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Elementary divisors in von Neumann rings

By ISRAEL HALPERIN in Kingston (Ontario, Canada)

1. Introduction

1. 1. Terminology. In this paper L will always denote a complemented modular
lattice and M will denote an associative regular ring with unit element. )

"~ We will call L an R-geometry if:

Luy Whenever x,€ L for each ocEI with cardinal power of I={, the union
x=U,(x) and intersection x"= M, (x,) exist and for each y: if yN
N (U (x,la€ F))=0") for every finite subset F of I then yNx = 0, if
yU (N (x, IocEF)) 1 for every finite subset ¥ of I then yUx' =

If (1. 1. 1) holds for all 8, we will call L a von Neumann geometry.?)
In every von Neumann geometry there exists a unique normalized: dimension
function D, vector-valued with OSD(x)<1 for all x in L such that x ~y3) if and
conly if D(x)=D(y): [9 6). When L is irreducible D is numerical-valued and its range

of values is either 0, ; s ; for some integer n (then L is called a finite dimensional

or discrete geometry of von Neumann) or all real numbers 0=¢t=1 (then L is
called a continuous*) geometry of von Neumann) [9, Part I, Theorem 7. 3).

"Ry, Ly will denote the set of principal right (respectively, left) ideals of R,
ordered by 1nclu510n Ry and Ly are complemented modular lattices [9, Part II,
Theorem 2 .4]. R will be called an §-ring or a von Neumann ring if Ry (hence also

Ly) is an 8-geometry, respectlvely a von Neumann geometry.
In a von Neumann ring R there exists a unique, normalized rank-function
R(a), vector-valued with 0=R(a)=1 for all a in R, defined by: R(a)=D((a),).%)

If R is irreducible, R is numerical-valued and Ry must be discrete or continuous;
then R will be called a discrete ring, respectively a continuous ring (of von Neumann).

1) {u|<p(u)} will denote the class of ‘u for Wthh @ (u) holds.

2) Thus L satisfies voN- NEUMANN’s axioms I—V; his axiom VI (1rreduc1b111ty) is not postu-
ifated [9, pages 1, 2). .

3) In any lattlce, X~y means: x is perspective to y (that is, for some w, x U w=y U w and

-xNfw=yNw; x<y means x~w for some W=y,

4) In our terminology a continuous geometry is always irreducible. -

5} (a), and (a); denote the principal right and the pr1nc1pal left ideal’ generated by a, respec-
tively (smcc R is a regular ring, (a)r =aft).
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A discrete ring must be of the form D,°) w1th ‘D a (possibly non- commutatlve)
division ring [9, Part II, Theorem 14.1 and page 292].

If n=1, R, must also be a regular ring [9, Part 1I, Theorem 2. 13] but if N is
a von Neumann ring, Ji, need not be a von Neumann ring (the union of a countable

subset of 1%3;,, may not exist”)); but if 9 is an irreducible von Neumann ring then
N, is also a von Neumann ring (sée the Corollary to Lemma 3. 2 below).

The centre of 9 will be denoted Z (if f is a von Neumann ring, Z will be a
commutative von. Neumann r1ng) Z will be a d1v1s1on ring if and only 1f Z is irre-
ducible and if and only if % is irreducible.

A non-zero -element x in a lattice- L will ‘be called minimal if y1 =X,
Y2 =X, yy~y, together imply y;=y,. ,

By P we shall denote the set of all polynomials

p() = + Zy- 1" Y44z

"with m=1 and all z; central.?) p, g in P will be called relatively prime if h (t)p(z)+
+k(@®q() = 1 for some h, k of the form t"+z,_ "~ 1+...+z, with m=0 and -
all ‘z; central®). p will be called irreducible if p cannot be expressed as a product
p=p.p, With p,, p, in P and each of degree less than the degree of p.

- If Z is not a field, Z contains a non-zero non-invertible?) z, and p=t, g=t-z,
are irreducible, dlfferent but not relatwely pnme This motivates the fol[owmg
definition.

Call pin P pure zrreduc:ble if for every non-zero central 1demp0tent e, epis
irreducible in the ring eR. If N is a von Neumann ring then for each p in P there is
(obviously) a-set of orthogonal non-zero central idempotents, {e,} with U,(e)),=N
and with the property that for ‘each 1:e,p=¢;Il,q; ; witha ﬁmte set of i and with
each g, ;in P and e¢,g, ; pure irréducible in e;N. _

Let P, be a subset of P and let P, consist of all p=p,.. p,,, (all p;in P;). We shall-
call an element a P -algebraic if p(a) =0.for some p in ‘P, P, -almost-algebraic if

- N({(p @)l pEPl) = 0. When P, coincides with.P we omit it in this nomenclature
[10, 4].
a-and b are called similar or conjugate in R if b=dad~" for some invertible d. -
Then for each p in P, p(b)=dp(a)d~', (p(b)), =(dp(a)), and we shall show in Co-
rollary 1 to Lemma 2. 1 below that in " von Neumann ring (p(b)) ~(p(a)), and
hence R(p(a)=R(p (b)) for cach pin P.

- 1.2, Elementary divisors. When R=9, with D a commutatwe division ring
(we shall call this-the classical case) it is known {1, page 283], [11, pages 120—124],
{7, pages 92—98] that: :

(1.2.1) aandbare szmllar If and only if they have the same elementary divisors.

‘) The ting of nXxn matrices with entries in (5 will be denoted S,

7) This failure occurs in KAPLANSKY’s example [8] where R is the ring of sequences of com-
plex numbers a = {a,,|m =1} with all but a. finite number of a,. real, with’ componentmse rmg
addition and mult;phcatlon

8) An element of N is called centra[ ifitis in the centre Z; a, b are orthogonal if ab= ba =

"9) In any ring & with unit, d is called invertible if for some ¢ in &, de=cd=1; cis called
. the reciprocal of d and denoted d-1.
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We give now a definition for ,,elementary divisors of @’ in terms'c')f the rank
function, applicable in any von Neumann ring.
Note first that for b in & and integer s =0, (b°+1), =(b%0), = (b%), and *°) -

4(-1 2.2) ‘ [, (bs+2)]_<[(bs)r_(bs+1),]

(¢1.2.2) will be proved in Lemma 2.2 below). Thus R(b)=R(b5*1) and R(H) —
R(bs+l)2R(bs+1) R(bs+ 2)
We set R,(p)=R(p(a)) for each p in eP= P(e%)%) for arbltrary Non-zero-
central 1dempotent e. For each integer s=1 we define

1P, ) = s((Ra(p*") = Ry () — (Ro(7) — R (2" 1))).

- Then ' Sps s)>0 The function fa(p §) is determined by the function R(p); the:
converse also holds since

R(ps D—R,(p*) = Z’ ﬂ(p,t),

Ci=s
RGO - R(ps==25,§% @0,

RGY=1-5 510000,

It can- be shown that if P, q are relatlvely prnne then 1—R (pq) (1 —R (p))+
+ 1- a(q)

( Thus m) any von Neumann rmg the function R,,(q) for all ¢ in- P is determined
by the values of f,(ep, s) for all p in P with ep pure irreducible-in )i and e a non-
zero central idempotent and all s=1. We shall say for each non-zero central idem-
potent e and p in. P with ep pure irreducible in e, and f,(ep, s) >0 that g=p° is an
elementary divisor of a in eN occurring with normalized frequency f,(ep, s). This.
definition agrees with the usual one for the classical case (there, the only possibility
for e is 1) except that the normalized frequency is the usual frequency multiplied

s: (degree of p)
n

by the factor . It can be shown that in every irreducible von Neumann -

ring

I—Zf,,<p; $ = Rlaeg) =0

where ae, is the transcendental part of @ [4] (thus ,, =" holds if a is almost algebrarc
in particular for all a in the classical case).

We have noted that each p in P can be expressed ,,locally” as a product of pure
irreducible factors. We shall call a subset P, of P fully factorizable if for each p in
- P, there are central idempotents {e} such that U(e), =R and such that each ep is a
product ep,...p,, with each p;in P, and ep; pure irreducible in eJt.

, Clearly P itself is fully factorizable. If N is irreducible then P, is fully factoriz-
able 1f 1t contains$ all irreducible p in P. '

19) If x =y then [x — y] denotes any (ﬂxed) wsuch that yUw=x (the dotin U indicates mde~
pendence of the addends); such w exist m every. complemented modular lattice.
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1. 3. Statement of main theorem. The main object of this paper is to prove
the following theorem, a generalization of (1.2.1) to any von Neumann ring:

Theorem 1.1. Let a and b be arbitrary elements of a von Neumann rmg .
(1) For a and b to be similar zt is necessary that .

{1.3.1) R,(g)= R,,(q) for all g in P. . ! _
(ii) For a and b.to be similar it is sufficient that for some fully factorizable P, :

(1.3.2) R(p)=Ry(p) forall p in P, and s=1,
(1.3.3) a and b are P,-almost-algebraic.*!)

(1.3.4) Whenever é is central idempotent such that éR contains minimal ele-.
ments then &N is a finite dimensional matrix ring over &, Z for some
non-zero central idempotent &, such that &,é=é,.

(1.3.5) R, is a von Neumann ring.!?) _
Remark. The definition of R, is given in footnote 6) It is ‘shown in the Corol-

lary to Lemma 3. 2 below that 3, is a von Neumann ring whenever } is an irredu-

cible von Neumann ring (equ1valently, if Ry is a discrete or continuous geometry) :
more generally whenever 9 is a direct sum of irreducible von Neumann rings.

Also, it follows from Lemma 3. 1 and Lemma 3. 2 below that every von Neumann
ring can be expressed as a direct sum RSN in such a way that ('), is a von Neu-
mann rmg and N is a von Neumann ring in which every idempotent is central (equl-

valently, Nz is a Boolean algebra).
Let E be the céntral idempotent for which ' =RE; then clearly, a and b are
similar in. R if and only if Ea, Eb are similar in 91" and (1 — E)a, (1 — E)b are similar

in RN If a, b satisfy (1. 3. 2), (1. 3.3) and (1. 3. 4), then at least Ea, Eb are similar in
N (hence in N) since R’ satisfies (1. 3. 5).. Thus @ and b will be similar in N if

and only if (1—E)a, (1—E)b are similar in the ring gt((l—E)a'and (1—-E)b
satisfy (1. 3. 2), (1. 3.3), (1.3.4) in B).

In such a rmg BN condmon (1 3. 2) can be expressed in the s1mpler equlvalent
form:

(1.3.2y . (p(a)),=(p(b)),for allpin P;.

_ We shall postpone to another occasion further discussion of thé case.of a ring
R, noting here only that it is easy to see that Theorem 1. 1 (ii) holds without (1. 3. 5),
if R is the example given by KaPLANSKY {(and described in footnote 7)).

Corollary to Theorem 1. 1. Suppose f is a von Neumann ring which is
irreducible, or.more generally, is a direct sum of irreducible von Neumann rings, or
more gen.erally, has the property: N, is a von Neumann ring and that (1.3.4) holds.

11) In the presence of (1.'3.1) the condition (1.3.3) for a will imply (1.3.3) for 4.
12) For the classical case 3t = D, (D commutative) our proof specializes of course, to a proof
of the known result (1.2.1). . : :
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If a and b'in R are almost algebraic then they are similar if and only if they have the
same elemeniary divisors. _

However, we shall not use rank (or dimension) functions. "In (1.3.1) and
(1. 3. 2) we shall replace equality of rank by perspectivity of correspondmg principal
right ideals.

1. 4. Plan of the proof of Theorem 1. 1. Corollary 1 to Lemma 2.1 below will
show that (dp(a)), ~(p(a)), if d is invertible. From this follows (i) of Theorem 1. 1.

To prove (ii) of Theorem 1. 1 we prove-first the special case:

(1.4.1) aand b are similar in an Ryring R if R, is an Ro-ring, and (@), ~ (),
for all s=1 and (N ((*),|s=1)=0 (see Theorem 4. 1 below),

~ and then the case:

(1 4.2) aandbare szmzlar in a von Neumann ring R if (1. 3. 4) (1.3.5) hold and

for some pure irreducible p in P, (p%(a)),~(p* (®), for all. s=1 and
N ((7°(a)), lszl) 0 (see Theorem 4. 2 below).

) ',Then in the general’ case weA show that the unit in i can be decomposed into
orthogonal idempotents e (not necessarily in the centre) with U (e),=R and

(usmg Theorem 3. 1 below) such that, for some b=dbd-1: for each e, ae= ea and
be=eb and ae, be satisfy the hypotheses of (1..4. 2) in eRe.

