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Sur les contractions de ’espace de Hilbert. II.
’ Par BELA SZ-NAGY & Szeged.

1.

Dans la Note précédente [1] (voir aussi [2], [3], [4]) nous avons démontré
que pour toute contraction T de V'espace de Hilbert-$') il existe, dans un
espace de Hilbert plus vaste R, une transformation unitaire U telle qu’on ait

(N : T =pr U" (n=0,+1, +2,...)?

et que & soit sous-tendu par les éléments de la forme U"h (h€ 9); ces
conditions déterminent U d’une maniére univoque?).
‘ Dans ce qui suit on désignera la dimension de © toujours par b, elle
peut étre un nombre cardinal quelconque, fini ou infini.

On aurait croire que si l’on connait le spectre de U/ on en peut tirer
des informations sur le comportement de 7. Or cela n’en est point le cas;
en effet, M. SCHREIBER [5] vient de démontrer la proposition suivante:

Théoréme 1. Les transformations unitaires U qui correspondent aux
contractions au sens strict T (c'est-d-dire telles que || T|| < 1) sont toutes unitai-
rement équivalentes. ¢ la méme transformation unitaire, notamment a la somme
orthogonale de répliques de la transformation unitaire V de I espace L (O 2:1)
définie par la formule

Vlu(p)] =e?u(g).") -

1) Nous n’envisagerons dans la présente Note que des espaces de Hilbert complexes,
mais les résuitats peuvent étre étendus mutatis mutandis aux espaces réels, cf. note ).

2) Nous employons la notation T =T" pour n=0,1,2,... et T® = T*" pour
n=—1,—2,.... Pour deux transformations linéaires bornées, A de $ et B de & (D9),
A=pr B veut dire que, pour tout élément hé@ Ah est la projection orthogonale de
Bh sur 9.

3) A condition qu'on ne distingue pas entre les différentes reahsatnons du prolonge-
ment & de 9.

1) Drailleurs, en vertu du théoreme de Riesz—Fiscuer, V est unitairement équivalente

A la ,translation* {x,} — {x,_,} dans I'espace P des vecteurs x = {x} (k=0,+1, +2,..)

Al
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Dans sa démonstration, M. SCHREIBER se restreint au cas ou b = N, et
fait usage de la théorie de Vintégration forte des fonctions mesurables a
valeurs dans un espace de Banach. La démonstration que nous atlons donner
différe de celle de M. SCHREIBER principalement en ce qu’elle ne fait usage que
des intégrales de fonctions ordinaires; elle est valable pour d quelconque.

Le résultat s’étend aussi au cas de plusieurs contractions. Contentons-
nous de le formuler seulement pour deux contractions T,, 7, de I'espace de
Hilbert . On sait (cf. [3]) que si T, T, sont doublement permutables?®),
existe, dans un espace plus vaste R, deux transformations unitaires permutables
Uy, U, telles qu’on ait

(2) . Tl(n.) T,_(,"z) =pr Uhn U_;‘! (n;, n,=20, ’_f‘ 1, +2,.. )

et que N soit sous-tendu par les éléments de la forme Uy"U:*h (h € 9);
couple {U,, U.} est alors déterminé par le couple {7}, 7,} de maniére univo-
que?®). .Nous démontrerons le

Théoréme 2. Les couples {U,, U,} de transformations unitaires qui
correspondent aux couples {T,, T,} de contractions au sens strict, doublement
permutables, sont tous unifairement équivalents au méme couple, notamment
d la somme orthogonale de d répliques du couple des transformations unitaires
Vi, Vi de lespace 1*[(0, 2rt) < (0, 27T}, définies par les formules

3 _ Viu(g,, %)-——-e%u((p,,%) U=12).

~ Dans le second paragraphe de cette Note nous obtiendrons un résultat
analogue pour les semi-groupes a un paramétre.

Démonstration du théoréme 1. Soit r=||T[|<14. Pour toute
valeur réelle de ¢ posons

@ K(p) = Z &P T — Re[(l—}-e'"’T)(l e Ty,

c’est .une transformation autoadjointe bornée de ©, fonction continue en norme
de @ (cela découle de ce que ||T™|| = ™). Pour tout € § on a, en posant
he=(I—e *T) 'h,

(K(9) h, i) =Re ((/+¢ % T) hy, I—€ 7 T) hy) = || hy||" = | Tho |’ ;
T - 1
a composantes x,, complexes et de norme ||x||= {Z [ x, P}‘_—’ < ~. On peut démontrer que
. , - :

dars cette forme le théoréme est vrai aussi pour un espace © réel: U est alors
unitairement équivalente 4 la somme orthogonale de » Arépliques de la translation“
- {x.} — {x,_;} de I'espace B des vecteurs x a composantes réelles.
“) A et B sont doublement permutables si A est permutable avec B et B*.
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vu que : .
=1+l

h||=|(I—e™®T)A ( ¥

o 1= ¢ el | Z 1 i

il en résulte que , , _

(5) a(h, h) = (K(e)h,h) = c(h, h)

avec les constantes positives
' 1—r 1 -

N (l—r)‘

Notons la conséquence suivante de la définition (4):-

2n

(6) . 5‘;[&"" (K(¢) hhYyde = (T h, k).

6=

Cela étant, envisageons ’ensemble K, évidemment linéaire, des ;iolynomes
trigonométriques _ .
D(g) =2 €% h

a coefficients &, € $,°) muni de la notion suivante de produit scalaire:

2a

@ (@, @)= [ (@(9), @ () dgp = 3 (e, i)

on a évidemment (D, @) = 0, et (D, <D)-—0 seulement si @ =0, c’est-a-dire
-si O(@)=0. K, est donc un espace préhilbertien. Soit & 'espace hilbertien,
complété de £,.

Définissons dans R, encore la forme bilinéaire symétrique’ suivante:

2

®) (@, =5 [(K(p) D), D () s,

en vertu de (5) on a les inégalités

(D, P) =D, D> = co(D, D).
Par conséquent il existe dans & une transformation autoadjointe D telle que
9) . al=D=cal, <9, (D’>~(D<D (D’\

Désignons par D2 la racine carrée positive de D.
La transformation

(10) UlP(p)] =€ D(9) :
‘applique &, sur &, isométriquement, et elle se prolonge alors par continuité.

) h, =0 sauf pour un nombre fini d'indices n au plus.
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en une transformation unitaire U/ de & De plus, U laisse invariante aussi
la forme <@, @, d’ou il résulte par (9) que

- 1 1
(11) U'DU=D, donc DU=UD, D*U=UD?.
. .
Faisons correspondre a chaque élément h € I'élément DD, €K ol
@, désigne la fonction @,(p)=h. Cette correspondance est évidemment
linéaire, de plus elle est isométrique parce que, en vertu de (9), (8) et (6),
ona ' : '

1 1 s
(0201, D70, ) <@ 01, D)= (@1, B> = = [ (KCI1, ) dp =

= (T, k)= (h, k).
. 1 ‘
Cela justifie d’identifier 1€ D avec D2 D, € & et de plonger de cette fagon
» dans K. = ‘
Pour tout couple d’éléments A, 4" € p et pour tout entier n on obtient,
‘faisant usage de (9), (10) et (6):
, . o

L
Wh )= (U7D% @, DT D) — DU 01, Br)—
= o [ K@) " b, 1) dpom (T8, ).
0 ' .

Puisque 7™h est un élément de O, cette relatiomr exprime que T™h est la
projection orthogonale ‘de U™h sur © (sous-espace de &), donc U vérifie (1).

. Observons encore que les éléments U"h (h€H; n=0, +1, +2,..))
sous-tendent I'espace &. En effet, on a -

i 1 1 )
Uh=U"D*®,=DU" D, =D*D,;, ot D,s=D.n(¢)=¢""h;

St 1 1 1
or les D2 @, ) sous-tendent D2§, et alors aussi D2f, mais on a DR =K
1 ’ 1

parce que D?, ayant la borne inférieure positive c;%>, admet une inverse
partout définie.
La transformation unitaire U que nous venons de construire est donc
celle qui correspond a la contraction T au sens précisé au début de cette Note.
Reste a prouver que U est unitairement équivalente 3 la somme
orthogonale de b répliques de la transformation unitaire V de I'espace
L*=L*(0, 271). Or, soit {gu}wce un systéme orthonormal complet d’éléments
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de 9, ’ensemble £ des indices étant de pmscance b. Envxsageons la somme
orthogonale '

2=2@m
R
de b répliques de I’espace L?; les éléments de € sont les vecteurs

u=2'du,
w

ol U, =1u,(p) €L et .

lulf = Zuelf =3 [ luue)? dy < o

(La derniére condition implique que u,==0 sauf pour un ensemble au plus
dénombrable d’indices «.) Faisons correspondre 3 tout élement

@ — D(g) — Zemwh € seo

le vecteur u € & ayant les composantes

1 1
ta = to(g) = 27) *(P(g), g) = 27) 7 2 €™ (hn, £0).
Cette Correspondance, évidemment linéaire, est aussi isométrique :

|01 =l = 2 3 (e, g = 3 X |k, g0} =

2n .
= Z[1 6™ (o, g dp = 3 el =1l
0
- : . 1

En particulier pour @(p)=e¢"® g, on a u,, = 0 pour w == T et u, = (2:1) °e¥;
comme les fonctions e™» sous-tendent I'espace L? il s’ensuit que les u €@
correspondant aux @ € &, sous-tendent ’espace ¥. La correspondance iso-
métrique @« u s’étend alors par continuité aux espaces 8 et € tout entiers.
Lorsque @ «» > Pu,, on a UD D Du, avec u,(p)=-e?u.(p),

fait qui est immédiat pour @ € R, et s’étend alors a tout @ € & par continuité.

Cela achéve la démonstration du fait que U est unitairement équivalente
a la somme orthogonale de d répliques de la transformation unitaire V de
Vespace L? multiplication par e*.

Démonstration du théoréme 2. Soient 7,7, deux contrac-
tions au sens strict de 'espace §, doublement permutables. Les transformations
correspondantes K;(¢,), K:(g.) sont alors permutables pour des valeurs quel-
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conques des paramétres; les inégalités c,;/ = Kj(p).= coif (¢1;>0;j=1,2)
entrainent que

tnCul = Ki(p) Ka(g) § CnCol.
En effet, on a p. ex. '

(Ki(p1) Ko(2) h, h) = (K; (1) KQE((P:)) h, Kg(q)g) /l) =

1 1
=y (Kzz (72) b, K5 (2) h) = ¢ (Ka(@2) h, h) = cuicie (B, h).
Le reste de la démonstration se transporte sans difficulté du cas d’une
seule contraction.

2.

Envisageons maintenant le pendant ,continu“ du probiéme, cf. [1] [2],
[3]. A I'analogie de (1), la représentation

(12) ' T(s)=pr U(s) (o0 <5< )

est possible pour tout semi-groupe a4 un parameétre {7(s)} (0 = s < ),7)
faiblement continu, de contractions de 1'espace de Hilbert $; U(s) est un
groupe a un parameétre, fortement continu®), de transformations unitaires d’un
espace plus vaste §, sous-tendu par les éléments de la forme U(s) h (h€9);
{U(s)} est déterminé par {T(s)} d’une maniére univoque®). ‘

La question se pose si, a4 l'analogie avec le fait affirmé par le
théoréme 1, les groupes {{U(s)} correspondant de cette fagon a -des semi-
groupes {T(s)} différents peuvent étre unitairement équivalents. :

Rappelons le théoreme de HILLE et YOSIDA™) suivant lequel les semi-
groupes {7(s)} de type envisagé se caractérisent par le fait qu’ils ont comme
génératrice une transformation linéaire A, a domaine dense, fermée mais en
général non bornée, et satisfaisant & la condition suivante:

Condition (a). /—&A admet, pour tout & > 0, linverse partout définie et ona

lU—eA) Y =1.

?) On pose T(s)=[T(—s)]' pour s <0; T(O)=1.

¥) Cela entraine que {7(s)} est aussi fortement continu, ce qui est d’ailleurs une
conséquence aussi des théorémes 9.2.2 et 9.4.1 de [6]). Continuilé est toujours entendue
aussi au point s =0.

%) A condition qu'on ne distingue pas entre les différentes réalisations du prolon-
cement & de .

19y Cf. [6], théoréme 12.2.1, ou [7}, nO 143
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Cette caractérisation de la génératrice d’un semi-groupe fortement con-
tinu de contractions est valable méme pour un espace de Banach quelcon-
que. Nous allons démontrer que dans un espace de Hnlbert la condition (a)
est équivalente a la suivante:

Condition (b). /—A admet Pinverse partout définie et on a
A+ A U—4" =1

La démonstration sera fondée sur le  théorénie de voN NEUMANN
" affirmant que C

(13) | (Dl = max lu(z)

pour toute transformation linéaire bornée 7 de I'espace de Hilbert et pour
toute fonction u(z) de la variable complexe z=x-iy, holomorphe dans un
domaine contenant le disque [z| ={/7]| dans son intérieur. Plus tard nous -
ferons usage aussi du théoréme voisin de HEINZ, affirmant que, sous les
mémes conditions, :

(14) [ min Reu(z)]l Re u(T) = [ max Reu()] L")

1{=1TH =Tl

Démonstration de I'équivalence.

(a) entraine (b). Par hypothese .B.—= (I—eA)"' (¢> 0) est partout defmie
et |'B.}| =1. En particulier, (/— A) et alors aussi C=(/+A)(/—A)" sont
partout définies. Or on a

-[(1,+s>/—(1—sA)1[(!—sA>——<1—s>/1'
= {[(1 +&) B.— ] (I—e A} { [I—(1—8) BJ(I—eA)} ' =
=[(1+¢) B:=I][I—(1—¢) B]| = u:(B.)
avec
' (148z2—1
1—(1—g) 2z °

u(z)==
Pour 0 < &< 2 cette fonction a son seul point singulier & Pextérieur du cercle

unité, et sur ce cercle on a

(I4&*—2(1+¢ex+1
|lue(2)' = (I—ey— 2(1—g)x+1

(|z| =1, z2=x+iy).
Le maximum de cette fonction sur le segment 4—1 =x= 41 est attein_t au

11) Nous renvoyons le lecteur pour des démonstrations de ces théorémes a [7],
no 153, ou 4 [3]. §4, o ces théorémes apparaissent comme des conséquences simples
de la représentation (1) des puissancec d’'une contraction. :
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point x=—1 et -
2+4¢
'I']Tax lH;(Z)l— 2—¢

par conséquent on a en vertu de (13)

0<e<?2),

Il =luB) = 22X

.~ 8
Faisant tendre & vers O il en résulte que HCII =1, c.q.f.d

(b) entraine (a). Par hypothése faite, B=(I+A)(I—A)" est définie
partout et ||[B]| = 1. Partons de la relation évidente

I—¢A= —[(1—8)(1-!- A+ +9) (I—A)] = [(1—8) B+ (1+4¢) 1] (I—A).
(I—A)" est partout définie puisque B lest, et (l—e)‘B +(1+8)l=
=(14¢) [1 + — + ] admet, pour & >0, une inverse partout définie et b(_)ijnée,
. 1—s 1—e
T )= l

1+4¢
linverse partout définie

(I—eA)' = 2(—A)'[(1—&)B+ (1 + )]

parce que

< 1. Il s’ensuit que /—&A admet, pour & >0,

Comme on a

2(1—AY = [~ A+ + A (I—A) =1 +B,
il en résulte que
- (I—eA) ' = v.(B)

avec ‘

PR 142

“ @)= 05570 F9
Le seul point singulier de cette fonction est situé i I'extérieur du cercle
unité, et sur-ce cercie méme on a

(=>0).

)= 142x+1 1+x -

N T —iF20—Ax+(Fe (1 +x)+&(1—x) =
puisque —1 = x = 1. Envertu de (13) on a donc |[(/—eA4)'||=|lv.(B)|| = 1,
c. g. f. d.

Dans ce qui suit nous envnsagerons seulement le cas oi la condmon _
(b) est vérifiée avec le signe .d’inégalité. En posant b= |[(/4 A)([—A)"||
on aura dans ce cas

1+ A)el = b0~ Al
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pour tout g de la forme (/—A)'h, donc pour tous les éléments g du do-
maine de. définition de A. Cette inégalité entraine que

: IAgl—lel <b(||gll+||AgH)
d’oi il résulte que ‘
agi=1t2 g,
Comme A est fermée et de domaine dense, il s’ensuit que A est définie par-
tout et qu’elle est bornée.

Pour mieux élucider la nature de notre condition, établissons-en quel-
ques formes équivalentes. '

Lemme 1. Pour une transformation linéaire bornée A de [Iespace
$ de Hilbert les conditions suivantes sont équivalentes l'une & lautre:
(¢) I—A admet une inverse partout définie et ||(I4+A)(I—A)'||<1;
. (P) il existe un b< 1 tel que ||(I+ A)h|| = b||(/—A)h|| pour tout h€9;
(y) il existe un ¢ >0 tel que ReA= —cl; -
(d) il existe un d >0 fel que ||A+dl}| <d.

"Démonstration. On procédera par la chaine logique (&) — (8)—
. —(y)—(6)—(a). La premiére implication est évidente. .

(8) entraine (y). Puisque ||(/ +~ A)h|'=|/k]’ + 2 Re (Ah h)+[|AhH
s’ensuit de (8) que

I17-+2Re (AR, b)+ [ AR = B[{AI—2 Re (AR, )+ AK]] =
} =b°[||alP—2 Re (Ah, )} + || AR,
d’our il résulte que

Re(Ah, h) = —cl avee c—1 =8
' 4 el )= ‘ 2148
(7) entraine (d). Posons -d=||A|/c. On a alors pour tout h€9
I(A+dI)h|*=||AR|*+2d Re (Ah, h)+ d°|[A|f =
= (AIF—2dc+ &) ||a|]" = (@ —do) || 4],
l
||A+d1{| =(d*—do)’ <d.

(d) entraine (¢). On a par hypothése “A+d1”—r<d Le disque
|z+d| = r étant situé dans V'intérieur du -demi-plan gauche, ses points véri-
142
1—2
ce disque son maximum < 1. Il sensult alors du théoréme de VON NEUMANN
que la transformation (/+ A) (I—A)™"' existe et sa norme est inférieure a ‘177

donc

‘a sur

fient I'inégalité |1 + 2| < |I—z|, et par conséquent la fonction
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Le lemme est ainsi démontré. ) - ‘

Voici encore quelques conséquences de la condition (J).

Lemme 2. Pour tout A vérifiant la condition (J) on a
(15) : ' ledlj=e  (s=0)
avec une constante a >0, les points de l'axe imaginaire apparttennent a len-
semble résolvant de A, et la résolvante

R(1)= (11— A"
ver:fle les megal:tes
09 1+rp
avec des constantes poszﬂves ¢, Cs-

I=ReR(igp) =

Démonstration. De la condition ||A+d/||=r<d il s'ensuit par
(13) que pour s=0 on a .
o] = max o] — ¥,
l+d|

Dautre part, la fonction (ip—2)" est, pour ¢ réel, réguliere sur le disque
Cjztd| =T, et sa partie réelle, —x|ig—z|™", y vérifie les inégalités

d—r : x d+r
1 = = b(¢).
a(e) == (|l(p-|—d|+f)z |l¢—2|2 (ip +d|— ()
Ces fonctions a(g), b(¢) sont positives, continues, et leurs produits par 14 ¢’
tendent pour ¢ — oo vers les limites positives d 3~ r. Il s’ensuit qu’il existe

des constantes positives ¢, ¢, telles que

€y

oy Sal9) S blp)=

En appliquant (14) il en résulte (16).
Aprés ces préliminaires formulons notre

—1+‘f

. Théoréme 3. Les groupes unitaires {U(s)} correspondant aux semi-
groupes {T(s)} de contractions de U'espace de Hilbert § dont les génératrices A
vérifient les conditions du lemme 1, sont tous unitairement équivalents au méme
groupe unitaire, notamment a la somme orthogonale de d répliques du groupe
_unitaire {V(s)} de l'espace L*(— oo, o), défini par la formule

V(©)[u(9)])=e"u(gp).

Démonstration. Le semi-groupe {T(s)=e} (s = 0) vérifie I'iné-
galité (15) avec a >0, ce qui assure la convergence en norme de l'intégrale
J' e-ve T(s)ds;

0



Contractions de l'espace de Hilbert - ) 1

cette mtegrale est égale a R(zrp)—(up Ayl Pulsque [T = T(——s),
il en découle que

2Re R(ig)= | e T(s)ds.

~ Pour tout couple h, i’ € H la fonction v(q-)=V% (Re R(ip)h, i) est doﬁc la

transformée de Fourier de la fonction (T(s)h, k). Les inégalités (16) entrai-
nent que v(@) € L(— oo, o), et comme de plus (7(s)h, h’) est fonction con-
tinue de s, on peut appliquer le théoréme d’inversion de Fourier:

e4]

(a1 O = [ emrrtg=2; [ enRe R 1)y,

Cela étant, désignons par &, I’ensemble, évidemment linéaire, des poly-
nomes trigonométriques non nécessairement périodiques

D(p) =D e"vh,

a coefficients 4, € D, ) muni de la notion de produit scalaire:

-@

(18) (@, @)= [ (P(@), ¥ (9))dm(g) avec dm(g)=[(1+¢)] dy;

on a évidemment (@, ¢) =0, et (&, ®)=0 seulement si @ =90, Cest-a-dire
si D(p)=0. &, est donc un espace préhilbertien; soit & son complété.

- Définissons sur &, encore la forme bilinéaire symétrique suivante:

, 1 {0 3 Py

(19) @, &>= | (IRe RGPI D(o), ¥ (9))d;
la convergence de cette intégralé découle aisément des inégalités (16), de plus
celles-ci entrainent que

. Cl(¢r @) é <¢; d)> § CQ(Q) @)'
.Par conséquent il existe dans & une transformation autoadjointe D telle que
(20) . ' al =D =col, (D, D>=(DD, D);

| .
soit D? la racine carrée positive de D.

12) Cf. [6], théoréme 11.6.1. _
13) h, =0 sauf pour un nombre fini de valeurs réelles » au plus.
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.
Pour s réel, définissons sur $, la transformation U(s) par la formule

21 U P(9)]= e D(g);
U(s) applique R, sur R, de maniére isométrique et se prolonge alors par
continuité en une transformation isométrique de & sur &, donc en une trans-

formation unitaire de 8. En sa dépendance de s, elle jouit évidemment de °

la propriété de groupe. Elle laisse invariante aussi la forme (@, @ (sur &),
. 1

d’oir il s’ensuit qu’elle est permutable avec D et alors aussi avec D2.

Faisons correspondre a chaque élément h€ D I'élément D2 D, € & ol
@, désigne la fonction constante @®,(¢)=~h. Cette correspondance est évi-
demment linéaire, de plus elle est isométrique parce que, en vertu de (20),
(19), (18) et (17) on a

bo @, p% <z>,.)—(oq>,.,¢>h)_. f([ReR(up)]h B)dg =
—(T<0)h y=(, iz)

Il est donc légitimé d’identifier he H avec D0 D, e f: H devient ainsi un
sous-espace de’ R.
Faisant usage de (21), (20) (19) et (17) on obtient que

1 1

(U(s)h I )-—-(U(s)D ., D lD;,)—(DU(s)tp;., )=
-1 J (IRe RGg)ewh, 1)y = (Th, B);

vu que T(s)h€$ cela exprime que T(s)h est la projection orthogonale de
U(s)h sur . L’équation (12) est donc vérifiée.

Les éléments de la forme U(s)h (h € 9) sous-tendent I'espace . En
effet; on a ’

1 1
U(s)h = U(s)D @, = D2U(s) Py =D* D,
1 A 1

avec D, n(¢)=e"?h, or les éléments D @, sous-tendent évidemment D2 &,
1 1

1
et alors aussi D‘-’SQ mais D* & coincide avec & puisque D2, ayant la borne

inférieure positive c , admet une inverse partout définie.

Cela achéve la démonstration du fait que le groupe JU(s)} que nous
venons de construire correspond au semi-groupe {7(s)} au sens précisé au
début de ce paragraphe.
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Reste 4 prouver que {U(s)} est unitairement équivalent 4 la somme ortho-
- gonale de b répliques du groupe unitaire {V(s)} de I'espace L*= L*(—oo, c0). -
Soit {gu}uee un systéme orthonormal complet dans . Envisageons la somme

orthogonale
2= % ®L:

~ de b répliques de lespace L?; les éléments de. € sont les vecteurs’
u= v@um

avec U, == U,(¢p) € L* et

fulp = Zluelf = X | lua(@)Pdg < o

(u(,,—O sauf pour un ensemble au plus dénombrable dmdlces) Falsons
correspondre a

D= q)@):Zewm €8y
le vecteur uéﬂ avec les composantes
o == Uo(§) = e ( (7 8.)= ————Ze (hngw)
O~ V9 5
Cette correspondance, evxdemment linéaire, est aussi isométrique :
oI = i'l‘l’(w)ll‘dm(qv) lgl(cb(cp),gw)rdm(«p):

@

| Ziu@rde =2 | uo(@)ide = X lluo| = fuip.

w .

8 g

En particulier, 3 @ = ®@(¢p)=e""?g, il correspond le vecteur u.avec

1 )
uo):O pour l'):%:’r, [[(:—_____T_ewq).
Vz(1+¢%
1
Or les fonctions [n(1+¢%] Ze*e (v réel quelcongque) sous-tendent ’espace
L*(—o0, 00). ") 1l en résulte que les u € correspondant aux @ € &, sous-

tendent €. La correspondance isométrique @«-u s’étend alors par continuité

1
) En effet, soit v(¢) une fonction € L2(— oo, ox), orthogo-xale afz(1 + 93] -e“"”

pour tout » réel. Cela veut dire que la fonction w(gp)={a(1 +(p°)] 2 v(¢) a sa transformée
de Fourier identiquement égale a 0. Puisque w(yp)€ L2, cela entraine que w(q:)—O presque
partout, donc aussi v(p) =0 presque partout.
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aux espaces 8 et & tout entiers. Lorsque @ «~ Y%UG, ona U(s) D «— Z@u,,,

avec u,(p) =e**u,(p), fait qui est immédiat pour D¢ &, et s’étend alors
a tout @ ¢ & par continuité.

Cela achéve la démonstration de ce que {U(s)} est unitairement équi-
valent & la somme orthogonale de b répliques de {V(s)}, c’est-a-dire la dé-
monstration du théoreme 3. '

Littérature.

[1] B. Sz.-Nacy, Sur les contractions de l’espace de Hilbert, Acta Sci. Math., 15 (1953),

87—92. : .
[2] ———— Transformations de I'espace de Hilbert, fonctions de type positif sur un
groupe, ibidem, 15 (1954), 104—114.
[3] ———— Prolongements de transformations de l'espace de Hilbert qui sortent de cet

espace, Appendice au livre ,Lecons d’analyse fonctionnelle“ par F. Riesz et
B. Sz.-Nagy (Budapest, 1955).
14] J. J. ScuirrFer, On unitary dilations of contractions, Proc. Amer. Math. Soc., 6 (1955), 322.
[5] M. ScureBer, Unitary dilations of operators, Duke Math. journal, 23 (1956), 579—594.
[6] E. Hiue, Functional analysis and semi-groups (New York, 1948).
[7] F. Riesz—B. Sz.-Naav, Legons d’analyse fonctionnelle, 3me édition (Budapest, 1955).

(Regu le 2 avn"l 1957.)



15

Sur certains théorémes de J. von Neumann concernant
les ensembles speectraux.

Par CIPRIAN FOIAS a Bucarest (Roumanie).

La notion d’ensemble spectral d’une transformation linéaire bornée d’un
espace de Hilbert, introduite par J. v. NEUMANN ([2]), a aussi sens dans le
cas général d’une algébre de Banach A quelconque, 4 élément unité e. Nous
dirons, d’aprés v. NEUMANN, qu’un ensemble de nombres complexes S est un
ensemble spectral de x€A si, quel que soit la fonction rationnelle r(1) satis-
faisant a inégalité |r(4)| =1 pour 1€ S, r(x) existe et on a ||[r(x)||=1. La
question que nous nous posons c’est de caractériser les algébres A, pour
lesquelles les théorémes de v. NEUMANN sur les ensembles spectraux sont
valables.

Dans le paragraphe 1 nous envisagerons des algébres de Banach A
involutives ([1], § 4, 2), tandis que dans le paragraphe 2 il s’agira de ’algébre
L(X) des opérateurs bornés d’un espace de Banach X.

1. La proposition suivante est valable pour une algébre dé Banach
- quelconque A, a élément unité. .

Proposition (N,). Si le demi-plan Red =0 est un énsemble spectral
de x, on a Ref(x) =0 pour toute forme linéaire positive f sur A ([l] §6,.
1 et 2).

Demonstratlon Pour r>0 on a l—l_l dans le demi-plan
ReAi=0, et par conséquent ||(re—x)(re+x)'||=1; comme d’autre part
(re—x)(re+x) —e——-k—{—z—x—( re+x)"' on a, pour toute forme linéaire

. positive f sur A:

(1) F@O—FRef()+ 2 RefI (re+2)"| = | [re— e+ = feo)

ol Pon a utilisé le fait que la norme de f est égale & f(e) ([1], §6,' 2).
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Mans! ! ’} =1 dans le demi-plan droit, donc H(re—}—x)"”§ —]r—; on a

llxll

Ref[xX(re+x) | = —if[Fre+x) ") = — f(e)
la relation (1) donne _
F©)— 2 Ref(0—215 1(¢) = fee),
d’oi '

— f(e)]lxii é Re f(x).

r

Faisant tendre r vers Vinfini il en résulte que Re f(x) =0, q.e.d.

Dans le cas de l'algébre L(E) des transformations linéaires bornées
;d'un espace de Hilbert E, la proposition (/V;) admet une recnproque ([2]), th.
52); dans le cas général il y correspondrait la

Proposition (N,). Si pour toute forme linéaire positive f sur A on
a Ref(x) = 0, le demi-plan Rel = O est un ensemble spectral de x.

_ "Dans le cas de l'algébre L(E), les deux propositions (V,), (NV:) se
" réduisent au théoreme 5.2 de v. NEUMANN ([2]), équivalent au théoréme
principal 4.2.

Notre probleme est de’ caractériser les algébres A, dans lesquelles est
vraie la proposition (N,).

Théoréme 1. Si dans une algébre de Banach involutive A, 4 élément
unité, la proposition (N,) est toujours vraie, l'algébre A est isomorphe et
isomeétrigue a une sous-algébre fermée de I'algébre des transformations linéaires ~
bornées d’'un espace de Hilbert. ‘

Nous démontrerons ce théoréme en utilisant le théoréme de représenta-
tion des  algébres involutives réduites, avec norme réguliére, donné par
GELFAND et NEUMARK ([1], § 8, 3, th. 1). Dans ce but nous donnerons quel-
ques propositions simples sur les algebres de Banach A involutives, & élé-
‘ment unité et dans lesquelles la proposition (N,) est vraie. (II sera utile de
désigner par F l'ensemble des formes linéaires positives sur A.)

Lemme 1. L'algébre A est réduite, c'est-d-dire. que si f (x“x)= 0 pour
tout f€F, on a x=0.
Démonstration. Si. f€F, f(x*x)=0 entraine f(x)=0, donc is

f(x*x)=0 pour tout f¢F, on-a f(x)=0, donc.aussi f(e-*¥x)=0, pour
tout # réel et pour tout f€ F. En vertu de la proposition (N,), Re4 =0 est
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alors un ensemble spectral de e®x, d'oti il s’ensuit évidemment que
Ree?iA =0 est un ensemble spectral de x. Il résulte que pour tout A,:f:O
on a |A(e—a)' =1 sur 'un des ensembles spectraux de x; donc (,e—x)™"
existe eton a ||(A4e—x)"'|| =|4,|™", ce qui montre d’abord que x est quasinil-
potent; la derniére inégalité et la formule

- = fl(i.e—x) di (0>0)
IM =e

donnent immédiatement x=0, q.e.d.

#¥

Lemme 2. Si (e+x)" existe et si u=(e—x)(e+x)", le fait que
. Ref(x) =0 pour tout f€F, est équivalent au fait que f (e) = f(u"u) pour
" tout f€F.
Démonstration. Nous ferons usage de la formule évidente
) fle+x)*{e+x)]—fle—x)" (e—x)]| =4 Re f(x).
Suppoéons que (e+x)" existe et que Re f(x) = 0 pour tout f€F. Alors, en
posant f,(2)=f[(e+x*)"'z(e+x)"'] pour un f€F, on aura f€F et par
. conséquent Re f,(x) = 0; en appliquant (2) a f,(x) au lieu de f(x), il resulte
que f(e)—f(u"u)=4Re f(x) =0 donc f(e) = f(u" u). Supposons inverse-
ment que la condition f(e) = f(u"u) est vérifiée pour tout f¢ F. Puisque
fi(@=flle+x)"z(e+x)] € F, on aura aussi f.(e)—/fi(u*u)=0, dou il
s’ensuit, en faisant de nouveau usage de (2), que Re f(x) =0, q.e.d.

Lemme 3. Soitu unélément de A pour lequel les deux condzttons sui-
vantes sont venfzees (@) f(e) = f(u"u) pour tout f€F, (u) (e + u)'existe. On’
a alors ||u}| = 1.

Démonstration. Si I'on considere x=(e—u)(e-+u)‘1, (e+x)"
existe car e+x=2(e+u)'. Du lemme 2 il résulte qué Ref(x) =0 pour
tout f € F, donc, en vertu de la proposition (/N,), le demi-plan Re 1 = 0 est
un ensemble spectral de x. Par conséquent [|u]|=||(e—x)(e+x)"||= l
q.e.d. .
Pour démontrer le théoréme énonce, nous utilisons un théoréme de
représentation dd 4 GELFAND et "NEUMARK ([1], §8, 3, th. 1). D’aprés ce
théoréme, toute algébre de Banach involutive et réduite est isomorphe 4 une
sous-algébre de transformations linéaires bornées d’un espace de Hilbert.
La construction, de GELFAND et NEUMARK, de cette isomorphie, a la propriété
que si x—7. est la représentation isomorphique de l’algébre, on a
1| T:|| = V'sup f(x*x), le supremum étant pris par rapport & toutes les for-
mes f€F, fe)=1 ([1], §8, 3, th. 2). En appliquant ces résultats & notre

‘A2
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cas, on obtient que l'algébre A est isomorphe a une sous-algébre des trans-
formations linéaires bornées d’un espace de Hilbert, et que si x— 7. est -
cette isomorphie, on a ||T.||=Vsupf(x'x), f€F, f(e)=1. En posant
I|xIy==1iT.|i, on voit sans peine que ||-||, est une norme sur A et que
[|x|ly == |lix*||;; ce dernier fait résulte immédiatement de la relation T..=(T.)".
En plus, si Pon utilise le fait que la norme d’une forme linéaire positive f
sur A est égale a f(e), on obtient que ijx!li = lix||. Nous pouvons mainte-
nant passer au .

Lemme 4. Pour tout élément autoadjoint x (x* = x) on a ||x||,=||x|.

_ Démonstration. Il suffit de montrer que ||x||=||x|. Dans ce
- but, ‘remarquons que si x=x", f(x) est réelle, quelle que soit la forme f¢ F;
on a alors Re f(ix)=Reif(x)==0 pour tout f € F. D’aprés la proposition
(N.), le demi-plan ReZ = 0 est un ensemble spectral de ix, donc I'inégalité

I—]Ti_—/ =1, vraie dans tout le demi-plan Rel =0, entraine aussi
Pexistence de (e+4-ix)"". Si |ix|l; =1, il s’ensuit de la définition de ||-|i, que
fl(ix)'ix}=f(x*x) = f(e), pour toute forme f€F. On voit donc que si
[|x|h =1, I'élément u=ix vérifie les conditions du lemme 3; d’aprés ce
lemme on a alors |jxj|={]ix!|.= 1. Nous avons ainsi obtenu que pour les
éléments autoadjoints I'inégalité ||x|}; =1 entraine !|x{|=1. En appliquant
ce résultat & x’|/x}||, on obtient que ||x|| = ||x|l, q.e.d. ~

" Reprenons la démonstration du théoréme: On voit que I'algébre A est
-compléte aussi par rapport & la norme ||-|j,. Cela résulte 1mmed1atement du
fait que pour tout x€A on a:

‘ x+x | x—x| _| x+x i l’x—'x
Hxtl = iixit = = -
xth ilxdl = [ ==+ 1= |f! 2 !|+.’| 2i
Hx4xf i x‘ | i
_ P |
i! 2 n+| ' =2l

(on a utilisé d’abord le lemme 4, puis le fant que A est une algebre normee
involutive par rapport a la norme [|-]},).

Soit maintenant x€A4, ||x]l < 1; comme A est une algébre de Banach
par rapport & |j-l,, lexistence de (e-}-x)’1 est assurée; d’autre part I'in-
égalité ||x|', <1 entraine f(x*x)=f(¢) quelle que soit la forme f¢€F,
donc x satisfait aux conditions du lemme 3, d’oit il résulte que |jx|| = 1.

Le fait que ||x|j,={|x|| est alors évident car si Fon avait [|x]}, < ||x|| pour
un x € A, on aboutirait, en choisissant o tel que {|x|h <o <||x||, & la contra-
diction cherchée: ||x/olli <1, ||x/e||>1. Donc ||x||=||x|L=]|T=|| pour

tout x€ A, c’est-a-dire que la représentation x— 7T, est aussi isométrique, ce
qui achéve la démonstration.
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2. Dans ce qui suit, X sera un espace de Banach complexe quelconque
X* son espace dual.

Théoréme. 2. Si le disque unité |z =1 est un ensemble spectral de
tout opérateur T de X tel que ||T|| =1, X est nécessairement un espace de
. Hilbert.

Démonstration. Soient x € X*, xo € X, et supposons que Ixs]l %ol =1. -
Alors si Tx=x3(x)x; on a ||Tj| =1, donc (en con51derant la fonctlon r(d)=
—(}—{-a)(l—i—oc,l)'1 lel< 1) .

