto 
cyclic groups (i.e. onto the L(Z) of a cyclic group Z) are discussed. Sufficient conditions 
are given under which a homomorphism of a group G onto H induces an ¿-homomorphism 
of G. From the results concerning the ¿-homomorphism of finite G groups one obtains an 
interesting theorem stating that if <p is an ¿-homomorphism of a perfect finite group onto 
a subgroup lattice L(H) of a group H, then this group H is perfect. A similar result holds 
for finite solvable groups. This chapter also contains ZAPPA'S results on meet-homomorphisms. 
Finally, the structure of finite groups admitting a proper ¿-homomorphism is treated. 

The last short chapter deals with the dualisms of subgroup lattices. A dualism of 
the group G onto H means a dual-isomorphism between their subgroup lattices, and H i s 
called a dual of G. A theorem of BAER determines completely the structure of abelian 
groups with duals. The book closes with investigations of the author, characterizing the 
structure of the nilpotent and the finite solvable groups with duals respectively. 

The book is completed by a rich bibliography. 
Of course, the author could not aim at completeness, yet he succeeds in giving a 

systematic and very clear presentation of the subject. Several results of the author,, 
published here for the first time, and numerous original ideas enhance the value of the 
book. It will undoubtedly greatly contribute to further progress in the investigation of 
groups via their subgroup lattices. 

]. Szendrei (Szeged) 