This will yield: ae and be are similar in eMe. Then, usmg a theorem Wh]Ch
permits ,,combining” such local similarities in the case that ?)fz is'a von Neumann

-ring (Theorem 3. 2 and its Coro]lary 1 below) we deduce that @ and b, and hence .
also a and b are similar.

- 2. Proof of (1. 2. 2) and Theorem 1. 1 @

If d is in t we shall write d" to denote {bldb 0} Ifxc R we write X" to denote
{b[xb 0}. Similarly for &' and x':

Lemma 2. 1. Suppose dGSR and xERR Let xo=d’ﬂx. If xﬂdx=0 or if
. R is an Ry -ring, then [x — xo] ~dx

Corollary 1. If also x,=0 (i in parttcular if dis mverttble ), then x~dx 50 (1}
of Theorem 1. 1 holds. ; _

- Corollary 2. If R is a von Neumann ring, then D(x) D(dx) +D(x0)
" Proof of Lemma 2.1. Let e, f be 1dempotents such that x = ©,,dR=0),,

and let x; = [x—x,). Then a€x implies a = a5 +a, with a;€x;. Thus dx=dx,. _

Let T denote the mapping of 0=y=x, onto 0=w=dx, defined by: T(a),
——(da) Then T has the propertles

() Tis order-preservmg indeed, (db), = (dc), is equivalent in turn to_eachlof L
for some a in R, db=dca, d(b—ca) = 0,b—ca = 0, (b),é(c),,
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(11) T(a), ~(a), if:T(a),N(a),=0: 1ndeed (a+da), is an axis of perspectmty
since

T(a), U (a+da), = (da); U (a+da), = (a), U (a+ da),
From [4, Lemma 6. 1] it follows that x; ~dx; = dx.

Proof of Corollary 2. D(x) = D(xo)+D(x,) and D(dx) = D(x,) since
dx~xy.

v Lemma 2.2. (1.2.2) holds in an R¢-ring.

, Proof. Let x*=($*),MNb". By Lemma 2.1, [(b‘) —(b‘“)]L xs—(b‘) for'
some X~ xS, Since x3tl=x5, X+ < x (perspectmty is transitive in an §,- geo-
metry |2]) Now (bs+1),<(bs),, 0 from [2, Lemma 6. 5] follows (1.2.2).

3. Lattice sums of ring elements

3. 1. Preliminary Lemmas.

Lemma 3. 1. Suppose Ry has a basis'3) x, x5, x3 with x; ~x, x35 x,. Then
if N is an R-ring (respectively von Neumann ring) so is N,.

Proof. This coincides with [5, Corollary 2 to Theorem 3. 1].

Lemma 3.2. Evéry von Neumann ring Rt is a direct sum RSN with R satisfy-

ing the hypotheses of Lemma 3. 1 and R auvon Neumann rmg in which every idempotent
is central 1%)

oo

Proof. If L is a von Neumann geometry then L = eaL where L; has’
i=0

a homogeneous basm consisting of i minimal'5) elements if i=1, and L, has the

property: O¢x€L01mpl1esO #ZYy Nyzforsomeley2 x [9, Part 111, Theorem 3.2].

There are elements x(lo), A(zo) which form a homogeneous’ basis for L0 indeed

‘take a maximal class of pairs {y1,13} with {yl,yzjall oc}_Lls) and ¥i~y5 for
“each a and set x\”=U%, x2 =U,)5.

For i>1,L, has a basis x%’, x5, x? with 2@~ xf x(')-< : indeed, if

Yis - , yl is a homogeneous basis for 'L; then accordmg as i=2m or z—2m+l

take =y, U e Uy %2 =yma U U Y, X3 =0 or respectively.
Let L= LI,L =Ly® ZEBL Then I = LGBL’ and L is a Boolean al-

gebra ‘whereas L has a baSJS xX;= U(x(’)lz #1), j=1,2,3, with x, ~x1, x5 L Xg-

13) X1y... Xm are sald to be a basis for a lattice L if U;x, = the unit of L; the basis is called
Hhomogeneous if x;~x; for all i, j [9].

14) If M is a regular ring with unit, all idempotents in N are central if and only if Rsn isa -
Boolean algebra [9, Part 1I, Theorem 2.5 (Note) and Theorem 2.10].

15) A non-zero element x in a lattice L is called minimal or locally-atomic if y1=x, y,=x,-
1~y together imply yy =y, (for another definition, see’ [9 Part 111, Deﬁnmon 3.1)).

16) | indicates ,,mdependence
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Every direct decomposition of L= Ry is determined by a oorresponding direct
decomposmon of N and from this follows Lemma 3. 2.

Corollary ‘Suppose- 3t is a von Neumann ring. Then R has the property Eﬁz
is a von Neumann ring whenever I is irreducible, more generally whenever R is a
direct sum of irreducible von Neumann rings;, more generally whenever N is a direct
sum of von Neumann rzngs N each of which has the property: (N9, is a von Neumann
ring.

.Proof. Since (2 EBER“)Z = > & (9%, we need only show that N, is'a von Neu- -
marnn ring whenever 9t is an irreducible von Neumann ring. But if 90 is irreducible,
then with the decomposition R = RON of Lemma 3.2, we must have R=R

or R=N". Since (N'), is a von Neumann ring (according to Lemma 3. 2), we need

only prove: N, is a von Neumann ring whenever 3 is an irreducible von Neumann .
ring in which every idempotent is central, equlvalently, Risa d1v151on ring. But in
this case N, is (trivially) a discrete von Neumann ring.

Lemma 3. 3. If (a),=U/a,), in Ry then ba,=0 for all « if and only if ba= 0.
Proof. [9, Part II Corollary 2 to Lemma 2. 2.]

Lemma. 3.4. If N is an 8-ring and {xalozEI} 1L in Rs)t with cardmal of IS N,
there exist orthogonal idempotents {e,} with (e,),=x. 2 Jor all a. :

. Proof. Let y=[R- Uxa] and choose e, so that (e);=x, and (l1-e), =
—(Up¢axp)Uy :

Lemma 3.5. Suppose {e,|« EI } are orthogonal idempotents with cardinal of
I=R in an }-ring and let e be an idempotent with (), =U,(e,),. Then e is the unique
idempotent with also (1—e), = Nl —e).r?) if and only if (e),=U,((e,),; then
de,=e,, dey=0 for B#y imply de=e,;ed=e,, epd=0 for =y imply ed=e,.

Proof. By [9, Part. II, Lemma 2.2, .Corollary 2] (1—e), = N(1—e), is
-equivalent to (e); =(1 —e)) =U,(1 —e, ) =U,(e.);. : ‘

- Next, (de—e,)e,=de,—e,e,=0 for all o.. Hence, by Lemma 3. 3, (de — ey)e =0,

de=e,

Lemma 3. 6. Suppose U,x, exists in Lg{ Then Jor any d in §R U,(x d) exists
and is equal to (U xa)d

Proof. Let x=U,x,. Then for each «, xd=x,d since x%xa. To prove
Lemma 3. 6 we need show if y=x,d for all « then nyd

Suppose y = x,d for all a. Then y N (d),=x,d for all « and therefore it clearly :
sufﬁces to prove: (d),zy=x,d for all 1mp11es y=xd. Now for some a in R,

=(ad),=(a),d. Let u=(a);Ud'. Then y= ud. Hence it is sufficient to prove that
uZx for all «; this would yield u=x and hence y =ud = xd as required.

To prove u=x, suppose c€x,; then cd€cud since x,d=ud, hence cd=c,d for
some ¢; €u. Then (c— ¢;)d=0,50 c—c;€u. Now uis a left ideal so (¢; +¢—¢y) Eu,
c€u. Thus x,=u, as required. ThJS proves Lemma 3. 6.

17) .This e exists because L{J',(ea),l and ﬂ&(l —e,)- are complements (f is an N-ring).
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3. 2. Lattice sums of ring elements. In this section, R will be an &-rmg for some
N, Ja set of indices a with cardinal =§.

Definition 3. 1. A set of orthogonal idempotents ¢'={e,} will be called a
separating system (s.s.); then e=e, will denote the unique idempotent with (e), =
=U,(e,),, (&);=U,e,), (existing by Lemma 3. 5). .

Definition 3.2. An s.s. ¢ will be called a right separatmg system (r.s.s.)
for {d,} if ed,=d, for all a

Definition 3.3. Ifsisar.s.s. for {d}then Z &d, will.denote an elementd

such that deU,(d,), and e,d=d, for each a; such an element d (if existing) will
be called a-g-right lattice sum of the d,. Similarly for o-left lattice sum.

Lemma 3.7. A r.s.s. o exists for' {d,} if and only if {(d,),} L (by Lemma
3.4). If for some r.s.s. o, a o-right lattice sum of the d, exists then its value d
is unique, d=e,d, (d),=U, (da),, and for any element b,db=d for some y and
db=0 for axy imply db=d,

Proof. If e, (d— d) 0 for all «, then by the right-left dual of Lemma 3. 3,

e,(d—d)=0; e,d=e,d. This means: the o-right lattice sum (if existing) is unique.
Next, (d),—(e d),—(ed)d so by Lemma 3.6, (d),=U(e,d),=Ud),.
Finally, e, (db—d)=0 for all «, so by the right-left dual of Lemma 3.3,
e,(db—d,)=0. Hence db=d,.

Definition 3.4.'If {(d,),} L, we denote by ZGBd an element d such that

d is a o-right lattice sum of the d, for every I.s.s. a for {d,}. This d (unique, if it
exists, by Lemma 3. 7) will be cal[ed the right lattice sum of the d,.

Definition 3. 5. If {(d,),} L and {(d,);} L we denote by ZGBd an element

d such that d is a right lattice sum and a left lattice sum of the d,. Thn d (unique, if
it exists, by Lemma 3. 7) will be called the lattice sum of the d,. :

Lemma 3.8. If {(d,), }_L and {(d)),} L and d is a o-right-lattice sum of the d
(for some r. s. s. o) then d is a lattice sum of the d,.

Proof. Let t={f,} be any left separating system for {d,} and let f=F,. Then
eg(d, —df,)=0 for all «, B so e,(d,—df,)=0, d,=df,. This shows that d is a t-left
lattice sum of the d, (by Lemma 3.7, (d),—U (d ) =U, (/D)

Now by right-left duality, d is a o--rlght lattlce sum of the d, for every r.s. s. .
o for {d,}.

Lemma 3.9. If {(d).l«€I} L and I is finite then: ZéBd exists and coincides
with the ordinary (ring) sum 2 d,.

Proof. Obvious. ’ , ,

‘Lemma 3.10. If {e,} are orthogonal ldempotents then ZGBe exists and co-

mczdes with the unique ldempotent e with properiies: (e),= U (e),, (), =U o (€
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Proof. By Definition 3. 3 and Lemma 3. 5.

Corollary. Suppose {e,} are orthogonal idempotents and e= 3, ®e,. If for
some a in N, e,a=ae, for each «, then D, @ (e,q) exists and equals ae= ea.

Proof. First we show ae=ea. We have (e),= U,(e,), by Lemma 3. 10, and.
(a—ea)e, = ae,—eae, = ae,—ee,a = ae,—e,a =0 for all «. By Lemma 3.3,
(a—ea)e=0 so ae=-eae. By a left-right dual argument, ea=-eae. So ae=ea.

Next, 6={e,} is a r.s.s. for {ae,} and {(ae,);} are independent since (ae,),=
=(e,);. So by Lemma 3. 8, ae= 2, ®(ae,) if only ae is a o-right lattice sum of the
ae,.

So from Definition 3.3 we need only show (i): e,ae =ae, for each « and (iiy
ae€ U,(ae,),. But (i) holds since e,ae=e,ea=c,a=ae,. As for (i), (ae), = (aee,), =
(ae,), so (ae),=U,(ae,),. If (ae), # U, (ae,),, then there exists a non-zero idempotent
g€(ae), such that (1—g),=(ae,), for all «. Then gae,=g(1—g)ae,=0, (ga)e,=0
for all &, so by the left-right dual of Lemma 3. 3, (ga)e=0. But g =qaed for some d,
so g=gg=gaed=0, a contradiction. Thus (ae),=U,(ae,), so (ii) holds and the
Corollary is established.