: ‘[(T-}—al)(l—f—aT) 'x|| = Hx“, X€ X,
ce qui est équivalent a T

, l!(T+«1)XII =|U+anx, xex.
Dans notre cas particulier cela signifie que

(3) [ x6(x) X0+ axj| = ||x+'x5(x)x0||

Soient maintenant x, y € X, xi=lyll>0 Il existe un x3¢€ X tel que
Ix]|=1|x!|”" et x3(x)=1. Si 'on pose xo=y, ona I[x(.ll ixll=lxI"lyll =1,
donc, d’aprés (3),
@ lytexi=ixta  (el<).
Cette relation reste évidemment vraie aussi pour |e|=1.

Supposons maintenant que ||x =|ly|l. Alors, en changeant les roles de

x et y, et en remplagant ¢ par «, on obtient de (4) U'inégalité opposée, donc
on a

(5) | ix+a@yi=ly+ex|  (el=1).
Si j¢|>1, on a pour g=1/a: _
I x-+&yl|=lel|Bx+yll =]l x+ay] =fex+yi,
donc (5) reste vraie pour tout «. En posant ¢ = p/q, p et g réels, il résulte

y+Ex

y+X||—'ql|

Ipy+qx|l—|q., ’—qu+pxl!

_ Donc, si Hxl]—l|y|| >0, on a pour tous p,q réels

lpx+gyli=ligx+pyl,

relation qui est d’ailleurs évidemment vraie aussi pour x=y=0. Or, d’aprés
un théoréme de FiCcKeN [3], cette relation est caractéristique pour I'espace de -
Hilbert. Donc X est un espace de Hilbert, q.e. d.

N
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A remark on the theorem of Simmons.

By A. RENYI in Budapest.

The theorem of SIMMONS in question [1] can be formulated as folldws: '
If n and h are positive integers, and if we put for 0=p =1, ¢g=1—p

. h-1 n .
0 sy =2 (2 rae= 3 (Yre
r=0 r=h+1
then we have _ _
h e h 1
@  felh]ro v e—tes

An ingenious and simple proof of this theorem has been given
by E. FELDHEIM ([2] and [3]; the proof is reproduced also in the text book
[4], p. 1T1—172).

The generalization of the inequality of SIMMONSs, for the case when ap
is not an integer, has been considered in this journal by CH. JORDAN') [5] .
and recently by 1. B. HAAz [6].

, HaAz tried to generalize the inequality of Simmons in that he has
shown that for fixed values of n and A

n+1
2

The aim of this note is to show that the apparent generalization given

by HaAz is really a consequence of the original inequality of SiMMONS if
h 1

n <2

@) fur(P>0 if 1=h= and ﬁ%_—]—§p<'min(—l-, %)

and for the -remaining cases n==2h resp. n=2h—1 it follows

1) One of Jorpan’s results expressed by.the notations of the present paper runs as

follows : ’
1

1 —
fn,h(p)>(g)p"q"-" if p<-§- and ’—'—lspg 2
‘ h
n

y

n .n
h .

_ 1 . s
AT z=ps—and p< 3 the revepsed inequality is valid.

further~for
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from the evident relations

@ fw(l) 0 and f,,.”(‘);o

To prove our assertions we need nothing else than the well known’
formuia

(5) 3 )p = (1—9) (’s’)ft’u—t)"'“dt

r=

P

(see e.g. {2] p. 110 or {4] p. 133). It follows from (1) and (5) that

1

©  fa@=(])] 1=+ 0—m)L =ty e

r
It can be seen from (6) without any calculatlons that f,, h(p) is a decreasing
function of p (0 = p = 1). Thus it follows from (2) that

(M . Jun(p) >0 for p<—h— if £<;,
further it follows from (4) resp. (5) that
®) f’hh(P)>0 and fz“;.(p)>0 for p<—

Evidently (7) and (8) contain (3) which is thus shown to be a consequence
of (2) resp. (4). '
' We have at the same time shown that for i <— (3) can be replaced
by the stronger inequality :

& T @ s 2 tor p<tol
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On the compound Poisson distribution. .
By ANDRAS PREKOPA in Budapest.

A probabnhty distribution is called a compound Poisson d:stnbutnon if
its charactenshc functxon can be represented m the form

() (a)—-exp iyu+ f <ew=—1)dM(x)+ l (e —1)dN G

‘where y-is a constant M(x) and N(x) are defmed on the mtervals (—o0,0)
and (0, o), respectlvely, both are ‘monotone non-decreasing, M(—oo)==
-—N(oo) 0, further the mtegrals :

Jx dM(x) ﬁfx dN(x)

exist. We shall_prove that under cerfain conditions we obtain (1) as a limit -
distribution of double sequences of independent and infinitesimal random .
variables and apply this theorem to stochastic processes with mdependent :
mcrements :

.Theorem 1. Let &, &, ..., Eua (n—1'2 )be a double sequence
of random variables. Suppose that the random vartables in each row are
mdependent they are infinitesimal, i.e. for every £>0

lim max P([Em.[ >8)=

n>o 1=k=k

fmally, there exzsts a fmtte-valued non-negattve random vanable n such that

Zlﬁnk!<n (hn=1,2,..)

with probability 1. (This last condition means that the sums of the absolute
values of the sample summands are uniformly bounded.) Suppose, moreover,
that the sequence. of probability dzstnbutzons of the variables

. : , C—§n1+§n2+ * + Bk,
converges to a ltmmng dlel'lbllflOﬂ T/ten this is a compound - Po:sson

dtatnbutwn .
s S
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Proof. Let us define the functions f*(x), £ (x) as follows:

. f(x)=%x if x=0, F )= 0 if x=0,

if x<0O, x if x<O.
Clearly ft (x) f(x)=0 and

: Sn 2f(§nk)= n . (I‘l=l,2,), _

—L .='—-%‘f‘(§,:k) =7 (@=12.0),.
with probability 1. Hence it follows that for every"K >0 the relations
P(§+>K><P’(n>m C(=12..)
hold. Thxs imply that the distributions of the sequences & and §,. are compact,
sets. Let Fo(x) and F, (x) denote the distribution functions of the wvariables
. Cr and L., respectively. Let us choose a sequence of integers ny, n,, ... for .

which .

s lim F, (x)_—_F*(x),
@) ‘ 5 e ]
. lim Fp, (x)=F (x) .
. (where F*(x)and F(x) are distribution functions) at every point of 'coqtin'uity

of the latters. Let = be a positive number such that the functions F*(x) and

F~(x) are continuous at = and —, respectively. Since the random vanables
in the double sequences

L PED S G o F )
f_(gnl)’ f- (§n7) ey f (g lL,.)
are infinitesimal and independent in each row, moreover the relations (2)‘

hold, we conclude that if F, k(X)) =P (f ) < x), Fa(x) =P (f (Ew) < X), then
the sequences :

~

[ xaFh, kz | xdFix)

k=1 0<xr<¢ k=1 -t<z<0

are convergent (see [1] § 25, Theorem 4, Remark).- This iniplies that '

Y= lx<le ‘-’“’k 1-t<z<0 |

Jim. S‘(O | xdF,T,.(x)) — lim S’( | xdF,.,k(x)) —o.



On the compo{md Poisson distribution. T 2%

" Thus if

' sh= [aFi00,  gi)= | € dFat)

-

then from the inequality

{Jm(“’ —1)dG(x)| = |t] .‘ lx]dc(x)+2')" dG(x),

- © oz : |x|)t
valid for every dlstnbunon function G(x) and every 'r>0 it follows (using
Theorem 4 of [1] §25) that. : :

Knj

lim 3 ga()—1F = lim Vlcp.lm—uﬂ

= Xe ) Ll

Hence the conditions of Theorem 2 of [2] are fulﬁlled and thus the variables

i and Z,, are asymptotically independent, i. e.

) lim P(L < x, o <y)_F x)F, ().

i>®

Let F(x) denote the limiting dlstnbunon of the random vanables .. Since
;n—_;1z+Clzy we get from (3)

4) : F(x)=F (x)* F (x).
The laws F(x), F*(x), F (x) are infinitely di\}isible. In LEvY’s formula -

(e"'“’—l fux )dM(x)+Hem 1’i§)dN( X)

~ there correspond' to F(x), F*(x) and F(x) constants and functions, which we
denote by ¥/, 71, 725 0% 0}, 6f; M(x), M, (x), M, (x); N(x), Ni(x), No(x) respec-
tively. According to (4)
7 =n+ro=d+d,
M(X):MI(X)-}-M._(X), N(X)—-N,(X)—}—NQ(X)
If ¢*>0, then at least one of ¢ and o; is positive too. This ié, however,
impossible, since F*(x)=0 if x=0 and F (x)=1 if x>0.
We have therefore only fo prove that the integrals

JxdM, | xdN@

. exist. We prove the exislence of the second ‘integral, the existence of the
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first one can be proved similarly. We know that if =, is a point of contmmty '
of N(x), then

5 kn; ) >

©) [xd 3 Fu(x)
: 0 k=1
-converges ([1], § 25, Theorem 4) hence it is bounded. If
3
jx dN(x) = oo
. o
then we can choose such a number v (0 < T < 7,) that
(6) _[x-dN(x) >L,

where L is the upper bound of the terms in the sequence (5) and N(x) is.
-continuous at the point . But we know from the limiting distribution

. theorems (cf. [1] § 25, Theorem 4) that

S L ey

lim Z(F,.;,(x)—l)—N(x) - (x>0)

at every point of continuity of N(x), whence

1 kn;
) : - lim deZF,.k(x)—jde(x)
Obvnously (6) and (7) contain a contradlctlon
_ Let us separate in LEvy’s formula the terms

0 - ® .
-, x . x '
‘lllfl—_i_—;idM(X), IUJH_————x‘dN(X)
- ’ 0 .

and unite them with /y’a, then we obtain the required form of the limiting
distribution. Thus our theorem is completely proved.
In the sequel we apply our result to the theory of stochastic processes
with independent increments. We say that a stochastic process with indepen-
dent increments & is weakly continuous if for every ¢ >0

P(|&w—&|>2)—0
when h— 0, uniformly in {. We suppose that P(§=0)=1.
Theorem 2. Let us suppose that the stochastic process with independent

increments & is weakly continuous and its sample functions are of bounded
variation with probability 1 in every finite time interval. If @(u,t) is the
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 characteristic function of the random variable & then it has the form

® o t)=exp3i7(t)(1+f (e —1)dM(x, t)+_f (e —1)dN(x,8) |

where y(t) is a continuous function of bounded variation in every finite time
interval, M(x,t) and N(x,t) are continuous functlons ‘of the variable t and
the integrals
4 : . L1 .
: fx dM(x, t), fx dN(x, t)
- 0 )

exist for every L.

Proof. According to our suppositions the double sequence of inde-
‘pendent random variables

£

t
n

’ .E_u—gt 3 sy gt—gn-xt
n . n

satisfies all the conditions of Theorem 1. Moreover, for every n

&= Z (Eif;_g";‘ t) ’
. k=1 " n

hence we have only to prove the assertion regarding the functions y(¢),
M(x, t), N(x, ). The continuity in ¢ of these functions follows at once from
the weak continuity of the process & and the convergence theorems of infi-
nitely ‘divisible distributions (see e.g. [1] Chapter 3).

Now we show that for every 7> 0 y(f) is of bounded variation in the
interval 0 = ¢ = T. Let us consider the sequence of subdivisions

llin)={k2_-1 »? I: :l (k—:—_]yzr'--'r2n;n=1’2"°')

an an
T) +fxd(M (x, é‘;—‘ T) — M(x, k2—"] T)) +

of the interval [0, T] and let us denote the distribution functlon of the random
vanable i T——EH by F(x, Ii"). We know from the limiting distribution
theorems that
[k k—1
L o
lr) (i
: k k—1 W\ . : (
+de N[x, £\ —n~ x,—n—T))=hm > j x dF(x, 1) -
y A2 2 Nora IS

|z} <%
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(cf. {1} § 25, Theorem 4), hence

© E. 'y(_"_T)-—y(kz )|< ‘x dN(x, T)—-fx dM(x, T) +

+ lim S‘ x| dF(x, i™).
N-o 1T Ui
The boundedness of the sequence on the right-hand side of (9) is a conse-
quence of the fact that the non-decreasing sequence
aN

_.Ek-l

oN oN

o
k=%

converges with probability 1, and of Theorem 4 of [1] §25. Since y(¢) is
continuous, this implies that it is of bounded variation. Thus Theorem 2
is proved.
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Uber das Tensorprodukt von Torsionsgruppen.
Von L. FUCHS in Budapest.

§ 1. Es seien G und H zwei Gruppen, deren Komposition (ohne daB
man die Kommutativitit voraussetzt) als' Addition geschrieben wird. Der Begriff
des Tensorproduktes G H von G und H wurde in 1938 von H. WHITNEY
[5] eingefiihrt; G® H ist die Gruppe, bestehend aus allen endlichen Summen

2(&®h)  (mit g€ G, i€ H),
die als formale Ausdriicke anzusehen sind, die nur den Distributivgesetzen
(E+8)8h=g®h+g'®h,  g®h+h)=g®h+gDH

unterworfen sind. [Sind ‘G und H mit demselben Operatorbereich £2 versehen,
so soll fir jedes A€Q2,6€G, h€H noch (lg)Qh=gR(Gh)=2(g&h)
vorausgesetzt sein.] ') WHITNEY bewies, da G & H stets eine abelsche Gruppe
ist. Nun erhebt sich die Frage, welche abelsche Gruppen sich als Tensor-
produkt zweier Gruppen darstellen lassen. Dieses Problem scheint nicht un-
interessant zu sein; wenn namlich eine ziemlich grofe Klasse von abelschen
Gruppen als Tensorprodukt von Gruppen bekannter, einfacherer Struktur
darstellbar wire, so wiirde der Begriff des Tensorproduktes in der Theorie
der abelschen Gruppen eine Methode bieten, mittels deren die Struktur einer
weiteren Klasse abelscher Gruppen beschrieben werden kénnte. Wir konnten
- dieses recht allgemeine Problem nicht vollstindig losen; es ist uns nur im
Falle von Torsionsgruppen G und H gelungen,?) zu zeigen, daB das Heranziehen
von Tensorprodukten nichts Neues bietet. Es wird sich nimlich die ziemlich
“tiberraschende Tatsache herausstellen, daB das Tensorprodukt zweier (und

somit auch endlich vieler) beliebiger Torsionsgruppen die direkte Summe end-- -

licher zyklischer Gruppen ist. Somit gibt uns das Tensorprodukt von Torsions-

1) Fiir eine systematische Behandlung von Tensorprodukten verweisen wir auf
Boursakr [1]. : )
2) Unter einer Torsionsgruppe versteht man eine Gruppe, deren Elemente von end-
, lichen Ordnungen sind. ’ .



30 - L. Fuchs

gruppen keine neue Methode zur Beschreibung der Struktur von abelschen
Gruppen an die Hand.

§ 2. Um unser Hauptergebnis beweisen zu konnen, bendtigen wir die fol-
genden bekannten Hilfssétze, fir deren Beweis auf die Literatur verwiesen sei.

Hilfssatz 1 (WHITNEY). Sind G und H beliebige Gruppen und

bezeichnet-G* bzw. H' deren Kommutatoruntergruppen, so besteht ein (natiir-

licher) Isomorphismus :
GQOH~=G/GQRHH.

Hilfssatz 2 (DIEUDONNE). Bestehen die direkten Zerlegungen
G=2G. und H=3H,, so gilt:
I . IS

GR®H=232/(G:®H,).

.. Hilfssatz 3 (DIEUDONNE). Es sei g€ G von der Ordnung p* und
h € H von der Ordnung q", wo p und q Primzahlen bezeichnen. Dann ist dcs
Element g2k von GR@H gleich O, falls p#q, und ist von der Ordnung
= Min (p*,¢"), falls p=gq. -

Zugleich bemerken wir, dafl sich aus Hilfssatz 1 unmittelbar ergibt, daff
. man sich auf Tensorprodikte mit abelschen Faktoren beschrinken kann. Da
* abelsche Torsionsgruppen stets als direkte Summen von p-Gruppen (ihren
p-Komponeanten) darstellbar sind, folgt aus Hilfssatz 2, daB es geniigt, das
Tensorprodukt von p-Gruppen zu betrachten. Nach Hilfssatz 3 verschwindet
aber das Tensorprodukt einer p-Gruppe und einer g-Gruppe, falls p und ¢
verschiedene Primzahlen sind. Somit reduziert sich das Problem beziiglich
der Struktur von beliebigen Torsionsgruppen auf das von abelschen p-Gruppen
(mit derselben Primzahi p). -

§ 3. Nach einem wohlbekannten Satz von L. KuLikov [4] enthilt jede
abelsche p-Gruppe G eine Basisuntergruppe B, die bis auf Isomorphie ein-
deutig bestimmt und durch die folgenden Bedingungen definiert ist: (i) B
ist die direkte Summe von zyklischen p-Gruppen; (ii) B ist eine Servanz-
untergruppe von G; (iii) G/B ist eine vollstindige Gruppe3) Es gilt nun fir
unsere Zwecke der wichtigste

3) Eine Untergruppe H der abelschen Gruppe G heiBt eine Servanzuntergruppe, wenn
folgendes gilt : fiir ein a € H und fiir eine natiirliche Zahl 2 ist die Gleichung nx = a genau
dann losbar in G, falls sie auch eine Losung in A besitzt. Die Vollstindigkeit einer abel-
schen Gruppe G bedeutet die Losbarkeit aller Gleichungen der Form nx=a (a€ G).

¢
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Hilfssatz 4. Ist B bzw. C eine Basisuntergruppe der abelscher
p-Gruppe G bzw. H, so gilt .
‘ GQH~B®C.

Dieser Isomorphismus “wird durch den Beweis bestitigt, daB jedes
Element gQ@h ¢ GX®H einem bQc€e BOCES GX®H gleich ist. Nach der
Definition der Basisuntergruppe gibt es Elemente x € G,y ¢ H mit p’x+-b=g
bzw. p'y-+c=~h fiir passende b€ B,c€ C, wobei wir die Exponenten k,r
gemiaB ) p* = O(h), p = O(b) wihlen. Dann ergibt sich unter Beriicksichtigung
von n(u®@v)=nu@v=uQn« fir jede ganze Zahl n, dah

ERA=('x+0)R@h=P'x) LA+ h=xQ(P"h)+ bR (py+c)=
=(pHy+bRc=>b¢,
es gibt also keine Elemente in G& H, die nicht einem Element von B&C
gleich wiren, w.z.b. w." C )

L4

§ 4. Nun sind wir imstande, unser Ergebnis leicht nachzupriifen.

' Satz. Sind. G und H beliebige Torsionsgruppen, so ist ihr Tensorpro- .
dukt G@ H eine direkte Summe von zyklischen p-Gruppen.

Nach § 2 ist G®H der Gruppe >, (G,& H,) isomorph, wo G, bzw.
1‘

H, die p-Komponente von G/G" bzw. H/H’ bedeutet-und die direkte Summe .
iiber alle Primzahlen p zu erstrecken ist. Aus Hilfssatz 4 erhilt man, dal
G,® H,~ B,® C, ist, wo B, und C, Basisuntergruppen von G, bzw. H, sind.
Zieht man noch Hilfssatz 2 in Betracht und beachtet, daf geméf Definition
B, und C, direkte Summen von zyklischen p-Gruppen sind, so foigt sofort
aus Hilfssatz 3,°) daB G,® H,, und somit auch G® H direkte Summen von
zyklischen p-Gruppen sind, w. z. b. w.

Falls man eine explizite Darstellung der Basisuntergruppen B, und C,.

kennt:7) o o
B,=2 2 &), C=22 Cp),

i==1m;(p) E=1ng(p) ]
wo mi(p) und n(p) jrgendwelche Kardinalzahlen sind, so 14Bt sich auch
G ® H explizit bestimmen. Es folgt ndmlich:

*) B,®C,—=2 3 ep),

7= 4500

4) O(x) bezeichnet die Ordnung des Elementes x.

5) Fiir eine dhnliche SchluBweise s. die Arbeit {3}, Satz 1.

6) Das Tensorprodukt von zyklischen Gruppen der Ordnung p» und p~ ist ebenfalis.
zyklisch und besitzt die Ordnung Min (p», p™).

7). ©(p~) bezeichnet eine zyklische Gruppe der Ordnung p=, und ZA bedeutet die

direkte Summe von m isomorphen Exemplaren der Gruppe A. "
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wo ' -

() = m (P (p) + m(p), 7 ne(P) +i(p) 2 mi(p)-
Somit ist G® H die direkte Summe der Gruppen () filr alle p.
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On quasi nil groups.
By L. FUCHS in Budapest.

§ 1. Introduction.

In his paper [6]") T. SzELE has called an additive abelian®) group G
a nil group, if there exists up to isomorphism only one ring R whose additive »
group is isomorphic to G, namely the zero ring in which any two elements

“have O as product. He has shown that the torsion nil groups coincide with
the torsion divisible®) groups and that there do not exist mixed nil groups,
while the problem of characterizing by group invariants the torsion free nil
groups remained open. In an other paper [7] he investigated those groups G
over which exactly two non-isomorphic rings may be defined*) (he called
them quasi nil groups of species 2); these results are almost complete in
the sense that the problem is reduced to that of torsion free nil groups.

Our present aim is to characterize the guasi nil groups (of finite
species)®), i.e. those. abelian groups G over which but a finite number of
non-isomorphic rings can be defined. We shall discuss the case of torsion,
torsion free and mixed groups separately. It will turn out that the main
difficulty lies again in the torsion free case where our results are again far
from giving an explicit description of the structure of the groups in question.

Our main results are contained in Theorems 1—3.

1) The numbers in square brackets refer to the Bibliography given at the end of
this note.

2) We shall throughout consider abelian groups, therefore henceforth »group* is used
for the longer phrase ,abelian group“ (with additive notation). .

3) For the terminology and basic facts on abelian groups we refer to Kurost [5] or
Karuansky [3].

4) We say the ring R is defined over the group G if the additive group of R is
isomorphic to G.

3) There is a simple difference between the terminology used by Szeie and that
used here: he meant by a quasi nil group a quasi nil group of species 2, while we mean
thereby one of finite specxes

A3
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§ 2. The torsion case.

We begin with the following two lemmas which are essential in the proof,

Lemma 1. If G is a torsion group which is not divisible, or is a
mixed group whose torsion subgroup is not divisible, then G has a cyclic
direct summand &(p*) of order p*, k a natural integer®).

For the proof we refer to KuLikov [4] or SzeLE [8].

Lemma 2. /n a p-ring R the elements of infinite “height annthzlate
every element of the ring.

See e.g. SzeLE [6] or FucHs {2]. _

Now let G be a torsion quasi nil group. G can have but a finite number
of p-components G, which are not divisible. -In fact, in the contrary case,
in view of Lemma 1, an infinity of G, would be decomposable as
G,=C(p*)+ G, and we may define over €(p*) a ring /(p*) [the residue
class ring of the rational integers modulo p*], while over G, and over all
other G, (¢ == p) zero rings, and then form their direct sum in order to obtain °
pairwise non-isomorphic rings over G. By Lemma 2, the divisible p-compo-
nents of G are zero rings and it is clear that the non-divisible ones must.
again be quasi nil groups.

Next suppose G, is a quasi nil p-group and let B, be a basic sub-
group of G,. We shall show that B, is finite. For, in the contrary case let
a,,a,, ... be a countable set of basis elements of cyclic subgroups in a
direct decomposition of B,. Each

B ={a}+-+{a} (r=12..)

is a direct summand of G,, G, =B+ GY, and if we define over G the
zero ring, over each {a;}(i=1,...,n) a ring I(p") where p" is the order
of a;, then we obtain a ring’ R,. for each n. It is obvious that these rings
R. are not isomorphic for different integers n, because the orders of B)’ —
B may be defined as a complementary direct summand of the annihilator
G‘"’ of G,— are different.

Considering that B, is thus finite, it follows that it is a direct summand

of G,, )
G,=B,+D,

where D, is a divisible group. Consequently, a torsion quasi nil group G
has the form

(1) G=B+D, (B fmxte, D divisible).

%) We denote by ©(n) the cyclic group of order a, by @(p™) the group of type p©
and by & the additive -group of the rationals.
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Conversely, assume that G is a torsion group of the form (1) and R
is a ring with G as additive group. In /2, the p-components belonging to
_different primes annihilate one another, hence .Lemma 2 implies. that the
elements of D are annihilators of the whole ring R. B as a finite group has
the form B=={a,}+ --- +{a:} where a; are of prime power orders. Consider
the group A generated by B and by all products a:a; (i,j=1,...,1).
If a;a; lies outside B, then its D-component in (1) is an annihilator, so that
the subring generated by B must coincide with A. Since A is again finite,
~ we conclude that there is a divisible subgroup D, of finite rank r in D such
that AS B+ D,. Each a:q; increases the rank at most one, thus we have
r = % Further, mB =0 implies mA =0, i.e. A belongs to") B+ D,[m] =A,.
It results that all the products of the elements of R belong to a finite sub-
group of G which may be chosen — up to automorphism — independently
of the product definition of R. Since there is but a finite number of
possibilities for defining a ring over a finite group, we arrive ‘at

Theorem 1. A torsion group G is a quasi nil group if and only if
it is a direct sum of a finite group and a divisible group.

§ 3. The torsion free case.

Let G be a torsion free quasi nil group and R a ring, different from
the zero ring, over G. We may alter the multiplication ab of the elements
a, b of R by setting a><.b=nab for some fixed natural integer n. We then
get rings R, (n==1,2,...) with the same additive group G. No R, is a zero
ring and.by hypothesis among the R, there exists but a finite number of
non-isomorphic rings; let these be Ry, Rm,, ..., Rm,. Thus, for each n, R, is
isomorphic to some R,.,j(j= ..., 0. ,

Next take into account that, by definition, all the products in R, belong
to nG, i.e. R;SnG. If R.,R.,, ... are isomorphic to R, , then in R,, all
the products a X ., b6 = m,ab belong to Nr:G. Thus if m=m,...m, then for

every pair of elements a, b we have mab€ (YnG where n ranges over all

natural integers. (Note that R, is isomorphic to a certain R..!) Therefore mab,
and hence ab’is divisible by every integer n, i.e., in R every product belongs
to the maximal divisible subgroup D of G. D=0, for G is not a nil group.

By a known result, D is a direct summand of G, G=D+ H where H
contains no nonzero divisible subgroup (i.e. it is reduced), further D is the

) For a group G, G[m] dend_tes the set of all x€ G with mx =0.
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direct sum of groups & isomorphic to the additive group of the rationals,
D=2X&. Here the number of direct summands cannot exceed 1, for every
- algebraic number field of degree 2 over the rationals has an additive group
of type & 4 &, and there is an infinity of non-isomorphic such fields. Thus G
is of the form G =& 4 H where the reduced group H must be a nil group,
for otherwise we could define over G a ring in which not all the products
belong .to &.

The group H must be of fmxte rank. For, assume H is of infinite rank
and let [&,, ..., ba, .. .] be a maximal independent system in Hand b, ..., b.,...
a countable (proper or improper) subsequence of it. For each n we define a
ring R, by putting 1. bsbs==0 if & and @ are different, 2. b;=0 or =24,
according as «=0,1,2,...,n—1 or « is different from these indices. Here
" b, denotes an arbitrary nonzero element of &. Knowing the products of
the b,, the distributive law enables us to extend the multiplication to the
whole of G (all the products belong to &!). Since any product of more than
two factors vanishes, the associative law holds, and we conclude that R, is
indeed a ring. In R,, any element of the form Z,b,4 24,6, - - 4+ 2.1 0.4
(4; rational) is an annihilator of R,, while any element containing a summand
Aabe with 4. 0 and ¢==0,1,...,n—1, is no annihilator, for it does not
vanish multiplying it by b.. Thus, the rank of the annihilator ideal of R, is
just n, consequently, n==m implies that R, and R, are not isomorphic and
thus H is necessarily of finite rank. _

If H=0, then G=& and there are two non- 1somorph1c rings over &,
namely the. rational number field and a zero ring.

-If H5=0, let the rank of H be the natural integer . We denote by
b, a nonzero element of &, and by [4,,..., 5] a maximal independent system
of H. Our aim is to get information on all rings over & + H. For this
purpose it is sufficient to know all products b:b;. Since they belong to &,
we set

@) ' bib;—a;b, (i rational)
for i,j==0,..., r. The 4; may arbitrarily be chosen, only the associative law
(bib)) b, = bi(b;b,) must be fulfilled. This is equivalent to

A3) Aijhox = Ajndio o (i, j, k arbitrary),
" and therefore we assume (3) to hold. Now we distinguish two cases accordmg
as },00:%:0 or =O - .

Case 1. 1n+0. There is no loss of generality -in assuming =1,
since this can be achieved by an eventual alteration of the choice of b, in &.%)

§ It suffices to replace &, by A b,.
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Under this -assumption, (3) implies for the case k=0
(4) : lu - '110 ]no
whence it follows that 4;;=4;, i.e. the ring is necessanly commutative. Wnte
A ==Ao; =17;, then (2) becomes b; b; = A:4;b, (,=1) and (3) is automatically -
satisfied. — Let another ring be defined over G with the rule b; X b; = pu;u; b,
(#o==1) where the u; are arbitrary rationals. Define a (group) automorphism
« of G by putting ,

B = b+ (u—A)by  (=0,1,...,1).

It is obvious that e induces in fact an automorphism of G. Take into
account that :

b b = [bi+ (ui—4y) bo] [6+ (15— 44) bu) = (sesbo) (14b0) = wigs; by = b X b5
(note that b; behaves like 4;6, under multiplication),” and then conclude that

under «, the rings defined by the 4; and the w;, respectively, are isomorphic.
Thus all rings defined over G with 4, ==0 are isomorphic.

Case'2. Jo=0. Then from (3) in case k=0, i=j we obtain
No=0, Ao=0, and similarly, 40,=0, that is, & is an annihilator of the
ring. (3) shows that 4;(f,j=1,...,r) are not subject te any condition. Each
ring R over G thus defines, in view of (2), a square matrix "

(lu Aia... 11[)
lrl lr2 e j-rr

with arbitrary rational elements. Another ring S over G gives rise to a matrix.

(’.“u! 12... ,lllr)
. Brr U2 o oo Yrr

relative to the same independent set b,,b,,...,b,. Let @ be a (group) aufo-
morphism of G with :

bo = eobo, b?;g)@ikbk (i=1...,7
where go, 0u are certain rational numbers. Before passing on we remark that

« induces an automorphism «* of H by setting b = Doub (i=1,..., n,
k=={ .

011012 e o1
P=|-+ - -]
. \er 9r'2 e ?rr

the matrix of «°® is



" is finite.

38 L. Fuchs

and any automorphism «° of H may be extended (in several ways) to auto-
morphisms « of G, by choosing arbitrary rationals g, 010, ..., 0. The two
rings R and S defined over G are isomorphic if and.only if there is an
automorphism « of G such that the elements 67 may be multiplied in R in
the same way as the elements &; in S, i.e. ' '

'b? b}' == Lgo Qix bk] [12(; i bl] == ; g{‘ 0ix 05 Aubo

is equal to wmi;(0,b,) for i,j=1, ..., r. The condition obtained may be written
in the matrix form

011 ...01 l”...l]r O11...0r1 TRy S
()()( ..... )zg()
Orle..0p lrl---lrr\ Otr .« . 0ypr Hep oo Upr
that is, ) _
(5) : . PAP’=90M
where P’ denotes the transpose of P. Calling two matrices 4 and M
H-equivalent if there is an automorphism «® of H with the matrix P and
there is a rational number g, such that (5) holds, we get an equivalence
relation among the r X r square matrices with rational elements. Our argu-
ments above show that two rings over G are isomorphic if and only if the
corresponding matrices 4 and M are H-equivalent. (The system b,, b,, ..., b,
may be taken fixed.) Thus the number of equivalence classes under this

H-equivalence equals the number of non-isomorphic rings over G with &
as an annihilator, and we conclude.:

Theorem 2. A forsion free group G is a quasi nil group if and only
. if it is either a nil group or has the form

‘ G=&+H
where H is a nil group of finite rank r such that the number of classes of
H-equivalence in the set of rXr square matrices®) with rational elements

In particular, let us consider the case r=1. Then both 4 and M are
rational numbers and we may take P=1 (corresponding to the identity
automorphism of A) and then conclude that there are two H-equivalence
classes, namely 4 =0 alone forms one class and the nonzero rationals form
the other class. Thus the group G=& + H with a nil group H of rank 1
is a quasi nil group. Over this G the following non-isomorphic rings may
be defined: .

%) Of course, relative to a fixed maximal independent system.
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. L the zero ring;
2. over R define the rational number field F, and over H a zeroring H,
and take) F@ H (see Case 1);
3. define & to be the annihilator of the ring and the products of ‘the
elements of H to lie in &.
This example disproves a con]ecture of SzeLe [7] which stated that
besides & and the nil groups there exist no torsion free quasi nil groups.

§ 4. The case of mixed groups.

Assume G is a mixed quasi nil group. Since Lemma 1 is valid for
mixed groups too, by the same argument as in § 2 we may conclude that
almost all p-components 7, of the torsion subgroup 7 of G are divisible
groups and those T, which are not divisible have a finite basic subgroup B,.
Then T, = B,+ D, with a divisible group D, and T is of the type T—= B+ D,
B a finite, D a divisible group. By a well-known result, if in a mixed group
the (maximal) torsion subgroup is of this type, then it is a direct summand
that is,

6) ' : G=B+D-+]

where /==0 is torsion free. Evidently, / must again be a quasi nil group,'

hence is of a structure described by Theorem 2.

Next suppose that D=0, i.e. in G there exists a direct summand of
the type €(p=).for some prime p." Then for this prime p necessarily p/=]
holds. In fact, if p/ is a proper subgroup of J, then p"/ is a proper sub-
group of p*-1J (n=2, 3,...), and thus there is a homomorphism J/p* ] ~ C(p")

and hence a homomorphism J~ C(p*). Let C(p®)={c,, ¢, ...} with p¢c,=0, .

pey=c,,.... According to (6), each element g of G has a unique representa-
tion g== b+d+a (b€B,de D,a€]). Define a ring R. over G by the
multiplication rule

(7) ’ g1g2=(bx+d1+al)(b2+d2+az)=k1kzcn

where k, c,, k¢, are the images of a,,a, under J~ @(p"). Sincé in R, any’

product of three elements vanishes, (7) actually implies a ring R. over G.
Clearly, by R,.—{c,.} the R, are not isomorphic for different n's, ‘thus the

hypothesis pJ c/ contradicts the qua51 nil character of G. We have thus .

“proved that the presence of @(p“’) in G implies pJ=J. — Moreover, it
follows that the rank of / is 1. In order to verify this assertion, take any two
independent elements u, v in J; then each element a of J has the form

10) The sign¢b will be used to denote direct sum ih. the ring-theoretic sense. -
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a-=+u-+ar--x for some x (which identically vanishes if the rank of J is 2)

and rational numbers o, 0. If we agree in putting —Cz—Cl.H in €(p=), then

&(p=™) may be regarded as a group with rational operators (for ¢c, ¢ a rational
number, ¢ in &(p™), is a well-defined element in €(p=)). We define, for
each p-adic integer :t, a ring R(st) over G by. the rule

g.g..w—»—(bl+d,+9|u+01v+x1)(b2+d2+92u+0-zv+x2)=(9192+010-27r)c"1.
R(n) is. plainly a ring. Consider the elements g which are divisible by every
power of p. If f; denotes any element y with p’y=g, then")

2 . . 2 5
(Bl v 2o~ romenn
Thus every g, divisible by all powers of p, defines an endomorphism of
¢€(p=) which may be represented by the p-adic integer 0>+ o*st. The set of
these p-adic integers, taken for all g, contains 1 and is countable. If two
"rings are isomorphic, then the corresponding sets of p-adic integers may
differ merely by 'a p-adic unit factor (inducing an automorphism on €(p®)).
Since 1 was supposed to belong to this set, there is but a countable set of
p-adic integers belonging to a class of isomorphic rings. The uncountability
of the p-adic integers implies that' there is an infinity of non-isomorphic
rings R(:x) over G. Consequently, / must be of rank 1.

Next we show that there is but a finite number of primes p for Wthh
@(p~) exists in. D. For, in the contrary case there would exist a homo-
morphism 7, of J into each of these €(p®), and by the same methods as
used in the preceding paragraph we could show that each 7, gives rise to
a ring R(p) over G such that all products-lie in C(p®), but not all of them
vanish. Since G is a quasi nil group, this-is impossible.

Assume that G=B 4 J where B is finite and J is a nil group, and let
p be a prime dividing the order-m of B. Then J/p] is finite, for in the con-
trary case there would exist in J an infinite set of independent elements
@, @, ... belonging to pairwise different cosets mod p/. Let b¢ B be of
order p and put a; =06 if i>n and a.a;=0 in all other cases, furthermore,
for the elements independent of the a; define the multiplication to be identi-
cally 0. Then this definition gives rise to a ring R, over G and for different
n’s the rings R, are not isomorphic, for the annihilator of R, mod {B, pJ} is

1) For " simplicity assume (this can always be done without restricting generality)
that in the denominator of ¢ and ¢ the prime p does not occur.
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of rank n (note that B is the torsion subring and p/ is also an invariant for
all rings over G). It follows that J/p/ and hence J/mJ is finite.

What we have proved shows that a mixed quasi nil group G has one
of the forms

l. G= B+ ] where B is finite of order m,J a torsion free quasi nil
group such that J/mJ is finite whenever J is a nil group. '

II. G=B+ D+ J where B is finite, D a torsion divisible group with.
. a finite number of p-components, / a torsion free quasi nil group of rank 1
such that pJ/= ] for the primes p occurring in D. '

Conversely, assume the group G has the form I. We intend to show
that but a finite number of non-isomorphic rings exists over G.