Lemma 3.11. It o is a r.s.s. for {d,}, then a o-right lattice sum of the d,
does exist if N, is an §-ring.1®)

Proof. Let e=e, and form the matrices:
00 00
d, e,| M= 0e
{D,} are orthogonal idempotents in 3, so by Lemma 3. 5 an idempotent E in.
R, exists such that (E),=U,(D,), and (E),=U,(D,),; in Rg with &=%R,. Now .
MD, =D, for all  so (M), oU,(D,),=(E),, ME=E. Thus E must have the form
00
dg

with ed=d. Since D,E= D, for all « it also follows that e,d=d, for all oc.‘ Thus this
element d is a o-right lattice sum of the d,.

Lemma 3. 12. Suppose d=2,&d,, c=2,,®c,, and some 6 ={e,} is a r. s. s.
Sor {c,} and a l. 5. s. for {d,}. Then 2 ,®(d,c,) exists and is equal to dec.

Proof. Since (d,c,),=(d),, {(d,c,),} L. Similarly, {(d,c);} L. If t={g,} is a
r. 8. 8. for {d,}, then g, dc=d,c=d,e,c=d,c,.

Theorem 3. 1. Suppose e=2,®e, and = 3, ®f, for idempotents e,, f, in a
von Neumann ring R. guppose_(ea), ~(fr for each «. Then there exist d, d in R such
that d=edf, d=fde, dd=e, dd=f, df,d=e, and de,d=f, for each «. Moreover, if
U.le), =N then e=1=f and d is invertible with d as its reciprocal.

o

-]

o
18) If X is an infinite cardinal, 3, may fail to be an R-ring and such d may not exist; this.

happens in KAPLANSKY’s ring (see footnote 7)) if en=(0,...,0,1,0,...), du=1(0,...,0, J—1,
0,...) (m=1) where the non-zero components are in the m-th place. .
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Proofl. The last statement would follow from the additivity of perspectivity
.in a von Neumann geometry [9, Part 11I], [3].

We recall voN NEuMANN’s proof of Theorem 3. 1 for the casc I has a single
index [9, Part II, Theorem 15.3 (a)]; suppose (e), and (f), are perspective, hence
have a common complcment. Then there exist idempotents €', /7 such that:

(e)r = (e,)l'; (1 _e,)r = (1 _fv)r; (f,)r = mr'

Define d(e,f)=¢f, d(e,f)=/"e. Then it follows thai &' =e'f’, [ =f"¢,e=¢e,
@ =ee, f=ff, f=[f. Therefore:

ed(e, )/ =d(e.f); fd (e,N)e=d (e,]);
d(ea.f)/g(ea.f) =d(e=f') “_{ (eﬁf) =e,
d (e, /)fd(e, /) = d (e, )d(e, ) =/.
Next, if R, is also a von Neumann ring, we need only define d= 3, ®d(e,, ),

d=3,®d(e,,f,), using Lemma 3. 11, and Lemma 3. 12,

Finally, every von Neumann ring 3 has a direct decomposition R@R’ as in
Lemma 3.2 and we let E be the central idempotent for which ' =RE.

Then Ea=aqkF for all ¢ in R. Let o’ denote aE, d denote a(l — E). Then in R,

4&,), ~(f,), and since Ry is a Boolean algebra, necessarily &,=Ff,.
In 9V, (), ~(f), and we can apply the argument of the preceding paragraph
since Rg is a von Neumann ring when & =9315. Now

d= (Z’a@éa)—l" Zaead(eo,uf;)J
d=(Z.0f)+Z.0de.f)

:satisfy the requirements of Theorem 3. 1.

Theorem 3.2. Suppose {e,} are orthogonal idempotents in a von Neumann
ring R. Suppose for each o, d,=e,d,=d,e,. If N, is also a von Neumann ring, then
. ®d,=d exists.

Proof. o0={e,} is a r.s.s. for {d} so by Lemma 3. 11, {d,} possesses a o-
right lattice sum d. But {(d,),} L since (d,),=(e,);, so by Lemma 3.8, d is a lattice
sum D, Bd,.

_Corollary 1. If in Theorem 3.2, {d} satzsfyd =d,e, = e,d,, d,d,=
=d,d, = e, for each a, then d =3 ,®d, satisfies dd =dd =3, ®e,.

Proof. Since o ={e,} is a 1.s.s. for {d,} and L s.ss. for {d,}, it follows from
Lemma 3. 12 that dd= >, ®(d,d,)=>,®e,. Similarly, dd= >, ®e,.

Corollary 2. Suppose {e,} are orthogonal idempotents and {f,} are orthogonal
idempotents in a von Neumann ring R such that R, is a von Neumann ring.
Suppose for each «, d, = e,dy=d, fo,. Then d= 2,44, exists. Moreover if {d“} exists
such that for each «: d,=f.d,=de,, d,d,=e,, dd,=f,, then d= >, ®d, exists
and dd=>,®e,, di=>,0f,.
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Proof, The argument for Theorem 3.2 and its Corollary 1 is valid in the
present case.

4. Proof of the special cases (1. 4.1), (1. 4.2)

Lemma 4. 1. Suppose that ¢ is in an Yo-ring N and ﬁ((cs),.|s§1>=0. Then
R can be espressed as the union of independent principal right ideals:

4.1.1) R =U (x|l =i<oo; 1=j=0)

such that cx, ;=% ;41 and ¢"(x, ;=0 for 1=j<i<eo, and cx; ;=0 for 1=i< oo,
Then'®) necessarily X, ;~%; ;.1 for 1=j<i, RU (U(x;1i=1))=R, and for each
s=1, (Y =x,; if i—s<j=iand () Nx; ;=0 if j=i—s, so (by (1. 1.1) and the
modular law) (Ics)’= UG lizl; i—s<j=i).

Moreover any value of [(c')'—((¢) N ((c*~ 1y UeR))]=[(c) — (=) U (N
NeM))] may be used as x;,;?°) on the other hand, gny value of [(c"Nc'~—1%)—
—(c"Nc'N)] may be used as x,;.

Proof. Suppose x;; given as described and define x; ;=c¢/~1x; ; for 1=j=i.
Then for 1=j<i, cx; ;=x; ;41. If d€x;; and ¢/d=0 with 1=j<i then ¢!-1d=0,

de((c =1y U((c) NeR)), hence (see the definition of x; ;) d=0. Thus ¢"Nxy ;=0

for 1=j<i. Clearly cx; ;=c'x; ; =0.
Next we show that for each j=1

{ng%, X; J|Z§]} 1.

For suppose ¢/v =c¢/~1v; 4 ... + ¢/~ tv, with allv; € x; 4. Then we must have ¢/~1v,=0.
Otherwise, j—1<s and left multiplication by ¢=7 yields: c¢v=c*~'v,. Then
vy = (v, —ev)+cv and (v, —cv) €(*~ 1Y, cwe(ey NeNR; this implies that v, =0 since
vs€x,,, and hence ¢/~1v =0, after all. Repetition of this argument shows that
¢/~1p;=0 for all i=s,5—1,...,j and hence civ=0. This proves the assertion.
From this it follows that for each fixed j=1: {x,,|i=j} L. Also
{U(x,;liz))|j=1} Lsince U (x,;[i=/)NU @y lizs=j) =U (x,;li=j)) NdR=0.
This implies that {x,;|i=1; 1=j=i} L. u
Next, by [4, Lemma 6.2], N((c?),lj =1) =0 sinceby assumption N ((c)),|j=1) =0.
Hence R =(N((c"),lj=1)) = U((¢))y|j=1) (by [9, Part IT, Lemma 2. 2, Corollary 2]).
Since (U (x; 4 li= 1)) U(cR)=(c’) for all j=1 it follows that U (x; ;|l=j=i<)U
UcR=N. Successive left multiplication by ¢ now gives: U(x; [l=j=i<e)U
UenRt=R for all m=1, and since N(c"R|m=1)=N((c"),|m=1)=0, therefore
UQrl1=j=i<ee) =N,

19) Xy~ X1,5+1 follows from exy,;=x1;+1 and ¢ x;,;=0 because of Corollary 1 of
Lemma 2. 1. Further, from exi,; = x;,;+1 follows, because of formula (4.1.1), R =U (4|1 =
<j=i).

20) When specialized to the classical case, this result yields: lel T be a linear transformation
of a finite dimensional vector space J into itself (¥ shall be finite dimensional over a division
ring D but D need nol be commutative) and suppose TP =0 but 7P-170 for some p=1.
Let N(T)={v|Tv=0}. Let 1,1, 0, &1, be a basis for the difference-space [N(T) — N(TH N
NWTE-~ Y U TP Then {T9&i|i=1,....,p; k=1,...,5 j=0,1,...,i—1} are a basis
for V. ¢
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On the other hand, if the x;,; arc pre-assighed as some given [(¢"Nci~IR) —
—(c" NN, set x,4 = [{dlc*~1d €x,, i} —(c=1)]. We shall show that these values
for x,;,, satisly the conditions given in the first part of Lemma 4. 1 and that ¢i- 1X4,1
will coincide with the given x; ;.

1"11sit il dex;,, then ¢'- 1(ICM ; and x;,;=c¢*, Hence c'd=0. This proves:

1= (e

Next, x,,, is a rclative complement of (¢/) N((ct=1)"U(¢R)) with respect Lo
(¢')'; to show this we must prove: (i) x, Ny UeR) =0, (1) x5, U((c=)U
Uc%)a(c')'

To prove (i), suppose d€x;, and d =u+cv with ¢*~'u=0. Then c'-ld=
=chex,; and c(c')==0. Hence cwe(c'Nc'RN) so, from the definition of x,; it
follows that ¢ =0. Thus ¢*~1d=0. Now we have d € (ci-1), so from the definilion
of x;, it follows that d=0, This proves (i).

To prove (i), we remark that from the definition of x;:x,; U(c!~Y) =
= {d|c*-1d€x,,}. Hence

X, U((@ )y UeR)={d|c~1d€x,,} U cR.

Now suppose u€(cfy. Then ci-lucer so ci~tuc(e"Nct—19N). Then from the
definition of x;;:c!~'u =v+w for some v€x;; and some we(c"NcR). Now
w=clq for some g. Therefore u = d+cq where d = u—cq has the property:
¢=td = c'~lu—clq = vex;;. Hence u€(x;; U((ci- 1)’Uc§R)) which implies (ii).

Finally, if d€x;, then ¢'-'d€x,;, so ¢'~'x;;=x;,; on the other hand, if
u€x;,;, then u=c- 1y for some w, s0 w=d+v for some dEx,  and some vE(c‘”‘)’
So u=cl-tdeci-1x; ;. Thus x;,=ci~1x, ;. Hence x;,=cl~x, ; as stated.

Now all parts of Lemma 4.1 are established.

Remark. If ¢ is an element in an arbitrary regular ring R with unit and ¢*=0
for some integer 4, then the proof of Lemma 4. 1 is valid; moreover the range of i
may be restricted to 1=i=# (the appeal to [4, Lemma 6. 2] and [9, Part II, Lemma
2.2, Corollary 2]) is unnecessary here since ¥ = U((¢/y|j=1) is an immediate
consequence of c*=0, (chy =N !

Lemma 4. 2. Suppose the hypotheses of Lemma 4.1 hold and that c=p(a)
Jor some element a and some pure irreducible p in P, p(f) = 1"+ Zpu_ 18" + ... + 2.

If z, is invertible, in particular if m=1, then the element a is invertible. In every
case if R is a von Neumann ring?') and (1.3.4) holds N has a decomposition as
described in Lemma 4. 1 with the additional properties: For each i=1,

A x,;= U (@ix,|0=j<m) for some x;;
(i) x;,,=YU(@y;|0=j<m) for some y; with c:~'y,=x;
@) (@)yNy;=0 so aly;~y; for 0=j<mi.
21) Lemma 4.1 (and Lemma 4.2 for the case m=1) hold if R is any No-ring. But if m>1

our proof of Lemma 4.2 uses transfinite induction (or ZorN’s Lemma) and requires it to be a von
Neumann ring in which (1. 3. 4) holds.
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Then (necessarily implied by (i), (ii), (iii) in any R,-ring)
“(v) U(aly,|0=j<ms)=U (i, 11=7=2) for 1 =s=iand {aly;|0=j<mi} 1

W U(@y,)i=1,0=j<mi)=%R.

Proof. Suppose that d€a". Then

0 = N(P@)s=1)= N((P@d),ls=1) = N((z8d),ls=1) = (d),
if z is invertible. Then a" =0, (a),=N. Thus if z, is invertible then (in any 8,-ring
by [4, Lemma 6.2]) a is invertible.

Suppose m=>1. Suppose ¢ is a non-zero central idempotent. If ez, =0, then
ep(t)=et(#"~ ' +... +2z;) which is impossible since p is pure irreducible. Hence
ez, #0 for every non-zero central idempotent e. But z,t =e,R for some central
idempotent e, [9, Part II, Theorem 2.5], and (1 —ep)z, €(1 —ey)eoR=0. This
forces 1 —eq to be 0, sorey =1, z,I =R. This shows that z, is invertible, and there-
fore, by the preceding paragraph, a also is invertible, _

Next, suppose (i), (i) and (iii) hold. Then, by (i), ci~!(a'y,) =a’ci~ly,=
=alx; so ay;~alx; if 0=j<m by Corollary 1 to Lemma 2.1 éince @H N
Nx,1=0). But x,;~x, so, by (i), U(@y|0=j<m)~ U (aix;|0=j<m). This
forces: {a'y;|0=j<m} L by [2, Lemmas 6. 15, 4.4], in any 8,-ring. The same-
argument applies to inclusion relation

U@y |0=j<ms) = U (caly,|0=j<m; 0=k=s—1) = U (x, ;|1 =j=s)

and forces the addends on the left to be independent and the inclusion to be equality.
Thus (i), (i), (iii) imply (iv) and hence (v).

We need now only show that (i), (ii) and (iii) can be satisfied.

If m=1, choose x;; and x;; as in Lemma 4. 1. Let x;=x,,;, y;=x; ;. Then
(i) and (ii) hold obviously (2 =1). Suppose for some j with 0 =j<i and some d€y;
that a’d=0; then (c—z,)/d=0 so c/de(x;; U...Ux; )Nx;;41=0, hence d=0.
Thus (iii) holds by Corollary 1 to Lemma 2. 1.

We may therefore suppose m=>1. Let A;=c" Nci~1R. Then ad;=A;s0 ad;=A
(since a is invertible).

Now since p is pure irreducible and (1.3.4) holds, an argument of von
NEUMANN [4, Lemma 5. 1] applies here?!) and shows, by transfinite induction
that for some x;: 4, ; U(U(a/x;|0=j<m)) =4, Hence we may use U (a/x,|0 =] <m)
as the pre-assigned x, ; in Lemma 4.1 and (i) will hold. .

Let B;={d|c"'dcx}=(c")" and define y,=[B'—(ci~')]. Then ci~ly,=x,.
Also

i

(U @y, 0=j=<m)) U (c=1y ={d|c!-1d € xy,)}

s0 we may also (in the proof of Lemma 4. 1) choose U (a’y;|0=j<mi) as x, ;. Then
(i) holds,

As for (iii), since m =1, g is invertible and (a/)" =0; thus (iii) does hold.

This completes the proof of Lemma 4. 2.

Lemma 4. 3: Suppose a and b are elements in a regular ring R with unit and

suppose m is an integer =1. Suppose X, ..., %, is a basis for Ry such that ax,=
=X;41 =0x; for 1=i<m and o' =b"=x,,. Then a and b are similar.
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Proof. We may suppose m=2 (il m=1 then ¢ =5 =0 and so b =dad-1 with
d=1).

Since Xy, ..., X,, is a basis [or Ry:U (x|l =i=m) =N, in particular x,Nx;=0
if is27. But if 1=i<=m, then ax;=x;, and a"Nx;=x, Nx;=0, so by Corollary 1
to Lemma 2. 1, x;~x;,.;. Hence xy, ..., x,, is a homogeneous basis for Ry. Then
by [9, Part [I, Lemma 3. 6] therc exist matrix units s;; (5, j =1, ..., m) with (s;)), =x,
for all i. Finally, the prool of [9, Part II, Theorem 3. 3] (notc especially [9, page
99, lines 13, 14]) shows that #=8,, with &; =s,,Ns,;.

We shall call ¢=(c;)) off-diagonal if (i) ¢;;=0 except when i = j4-1 and (ii)
¢j41,; 18 invertible (in s;;MNs;,) for 1=j<m. Lel ¢, be the ofl-diagonal clement
with non-zero entries all 1(=s4).

Now the hypotheses of Lemma 4, 3 force ¢ and b 1o be ofl-diagonal; so it is
suficient to prove a and ¢, are similar. Thus we necd only find an invertible d=(d,))
such that ad=dcy,. For this purpose choose d;;=0 for i#j, and dy; =1,
d” =a“_ 14—~ l,i—Z“'all .[‘01‘ i> 1 H thell a(l=d00 .

This completes the proof of Lemma 4. 3.

Theorem 4. 1. Suppose that a, b are in an ¥,-ring, R such that N, is an
No-ring, and (a*), ~ V%), for s=1 and N((@),ls=1)=0. Then a and b are similar.

Proof. Sincé N((%*),ls=1) = (a), for all m=1 it follows by [2, Lemma 6. 11]
that N((3*),ls=1)=0.

Let x§; and x}; be determined for a,b respectively as in Lemma 4. 1.
First we shall show that x§;~x?;. We have: (a°),~ (0%, for s=1, hence
[~ 1), — (@)~ [, — ()] for s=1. Then by Lemma 4.1, U (xf|i=s)~
~ U sli=s). ) ) _

Since x§ 5~ x§ | foreachiz=s, U (xf ;|i=s)~ U (x{ 1 |i=s). Hence U (x§ , |i=s) ~
~U (x},]i=s), and so by subtraction, x{,;~x}, for all i=1. Then x§ ;~ x§  ~
~xp g~ XY 80 x§ y~xh g for all 1=j=i<eo, as stated.

Now let {e;;}, {f;;} be families of orthogonal idempotents such thai
(e;,),=x¢; and (f; )),=x} ;. Then by Theorem 3.1, df, ;d-'=e,; for some in-
vertible d.

The element ¢=dbd-! has the property: (c¢*),=(db%),~ ("), for s=1 (use
Corollary 1 to Lemma 2. 1), so (¢*), ~(a*),. Hence N((c*),ls=1)=0 (the argument
used above for b applies to ¢ also). Finally (df;,;d~'), may be used as x{ ; since
the mapping: (), —(dud-1),=(du), is a lattice automorphism of Ry.

So we may suppose x§;=(e; ;),=x{; and clearly, we need only prove a
and c are similar., In other words, we may assume x¢ ;=x? ;=x;; (say).

Let {e;} be orthogonal idempotents with (e;),= U(x, ;|1 =j=1), >, ®e;=1.
Then ae;=e;a, be;=epb for all i and the hypotheses of Lemma 4. 3 are satisfied
in the ring eNe; by ae;, be; and x; je; (1 =j=i).

Thus for some d;, d; in eNe;, did;=e;=d;d; and eb=d;aed;.

Now d=D;®d;, d=2;®d; exist by Lemma 3.11; and by Lemma 3. 12,
dd=dd=1, b=dad. Thus Theorem 4.1 is established.??)

22) Theorem 4.1 together with Lemma 4.3, yields a ,,canonical’ representation for any a in
R for which N((a*).|s=1)=0.
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Lemma 4. 4. Suppose a and b are invertible elements in a regular ring R with
unit. Suppose m=1 and p(t)=1"+z,,_ "+ +...+z, is in P and p(a)=p(b)=0..
Suppose x, ax, ..., a"~1x is a basis for Ry and a'x =bix for 1 =i<m, Then a and b
are similar,

Proof. We may suppose m=2 (if m=1 then a =—z,=b and b=dad-!
with d=1).

Then ¢ is invertible and Corollary 1 to Lemma 2, 1 shows that x, ax, ..., ¢"~1x
is a homogeneous basis for Ry. Hence 9t possesses matrix units sy 4, 7=1, ..., m)
with (s;), =at~1x for 1=i=m.

Call ¢=(c;;) p-off-diagonal if:

(@) ¢4y, is invertible (in 54, Rsy,) for 1=i<m,

(11) CoomCmym—1Cm—1,m—2++-Ci+1,;1 = —Zj—1 for léléma and

(iii) ¢;;=0 for all other 7, ;.

Let c, be the p-off-diagonal element with ¢;4q,,=1 for 1=i<m.

The hypotheses of Lemma 4. 4 force a and b to be p-off-diagonal. Hence, we
need only show that ad=dc, for some invertible d. For this purpose take d;; =1,
dy=a;;-1...a5; for 1<i=m and d;;=0 for i#j. This completes the proof of
Lemma 4, 4,

Theorem 4. 2. Suppose that a and b are elements in a von Neumann ring RN
and that (1.3.4), (1.3.5) ‘hold, and m=1 and p(t) = "+ z,_ " 1 +...+z is
in P and pure irreducible. Suppose (p%(a)),~(p*)b)), for all s=1 and
N((p*@),ls=1)=0. Then a and b are similar.

Proof. Theorem 4. 1 applies to p(a) and p(b) and shows that p(a) =dp(b)d—* =
=p(dbd~1) for some invertible d. If m=1, then b+z, = d(a+2z,)d=' so b=dad !
for some invertible d, as required. Thus we may assume m =2, Since we need only
show that g and dbd—! are similar, we may now assume that p(b) =p(a).

Now Lemma 4. 2 can be applied to yield elements 3§, 3% for a, b respectively,
as described in Lemma 4. 2. The corresponding values of x; ; (as described in Lemma
4. 1) x¢ 4, x§,1 may not be the same but they are of the form [x—X] for the same
x, X; hence they are perspective. So, by (i) of Lemma 4.2: U(a/y}0=j<m)~
~ U(@%?|0=j<m). Moreover, by (v) of Lemma 4. 2, the elements in each of these
unions form an independent family, and by (iii) of Lemma 4.2, the elements in
the same family are mutually perspective.

Now y§ ~ % follows from the theorem that u, ~v, in a von Neumann geometry
whenever U(@u|l=i=m)~ U(v;|l =i=m) with {1} mutually perspective and {v;}
mutually perspective (in the terminology of [9, Part III, page 272]: if mAd=mB
with m=1 then 4=B). To prove this theorem assume if possible that u; ~v; is
false, Then for some w in the centre of the geometry:

wNuy ~v9 where v =v; but v9s4v; (here we use [9, Part III, Theorem 2. 7]
and interchange u,, v, if necessary). Then there exist elements v9 such that

m m m

wi Ulu,-: 00w~ Uwnop=wn U=
= i i= i=1

=1

m m m

=wNUv but with wNUvdzwn ).
i=1 i=1 i=1
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‘On the other hand, (wﬁ U u,) ~<wﬂ U1 v,> by [9, Part III, Theorem 1. 4, (a),
i=1 i=
m m
'with w=d, Uwu;=a, v,=0]. So by the transitivity of perspectivity the lattice
i=1 i=1

m

element ¢=wN |Jv; satisfies: c~c; with ¢;=e¢, ¢; #c¢. Bul this is impossible.
i=1

Hence u, ~v; must hold, and so y§~3%.

Then a/y} ~ bly} for all j. Now by Theorem 3, 1 there exists a similarity mapping
which maps 'y} onto aly? for all 0=j<mi. Hence, in proving Theorem 4.2, we
may supposc byt =aly; for all 0=j<mi.

Now set ¥; = U(a,|0 = j < mi). Then U, ¥;=R and a¥,=>bY, for all
iz1. By Lemma 3. 4 there exist orthogonal idempotents F, with (I),=Y,, al,=
= Fa, bF,=F.

The hypotheses of Lemma 4. 4 are satisfied in the ring I\®F, by aF, and bF,
.and {a/y F||0=j<mi}. Hence aF; and bF, are similar in the ring FRF, and, as
Ain the proof of Theorem 4. 1, Lemmas 3. 11 and 3. 12 can be used to derive: a and b
.are similar in 9t.23)

5. Proof of the Main Theorem

We suppose Jt is a von Neumann ring satisfying (1.3.4), (1.3.5) and need
only prove Theorem 1.1 (ii). It will be sufficient to prove the following ,,aug-
‘mentation” lemma,

Lemma 5.1. Suppose Py, a, b satisfy the hypotheses (1.3.2) and (1. 3. 3).
Suppose S*={e2, pa€I} and S®={e,p,la€I} have the properties:2%)

(5.1.1) e, et are non-zero idempotents with &¢=ét=gé, (say) for each acl,
Dy EPy and é,p, is pure irreducible in &R, .

(5.1.2)  g(N(Pi(a),|s=1))=(E,—e,,
e(N(p(@)ls=1))=(e,—ed);; similarly for b in place of a.

'(5. 1. 3) éae',,pa;ﬁe'“e'l,p,, if é“ép¢0.