It is evident that m/J annihilates B and among the elements of / only
those outside m/ may have a product not belonging to /. In order to know
a ring R over G, it suffices to know the following products: 1. the elements.
of J by the elements of f; 2. the elements of B by the elements of B; 3. the
elements of B by some representatives of / mod m /. The products 2. and 3.
lie in B, thus there is but a finite number of possibilities for defining them.
The products 1. are of the form a,a,=a;+ b (a: €/, b € B); here b does not
alter if we replace @, and a, by other elements of the cosets of a, and a,
mod mJ. Thus to each ring S over /=< G/B there is but a finite number of
rings R over G with S~ R/B. If the rings- S, and S, over J are isomorphic,
and R, is a ring over G which corresponds to S,, then we may extend S..
such that the B-components of the products in 2. and 3. be the same in R,
as those of the corresponding elements in R, (we let B fixed). To be more
explicit, if e.g. aay=a,+ b6 (a:€/,6€ B) in R, then aya,=a, holds in §,,
and if ¢ is an isomorphism of S, onto S,, then we set afaf =af +b. It is
easily seen that, since m/ is carried onto itself by every automorphism, the
rings R, and R, will be isomorphic, and this establishes what we intended
to verify in this paragraph. ‘

Let now G have the form Il and consider those rings R over G in
which all the products lie in the torsion subgroup B+ D of G. First of all
observe that-D is an annihilator of G, for besides it annihilates B +.D, it so-
does J/, considering that pJ/=/] holds for all p with C(p*)SD.

. For a fixed u €/, the mapping v— uv is a homomorphism of J onto a.
~ subgroup 7. of B+ D, and from r(J)=1 we conclude that T, has the form™).

with different pl’ime,S D1y ooy Dss Gy oo o5 Gt If pj-_—_—j’ then also pTu=Tv_ .

12) See e. g- BeaumonTt and ZUCKERMAN 1]
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'so that ¢;/==/ and therefore @(g;") does not exist in D, i. e. the “finite part”
QMY+ - +C(gt) of T, belongs to B. Choose a qu such that u is not
divisible by- those primes g of the order of B for which” ¢/==/, and no
p-componeat of u* in T, is zero (i=1,...,s). Then the squares u’/p{"
already determine all products vw (v, w € J), since v =opu, w=ou with rational
.0, 0 and thus vw =904’ is a well-defined element of 7, whenever in T, the
multiplication by rationals is appropriately defined. Next take into account
‘that the multiplications of J by p,, ..., p., respectively define automorphisms
-of /, so that only the fact is essential that the components of the squares
2*(we]) in €(pr), ..., @(pY), respectively, are of odd or even exponents.
Consequently, there is but a finite number of possibilities for defining the
multiplication of the elements of J in order to obtain non-isomorphic rings.
‘The same holds for the products &, b.(b: € B) and the products of the elements
of B by representatives of J/ mod m/, since it is irrelevant which subgroup
-of type C(p=) in D will contain components of products. It results that over
a group of type Il there exists but a finite number of non-isomorphic rings
‘with products in the torsion subgroup. _

Let G be again of type Il and consider the case when not all the
‘products lie in the torsion subgroup B-+ D. Then the factor ring with respect
to the ideal B4 D is not a zero. ring, consequently, J must be isomorphic
to &. Now in any ring R over G the products a,a,(a:€J) are divisible by
-every integer, thus they belong to D/ (the maximal divisible subgroup
-of G). It is not hard to verify that (¢a)a==pa® varies over a subgroup K
of G, K=&, when a is fixed in J and ¢ runs over all rationals. Then any
product g,g, with g€ K lies in K and B+ D must belong to the annihilator
-of K, consequently, K is a direct summand of R in the ring-theoretic sense:
R=(B+D)®K. Since B+ D is a quasi nil torsion group and the ring
-over K is isomorphic to the rational number field, we arrive at the
following result. ‘

Theorem 3. A mixed group G is a quasi nil group if and only if
it is either of the form I or of the form II.
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Uber die Translationen der Halbverbinde.

Von G. SZASZ und ]. SZENDREI in Szeged.

1. Unter einem Halbverband H versteht man eine kommutative Halb-
gruppe mit lauter idempotenten Elementen. Eine eindeutige Abbildung 4 -

(x = 1(x); x€ H) eines Halbverbands A in sich heiBit eine Translation von H,
wenn fiir sie

A(xy)=4(x)y

besteht. Ist ¢ ein festgewihites Element von H, so ist insbesondere die Ab-
bildung x—cx nach c(xy)=(cx)y eine Translation von H. Eine solche
Translation wird speziell genannt -und it ¢s bezeichnet (d. h. ¢s(x)=cx).

Der erstgenannte Verfasser hat neulich einige Ergebnisse tiber die Trans-
lationen von Halbverbinden gewonnen'). In dieser Arbeit werden wir weitere
Eigenschaften dieser Abbildungen untersuchen. In §2 geben wir zwei not-
wendige und hinreichendé Bedingungen dafiir, daB eine eindeutige Abbildung
eines Halbverbands in sich eine Translation ist (Satz 1 und 2). Satz 3 be-
schaftigt sich mit der “Struktur der Translationen von H und mit der Ein-
bettung von H in diese Struktur. Satz 4 in §3 gibt eine notwendige und

hinreichende Bedingung dafiir, daB eine Hiillenoperation®) von H -eine Trans-
lation ist. ’

2. Eine Charakterisierung der Translationen von H liefert der folgende

Satz 1. Eine eindeutige Abbildung 4 eines Halbverbands H in sich ist
dunn und nur dann eine Translation von H, wenn

(1) AX)y =4(x)A(y) -
" identisch gilt.

1) G. Szisz, Die Translationen der Halbverbinde, Acta Sci. Maih., 17 (1956), 165—169.
2) Fiir die Definition der Hiillenoperationen s. §3.
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‘Beweis. Es sei 4 eine Translation. Durch wiederholte Anwendung
der Definition und der Halbverbandsaxiome bekommt man

A(x)y =24 (x)A(x)y = A(x)A(xy) = A(x)A(yx) =
= A(x)A(y)x = A(x)x4(y) = 2(xx)A(y) = A(x)A(p),
womit die Notwendigkeit der Bedingung (1) bewiesen ist.
Umgekehrt folgt aus (1), daB
A(xy) = A(xp)A(xy) = A(xp)xy = A(xp)x-y = A(xp)A(x)-y =
=A(X)A(xp)-y =A(x)xy-y =A(X)x-y = A(x)A(x)-y == A(x) ¥,
d. h. daB 4 eine Translation von H ist. Damit haben wir den Satz 1 bewiesen.
Eine andere Charakterisierung der Translationen gewinnt man durch den

Satz 2. Die Translationen eines Halbverbands H sind genau diejenigen
eindeutigen Abbildungen von H in sich, die mit simtlichen speziellen Trans-
Iniionen vertauschbar sind. :

Beweis. Ist 4 eine beliebige und ¢s eine spezielle Translation von H,
SO gnlt :

ics(x)—/.(cs(x))——i(cx)~l(xc)—l(x)c——ci(x)—cs(/l(x))-—csn(x)

fiir jedes Element x von H, d. h.
(2) Acs=csi.

Ist umgekehrt / eine eindeutige Abbildung von H in sich, so daf (2)
fir jede spezielle Translation- gilt, dann ergibt sich

A(xy) = 4(yx) = A(ys(x)) = Ays(x) = ysd(x) =yAd(x) = A(x)y.

Das bedeutet, daf 4 eine Translation von H ist. Der Satz 2 ist bewiesen.

Ferner beweisen wir den folgenden

Satz 3. Die Menge Ty aller Translationen eines Halbverbands H ist
ein Halbverband, und die Menge Sy der speziellen Translationen von H bildet
in Ty ein Ideal, das mit H isomorph ist. '

Beweis. Zuerst haben wir zu zeigen, dab das Produkt von zwei -
- beliebigen Translationen wieder eine Translation ist. Das folgt einfach aus
der Definition der Translation, .ndmlich

1 (xy) = e (xp)) = A (1)) = A (X)) y = Au(x)y.

Zum Beweis der iibrigen Behauptungen von Satz 3 brauchen wir die
in sich selbst interessante Gleichung

3 Au(x)= l(X)#(X),
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die sich sofort aus der Definition der Translation ergibt:

)u()&)—).(u(x)c))-)(u()())()—i(xu(x))—i(X)u(X)

Durch Einsetzung w«=24 in (3) bekommt man 2 (x)-J(x) d. h. die

Idempotenz der Translation 4. Ferner folgt nach (3)

Au (X) = ()1 (x) = 1(x)4(x) = 1i(x),
was die Kommutativitat der Multiplikation in Ty bedeutet. Da die Multiplika-
‘tion von Abbildungen immer assoziativ ist, haben wir bewiesen, dal Ty in
der Tat ein Halbverband ist.

Da das Produkt von zwei speziellen Translationen nach
4 csds(x) = cs(ds(x)) = c(dx) = (cd)x = (cd)s(x)
wieder speziell ist, folgt nach dem obigen, daf die Menge Sy aller speziellen
Translationen ein Teilhalbverband von Ty ist. Wir wollen zeigen, daB Sy mit
H isomorph ist, und zwar wird ein geeigneter Isomorphismus durch
(5) ' c—¢s (c€H, cs€Sn)

\erm\ttelt Die Eindeutigkeit der Abbildung (5) ist trivial. Um die Ein-eindeu- -
tigkeit der Abblldung (5) zu beweisen, nehmen wir an, dafi cs—-ds, d h.

cx=dx (x€H) o
gilt. Wird in diese Gleichung erstens x=¢, zweitens x=d eingesetzt, so
-entsteht wegen der Idempotenz und Kommutativitat

c=dc=cd=d.

Das beweist die Ein-eindeutigkeit der Abbildung (5). Endlich folgt die Homo-
morphie der Abbildung (5) einfach aus (4), womit die Isomorphie

H=Sy (c—cs)
bewiesen ist. .

Wir haben noch zu beweisen, daf Sy ein Ideal in Ty ist. Wegen (2)
geniigt es zu zeigen, daB Acs€Sy (A€T,cs€Sy) gilt. Man kann aber diese
Behauptung von S

Acs(x) == A(es(x)) = A(cx) = A() x = (4(c))s(x)
ablesen. Damit haben wir den Beweis des Satzes 3 beendet.

Auf Grund des Satzes 3 nennen wir Ty den Translationshalbverband
von H. Aus Satz 3 folgt das

Korollar 1. jJeder Halbverband ldBf sich in seinen Translattonshalb-
verband als Ideal einbetten.

Sitze 1 und 3 geben das folgende

Korollar 2. Jede Translation eines Halbverbands ist ein idempotenter
Endomorphismus. -
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Mit Hilife der Satze 2 und 3 bekommt man das

Korollar 3. In der Halbgruppe simtlicher eindeutiger Abbddungen
von H in sich ist Ty der maximale Halbverband, der Sy umfapt.

3. Wie iiblich, definieren wir- im Halbverband H eine Halbordnung-
dadurch, da x =y (x, y€ H) dann und nur dann ist, wenn xy =1y gilt. Nach_
dieser Definition ist offenbar x,y=xy (x; y€H). '

Eine eindeutige Abbildung 4 eines Halbverbands H in sich heiBt eine:-
Hullenoperatzon, wenn sich die Bedingungen

(6) - x=4x),
(7 . 2(x) = A(x),
) aus x=y folgt A(x)=4(y)

fur behebxge Elemente x,y von H erfiillen. Nach der Definition der Halbord—
nung von H darf man (6) auch in der Form .

) A(x)x = A(x)

schreiben.
Nach diesen Vorbereltungen beweisen wir den

Satz 4. Eine Hiillenoperation A eines Halbverbands H ist dann und
nur dann eine Translation von H, wenn die Gleichung (1) fiir jedes Paar
x<y (x,y€H) gilt.

Beweis. Aus Satz 1 folgt sofort, daf die Bedingung notwendig ist.

Umgekehrt, sei 4 eine Hiillenoperation von H, fiir die die Bedingung
des Satzes 4 besteht, und seien x,y beliebige Elemente von H. Wegen.
x=xy gilt dann v
(10) A(x)xy =A(x)A(xy);
und zwar, im Fall x < xy ergibt sich (10) nach der Voraussetzung beziiglich.
4 und im Fall x=xy einfach aus (9). Da auch y=xy ist, so folgt nach.
(9), (6) und (8) '
(1) A(X)xy =A(x)y = A()4(y) = A(x)4(xp).

Vergleicht man nun (10) und (11), so gewinnt man, daB im letzteren iiberall:

das Gleichheitszeichen stehen muB; insbesondere ist A(x)y=4(x)A(y). Nach
Satz 1 ist damit bewiesen, daf die Bedingung auch hinreichend ist.

(Eingegangen am 19. Mdrz 1957.)



On reiatively complemented lattices.
By G. SZASZ in Szeged.

1. Throughout this paper let L denote a relatively complemented lattice
‘with greatest and least elements i, o, respectively’). Let further a, b, r be any
-elements of L such that

(1) | a=r=b.

As usual, by a relative complement of r in [a, b] we mean an element
-§ whxch satisfies the equations

(2) rAs=a, rus=Ab.

‘Clearly, s then also belongs to the interval [a, b].
J. v. NEUMANN has proved?) ‘that-if L is modular, then, for any com-
plement ¢ of r, the element

3) s=(a@Jt)ymnb=avw({tb)

is a relative complement of r in [a, b]. It is known that this theorem plays
-a very important role in the theory of modular lattices.

In this paper we shall establish further connections between the com-
plements and relative complements of an element r of L.

2. First we state, without assuming the modularity, the following con-
‘verse of. NEUMANN's Theorem:

Theorem 1. Let L be any relatively complemented lattice with great-
.est and least elements, and let a, b, r be any elements of L such that (1) holds.
Let further s be any relative complement of r-in [a, b]. Then there exists at
least one complement t of r which satisfies (3).

1) For the. concepts of lattice theory which will not be defined and for the results
which will be used without proof in this paper see G. Bwrkuorr, Lattice theory (Amer
Math. Soc. Coll. Publ,, vol. 25), revised edition, New York, 1948,

%) See, for example, G. Bwrkxorr, op. cit,, p. 114. References to this theorem™ will
‘be made below briefly by the term “Neumany’s Theorem”.
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This theorem is an rmmedrate corollary of the second part of the more'.
general : . :

Theorem 2. Let L,a, br, s be as in Theorem 1 and Iet t (EL) be
any solution of the equatton system

_ rnt=o,
o rot=li,
@ . _ : (aut)ymb=s,

av(tnb)=s. _ ,
Then there exists a relattve complement y of a in-[o,s] and a relative com-
plement z of b in [s,i] such that t is a relative complement of s in [y, z].
Conversely, if y is any relative complement of a in [o,s] and z is any
relative complement of-b in [s, i), then any relative complement t of s in [y, z]
satisfies the equation system (4) (See the flgure) .

Proof. In order to prove the first part of Theorem 2, let us consider
any solution ¢ of (4) and let us define two elements y, 2 by

) § y=snt, z=sut..

Then, by the choice of these elements, f is a relative ‘complement of s in
{», z]. Furthermore, by the last two equations ‘of (4), we have

©) . y—smt—(aut)mbmt—bmt
(7).‘. o zf—sut—-av(tmb)ut=aut_.

‘We show that o I
(8) amy‘ép{ auy.=s ..
“and . ' o ) e
© . B L brz=s, buz=i

Indeed, (6) (1) and the frrst equation of (4) 1mply
‘ amy=am(bmt)-(amb)r\t=amt<rr\t—-o

Ag -
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and (6) and the last equatron of (4) imply
avy=auvbnt)=s.

Similarly, by (7), (1) and (4), we obtain (9). Clearly, by (5), (8) and (9),
the first statement of our theorem is proved.

Conversely, let y,2,t. be any elements satrsfymg the ‘equations (5), (8) -
and (9). Then, firstly, ¢ is a complement of r. Indeed, by M, ), (9), (2,
-(8) and (8), :

rmt=(rob)n(zr\t)=rm(bhz)r\t=

. S =rnsmt=(rms)n(sr\t)=ar\y=o,
and dually, : B o
. rut—t
Moreover t satrsfles the last two equations of (4). For by (5),(8), (5) and (9)
(aut)r\b=(au(yut))mb=((auy)ut)ub=(sut.)mb=zmb=s,
and by (5), (9), (5) and (8)

av(tnb)y=aw((f~z)nb) —au(tm(zr\b))—au(tms)-—auy =s, .
thus completing the proof.
By Theorems 1 and 2 we have the followmg

Corollary. Let 'L, a, b r, s be as in Theorem 1. Then, by suitable
choice of the complements a', V', s’ of a, b, s, respecttvely, each solution t of
(4) may be represented in the Jorm »

(10) t—,((a ms)us)m(sub)=(a NS U (s (s b)).

" Proof. Let # be any solution of (4) and let y,z be defined as in the
proof of the first part of Theorem 2. Then, with regard to the equations (5),
(8) and (9), Theorem 1 1mphes that for some complements a’, ¥, s’ of ab,s,
respectively,
: y_ou(a ~Ss)y=a s,
2=(ub)ni=sub,

) t=(yus)nz=yu(sn2).
These representations obviously yield the corollary

- 3. This section will be concerned with the speclal case when L is
modular. We recall the reader that, by NEUMANN’s Theorem, complemented
modular lattices are also relatively complemented consequently, Theorem 1
and 2 may be applied for them.

Using the results of the preceding section, we prove

Theorem 3. Let L be any complemented modular lattice and let a, b, r
be any elements of L satisfying (1). Then, s being any relative complement
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of r in [a, b] and a', b, s bemg arbttrary complements of a, b, s, respecttvely,
the element t of the form (10) is a complement of r. '
_ Conversely, to each complement t of r there exists at least one relative
complement s of r in [a, b] such that, by suitable choice of the complements
a,b,s of a, b, s, respectively, the equation (10) is satisfied®).
Proof. Let s denote any relative complement of r in [a, b). Consider
the elements :
y=o0vw(@s)=a s,
2= b)ni=sb,
t=(yws)nz={da r\s)dgs)r\(sub')—
=pu(S N2 =(a ) (b)),
where a’, b’, s’ denote - arbitrary complements of a,b,s, respectnvely Then,
by NEUMANN’s Theorem,
1. y is a relative complement of a in [o sl;
2. z is' a relative complement of & in [s, i];
3. tis a relative complement of s in [y, Z](=[a' ns, s b))
Hence, by the second part of Theorem 2, ¢ is a complement of r, as asserted.

Conversely, if ¢ is a complement of r, then, again by NEUMANN's The-
orem, the element s.of the form (3) is a relative complement of r in [a, b].

© . It follows that, for this s, the element f is a solution of (4). Hence, by the

Corollary obtained in the preceding section, we conclude that, with some .
complements a’, &', s” of a, b, s, respectively, the element ¢ may be represen-
ted in the form (10). This completes the proof of Theorem 3.

(Received April 8, 1957.) -

3) The flrst part of this theorem may be proved also by a direct, but very tedlous .
calculation.
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On the Jordan—Dedekind Chain Condition.
By G. GRATZER and E.T. SCHMIDT in Budapest.

1. Introduction. The well known jordén—Dedekmd theorem of lattice
theory was firstly generalised by G. BIRKHOFF ([1]‘) p. 66) who proved the
following assertion.

Let L be a lattice satisfying the following two COI‘IdlthﬂS2):

(¢) xy=<y implies x<xuwy (x,y€L);

(¥) all bounded chains in L are finite.

Then

o |

Some attempts have been made to get a more general form of this
result. R. Cro1sOT [2] and G. SzAsz [3] proved that if we replace condition
(3) by the weaker _

) ) there exists at least one finite maximal chain between

W) g and b (a<b; a.bel), '
then it results that (/D) holds in the interval [a, b]. Although under weaker
conditions, the Croisot—Szdsz theorem asserts the validity of (/D) only for
the same family of lattices as the Birkhoff theorem. Therefore we have tried
to generalise these theorems so that the general theorem be appllcable to
iattices with continuous as well as discrete chains.

We have also tried to obtain a statement analogous to condition (/D)
in the case of infinite chains of arbitary power. We have shown that with a
suitable definition of the length and the maximality of an infinite chain, in
distributive lattices (/D) holds.

in L all maximal chains between fixed end pomts have the
same length.

2. The case of finite chains. First we give a simplified proof?)
for the

1) Numbers in brackets refer to the Bibliography given at the end of this paper.
) a < b denotes that b covers a.
%) The idea of the proof is the same as of G. Szisz [3].
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Theorem 1 (The Croxsot—Szasz theorem) Let L be a latttce satzsfy--
ing (a), and C,,C;two finite chains of L with the same end points. If C, is
a (fmtte) maximal chain of lengﬂl T, then

@Gisa fmtte chain;

() the length of C; is at most r;

(c) G is maxzmal zf and only zf zts length isr.

Proof Let' L
- Cia=a<a<- .<a,=b.

We use an induction on r. The case r==1 is trivial in any lattice. We assume
the validity of the statement of the Theorem for r—1. Suppose it is possible
to choose a subchain -of C; of length r41:"

A==X, <X, < +++ < Xpp1 ==b.
~ Consider the chain
(*) ‘ . al<¢'1,ux1_o--<alux,+1—b

and denote by t the least integer withx; =a, (t=1). If { and i+ 1=t then
trivially e, wxi<a, o xa. Biand i+ 1< ¢, froma<a, it follows a =x; ~a,=
 =x;1 @, hence in view of (@) x;<x;wa, and Xy1 < X a,, excluding
the possibility x;\ a, = x;.1\~ a,. Consequently, x;\w a, = xj,; v a, is impossible
‘unless j=t—1. Thus the length of (%) is r and the proof is completed.
We prove also the following, somewhat generalised form of the Croisot—
Szasz theorem.

Theorem 2. Let L be a lattice sattsfymg (a) G and (8 two finite
chains of L with the same end points. Then C, and Cg can be refined so that
the refined chains have the same length.

Theorem 1 follows at once from Theorem 2. On the other hand, we
~ show that Theorem 1 implies Theorem 2.

In the proof of the Theorem 2 we may assume, without loss of the
generality, that the length m of C, is less than or equal to the length n of C.
There exists a maximal chain*) M (with the same end points as C, and C,)
which is a refinement of C,. If M has more than n elements, then C; has a.
refinement of length n and thus the statement of Theorem 2 is obvious. So
we may suppose that M has at most n elements, but thls -contradicts
Theorem 1. :

- 4) The exjstehce of M is eqoivélent to the Axiom of Choice of Zermero ([1], pp. 42—43)..
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3. Counter-examples. G. SzAsz (4] proved that if we _define the
length of an infinite chain as the power of the set of its elements, and call an
infinite chain maximal, if it is no proper subchain of any other one, then -
even in distributive lattices condition (/D) does not hold. This possxbxhty is
illustrated also by the following '

Example 1. Let R be the chain of the rational numbers of the -
interval {0, 1] and V the chain of all real numbers of [0, 1]. In the Ilattice
R-V (i.e. in the cardinal product of R and V, in the sense of [1] p. 7) all
the elements (x,x) (x rational) form a maximal chain between (0,0) and
(1, 1). This follows at once from the fact that in the case y=+2, .(y,2) and
(x, x) are incomparable, where x -is an arbitary rational number between y

“and 2. Hence in R-V there exists a countable maximal chain between (0, 0)
and (1, 1). ‘On. the other hand, the: elements (x,0) and (1, y) form a maximal
chain of ‘the power of -continuum. :

The following problem arises. Let C, and C, be maximal chams (wnth
the same end points). Is then-C, a homomorphic. image of C, or C, a homo-
.morphic image of C,, at least in distributive lattices? In general this asser-
tion fails to hold as it is shown by the following

Example 2. Let A be a well-ordered ‘and B a dually well-ordered
infinite bounded chain with the bounds 0,, 1, and O, L, (O, 1, €A; Oy, 1, €B).
In the lattice A-B, all the elements (x, 02) and (f,,y) form a maximal chain
C:, and the elements (Ol,y) and (x, I) form a maximal chain C,. Let us
suppose e.g. that C, is a homomorphic image of ‘C,. Using the Duality
-Principle. we, may assume “without loss of generality that the homomorphic
image of (/;, ;) is greater than or equal to (O,, /). In this case all the elements
(0y,y) of C, form a .chain: isomorphic with B, which is a convex
subchain of the homomorphlc image of A. Since a homomorphic image of
* a well-ordered chain is a well-ordered chain and a convex subchain of a-
well-ordered chain is again well-ordered, we get that B is a well-ordered
and at the same time dually well-ordered cham, i.,e. Bis flmte, in con-
tradiction to the hypotheses. - : ‘

4. The case of infinite chains. Our aim is to establish an analogon
. of the condition (JD) for infinite chains in distributive lattices. By ‘a cut of
a chain we mean a subdivision of the chain into two non-void convex sub-
chains and define the length of a chain as the power of the set of its
different cuts. Thus the length of a finite chain consisting of n+ 1 elements
is n as usual, while e.g. the length of the chain of all rational numbers is
equal to the power of the continuum. - o
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A chain C well be cailed strongly maximal, if

(@) C is no proper subchain of any other one with the same end points ;
(b). for every homomorphic image of C, (a) is valid.

With the aid of these notions we prove:

Theorem 3. If L is a distributive lattice®), then all strongly maximal
chains between fixed end points have the same length; i.e. an analogon of
- the condition (JD) holds in L. : :

Proof. Let C be a strongly maximal chain in L with the end points
a and b (a<b). Wecut C into two convex subchains, / and J (a€/l,b¢€])).
We consider the congruence relation ® of L induced by /=a and J=b.
In [5] we have shown the following assertion: If z¢[x, y], then z2=x(0.,,)
is false (O,,, denotes the congruence relation induced by x=y). This result
implies at once a==b (). Clearly from (b) [a, b]/@ =2°), hence ® produces
a cut on all chains between @ and b. @ is the minimal congruence relation
with a=/ and /=¥, but from [a, b]/&==2 it is clear that ©® is the maxi-
mal one with the same property. It implies that in [a, b] exists one and only
one congruence relation with /=a, f==6 and a==6, hence different con-
gruence relations (which are induced by a cut of C) define different cuts on
strongly maximal chains between a and &.. Thus the length of a strongly
maximal chain between @ and b is equal to the power of the set of all con-
- gruence relations on [a, 8] which are induced by a cut of C. Thus the proof
is completed”). -

Remark. If, following . A. G. Kuros [6], we consider only compléte
chains, i.e. chains for which every cut goes through an element (i.e. either
/ has a L.u.b. or / has a g.1.b.), then the above notion of length coincides
with the usual one. Since in a complete lattice every maximal chain is
complete, we obtain that in complete distributive lattices Theorem 3 holds
with the usual notion of length (but in general not with the usual notlon of

- . maximality).

5) We conjecture that Theorem 3 holds in semi-modular lattices too.

6) 2 denotes the lattice with two elements.

7) We remark that it is possible that two chains have the same length, one of them
is strongly maximal, the other has not this property. - This may be shown by the two
chains considered in Example 1. -
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Uber die orthogonalen Funktionen. L.
Von KAROLY TANDORI in Szeged.

Einleitung. )

D. MENCHOFF [1] und H.. RADEMACHER [1] haben den folgenden Satz
bewiesen:

Wenn die Koeffizientenfolge {a.} die sogenannte Menchoff——Rademacher~
sche Bedingung '
8)) Z a; login < oo

n=2

erfiillt, ist die orthogonale Reihe

@ 3 ()

fiir jedes orthonormierte Funktionensystem {g.(x)} im Grundintervall fast
liberall konvergent?).

~ D. MENCHOFF [1] hat auch gezeigt, daB die Bedingung (1) im allge-
meinen nicht geschwicht werden kann, in dem Sinne, daB die Faktorenfolge:
{log n} durch keine langsamer ins Unendliche konvergxerende Folge {W(n)}
ersetzbar ist. Namlich gilt der folgende

Menchoffsche Satz. Wenn die positive Zahlenfolge {W(n)} die
Bedingung
W (n) == o (log n)

erfiillt, dann kann ein orthonormiertes Funktionensystem {@D.(x)} und eine Koef--

1) Diese Arbeit enthilt u. a. den ausfiihrlichen Beweis der in den vorlaufigen - Mit-
teilungen 1], {2], [3] veroffentlichten Resultate, jedoch werden emlge Resultate in einer:
aligemeineren Form bewiesen.

2) In dieser Arbeit wird der Logarithmus mit der Basis 2 verwendet, man beschrénkt
sich nur auf reeile orthogonale Reihen und es wird angenommen, da8 das Grundmtervall
endlich ist. .
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Sfizientenfolge {a,} -angegeben werden, fiir die

2 EWn) < o
n=0
ist und die orthogonale Reihe
ON . Z a0, . (x)
im Grundmtervall iiberall divergiert.

Spiter hat D. MENCHOFF [2] gezeigt, daB in seinem Satz das Funktionen-
system {®,(x)} im Grundintervall gleichmdpig beschrankt gewdhlt werden kann.
In dieser Arbeit wird. mit Beniitzung der Grundideen von D. MENCHOFF
zuerst die folgende Verschirfung des Menchoffschen Satzes bewiesen (Satz 1):

‘ Es sei {a.} eine positive, monoton nichtwachsende Zahlenfolge, die die
Bedingung
(4) Z a2 logn = oo

"—-.-

erfiillt. Dann kann ein (von der Folge. {a,.} abhdngiges) orthonormiertes Funk-
tionensystem {®,(x)} angegeben werden, fiir welches die Reihe (3)im Grund-
intervall iiberall divergiert.

Es wird gezeigt, daB dieser Satz den Menchoffschen Satz enthiit.

Man kann leicht einsehen, daB in Satz I die Monotonitit wesentlich
ist; sonst ist die Behauptung im allgemeinen nicht giiltig. Es kann namlich
eine positive, lakundre Koefhznentenfolge {a.} angegeben werden, fiir die (4)
erfallt ist, dagegen :

(3) - Sace

n=0
'ist (es sei z. B. a gom = —; fir m=1,2,... und a, =0 sonst). Dann ist aber

-die orthogonale Reihe (2) fiir jedes orthonormierte System {(p,.'(x)} im
Grundintervall fast iiberall absolut konvergent?). '

'3) Es sei ndmlich {¢, (x)} ein in dem Grundintervall [u, b} orthonormiertes Funkti-
onensystem. Auf Grund von () ist
b

o - > ' LN © | .
D'a, J-|<pn(x)|dxs(b a)"‘Z’a U qa:':(x)dx) =(—a)'® Ya, <oo
n=( . T

n=0 n=0
a

und so ergibt sich mit Anwendung des B. Levischen Satzes, daB die Reihe

>a,le, @I
n=0

im Grundintervall fast iiberall konvergiert.-
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- Aus Satz 1 erglbt sich, daB fur eine posmve monoton mchtwachsende- :
' Koefﬁz:entenfolge {a,} die Menchoff-Rademachersche Bedingung nicht nur
Mhinreichend, sondern auch notwendig dafiir ist, daB die orthogonale Reihe (2)
fiir jedes orthonormierte System {qo,.(x)} im Grundmtervall fast iiberall kon-
vergiert.

In § 2 wird gezeigt, daB in Satz 1 das Funktzonensystem { D,(x)} im
Grundintervall gleichmdpig beschrinkt gewdhit werden kann.

Es ‘sei {g.(x)} ein behebxges im Grundintervall [a, b] orthonormiertes
Funktlonensystem Ist {a.} €l d. h. ist

) zamo

- S0 erftillt sich fir die Folge g
die orthogonale Reihe

dxe Bedmgung (1) und so konverglert

.Zm: logn q’"( )

nach dem Menchoff-Rademacherschen Satz im Grundintervail fast iiberall.
. Mit Anwendung eines bekannten Kroneckerschen Hilfssatzes *) ergibt sich fiir
die -Partialsummen . der quadratisch integrierbaren Entwicklungen die folgende
von H. RADEMACHER stammende Abschitzung:
Ist {a.} € I', so gilt im Grundintervall fast iiberall

| (5) o Zaucp,. (x)——o(logN)

(Siehe H. RADEMACHER [1], S. 122)
Es sei {/.} eine posmve, monoton mchtabnehmende Zahlenfolge, die

die Bedmgung
- co lo n
™ g,

2]

- N=g

erfiillt. Dann erfiillt sich die Bedmgung (1) fur die Folge - und so kon-

vergiert die orthogonale Relhe

o ¢a (%)
2

" %) Der Kroneckersche Hilfssatz lautet folgenderweise. Es sei {,} "eine posi’iive, mono- -
ton nichtabnehmende, ins Unendliche konvergierende Zahlenfolge. Wenn die Reihe =~ .
u)l . ’

. . n=0 *‘n
'kanvergent tst dann gtlt "o+ +uN o(tN) (sxehe z B A ZYGMUND [l], S. 255)
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nach dem Menchoff-Rademacherschen Satz im Grundlhtervall fast tiberall.
Daraus ergibt sich mit Anwendung des Kroneckerschen. Hilfssatzes die- soge-
nannte

Rademachersche Abschatzuhg Wenn die positive, monoton
nichtabnehmende Zahlenfolge {l.} die Bedingung (7) erfullt dann gilt im
Grundmtervall fast ube'rall

(® DT Z«pn(x)—o(m

(Siehe in weniger .scharfer Form, namlich mit der Abschatzung 0 (I/N log®*: N)
" (¢>0) statt o(ly), bei H. RADEMACHER [1], S. 122.)

In §§ 3—4 wird mit Hilfe des Menchoffschen Satzes bzw. mit der von
uns gegebenen Verallgemeinerung bewiesen, daBdie Abschitzungen (6) und (8) -
im allgemeinen nicht verbessert werden kdnnen.

Es sei {4,} eine positive, monoton mchtabnehmende Zahlenfolge, die
die Bedmgung

© ,
erfiillt. Dann ist

‘ml

<°°‘
. n=0;'

s

o 1 . < |
Zl—zjcpz(x)dxa‘_ 7<=
und so ergxbt snch mit Anwendung des B. Levischen Satzes daB die Relhe
Z‘Pn(’()

n—=_ l

. . - B R &g . N
im Grundintervall fast tiberall konvergiert. Daraus erhalten - wir mit Anwen-
dung des Kroneckerschen Hilfssatzes die folgende Abschatzung

Wenn die positive, monoton nichtabnehmende Zahlenfolge {l } dle Bedin-
gung (9) erfiillt, dann ist zm Grundmtervall fast iiberall

10y .- Zq»ﬂ(x)—o(zw)

' (Snehe in weniger scharfer Form, mit der Abschatzung o(N logl+£ N) (s>0)
statt 0(4%), bei S. Kaczmarz [1], S. 99.)

Von der Abschitzung (10) ergibt sich die folgende Behauptung:.

Wenn die positive, monoton nichtabnehmende Zahlenfolge {4} die Bedin-
gung (9) erfiillt, dann ist im Grundintervall fast iiberall

() 9x() = o0(ix).
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In§5 w1rd gezelgt daﬁ die Abschatzungen (]O) und an 1m allge-
meinen nicht verbessert werden konnen.
Betrachten w1r nun die Lebesgueschen Funkhonen

| L:.v(x-) =J

die zu ﬁen Partialsummen der Entwicklungen nach dem in dem Grundin-
tervall [a, 8] orthonormierten Funktionensystem' {(p,,(,\)} gehoren. Nach der,
Bunjakowskl Schwarzschen Ungleichung ist

§ @) u(t) ' dt (N'% o1, S

N

b
2 h172
Jn:t)
a -

> 9’_"‘(-’5? qJ..,(t) dt = (b—a)'2 (f(; (pn(‘x)‘q’" 0 )_dt)m

und so gilt im Grundintervail iberall
N 172 '
2 Le=b—a= Sew| (=01,

ﬁaraus ergibt sich auf Grund von (10) die folgeﬁde‘ Abschitzung:

Wenn die positive, monoton nichtabnehmende Zahlenfolge {1.} die Bedin-
gung ) erfullt dann ist im Grundintervall fast iiberall

13) o L\(x)—o(im)

(Siehe in wegiger scharfer Form, mit der Abschdtzung 0(1/—og‘+e N) (s >0)
statt o(4x), bei S. Kaczmarz [1], S. 99.)
' In speziellen Fillen kann die Abschétzung (13) verscharft verden:

Ist das Funktionensystem {@.(x)} im Grundintervall gletchmaﬁlg be-
schrankt; oder sind die Lebesgueschen Funktionen des Systems im Grundinter-
vall fast iiberall konstant, so gilt im Grundintervall iiberall, bzw. fast iiberall

(19) O L =0(™),

. ’ ’
(Siehe S. Kaczmarz [1], S. 99. und H. RADEMACHER [1], S. 130.)

Der erste Teil der Behauptung ist aus der Ungleichung (12) evident,
. der zweite Teil kann mit einer einfachen Rechnung bewiesen werden. In § 6
- wird mit Anwendung der Ergebnisse von H. RADEMACHER gezeigt, daB die
‘Abschitzung (13) im allgemeinen nicht verbessert werden kann. DaB die
Abschdtzung (14) im allgemeinen nicht verbessert werden kann, wurde von
H. RADEMACHER bewiesen. Das Rademachersche System {r.(x)} ist nimlich
im Intervall [0, 1] gleichmiBig beschrinkt, die Lebesgueschen Funktionen
sind im Grundintervall fast iberall je einer Konstante gleich und es gilt im
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Grundintervall fast iiberall
A

1
J 2r,,(x)r,.(t)|dt<dzvv’ (N=0,1,..),
1]

n=y

wo d eine von N unabhingige positive Zahl ist (H. RADEMACHER [1], S. 130-134).

In den folgenden Paragraphen dieser Arbeit werden ahnliche, .mit der
Cesaroschen Summation zusammenh: 1gende Fragen besprochen.

In § 7 wird mit Anwendung eines Summatlonssatzes von D. MENCHOFF
folgendes bewiesen:-

Fiir die (C, ¢ > 0)-Mittel :*)(x) der quadratzsch mtegnerbaren Entwick-
lungen gilt die Abschatzung

(15) | dP(m=o(lpglog N)
im Grundintervall fast iiberall. .
Dieser Satz ist eine Verscharfung eines Satzes von G. ALEXlTS [1] Wir

werden zcigen, daB die Abschatzung (15) im allgemeinen nicht verbessert
werden kann.

In § 8 wird die Verallgemeinerung eines Satzes von I. S. GAL bewiesen,
der sich auf die (C, a>0)-M1tteI der orthonormierten Funktionen bezieht und
folgenderweise. lautct : _

Es sci {2, } eine positive, monoion nichtabnehmende Zahlenfolge, "die

“die Bedingung (9) erfiillt. Ist « >0, so gilt im Grundintervall fast iiberall

klﬁ) - ;}(‘\;2 ‘:’,,q),.(x)—o(zy) (Af,‘:’=;(’;.’+“4)_).

n=y

Dieser Satz wurde fiir ¢=1 von I. S. GAL [1] mit der Abschitzung
o(/Nlog* N )(s>0) statt o(4v) bewiesen. Spiter wurde dieser Satz von
-G. ALEXITS [1] in einer etwas allgemeineren Form bewiesen. Es wird auch
gezeigt, daf die Abschitzung (16) im allgemeinen nicht verbessert werden kann.