‘Then:

(5.1.4) (%), ~(eb), for each acl, (Z,® e, ~(Z,De),;

(5.1.5) {et|a€l}, {el|a€l} are sets of orthogonal idempotents,
ae,=e,a, e,b =be,;

(5.1.6) If 3, ®e, # 1 it is possible to augment S° S® by pairs (% p), (eb, p)
preserving (5.1.1), (5.1.2) and (5. 1. 3).

23) Theorem 4.2 together with Lemma 4.4 yields a ,,canonical” representation for any a in
R for which N (p*(a).|s=1)=0 for some pure irreducible p in P.

24) For any idempotent e in a von Neumann ring 3, we write ¢ to denote the central cover
of e, that is, the central idempotent & with the properties: ¢ = e and for any central idempotent

ffe=e implies fe=eé.
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Remark. Theorem 1.1 (ii) can be deduced from Lemma 5.1. To see
this, note that by transfinite induction (or ZorN’s Lemma) it is possible to choose
59, S? to be maximal with the properties (5.1.1), (5.1.2), (5.1.3). Then from
(5. 1. 6) it will follow that >, ®e? = 1 and hence >, el = 1.

Then by Theorem 3.2 there will exist d,d” in § such that di’ =d'd=1
(so d'=d~*) and debd =e, d'etd=et for each o. The mapping u—dud-! is a
ring isomorphism of e2%fel onto efNRel.

Let c¢=dbd-'. Then debbd-!=dbebld'=elc=ced and (5.1.1), (5.1.2),
(5.1.3) hold if b is replaced by ¢ and each el is replaced by e?=e, (say).

In each ring e,Ne,, the elements e,c, e,a satisfy the hypothesis of Theorem
4,2, Hence g,, g, exist in e,Re, such that g,g, =gi8,=e, and g,e,cg.=e,a

If now R, is also a von Neumann ring then, by Corollary 1 to Theorem 3.2,
the elements g= > ®g,, g = . Dg. exist and satisfy: gg’=g'g=1 (so g'=g~1).
Then by the Corollary to Lemma 3.10, ¢=2,®e,c and by Lemma 3,12,

gt = 2, (g (e, )8 ") = 2. D(e,a)=a.

Thus if' N, is a von Neumann ring, ¢ and a are similar, hence b and « are similar,
which establishes Theorem 1,1 (ii).

Thus we need only prove Lemma 5. 1 to complete the proof of Theorem 1. 1.

Proof of Lemma 5. 1. The hypotheses of Theorem 1.1 (ii) imply that (re-
call the definition of &, given in footnote 24):

&,(N @), 1s=1))~e,(N (B s=1)).
Hence (5. 1.2) implies (ef),~ (el),. Now (5.1.5) follows from [4,§7.1]. Then
U (€9), ~ U (eb),, by the additivity of perspectivity in von Neumann geometries [3].
So (5.1.5) and (5.1.4) both hold.

Finally, we establish (5. 1.6). Suppose E=1— D @®e% # 0. Then Eel=
=e¢E=0 and the Corollary to Lemma 3. 10 shows that ¢E=Ea so p(a) E=Ep (a)

for “all peP.
Now a is assumed to be P;-almost algebraic, so p(p(a)),zo when p varies
over all products of factors from P . Hence N,(Ep(@).= N, (p@E), = 0. Thus

for some such p, (Ep(a)), #(E),.

Since P, is fully factorizable there is a set of orthogonal non-zero central idem-
potents {¢} such that U (), =R and each ép is a product ép;...p,, with all p; in P,
and ép, pure irreducible in éR,

Now for at least one of these ¢ we have (¢E), #(eEp (a)) since for every ¢ in
R: (c),= U(&c), (use the Corollary to Lemma 3. 10). Hence with this &: (eEp (a)) =
—(eEpl(a) D (@), #(€E), where the p, are all in P; and each epL is pure irre-
ducible in &, If eEp,(a)b;=¢EE were to hold for some b, for i=1, ..., m we would

have

éEpl(a)-"pm(a)bm"'bi = éEpl(a)"'pm——1(a)e_Ebm—1"'b1 =

= CE¢Ep;(a)...py-1(@)by—1...by =...=EECE...2E = @E,
a contradiction. Thus, if p is replaced by a suitable p;, we can assert: p is in Py, ép
is pure irreducible in R and (¢Ep (@), #(EE),. For the rest of this proof we keep
p fixed with this value.

Now we apply the well known method of ,,exhaustlon” Let {f} be a set of
orthogonal non-zero central idempotents maximal with the property: fé=f and

A2
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ngp @), =(E),. Let fo= 3 d(]). Then foé =f, and, using the Corollary to Lemma
.10, we deduce (folip(@), =(fok),.

Thus, if ¢ is replaced by é—f, we can assert: (gLip(a)), 5 (ZE), whencver g
is a non-zero central idempotent with g=¢&g. FFor the rest of this proof we keep
¢ fixed with this valuc (clearly, é30).

Applying [4, § 7. 1] to the ring &9, we choose ¢* to be the unique idempotent

with e?=¢ée® and
@—em, = N(E@), sz 1),
and @—eD = N((e@)|s=1);

similarly, with p%(b) in place of p*(a), we choose e?.
Since we assume (1. 3. 2) and (1. 3. 3) it follows that for each s=1, (ép%(a)), ~

~(&p*(b)),, hence
N(E*@).ls=1)~ N((@*®).ls=1)

(use [2] or [3]). Hence, by subtraction: (&%), ~ (€"),, and so e*=e® (use [9, Part III,
Theorem 1.4 (d)]).

We now prove that if S% SPare augmented by the pairs (e, p), (e?, p) then
(5.1.1), (5.1.2), (5 1.3) are preserved.

First, we shall show that e®=¢é. If this were false then, since e*¢ = e it follows
that ge®*=0 (and hence ge"=0) for some g =gé=0. But our choice of ¢ implies,
by [49 § 1. 1]7 tllat ((e-_—' e“)p(a)),. = (e-_ ea)r SO (g')r = (g(e'——e“)),. = (gge-_ e“)p(a)), =
= (gr(@)),; (2).=(gr(@)),. But also, by our choice of é: (gE), #(gEp(a)),. This
is a contradiction, for if gp(a)c=g, then gEp(a)c = Egp(a)c=Eg =gkE. This con-
tradiction shows that & =¢é. Since &30, it follows that "0 and so (5.1.1) and
(5. 1. 2) continue to hold.

Next we show that (5. 1. 3) also continues to hold. We suppose for some o«
that g=¢,6#0 and we need only show that gp,#gp. It is sufficient to show that

gra) #gp(@).
Since e2E=0 it follows from (5. 1.2) that

@E), = (@, —e)E), = N((@i@), |5 = 1) = (2(a)s,

so Ee,=p,(a)c for some c in R. Then gEp,(a)c =gEé,=gE so (gEp,(a)),=(gE),.
But by our choice of ¢, since g#0 and g=2ég: (gkp(a)), #(gE),. Hence gp,(a) #
#gp(a), as required to show that (5. 1.3) continues to hold.

This completes the proof of Lemma 5. 1 and so Theorem 1. 1 is established.

i
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Die Jordan—Dedekindsche Bedingung =~
im direkten Produkt von geordneten Mengen

Von J.. JAKUBIK in Kogice (Tschechoslowakei)

Es sei S cine geordnete (=teilweise geordneté) Menge, a, b€ S, a=b, [a, b=
={x|x€S, a=x=b}. Bezeichnen wir mit R (a, b)) das System aller maximalen
Ketten von [a, b]. In [1] (vgl. auch [2}, S. 11) wurde die folgende Bedingung unter-
sucht (Jordan—Dedekindsche Bedingung):

(JD,) Ist u,v€ S, usv, R,, R, €R(u,v), so sind die Ketten R,, R, isomorph.
Eine andere Bedingung liber die Ketten in S wurde von G. Sz4Asz [3] eingefiihrt:
Dy Ist w,v€S,u=v,R,, R, cR(u,v), so gilt kard R, =kard R,.!)

. Fiir geordnete Mengen von endlicher Linge sind die Bedingungen (JD,),
(JD,) 4quivalent. Die Bedingung (JDZ) wurde auch in [4] —[7] behandelt. :

In dieser Arbeit gehen wir aus einer von G. BIRKHOFF gestellten Frage {2, S. 11,
Ex. 6] aus: ,,Prove (or disprove) that the cardinal product of any two partly ordered
. sets of finite length which satisfy the Jordan—Dedekind chain condition also satis-
fies it.” Ein kurzer Beweis hierfiir steht in 2. Ferner untersuchen wir die Bedingung
(ID,) fiir das direkte Produkt von geordneten Mengen A, B, wobei die Lingen
von A, B nicht endlich zu sein brauchen. v

Es seien A, B nichtleere geordnete Mengen, S=A4B8,

s;=(a;, b) (i=1,2), a;€A, b,EB, s <5;.

1. Es ist klar, daB das Element s; genau dann ein unterer Nachbar?) von s,
ist, wenn - eine der folgenden Bedingungen erfullt ist:

.a) a, ist ein unterer Nachbar von a, und b, =b,,

b) a;=a; und b, ist ein unterer Nachbar von b,.

2. Wenn fiir jedes R, €R(a,, a,) und Jjedes R, €N(b,, 2) kard R, =n, bzw.
kard R, =n, ist (wobei n,, n, natiirliche Zahlen bedeuten }, so gilt kard R =n, +
+ny,—1 fiir jedes REER(SI, $3).

Beweis: durch Induktlon in- Bezug auf die natiirliche Zahl n, +n, = 2. Der
Fall n, +n, = 2 (d. h. s, =s,) ist trivial. Es sei n,+n, > 2, d. h. 5, <s,. In R
gibt es einen unteren Nachbar s von s,. Nach 1 und nach der Induktionsvorausset-
zung gilt kard R = n; +n, —2 fir jedes R €N (s, 5). Also ist kard R= kard R+
+1 =mn;+n,—1.

1) Fiir eine beliebige Menge M bezelchnen wir mit kard M die Machtxgkelt von M.
) Vgl [8], 8. 6.
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3. Wir.nennen eine geordnete Menge S diskret, wenn jede beschrinkte Kette
in S endlich ist. Aus 2 folgt:

Satz 1. Wenn die diskreten geordneten Mengen A, B die Bedingung (JD,) er-
Siillen, dann erfiillt auch S=AB diese Bedingung.

Bemerkung. Durch Induktion kann Satz 1 fiir ein direktes Produkt
S=A4; A, ... 4, von n Faktoren verallgemeinert werden. Fiir das vollstindige
direkte Produkt I14; (wobei die Anzahl der direkten Faktoren A; unendlich ist),
gilt ein analoger Satz nicht. (Vgl. [6].)

4. Wir werden S k-vollstindig nennen, wenn aus wu,v€S, u<v, RER(y,v)
folgt, daB die Kette R ein vollstéindiger Verband ist. (Es ist leicht zu zeigen, daB
eine k-vollstindige gerichtete Menge kein Verband zu sein braucht.)

Satz 2. Es seien A, B k-vollstindige geordnete Mengen, welche die Bedingung
(ID,) erfiillen. Dann erfiillt auch S=AB die Bedingung (JD,).

Beweis. Wir setzen voraus, daB fiir jede Kette R; € Rt(ay, a,) und R, € R (by,b,),
kard Ry =ny bzw. kard R, =n, ist. Wenn n; und n, endlich sind, so ist nach 2
kard R = n; +n,—1 fiir jede Kette RecR(s;, s,).

Wenn wenigstens eine der Méchtigkeiten ny, n, unendlich ist, bezeichnen wir
n=max (n;, n,). Bs sei ReN(sy,s,); R, sei die Menge aller a€ 4, flr die es ein
b’ € B gibt, so daB (a, b’) € R; die Bedeutung von Ry ist analog. Offensichtlich sind
R, und Ry Ketten, R, C[ay, a,], Rz [by, b,], also ist kard R, =n,, kard Rz=n,.
Wir setzen C={(a, b)lac R,, b€ Ry}. Es ist kard C=kard R,. kard Rz=n, n, =n;
aus Rc C folgt dann kard R=n.

Es sei z. B. n=n,. Aus dem Auswahlsaxiom folgt, daBl es Ketten R, € R(a;,a,),
R,eN(by, by) gibt, so daB R,C R, RzC R,. Anderseits wihlen wir ein Element
ao€Ry, a;<apg<a, auvs. Es sei B; die Menge aller b€ R,, fiir die es ein a€ 4,
a=a, gibt, so daB (g, b)€R. Da B k-vollstindig ist, existiert in R, das Element
by, =sup B;. Bezeichnen wir s, =(ay, by) und sei s=(a, b) ein beliebiges Element
von R. Fiir jedes a€R; sind die Elemente a, a, vergleichbar. Wenn a=q, gilt,
so ist (nach der Definition von by) b=b, und folglich s=s,. Es sei a=>aqa,. Wir
wollen zeigen, daBl dann b=b, ist. Wire ndmlich b<b,, so gibe es ein Element
b €B; mit b<b'=b,, und zu diesem b’ konnte man ein Element o’ € 4 finden,
so daB s’ =(, b)) €R, a’ =a,. Die Elemente s, & wiren dann aber unvergleichbar,
was unmdglich ist. Es gilt also b =b,. Das Element s, ist mit allen s” € R vergleichbar,
also ist s, € R. Daraus folgt Ry R,, so daB R;=R,, kard R=kard R, =n ist;
nach der oben gewonnenen Ungleichung gilt also kard R=n.

Bemerkung. Die Voraussetzung iiber die k-Vollstédndigkeit kann in| Satz 2
nicht weggelassen werden. (Vgl. Satz 2 und 3.)

5. Wenn 4 oder B die Bedingung (JD,) nicht erfiillt, so erfiillt auch ihr di-
rektes Produkt S=AB diese Bedingung nicht.

Die ,,einfachsten” geordneten Mengen, welche die Bedingung (JD,) (trivialer-
weise) erfilllen, sind die wohlgeordneten Mengen. Nehmen wir an, daBl 4 die Be-
dingung (JD,) erfiillt; es stellt sich die Frage, unter welchen Umstdnden diese
Eigenschaft von A auch fiir jedes direkte Produkt AB erhalten bleibt, wobei B
eine beliebige wohlgeordnete Menge ist.
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Es sei m irgendeine Méchtigkeit. Ferner sci B cinc wohlgcordnete Menge mit
kleinstem Element b, und mit gréBiem Element b,, kard B=m. Unicr diescn Vor-~
aussetzungen gilt der folgende

Satz 3. Wenn [a,,a,]c A4, RENR(ay, ay), kard R=nu=m und R kein vollstin-
diger Verband ist, so gibt es zu jeder Mdichtigkeit W' (W =1 =) eine Kette R’ € R(sy,s,)
mit kard R = v,

Beweis. Nach der Vorausseizung gibt es in R ein Idcal A, & ohne groBies
Element und ein duales Ideal 4, 52 & ohne kleinstes Element, so daB 4, N4, = G,
A; U4, = R, Es sei ' eine Méchtigkeit mit t=u"=m. Es gibt ein Element b, € B,
so daB kard By=1’, wobei By=I[b;, by]. Wir bezeichnen

R, ={(ay, b)lbeBy}, Ry={(a,b)lacA4,},
R ={(a> by)la EAZ}: R=R,UR,UR;.

Offenbar ist R’ cine Kette und kard R, =1, kard R,=11, kard Ry=1, also ist
kard R' =1, Es sei s=(a, b) €[5y, $,]; nehmen wir an, daBl s mit allen Elementen
der Ketle R’ vergleichbar ist. Wir wollen zeigen, daBl R €N(s,, d,) gilt, d. h. daB
s zu R’ gehdri. Offensichilich ist a € R,

a) Es sei as=a,. Nach der Voraussetzung gibt es ein o’ € 4; mit o’ >a,. Wir
bezeichnen " =(a’, b,). Da s’ € R, ist, sind die Elemente s, s” vergleichbar; aus der
Beziehung o >a, folgt daher b,=b, also ist sER,.

b) BEsseia=a;,a€A,;. Da sund (aq, b,) vergleichbar sind, gilt b =b,. Ferner
gibt es ein o/ €4,, a<a'. Aus der Vergleichbarkeit von s und (a’, by) bekommen
wir dann b=b,. Also ist b=b,y, SER,.

c) Es sei a€A,. Es gibt ein a'€4,, a’<a. Da s und (da’, b,) vergleichbar
sind, gilt b=>b,, also ist SE€R;.

Aus den Sitzen 2 und 3 folgt unmittelbar der

Satz 4. Es sei A eine geordnete Menge, welche die Bedingung (JD,) erfiillt.
Dann sind die folgenden Bedingungen dquivalent:

a) es gibt eine wohlgeordnete Menge B derart, daf} S=AB die Bedingung (JD,)
nicht erfiillt,

b) A ist nicht k-vollstindig.

Satz 5. Es sei
Ry €R(ay, ay), Ry €R(Dy1, by),
€1,C2€Ry, Ry = [by, c]]N Ry, Ra = [by, c}]NR,,
wobei Ry kein vollstindiger Verband und kard R, =n, n=kard Ry <kard R4 ist.
Dann ist im direkten Produkt S=AB die Bedingung (ID,) nicht erfiillt.

Beweis. In analoger Weise wie im Beweis des Satzes 3 konpen maximale
Ketten R’, R” konstruiert werden, derart, dal kard R’ =kard R;, kard R” =kard R4
ist.
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Ein hinreichendes und notwendiges Kriterium
fiir die ZPI-Figenschaft in kommutativen,
reguliiren Halbgruppen

Von . J. WEINERT in Potsdam (DDR)

In Verallgemeinerung des ZrrMeLoschen Beweiscs fiir den Fundamentalsaiz
der elementaren Zahlentheorie hat Hasse in [1] ein hinrcichendes Kriterium dafiir
angegeben, daB in cinem Integritéitsbereich 9t jede Nichieinheit (7 0) als Produki
von Primelementen!) geschrieben werden kann, welches von KRULL in [2] zu einem
hinreichenden und notwendigen Kriterium verschérft wird. Beide Kriterien (vgl.
auch KrurL [3], § 5) arbeiten mit einer Art reellwertigen Bewertung und beruhen
auf der Existenz gewisser Linearkombinationen, womit sie von der Ringeigen-
schaft von # wesentlichen Gebrauch machen. In der vorliegenden Note wird ge-
zeigl, daB sich der ZermrLOsche Beweisgedanke sogar zu einem allgemeinen Kri-
terium fiir eine Zerlegung in Primelemente {ZPE) in Halbgruppen ausbauen 138t,
welches die oben genannten Kriterien als Spezialfélle enthilt. Die allgemeinere
Formulierung des Kriteriums macht dabei seinen Beweis einfacher und beeintréich-
tigt auch nicht die Handlichkeit seiner Anwendung, wofiir wir abschlieBend einige
Beispicle geben.

Fiir eine (kommutative und reguldre) Halbgruppe § mit Einselement e 2)
lassen sich die Begriffe Teiler, Einheit, assoziierte Elemente usw. wie iiblich erkli-
ren. Insbesondere verstehen wir unter einer echten Zerlegung

a=aay...a,

von g€ eine solche, fiir die n=2 gilt und kein a,€F eine Einheit ist; eine Nicht-
einheit r € F ohne echte Zerlegungen heifit irreduzibel und sogar prim, wenn aus
rlab stets rla oder r|b folgt. Die Eindeutigkeit jeder Zerlegung in irreduzible Ele-
mente (bis auf assoziierte Faktoren) ist gleichwertig damit, daB auch umgekehrt
jedes irreduzible Element von § prim ist. Damit 1duft die Mglichkeit, jede Nicht-
einheit von § in ein Produkt von Primelementen zu zerlegen, auf das gleiche hinaus
wie die Existenz und Eindeutigkeit der Zerlegung aller Nichteinheiten von § in
irreduzible Elemente. Wir sagen dann, daBl § eine ZPE-Halbgruppe ist und zeigen,
daB fiir diese Eigenschaft von § das folgende Kriterium hinreichend und notwendig
ist:

1) Entsprechend der nachstehenden Festlegung der Begriffe ,,irreduzibel” und ,,prim” (im
Einklang mit KrurL [2], [3] bzw. Répz1 [4], § 79) sind die Faktoren einer solchen Zerlegung bis
auf assoziierte Elemente eindeutig bestimmt.

2) Ubrigens gelten alle Ubetlegungen auch fiir Halbgruppen ohne Binselement, wenn man
einfach alle sich auf Einheiten bzw. Assoziiertheit bezichenden Formulierungen wegfallen 14B8t.
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Fiir die Elemente von § lifst sich eine irreflexive, asymmetrische und transitive
Relation a<b erkliren, die den nachsiehenden Bedingungen geniigt:

(1) In jeder Teilmenge von § existiert ein in bezug auf diese Relation minimales Ele-
ment.

(2) Ist b keine Einheit, so gilt a<ab fiir alle ac .

(3) Aus a<b folgt ac<bc fiir alle ccF.

(4) Zu je zwei nicht assoziierten irreduziblen Elementen r und s von § gibt es ein
Element z €, welches

o) z<r, B) s1z, ) aus s|ra folgt s|za,

oder die gleichen Bedingungen mit Vertauschung von r und s erfiillt,

In der Tat ist dieses Kriterium hinreichend fiir die ZPE-Eigenschaft von .
Wir gehen indirekt vor und betrachten zunéchst die Menge aller Nichteinheiten
von §, fiir die keine Zerlegung in irreduzible Elemente existieren sollte. In dieser
Menge gibt es nach (1) ein minimales Element ¢, welches also nicht irreduzibel
ist. Aus c=ab folgt aber gemil (2) a<c und b<c, so daBl es nach Wahl von ¢
fiir @ und b und damit fiir ¢ Zerlegungen in irreduzible Elemente gibt, Entsprechend
sei nun ¢ ein minimales Element mit zwei wesentlich verschiedenen Zerlegungen

c=}’1}’2...r,,=S1S2...Sm.

Dabei kann kein r; zu einem der s; assoziiert sein, da sonst nach (2) und Wahl von:
¢ beide Zerlegungen bis auf assoziierte Elemente iibereinstimmten. Wir kdnnen
also etwa auf r; und s, (4) anwenden. Mit z<r, gilt nach (3)

Za =120y, Fy=<F Fg...Fy=F1d=C
und wir erhalten
Silzrg.nry, sz, s14ry, oo 517,

im Widerspruch dazu, daB die Zerlegung von zr,...r,<c in irreduzible Elemente
nach der Wahl von c¢ eindeutig ist. ,

Ist umgekehrt % eine ZPE-Halbgruppe, so ist durch die Anzahl der in den
Zerlegungen auftretenden Primelemente (worunter fiir Einheiten die Zahl 0 zu
verstehen ist) eine Halbordnungsrelation gegeben, die ersichtlich die Bedingungen
(1), (2) und (3) unseres Kriteriums erfiillt. Fiir (4) stellen wir sogleich allgemeiner
fest: .
Ist fiir eine ZPE-Halbgruppe % irgendeine Halbordnungsrelation erklirt, die
den Bedingungen (1), (2) und (3) geniigt, so ist auch (4) erfiillt, und zwar sogar fiir
beliebige Elemente r und s aus § mit ¥{s und str.

Wir brauchen némlich fiir z nur den groBten gemeinsamen Teiler von » und
§ zu nehmen, fiir den man leicht die Aussagen «), ) und y) nachpriift,

AbschlieBend wenden wir unser Kriterium zum Beweis einiger wichtigen,
. bekannten ZPE-Aussagen an. Fiir den Halbring N der natiirlichen Zahlen ist es
ersichtlich mit der iiblichen Ordnungsrelation und z = r—s fiir r=s erfiillt. Ist
N ein euvklidischer Ring mit der Zuordnung a-g(a), so bedeute a<b einfach
g(a)<g(b), und man wihlt z = r —sqg mit g(z) <g(s)=g(»); zum Nachweis von
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«(3) bendtigt man allerdings, daB g(ac)<g(bc) aus g(a) <g(d) folgl.®) Fiir einen
Hauptidealring R sctzt man a<b genau dann, wenn fiir dic zugehorigen Ideale
(@)>(b) gilt; mil z aus (1, s) =(z) ergeben sich sofort die Bedingungen unscres
Kriteriums.