In § 9 werden die zu der (C, a>0)—Summatxon gehorigen . Lebesgue- ‘
schen Funktionen

| LY x) = Jb

untersucht. Auf Grund der bekannten Elgenschaften der Faktoren A“" 1st evi-
dent, dab fir ¢ >0 im Grundintervall tiberall

L%’(X)éon;gb{.k(x) | (N=0,1,..)

1 . o :
(.,)ZAfv’m(xm«) at . (N=01,..)
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ist. Daraus ergibt sich auf Grund der Abschatzungen (13) und (14) dxe folgende
Behauptung:

, Wenn die positive, monoton nichtabnehmende Zahlenfolge {i.,.} die Bedin-
gung (9) erfiillt, dann ist fir « >0 im Grundintervall fast iiberall

7). : : LY (x) == 0(Ay).

Ist das Funldzonensystem {@.(x)} im Grundintervall [a, b} glezchmaﬁlg be—
schrinkt, so zst fiir @« >0 im Grundintervall iiberall ,
(18) LR )= 0™, .

Durch eine Modifikation des Grundgedankens von § 6 kann man zelgen :
daB im- aligemeinen die Abschdtzungen (17) und (18) nicht verbessert wer-
den konnen. Auf Grund dieser Ergebnisse ist ersichtlich, daB von- der
gewohnlichen Summation zu den Cesdroschen Mitteln iibergehend, die Grifen-
ordnung der Lebesgueschen Funktionen im allgemeinen nicht abnimmt. ‘

Wir werden sehen, dab die Félle « >0 und « =0 gleichzeitig behandelt:
werden konnen. Trotzdem werden die zwei Fille gesondert untersucht, weil
der Fall @ >0 im Vergleich zum Fall « =0 wesentlich komplizierter ist.

Ich mochte den Herren Professoren G. ALExiTS und B. Sz.-NAGY meinen:
~ aufrichtigen Dank aussprechen fiir ihre wertvollen Ratschldge bei der Femg—
stellung der vorhegenden Arbeit.

§ 1. Die Verallgemeinerung des Menchoffschen Satzes.

In dlesem Paragraphen wird zuerst die folgende, schon in der Emleltung'
erwéhnte Verschzirfung des Menchoffschen Satzes bewiesen.

Satz I. Es sei {a.} eine positive, monoton nichtwachsende ZahIenfoIge,
- fiir die die Bedingung

(1.1) : Za,.log n= oo

erfillt 1st Dann kann ein im Grundintervall [a, b] orthonormiertes Funktionen--
system {@.(x)} angegeben werden, fiir welches die orﬂxogonale Reihe

(12) - 2 a, D, (x)

n=0
im Grundmtervall [a, b) iiberall divergiert.
Mit anderen Worten, ist fir eine positive, monoton mchtwachsende Folge
{a.} die Menchoff-Rademachersche Bedingung

3 2 2
D'aslog’n < oo
n=2
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nicht nur hinreichend, sondern auch notwendig dafiir, daf die Reihe

m

= a,, @ (x)

l)

fiir jedes orthonormierte System {@.(x)} fast iiberall konvergiert. )
Zuerst sei gezeigt, daBl aus Satz I der Menchoffsche Satz folgt. Zum
Beweis dieser Behauptung bendtigen wir den folgenden '
Hilfssati I. Es sei {W(n } eine positive Zahlenfolge, fiir die
W(n)=o0(log n)

gilt. Es kann eine positive, monoton nichtabnehmende Folge {v(n)} angegeben
werden, die die Bedingungen .

v W)
\
(1.3) = (nlog’ n)»? (n)
und
o, 1
(1.4 ' = (nlog n)v'(n) =
erfiillt.
Beweis von Hilfssatz I. Nach unserer Annahme ist
W(m) _ ' '
log 1 =o0(1). -

Ohne Beschrdnkung der Allgemeinheit kann angenommen werden, daB
W(n)(log n)-' = 1 fiir jedes n = 2 gilt. Da
S

w=nlogn

n=z

ist, kann eine Indexfolge {Ni} (N, =2) bestimmt werden, so daﬂ die folgen-
den Bedingungen erfiillt werden:

W(n)) =1 —
(1.5) (logn = fur n=N, . (k—l‘,2,...)
und

¥y-1 Neyi-1 1

6 X = >

miNg_mlogm = =%, mlogm

(k=1,2,..).

Es sei
[ Nyt

12 . .
1 . N e
(1.7) U(fl)~ 3,"2\_;‘ ‘mg ﬂlr Nk714§ n <Nk (k-— 1, 2, ...). -
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"Die so definierte Zahlenfolge {v(n)} ist 'posit'iv und nach (1.6) monoton
nichtabnehmend. Nach (1.5) und (1.7) ist

S Wi 2 G W2(n 1
PNe log® rs)l)#(n) =, ., (alog? lS)?f*(ﬂ) =SEaE<
also wird die Bedingung (1. 3) erfiillt. Nach (1.7) gilt filr jedes s -
Ne-1 s V-1 .
S IS RN W P

<, (nlog n) log nyv (n)
woraus (1. 4) folgt
- Damit haben wir den Hilfssatz [ bewiesen.
Es sei {W(n)} eine positive Zahlenfolge, fiir die die Bedingung W(n) =
= o(log n) erfiillt ist. Mit Anwendung von Hilfssatz | ergibt sich eine positive,
monoton mchtabnehmende Folge {#(n)}, die die Bedingungen (1. 3) und (1. 4) -

S (nlogn)e*(n) &

erfiilit. Es "sei nun a,=a, —--—1— und a,.=——{— fir n = 3. Es ist
72 Vnlog'n v(n)
klar, daB diese Folge posiliv, monoton .nichtwachsend ist und danach (1.4) .
a: N © 1 ’
,,‘_‘_a" log’n = ,E,(n log n)7*(n)

gilt, wird die Bedingung (1.1) erfiillt. So gibt es nach dem Satz | ein im
- Grundintervall [a, b] orthonormiertes Funktionensystem {®,(x)}, fiir welches
die orthogonale Reihe (1.2) im Gandmtervall [a, b] iiberall divergiert. Nach
(1. 3) gilt aber:

o Wy
,.Z_""W(”) “Z_(nlog3n)l T

Daher erfiillt die Koeffizientenfolge {a,,} und das m1t Anwendung von Satz |
gewonnene Funktionensystem {®.(x)} die in dem Menchoffschen Satz

vorkommenden Bedingungen.
Damit haben wir bewiesen, daB aus Satz | der Menchoffsche Satz folgt.
Zum Beweis des Satzes | bendtigen wir die folgenden zwei Hilfssatze.

Hilfssatz Il. Es seien c(=.1) und p(=2) positive ganze Zahlen.
Es kann ein im Intervall {0, 5] orthonormiertes System von Treppenfunktionen®)
{filc; p; X))y (=1, .~.,2p) mit den folgenden Eigenschaften angegeben wer-

den: zu jedem Punkt xe[—i—, -‘Z—) gibt es eine von x abhdngige natiirliche

5) Eine Funktion in (a, b) heiBt eine Treppenfunktion, wenn (a,‘b) in endlichviele
Teilintervalle zerlegt werden kann, so daB die Funktion in jedem Teilintervall kostant ist.

A5’
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Zahl m(x)(< p) so dap die Funktlonswerte f1(¢: p, x) . fp+m(,)(c, p; x) posi-
tiv sind und

(]‘8) fx(C»P, x)+ +fp+m(:)(c P, X) = AV_Ing
gilt, wo A eine positive, von x, ¢ und p unabhdingige Zahl ist.

Fiir c=1 wurde dieser Hilfssatz von S. Kaczmarz [2] bewiesen; der
folgende Beweis fiir beliebiges c ist ahnhch dem Bewexs von S. KACZmARZ
fiir den Fall c=1.

Beweis von Hilfssatz II. Es sei

Fie p; x)—————'—‘— far xe["—‘—', —) (k=1,...,4cpi [=1,...,2p).
Dann ist , : .
. S | IR ’
jf,(c,p,x)dx—z s— (I=1,...,2p),
k— p—t—l e AR
z)
woraus folgt '
(1.9 | ff“%(c,p;x)dxé“—' =1,...,2p),

wo A’ eine von ¢ und p unabhanglge Zahl ist.
Ferner haben wir fiir i > j:

f fie.pi 05 p; x)dx——f (k_p_, : Iy (k_'p-_.,-}_ %)=

1.1
cpi

1 .1
k— p-—z——-7 k—-p—/—'?

k=Top-ip 1 =Ipjp 1

1 guc-xz)p-s | e 1. }
2 2

Daraus folgt

[f(CPX)f(CPIX)dx L ”2’ ¥ 1)
’ e Cpi—] |us \ -

Tp-i g 7 k=(4frl)p-i+l b— 1
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und so ist . -
v ] f fepific pinds| =
T §——
p+/+2 (4c l)p—t—7 |

Um von den im Intervall [0,4] so definierten Funktionen fi(c, p;x)
(I=1,..., 2p) ein im Intervall [0, 5] orthogonales Funktionensystern zu erhal-
ten, sollen diese Funktionen im Intervall [4,5] wie folgt definiert werden.
Wir teilen das Intervall [4, 5] in N==2p(2 p—1) Teilintervalle glelcher ‘Linge
I; =i=2p, l<j<2p,l:{»:j) Es sei, fiir [=1,. 2p,

V?Nial,_j‘ ‘ x€h,
f_:(c,p;x)=] + ' '
0

5 N[ a; l sign a,; X¢€ ]j,;,'
sonst,
wO

:-—ff(c p,x)f,(c,p,x)dx |

gesetzt wird. Dxe S0 def:merten Treppenfunktxonen {file,p; )} (I1=1,...,2 p)'
bilden im Intervall [0,5] offenbar ein orthogonales System, femer 1st
4 . .

2p N
Jf?(c,p,x)dx—— [fl (c p,x)dx+ |az.,|+ %llagnlf
0 . ; .
Hieraus folgt auf Grund von (1.9) und (l 10)
(1.11) ‘ Jf"(c,p, (I=1,...,2p),

wo A” eine von ¢ und p unabhangnge posmve Zahl ist.

st xe[ —‘3—), SO glbt es eine’ von x abhanglge nat(irhche Zahl m(x)

- (<P) derart, daB

|2p+m(x) 2p+m(X)+1) o

.‘p, '."'f: Cp
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gilt. Nach der Definition von fi(c, p; x) sind die Funktlonswerte filc, p;x), .
+ formn (¢, p; X) positiv und es gilt

prm{r) pm(r) 1 prmiz) 1
g.f,(cp,x) 2 =271
. 2p+m(x)+l——p—l—? - l—?

Fiir die normierten Funktionen
4 :: -1/2 -
fz(c,p;x)=$Jf—,'-'(c,p;x)dx$ fip;x)  (=1,...,2p)
o ' B
ergibt sich dann auf Grund von (1. 11) die Ungleichung (1.8).
Damit ist der Hilfssatz 1l bewiesen.
Ist /= (u,+] ein beliebiges endliches Intervall, so definieren wir:

/ " ’ ’x-—u . '4
file, p, ,;x-,___3V5ﬁ(\c,p,av——_—u) fir u <x<w,

' - ‘ .0 sonst
(I—T—],_,,, 2,17) und

=542 1u T8 3 44).
Dann ist A
fir it
(1.12) ff(c P x)fp 1 X)dx—;”(,) f:,l: ffj
(1.13) u(F(c, l))=§~ %f)

und fir x € F(c, 1) gibt es nach.(l.S) eine von x abhdngige natiirliche Zahl
m(x)(< p) derart, daB die Funktionswerte f,(c,p,I;X), ..., fpmm(c, P, I; X)
positiv sind und die Ungleichung

(1" 14) f\(C, o> L X)+ e +fp+'"(-f)(cy J K X) = V?A V?B Ing | .
besteht.

Hilfssatz Ill. Es sei{a.} eine positive, monoton nichtwachsende. Koef-
fizientenfolge, die die Bedingung (1.1) erfillt. Dazu kann man ein im
Grundintervall [a, b] orthonormiertes Funktionensystem {®.(x)} mit der folgen—
den Eigenschaft angeben:

Fiir fast alle Punkte x des Grundintervalls arzd fiir unendlich viele von
x abhdngige natiirliche Zahlen m kann eine natiirliche Zahl n.(x)(< 2m*—1)

) Mit w(H) wird das Lebesguesche MaB der Menge H bezeichnet.
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angegeben werden, 50 daﬁ die Funktionswerte D, (x),..., Dy, sn,=)(x) gleiches
Vorzeichen haben und .

(1. 15) . : l@\ (x)+ + @\m-{»nm(z)l > B_
oy N1 X :

gilt; dabei ist No——O N ~—2(2+ «+2™)y (m= 1) und B ist eine von x

und m unabhdngige positive Zahl.

Beweis von Hilfssatz Ill. ‘Wir konstruieren in [a, b] zuerst ein
orthonormiertes System von Treppenfunktionen {®,(x)} {n=0, 1,...) und meB-
bare Mengen F,. (m=20,1,...), so daB die folgenden Bedingungen erfiillt sind:

a) fiir jedes x € F,. gibt es eine natiirliche Zahl n,(x) (< 2™2—1), so
daB die Funktionswerte @y _(x),..., Py, +n,in(X) gleiches Vorzeichen haben,
und (1.15) mit einer von x und m unabhdngigen Konstanten B giiltig ist;

b) die Mengen F, (m=0,1,...) sind stochastisch unabhingig’) und
es gilt .
(1.16) 4 u(Fo) = 10 |

Der Grundgedanke der folgenden Konstruktion wird von den Arbeiten
von S. Kaczmarz [2] und D. MENCHOFF 1] entnommen

Zuerst soll erwahnt werden, dafl

1.17 - © N <4 N, (m=1,2,...)
ist. Da die Folge {a.} positiv,. monoton nichtwachsend ist, gilt fiir jedes s

ml’l {1 Nm+1a\m+l log N"l‘fl}

Ns;l . . §-1 Veap! s 1

2, @9 9. 2 - 2 2
D arlog’n=2 D da.log’n< > (Nin—Ni)ax,log’ N,
1|=N1 k=1 n:,\’k . k=1

also folgt auf Grund von (1.17)

: ‘I

2 a; log’n < 16 ZNka\, log” N
=y
~und so ist nach (1.1)
Z N,,.+|aNm+1 log’® Ny = oo.
m=0
. 7) D h. fiir ]ede endllvche Indexfolge k, <k, <0 < k gilt

CHENFRNNFY s 0(F) | ()
' b—a - b—a b—a =~ b—a
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Daraus entnehmen wir, daB aus (1..16) die Beziehung..

R

(1.18) L 2 u(Fa)=oo
L m=

folgt. - . .

Hieraus und aus der stochastischen Unabhingigkeit der Mengen F,
ergibt sich auf Grund des zweiten Borel-Cantellischen Lemmas ®):

y(hm F.)=6 —a.

m—+ @

Fiir x € hm F.. gilt aber (1. 15) fur unendlich v1e|e m.

n-»m

Damit wird also der Hilfssatz 11i bewiesen werden.
Nun gehen wir zur Konstruktlon der Funktionen @,(x) und der Mengen
F.i tiber. :
Wir beginnen mit der Bemerkung, da aus der Deflmtlon der Index-
folge {N.} folgt:- ,
1

(1.19) -Vz'"“>—2—1/N,,,f,l, m—?-‘lé‘%loglvmﬂ _ (ni=0,1,...).'

.8) Dieses Lemma (siehe z. B. W. Fewer [1], S. 155) Iautetﬁfolgenderweise: A
Sind die mefibaren Mengen E, (Sla, b]) (m= 0 ..) stochastisch unabhdngig und ist

™ _ : ZF(E,,.)—

so gilt
(llmE )—b —a.

Dlese Form des Borel-Cantelllschen Lemmas kann z. B. auf folgender Welse bewiesen
werden. Wegen der stochastischen Unabhﬁnglgkelt gllt fiir alle / und s (s>1)

#( UE;.)—(b-—a)—" (€ UEk)_(b 0)—l ( ﬂCEk)—-

—(b—a)gl— (CE*)!—(b— )31—]]( "(E‘))

‘'wo CH die Menge [a, b] —H bezeichnet. Auf Grund der Annahme (*) gilt
= #(Ey)
11(1-522) o

C k=l b

(kg' E,‘) b—a.

Daraus ergibt sich auf Grund der Relation

imE, —-IQO(kL_JIEk)

m*@

aiso ist

unsere Behauptung.
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Nun wenden wir den Hilfssatz ll an, undzwar mit der folgenden Wahl
der Zahlen ¢, p: : . )
_ 1 ), =
| f= [Nla‘fvl log"N, T+ 1]’ p=2
Es sei - o

By (x) = —V_—‘_—_ﬁ(cl,p,,'[a, Bx)  (=1,..,N) -

und Fo F(c, [a, b]). Nach dém Hilfssatz I sind ®.(x) (n=0,..., N,—1)"
Treppenfunktionen und bilden nach (1. 12) ein in [a ] orthonormlertes Sys-
tem. Auf Grund von (1.13) ist , ,
b—a 1 b b—a N log2N
.“(Fo)’:" [ 2 3 +] = 12Nl2 . ’
5 | N,a} log® N, 5 Naj log®N,+1
woraus folgt, daf (1.16) fiir m=0 erfiillt wird. Ist X€F,, so gibt es nach

(1.14) eine von x abhanglge natiirliche Zahl ny(x) (< 22—1), fiir die die Funk-
tionswerte @y(x), . .., Puyx)(X) posmv sind und _

Do(x) + - +d>n0m(x)_vb_ 3[1\,0- Tog® N, +‘] 2%;

S .
Vo—a | Nian, log N, )
ist. Daraus ergibt sich auf Grund von (1.19), daB (1.15) fir m==0 erfiillt

ist, wenn B= — _1/5_ A gewihit wird.
6 V/b—a
Es sei m(>l) ein beheblger Index. Wir nehmen an, daB die’ Funktlo—
nen @,.(x) (n=: ., N.,—1) und die Mengen F; (k==0, ..., m—1) bereits

definiert sind, so daB die @.(x) Treppenfunktionen sind, in [a, b} ein ortho-
normiertes System bilden und die. Bedingungen a), b) fiir die Mengen
Fo, ..., Fu-1 erfiillt sind (insbesondere sind also Fo,...,F,,._l stochastisch un-
abhanglg)

. Dann kann eine Emtenlung des Intervalls [a, b] in endlich v1ele Teilin-
‘tervalle [, (o=1,...,7) angegeben werden, so daB in den einzelnen Teilin-
tervallen jede AFunktion D, (x) (n==0,...,N,—1) konstant ist. Die zwei
Hilften des Intervalls /, werden mit /; bzw. I}’ bezeichnet (o=1,...,7).

Wir wenden nun den Hilfssatz Il mit den Zahlen '

' 1
. c")-{-l = [ 2 a
Nuwan,,, 108" Npu

+ 1], pn;+1 =2m

9) Im allgemeinen bezeichnen wir mit [«] den'ganzén Teil von a.
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an. Es sei

q)'vm'*‘l'l(x) ;Zﬁ (cm-}-l y Pms1, 199 x) yfl (cmflyp”h}-l s [0 ’ x\

p:l

Vb—
((=1,...,2:2"") und

== U (F(Cm+ly Q)UF(C'“'H’I”))

Auf Grund des Hxlfssatzes Il ist es klar, daB die Funkhonen ®,,(x)
(Nu = n < N,.1) Treppenfunktionen sind.
Es sei 1=i=2™" 1=;=2"" Dann ist nach (1.12)
. . b - . -
| @10 Py a (W) tx =
= 32& ’f (Cm+1 y Pm+1s ]py x)f/ (Cm-rl, Pm+1, Io, x)dx+

()_ o

Ip

(1.20)

+Z.; f‘fi (Cn1+ly p»@l; l@”v x)f] ('Cm-{-l;pm-;-l, ]é', X) dx =
o= 1{)’
0 ' fur i,
== 1
—a = (“(/o)-i-.“(/”))—l fiir i=.

Es sei ferner 0=n < N,,, 1=1=2"" Wir bezelchnen mit ¢c,(n) den im ln-
tervall /, angenommenen Wert der Funktion ~ @, (x) (=1, ...,r). Dann ist

1]

f@"(x) Dy, w-1(x)dx == [— 3 Z%(”)Jﬁ (Cm+l,pm+l, I;; x)dx—

“t Y
1o

(].2]) '—'(gl(:o(ﬂ)fﬁ (Cm+x,,l.7m+|,l(;';x)d)‘c§‘=

1y ,
1 . . , 5 ‘
~ T 2 e WU i) [ i Curss P ) dx =0,

Nach (1.20) und (1.21) bilden die Funktionen @,(x) (n=0,..., Nus1—1)
in [a, b] ein orthonormiertes System. -
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Auf Grund von (1.13) ist . ;
y(Fm)=.—[ — —H] S @)+ n()) =
L o=l . . ) -

5 N’"“a}vmﬂ ]Og Nm+1. _
- b—a NnH- a?v,,.“l log2 Nm+l
5 N.,‘Hav a1 log Non+1 . =

'woraus folgt, daB (1.16) auch fiir den Index m gilt. Ist x€F,., so gtbf es
nach (1.14) eine von x abhingige natiirliche Zahl n,(x) (< 2" 1), fir die
_-die Funktionswerte @y _(x),..., @x, (- (X). gleiches Vorzeichen haben (posi-

m

tives bzw. negatives jenachdem x€l; bzw. x¢1;’ ist) und
| Py, () + -+ + Pypin, (D) | =

] s[ R ] B
Zz A 5 -+1 (m + 1) =
‘/b'—' } m+la\m+1 log” Nms1
lrg / znnl (,n | ])
T V6= VNurias,.log Naw

ist; daraus folgt auf Grund von (1.19), daB (1.15) auch fiir den lndex m
gilt, wenn B wie oben gewahit wird.

Es ist klar, daB die Mengen Fy,...,Fn stochastisch unabhanglg sind.

Durch vollstandige Induktion erhalten wir also ein im Grundintervall
[a, b} orthonormiertes Funktionensystem {®.(x)} (n==0,1,...) und Mengen
Fi (k=0,1,...), so daB die Bedingungen a) und b) erfullt sind.

- Damit xst der Hilfssatz Il bewiesen.

_Beweis von Satz I. Wir nehmen an, daB die positive, monoton
nichtwachsende Koeffizientenfolge {a.} die Bedingung (1. 1) erfiillt. Nach Hilfs-
satz. il existiert ein im-Grundintervall [a, 5] orthonormiertes Funktionensystem
{@.(x)} mit der Eigenschaft, daB (1.15) in fast allen Punkten x¢[a, b] fiir
unendlich -viele Indizes m erfiillt ist; dabei ist n,,(x) <2"**—1 und die Funk-
tionswerte @y, (x), ..., Py, =(x) haben gleiches Vorzeichen.

- Auf Grund der Monotonitit der Folge {a.} und wegen der Unglei-
chung N, + nn(x) < Na —|-2"““'—~ m+1 €rgibt sich, daB in fast allen Punkten
x¢€la, b] fiir unendlich viele m .

(1.22) lax,, @N (x)+ +0Nm+n,,.(z)@ +nm(r)(x)i >B

gilt. So divergiert fiir das erhaltene Funktionensystem die-orthogonale Reihe
(1.2) fast. iiberall in [a,b]. Wenn man die Werte der Funktionen @,(x)
(n=0,1,...) auf einer Menge vom MaBe Null auf geeigneter Weise verdn-
dert (es sei z. B. @,(x)=1(n=0,1,...) in jedem Punkt x€[a, b}, wo die
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Reihe (1.2) konvergiert), kann man erreichen, daB die orthogonale Reihe (1.2).
in [a, ] tiberall divergiert.

Damit ist der Satz I vollstindig bewiesen.

Wir beweisen jetzt die folgende Verallgemeinerung des Satzes I:

Satz . Es sei {a.} eine positive, monoton nichtwachsende Zahlenfolge,
fiir die die Bedingung (1.1) erfiillt wird. Es kann im Grundintervall [a, b]
ein orthonormiertes Funktionensystem {lD,.(x)} derart angegeben werden, daf
die Reihe -

(1.23) : Za,.(b (x)
fiir jede Koeffizientenfolge { af,} mit
(1.24) azna, (n=0,1,...;1>0)

in [a, b} iiberall divergiert.

.Beweis von Satz Il. Wir wenden fiir die Folge {a,} den Hilfs-
satz lll an; es sei {@.(x)} das so erhaltene, in [a, 4] orthonormierte
~ Funktionensystem. Aus (1.22) folgt, da die dort vorkommenden Funktions-
werte gleiches Vorzeichen haben, die Ungleichung
(1.25) a%,, Py, (X) + -+ + 0%t 1) Py (X)| > 11 B.

Da also (1.25) in fast allen Punkten x¢a, b} fiir unendlich viele Indizes m
gilt, ist die Reihe (1.23) in [a, b] fast iiberall divergent. Mit einer.geeigne- -
ten Verdnderung der Werte von @,(x) (n==0,1,...) auf einer Menge vom
Mage Null kann erreicht werden, daf die Reihe (1.23) iiberall divergiert.

Damit haben wir den Satz 1l bewiesen.

Es soll noch bemerkt werden, da8 in Satz I die Monotomtat der Koef-
fizientenfolge bzw. in Satz Il die Bedingung (1.24) nur dann notwendxg ist,
wenn die genannte Folge zur Klasse /* gehort. Ist nimlich

Zaizoo"

n=0

so divergiert die Rademachersche Reihe

20 anr,(x)

bekanntlich in [0, 1.] fast iiberall (siehe ]J. KHINTCHINE—A. N. KOLMOGOROV .

-
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§ 2. Gléichlﬁﬁﬂig Besclu_-ﬁnkte orthonormierte F ll-nkfioneilsy’steme.'

In diesem Paragraphen wird gezeigt, da8 in den Sdtzen 1 und Il gefor-
dert werden kann, _daf das orthonormterte Funkttonensystem glezchmaﬁtg be-
schrdnkt ist.

_ Der Beweis dieser Behauptung erfolgt mit Bemitzung der Grundideen
von D. MENCHOFE. Der Beweis wird nicht ausfiihrlich ausgearbeitet, sondern
es wird manchmal auf die betreffenden Stellen der Arbeit [2] von D. MENCHOFF
hingewiesen werden. Er ist dem Beweis von Satz I dhnlich, aber doch davon
ganz unabhingig, so daB wir also den Satz I in einer verschérften Form noch-
mals beweisen. Der Beweis der verschirften Behauptung ist aber viel kom-
plizierter als der- frithere. '

Wit werden das folgende Lemma benutzen

Lemma von Menchoff (D. ‘MENCHOFF [2] S. 104.) Es seien d
und q positive ganze Zahlen, 0<d<gq. Zu jedem Indexpaar (i,j) mit
l1=i=gq,1=j=q und |l—j|-——d soll eine von Null verschiedene Zahl e ;
zugegrdnet werden; wir bezeichnen mit 8; das Maximum  der absoluten
Betr‘iige der Zahlen «;;. In jedem Intervall (u,v) mit
@1 _ v—u>28
konnen dann Funldtonen ¢(x) ({=1,...,q) derart defmzert werden, daf die
. folgenden Bedingungen erfiillt werden (pl(X) ist eine Treppenfunktion. und es

gilt: ‘
lg(x)| =1 ~ (u<x=v, 1=—-1,...,q),

_fsoa-(x)%(x).dx'=—a,-,f. (i—jl=d, 1=i=gq, 1=j=qg),

[oix)@i()dx=0 (%, [i—jl+d 1=i=g, 1=/=q).
Mit der _‘H_ilfe dieses Lemmas kann der dem Hiifssatz Il entspfeéhendé

- -folgende Hilfssatz bewiesen werden. =~ ' . :

"”Hi_l_fssa_i_tz IV, Es sei p(; 2).eine nattiflfche Zahl und es sei

.(22')‘ o 1=c -}I—p'

III_\
fIA

Es exzsttert eine von ¢ und p unabhangtge Zahl /9 so dag im Intervall [——1 8
_ein (von ¢ und p abhangzges) orthonormiertes System von den Treppenfunk-
“tionen {gi(c, p; x)} (I=1,...,p%) angegeben werden kann, welches. die folgen-
‘den Bedmgungen erfizllt ‘ "
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es gibt eine von ¢ und p unabhdngige positive Zahl M, so duff
(2.3) ie,p;x)<M (—1=x=81=1,...,p)

ist, es existiert ferner fiir jeden Punkt x € [% -;—) eine von x ubhdngige na-

tiirliche Zahl m(x) (< p), so dap die Funktionswerte g,(c, p; X),..., &uwin (¢, P; X)
positiv sind und :

m(r)

(2.4) g, p;x)>Cleplogp

-~

I

gilt, wo C eine von ¢, p und x unabhdngige positive Zahl ist.

Fiir c=1 wurde dieser Hilfssatz im wesentlichen von D. MENCHOFF
(I2), S. 110) bewiesen.

Be\;/eis'von Hilfssatz II'. Es sei fir I=1,..., p
, Yy -
S - lclp 7 fiir —x<x<%,
onlc, p; X) = cp x———— cp
. ( lep
r —=x<oex,

— fii -
cpix—I4-Vep cp
Offenbar ist ' S

w(c, p;x) >0 fiir
und
(2.5) oe, i) ST (—oeo <x< o0),

ferner kann gezeigt werden, dab

2
ad

1 4Yep < d+)ep
mi(c, p; x)w,(c, p; x)dx —lo —
]J S loge g(a+2Ycp) Vep

ist. (Siehe D. MENCHOFF [2], S. 111.)

2

(2.6) - 7

<

+

. 1 1 . . . A
Es sei x¢ [55’?)' Dann gibt es eine von x abhingige natiirliche Zahl
m(x), % = m(x) < p?, so daB

2.2
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ist, und nach (2.2)

m(r) - m(r) ) m(r) 2 .

- -l ] !

> a\C, P, X)={C _— < : —
: = pi = p;: cp? x—l+I/cp V—p% mx)—I+Yep+1 -
2.7 »i2 ' .

m(:r)

—~ - dx - .
=V iep | —2X_ s Zyepl
_p; k+l/ lc 5J x+Vep 7 leplogr

besteht.
Da jede Funktion w(c,p; x) mit der Ausnahme eiries einzigen Punktes,

wo sie eine Unstetigkeit von erster Art hat, im Intervall [—1, 2] tiberall stetig
- ist, so gibt es in [—1, 2] Funktionen gi(c, p; ) (I=1,. .., pY), die die folgen-

l°§x§2 ist

den Bedingungen erfiillen: g/(c, p;
: &i(c, p; x) >0,
und es gilt im Intervall [—1, 2] iiberall

. ' P
|&(c, p; X)—wi(c, p; x)| <;,17 min (I,Tl/t:_p logﬂ)-

Auf Grund von (2.5) ist _ _ :
(2.8) o c @i pix)i<2 (—l=x=2; I=1,...,09 .

“und nach (2. 7) kann 2u jedem Punkt x € [%, ]7) eine von x abhéngigé

natiirliche Zaht m(x) (< p*) derart angegeben werden, daB die Funktionswerte
&i(c,p; %), ..., 8 (c, p; X) positiv sind und

m(r)

(2.9) 2 &(c,p;x) >— Veplogp

gilt. Endlich erhalten wir auf Grund von (2.6)

(2 10) 'ai.j(cy P)l < Yli(crp) (Il“ji:d, 1 §l—.<:P2, 1 élépQ; d=]y-'-1p2—l)l
wo ‘ S
@is(e, )= | &e, pi D Zite P 0%

. J

o1 4Yep d+Vep

- — o +
oge a@+2Vep) Ve

- rae,p)=

sind. .
Es. sei

(¢, p) =2, 'ua(c,p)=2(1+§y,.(c,p)) ‘ ':'(d=,l,..’.,p?—'1).
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Dann ist

(2.11) - ua(e, p)—taa(c, ) > 27a(c, p) ©  (@=1,..., pP—1),"
ferner kann nach den obigen gezeigt werden, da8

©

~ 1 y+Vep
Ups. (c,p)<20+8ch[ —log T+ dy=-
' ' : y(y+2VCp) cp T

log(l+t)

gilt, wo 8 offenbar eine von ¢ und p unabhangxge Zahl ist, £>2. (Slehe
D. MexcHOFF [2], S. 113)
Der iibrige Teil des Beweises ist identisch mit dem Beweis des entspre-
" chenden Menchoffschen Hilfssatzes (siehe D. MENCHOFF [2], S. 114—115). Der
Volistandigkeit halber sei aber auch dieser Schiuff in Einzelheiten ausgefiihrt.
Es sei 1 =d = p*—1. Nach (2.10) und (2.11) wird die Bedingung
(2. 1) fiir die Zahlen «;;(c,p) (ji—j|=d, 1 =i=p, 1 =j=p’) und fir das
Intervall (ua-1(c, p), (ua(c, p)] erfiillt. So kann man mit Anwendung des Lemmas
von D. MENCHOFF die Definition der Funktionen gi(c, p; x) ({=1,..., p*) auf
das Intervall (2, u,.1(c, p)] erweitern, dérart, daB die folgenden Bedingimgen
“erfiillt sind: @i(c, p; x) ist eine Treppenfunktion, ferner ist
(2.12) ' 8@, pi )| =1,

ug (e, p)

Zi(c, p; 0)gi(c, p; X)dx = —eaii(c, P)
ug_ 1 p) .

(li—jl=d; l=i=p; 1=j=p;d=1,...,p°—1)
und : . )

g (c, p)

| & p;%) &, p; x)dx =0

ud_;(c, p)
(i%); li—jlFd 1=si=sphs 1=j=p;d=1,..., /=)
SchlieBlich im Intervall (u,._(c, p), 8] werden die Funktionen g,(c p,x)
(I=1,...,p") wie folgt definiert. Es sei

. 13) ' gie, p;x)=(—=1y . :
(Zapsh<x=2(,p;D; s=1,...,25 I=1,...,p),
wo o

2,6, 5 D) = tp-1(6, P) 7 (B—ttn1(c. )
ist.
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Nach dem obigen ist es klar, daB die so im Intervall [—1, 8] definier-
‘ten Funktionen Z:(c, p; x)’ Treppenfunktionen sind, zueinarider orthogonal sind
und fir sie (2.9) erfiillt erd Ferner gilt nach (2.8), (2.12) und (2.13) .
'v(2 14) o o lgz(cp,x)]<2 (—1<x<,8 1=l=p).

Es sei gesetzt
y-12

gz(c,p,x)—g Jfg,(c,p,x)dxg gz(c,p,x) » (= l,,-;_._,_p*)-"
Da. nach @ 8) (2.12) und (2. 13) ' S

0<p-2< ig,(c,p,x)dx<4(ﬂ+1)

_ist, so folgt fﬂr dxe Funktlonen gz(c,p,x) die Unglelchung (2 3) aus.- (2 14)'
und die Ungleichung (2.4) aus (2.9). : A

~ Damit ist der Hilfssatz II’ ‘bewiesen.

Ist I= —[u v] ein beliebiges- endliches Intervall 50 sel -

.'g,'(é,p,l;X)“ Vﬂ+1g,(c,p,—1+(ﬂ+ I)——)~ fﬁr u<x<@, -

S S o . g \ ~ sonst

(U=1...p und sei _ T o
0N [p’-i-l( + )+ ’ﬂ+1( +’)+”)
~ Es ist klar, daB  -- o

N0 g iy,
e fg,(c,p,f 086, 152) 5 — ) e i)
Aus 2. 3) folgt ferner die Ungleichung - .
216 - : ,g,(c,p,/ x)[<Vp’+1M g (ugi‘g v).
'Endlxch 1st o o : :
' o - H(I) x

“und fiir x E G(c, I glbt es nach (2.4) eine von x abhingige naturhche Zaht
- m(x)(< pH, derart, daB die- Funkhonswerte g,(c, 1 x) . g,,.(,,(c, p 1 x)
alle posmv sind und , L

m(x)

e 2g:<c,p,1x)>Vﬂ+ICchogp

- gilt.

Mit Anwendung des Hnlfssatzes I kann das Entsprechende des Hnlfs- '_
satzes lll bewxesen werden
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Hilfssatz UI'. Es sei {a.} eine positive, monoton nichtzunehmende

Zahlenfolge, die die Bedingung (1.1) erfiillt. Es kann dann eine [ndexfolge
@)y <p, <o <y, < -+ und ein im Grundintervall [a, b] orthonormiertes
Funktionensystem {®,(x)} angegeben werden, so dag die folgenden Bedingun-
gen. erfiillt sind: die Funktionen ®,(x) sind gleichmdfig beschrdnkt :
(2.19) | D (x)| <M @=x=b; n=0,1,...);
zu fast allen Punkten x des Intervalls [a, b] gibt es fiir unendlich viele Indizes
m eine von x und m abhc‘ingige natiirliche Zahl n,,(x) (< 4"™'—1), so dag
die Funktionswerte ®@x, (x),. @\,,,+,.,,,(r)(x) gleiches Vorzeichen haben und

m

(2.20) Py, () - +®mmm@N>Da

Vsl

ist, wobei Ny==0, N,=4"+.--+4"" (m = 1) bedeutet und D eine von m und
x unabhdngige positive Zahl ist.
Beweis von Hilfssatz III'. Da die Folge {a.} positiv dnd mo-

noton nichtzunehmend ist und die Bedingung (1.1) erfiillt, kann mit der bei
dem Beweis des Hilfssatzes Il angewendeten Methode gezeigt werden, daB

(2:21) 24 ad, log? 4" =

n=0

ist. Es seien g, <y, < - <y < -+ diejenigen Indizes n(= 3), fiir die
(2 22) ) 4n+1 aiu+1 log‘.’ 4n+1 = 23-1) .

ist. Da die auf die {ibrigen Indizes erstreckte Teilsumme der Reihe (2.21)
offenbar endlich ist, so folgt aus (2.21);

(2.23) Z4“’”“a w1 log” 44!