Weiterhin sci i der Halbring#) aller Ideale cines Ringes 3R, dessen Ideale dem
‘Oberketiensaiz und dem Faktorsalz geniigen. Letzicrer besagl also, daB jedes
‘Oberideal q eines Ideals b auch Fakior von b, und damitl in unserem Sinnc Teiler
von  ist5), Mit a<b genau dann, wenn o oD gilt, erhélt man eine Ialbordnungs-
relation, die auch den Forderungen (1), (2) und (3) unscres Kritcriums gentigt;
«(1) ist n#mlich dic dem Oberkettensalz entsprechende Maximalbedingung, (3) ist
gleichwerlig mit der Regularitéi der Idcalmultiplikation, die sich aus dem Fakior-
satz ergibt, und (2) folgt aus (3) und R fiir jedes D =R, Zum Beweis von (4)
seizt man § = t-+§: Wegen des Faklorsalzes gill mit ©{8 und 81t auch r:b$ und
§:p1, also yo1 und 353 und damit bereits ) und ), wihrend sich y) sofort aus
40 = ra--8a ergibl.

SchlieBlich kann auch die Ubertragung der ZPE-Eigenschaft von einem Ring
‘R auf den Polynomring N[x] mit unserem Kriterium gezeigt werden, wobei nur
der sog. Hilfssaiz von GAuss iiber das Produkt primitiver Polynome als Hilfs-
mittel verwendet wird. Dazu erweitern wir eine unserem Kriterium geniigende
Relation fiir die Elemente des ZPE-Ringes R gemifB

m

S axr < S bt (a,%0, by#0)
v=0 n

=0
genau dann, wenn entweder n<m

oder n=m und a,<b,,

‘Zu einer Relation fiir die Elemente von R[x], die ersichilich irreflexiv, asymmetrisch
und transitiv ist und auch wieder den Bedingungen (1), (2) und (3) geniigt. Den
Nachweis von (4) fithren wir fiir irreduzible Elemente und unterscheiden die Félle:

reN, s€R: Hier leistet das schon in R existierende Element z:auch fiir NR[x]
-das Verlangte.

r(x) €R[x], seN: Fiir das Einselement e =z ist e<r(x), s{e und aus s|r(x)a(x)
folgt sla(x), da r(x) als irreduzibles Polynom den Inhalt e hat.

r(x) €R[x], s(x)eR[x]: Die Division mit Rest liefert in der Form
cr(x) = s(x)q(x)+z(x), ceR,

«in Element z(x)E&R['x] mit einem kleineren Grad als dem von s(x) und dem von
r(x). Dieses Element z(x) ist ungleich o (sonst wire ¢ der Inhalt von ¢(x) und damit
$(x) Teiler von r(x)) und erfiillt o), §) und y).

3) Fiir die iiblicherweise betrachteten Beispiele euklidischer Ringe ist diese Bedingung ebenso
-wie die meist nur geforderte Aussage g(a) = g(ab) erfiillt; zum Nachweis der Hauptidealringeigen-
schaft sind ohnehin beide entbehrlich.

4) Fiir die Begriffsbildung des Halbringes und weitere Literatur vgl. WeINERT [5].

5) Man beachte, daB der fiir-beliebige Halbgruppen erklérte Begriff des Teilers-sich defini-
tionsgemiB zuniichst mit dem idealtheoretischen Begriff des Faktors und nicht mit dem des Ober-
ideals deckt. Auch ist ein irreduzibles Element ¥ von % hier als multiplikativ unzerlegbares Ideal
«erklirt, welches aber auf Grund des Faktorsatzes maximal und damit auch Primideal von ¥ ist.
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Zur Holomorphentheoric der Ringe
Von H. J. WEINERT und R, BILHAUER in Potsdam (DDR)

§1

In seiner Arbeit [2] hat L. RiipEr den zum Begrifl des Holomorphs einer Gruppe
analogen Begrifl' der FHolomorphe eines Ringes geschaflen, der es in der Tal erm&g-
licht, zu einer Reihe von gruppentheoretischen Sélzen entsprechende Sétze fiir
Ringe aufzustellen., Ein auffdlliger Unterschied zur Gruppentheorie ist dabei, daf
es Ringe gibi, die mehr als ein Holomorph haben!). So wird bereits in [2] gezeigt,
daB ein Zeroring R dann und nur dann genau ein Holomorph besitzt, wenn der
Endomorphismenring &(R*) von R* kommutativ ist?). Da gemiB SzELE—
SzENDREI [4] verhéltnismiBig wenig Moduln kommutative Endomorphismenringe
besitzen, konnte man vermuten, daB3 auch allgemein die Ringe mit mehreren Holo-
morphen vorherrschen. Die nachfolgenden Ergebnisse berechtigen aber wohl zu
der Feststellung, daB die weitaus wichtigsten Klassen von Ringen nur ein Holo-
morph besitzen.

Zunichst sind nach unserer Kenntnis die folgenden drei hinreichenden Be-
dingungen fiir die Einzigkeit des Holomorphs eines Ringes R bekannt:

I) R hat ein Einselement (REDEI [2]).
II) R=R2, wobei mit R? das von allen Produkten von Elementen aus R erzeugte

Ideal bezeichnet wird (LEEUWEN [1]).

IIT) R ist nullteilerfrei (LEEUWEN [1], im kommutativen Fall bereits SZENDREI [5]).
Fiir die Durchfithrung des Beweises in [1] reicht es aber schon aus, daB R iiberhaupt
ein links- bzw. rechtsreguldres Element enthdlt. In weiterer Verschirfung werden
wir sogar die Einzigkeit des Holomorphs von R aus folgender Bedingung ableiten:

IV. Fiir den Annullator nvon R gilt n=(0).

Damit geniigt es, die alles tibrige umfassenden Bedingungen II und IV zu beachten,
zu denen noch die ersichtlich hinreichende Bedingung V hinzukommt.

V. Der Endomorphismenring &(R+) von R* ist kommutativ.

1) In diesem Falle ist es auch nicht moglich, die Eindeutigkeit des Holomorphs eines solchen
Ringes R etwa durch eine geeignete Auswahl oder mit Hilfe des Durchschnitts der maximalen Ringe
befreundeter Doppelhomothetismen von R erreichen zu wollen, da nichtbefreundete Doppelho-
mothetismen von R nur durch verschiedene Everettsche Erweiterungen induziert werden konnen.
Auch iiberlegt man sich leicht, daB verschiedene Holomorphe von R keine #quivalenten Erweite-
rungen von R sein koénnen.

2) In der Bezeichnung richten wir uns weitgehend nach RE&pEi [3]. Insbesondere war das dort
auf Seite 204 formulierte Problem AnlaB zu der vorliegenden Note. Die wichtigsten Begriffsbil-
dungen fassen wir iibrigens am Anfang von §2 auch noch einmal zusammen.



H. J. Weinert—R. Eilhauer: Zur Holomorphentheorie 29

Wir werden jedoch zeigen, daf es auch noch weitere Ringe mit nur einem Holomorph
gibt, die also keiner der bisher genannten hinreichenden Bedingungen geniigen.
Dabei verwenden wir Untersuchungen iiber diegjenigen Endomorphismen, die als
Komponenten der Doppelhomothetismen auftreten kdnnen, In diesem Zusammen-
hang ergeben sich weitere Kriterien fiir die Einzigkeit des Holomorphs eines Ringes R,
auf die sich alle anderen Aussagen zuriickfithren lassen®), Insbesondere verweisen
wir hier auf die in § 2 formulierten Séitze 3 und 4.

AbschlieBend wenden wir uns noch der Frage nach der Kommutativitit der
Holomorphe zu, wo wir bisher bekannte Ergebnisse entsprechend ergénzen. Auch
hier ist ja die Tatsache, daB es zahlreiche Ringe mit kommutativen Holomorphen
gibt, ohne Analogoh zur Gruppentheorie, da das Holomorph einer Gruppe G
(vom trivialen Fall der Gruppen 1. und 2. Ordnung abgesehen) nichtkommutativ
ist.

§2

Es sei R ein Ring mit den Elementen o, 8, .., und &(R+) der Endomorphis-
menring des als Modul R+ aufgefaBten Ringes R. Die direkte Summe

E,(R*)=8(R*)DE°(RY)

von &(R*) und dem zu ihm entgegengesetzten Ring £°(R+) besteht dann aus allen
Doppelendomorphismen a=(a,, @,) von R*, d. h. den Doppelabbildungen

o—>as = ad, o—-0a = ao,
fiir deren Nacheinanderanwendung also gilt:
1) a—(ab)e = (a;by)e = a;(b;0),
a—~a(ab) = (a0by)e = (bras)o = by(as0).

Insbesondere heifit ein solcher Doppelendomorphismus a=(ay, a,) ein Doppel-
homothetismus von R, wenn er erfiillt:

3

) a(@f) = (a)B, d.h. a,(@h) = (a,9)B,
@p)a = a(fa), d.h. ay(B) = a(a,p),

©) (@) = a(ah), d.h. (a0)pf = a(aiP),

(4) (@)a = a(ea), d.h. aya,0 = aya,0.

’

SchlieBlich nennt man Doppelhomothetismen a=(a,, a,) und b=(b,, b,) befreun-
det, wenn gilt:
(5) (a)b = a(@b), d.h. bya;00 = a;b,a, *

(bo)a = b(oa), d.h. a,b,o = biay.
Da Differenz und Produkt befreundeter Doppelhomothetismen ¢ und b von R
wieder Doppelhomothetismen von R sind, welche dariiber hinaus mit jedem zu a

3) Der Beweis von IV kann allerdings ebensogut auch unabhingig davon gefilhrt werden,
vgl. FuBnote 4.

14



30 H. J. Weinert—R. Eilhauer

und b befreundeten Doppelhomothetismus ¢ befrcundet sind, kann man von dem
in &,(R*) enthaliencn Ringen befreundeter Doppelhomothetismen sprechen, Nach
Rionr [3] liegt jede Menge befreundeter Doppelhomothetismen (insbesondere also:
jeder Doppelhomothetismus) von R in einem maximalen Ring ) dieser Art. Die
zugehdrigen fakiorenfreien Everetischen Erweiterungen @ =k R sind die Holomorphe
von R, und die Einzigkeit des ¥olomorphs von R 14uft aul die Existenz nur eines
maximalen Ringes befreundeter Doppelhomothetismen hinaus,

Wir stellen nun fest, dafl die Bedingung (2,) unter allen Endomorphismen von
R* digjenigen auswihlt, die fiberhaupt als erste Komponente eines Doppelhomothe-
tismus von R in Frage kommen. Wie man leicht nachrechnet, bilden diese Endomor-
phismen a,, by, ... eincn Unterring I, von &(R*). Entsprechend bilden diejenigen
Endomorphismen a,, b, ..., die (2,) erfiillen, einen solchen Unterring o, .

Der Durchschnitt J0* =g, NI, enthilt jedenfalls den Nullendomorphismus
o=o0%, den identischen Automorphismus e=¢* sowie alle diec Endomorphismen,
die von einem Zentrumselement ¢ von R gemifB

o0 = 0g
induziert werden, Ist allgemein a* ein Element von J*, so ist a=(a*, a*) wegen

(a*0) B = a*(@B) = a(a*P)

a*a*o = a*a*o

und

ein Doppelhomothetismus von R. Da zwei solche Doppelhomothetismen a = (a*, a*),
b=(b*, b*) genau dann befreundet sind, wenn

a*b¥o = b*a*o
gilt, erhalten wir

Satz 1. Fiir die Einzigkeit des Holomorphs von R ist notwendig, daf8 der Ring
H* S E(RY) kommutativ ist.

Weiterhin betrachten wir die Menge J{{ derjenigen Endomorphismen a, €3¥; ,
die tatséchlich als erste Komponente in wenigstens einem Doppelhomothetismus
von R auftreten, zu denen es also ein a, € {, gibt, so daB fiir ¢, und a, die Bedingun-
gen (3) und (4) erfiillt sind. Entsprechend definieren wir die Menge d{3. Aus obigem
geht hervor, daBl dann sogar

IH*x =1 NK;

gilt, jedoch sind 1 und &3 im allgemeinen keine Unterringe von & (R*). Da zwei
Doppelhomothetismen a=(a,, a,) und b=(b,, b,) genau dann befreundet sind,
wenn gemiB (5) stets

"bya00=a;b,0c und aybi0=Dba0

gilt, kommen wir zu folgendem Kriterium:

Satz 2. Fiir die Einzigkeit des Holomorphs von R ist notwendig und hinreichend,
dap jeder Endomorphismus aus 1 mit jedem Endomorphismus aus 3 vertauschbar
ist, d. h., daf alle Kommutatoren

lay, bo]l=a1b, —byay mit a; € Hi, by€H;

gleich dem Nullendomorphismus sind.
Insbesondere sind dann auch &K1 und &3 Unterringe von &(R+).
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Zusatz. Allgemein sind diese Kommutatoren [a,, b,] Elemente von J{*, die R
in den Annullator 1 von R und R? auf das Nullelement von R abbilden.