_ Es sei . _
2 . R -1
Con == (4“"‘+la;u,,,+l IOg' 4“m+1) + ] (m ='1, 2, .. -).

Da 1, =3 (m==1,2,...) gilt, so ist auf Grund von (2. 22)

(2. 24) 1 =¢n =27 (m=1,2,,...).
Ferner ist ,
' El— _'% min {1, 4*m* @3, 41 log” 4"} (m=1,2,..)

und so ergibt sich nach (2 23), daB

Ma

(2. 25)

1
—_——=
Cm

1
i

m
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gilt. Es soll noch bemerkt werden, daB .
(2.26) Np=4" 4o afmcgfmpgfn™t o gim ™ gt (m=1,2,..))
ist.

Mit der bei dem Beweis des Hilfssatzes Il angewendeten Methode
werden wir nun ein aus Treppenfunktionen bestehendes, im Intervall [a, b]
- orthonormiertes und gleichmdBig beschrinktes Funktionensystem {g.(x)}
(n=0,1,...) und eine Folge voh meBibaren Mengen Gn < [a, b] konstruieren,
derart, daB die folgenden Bedingungen erfiillt sind:"

a’) zu jedem x€G, gibt es eine natiirliche Zahl n.(x) (< 4" —1),
so daB die Funktionswerte @y _(x),..., Py, 10, =(x) gleiches Vorzeichen haben
und (2. 20) erfullt wird;

b’) die Mengen G, (m=20,1,. ) sind stochastisch unabhéngig und es gilt

—a 1
Z(ﬂ -+ 1) Cm+1
Die Konstruktion werden wir mit vollstindiger Induktion folgenderweise

durchfiihren.
Nach (2. 24) wird die Bedingung (2. 2) fiir die Zahlen ¢,, p, = 2** erfiillt
und daher kann der Hilfssatz I’ angewendet werden. Es sei

(2.27) 14(Gn) =

By (x) — V__g,(cl,pl, ooy (=1,.. ., 4%)

und G,= G(c,, [a, b]). Nach dem Hilfssatz IV’ sind diese Funktionen Treppen-
funktionen, die nach (2. 15) ein in [a, b] orthonormiertes System bilden und

. v 12
fiir die infolge (2.16) die Ungleichung (2. 19) mit M’=(§—E?1) M besteht.

Nach (2. 17) besteht (2. 27) fiir m=0 und fiir x € G, existiert es nach (2. 18)
eine von x abhéingige natiirliche Zahl ny(x) (< 4*'—1), so daB die Funktions-
werte Dp(x), ..., Puw(x) gleiches Vorzeichen haben und

1/2 A
| Do(x) +- - + Dy (x)| > (‘8+ l) 1@ i log® 44) ! 1 20, >

> (’Zi;) C(2"" ausilog 47) 12y,

gilt, woraus sich auf Grund der Monotonitit -der Folge {a,} und der Un-

gleichung (2. 26) ergibt, daB (2. 20) fiir m= =0 mit D———(’g—t—:;) C besteht.

b:
Also wird die Bedmgung a’) fiir m= 0 erfillt.
Es seinun k(= 1)eine beheblge natiirliche Zahl. Wir nehmen an, daf die
Funktionen @,(x) (n=0,...,N.—1) und die Mengen Gn (m=0,...,k—1)

A6
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schon definiert wurden: die @.(x) sind Treppenfunktionen, bilden im Intervall
[a, b] ein orthonormiertes System und die Bedingung (2. 19) ist erfiillt, ferner
sind die Bedingungen a’), b’) erhillt insbesondere sind die Mengen G,, ...,Gx1
stochastisch unabhdngig.

Man kann das Intervall {g, b] in endlich viele Teilintervalle /, (¢ =1,...,7)
zerlegen, so daB in den einzelnen Teilintervallen die Funktionen @,(x)
(n=0,...,N;—1) konstant sind. Bezeichnen wir mit /,’ bzw. mit 7, die
zwei Hailften des Intervalls /, (o=1,...,r). Auf Grund von (2.24) wird die
Bedingung (2. 2) fiir die Zahlen cii1, pre1 =2 erfiillt und so kann der
Hilfssatz II’ angewendet werden. Es sei gesetzt:

(D.\'k+1~1(x) = b: Zgz (Cl.+1, Prsty Ios x) Zgz (CH-I; Drs, 1¢; X)

(I=1,...,4%1) und
G, — L'J1 (G(ewnr, U Gleinns 1))
o=

Nach dem Hilfssatz II' sind auch diese Funktionen Treppenfunktionen.
Mit Anwendung von (2.15) kann mit der bei dem Beweis des Hilfssatzes 111
angewendeten Methode gezeigt werden, daB auch die Funktionen @,(x)
(n=0,..., Nuuu—1) ein orthonormiertes " System bilden und nach (2.16)
besteht fiir die Funktionen @,(x) (n= N, ..., Nys1—1) die Ungleichung (2. '19)
mit dem gleichen M’. Nach (2. 17) kann leicht eingesehen werden, daB (2.27)
auch fiir m =k besteht. Fiir x € G;. existiert nach (2.18) eine von x abhdn-
gige natiirliche Zahl ni(x) (< 4*+'—1), so daB die Funktionswerte @y, (x),...

) P amo(X) gleiches Vorzeichen haben und

[ D, (X) + ++ + Py sy (¥)] >

| a+1)" Pry1tl g2 2 gherrt1) 7t 12 ohpq o
> b—a C{(4 a#m“ log 4 ) -+ ”‘ - 2 Wiy >

12 B
> (g_‘t;) C(2#k+l+la;"k+l+l log 4“"'““) l 2““‘.."“1

ist, woraus sich auf Grund der Monotonitat der Folge {a.} und der Unglei-
chung (2.26) ergibt, daf (2.20) auch fir m =k besteht, wenn D wie oben
gewahlt wird. Also wird auch fiir m=#k die Bedingung a’) erfiilit. Endlich
ist es klar, daB auch die Mengen G,,..., G stochastisch unabhingig sind. -
Damit ist unsere Konstruktion mit vollstindiger Induktion erbracht.
Ist x € lim G.,, so besteht (2. 20) fiir unendlich viele Indizes m. Nach

. moa®

(2.25) und (2.27) ist o
mg; #(Gn) = oo,
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hieraus und aus der stochastischen Unabhangigkeit der Mengen G.. mit An-.
wendung des zweiten Borel—Cantellischen Lemmas folgt, daB (lim G.)=

=b—a ist. e
Damit ist der Hilfssatz 1II’ bewiesen. ,
Mit der Anwendung des Hilfssatzes III' konnen dann die Sitze I, II
ebenso wie in § 1 bewiesen werden, aber die erhaltenen Funktionensysteme
sind jetzt gleichméiﬁig beschrénkt.

§ 3. Partialsummen der quadratlsch mtegnerbaren
Entwicklungen.

Um zu zeigen, daB die Abschdtzung (6) nicht verbessert werden kann,
beweisen wir den folgenden Satz. '

Satz lll. Es sei {w(n)} eine positive, monotfon nichtabnehmende Zahlen-
folge, die die Bedingung
w(n) = o(log n)
erfiillt. Es kann eine Koeffizientenfolge {a.) € P und ein im Intervall [a, b}
orthonormiertes Funktionensystem {@,(x)} derart angegeben werden, daf in {a, b}
iiberall gilt: .
| 3.1 &n; (N) Z 0 Pu(x)| =
Das Funktionensystem {(D,,(x)} kann auch gleichmdpfig beschrdnkt gewdhit
werden.

Beweis von Satz lll., Es sei {Ww(n)} eine positive, monoton nicht-
abnehmende Zahlenfolge, die die Bedingungen

3.2) . w(n) ==o(w(n))
und
3.3) w(n) =o(log n)

erfiilit, z. B. sei

w(n)=w(n) (%0%1—';)“, (n=213,...,0<e< 1))

"Auf Grund von (3.3), mit Anwendung von Hilfssatz 1 gibt es dann eine
positive, monoton nichtabnehmende Folge {v(n)}, fiir die

& wn)
g (n log® n) v‘(n)

- 18) Flir n==0, 1 setze man z. B. w(0)=_w(l)=w(2).
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und

1Ms

(3.4) :g(TlFé‘n)T—(E

gelten. Es sei d,= (Jnlog®nv(n))™" fir n=2 und G,=d,=as. Dann ist

(3.5) Za,,w (n) < %
und '
7 log?n = oo.
| 'go' 0g°n=oo
‘Nach Satz | kann ein im Intervall [g, 8] orthonormiertes Funktionensystem

{,(x)} angegeben werden, so dab die orthogonale Reihe

@

(3.6) | > G, D)

n=0

in [a, b] uberall divergiert; das Funktionensystem {®.(x)} kann auch gleich-
mifig beschriankt gewahlt werden.
Wird die Bezeichnung

S (x)= Z w(n)a, D.{x)

n=y

eingefiihrt, so erhalten wir mit einer Abelschen Transformation:

g':a,.@,.m Z_ y P(1)d: Pn(x) =

-l

N-1 1
- ,'Zz() (W(n) T wht 1)) Sy (x)+ ——(N)SN(X)

und so ist
3.7) W—(‘m;mn)m B, () — é‘jua' D,(x)— Z ( En) T +l))sﬂ(x)

Da die Folge {w(n)} monoton nichtabnehmend ist, so ergibt sich auf Grund
von (3.5), daB

é(wzn) - ﬁ(nl.xr. 1))0J. [sn(x)|dx §

b

=(b—ay® io (wzn) - W(n]-i— 1)) ( f si(")‘;")m “<"

2

=(6—a)* (Z ‘7"'#("’)1 b) (u’;n) ~ 5T 1)) <
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ist, und so nach dem B. Levischen Satz konvergiert die Reihe

- 1 1 N
2 (W(n)_W<n+1))s"(x)
fast iberall in [a, b].
Da die Reihe (3.6) in [a, b] tiberall divergiert, divergiert die rechte Sexte
von (3.7) fast tiberall und daher ist fast iiberall

W(N) ZW(IZ)G,‘ @,;(X)—I— 0(1)

Daraus ist nach (3.2) klar, daB fir die Koeffizientenfolge a,=w(n)a.
(n=20,1,...) und fiir das oben definierte Funktionensystem {®,(x)} die Re- -
lation (3. 1) fast iiberall in [a, b] besteht. Nach (3.5) ist {a.} €

: Wir bezeichnen mit E die Menge der Punkte von [a, 8], wo (3. 1) nicht
besteht (#(E)=0). Es sei @,(x)=1 (n=0, 1,...) fiir x € E. Das so erhaltene
Funktionensystem - {@,(x)} bleibt in [a, b] orthonormiert und gleichmaBig
beschrinkt, wenn es auch friiher gleichmaBig beschrankt war, und fiir dieses
System bleibt (3.1) in den Punkten x¢ E giiltig. Dann ist

&

Z an @n (x) - au

fiir x € E. Nach (3.4), auf Grund der Definition der Folge {a.} ergibt sich
mit einer einfachen Rechnung, dafl
_ .

Tim
Noo logNn =0

= o

ist. Hieraus folgt nach (3.2) und (3.3), daB fiir dieses Funktxonensystem
(3. 1) auch in den Punkten von E erfiillt wird.
Damit haben wir den Satz Il vollstindig bewiesen.

§ 4. Uber die Rademachersche Abschitzung.

Daf die Rademachersche Abschitzung (8) im allgemeinen nicht verbessert
werden kann, wird durch den folgenden Satz gezeigt.

Satz IV. Es sei {l.} eine positive, monoton nichtabnehmende Zahlen-
folge, die die Bedingung

@ login
() > =

n=2

erfiilli. Es kannim Intervall [a, b] ein orthonormiertes Funktionensystem {®.(x)}
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angegeben werden, so dag in [a, b] iiberall

4.2) lim — Z@ ()=

Noo ¢N
ist. Dieses Funktionensystem {®,(x)} kann sogar glelchmaﬁtg beschrinkt
gewahlt werden..

Beweis von Satz IV. Wir zeigen zuerst, daf es eine positive,
monoton nichtabnehmende Zahlenfolge {/,} gibt, fiir die die Bedingungen

(4.3) l=o(l.),

(4. 4) 2 17 log* n== oo
und =
4.5) - 2 L log™ < oo O<e<1)
erfiillt sind. "
Es sei [ =max {l.,logn} (n=2,3,...). Offenbar ist
(4-6) L="r (n=23,..)
und _
(CA)) b=l (n=2,3,..).

Wird die Bezeichnung
' Z(I)‘logﬁn (n=2,3,..))

n=2

eigefiihrt, so folgt aus (4.1) und aus der Definition der Folge {/z}, daB .

4.8 Sm <M (m=2,3,...)
und B

(4.9) Sm <Smy1t (M=2,3,..), lim §,, = oo
ist. '

Es sei n,(=2) die kleinste natiirliche Zahl, fiirdie s, >2 ist. Es ist
klar, daB

(4.10)

@©

logn .
n=ingi1 (lf"l)2 sn-l lOg Sn-1
gilt. Diese Summe ist namlich eine obere Summe des divergenten Integrals

dx
xlog x’
§ng -
die zu der mit den Teilpunkten s, , S,.1,... angegebenen Einteilung der
Halbgerade [s.,, o) gehort.
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"Fiir 0<s<1 ist

(4.11) S log* n

T G e oo
nZmgr1 (1.)sn log®* $a

1

da diese Summe die untere Summe des konvergenten Integrals

[o4]

J dx
x log®-¢ x
Mo

ist, die zu der mit den Teilpunkten s.,, Sa+1,... angegebenen Einfeilung der
Halbgerade [s,,, o) gehort. Auf Grund der Definition der Folge {[5} und der

§

Zahl n, ist es klar, daB fiir n > n, s,,_1>%s,. ist und so folgt nach (4. 11):

o]

_ log*n
n=mg+1 (1;)2311-1 log?'—sSn—l
So erhalten wir auf Grund von (4.8):

< log'*sn S “log’n
(4. 12) =Z+1 s Togom < =Z+ oo <™ (0<e< 1)

Es sei nun [, =13Vs, 1 log s, fir n>n, und I, =1l fir 0 <n = n,
Nach (4.6), (4.7), (4.9) und nach der Definition der Zahl n, is1 es evident,
daB die Zahlenfolge {l.} positiv, monoton nichtabnehmend ist und die Bedin-
gung (4. 3) erfiillt; wegen (4. 10) und (4. 12) werden auch die Bedingungen
(4.4) und (4. 5) erfiillt. Nach (4.5) gilt

< % O<e<]).

@

27'2< oo

n=(
und so folgt aus der Monotonitat der Folge {I.}, daB
(4.13) Vn I'=o(1)
ist. ’

Da {I,} eine positive, monoton nichtabnehmende Zahlenfolge ist und die
Bedingung (4.4) erfiillt, existiert nach Satz I ein in [a, ] orthonormiertes
Funktionensystem {®.(x)}, fiir welches die orthogonale Reihe.

(4.14) . : 2 [ @, (x)

in [a, b] fiberall divergiert.
Wird die Bezeichnung

Sy(x) = "é: D, (x) .
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eingefiihrt, so ergibt sich mit einer Abelschen Transformation:

SToa@=3 (1) s@+ e

n=0 &n n=>0 lu+l
und so gilt
1 e ¥
(4.15) So,m=SLowm- (L. )s,,(x).
l.\ =0 n=\) ln n=0 Iu ln+1

Mit einer einfachen Rechnung bekommen wir die folgende Abschitzung:

b3 (l——) flsn(x)ldx = (0—a)* > (——i)( j s?.(x)dx)m —

a=u\ [ a+1 n=0 [II n+1

(4.16) « . ) ¢
-0 SyiFi(L-L)

. A n=0 n In+l
Fiir jedes s ist

il/h_ﬂ(_i—‘_i)———+ > (aFi—ya)— VS+11—

10 =i 1 s+1

@.17) fvm(%—,i)—-—q (aFT—V7).

Mit Anwendung der Cauchyschen Ungleichung erhalten wir auf Grund von
(4.5):

2, 1 (log'* )2 1
N
=, (a+1—Vn)=00) Z L, (nlog'*<n)'~ =
® loglten (' 12
= 0(]) 4, g_, 3 <7 lOg’*f ; < o0,

woraus sich ergibt, dafi die Reihe (4.17) konvergent ist. Auf Grund von
(4. 16) und dem B. Levischen Satz konvergiert die Reihe

?(L__i)sn(x)

“h:qi) Iu n+l
fast tiberail in [g, b]. Da die Reihe (4. 14) in [a, b] iiberall divergiert, so di-
vergiert auch die rechte Seite von (4.15) fast iiberall, und folglich ist fast
iiberall

,_l @,(x) == o(1).

u[\/z

Daraus folgt nach (4. 3), dab (4. 2) fast iiberall in [a, b] erfiillt wird.
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Wir bezeichnen mit E die Menge der Punkte von [a, 5], wo (4.2) nicht
besteht (u(E)=0). Es sei @.(x)=1 (n=0,1,...) fiir x€ E. Nach (4.4) ist
lim Njly=co und so besteht (4.2) fur dieses Funktionensystem {®,(x)}

No>ow
iiberall in [a, b].
Damit wurde der Satz IV volistindig bewiesen.

§ 5. Uber die GréBenordnung der orthonormierten Funktionen.

In diesem Paragraphen wird gezéig’r, daff auch die Abschatzungen (10)
und (11) im aligemeinen nicht verbessert werden konnen. Namlich gilt der
folgende '

Satz V. Es sei {4.} eine positive Zahlenfolge, fiir die die Bedingung
_ ' @ '

(5. 1) . 2 —2 _
n=>0 'ln

erfiillt wird. Dazu kann ein im Grundintervall [a, b] orthonormiertes Funktio-
nensystem {®,(x)} angegeben werden, so dag in [a, b] iiberall
G.2) Tim - | Dy (x)] = oo

N> j,_v
ist.

Aus (5.2) folgt, daB auch die Relation
' —1 &
lim -7 >, ®i(x)= oo

Noo AN n=0

iberall in [, b] besteht. :
Der Satz V kann mit einer einfachen Konstruktion leicht bewiesen werden.

Beweis von Satz V. Nach einem bekannten Satz™) kann auf Grund
von (5.1) eine positive, monoton nichtabnehmende Zahlenfoige {4.} angegeben
werden, die die Bedingungen -

(5.3) A= 0(x)

@«
11) Dieser Satz lautet folgenderweise: Divergiert die Reihe Z u, (1,>0,n=0,1,...),
n=y
s0 existiert eine positive, monoton nichtabnehmende, ins Unendliche strebende Zahlenfolge
® .
{t.}, so daf Zu,,/t,.:oo ist. (Siehe z. B. G. H. Harovy—]. E. LirrLewoop—G. PoLva {1],
n=) " ’

S. 120—121)
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und
& 3-2
5. 4) A Zoz;-—_- oo
erfiillt. : :
Ohne Beschrankung der Aligemeinheit kann angenommen werden, daB
A= Yb—a ist.

Es sei

a1 =0, an=_12 1" (m=0,1,..)
n=1\

und bezeichnen wir mit /., das Intervall [@m-1, @=). Dann ist
w(ln)=n (m=0,1,...).

Im folgenden werden wir ein im Grundintervall [g, b] orthonormiertes
System {®, (x)} von Treppenfunktionen der Periode (b—a) konstruieren derart,
daB die Bedingung

(5.5) Pu(x)=7n fir x€h  (1=0,1,...)
erfiillit wird.
Es sei | ,
Y4 fur xel+Il(b—a)®) (=0, +1,..),
®°(¥)_ 3 0 sonst.
Offensichtlich ist @,(x) eine Treppenfunktion der Periode (b—a), gilt

b 83
- By()dx =1 | dx=1
[ . I

und fiir n=0 wird (5.5) erfiillt.

"Es sei n eine beliebige natiirliche Zahl. Wir nehmen an, daB die Funk-
tionen D,(x),..., D.(x) bereits definiert wurden derart, daB sie Treppen-
funktionen der Periode (b—a) sind, in [a,b] ein orthonormiertes System
bilden, und fiir die Indizes O,...,n (5.5) erfiillt wird. Dann kann eine Ein-
teilung des Intervalls /.. in endlich viele Teilintervalle 7, (o =1,..., r) ange-
geben werden derart, dal in den einzelnen Teilintervallen die Funktionen
Dy(x), ..., D.(x) konstant sind. Bezeichnen wir mit I;, I, die zwei Hélften
des Intervalls I, (o=1,...,r). Wir setzen '

Aoy fir x€lj4l(b—a) (I=0,+1,..),
Pusi(X) = —Zpyy fiir x€ly+1(b—a) (=0, +1,..),
0 sonst,

12) Fiir J={[u, v] bezeichnet I+ /(b—a) das Intervall [u - [(b—a), v+ {(b—a)].
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Offensichtlich ist @ (x) eine Treppenfunktion der Periode (b-—iz), gilt
, o
J @ZH(X)dX ==13+1 f dx=1

a - Iyst

und fir 0 =m=n ist

J D, (X) Prir (X)dx = J D (X) Do (x)dx =

In+1

roo~

%In+1 g;j (p,,,(x)dx—ZJ

¢m(x)dx$=0. ,
e=1 :
Ig Ib'

Durch vollstindige Induktion erhalten wir also ein in [a, 8] orthonor--
miertes Funktionensystem {®,(x)}, fiir welches (5.5) erfiillt wird. Fiir jeden
Punkt x € [a, b] ist wegen der Periodizitit und nach der Bedingung (5.4)

fiir unendlich viele Indizes
| Da(x)| = 1n,
woraus sich auf Grund von (5.3) ergibt, da (5.2) fiir dieses Funktionen-
system {®,.(x)} tberall in [a, b] erfiillt wird.
Damit haben wir den Satz V vollstaridig bewiesen.

§ 6. Uber die Lebesgneschen Funktionen:

" In diesem Paragraphen wird gezeigt, daB die Abschitzung (13) in der
Einleitung nicht wesentlich verbessert werden kann. Es gilt ndmlich der

Satz V. Es sei {w(n)} eine positive, monoton nichtabnehmende Zahlen-
folge, fiir die die Bedingung
. @ 1
®6.1) gg(n log m)w*(n) >
erfiillt wird. Es kann ein in dem Grundintervall [a, b] orthonormiertes Funk- -
tionensystem {0.(x)} angegeben werden, so dag in [a, b} iiberall

b
N

- | X i -

;in; zl; Jl Zog,.(x)o,.(t) ‘ df=o00 , (L. = Niog Nw(N))
gitt. . )
Wir schicken zwei Hilfssidtze voraus.
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Hilfssatz IV. Es seien' r und » natiirliche Zahlen. Ist

2r_
. ) 2”
so gilt fiir jede natiirliche Zahl p die Abschitzung

2

(6.2) J

2_r

27‘
die diadisch rationalen Punkte ausgenommen iiberall, dabei ist r.(x)=
==sign sin 2*:tx die k-te Rademachersche Funktion (k=0,1,...).

x+p-1

"Z,‘ r(x)n(t)

=x

1

Beweis von Hifssatz IV. Ist x keine diadisch rationalé Zahl, so '

2r
ist r.(x) r.(¢) als Funktion von ¢ betrachtet im lntervall [ o 2] streckenweise
x+1
—2r

konstant, undzwar ist sein Wert in Intervallen von der Gesamtlinge e

gleich +1, und in Intervallen von der gleichen  Gesamtlinge gleich —1.
Der Wert der Funktion r.(x) r.(f) + rxa(x)r.(¢) ergibt sich aus demjenigen
der Funktion r.(x)r.(f) indem man in -der ersten Halfte der einzelnen
Konstanzintervalle zu dieser Funktion -1 addiert und in der zweiten
Hilfte 41 subtrahiert. Also nimmt die Funktion r.(x)7.(f) 4 re1(X) 71 (2) die
Werte +2, O, bzw. —2 der Reihe nach in Intervallsystemen von den
Gesamtlingen . : '
x—2r 2"'—2r 2*'_2¢
’2x+2 ’ 2 2=¢+2 ’ 2x+2
an. Mit volistindiger Induktion erhalten wir, daB falls x keine diadisch ratio-
nale Zahl ist, die Funktion

~§ r(x)ri(t)

Je=—=x

als Funktion von ¢ betrachtet die Werte p, p—2,...,p—21,...,—p+2,—p
in Intervalisystemen von den Gesamtlingen

(p)z"“-,zr (p)z"“—zr (p)z"“—zr
0 2x+P rrcr 1 2’¢+P L p 27‘+P

annimmt. Also ist

)
xfp-1

(6-3) | f =

2 n(®) (t)‘dt——t

+l__2r

Ap

ax
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mit

1
Ep_-I

dy=

p(é)+@—z>u’)+---+(p—z[%D([g])}"

Fir p=1, 2 ist 4, = 1 und so ergibt sich (6. 2) aus (6. 3). H. RADEMACHER
hat gezeigt, daB

Aogp1 = 12a+2 (6=0,1,..))
und ' . :
1 20+1 _"__"_' .

Agor) = — 4o 6o (0’= 1,2,...)
| V= Vo :
gilt, wo 3 und % von o abhadngigen Zahlen sind (0=%, 9 =1) (siehe
H. RADEMACHER [1], S. 134). Auf Grund von diesen Formeln und (6.3)
erhalten wir, daB (6.2) auch im Falle p = 3 erfiillt wird.
Damit haben wir den Hilfssatz IV bewiesen.

Hilfssatz V. Es seien eine beliebige, natiirliche Zahl p und eine
reelle Zahl ¢ mit :

(6.4) 0<— =1

vorgegeben. Dann kann ein im _Intervall [0, 2] orthonormiertes System von
Treppenfunktionen {hi(c, p,; x)} (I=1,..., p) derart angegeben werden, daf die
folgenden Bedingungen erfiillt sind:

(6. 5) _ ’ Jh,(c,p;x)dx=0 (=1,...,p),
0 .

2

, L .
(6. 6) Z;h;(c, p;x)h(c, p; t)l dt<|2cp O=x=2),
=

0

ferner existiert eine mefBbare Teilmenge H(c) von [0, 2] mit

1
6.7 w(HE) >3
fiir deren Punkte x gilt:

2 .
. P +
(6.8) : ”l_zl h(c, p; X)lu(c, p; £) | dt > %VZcp.
= ‘
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Beweis von Hilfssatz V. Es seien r und » natiirliche Zahlen,
fir die die Ungleichung

2r _ 1 2r+1
(6.9) > = - < >
erfiillt wird. Es sei fiir I=1,...,p
Ourens(x) fiir x € [0, 255]
Barsin(x) filr x € (-27, z],
wo
21-‘_’ 12
(6. 10) 61=( . )
und
r -2
(6.11) 02=(4—-2,¢—.2)
ist. .

Aus der Definition ist es klar, daB die Funktionen A (c, p; x) Treppen-
funktionen sind und ein orthonormiertes System in [0, 2] bilden, ferner (6. 5)
erfiillt wird.

Nach (6.9) ist -

(6. 12)
und nach (6. 9) und (6. 10)

.(6 13) Jc>6,= V_

Ferner ist nach (6. 4), (6 9) und (6. 11)

(6. 14) ' ﬁé 6, >

Da die Funktionen gi(c, p;x) ({=1,...,p) in [0, 2] ein orthonormiertes
System bilden, so ergibt sich mit Anwendung der Bunjakowski—Schwarz-
schen Unglelchung

2r 1
2>~ 2¢

1

1/2

S‘h,(c p; X)h(c, p; 1) }dt< V—; J(Z hi(c, p; ) i(c, p; t)) dts —

U]

— 12|30
ti=1
und so auf Grund von (6.4), (6.13) und (6. 14) erhalten wir (6. 6).

= /2 max {6, 6;} p,
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Es sei H(c)':die Menge, die so entsteht, daB wir aus dem Intervall
[0, g] die diadisch rationalen Punkte weglassen. Dann wird (6.7) nach
(6. 12) erfillt und. fiir x € H(c) gilt nach (6.13). und (6. 14)

2 » _ 2

”Zhz(c,p;x)hz(c,p;t)ldté j
=1

0 ' 2r

2%

. 2 : i - - 9
y & ' 1
—6,6, j 3 (@ e () | dt> |[ ij
=1 ‘ 2. F 2
2r 29

2. o :
Nach (6.4) und (6.9) wird die in dem Hilfssatz IV vorkommeride Bedingung
erfiillt, und so ergibt sich mit Anwendung des Hilfssatzes IV die Abschitzung
~ (6.8). ‘ ' ,
Also erfiillen die Funktionen Ai(c, p;x) (I==1,...,p) alle im Hilfssatz
V gestellten Bedingungen. Damit haben wir den Hilfssatz V bewiesen.
Ist /= [u, v] ein beliebiges endliches Intervall, so sei

Lo X—ul :
m(c,p,l;x)r—%Vf”’(“"’-’z—v—u) fir #<X<v  G—1,..p)
o , © . sonst

und bezeiqhhen wir mit H(c, /) das Bild der Menge .H(c) bei der Trans-
Y4 v+ u. Auf Grund von (6.5), (6.6), (6.7) und (6.8) ist

r -
ghz(c,p;x)hz(c,p;t)ldt= '

x+p-1 .
kZ rk(x)r,,(t)ldt.

formation y=

2
es klar, daB ’ _
(6. 15) : _fhz(c,p,l;x)dx-—-‘O,
. I

(6. 16) [nn omep nax={0 TR ITS

~ ] . u(l) fir i=j,
. ol p
(6.17) ﬂ 2 hile, p, I; )hule, p, I; t)’dt <p()V2cp (=x=v),

. =1 .
; ,

(6.18) w0y > D
ist und fiir x€ H(c, I)

p .
3 .o, Emie 151 ’dt > w5 V%D

6.19) f

gilt.
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Beweis von Satz VI. Nach (6.1) ergibt sich, mit Anwendung des
in der FuBnote™) erwdhnten Satzes daB eine positive, monoton nichtabneh-
mende Zahlenfolge {w(n)} existiert, die die Bedingungen

(6.20) w(n)=o(W(n)),
@ 1
{6.21) 2 log myw' ()

erfiillt.
Es sei n, die kleinste natiirliche Zahl, fiir die
(n+ DHwrE™) =1
ist. Ferner sei d eine natiirliche Zahl mit
(6. 22) . 2logbd =d

und man setze
o Mm=m+d(m—1) (m=1,2,...).

"Offensichtlich ist wegen der Monotonitit von w(n)
6.23) (M +1DFE™) = 1 (m=1,2,..),

- ferner ist

‘(6 24). Np—2'm 4 2"t 4 .. +2n. 2n,"+2ﬂm-d+“.+2nm-(m—1)d<2;1',,,+1
{m==1,2,...) und wegen n,=n,—d(m—k)

m-1 m-1 m-1
Z znk/2 — 211,,._.2 Z 2-d(m-k)/2 — 271,,./2 2 Y (2- d/2)l <
k=1 =1

k=1
<12nm,/2 2—612 Z‘ (2-d/2)l < 27!,,,/2.2—(1/2.2;

hieraus ergibt sich nach (6.22) die Abschatzung

m—1

(6.25) : , Z 2R < 2"m'2 (m=2,3,..)).
Da fiir jedes s ’ -
o) 1 5-1 2'mil_y -1 1 2"1'1+l_-1 1
2 iogmwn — 2 log M)WA(n) = o
e (Rlogm)wi(n) A=t =, (0 ogn) ® = { naw (2™ S, N
ist, so folgt aus (6.21); '

] 1 -

€20 St wE)

Im folgenden wird mit Anwendung des Hilfssatzes V ein von der Folge
{w(n)} (und so auch von der Folge {w(n)}) abhingiges, im Intervall [a, 8]
orthonormiertes System der Treppenfunktionen {o.(x)} (n=0,1,...) und eine
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Folge {H.} (m=1,2,...) von mefbaren Teilmengen»vo:n [a, b] ‘definiéi't,' die
die folgenden Bedmgungen erfiillen:
a) fur jeden Index m(=1) gllt die Unglelchung

l\m—l

. 27) J

n=Nm-1

on('x)g,,(t) \d_t < V2"m“(n,,,+ HwER™) (@=x=b;N=0); '

LN

b) fiir x € H, besteht die Ungleichung

m']

2 On (X)Qn(t) ( dt > 1—]6- Vm)w(zjmﬂ);

N1

(6.28) f
c) die Mengen 1, (m—l 2,.. ) sind’stochastisch unabhdngig und gilt

© (6.29) w(Hy) . ((nm + D)

- Nach (6.23) erfiillt die Zahl cl—-(nl-l— 1) w*(2""") die Bedingung (6. 4),
so daB fiir die Zahlen & und p,=2" der Hllfssatz V angewendet werden
kann. Es sei ' -~

1 : .
91-1(x)=75———_3hz(c1,p,,[a, b];x) (=1,...,2%

und Hl-—H(cl, [a, b]). Nach dem Hilfssatz V sind die Funktionen e.(x)
{(n=0, N,—1) Treppenfunktionen und bilden nach (6.16) ein orthonor-
mlertes System im Intervall [a, b], ferner nach (6. 17), (6. 18) und (6. 19) werden
die Ungleichungen (6.27), (6.28) und (6.29) fiir m=1 erfiillt.

Es sei nun £ eine beliebige natiirliche Zahl > 1. Wir nehmen an, da
in [a, b] die Treppenfunktionen g.(x) (=0, ..., Nu.;—1) und die meBbaren
Mengen H,,..., H.., bereits so definiert wurden, da die ¢.(x) ein ortho-
normiertes System - bilden und die Bedingungen a)—¢) fiir die Indizes
m==1,...,k—1 erfiillt sind, insbesondere smd also die Mengen H,,..., Hi.
stochastlsch unabhingig.

Es gibt eine Einteilung des Grundintervalls [a, b] in endlich v1e|e Teilinter-
valle [, (¢=1,...,r), so daB in den einzelnen Teilintervallen jede Funktion
0.(x) (n=0,..., Nk-l—-’l) konstant ist. Nach (6.23) wird fiir die Zahl
&= (m 4+ 1)W2(2"**") die Bedingung (6.4) erfiilit und so kann fiir die Zahlen
<, pr = 2"% der Hilfssatz V angewendet werden. Es sei gesetzt: -

. 1 ¥ o N
Ox, -1 ()= ‘—Vb——_———b-; hi(cr, pr, I3 x)  (I=1,...,2%) |
und o ' ' ‘

— U H(, 1)
o=l '

AT
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Nach dem Hilfssatz V sind auch die Funktionen o,l(x) (Nict =En< Ny)
" Treppenfunktionen.

Es seien n und ! beheblge Indizes, 0 =n=~N,.;—1, 0 == 2",
Bezeichnen wir mit ¢,(n) den im Intervall /, angenommenen Wert der Funk-
tion o.(x) (e=1,...,r). So ist nach (6. 15)

b

(6. 30) jo,.(x)o\k e l(x)afx— 7o A_Zcp(n)jh,(c,.,p,,,le, x)dx =0.
Es sei 1 =i= 2%, 1<1<2"‘ Nach (6. 16) ist
b
e l r
J O3, i1 (D0, ()X == -bTath,-(ck,pk, lo; X) hick, pr, I3 x)dx =
« I?
3 0 o fir [+,
= 1 < o
b_a‘g_;,u(j,)———l fir i=/.
Daraus folgt nach (6. 30) daB die Funktionen ¢,(x) (n=0,..., N;—1) in [a,b]
ein orthonormiertes System bilden.
Fiir x € [a, b} ist .

b N
Np-1 e
j ) 9.»(x)0~(f)’d — 55 2 )| 2 le pi, fos D e, i, L B,
. """Nk 1 = =

o ,
-woraus sich nach (6. 17) ergibt, daB (6.27) auch fiir m = k erfiillt wird.

Es sei endlich x € H,. Dann existiert ein Index ¢ (1 =2 =r), so daB
X € H(cw, I7) . gilt. Es sei 1,=[u,, v (o—— I,..., 7). Dann erhalten wir mittels
der Integraltransformationen ' ‘

2, B
y_-—’lfp—llp(t-—ug) (9— 1;*--7r),
daB
; N1 1 r 2"
[ 2> en(x)on(t)‘df=m2f 2 ulew, P, Iy ; X) hucx, pe, Ios t){dt-——— _
o =gy =1 I=1 .
n IP

| gnk
b —a & u(IP)J Zh‘(c’ﬂp’n

~(x g )) h,(ck,ph,y)‘dy

ist. Da

2 G—u) €HE)
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ist, so folgt nach (6.8), dafi die Ungleichung (6.28) auch flir m=+k erfiillt
wird. Aus der Konstruktion folgt, da die Mengen H,,..., H, stochastisch
unabhingig sind.

' Nach (6. 18), ist es klar, daf auch die . Ungleichung (6 29) fiir m=k
besteht.

Somit haben wir durch vollstéindnge Induktion ein im Intervall {a, b]
orthonormiertes Funktionensystem {o.(x)} und eine Folge von mefibaren Men-
gen {H,.} konstruiert, so daB die Bedingungen a)—¢) erfllt sind.

Aus den Bedingungen @) und b) und aus der Unglelchung (6. 25) folgt
fiir xEHm (m=2)

: Ni-1 . : Ni-1 - m-2 ? Vk+% 1
J 2 on(X)on(t)idf> > 9.,(X)9,.(t);dt—2 2, Ou(X)on(t)]df>
n=>0 n=~N -1 =Ny

m-1 —
)2 i% V2 + D@ — 2 V2% (4 ) W) 2 =

. { m-1
= V’E](—‘nm +_1 “—}(2”m+1) 31_l6_ 2"m Z 2n,‘ 2 V_ Vznm(nm_{_ l)w(2nm+1)
Daraus erhalten wir auf Grund von (6. 24), daf fiir x€ H, (m=1)

o

ist.

Nm-1

2 en(x)ea(t) l dt> 515 VN, log N, w(N.)

n=—=0

Es sei nun x€ lim H,.. Dann wird (6.31) fiir unendlich viele Indizes

m->»o

m erfiillt. Nach (6. 26), (6.29) und der Bedingung ¢) erhalten wir mit Anwen-
dung des zweiten Borel—Cantelhschen Lemmas, daB u(lim H,)—=b—a ist.

m—»o

So ergibt sich auf Grund von (6.20), dab fiir das so definierte Funktionen-
system {o0.(x)} die in der Behauptung des Satzes VI vorkommende Relation -
fast tiberall in [a, b] erfiillt wird. Wir bezeichnen mit H die Teilmenge vom
Mage Null des Intervalls [a, ], wo diese Relation nicht erfiillt wird. Wir
verandern die Funktionen {o.(x)} in der Menge H wie folgt: fiir x€ H sei

0=/ ZE Nar=n<Na m=12,..).

Nach dem obigen ist es klar, dab das so abgeinderte Funktionensystem {o,.(i)}'
orthonormiert bleibt und die in der Behauptung des Satzes 'VI vorkommende
,Relatlon iiberall in [a, b] erfullt wird. : :
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Damit haben wir den Satz VI vollstindig bewiesen.

Es bleibt offen, ob die im Satz VI vorkommende spezielle Folge 4.=
= }nlog n w(n) mit einer beliebigen, positiven, monoton, nichtabnehmenden
Folge {A.} ersetzt werden kann, fiir die die Bedingung (5.1) erfiillt wird.

§ 7. Cesarosche Mittel der quadratisch integrierbaren
Entwicklungen.

Es sei {@.(x)} ein im Grundintervall [a, b] orthonormiertes Funktionen-
system. In diesem Paragraphen wird die n-te Teilsumme, bzw. die n-te
(C, a)-Mittel (¢ >0) der orthogonalen Reihe

v
2- a, ¢, (x)
»=0

mit s, (x), bzw. mit o{”(x) bezeichnet, d. h. ist

(1) =2, a:ps(x),  0(x) = A(,,,ZAff')yayq»(x) (n=0,1,...)

mit

AS:’=(’";;“) (e —1,—2,..).

Offenbar ist 0 (x) = s.(x) (=0, 1,...). Der Einfachheit halber bezexch-
nen wir die (C, 1)-Mittel mit 0. (x) (n—O 1,...)

Es ist bekannt, da8
: (®)
a1  a@simsa@  @>0 e>—)

gilt, wo ¢,(«) und c(e) nur von e abhanglge posntlve Zahlen sind, ferner
gelten die Relationen

(1.2) Af::’>o (m =0, « >—1),
(1.3) @ >AD  (m=z=0, «>0),
(1.4 C Al Z Af,‘.’),,A“”'

: »=0
@1.5) : (a+h)(x) A“'*h) Z’A,(," D A@ g (x)

(siehe z. B. A. ZyGMuND [1], S. 42).
Zuerst werden wir die- in der Einleitung erwahnte Abschitzung fiic
die (C, @ >0)-Mittel der quadratisch integrierbaren Entwicklungen beweisen.
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Satz VIL Ist {a.} € B, so ist fiir jedes ¢ >0
(7.6) ' o¥ (x) = o (log log N)
fast iiberall in [a, b]. _ '
Um den Satz VII zu beweisen werden einige Hilfssdtze vorausgeschickt.

Hilfssatz VI. Es sei {u(n)} eine positive, monofon nichtabnehmende,
ins Unendliche strebende Zahlenfolge. Wir nehmen an, dap die Abschitzung

, on(x) = O(u(N))
fiir jede Folge {a,} € P im -Intervall [a, b] fast iiberall giiltig ist. Dann ist
auch die Abschitzung
ox(x) = o(u(N))

fiir jede Koeffzzzentenfolge {a.} € B im Intervall [a, b] fast iiberall giiltig.

Beweis von Hilfssatz VI. Es sei {a.} € [* eine beliebig gegebene
Koeffizientenfolge. Man kann eine positive, monoton nichtabnehmende, ins
Unendliche strebende Zahlenfolge {4.} derart angeben, daB -

1.7 D < oo
=) .
ist, man setze z. B. )
y, ®© 1~-1/4
,l,.=3Za;2,§ (ryv==0,1,...).

" Dann ist namlich die Reihe (7. 7T) die untere Summe des konvergenten Integrals

S
‘Z-X— - ® 2 )
6J V’E (S*- goan »
die zu der mit den Téilpunkten 0,...,S—(at+a}), S—a;, S angegebenen

Einteilung des Intervalls [0, S] gehort
Die n-te Teilsumme, bzw. die n-te (C, 1)-Mittel der orthogonalen Reihe

Zl,,a,,(p,, (x)
=0

werden wir mit si(x), bzw. mit o(x) bezeichnen:
. o n . B P _ » _
8@ = 2hag®, @@= 21— +])z,av¢,(x) (=01,..).

Mit einer doppelten Abelschen Transformation ergibt sich:

N ' 1 N A 1 1 o
O',\'(x) - ,Zo(l— N:-‘ 1)_': lnanfpn(x) = Z(l —I_V%—f) (Tn_m)s"(’x)_{_
1

n=y

i
2l - e nae e
N+ 1 n== ln+l i~u+2, o 1N+1 ’
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Auf Grund von (7.3) und (7.7) ist

b b

Slefemesor Sl o]

n =)

oo
-

und
I

é:( i.,,‘ﬂ — I.,L )J lor (x)|dx = (b‘—a)‘ é: ( ;_"]H — i-m)(J (a2 (0))° dx) —
| —om(Saa) few. |

Aus den obigen erhalten wir ‘mit der Anwendung des B. Levischen Satzes,
dafl die Reihen

«

mAi_l). ‘”(1_1).
Z (ln l"-;.l y s" (x)’ ,é’; X ln%—l An{-‘_’ |0H (x)l

n=0
im Intervall [a, b] fast iiberall konvergieren.
Da eine konvergente Reihe immer (C 1)-summierbar ist, ist in {a, 8]
fast uberall

(1.9) Z(I—N—:_—l) (li—%ﬂ)s;(x)%O(l).

n=0

Ferner ist

1 N-1 1
NTT2 (—xm )(n 10l =
und so ist in [a, ] fast uberall

) : N-1 1 )
(1.10) er > ( lﬂlﬂ — ) (n+1)a5 (x) = O(1).

Nach (7.7) folgt gemaB unserer Annahme, dab fast iberall in [a, 6]
3 (x) = O(r(N))
ist. Daraus ergibt sich die Behauptung auf Grund von (7. 8), (7. 9) und (7. 10).
- Damit haben wir den Hilfssatz VI bewiesen.

Hilfssatz VIL Ist {a,} €/?, so besteht fiir jedes r>l

2
Z (07 P () — o () = 0(1)

n=0 +1

2(7‘— oo

N + NA+1;
fast uberall in |[a, b).

Dieser Hilfssatz ist bekannt (siehe A. ZvGmunD [2], S. 359). V
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Hilfssatz VI Es sei {u(n)} eine positive, monoton nichtabnehmende )
Zahlenfolge Wir nehmen an, dag {a,} € I* ist und :

- ox@=ole(N)
fast iiberall in [a, b gilt. Dann ist

: N+1 an(x)—O(u (N))
Jast iiberall in (a, b]. '
Beweis von Hilfssatz VI Ist {a,} €/ so ist nach dem Hilfs-
satz VII v _
1 & s
m%(&.()f)—an(x)) =o(l)

fast iberall in [a, b]. Mit Anwendung der Ungleichung
1
NFTS A Sews N+1 z(s,.(x) o) +N+, Zon(x)
ergibt sich daraus die Behauptung.
Auf die Ceséroschen Mittel 6.” beliebiger numerischer Reihen bezieht
sich der

Hilfssatz IX. Es sei {u(n)} eine positive, monoton nichtabnehmende
Zahlenfolge Ist_ fiir ein r>—1/2

N 2 00 = o),
0}(\r-f- +e) —0 (” (N))

Diesen Hilfssatz hat A. ZvGMUND mit o(1) statt o(u(N)) bewiesen.
(Siehe A. ZyagMmunD [2], S. 360—361.)

Beweis von Hilfssatz IX. Auf Grund von (7 1), (1.2), (1.4)

und (7 5) 1st
(r+7;-‘+s) (-5+) o

ZAN— n

so ist fiir jedes & >0

oy p 1(; s H) "—'0 =
(+ ) 5(Z60) E(z(AS-E ) agf) -
o(jg:\i!;(g)) ( 'é‘) AGL0 A(Zr)) 2 %’%ﬁi‘% ( A(Er+2s))1/2

woraus mit Anwendug von (7. 1) ergibt sich die Behauptung. -
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Mit Anwendung der Hilfssitze VII—IX kann der folgende Hilfssatz be-
wiesen werden.

Hilfssatz X. Es sei {u(n)} eine positive, monoton nichtabnehmende
Zahlenfolge. Es sei {a.} € I* und nehmen wir an, daf

av(x) =0(«(N))
fast dberall in [a,b) gilt. Dann ist auch die Abschitzung
(1.11) - a3 (x) =0 (1(N))
fiir jedes « >0 fast iiberall in [a, b] giiltig.

Dieser Hilfssatz entspricht dem folgenden Satz von A. ZvyGmUND:.Ist
eine quadratisch integrierbare Entwicklung fast iiberall (C, 1)-summierbar, so
ist die fast tiberall (C, @ > 0)-summierbar. (Siehe A. ZYGMUND [2].)

Beweis von Hilfssatz X. Nach unserer Annahme ergibt sich mit
Anwendung des Hilfssatzes VIII, daB

7 2 000 = o (W)

fast tberall in [a, b] erfiillt wird. Daraus ergibt sich mit Anwendug des Hilfs-

satzes IX fiir s—-z—, daB fast iiberall in [a, b)
)
(1.12) oy * " () =o(x(V))

~ist. Da fiir jedes N

I ~ (a 1) ) v ( ( (a+i) 2
NT1 ;0 (0 ™) = lg (x)—o. ) +
(o ®
+ N1 +1 e (X) |
gilt, ergibt sich nach (7. 12) mit Anwendung des Hilfssatzes VII, daB

171—1-_1 =( e l)<x)) =o(«*(V))

fast aiberall in [a, 8] erfiillt wird. Nach Hilfssatz IX mit s=% erhalten wir -
.endlich, daB fast tiberall in [q, b}
o3 (x) =0(u(N))

Damit haben wir_ den Hilfssatz X bewiesen.
Nun gehen wir zum Beweis des Satzes VII iiber.

ist.
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Beweis von Satz Vil. Essei u,=1fiir n=1,2,3 und u.=loglogn
fiir n = 4. Es sei ferner {a.} €[* eine beliebige Koeffizientenfolge. Dann ist
die orthogonale Reihe

@ a,
g'{; Pv(X)
nach einem Satz von D. MENCHOFF fast iiberall in-[a, 6] (C, 1)-summierbar.”)
Mit einer Abelschen Transformation erhalten wir:

N 7 : N ., 1
(7.13) Ali- N*’) a”%(x)_g(l_ﬁi—l)(ﬁi— um)s”("”
) 1 N- 1( 1 ] N
+N+ 1 1;0‘ (17998 o Uyi2 ) (, + 1)0’,,(x)+ Uvet ON(X).

Nach den obigen Bemerkungen konvergiert die linke Seite vor (7. 13) fast
iiberall in [a, b] und daher ist fast iiberail in [a, ]
N

(7. 14) 2(1 N+]) D g ()= 0(1).

=t .
Da {a,}€{® ist, so kann man mit der Methode, die bei dem Beweis des
. Hilfssatzes VI angewendet wurde, zeigen, daf die Reihen

S e SR

v=0 \Uy Hy41 r=0 \ Ups1 Uyy2

in [a, b] fast tiberall konvergieren und so gilt fast iiberall

(1. 15) %_Zjo(]—/v%'—l).(%——i:)s,(x)zAO(l)
und o
(1.16) T ( L )(v+ 1) 6,(x) — O(1).

© Nach (7.13), (7.14), (7.15), und (7. 16) erhalten wir, daf die Abschitzung

ox(x)==0 (log log N)
fiir {a.}) € £ in [a, ] fast iiberall giiltig ist. Daraus ergibt sich nach dem
Hilfssatz VI, daB fiir {a,} € :

ox(x) =o(log log N)
fast tiberall in [a, b] besteht. SchlieBlich erhalten wir daraus mit Anwendung

13) Dieser Satz lautet wie folgt: Ist Zc,, (log log n) < o0, 80 zst die Reihe Zc,, . (x)
n=4 n=0

fiir jedes orthanormter{e System {@.(x)} im Grana'mlervall fast dberall (C, 1)—sammzerbar
(Siehe D. MencHorrF [3], S. 65-66)
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des Hilfssatzes X, daB (7.6) imr Falle {a.} €l mr ;edes >0 im Intervall -
{a, b] fast liberall gilt.

Damit haben wir den Satz VII vollstindig bewiesen.

Im folgenden wird gezeigt, daB die in dem Satz VII vorkommende Ab-
schitzung im allgemeinen nicht verbessert werden kann Namlich gllt der
folgende

Satz VIII. Es sei {w(n)} eine positive, monoton mc/ztabnelzmende
Zuhlenfolge, dze die Bedingung '

“4.17) ' w(n) = o (log log n) A
erfiillt Dazu kann man eine Koeffizientenfolge {a.} ¢ I* und ein im Grundin-

tervall {a, b] orthonormiertes Funktionensystem {(D (x)} angeben, so dap (fiir
jedes a >0 iberall in [a, b]

’ (@) — oo
(1.18) lim s W(N) A“” ZAv,a,.¢ (x)|=

besteht. Das Funktionensystem {®.(x)} kann auch gleichmdfig beschrdankt
gewdhlt werden. '

Beweis von Satz VIIL Es sei {w(n)} eine positive, monoton nichtab-
nehmende Zahlenfolge, die die Bedingungen

(1.19) w(n) _'o(W(n)) .
(1.200 w(n)—o(log logn)
erfiillt; man wiéhle z. B. die Folge

W(7) = w(n )('°";’v '(‘:g "J (n—4,5,...)

(es sei etwa w(n)—w(4) fir n=0,1,2,3).
Aus (7.20) folgt, daB die positive, monoton nichtabnehmende Zahlen-
folge W(n)=w(2") (n=0, 1,...) die Bedingung
w(n)=o(log n)
erfilllt. So kann mit Anwendung von Hilfssatz I eine positive, monoton nicht-
abnehmende Zahlenfolge {w*(n)} angegeben werden, die die Bedingungen
@ . 1

_ < 5=
.21 &5 (n log n) (w*(n))?
und :

(1.22) L

g. (atog )W @)
erfiillt.
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Nach (7.21) kann der Hilfssatz I, bzw. lIl' angewendet. werden und
so ergibt sich die Existenz eines-im Intervall [a, b] orthonormierten Funktio-
nensystems {@;(x)}, fir welches die Reihe

(1.23) . 3 oo
. n=0
mit den Koeffizienten _ .
* 1 . 1 (fl é 2)

aa=al=

we) T Valogin w*(rn)

fast tiberall in [a, b] divergiert. Das Funktionensystem {®,(x)} kann auch
gleichmifig beschrdnkt gewdhlt werden.

Bezeichne o
(7.24) : > aDi(x)
nz=0 - .
die orthogonale Reihe, die wir aus der Reihe (7.23) erhalten, indem wir die
Glieder mit den Indizes n=N,—1 (m=1,2,...) weglassen (N, hat die-

selbe Bedeutung wie in den Hilfssdtzen III und 1II'). Nach den Hilfssitzen
I, 1" ist klar, daB auch die Reihe (7.24) fast iiberall"in [g, b] divergiert.
“ Wir ordnen jetzt die Funktionen @) (x) in eine Reihenfolge um. Die
Funktionen @;(x) mit n==N,—1 (m=1,2,...) werden der Reihe nach mit
@ (x) (n=0,1,...) und die Funktionen @3 .,(x) (m==1,2,...) der Reihe
nach mit @,(x) (k=0,...; k= 2") bezeichnet. Aus der Koeffizientenfolge {ax}
erhalten wir eine neue Folge {d,}, indem wir die a, mit n=EN.—1
{m==1,2,...) fortlaufend mit d» (n =0, 1,...) bezeichnen und fiir die Indizes
k+2" @, —0 setzen. Nach dem obigen ist es klar, daB dx = (}/n log® nw'"(n))™
{(n=2,3,...) gilt. Ferner ist es klar, daB das so erhaltene Funktionensystem
{®D.(x)} auch orthonormiert ist, und falls das System {®’(x)} gleichmafBig
beschrinkt ist, so ist das System {®,(x)} ebenfalls gleichmiBig beschrdnkt.
Betrachten wir nun die Reihe

(1.25) N B (),

n=y
Nach den obigen ist es evident, daB die 2-te Teilsumme der Reihe (7.25) .
mit der n-ten Teilsumme der Reihe (7.24) iibereinstimmt. Da die Reihe (7. 24)
im Intervall [a, b] fast iiberall divergiert, so ist die Reihe (7.25) nach einem
bekannten Satz fast iiberall in [a, 6] nicht (C, 1)-summierbar.") Auf Grund

14) Dieser Satz lautet wie folgt: Es sei {@,(x)} ein orthonormiertes Funktionensystem
und sei {c,} €% Die Reihe Zc,9 (x) ist im Grundintervall dann und nur dann fast iiberall
(C, 1)-summierbar, wenn die Folge der 2°-ten Teilsummen der Reihe im Gruhdintervall fast
iiberall konvergiert. (Siehe A. N. Kowmoaororr {1].) - .
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von (7.22) und nach dem obigen ist |,

(7. 26) Zw’(n)a,.= w(2) wi(n)
= Z(ntogny W) Z(nlogin) o (n))

Also ist {a.} € ' und so ergibt sich nach einem im Zusammenhang mit Hilfs-
satz X erwahnten Zygmundschen Satz, daB fiir jedes « >0 der Reihe (7.25)
mit Ausnahme einer von « abhingigen Teilmenge vom MaBe Null des Grund-
intervalls nirgends (C, «)-summierbar ist. (Dieses Ergebnis kann in der Mittei--
lung von D. MencHOFF [3] gefunden werden; das oben beschriebene Ver-
fahren kann abgesehen von einer kleinen Modifizierung bei S. KACZMARZ-—
H. SteiNHAuS (1], S. 191 gefunden werden.)

Es sei r eine beliebige natirliche Zahl. Wir bezeichnen die n-te Teil-
summe, bzw. die n-te (C, r)-Mittel der orthogonalen Reihe ' :

w(v)ad, D, (x)

iMs

mit 3,(x), bzw. mit .’ (x):

5.0 = XM P, ) =— zA‘n"vrv(v)ayw(x)

A(")
Wir erhalten mit einer r-fachen Abels'chen Transformation:

- . 1 -
pie ,;:‘.‘( R P (w(v) ST

+ Z A7 ;ZA&':?)A‘"’ (w(v+.u) — ST )631)(") +

(7.27)

+

(vgl. K. TANDORI [4], S. 93).
Nach (7.26) kann mit der beim Beweis des Hilfssatzes VI angewendeten
- Methode gezeigt werden, daB die Reihen

1 —
—w—(—m O~ (x)

© 7

{1 1\
(7.28) 2 5oy 76+ )&
und .
S 1 1 =) |
(7.29) 2 TCE R Texwrerny vl LK TR o FRRR

im Intervall [a, ] fast iiberall konvergieren.
Es sei x €[a, b) ein beliebiger Punkt, in dem die Reihen (7.29) kon-
vergieren und es sei ¢ eine beliebige positive Zahl. Es gibt dann eine Zahl
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vy = ,(x) derart, daB

_ S 1 1 ) _
(1.30) ,;W (iv‘(wru) » W(WWH))](J (x)|< (=1,...,7
ist. Fir N = », hat man nach (7. 1), (7.2) und (7.30)
| ; 1 1. )
(r-p) 4(u) —_
&? %A""’ A (W(v+u) w(v+u-+ 1)) () <
1 1 e
(r=p) 4 (u) —_—
| g)gA v Ay (w(v—}—y) w(v—i—u—{—l)) (x)H—
(u=1,...,r) und daraus folgt mit Anwendung von (7. 1)

¥ 4 1 ] - -
A(T)ZA‘ “’A‘”(ﬁ(y_*_y)-— W(v+u+1)) oy (x) | <e (y_l,...,f)

fiir geniigend groBes N. Also ist in diesem Punkt x

- Z‘ (r- - H) —_
131.5}9 AR =, AN"“’)AM( w(v+p) W(V+.LL+1)) =0 (=1...,n.

Da die Reihen (7.29) in [q, 8] fast iiberall konvergieren, so wird diese Rela-
tion in [a, b] fast iiberall erfiilt.

Da die Reihe (7.28) in [a, ] fast tberall konverglert und eine konver-
gente Reihe immer (C, r)-summierbar ist, so konvergiert die erste Summe der
rechten Seite von (7.27) im Grundintervall [a, b] fast iiberall. Da die auf der
linken Seite von (7.27) stehende Summe nach der Annahme fiir N— o in_
[a, b] iiberall divergiert, erhalten wir auf Grund der obigen Bemerkungen und
nach (7.27), daB in [a, b] fast tiberall

m o (x) %= o(1)

ist, mithin gilt in [a, b] fast {iberall

7.31 . hm = [V (x)| > 0.
(1. 31) 7w 7Y @) | |
Wir bezeichnen mit E(r) die meBbare Teilmenge des Grundintervalls
[a, 6], fiir die (7.31) nicht erfiillt wird.
Es ist klar, daB E(r)S E(r+1). Es gei
E={ E@).
r=1

Da fiir jedes r u(E(r)) =0 ist, so gilt u(£)=0. Besteht (7.31) in einem
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Punkt x fiir jede nattirliche Zahl r(z 1), so ist nach (7.2), (7.4) und (7.5)

hm = m‘;”(x)l >0

fur jedes « >0. Es sei a,.-w(n)a,. (n=0, 1,...). Es folgt nach (7.19), daB
(7. 18) fiir das oben definierte Funktionensystem mit jedem « >0 in der Menge
CE iiberall besteht.

Wir werden beweisen, da man mit einer geeigneten Verdnderung der
Funktionen {®@.(x)} in E erreichen kann,-daBi (7.18) fiir jedes « >0 iiberall
in {a, b] besteht.

Es sei @,(x)=1 fir x€E (n=0,1,...). Es ist klar, daB das so
erhaltene Funktionensystem {®@.(x)} in [a, b] orthonormiert ist und die Funk-
tionen @,(x) gleichméBig beschrankt sind, wenn sie urspriinglich gleichmaBig
beschrinkt waren; ferner besteht (7. 18) fiir jedes « >0 iiberall in CE.

Wir werden beweisen, daB (7.18) fiir das so modifizierte Funktionen-
system bei jedem positiven Parameterwert ¢« auch in der Menge £ erfiilit
wird. Nach (7.17) ist es geniigend zu zeigen, daB fiir jedes « >0

— 1 1 N @
(1.32) - \le fogTog IV 4% ”_UA\ p@y == o0 '
gilt. Nach (7.1) und auf Grund der obigen Deafinition der Koeffizientenfolge
{a.} ergibt sich fir « >0

- 1 N
(1.33) 7@ 2:, AR, 0, = c(@) 2 a, (N=0,1,..)),

‘wo c(e) eine nur von « abhingige positive Zahl ist. Ferner folgt aus der
Definition der Folge {@.}: '

(7. 34) ' Za,;—Zay

=0

So ergibt sich (7.32) .auf Grund von (7.33) und (7.34), wenn es gezeigt
wird, daB

1 N 1
lim X
N-o lOg N,,z.’ Ynlog® nw ‘(1)

ist. Dies ist aber klar. Im gegengesetzten Fall existierte nimlich eine posi-

tive Zahl K, fiir die
1 N 1

log Ng Vnlog*nw* (n) <K

ist, woraus auf Grund der Monotonitit der Folge {w*(n)} sich ergibe, da8
rA___ 1

2 Vnlog® nw*(n)

N=2

<Klogn (nz4)
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ist, also wiirde die Ungleichung
‘ 2 1 2 < logln
> <4K® < oo
%4 (n log n) (w*(n))’ g n’
bestehen, die der Bedingung (7.21) widerspricht.
Damit haben wir den Satz VIII vollstandig bewiesen.

§ 8. Cesarosche Mittel der orthogonalen Funktionen. ‘

Es sei {g.(x)} ein im Grundintervall [a, ] orthonormiertes Funktionen-
system. In diesem Paragraphen werden wir die folgenden Bezelchnungen
verwenden:

8= 3 5, W=~ SAL ) (@=0,1,...

Der Einfachheit halber werden die (C, 1)-Mittel mit 0,(x) bezeichnet.
Zuerst werden wir die in der Einleitung erwiahnte Abschidtzung (16)
beweisen.

Satz IX. Es sei {4.} eine positive, monoton nichtabnehmende Zahlen-
folge, die die Bedingung

(8.1) Z—<

=0 ].,‘,
erfilllt. Dann gilt fiir jedes « >0 die Abschitzung
8.2) o () = 0(&x)

fast iiberall im Intervall |[a, b]
Zum Beweis benotigen wir einige Hilfssatze.

A ’Hllfssatz XI. Wenn die positive, monoton nichtabnehmende Zahlen-
~ folge {4} die Bedingung 8. 1) erfiillt, dann ist fiir jedes a >0
- r !
RT3 @ 0—a0 Y =0t  [r>3)
fast iiberall im Intervall [a, b].
Beweis von Hilfssatz Xl. Da flir jedes s

& 1 1 2"
> =
B=2 2'- - gﬂ_cg"l_u ;vr:‘; - 2 Z=| ‘{.2’

gilt, erhalten wir auf Grund von (8. 1):

o] 2"1

(8. 3)

3
m=1 Aam
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Nach der Definition der Koeffizienten Ai,‘." ist fir jedes n

o @)=l = 5 Z’ (A AD — AT AL V) pu(x) =

A(r l)A(r

Z VAL 1})(/’7(")

A(")
und daher ist fiir jedes n

j(og-l) (x)— ("(x))zdx— (;(r)) Z £

Daraus ergibt sich mit einer einfachen Rechnung, dab ﬁir‘ jedes n

om+1 om+l

3 (o) — s o=k 3

(8.4) f | _0

a

Z ALY =

A )

—= 27 2

r=0 n=y

gilt. Da nach (7.1)

:;mJ,-l. (r-1)\2
= Aﬂ-y M SR netl _
(85) . E (75—:?)<7 (V—l,...,2 ,m—1,2,...)

_ist, wo M eine von m und » unabhingige positive Zahl bezeichnet ™), so er-
halten wir aus (8. 4) und (8.5), dab fiir jedes m(=1).

gm+l

Zom J 3 o 2 (0 ()= @)

gilt. Daraus und aus (8.3) ergibt sich mit Anwendung des B. Levischen
Satzes, daB die Reihe

DX

im Intervall [a, b] fast iiberall konvergiert. Nach dem Kroneckerschen Lemma
besteht also

(8.6) > Z’ (07 (x)— P ()’ —O(M")

1=0

dx= 0(1)——

21)) -

LS @ ol

n=0

im Intervall [a, b] fast iiberall.

15) Siehe z. B. A. Zvomunp {2}, S. 360.
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'lsf 2" < N =2""",'so hat man _
r-1) (r) 2 1 Riad r-1) r) 2
o7 (x)— 6 (x)): = O(1) — ol (x X
N+1_( =A@ =0 5 3 (4" W=l @),

woraus die Behauptung auf Grund von (8. 6) folgt.
Damit haben wir den Hilfssatz XI bewiesen.

- Hilfssatz XIl. Es sei {A.} eine positive, monoton nichtabnehmende
Zahlenfolge, die die Bedingung (8. 1) erfiillt. Ist im Intervall [a, b] fast iberall

8.7 ' on(x) ==0(4w),

so besteht auch «
;\' £

Z S2(x) = o0(4%)

n=~0

fast iiberall in [a, b].
Beweis von Hxlfssatz XIL Aus der Unglexchung

i 2 50 =y 2 @@+ g 2 Zw(x)

ergibt sich die Behauptung mit Anwendung des Hilfssatzes XI.
Nun gehen wir zum Beweis des Satzes IX iiber.

Beweis von Satz IX. Zuerst wird gezeigt, daB (8.7) im Inter-
vall [a, b] fast iberall erfiillt wird. Dieser Beweis wird durch eine kleine
Abanderung eines Gedankens von G. ALEXITS durchgefiihrt. (Siehe G. Acexirs[1].)

Da .

Z 0‘2"(X)d _22 +1 |

2 on n=0 lzn

ist, so ergibt sich nach (8. 3) mit Anwendung des B. Levischen Satzes daB
die Reihe-

& O (%)
n=0 Zzn
im Intervall [a, b] fast tberall konvergiert und so ist fast uberall in [a, 6]
(8.8) ‘ Ggn(X) = 0(4y)-

Da ftir jedes m(=1) :
: ) ()',.(X) Ohn- 1(X) Il(ﬂ + =1 ZW}J,.(X)
ist, gilt nach (8.1)

S On(X)—0,-1(x) 2 1 _o s 1
; ( An ) _ n=l=(n(ﬂ+]))2 vz—:o 2, (l)é 2

-1
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und so ergibt sich mit Anwendung des B. Levischen Satzes, daB die Reihe

Zm:n ( ”"(X)Z_c:,,_,(x) );»

n=1"
im Intervall [a, b] fast iiberall konvergiert. Also ist fast iiberall in [a, 8]
- 2m+l a2
8.9 3 n( ""(");”"-'(") ) —o(l) . (m— o).
n=0M41 n-1
Fiir 2" < N = 2™ hat man auf Grund von (8.9) fast tiberall in [a, b}
ov(x)  Tel®)| _ 2”‘2“ o (@) |0- ,(x)|
}'.V l)n = n=2M41 ) l" z’ .
ym+1 3m+ 1/2 )m+l ”
N u(X)—oua(x 0.(xX)—0, 1(x
éé'()x"()' S (2o ,())H ns“"(”
nz=2Maq 1 n=2"41 <n—“’"+l

woraus sich nach (8.8) ergibt, daB fir «=1 die Abschitzung (8.2) im
Intervall (a, b] fast tiberall gilt.

Da (8.7) im Intervall [a, 0] fast uberall erflillt wird, erhalten wir mit
Anwendung des Hilfssatzes XII, daB

N 2 @) =0
in [a, b] fast dberall gilt. Daraus folgt mit Anwendung des Hilfssatzes IX
mit ¢ = /2, dab
(m—l)

-(8.10) (x) = 0 (x)
in [a, b] fast iiberall ist. Da fiir ]edes N

i ( (a l)(x)) 2 ‘ (G(G l) (a+l)(x)) )_
N+1 =1 N¥i&s N+1n=u )

gilt, so erhalten wir nach dem obigen und nach (8.10), mit Anwendung
des Hilfssatzes Xl, daB fast iiberall in [a, 0]

s 3] o

gilt. Deshalb ergibt sich endlich mit Anwendung des Hilfssatzes IX, daf im
Intervall [a, ] fast tiberall A

( ()

. o (x) == 0(iy)
ist.

Damit haben wir den Satz IX volstindig bewiesen.

Im folgenden wir gezeigt, daf die im Satz IX angegebene Abschitzung
im wesentlichen nicht verbessert werden kann.
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Satz X. Es sei {4.} eine positive, monoton nichtabnehmende Zahlenfolge,
die die Bedingung

@

@.11) >l
n=0 1,;

erfiillt. Dazu kann ein im Grundintervall |a, b] orthonormiertes Funkttonen-
system {(D,.(x)} angegeben werden derart dap fur jedes a >0

@6.12) fim —

Noa Ay lA("’

im Intervall [a, b] iiberall gilt.

AL, @) | =

Beweis von Satz X. Da die Bedingung (8.11) erfiillt wird, kann
auf Grund des in der FuBnote ") angefiihrten Satzes eine positive, monoton
nichtabnehmende, ins Unendliche strebende Zahlenfolge {4.} angegeben wer-
den. die die Bedingungen '

8.13) : Av=0(4)

und »

(8. 14) B LR
"‘:2{{11

erfiillt. Aus (8. 14) folgt

@. 15) 1.
n-—-O ilu ]

Nach (7. 1) existiert fiir jede natiirliche Zahl r eine positive Zahl c(r)
mit : ’
A(r) ” ) M

(8. 16) ;_Jm @émgi-M=LZm)

- Die Zahlen ¢(r) konnen auch so gewihlt werden daB die Bedingung

(8.17) 1 ;c(r);c(r-{-l) (r=12,..)

erfiillt wird.
Im folgenden werden wir mit vollstandxger Induktion lndexfolgen {N,}
und {m,} definieren, die den folgenden Bedingungen geniigen:

(8.18) INA=N,  (=1,2..),
. . N
1 51 b—a
8. 19 — =g =5 T - 1, 2’
( ) 2 Zémo < "er‘]+1 l‘gm" < 2 (r )
und

‘:

(8. 20) S zmwé%%' (r=1,2,...).
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Es sei N,=0 und es sei m, die Kkleinste natiirliche Zahl, fiir die
Asm, > (b—a)-'? gilt. Wir nehmen an, daB die Indizes A%, ..., Ns.1, Mo, - .., My, |
(s > 1) bereits definiert sind derart, daB fiir r=0,...,s—1 die Bedingungen
{8.18), (8.19) und (8. 20) erfiillt werden. Es sei dann N, die kleinste natir-
liche Zahl, fiir die die Ungleichungen

8.21) 2N, =N, Zzz,.\ = Vs,

gelten, es sei ferner k, (> my, ) die kleinste natiirliche Zahl, fiir die

1 1

8. 22 _—<——
( ) ngs 2(Ns’_.N«—l) Em,,
ist. Nach (8. 15) ist '

. T @
== = °°.
n=kgy 12"
Aus (8. 13) folgt, da8 4. fiir n— o gegen oo strebt, und folglich kann eine
unendliche Indexfolge (k. <), <:--<w,<--- definiert werden, so daB
‘ & 1 b—a
(8.23) D= )

n=1 1‘21’,‘

besteht. Es existiert also ein Index N, (wir nehmen den kleinsten), fur den
®.24) ' 1 B
3 . _< _—
25m, ; P
gxlt Aus (8.23) und (8.24) folgt:
‘ [P b—a
——< .
212m0 Z l’v

n=1

(8.25)

Ferner ist wegen (8.22) N, > N, und so besteht nach (8. 21) die Ungleichung
(8.18) fiir r=s. Es sei muy, , =, (n=1,..., N-— N;.;), dann wird wegen
(8.25) die Bedingung (8.19) erfiillt, und wegen my, = N, und (8.21) wird
(8.20) auch fir r==s erfiillt.

Somit haben wir die Indexfolgen {N,} und {m.} durch volistindige
Induktion definiert, nach Konstruktion gelten die Bedingungen (8. 18)—(8 20)
fiir ledes r. Aus (8. 19) folgt:

- (8.26) L

Nun wird mit der im Paragraphen 5 .angegebenen Methode ein im
Intervall [a, 8] orthonormiertes Funktionensystem {®,(x)} (n=0,1,...) von

= 00,

Me

-

n—=
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Treppenfunktionen mit der Periode b—a definiert, fiir das die folgenqe'
Bedingung erfiillt wird: fiir jede natiirliche Zahl n ist

1,", fir x€L4+I(b—a) (I=0, +1,.2),
~ sonst,
WO I, = [etn-1, @) (n-—O 1,..), @1=0, en=_2 Zm_(n=0,1,...) bedeutet.
1=

Es sei

@. 27) 1. (X)l —

@0(30_3 oy fuir xe€lh+1(b—a) (I=0,11,..),
sonst.
Es ist klar, daB diese Funktion eine Treppenfunktion von der Periode b—a
ist, ihre Norm gleich 1 ist und die Bedingung (8.27) fir n =20 erfiillt wird.
Es sei k eine beliebige natiirliche Zahl. Wir nehmen an, da die Funk-
tionen Dy(x),..., Pi-1(x) bereits definiert wurden, so dab sie Treppenfunk-
_tionen von der Periode b—a sind, ein im Intervall [a, b) orthonormiertes
System bilden und die Bedingung (8.27) fiir n =0,..., k—1 erfiillt wird.
Es gibt eine Einteilung des Intervalls /, in endlich viele Teilintervalle
I, (0=1,...,7), auf denen die Funktionen @D,(x),..., D.-1(x) alle konstant
sind. Die zwei Halften des Intervalls /, seien mit /; und J; bezeichnet
(o=1,...,r). Es sei .
dsn, T xelg—}—l(b—-a) (=0, +1,...)
— Ao, fiir xEl”+1(b—a) (I=0,+1,. )

Es ist klar, daB auch @.(x) eine Treppenfunktion von der Periode b—a ist,
ihre Norm gleich 1 ist und in [a, b] die Funktionen @(x),..., @x(x) ortho-
gonal sind, und fiir n =k die Bedingung (8.27) auch erfiilit wird.

Somit haben wir durch vollstandige Induktion ein in [a, b] orthonormiertes
Funktionensystem {®.(x)} konstruiert, das aus Funktionen von der Periode
b—a besteht und fiir welches (8. 27) fiir jedes n erfiilit wird. Wir zeigen,
daB fiir dieses Funktionensystem {@®,(x)} auch (8. 12) fiir jedes & > O tiberall
erfiillt wird. Nach (7.2), (7.4) und (7.5) ist es klar, daB falls (8.12) fiir
. a,>0 erfiillt wird, es auch fiir jedes ¢ = ¢, iiberall erfiillt wird. Daher ist es
geniigend zu zeigen, daB fiir einen beliebig grofien Parameterwert @ = r, (r, ist
eine natiirliche Zahl) (8.12) iberall giiltig ist. Es sei x,¢[a, 8] und seien
O0=)n,<---< n,<--- die samtlichen Indizes, fiir die die Relation X €, +
+{(b—a) mit 1rgendemer ganzen Zahl [ erfiillt wird; wegen (8.26) gibt es
unendlich viele solche Indizes. Wir betrachten einen beliebigen solchen Index
n,(> N,) und wihlen r derart, daB N, < n, = N, besteht; offenbar ist r=r,.
Auf Grund von (8. 18) und (8. 19) ergibt sich, daf im Falle n; < n = 2 n, (= Ny42)
dxe Relation x,€ .+ I(b—a) fiir keine ganze Zahi 1 besteht und 7, l_N, 1

=N;2,... 1st (nach (8.19) ist notwendigerweise s =7r).

D, (x) = e=1,..., 1.
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Es sei

_ 12
nfl'»)(x)=A$: 0, ;‘)A(;g; D,(x) (1=0,1,..)).

Nach den obigen Bemerkungen und auf Grund von (7. 3), (8. 16) und (8. 27) ist
(’u)
(8.28) {35 (xo)| = A(,,,I‘Pn.,(xo)l—z | Dn,(x)| = €(7)Azm, —Z l"mn

S

Jedoch nach den oblgen Bemerkungen-und nach (8. 20) gilt

. s-1 r-1 -
. - _e .
(8' 29) 1‘3_0: l‘lmn‘,§ }=20 l‘lmNj_S_ —2_‘ 12mNr' -

Da n, = N,, so gilt ’l‘-””"s = domy .-Da r = r, ist, so erhalten wir aus (8. 29) nach
8.17 '

C(I’o)ll,,, Zl;,,;" = c(—zro)zgmns.
‘Da m,, = n,, erhalten wir nach (8.28):
- 201 2%, : -

Nach dem obigen ist diese Abschitzung ftlr unendlich viele Indizes n, gultng,
und so besteht nach (8.13)

l|m —Io O8(xo)| = oo.

Da x, € {a, b] beliebig ist, wird diese Relation im Intervall [a, b] tiberall erfiillt.
Da auch r, beliebig ist, so ergibt sich, daB fiir dieses Funktlonensystem
{D.(x)} (8.12) fiir jedes « >0 in [a, b] ilberall besteht.

Damit haben wir den Satz X vollstindig bewiesen.

Es bleibt die Frage offen, ob das System {®.(x)} glelchmaﬁlg beschrankt
gewdhlt werden kann.

§ 9. Die Lebesgueschen F unktionen der Cesaroschen Summation.

[n diesem Paragraphen werden wir zeigen, daB auch die Abschatzungen
(17) und (18) im allgemeinen nicht verbessert werden’konnen.

Satz XI. Es sei {w(n)} eine positive, monoton nichtabnehmende Zah-
lenfolge, fiir die die Bedingung
~ 1

©.1) 2 Tog D) —
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erfiillt wird. Es kann ein im Grundintervall {a, b} orthonormiertes Funktionen-
system {o.(x)} angegeben werden, fiir welches die Relation

b

- 1
©-2) P-Tn YNlog Nw (N)aj

1 a :
@ 2'4( )1'91'(")01'(')} t”‘ o0

fiir jedes « >0 und fiir jedes x in [a, b] besteht.

Ferner kunn auch fiir jedes « >0 ein in [a, b] gleichmdpBig beschrinktes
orthonormiertes Funktionensystem {rs’ (x)} angegeben werden, derart, dapf in
[a, b] iiberall

9.3) hm V_ J
gilt.

A"” f\‘"yr,.’(x)r“’(t)idt>d(>0)

Fiir den Beweis dieses Satzes benotigen wir den folgenden Hilfssatz. A

Hilfssatz XlIl. Es sei p eine natiirliche Zahl und c eine reelle Zahl mit
9.4) 0< % =1,

ferner sei {a;} (i=1,...,2p) eine endliche Folge von positiven Zahlen, fiir
die die Bedingungen :

©.5) 1Za>0 (i=1,...,2p), a»% (i=1,...,p)

mit einer positiven ganzen Zahl  erfillt sind. Es kann dann ein aus Trep-
penfunktionen bestehendes, im Grundintervall [a, b] orthonormiertes System
{h(c, p, {ai}; x)} (=1, ..., 2 p) angegeben werden, das die folgenden Bedingun-
gen erfiillt:

9.6 Jh;(c,p,{a,-};x)dx=0 ‘(l=l.;...,2p),

fir0=ai=1(=1,...,2p) gilt

9.7 J‘Z azhz(c D, {ai}; x)ht(C,p, {a, ;1) tdt< 2Yep  (0=x=2),

=1

es existiert eine mepbare Menge H(c, ») (g[a, b)), so dag

1

9.8 . w(H(, w))>22w+,7



120 ’ K. Tandori
ist, und fiir x € H(c, w) gilt

©.9 JZ ahi(c, p, {a}; x) (e, p, {a:} t)l dt=0

und

(9. 10) ﬂ%’mhz(c, p,{a:); x)hz(_c, P {a); t) dt> % V2CP7

Dieser Hilfssatz ist das Analogon des Hilfssatzes IV.

Beweis von Hilfssatz XHI. Es seien r und.x natiirliche Zahlen

fir die die Ungleichung
©.11) 22—’ 2ril

2%

lIA

1
—<
c

beéteht. Fiir 1=1,...,p sei

‘ ailalrmw(x) in [o, 2%;,)
hle, play;x) = { t6ir,,,(x)  in [2,302“, zf)
Ot i[5 2]
und fir I=p+1,...,2p sei
| o n fo. 525

hl(c’ b, {al'} ; X) = . 2r
0ru+2w+l(x) ©om I:W’ 2]’

dabei ist r(x) (k==0,1,...) die k-te Rademachersche Funktion,

. 1 22)1/2
9.12) 01—-?(74 ,

' 4 1 ry"?
(9.13) 02=?(1—§) s

ferner sind ¢, ..., 1, 6 soiche nichtnegative Zahlen, fiir die die Bedingung

[REptayyax=1 " a=1,...2p)
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erfiillt wird, die Existenz solcher’ Zahlen folgt aus (9. 4) (9.5) und (9 11). |
Offenbar ist

9.14) C0=4=1 (I=1...,p)
und . ’ :
9. 15) 0<6§‘.1.
Nach (9.11) ist

: 2r 11
(9. 16) ) > > 7
Daraus folgt- nach (9.11) und (9. 12):
©. 17) VE>01§—V%VE.
Ferner folgt nach (9.4) und (9. 13):

1 1

(9.18) —V’-—2—§_02>7.

Es ist klar, dab die Funktionen ai(c, p, {a:};x) ({=1,..., 2p) Treppen-
funktionen sind und im Intervall [0, 2] ein orthonormiertes System bilden.
Mit Anwendung der Bunjakowski-Schwarzschen Ungleichung kann (9.7) auf
Grund .von (9.4), (9.5), (9.14), (9.15), (9.17) und (9. 18) leicht gezeigt
werden. Endlich folgt (9. 6) offenbar aus der Definition.

Es sei H(c,w) die meBbare Menge, welche aus dem Intervall

{O, W) durch Weglassen der diadisch rationalen Punkte entsteht. Aus

(9. 16) foigt (9.8). Nach der Definition ist (9. 9) klar.
Fiir x € H(c, w) ist nach (9.17) und (9. 18)

J Iéﬂzht(t, p, {a); x)hle, p,{a;} t)i dt =

(9. 19) » ‘g”éazhz(c,p, {a}; x)mlc, p, {as};t)fdt=

)4

=6,6, ’ Zr.+g.,+z(x)r,+o,,,+;(t)j dt > V>f

)K 24

Da nach (9.4) und (9. 11) die in dem Hilfssatz IV vorkommende Bedingung
erfiillt wird, so folgt (9. 10) mit Anwendung des Hxlfssatzes IV aus (9. 19).

x+2w+p

rk‘(X)fk(t)ldt.

k=x+2w+1
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Damit haben wir den Hilfssatz XIII vollstindig bewiesen.
Ist I =[u, »] ein beliebiges endliches Intervall, so sei

V2h, P, {a:}; 2;5%] flir u<x<r,

h/(C,P, {ai}, Ix) 2 sonst

({=1,...,2p) und bezeichnen wir mit H{(c, w, /) das durch die Transforma-

tion y== i x+u sich ergebende Bild der Menge H(c, w). Dann ist es auf

2
Grund von (9.6), (9.7), (9-8), (9.9) und (9.10) klar, daf die folgenden
Bedingungen erfilllt sind:

(9. 20) , [ hlep tad, 1i)dx =0 (=1,...,2p),

fir 0=a =1 ({=1,...,2p) gilt

(. 21) ]l >

=1

ahe, p, (a}, 1;x) he, p, 0}, 1; t)l dt <u(H2*"Vep (x€1),

ferner ist

©.22) a(H( 0, D) > 2D 1,

22(0«{»3 c
a1 : {
. (g‘ 23) J ‘Zla’h’(c,pr {a"}'l;x)hl(crp! {al}ll)t)ldt=0 (er(C, w, 1))
LiSpe <
d

und

9.24) ”

!

3

4

ahle, p, {as, I; x) e, p, {ai}, I; t)‘ dt > %? V2cp

1

!
!

(x € H(c, 0, I)).

Beweis von Satz XI. Zuerst beschaftigen wir uns mit dem Beweis
der ersten Behauptung. Mit Anwendung des in der FuBnote') zitierten Satzes
ergibt sich nach (9.1), daB eine positive, monoton nichtabnehmende Folge
{w(n)} existiert, fiir die die Bedingungen ‘

(9. 25) w(n) = o(W(n))

und

(9. 26) 2 wonEm =

erfiillt sind.
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Nach (7.1) gibt es fiir jede natiirliche: Zahl r eine nur von r abhan-
gige natitrliche Zahl w(r), so daB

AD,. 1. : n.
ist; die Zahlen w(r) konnen adch so gewdhlt werden, daB die Bedingung

(9.28) o) =of+1)  (r=1,2..)

erfiilit wird.

Wir werden eine lndexfolge (I=)n <+ <Am< -+ und eine aus gan-
zen Zahlen bestehende, ins Unendliche strebende Zahlenfolge (1 =)r = .- =
=r. = --- definieren, fiir die die Bedingungen

(9. 29)  (mrywEey) =1,
(9. 30) ' No=2"4 e 2mc 2  (m=1,2,..),

' -1 = 1 i .
(9.31) gl 2% < 2 (st 2)2"m’2 (m=2,3,...) .
und
(9.32) D 2w (g, + 1)) = oo

. m=1

erfallt sind.
Nach (9. 26) kann mit der bei dem Beweis des Satzes VI angefiihrten Me-

thode eine Indexfolge (1 =)»: W< oo <’ < ... definiert werden, fiir die die
Bedingungen » .
(9. 33) (PP =,
: St ,,m 1y Lo '
- (9.34) > g (s g) ot (1=23,..)
und

@® 4, -1
S+ e 2" ™) =

=1

erfiilit sind. Es séi k die kleinste nattirliche Zahl, fiir die

k S0 -1
©.35) 220 S + @ @) >4

besteht. ' .
. Es sei m=»", n=1 fir [=1,..., 4. Auf Grund von (9.33) wird
(9.29) erfillt und nach (9.34) wird auch die Bedingung (9.31) fir
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m=2,...,k erfillt. Nach (9. 35) ist

észﬁ((nwr NwE"Y) > %

Es sei s> 1 eine beliebige natiirliche Zahl. Wir nehmen an, daB die natiir-
lichen Zahlen n,<m< - <M, und n=r,=--- =rn,_,(=s—1) bereits
definiert sind, so daB fiir die Indizes m=1, ..., k,., die Bedingung (9. 31)
erfillt wird und

kg1

- 639 3 2 ) E) > 5

ist. Es sei a, die kleinste natiirliche Zahl, fiir die

kg_q A iz L
< 2"k12<2 ((“’(3)‘?""’2)2%[2

k=1
gilt; offenbar ist a, > ni,_,. Wegen (9. 26) ist
$__ 1 _
S (nlogn)w(n)
So kann mit der. bei dem Beweis des Satzeés VI angegebenen Methode eine

Indexfolge (2, =) < <. <v )<... definiert werden, derart, daB die

Bedingungen .
A LR - (w(s)H'H- 3) o, ~
9.37) D om 2 2”' e e (1=2,3,...)
a k=1 i=1 i
und

-1
Z((u“’+1)"(2' o) -
erfiillt werden. Es sei k(> k.-1) die kleinste natiirliche Zahl, fiir die

ky-kg-1
1

(9. 38) 272 Z (08 + 1wy 1>7

- besteht.

Wir setzen ni,_u="%", i, 1+;—s fiir [=1,..., kk—ker: Aus (9.37)
folgt, daB (9. 31) fir ]edes m=2,..., k, besteht. Nach (9. 36) und (9. 38) ist

| (9. 39) Z 2'”“""’((n + @R >

Wenn dieses Verfahren unbegrenzt fortgesetzt w1rd, erhalten wir gegen
oo streb_ende Folgen von natiirlichén Zahlen n, <---< nn, <-eund RE--=
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=rm=... so daB die Bedingung (9.31) fiir jeden Index m(= 2) erfillt
wird, und es gibt eine Indexfolge & <... <k, <..., so daB (9. 39) fiir jedes
s besteht. Also wird auch (9. 32) erfiillt. Da die Indexfolge {n.} streng wach-
send ist, besteht auch (9. 30).

Wir werden ein aus Treppenfunktionen bestehendes und von der Folge
{w(n)} (und so auch von der Folge {w(n)}) abhingiges, im Intervall [a, b]
-orthonormiertes Funktionensystem {¢.(x)} (n=0, 1,...) und eine Folge von
meBbaren Mengen H,.cfa, 8] (m=1,2,...) definieren, fiir die die folgenden
Bedingungen erfiillt sind: '

a) fur jeden Index m(= 1) gilt

Z

3 (x)o,.«)fdt VT2 @ (1t D) W),

m-1

(9. 40) J i

wenn 0=a, =1 (Nn-1 =n < Nu; AN(,=0) ist;
b) fiir x € H, ist

b N

Np-1

e

(g' 4') J (rl ) 2 Avm).] n ”"(x)g"(t) 'dt=O
A, m~l =Ny, qe2m!
und '
. Ny- l+2 l-l o i 1. y l‘
Tm 2 (omm 2 — g+l
(9. 42) f A(, "§m_l ANm_l_"pn(x)p..(t)!dt> 16(2 (nm+ 1)) W(2";

c) die Mengen H (m=1,2,...) sind stochastisch unabhdngig und
es gilt;

9.43) . w(Ha)> 27 ()W R (0—a).
Es sei ¢, = (n,+1)w'(2""), 2p,=2", af-"_A‘A"l’ / A= 1,.. ,N),

w, = w(r,). Dann werden wegen (7.2), (9.27) und (9.29) die Bedmgungen
(9.4) und (9.5) erfiillt, und so kann der Hilfssatz XIII angewendet werden.

" Es sei

1 ‘ "
9,-1(2c)=—_—___—ah,(c,,pl,{a&"},[a,b];x) (i=1,...,2"

Vo
und H, = H(c,, v, [a, b)). .

Nach dem Hilfssatz XIIl sind die ¢.(x) (n=0,..., Ny—1) Treppen-
‘funktionen, die im Intervall [a, b] ein orthonomiertes System bilden, femer



126 K. Tandori

werden (9. 40), (9.41), (9.42) und (9.43) nach (9:21), (9.22), (9.23) und
(9.24) fur m=1 erfillt.

Es sei s(> 1) eine beliebige natiirliche Zahl. Wir nehmen an, daB die
Treppenfunktionen ¢.(x) (n=0,..., N,.;—1) und die meBbaren Mengen
H,, ..., H,.y bereits definiert sind, so daB diese Funktionen im Intervall
|a, b] ein orthonormiertes System bilden und die Bedingungen a)— ¢) fiir
m=1,...,s—1 erfiillt sind, insbesondere sind also die Mengen H,, ..., H,_,
stochastisch unabhéngig.

Das Intervall {a, b] kann in endlich viele Teilintervalle /, (¢=1,...,1)
zerlegt werden, so daB die Funktionen ¢,(x) (0 = n < N,_;) in den einzelnen
Teilintervallen konstant sind. o

s

Wir setzen alsdann ¢, = (n, + 1)(2""), 2p—=2", "= Ayy, ./ AN
(i=1,...,2%), o,=w(r;). Wegen (7.2), (9.27) und (9. 29) sind die Bedin-
gungen (9 4) und (9. 5) erfiillt; folglich kann der Hilfssatz XIIl angewendet
werden. Es sei

12 .
O,y ot () = === Zlhz(cs, P40 Iy x)  (1=1,...,2")
o= .
und
H, =~0L;Jl H(cs, @y, 1,)-

Nach Hilfssatz XII sind auch die Funktionen g.(x) (N;.1 = n<N,)
Treppenfunktionen. Mit der bei dem Beweis des Satzes VI angewendeten
Methode kann gezeigt werden, daB dieselben ein im Intervall [a, 8] ortho-
normiertes System bilden, und wegen (9.20) zu den Funktionen ¢.(x)
(0 = n < N,.1) orthogonal sind. Auf Grund von (9.21), (9.22), (9.23) und
(9. 24) kann mit der bei dem Beweis des Satzes VI angewendeten Methode
gezeigt werden, daB (9. 40), (9. 41), (9.42) und (9. 43) auch fiir m=s erfiillt
werden. Es ist aus der Konstruktion klar, daB auch die Mengen H,,..., A
stochastisch unabhédngig sind.

Somit haben wir durch vollstindige [nduktlon die unendlichen Folgen
von Funktionen ¢.(x) und Mengen H, derart definiert, daB die gestellten
Bedingungen erfiillt sind.

Es sei nun e« eine beliebige positive Zahl. Wegen r,— oo ist r, =
fiir geniigend grofes m. Wir betrachten einen solchen Index m, und sei
X € H,.. Dann ist nach (7.2) und (7. 3)

(rm)
Tt <1 (0=n=N.—1),

(’m) -
A‘vm‘l

0<
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und so nach (9. 27), (9 28), (9 30), (9.31), (9.40), (9.41) und (9.42) gilt:.

)
jl A(rm) Z A;’ -1-n gn(x)gn(t) ' dat =

) m 1‘1

b 1 g m) |
; f {r, ) Z AN:-Lu Qn(X)Qﬂ(t)!dt—
h AN::-X n._Nm 1

(9. 44) »

_'"Z’j

@A D) T 32 e+ D) R 2

‘m)
A(rm) Z A(Jv -1 n gn(X)Q,, (t) ' dt >

= Y227 (n, + 1) B2 32 e 3) gz S 2‘""’235
_ k=1 h

1 2 2 /N Tog No
>3 @A+ D) R ) = Tg /N log No (..

Nach (7.2), (7.4) und (7.5) ergibt sich, daB fiir geniigend groBes m
(rm = «) und fiir x € H,, gibt es ein Index M., 0 = M,. < N.., so daB

b

(9. 45) J

M

Z A(a) -» !'r(x) Qr(t) ’.dt =

A(a)

= jA(rm) ) m'l non(x)gu(t) ldt = VN IOgN W(Nm)

gilt.
Ist nun x € lim H,.., so wird (9.44) fir unendlich viele' m erfillt und

so gibt es fiir unendlich viele Indizes m eine natiirliche Zahl 0 = M,. < I\,.., Lo
daB (9. 45) besteht. Also gilt nach (9. 25)
b

My,

A(I” ZAum';'g"(x)g"’(t) dt: 0.

1
N Ty W), [

Daraus folgt, da8 (9. 2) in ]edem solchen Punkt x besteht.

Auf Grund von (9. 32), (9.41) und der stochastischen Unabhangigkeit
der Mengen H, ergibt sich aber mit Anwendung des zweiten Borel-Cantel-
lischen Lemmas, daB u(1im H,)=b—a. Also besteht (9.2) fiir jedes ¢ >0

M-+

fast iiberall in [a, b]. /
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Wir bezeichnen mit E die Teilmenge vom Mafie Null des Grundinter-
valls [a, b], auf der (9. 2) fiir irgendeinen Parameterwert & > 0 nicht erfiillt wird.
Wir verdndern auf der Menge E die Werte der Funktionen ¢.(x) (n=0,1,...)
wie folgt: fiir x € E setzen wir ‘

— rm) _
2 )l“ A 5 LI
0. (x) = g (b——a AGm Ven  wenn Nooy =< Nowoy +277,

- 1-n

0 wenn Nai+2"'=<n<N,,

{m=1,2,...). Das so erhaltene Funktionensystem {¢.(x)} wird im Grundinter-
vall [a, b} orthonormiert, und wie leicht zu sehen ist, wird (9.2) fiir jedes
« >0 in [a, b] iiberall erfiillt.

Damit haben wir die erste Behauptung des Satzes XI bewiesen.

Nun gehen wir zum Beweis der zweiten Behauptung des Satzes XI
tiber. Es kann mit der bei dem Beweis des Satzes VI angewendeten Methode

eine Indexfolge (1 =)p <- < < angegeben werden, so daB die
Bedingungen ' .
(9. 46) 1\/,,.=2"*.+---+2"m<2“m+1 (m=1,2,...; Ny=0)
und ' S '
(9. 47) 2‘2"*"’ I ’zwz (m=2,3,.
erftillt sind, wobei w(a) eine natiirliche Zahl bedeutet, fiir dne

A(Cl) ] M \
{9.48) A“’)=_2T"’ . ( =n=55 M=0,l,...)
besteht.

Wir verrichten die beim Beweis der ersten Behauptung des Satzes XI
angegebene Konstruktion, so daB der Hilfssatz XIII mit den Zahlen

Cn=1, 2pu=2",a" = A¥ v, i[ANpe (i=1,..., 2" m=1,2,..),
w = w(a) angewendet wird; dies ist moglich, da (9.4) erfiillt wird, und
wegen (9. 48) auch (9. 5) besteht. _

So erhalten wir ein im Intervail {a, ] orthonormiertes, von e abhan-
giges Funktionensystem {ri’(x)} und eine Folge von me.baren Mengen
On<la, b], so daj die folgenden Bedingungen erfiillt sind:

a) fiir jeden Index m(= 1) gilt
b

wenn 0 =4, =1 (Nay = n<N,) ist;

Np-1 -
2 a2 xreM | dt < V—z‘”‘“’z P (@=x=0b),

n=Npm_1
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b) fiir x € O, ist

ek No-1 :
’ 1 ’ R a a a
f A(a) . Z A()—l-)lrf‘l )(X)rs. )(t)!dt=0
a Nl n=N, 42" :

und gilt

1 Nm-1+‘2""‘-l-l ’ )
. (a) @ (x)r® R -
A(a; "=; A 1-nTn ( ) n (t)ldt>162 ;

b
J‘ m-1

¢) die Mengen O (m=1,2,...) sind stochastisch unabhingig und
es gilt : '

' (9- 49) . .lt(om) > (b_a)z-‘lw(a)‘g‘ .
Ferner ist nach (9.5), (9.14), (9.15), (9.17), (9.18), (9.48) und
der Konstruktion ; _
lr,“’(X)|<( 2 ) 2°®  (n=0,1,’..; §x§b).

Auf Grund der Bedmgungen @), b) und nach (9. 46), (9. 47) ergxbt sich in
der oben angegebenen Weise, daB fiir x ¢ O,
b

J

gilt. Ist x € [im O,,, so wird diese Ungleichung fiir unendlich viele m erfillt,

m—r>x

also gilt (9. 3). ' A

Nach (9.49) und der stochastischen Unabhingigkeit der Mengen O
folgt aber mit Anwendung des zweiten Borel-Cantellischen Lemmas, dafi
u(lim On)=>b—a ist, also gilt (9. 3) fast iberall in [, b]. Durch eine geeig-

m-—>o

nete Veranderung der Werte der Funktlonen e '(x) (n=0,1,...) auf einer’
Menge vom MaBe Null kann erreicht werden (siehe den Bewexs der ersten
Behauptung des Satzes XI), dafl (9. 3) in [a, b] iiberall giit. ‘ .

Damit haben wir auch die zweite Behauptung des Satzes XI vollstandlg
bewiesen. '

Es bleibt die Frage offen, ob die Folge 4,=1n lognw(n) durch eine
beliebige, positive, monoton nichtabnehmende Folge {4.} -ersetzt werden
kann, welche die Bedingung (8. 11) erfiillt.

’\m . .
AJ, Z A‘“l.-n : ,,y>(x),;°>(t>}dt> VNm |
_1 n=0

A9
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Uber die Bedeutung der strukturellen Eigenschafteh
einer Funktion fiir die Konvergenz
ihrer Orthogonalentwicklungen.

Von G. ALEXITS und D. KRALIK in Budapest.

1. Bei Reihenentwicklungen nach Orthogonalfunktionen betrachtet man oft
Sitze von folgendem Typus: Sei {¢.(x)} ein im Intervall [a, b] vorgegebenes

Orthonormalsystem; gilt firr die reellen Zahlen ¢, ¢, ..., ¢., ... die Beziehung
O X din) <
nz=0

mit einer positiven, wachsenden und nach oo strebenden Faktorfolge i(n),

* so ist'die Reihe

@) S

n=g

" auf einer Menge E konvergent bzw. summierbar (nach irgendeiner Summa-
" tionsart). Eine Konvergenz- bzw. Summierbarkeitsbedingung von der Form
(1) wollen wir im folgenden eine Koeffizientenbedingung nennen.
. Eine wohlbekannte Koeffizientenbedingung ist z. B.

«©

(3) ' 1 ci(log n)’ < oo,

aus welcher die Konvergenz jeder Orthogonalreihe (2) fast iiberall folgt
(RADEMACHER [14] und MENcHOFF [10]). Die Koeffizientenbedingung

4) 2 ca(log log ny < oo

n=2

sichert die (C, @)-Summierbarkeit fast iiberall jeder Orthogonalreihe (2) fir
alle @ >0 (MeNcHOFF [11] und Kaczmarz [7]).
Fiir trigonometrische Reihen kann (3) durch die schwichere Bedingung

(5) | Z_,:(a}z.+b3) logn < o

ersetzt werden (KOLMOGOROFF—SELIVERSTOFF [8] und PLESSNER [13]). Ahnliches
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It sich auch fiir eine breite Klasse von Orthogonalpolynomentwicklungen
behaupten (B. Sz.-Nagy [15)).

Diese Koeffizientenbedingungen sagen iiber die Struktur der in die
Orthogonalreihe (2) entwickelten Funktion f(x) unmittelbar nichts aus. Daher
erhebt sich die Frage, ob es sich eine nur auf die entwickelte Funktion f(x)
bezichende Strukturbedingung angeben lafit, weiche die Koeffizientenbedingung
(1) ersetzen konnte, oder mit ihr sogar gleichwertig wire, und somit die
Konvergenz bzw. Summierbarkeit der Entwicklung (2) unmittelbar aus den
~ Eigenschaften der Funktion f(x) abzulesen erméglichte.’

Im Fall spezieller Orthogonalsysteme kennt man derartige Struktur-
bedingungen. So z.B. haben ALexiTs [l] und STeECKIN [16] unabhingig
voneinander gezeigt, daB die Koeffizientenbedingung (5) fiir Fourierreihen mit
folgender Strukturbedingung vollkommen &dquivalent ist: Es gibt eine positive,
monoton wachsende Funktion &(x) mit der Eigenschaft

o4}

dx
(6) : x CD(x)

so daf fiir den quadrahschen Stetigkeitsmodul’) w.(d,f) von f(x) die
Beziehung )

A . 1

) (6, ) Otv’_‘“cp = (ﬁ)

besteht. Diese und auch manche andere Strukturbedingungen haben tber die
entsprechende Koeffizientenbedingung den Vorteil, daB sie lokalisiert werden
konnen. Wenn nidmlich die Funktion f(x) nur iiber einem Teilintervall [e, J]
von [0, 2:7] quadratisch integrierbar ist, und nur der ,lokale“ quadratische
Stetigkeitsmodui :

( ¢
00, f; ¢, ) = sup ; | U+ By — £ dx g

12

die Bedingungen (6) und (7) erfiillt, so konvergiert die FOurierreihe von f(x)
im Intervall [¢, ] fast tiberall, obzwar in diesem Fall auch Z (@ +b6))=+ oo

n=1

sein kann (ALEXITS |1], STECKIN [16]). Mit der Bedingung (5) ist auch die
Strukturbedingung

2n 2

| J[f(X+t) —/C=0F 4y <

[

2x V12
!

1) ms('i.f)=,§:xgdz i [f(X+h)—f(X)Fdx‘
A { 0
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dquivalent (PLESSNER [13]), welche ebenfalls lokalisiert werden kann (ULJaNOV |
[18]). Strukturbedingungen von &hnlichem Typ fiir die Konvergenz von Ortho-
gonalpolynomentwicklungen haben KOLMOGOROFF [9], ALEXITS [2] und ULjaNOV
[17} angegeben.

Im folgenden wollen wir die Frage der Ersetzbarkeit der Koeffizienten-
bedingung (1) durch eine entsprechende Strukturbedingung ganz allgemein -
betrachten, um dadurch den Kern der dhnlichen speziellen Untersuchungen
herauszubekommen. Die bisher erzielten speziellen Ergebnisse sind in unseren
Resultaten als Korollare enthalten. Natiirlich gibt unsere Untersuchung auch
zur Aufstellung weiterer Strukturbedingungen Anla8.

2. Es sei 2(x) eine fiir alle geniigend groBe x definierte pdsitive,
monoton wachsende, von unten konkave Funktion; wir betrachten die Reihe

Y

® 2 (D<)

wo k, eine entsprechend gewahlte natiirliche Zahl ist. Wegen

any= | ¥ (x) dx+a(k)
aht sich

’D It

= %c 2, P+ 0(1)——

r .

_):c i(n) = ?c,i ‘ i (\')dx-f-/(k,,)

n=k 0§ L%

9
= V; (;)\ ;- O(1),

schreiben. Handelt es sich um ein Orthonormalsystem {¢.(x)}, bei dem die
Beziehung .

(10) - 9= 3 ol =] Zi=ofon( L.1)]

besteht, so folgt hieraus, dafi die Konvergenz der Reihe’

(11) | ZI »)- w,(— )

r=k,

die Konvergenz von (8) nach sich zieht. Die Reihe (11) und das Integral

Jz IS wv( ‘f) dx

sind aber glexchzemg konvergent oder divergent; aus der Konvergenz dieses
" Integrals folgt also die Bedingung (1). Hiemit ist der folgende Satz bewiesen:
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Satz 1. Erfillt das Orthonormalsystem {@.(x)} die Beziehung (10), gilt
ferner fiir ein f¢€ L*(a, b) die Strukturbedingung

. _ 1
(12) . . 093, )= O(V@(l—/d))
mit einem wachsenden ® (x) >0, fiir welches
(13) jpf‘g dx < oo

ist, so ist auch die Koeffzz:entenbedmgung Q1) erfiillt; also folgt aus (12) und
(13) die Konvergenz bzw. Summierbarkeit der Entwicklung (2) in denselben
Punkten, in welchen sie aus (1) gefolgert werden kann.

Im Fall des trigonometrischen Systems kann man die Giiltigkeit der
Beziehung (10) leicht einsehen, so daf hier (1) stets durch eine entsprechende

Strukturbedingung ersetzt werden kann. In dlesem Fall 148t sich sogar mehr
behaupten :

Satz 2. Im Fall des trzgfonometnschen Sjrstems sind die Koeffizienten-
bedingung (1) (mit c2=a2+b%) und die Strukturbedmgung (12), (13) voll-
kommen dquivalent.

In diesem Fall besteht ndmlich die Ungleichung

wi(5.r)= 25 23

n =1 =k

(vgl z. B. [1], oder [16]). Wir haben daher

Zrcrowz(i. 1) =8a SED S —sﬂzvzcsz“"uoa)

Wegen der Konkavitit der Funktion i.(x) ist A’(x) monoton abnehmend
folglich ist . :

Z?’é 2;_'(,,,) o

n=v v

SOy

2-
n=y N

woraus
i@t s)siea3 re) Sevon
n=ko . . v=ko n=y

folgt. Daraus ergibt sich wegen (9)

2 rwei(t.s)=om 3 am+oum,
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d.h. die Strukturbedingung ist eine Folge der Koeffizientenbedingung, w.z.
b.w.

Wenn fiir die Enthcklung (2) die Beziehung (10) und auBlerdem noch
das Lokalisationsprinzip?) giiltig ist, so kann der Satz 1 auch in einer
lokalisierten Form ausgesprochen werden :

. Bezeichne E die Menge jener Punkte von [a, b), in welchen die Kon-
vergenz von (2) im Fall des Erfiilltseins der Koeffizientenbedingung (1)
gefolgert werden kann. Besteht fiir die Entwicklung (2) die Beziehung ¢10)
und ist fiir sie auch das Lokalisationsprinzip giiltig, erfiillt ferner die Funktion
J(x) in einem Teilintervall [e, 8] von {a, b] die Bedingung

12 1
w:(3.f; @, B) = sup *O(V*'_W/k»)’

g
[Vt =P ax
wo @(x) der Bedingung (13) geniigt, so konvergiert (2) in den Punkien des
Durchschnittes En [e, ).

Der Beweis beruht auf der Erwexterbarkent von der in [e, §] betrachteten
Funktion f(x) zu einer in [a, b] definierten Funktion g(x), welche die Struktur-
bedingung in [a, b] erfiillt (vgl. z. B. [1]). Das Ubrige ergibt snch dann durch
Anwendung des Lokalisationsprinzips und des Satzes 1. -

Aus diesen aligemeinen Sétzen ergeben sich die bekannten spezxellen
Satze als Korollare: Im Fall des trigonometrischen Systems setze man z.B.
A(x)=log x, dann.erhilt man einerseits nach Satz2 die Aquivalenz der
Koeffizientenbedingung (5) und der Strukturbedingung (6), (7), andererseits
nach dem soeben bewiesenen die lokalisierte Strukturbedingung von ALEXITS
[1] und STEGKIN [16]. — Setzt man 4(x)=x, so folgt aus Satz 2 die Aqui-
valenz der Koeffizientenbedingung '

(14) " gn(a3+»b?.)< oo

und der Strukturbedingung

(15) E wé( )dx<oo
__ | j

Sind a, und b, die Fourierkoeffizienten einer auf der Peripherie des Einheits-
kreises definierten stetigen Funktion f(x), so.ist das Erfilltsein von (14) fir

, 2) Wir verstehen unter dem Ausdruck ,fiir (2) gilt das Lokalisationsprinzip® die
Giiltigkeit des folgenden Satzes: Ist f(x) =g(x) in einem Teilintervall f von {a, b}, so sind
die Entwicklungen (2) von f(x) und g(x) in I dquikonvergent.
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die Anwendbarkeit des Dirichletschen Prinzips auf den Einheitskreis notwendig
und hinreichend (s. z. B. [5]), also ist (15) die notwendige und hinreichende
Strukturbedingung fiir die Anwendbarkeit des Dirichletschen Prinzips auf die
stetige Randfunktion f(x) des Einheitskreises (FREUD und KRALKK [6}).

3. Sei ¢(x) =0 eine in [a, b] L-integrierbare Funktion, die hochstens
auf einer Nullmenge verschwindet. Die Belegungsfunktion o(x) bestimmt
bekanntlich (bis auf das Vorzeichen) eindeutig ein Orthonormalpolynomsystem.
Bezeichne jetzt {¢.(x)} dieses System; dann gilt bekanntlich fiir die Entwick-
lung einer stetigen Funktion f(x) nach dem System {g.(x)} der Jacksonsche
Saiz ‘

AT
10— Pul = Croo (L, 1),
wenn P,(x) das im Tschebyschewschen Sinn am besten approximierende Polynom

(n—1)-ten Qrades, cu(—rll—, f) den Stetigkeitsmodul®) von f(x) und C, eine

“absolute Konstante bedeutet. Es ist also

1/

2§ Cg-w(%;f)-

e U () () — Pu(x)Px

[

-2 )|

Daraus folgt durch Anwendung von (9) genau wie im Beweis des Satzes 1
der

v Satz 3. Geniigt w(0,f)der Strukiurbedingung (12), (13), so folgt daraus
die Konvergenz bazw. Summierbarkeit der Orthogonalpolynomentwicklung (2)
in denselben Punkten, welche durch die Koeffizientenbedingung (1) bestimmt
werden. : :

Aus diesem Satz ergibt sich als unmittelbares Korollar die folgende
Behauptung : Ist die Strukturbedingung

1
(16) w(d,f):O(W)
mit einem ©(x) erfillt, fiir welches
log x (log log x)'**
x4>(x) dx < oo ({:‘>0)

gilt, so konvergiert die Orthogonalpolynomentwicklung (2) in jeder Anordnung

3 w(4,f) = t_5‘111‘)S , 1fx)—F (]
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fast iiberall (ULjANOV [17]). Man hat ja nur A(x)=:log?®x-(log log x)'** z
setzen und einen bekannten Satz von Orricz [12} anzuwenden. — Setzt man
A(x) = log" x, so ergibt sich als Korollar der folgende Satz von KOLMOGOROFF
[9]: /st die Strukturbedingung (16) mit einem D(x) erfiillt, fiir welches

log x '
(17) [W(x—) .dx < oo
gilt, so kohvergiert die Orthogonalpolynoﬁzen!wicklung (2) fast iiberall. — Ein
weiteres, bisher explizite vielleicht nicht ausgesprochenes Korollar ist das
folgende: Ist die Strukturbedingung (16) mit einem ®D(x) erfiillt, fiir welches

log log x

gilt, so ist die Ortlzogonalpolynomenthcklung (2) der stetigen Funktton F(x)
fast iiberall (C, ¢ > 0)-summierbar.

Sowohl das letzte wie auch das vorangehende Korollar (Kolmogoroff-.
scher Satz) kann lokalisiert werden, wenn das Orthonormalpolynomsystem
{¢.(x)} in einem Teilintervall [, 8] von [a,b] gleichmiBig beschrankt ist.
Dann gilt ndmlich, wie leicht ersichtiich, das Lokalisationsprinzip fiir {¢.(x)}
und daher kann man den Gedankengang der lokalisierten Form.des Satzes 1
mit w(0, f; &, 8) statt w,(9, f; «, 5) anwenden:

Ist das Orthonormalpolynomsystem {¢.(x)} in [c, 8] beschrdnkt und gilf
fiir den in |e, 8] definierten Stetigkeitsmodul w(0, f; «, 8) die Strukturbedingung
(16) mit einem ®(x), das (17) bzw. (18) erfiillt, so ist die Entwicklung (2)
der in [a, 8] stetigen, sonst nur beziiglich o(x) quadratisch integrierbaren
Funktion f(x) in {e, 8] fast iiberall konvergent bzw. (C, ¢ >0)-summierbar.*)

4. Bekanntlich folgt die Konvergenz fast iiberall der Reihe (2) schon
aus der Bedingung
(19) Zc,. log n< oo,

n=1

falls das. Orthonormalpolynomsystem {g.(x)} in jedem ganz im Inneren von
(a, b) liegenden abgeschlossenen Teilintervall [«, 8] gleichmédfig beschrdnkt
ist [15]. Daher gilt nach Satz 3 die folgende Behauptung: Ist das Orthonormal-
polynomsystem {q.(x)} in [, 8] beschrinkt, geniigt ferner w(J, f) der Bedingung

4) Setzt man statt der Beschrinktheit von' {@a(x)} in [a,8] die Beschrdnktheit im
ganzen Intervali [g, b] voraus, so 148t sich die Voraussetzung der quadratischen Integrier-
barkeit von f(x) in [a, b]—]e, ﬂ] beziiglich ¢(x) durch dxe gewohnhche Integrierbarkeit:

" Dbeziiglich o(x) ersetzen. . :
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{16) mit einem ®D(x), welches die unter (6) geforderte Eigenschaft besitzt, so
konvergiert (2) fast iiberall. Auf Grund des Lokalisationsprinzips kénnen wir
diese Behauptung auch in lokalisierter Form aussprechen, womit wir einen
Konvergenzsatz von ALEXITS (2] wesentlich,verallgemeinern:

Satz 4. Ist das Orthonormalpolynomsystem {@.(x)} in einem ganz im
Inneren von (a, b) liegenden abgeschlossenen Teilintervall [, 8} beschrdnkt, geniigt
ferner der auf(e, 8] bezogene Stetigkeitsmodul w (3, f; @, B) der L (.-integrierbaren
Funktion f(x) der Bedingung (16) mit einem der Bedingung (6) geniigenden
D(x), so konvergiert die Orthogonalpolynomenthcklung (2) von f(x) in [e, 8]
fast iiberall.

Es sei g(x) die Funktion, die in [e, §] mit f(x) zusammenfillt und in
den Intervallen [a, &), (8, 5] die konstanten Werte f(¢) bzw. f(8) annimmt.
Der Stetigkeitsmodul w(d, g;a,b) erfillt die fir w(d,f; e, B) geforderte
Strukturbedingung im ganzen Intervall [a, b]; nach Satz 3 besteht also fiir die
Entwicklungskoeffizienten von g(x) die Beziehung (19), woraus die Konvergenz
-der Entwicklung von g(x) in [e, §] fast iiberall folgt (vgl. (4] und [15]). Die.
Konvergenz der Entwicklung von f(x) fast iiberall in [e, 8] ergibt sich mlthm
aus dem Lokalisationsprinzip.

Es ist zu bemerken, daB wir uns von der Stetigkeit der Funktnon ()
in [e, 8] befreien konnen, wenn wir die Belegungsfunktion ¢(x) durch die
Bedingung

K
(20) 0=0(0) = e
__ Y (x—a)(b—x)
-einschranken, wobei K eine Konstante bedeutet_. Durch die Transformation
x =‘b—£a -cos ‘9+b-12—a erhalten wir die Funktion
g(&):f(b os3+b+a)

auf welche wir einen Gedankengang von ALEXITS [3] anwenden diirfen,
woraus sich die folgende Verschdrfung der Behauptung des Satzes 4 ergibt:
Geniigt o(x) der Bedingung (20) und ist {@.(x)} in le, 8] beschriinkt, erfiillt
Jerner wy(3,g; 8, @’) die Bedingung (7) mit einem durch (6) eingeschrdnkten
D(x), wobei &', 8" die auf der 3-Achse liegenden Bildpunkte von e, 8 sind,
so konvergiert die Entwicklung von f(x) in [a, 8] fast iberall. :
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B. L. van der Waerden, Erwachende Wissenschalft, .:igyptische, Babylonische und
Griechische Mathematik. Aus dem Holldndischen iibersetzt von H. Hasicut, mit Zusitzen
vom Verfassevr. 488 Seiten, Basel—Stuttgart, Birkhduser-Verlag, 1956.

Der bekannte Verf. der ,Modernen Algebra“ verdffentlichte als leidenschaftlich
interessierter Historiker der Mathematik schon mehrere wichtige Beitrdge zur Geschichte
der exakten Wissenschaften im Altertum. Vorliegendes Werk (1950 holldndisch und 1954
auch englisch herausgebracht) umfaBt die Geschichte der dgyptischen, babylonischen und
griechischen Mathematik bis etwa zur Mitte des 6. Jh. Der Schwerpunkt der Behandlung -
Tillt — wie es auch im voraus betont wird (S. 16 f) — auf die Griechen, nach dem ja bei
ihnen zuerst die Mathematik zur dedukiiven Wissenschaft wurde. Der erste Teil des Buches
(5. 23—130) fafit unsere gegenwirtigen Kenntnisse iiber die altorientalische Mathematik
7zusammen. Innerhalb dessen iiberblickt ein Sonderkapitel das Problem ,Zahlensysteme,
Ziffern und Rechenkunst“ (S. 59—99) bis in das 16. Jh. hinein. Die scheinbare Abschweifung
wird durch die Tatsache begriindet, da Zahlenschreibweise und zugehérige Rechentechnik
von_ sehr groBer Bedeutung fiir die Entwickiung der Mathematik sind. — Interessant, daB
nach der Ansicht des Verf. einerseits der verhdltnismidBig hohe Entwicklungsstand der -
Zahlenschreibweise und Rechentechnik in Babylonien die hdhere Entfaltung der Mathematik
seibst fiir diejenigen Griechen erleichterte, die die orientalische Erbschaft iibernahmen,
andrerseits aber eben ,technische Unzuldnglichkeiten® auch zum Steckenbleiben, ja zum
Verfall der griechischen Wissenschaft beitrugen (S. 440 f.). — In der Tat sind die grofien
Fortschritte der Mathematik seit der Antike zum wesentlichen Teil mit dadurch bedingt
daB es gelang einen brauchbaren, leistungsfihigen Formalismus zu schaffen, wie es einen
in der Antike noch nicht gab. ) ’

"Leider, ist- es hier nicht méglich, die neuen Ergebnisse des ausgezeichneten und sehr
reichhaltigen Buches alle im einzelnen zu besprechen, oder sie auch nur aufzuzihlen.
Van per Waeroexs Zusammenfassung wird ja voraussichtlich noch fiir lange Zukunft Grund-
lage jeder weiteren historischen Forschung auf diesem Gebiete. Ein Rezensent der hollindi-
schen Ausgabe hat iibrigens schon zusammengestellt, was in der Arbeit gegeniiber friiheren
Darstellungen der antiken Mathematik neu ist. Uberholt ist diese #ltere Rezension (O. Becker,
Gnomon, 1951) eigentlich- nur deswegen, weil der Verf. auch seitdem sein Buch vervoll-
stindigt hatte. Man denke dabei nicht nur an die Zusitze, Ergdnzungen und kleinere
Verbesserungen, die zum Teil von der Kritik verlangt wurden, sondern noch mehr an jene
tiefgreifende Auseinandersetzung mit der anderweitigen Forschung, die fiir den Verf. ermég-
licht, seine Ergebnisse immer mehr zu vervollstindigen.

Der Verf. wendet sich mit besonderem Interesse der Frage zu, wie sich die praktisch-
empirischen Kenntnisse der altorientalischen Volker bei den Griechen zu einer theoretischen
Wissenschaft entwickelten. Die friithen Ansitze einer solchen Entwickiung werden jedesmal
mit Recht hervorgehoben. So heifit es z. B. im Zusammenhang mit den sog. Hau-Rechnungen
der Agypter (die also mich? Problemen aus der Praxis entspringen): ,Sie zeugen von dem
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rein theoretischen Interesse der &agyptischen Rechenmeister. Sie sind offensichtlich von
solchen Leuten ausgedacht, die SpaB am reinen Rechnen hatten und ihren Schiilern schwere
Aufgaben zur Ubung aufgeben wollten. Wie jede Kunst, so hat auch die Rechenkunst die
Neigung, sich bis an ihre duBersten Grenzen zu entfalten.* Ein andermal wird die Liicken-
haftigkeit unserer Kenntnisse in bezug auf Babylonien betont: ,Schade, daB fast alle Texte
nur Aufgaben und Losungen, aber keine Herleitungen enthalien. Man gibt die Ldsung wie
eine Art Rezept ohne zu sagen, wie man sie gefunden hat. Und doch miifien diese Rezeple
irgendwie hergeleitet sein, und die Lehrer miiflfen ihren Schiilern gesagt haben, wie sie
Unbekannte aus Gleichungen aufldsen und eine Unbekannte durch eine andere ausdriicken
konnten“. Die Vermutung wird wohl zutreffen, doch miite man auf der anderen Seite umso
schirfer betonen, daf solche grundlegenden Begriffe wie Safz, Beweis. Definition, Axiom"
und Postulat in der vorgriechischen Wissenschait allem Anschein nach noch gar nicht
existierten. Wie kam es dazu, daB man solche Begriffe schuf ? — Diese Frage wird im
Buch nicht gestellt, und doch kann man eben nach vax per Waerpens Vorbild auch solche
Fragen anpacken, nur muB man dazu die Arbeit des historisch interessierten Mathematikers
von der Philosophiegeschichte und der Philologie her ergidnzen. Um nur ein Beispiel zu
nennen: der Verf. hat in der Beurteilung der Wissenschaft von TnaLes wohl Recht (S. 145 f.).
Thates hat seine Sitze allerdings schon bewiesen. Aber weicher Art seine Beweise gewesen
sein mogen? -- Schade, daB zu dieser Frage eine Arbeit von K. v. Fritz (Archiv f.
Begriffsgesch., 1955) noch nicht beriicksichtigt werden konnte. Man hat ndmlich inzwischen
wahrscheinlich machen konnen, daB die thaletischen Beweise noch vorwiegend empirischer
Art sein mufiten. Diese Vermutung wird auch dadurch noch erhértet, dal der math. Terminus
der Guiiechen fiir ,beweisen* der Wortbedeutung nach eigentlich ,zeigen“, ,veranschaulichen*
heift. Es hat also wohl eine Entwicklungsstufe gegeben, in der die math. Evidenz noch
" unmittelbar empirisch, anschaulich war. Die Forderung nach einer anderen Art (logischer)
Evidenz wird woh! erst auf der nichsten Entwicklungsstufe ausschlaggebend.

GewiB, hat der Verf. Recht, wenn er betont (S. 18), daB man erfolgreich Mathematik-
Geschichte betreiben kann, auch ohne die klassischen Autoren im Urtext zu lesen. Aber
will man auf demseiben Wege, der durch ihn so gangbar gemacht wurde, weiterkommen,
so wird einiges wohl auch noch die Philologie beisteuern kénnen. Vay per WaerDEx hat
z. B. auf die logischen Miingel des 8. Euklidischen. Buches hingewiesen ; sein Verf. (ArcryTas)
ringe stindig mit der Ausdrucksweise. ,Es macht fast den Eindruck, als hiitte er Angst,
auf den glitschigen Pfaden der Logik auszurutschen* (S. 253). Dagegen rithmte er die
geschlossen kompakte Einheit und Eleganz des etwas friiheren 7. Buches. Nun liest man
aber das 7. Buch Euklids griechisch, so wird man auch an seiner Logik manches auszu-
selzen haben. Was soll man z. B. zu der sehr ungeschickten Formulierung des 15. Satzes
sagen — der iibrigens nur ein Spezialfall von Satz 9 ist ? Die historische Erklirung dieser
logischen Ungeschicklichkeit konnte wohl manches Licht auf die mathematisch-philosophi-
schen Diskussionen des 5. Jh. werfen. Und von dieser Seite her wiirde man auch die
logische Ungeschicklichkeit von Arcuvras etwas anders erkldren, als es van DER WaERDEN tut.

Hervorgehoben seinen noch — rieben den sehr eindrucksvollen Euklid-Analysen —
die schénen Kapitel iiber Arcnimepes und Arortonios. Was den Verfall der griechischen
Math: betrifft, macht der Verf. mit Recht darauf aufmerksam, wie ganz anders die Entwickiung
in der Astronomie verlaufen ist. Der Riickgang der Mathematik muf afso seine ,inneren °
Ursachen“ haben.

Das Buch, obwohl streng wissenschaftlich und weitere Nachforschungen anregend, ist
iiberall aligemeinverstindlich, klar und setzt nirgends mehr als die einfachste Schulmathematik
voraus. . A Arpdd Szabé (Budapest)
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V. Thébault, Parmi les belles figures de la géométrie dans Pespace (Géométrie
du tétraédre), XVI 4 287 p., Paris, Vuibert, 1955,

Comme V'on le soupgonne déja du titre, 'ouvrage n’est pas un traité au sens étroit.
Le but de Fauteur est de faire passer quelques moments agréables au lecteur.

M. V. TugasuLt recherche depuis quarante ans les analogies existant entre la
géométrie du triangle et celle du tétraédre et arrivait 4 étendre de nombreuses relations
du plan A Pespace. Aprés des rappels aux résultats de ses prédécesseurs il nous offre un
receuil des principaux résultats de ses propres recherches sur le tétraédre et les polygones
gauches. Les raisonnements procédent par assez de calculs; quant aux “belles figures”,
c’est le lecteur qui doit les construire.

La part la plus riche du livre est Chapitre 1lI: Points de Lemoine, sphéres d’Adams,
de Tiicker, de Lucas, de Hagge, Porthopdle d’'une droite.

Les résultats dé I'auteur concernant des tétraédres spéciaux (par ex. orthocentri;ues)
franchiraient les limites du livre, mais entre les questions proposées quelques unes sont
prises dans ce domaine. Il est a regretter que le livre ne contient pas une bibliographie

détaillée et un index.
T. Bakos (Szeged)

E. Kamke, Mengenlehre (Sammlung Goschen, Band 999/999a), 192 Seiten, Berlin,
Walter de Gruyter, 1955.

Die dritte, neugearbeitete Auflage dieses bekannten und bewihrten Biichleins wurde
gegeniiber der zweiten Auflage (1947) mit verschiedenen Erginzungen wesentlich erweitert :
" Neu ist ein Kapitel iiber das Rechnen mit Mengen (Formeln von Morcan, Sustin-Operation),
ein Abschnitt {iber die Begriindung der Mengenlehre, in dem unter anderem die Bedeutung
des Auswahlprinzips diskutiert wird und einige Bemerkungen iiber die intuitionjstische
Mengendefinition von Brouwer gemacht werden. Neu sind ferner die §§ 34 und 35 iiber die
Zerfillung und Zerlegung von Ordnungszahien. In einem letzten Abschnitt werden neben
der ausfiihrlichen Behandlung des Wohlordnungssatzes die Sitze von Tukey, Hausporer und
Zorn behandelt. )

. Inhaltstibersicht: I. Aus den Anfingen der Mengenlehre. II. Uber beliebige Mergen
und ihre Kardinalzahlen. IIl. Bemerkung iiber die Begriindung der Mengenlehre. IV. Uber
geordnete Mengen und ihre Ordnungstypen. V. Uber wohligeordnete Mengen und ihre
Ordnungszahien. V1. Der Wohlordnungssatz, verwandte Sitze und Folgerungen.

G. Fodor (Szeged)

H. Bachmann, Transfinite Zahlen (Ergebnisse der Mathematik und ihrer Grenz-
gebiete, neue Folge, Heft 1), VII 4204 Seiten, Berlin—Gottingen—Heidelberg, Springer-
Verlag, 1955.

Der vorliegende Bericht enthilt deutliche und systematische Ausfiihrungen iiber die
Ergebnisse und Probleme der Theorie der transfiniten Zahlen (Ordnungszahlen und Michtig~
keiten). Das ZermeLo—Fraenxersche Axiomensystem der Mengenlehre bildet die Grundlage,
es wird aber alles in der Sprache der naiven Mengenlehre formuliert.

In der Einleitung (Kap. 1) findet man einen kurzen AbriB iiber die Mengenlehre und
das Grundlagenproblem, iiber die iiblichen Axiome der Mengenlehre und die fundamentalen
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Definitionen der Aquivalenz, Ahnlichkeit, Wohlordnung, der transfiniten Induktion und der:
transfiniten Zahlen. ;

In Kapitel 11 werden behandelt: die Ordnungszahlen, stetige Funktionen von Ordnungs_
zahlen, die ordinalen Anfangszahlen, Normalfunktionen, Iteration und kritische Zahlen und
die Theorie der regressiven Funktionen,

Kapitel Ill beschaftigt sich mit der Arithmetik der Ordnungszahlen. Zuerst werden
" die arithmetischen Operationen mit Ordnungszahlen auf mengentheoretischer Weise einge--
fiihrt. Sodann folgt die funktionale Theorie der arithmetischen Operationen. In diesem
Kapite! findet man noch die Polynomdarstellung der Ordnungszahlen, die héheren arithmeti-
schen Operationen, die Theorie der Hauptzahlen, die Umkehrungen der arithmetischen
Operationen, die Zerlegung einer Ordnungszahl in unzerlegbare Zahlen, die Permutationen
von Folgen von Ordnungszahlen und die Theorie der vertauschbaren Ordnungszahlen.

In Kapiteln IV und V wird die Theorie der Michtigkeiten und Kardinalzahlen
dargestellt, undzwar in Kapitel IV ohne das Auswahlaxiom zu benutzen, und in Kapitel V
unter Verwendung des Auswahlaxioms. Es werden behandelt: die Maichtigkeit beliebiger
Mengen und ihre Arithmetik, Vergleichung von Maichtigkeiten, die Potenzmenge einer
beliebigen Menge, die Kardinaizahlen und die kardinalen Anfangszahlen, Arithmetik der
Kardinalzahlen, Ungleichungen fiir unendliche Summen und Produkte von Kardinalzahlen,
Beziehungen zwischen Kardinalzahlen und Méchtigkeiten, dquivalente Formen und Kon-.
sequenzen des Auswahlaxioms, die Beths, Summen von Beths, die Alephhypothese und
ihre Folgerungen. :

In Kapitel VI handelt es sich, etwas weniger eingehend, um dic Anwendungen der
transfiniten Zahlen in der Theorie der Punktmengen, das Axiom der Hauptfolgen, die
formale Darsteliung von Ordnungszahlen und schlieBiich um einige Alternativen zum Aus-
wahlaxiom.

Das letzte Kapitel beschiftigt sich mit den unerreichbaren Zahlen.

‘Zum Schiu8 werden ausfiihrliche Literaturangaben zu den einzelnen Kapiteln angefiihrt.

G. Fodor (Szeged):

R. Courant, Vorlesungen @iber Differential- und Integralrechnung. Erster Band:
Funktionen einer Verdnderlichen. Drifte, verbesserte Auflage, XI 4- 450 Seiten. Zweiter
Band : Funktionen mehrerer Verinderlicher. Dritte, verbesserte Auflage, XI 4 468 Seiten.
Berlin, Gottingen und Heidelberg, Springer-Verlag, 1955.

Courants Vorlesungen sind wohl! schon ein klassisches Werk geworden. Dies erweist
sich auch daraus, daB sie schon in dritter Auflage vorliegen und auch in andere Sprachen
iibersetzt wurden. Dieser Erfolg ist u.a. dem zu danken, daB es dem Verf. gelingt, dem
Stoff, ohne Verzicht auf Prizision, in einer undogmatischen, lesbaren Form darzustellen
und abstrakte Begriffe anschaulich zu motivieren. Er hilt die Schwierigkeiten der Anfinger
immer vor den Augen. Darum sind die schwierigeren und enginzenden Probleme, die man
beim ersten Studium iibergehen kann, nur in den Anhingen betrachtet. Charakteristisch ist
im Aufbau des Materials, daB das bestimmte Integral vor der Ableitung eingefiihrt wird und
Differential- und Integralrechnung nebeneinander zur Behandlung kommen.

Diese dritte -Auflage unterscheidet sich von der zweiten hauptsichlich durch die
Aufnahme einer Reihe von Zusitzen. Diese betreffen u.a. die Intervalleinschachtelung und
das Zahlenkontinuum, den zweiten Mittelwertsatz der Integrairechming, den WeierstraBschen
Approximationssatz (nach H. Lesesoue), das lterationsprinzip fiir die numerische Auflosung
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gewisser Gleichungen, die Bernoullischen Polynome und die Eulersche Summenformel, das
Integral von Fresner und von Diricuier, die Integration der Fourierreihen, das isoperi-
metrische Problem, die Differentiation und Integration von gebrochener Ordnung, die
Wellengleichung und die Maxwelischen Gleichungen im ieeren Raum.

In dieser ergénzten Form werden die Vorlesungen von Courant gewiB einen noch
groBeren EinfluB auf die Ausbildung der neuen Mathematikergenerationen haben.

~ J. Berkes (Szeged)

——

Arnaud Denjoy, Articles et miémoires. Reproduits et rassemblés avec le concours
-du Centre National de la Recherche Scientifique. VII -+ 1108 pages, Paris, Gauthier-
Villars, 1955.

On trouve dans ces deux volumes de re’narquable étendue un recueil complet des
reproductions photographiques des articles et des mémoires, écrits avant 1955, de Péminent
-analyste. Les notes préliminaires, publiées pour la plupart dans les Comptes Rendus de
Paris, feront le sujet d’'une collection ultérieure.

Le premier volume embrasse les ouvrages qui traitent de la théorie des fonctions
d’'une variable complexe, le second comprend ceux qui s’occupent des fonctions réelles et
des questions de la théorie des ensembles, en particulier de la topologie. On y trouve
encore un article de T. J. Boxs, écrit sous la direction d’A. Dexjov, et trois notices de
I’auteur qui donnent un aspect général sur son oeuvre, datant des années 1921, 1934 et’
1942.

Dans nos jours, une grande partie des résultats de 1'auteur sont a trouver dans les
monographies sur la théorie des fonctions réelles, il y en a méme qui font- partie des
manuels. Tous les analystes conviendront de ce que ces faits ne rendent pas superflu I'étude
des publications originales ; celui qui désire étudier la genése des idées et s'enfoncer dans
la profondeur de celles-ci, aura &.les consulter dans la forme dans laqueile auteur méme
les a présentées. On ne peut donc que saluer avec joie la parution de ce recueil qui
facilite P’accés des travaux d’un des plus illustres analystes de notre époque.

" A. Csdszdr (Budapest)

" R. W, Weitzenbock, Der vierdimensionale Raum (Wlssenschaft und Kuitur, Bd. lO)
- 223 Seiten, mit 54 Figuren, Basel und Stuttgart, Birkhduser Verlag, 1956.

Die Entwicklung der Mathematik und der Physik in den letzten hundert Jahren -
wir denken dabei insbesondere an die Relativititstheorien von EinsTEIN — hat unsere
wissenschaftliche Auffassung des Raumes auf grundlegende Weise umgestaltet. Die neu
entstandenen Begriffe, wie der der mehrdimensionalen Rdume, sind in der Weiterentwieklung
der Geometrie von entscheidender Bedeutung geworden, die man auch in der mathemati-
schen Beschreibung der Naturgesetze nicht entbehren kann. Die abstrakten Begriffe der
Wissenschaft sind sogar gewissermaBen auch in die ,6ffentliche Meinung“ eingedrungen;
tiber die ,vierte Dimension“ hat man z. B. eine Unmenge von Werken, Artikeln, Notizen
geschrieben, von wissenschaftlichen oder halbwissenschaftlichen bis zu scherzhaften im Stil
-der ,Fliegenden Blatter.

Verf. war ein aktiver Teilnehmer der groBen wissenschaitlichen Arbeit, die zur Aus-

- gestaltung der neuen Begriffe gefiilhrt hat, und so nimmt der Mathematiker-Leser sein
Buch mit gesteigertem Interesse in die Hinde. -Das Buch — eine Entwicklung und Um-
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arbeitung des 1929 bei Vieweg in Braunschweig unter demselben Titel erschienenen Werkes
— ist aber in erster Reihe dem gebildeten groBen Publikum bestimmt, sein Hauptziel ist
die Neugier dieses Publikums zu vertiefen und zu befriedigen. Immerhin wird vom Leser
eine gewnsse Geschultheit im mathematischen Denken gefordert, eine Vertrautheit mit
einigen mathematischen Begriffen und Sitzen (auf S. 107/108 wird z. B. die Differential-
gleichung ' der geoditischen Linien in einer gekriimmten Metrik angefiihrt). Doch kann
man ja die Mathematik ohne Mathematik — auf dem ,Wege der Kdnige® nicht kennen -
lernen. Jedes Werk, das die Wissenschaft verbreiten will (ich habe absichtlich nicht
~popularisieren“ gesagt), steht vor einem Dilemma: entweder bleibt man an der Ober-
fliche um vollig verstindlich zu sein, oder aber spricht man auch iiber tiefer liegende
Dinge auf die Gefahr hin, nicht recht verstanden zu werden. '

Kapitel I (Die Grundlagen) dient zur Vorbereitung. Sich vorwiegend auf die koordi-
natengeometrische Methode stiitzend, zeigt Verf.. daB der vierdimensionale Raum zwar
eine abstrakte mathematische Konstruktion ist, doch die Struktur gewisser konkreten
Mannigfaltigkeiten spiegelt. '

Kapitel 1l (Das Feenreich der Geometer) umfat ein recht betrichtliches Erkenntnis-
material. Solche grundlegende Begriffe, wie die der linearen Unterrdume des vierdimensio-
nalen Raumes, ihrer Durchschnitts- und Verbindungsrdume, ihrer ' Parallelheit und Ortho- .

- gonalitdt usw. werden auf klare Weise eingefiihrt und verstdndlich gemacht. Es wird auch
die Moglichkeit einer Darstellung in der zweidimensionalen Ebene besprochen. Die vier-
dimensionalen Simplexe und Polytope sowie auch einige mchtlmeare Gebilde werden
eingehend behandelt. Man spricht sogar auch iiber die Embettung der dreidimensionalen
hyperbolischen Geometrie in den vierdimensionalen euklidischen Raum.

Kapite! Il (Raum und Zeit) behandelt die Entwicklung des Begriffs des vier-
dimensionalen Raum-Zeit-Kontinuums, und die Raumbegriffe der speziellen und der
aligemeinen Relativititstheorie. Es wird betont, daB die Einsteinsche Geometrie nur ein
spezieller Fall von aligemeineren Differentialgeometrien ist.

Die beiden letzten Kapitel (IV. Der Ry und andere Wissensgebiete, V. Der R, in der
phantastischen Literatur) sind zwar vielleicht eine zerstreuende Lektiire, haben aber mit
der Wissenschaft nichts zu tun: sie zeigen nur, zu welchen Phantasmagorien und Dumm-
heiten das MiBverstindnis wissenschaftlicher Begriffe unter den Laien fiihren kann.

F. Kdrteszi (Budapest)

Carl Ludwig Siegel, Vorlesungen iiber Himmelsmechanik (Grundlehren d. math.
Wissenschaften, Bd. 85), VIII 4 212 Seiten, Berlin, Springer-Verlag, 1956.

Wie auch im Vorworte betont wird, hat der Verfasser bei seinen Vorlesungen
hauptsichlich den Zweck verfolgt, diejenigen Sitze und Methoden der Theorie der Differen-
tialgleichungen herauszuarbeiten, welche zur Darstellung der Sundmannschen Ergebnisse,
der periodischen Losungen und der Stabilititsfragen in der Himmelsritechanik nétig sind.

Das erste Kapitel bringt die notwendigen Vorkenntnisse aus der Transformations-
theorie der kanonischen Differentialgleichungen. Dann wird durch eine von Levi-CwvitA

* herriihrende Transforination der bindire StoB beim Dreikdrperproblem regularisiert. Mit den
. so gewonnenen Hilfsmitteln gibt dann der Verf. eine bequem lesbare Darsteilung der
Sundmannschen Ergebnisse zum Dreikdrperproblem. Zuerst werden die Hilfssitze iiber die
untere Grenze des Dreieckumfanges und die obere Grenze der kleinsten Geschwindigkeit
hergeleitet. Diese Hilfssitze geniigen dann zum Beweis des Hauptsaizes, welcher besagt,

A0
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dal — im Falle cines nichtverschwindenden Dralles — die Koordinaten der drei Kérper
und dic Zeit sich in konvergente Potenzreihen einer Hilfsvariable entwickeln lassen.

.Das zweite Kapitel beginnt mit der Herleitung der Lagrangeschen periodischen
Losungen. Nach einem aligemeinen Existenzsatz iiber periodische Losungen folgen die
eigenen Ergebnisse des Verfassers iiber die periodischen Lésungen des Dreikorperproblems
in der Nihe der Kreisbahnlosungen. Auch die Poincarésche Fixpunktmethode wird in
diesem Kapitel geschildert.

Im dritten Kapitel werden zuerst dic klassischen Stabilititsuntersuchungen - von

Dirichter und Ljapunov erldutert.
) Bei diesen Untersuchungen wird der quadratische Teil der analytisch vorausgesetzten
-Hamiltonschen Funktion in der Umgebung einer (leichgewichtsstelle durch eine lineare
kanonische Transformation in eine in den Produkten der konjugierten Variabelpaaren
homogene lineare Form transformiert. Als naturgemidfe Weiterentwickelung dieser Idee
erscheint beim Verf. die analytische kanonische Transformation in einer soichen Normat-
_ form, bei welcher die Hamiltonsche Funktion nur von den Produkten der konjugierten
Variabelpaaren abhdngt. Die Konvergenz dieser viel versprechenden und formal immer
moéglichen Transformation wird aber gerade durch die eigene Untersuchungen des Verf.
als eine Ausnahmefall erwiesen. In diesem Kapitel werden auch topologische Methoden
(Wiederkehrsatz) besprochen.

Der Verfasser, der die Entwicklung auf diesem Gebiete durch eigene Arbeiten
wesentlich gefordert hat, gibt in diesen Vorlesungen einen sehr guten Uberblick iber die
neueren Methoden und Resultate der Himmelsmechanik. Die Darsteliung ist elegant und
durch Beniitzung von Vektoren, Matrizen und komplexer Koordinaten sehr pragnant. Das
Buch kann, besonders fiir vorwiegend mathematisch interessierte Leser, wirmstens empfohlen

werden. E. Egervdry (Budapest)

H. Boerner, Darstellungen von Gruppen (Die Grundlehren der Math. Wissenschaften
in Einzeldarstellungen, Bd. LXXIV), S. Xl - 287, Berlin—Gottingen—Heidelberg, Springer-
Verlag, 1955,

. Das Ziel des vorliegenden Buches ist es, eine Einfilhrung in diejenigen Teile der
Darstellungstheorie der Gruppen zu bieten, die Anwendungen in der Physik haben.
Stoffauswahl und Behandlungsweise werden demgemaB8 von praktischen Gesichtspunkten
gefiihrt ; der groBte Teil des Buches beschiftigt sich mit der Bestimmung der Darstetlungen
von wichtigeren Gruppen (unimodulare Gruppe, umnitire Gruppe usw.). Unter Darstellung
ist immer eine endlichdimensionale zu verstehen. Die Entwicklung der allgemeinen Theorie
(invariantes Integral, Theorie der Lieschen Gruppen) wird immer nur soweit gefiihrt, als
diese zu diesem Hauptziel des Buches erforderlich ist. Diese starke Abgrenzung der
Behandlungsweise des Stoffes ist aber nicht immer gliicklich zu nennen; gewiff hitte eine
Einordnung des vorgetragenen Materials in groBere Zusammenhinge auch aus dem
Gesichtspunkt der Zielsetzung des Buches péddagogische Vorteile. Auch die Beschrinkung
auf endlichdimensionale Darstellungen scheint nicht durch die Bediirfnisse der Physik
begriindet zu sein. Trotzdem ist sicherlich zu erwarten, daB dieses duBerst klar und sorg-
faitig geschriebene Buch vielen eine genuBreiche wenn auch nicht ganz leichte Anleitung
zu diesem reizvollen Gebiet der Mathematik geben wird.

Das Buch besteht aus elf Kapiteln. Vor jedem Kapitel wird der Inhalt desseiben mit
Hinweisen auf den Zusammenhang mit anderen Kapitein kurz zusammengestellt. Das erste
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Kapitel behandelt die benotigten Hilfsmittel aus der Theorie der Matrizen. Das zweite
bringt die Elemente der Theorie der endlichen und kontinuierlichen Gruppen. Im dritten
Kapitel werden die Hauptsdtze der Darstellungstheorie der endlichen Gruppen mit Ver-
wendung der Gruppenalgebra entwickelt, und dann die entspreéchenden Tatsachen bei
kontinuierlichen Gruppen behandelt. Kapitel IV gibt die Darstellungstheorie der symmetri-
schen Gruppen, Kapitel V berechnet die irreduziblen Darstellungen der vollen linearen,
unimodularen und unitiren Gruppen. Kapitel VI beschiftigt sich mit dem Zusammenhang
der Charaktere-der symmetrischen Gruppe mit denen der vollen linearen Gruppe. Kapitel
VII beginnt mit einer Betrachtung iiber die Zusammenhangsverhiltnisse der Drehgruppe ;
dann folgt die Bestimmung der eindeutigen Darstellungen derselben mit Heranziehung von
transzendenten Methoden. Kapitel VIl behandelt dann die zweideutigen Darstellungen mit
Hiife der Cliffordschen Algebren; auch weitere spezielle Algebren werden betrachtet, die
in der Physik von Bedeutung sind. Endlich beschiftigt sich Kapitel IX mit der Darstellunos-
theorie der Lorentzgruppe.

Zum Studium des Buches sind wenig Vorkenntnisse erforderhch fast alle notigen
Hilfsmittel werden voll entwickelt. :

L. Pulra’nszky (Szeged)

A. Speiser, Die Theorie der Gruppen von endlicher Ordnung. Vierte, erweiterte
und berichtigte Auflage mit 43 Abbildungen, einer Farbtafel und einem Anhang (Lehrbiicher
und Monographien aus dem Gebiete der exakten Wissenschaften, Math. Reihe Bd. 22),
XI -+ 271 Seiten, Basel und Stuttgart, Birkhduser Verlag, 1956, ‘

Dieses Buch ist von einem Anhang und einigen unwesentlichen Korrektionen ab-
gesehen eine unverinderte Auflage der in der ,Gelben Sammiung® von Springer erschienenen
dritten Auflage. In dem Anhang ist die Herstellung von Gruppenbildern besprochen und
der Unterschied zwischen der funktionentheoretischen Auffassung und der Substitution
erdrtert. Das Buch ist mit zu dem Siebeneck gehérigen farbigen Kleinschen Kreisfigur (als
Titelbild) dekoriert.

Dieses schon klassisch gewordenes Werk wird in seiner schonen neuen duBerlichen
Gestaltung gewiB noch viele Freunde der Gruppentheorie gewinnen.

' J. S#ép (Szeged)

Michio Suzuki, Strueture of a group and the structure of its lattice of sabgroups
{Ergebnisse der Mathematik und ihrer Grenzgebiete, Reihe: Gruppentheorie), 96 pages,
Berlin—Géttingen—Heidelberg, Springer Verlag, 1956.

Lattice theory, one of the most recent branches of algebra, has many applications
in various fields of mathematics, of which perhaps the most important belong to group
theory. It is a well known fact that the set of all subgroups of a group G form a lattice
.L(G) with respect to the operations of forming unions and intersections. Thus it is a natural
idea to try getting information about the structure of a group by investigating its subgroup
lattice. This particular field of investigation within group theory, whose history does not
go back further than some thirty years, is already- rich with lmportant results. The present
work is the first systematic account on this sub;ect
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The first chapter is devoted to groups with a special kind of subgroup lattice. The
results are concerned mostly with finite groups. Thus for instance the finite groups G with
modular, lower semi-modular, upper semi-modular, complemented and relatively comple-
mented L(G), respectively, are characterized. Sufficient conditions are given for infinite
groups to have. a modular or upper semi-modular subgroup lattice. The structure of
distributive groups (groups the subgroup Ilattice of which is distributive) is determined
completely. These results lead in particular to a characterization of finite quasi-Hamiltonian
groups.and to a theorem stating that any quasi-Hamiltonian group is metabelian.

The second chapter deals with the isomorphisms of ‘subgroup lattices. First projec-
tivities (i. e. isomorphic mappings of a subgroup lattice L(G) of a group G onto a sub-
group lattice L(H) of a group H) are discussed. For finite groups a theorem of Joxes
answers completely the question under what circumstances is a projectivily of G onto H
induced by a group isomorphism. In this way results concerning abelian, locally free and
modular groups, respectively, are discussed here. From the results concerning the index.
preserving projectivities of a group (i. e. projectivities such that (U: V) =¢(U) : (V)) holds
for any cyclic subgroup U of G and every subgroup V of U) one obtains also the theorem
stating that every projectivity maps finite perfect groups onto ‘finite perfect ones. A similar
result holds for finite solvable groups. This chapter is closed by a section on so called
“situation preserving mappings”, which were investigated first by A. RoTTLANDER, as a matter
of fact, the theory of subgroup lattices began with her investigations in 1928.

’ The third chapter is devoted to the homomorphisms of subgroup lattices. A homo-
morphic mapping ¢ of the subgroup lattice L(G) of G onto a lattice L is called an
L-homomorphism of G onto L. ¢ is called complete, if (N, U,) =N, (V) and (U, U,)=
=U, ¢(U) hold for any number of subgroups. First the complete L-homomorphisms onto
cyclic groups (i. e. onto the L(Z) of a cyclic group Z) are discussed. Sufficierit conditions -
are given under which a homomorphism of a group G onto H induces an L-homiomorphism
of G. From the results concerning the L-homomorphism of finite G groups one obtains an
interesting theorem stating that if ¢ is an L-homomorphism of a perfect finite group onto
a subgroup lattice L(H) of a group H, then this group H is perfect. A similar result holds.
for finite solvable groups. This chapter also contains Zappa’s results on meet-homomorphisms.
Finally, the structure of finite groups admitting a proper L-homomorphism is treated. -

The last short chapter deals with the dualisms of subgroup lattices. A dualism of
the group G onto H means a dual-isomorphism between their-subgroup lattices, and H is
called a dual of G. A theorem of Baer determines completely the structure of abelian
groups with duals. The book closes with investigations of the author, characterizing the
structure of the nilpotent and the finite solvable groups with duals r&pectwely

The book is completed by a rich bxbhography

Of course, the author could not aim at completeness, yet he succeeds in giving a
systematic and very clear presentation of the subject. Several results of the author,
published here for the first time, and numerous original ideas enhance the value of the
book. It will undoubtedly greatly contribute to further progress in the investigation of
groups via their subgroup lattices.

J. Szendrei (Szeged)