Es bleibt die Ringeigenschaft von {{ bzw. 3 und der Zusatz zu beweisen;.
wir begniigen uns mit letzterem. Zunichst gilt ([al, b,] oc) f =0 wegen

((511172)05)/3 = (611(b2°‘))ﬂ = 01((b2°4)ﬁ) = ‘11(0C (b1ﬂ)) =(a,2) (b1)
und ((bza1) “)ﬁ (bz(a1°‘))ﬁ (a19) (b1 )

(wobei wir von (2;) und (3) mit einem zu b, korrespondlerenden b, Gebrauch
gemacht haben) und entsprechend f ([ay, by]e) =0 fiir alle B aus R, so daB stets
[ay, by]e€n erfiillt ist. Analog folgt

lai, b,] (“ﬁ) = (a1b,) (@P) —(b2a1) (@B) = (a10) (b28) —(a12) (b2f) = O,
woraus man nun auch die iibrigen Behauptungen des Zusatzes erhilt.

Wie man sieht, ergibt sich aus Satz 2 und dem Zusatz sofort, daB die Bedingun--
gen II, IV und V fiir die Einzigkeit des Holomorphs von R hinreichend sind, wobei.
die II und IV betreffenden Aussagen im wesentlichen auch bereits den Zusatz
ergeben.*) Weiterhin gilt bei kommutativer Multiplikation von R bereits of; =&, =
=J(*, und wir erhalten in Ergénzung zu unseren Sitzen das

Korollar. Fiir die Einzigkeit des Holomorphs eines kommutativen Ringes R
ist die Kommutativitiit des Ringes o, —3{:2 ={*S & (R +) notwendig und hinreichend,

Wir kommen nun zu dem angekundlgten Belsplel eines Ringes R mit nur einem.
Holomorph der jedoch alle in § 1 angegebenen hinreichenden Bedingungen verletzt.
Es sei R=R; ®R, die direckte Summe eines Korpers Ry =(0, &) der Ordnung 2
und eines Zeroringes R, =(0,v) der Ordnung 2. Dann hat R diesen Zeroring
als Annullator, es gilt R? =R, c Rund der Endomorphismenring &(R+) enthilt die-
zur vollen Permutationsgruppe von drei Elementen isomorphe Automorphismen-
gruppe von R+, ist also nichtkommutativ. Trotzdem hat R auf Grund des
Korollars nur ein Holomorph, denn {; besteht aus folgenden Endomorphismen,
deren Kommutativitit man leicht nachrechnet:

Bild von bei so . | bei s1 bei 52 bei 53
0 0 0 0 0
& 0 € € 0
Y 0 Y 0 »
et+v=a 0 a € %

Wie wir nur bemerken wollén, besteht der maximale Ring €) der Doppelho mothe-

4) Selbstverstidndlich lassen sich diese Aussagen auch ohne explizite Verwendung der Kom-
ponenten der Doppelhomothetismen ableiten, so etwa IV gemdl:

(a(ab)) B =a((ab) ) = a(a(bp) = (aa) (bB) = (ac) ) B,

also (a(ab) — (aa)b)B =0 und entsprechend f(a(ab) — (aa)b) =0, so daB aus n1=(0) die Einzigkeit
des Holomorphs von R folgt,
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tismen aus folgenden Elementen:

(S5 S0) (815 51) (52, 52) (53,53)
(805 53) (535 50) (515 82) (82581

Mit 30* ist natiirlich auch @, nichi aber das IMolomorph ) 4 R kommutativ, wie
aus dem weiter unten zitierten Kriterium von LERUwWEN hervorgeht (vgl. § 3).
Anderscits gibt cs aber tatséichlich auch Ringe, die keine Zeroringe sind und

trotzdem mchrere Flolomorphe besitzen. Ist etwa R = R, @R, DR, dic direkle
Summe des Ringes R;=I" der ganzen Zahlen und zwcier Zeroringe R, und R
mit I'* als Modul, so hat R als Endomorphismenring den vollen Matlizenring
M), Wie man leicht nachrechnet, besteht 3, gerade aus allen Matrizen der
Form

ayq 0 0

0 2 23},

0 Az,  d3;

50 daB R nach dem Korollar (oder auch schon nach Satz 1) mehrere Holomorphe
besitzt.

SchlieBlich kdnnen wir diese und #hnliche Beispiele folgenden allgemeinen
Aussagen unterordnen:

Satz 3. Essei R = R, ® R, ein Ring, in dem ein Zeroring R, (der damit Unter-
ring des Annullators wvon R ist) als direkter Summand auftritt. Dann hat R mehrere
Holomorphe, wenn dies fiir R, zutrifft, wenn also der Endomorphismenring &(R})

von R¥ nichtkommutativ ist.

Beweis. Nach Voraussetzung gibt es Endomorphismen s, und s, von R} und
-ein Element @, € R} mit
(5152 —$251) 02 #0.

GemélB sy(oy +ay) = s,0, mit oy € Ry, o, € R, 148t sich jeder dieser Endomorphismen
von R} zu einem Endomorphismus von R+ fortsetzen. Wegen

si((og +a5) By +B2)) = si(ayfy +0) =0
(510 +05)) (By+B2) = (sit2) By +B5) =0
(01 +05) (5:(By + B)) = (g + 1) (Siﬂz): =0

Tliegen diese fortgesetzten Endomorphismen s, und s, in §; NI, = F* S E(RH),
so daB J0* nichtkommutativ ist und damit R nach Satz 1 mehrere Holomorphe
besitzt.

Leider konnen wir dieses Kriterium nur mit einer Verschirfung der Voraus-
setzung tiber R auch als notwendig nachweisen. Immerhin enthilt der nachfolgende
Satz rein formal alle in § 1 angegebenen hinreichenden Kriterien.

Satz 4. Es sei R = R?>®n die direkte Summe des Ideals R? und seines Annulla-
tors W. Dann ist fiir die Einzigkeit des Holomorphs von R notwendig und hinreichend,
daf w nur ein Holomorph besitzt, also der Endomorphismenring &(M*) kommutativ
ist.
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Beweis. Nach dem voranstehenden Satz ist nur zu zeigen, dall R unter den
angegebenen Bedingungen nur ein Holomorph besitzt. Anderenfalls gébe es Endomor-
phismen a; €1 und b, €5 und ein Element oy +a, € R mit

(a0, —bsay) (04 +05) #0.
Wegen o € R?, o, €n folgt aus dem Zusatz zu Satz 2, daBl dabei
(a1by —byay) (4 +3) = (a1by —bya)a, = v

mit v#0 aus 1 gilt. Andererseits bildel ganz allgemein ein Endomorphismus a, € J{1
jedes Element o, €1t wieder auf ein Element aus 1t ab, wie sich aus (2,) bzw. (3)

gemil
a;1(228) = a1(0) = 0 = (ay0,) B
(@280 = 0 = B(asay)
mit beliebigen € R ergibt; das gleiche gilt fiir jeden Endomorphismus b, aus &(3.
Damit induzieren die Endomorphismen von R* aus i Udl; Endomorphismen

von 1tt, wobei also insbesondere die oben angegebenen Endomorphismen g, und
b, nichtkommutative Endomorphismen von n+ liefern.

¥

§3

LeeuweN hat in [1] gezeigt, daB alle Holomorphe eines Ringes R genau dann
kommutativ sind, wenn fiir jeden Doppelhomothetismus a stets ac =aa gilt, also
jeder Doppelhomothetismus die Form a=(a*, a*) mit a* € * hat. Insbesondere
ist dann der Ring R selbst kommutativ. Daraus folgt (vgl. [1]), daB das eindeutig
bestimmte Holomorph eines nullteilerfreien Ringes R bzw. eines Ringes R mit
R2 =R genau dann kommutativ ist, wenn dies fiir R zutrifft. Die erste dieser Aus-
sagen 14Bt sich verallgemeinern:

Satz 5. Ist R ein Ring mit dem Annullator 1 =(0), so ist das eindeutig bestimmie
Holomorph von R dann und nur dann kommutativ, wenn R kommutativ ist.

Es gilt dann ndmlich wegen
(a)p = a(ap) = (aP)o = a(Be) = a(ef) = (ax)

auch schon (xa—ac)f = 0 fiir alle f, also stets aa=aqo.

Jedoch ist es nicht allgemein richtig, daB sich fiir Ringe mit eindeutig bestimmtem
Holomorph die . Kommutativitit von R auf das Holomorph iibertrégt. Ein ent-
sprechendes Gegenbeispiel war bereits in §2 im AnschluBl an das Korollar auf-
getreten.
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Characterizations of congruence lattices
of abstract algebras

By G. GRATZER and B. T. SCHMIDT in Budapest

INTRODUCTION

In this paper we deal with the characterization problem of the laitice ®@(4)
of all congruence relations of an abstract algebra A (briefly, congruence laitice).
In § 1 of the Introduction we summarize our results concerning the general characte-
rization problem, the solution of which answers Problem 50 of G. BIRKHOFF [1],
originally proposed by BirkHoFF and FRINK [2]. In § 2 we show that the represen-
tation theorems of WiITMAN and JONSSON are easy consequences of our results; we
also solve the problem of complete representation. Concerning congruence lattices
of type 2 and 3 we are able to prove more than the results stated in § 1. These
results are summarized in § 3 in the form of embedding theorems for abstract al-
gebras. In the next section we outline the method of the paper based on the sys-
tematic study of partial abstract algebras. The contents of the paper are sketched in
the same section.

§ 1. Congruence lattices

An element x of the complete lattice L is called compact if x=V\ (x;; A€A)
implies x=V/ (x;; A€A’) for some finite A’ SA. A lattice L is compactly generated
if it is complete and every element of L is the complete join of compact elements.

If A4 is an abstract algebra, a, b €4, then there is a least ® € ®(A4) such that
a=b(0); this is denoted by ®,,. Every ®, as an element of @ (4) is easily shown
to be compact and thus every congruence lattice is compactly generated.')

The question whether or not every compactly generated lattice is isomorphi¢
to a congruence lattice was proposed by BIRKHOFF and FRINK [2], again in BIRKHOFF
[1] as Problem 50. One of our principal results is to answer this problem affirmatively.

Theorem I. To any compactly generated lattice L there corresponds an abstract
algebra A for which ®(A), the lattice of all congruence relations of A, is isomorphic
to L.

1) This assertion was first observed by BIrkHOFF and FRINK [2]; the conditions they have
used are equivalent to, yet different from, those used above. The notion of compact element goes
back to Bticur [3] and Nacuem [10]. In [7], HasamoTo proves that every congruence lattice is iso~
morphic to the lattice of all ideals of a semilattice, a statement again equivalent to the above one.
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One may hope to get a stronger form of Theorem I, so as to impose further
conditions on 4. In order to do this, consider @, ® € ®(4) and x, y € A. It is known
that x=y(® U ®) if and only if there exists a sequence x==zq, zy, ..., Zy, Zys+1 =P
of elements of A such that z;=z;, ((®) or z;,=z, (D) (=1, 2 Lsm+1), We
say A is of type n if, for every x,p, ®, @ (x=y(©U (I))l) the sequence {z,-} may be
chosen so that m =n. This means, that while in an arbitrary abstract algebra, corres-
ponding to a fixed quadruple x,y, ®, ®, the least m may be arbitrarily large, in
algebras of type n, m may not exceed n; e. g. a ring or a group is always of type 1.

It is easy to prove that if 4 is of type 1 or 2 then ®(A) is modular. Hence, from.
this point of view we get the best possible result if we can replace 4 of Theorem I
by one of type 3. This is done in

Theorem II. Let L be a compactly generated lattice. Then there exists an
abstract algebra A of type 3 such that L and O (A4) are isomorphic.

As we said above, if 4 is of type 2 then ® (4) is modular. This raises the question:
which lattices are isomorphic to such a @(4)? This is answered by

Theorem III. Every compactly generated modular lattice is isomorphic to
the congruence lattice of a suitable abstract algebra of type 2.

§ 2. Representations

If H is a set then the set &(H) of all equivalence relations of H is a complete
lattice and & (H) = @(H) if His considered as an abstract algebra without operations.
By a representation of the lattice L we mean an ordered pair (F, H), where
H is a set and
x - F(x)
is an isomorphism of L into &(H). If this isomorphism preserves complete join
and meet, then the representation is called complete.
It is well known that (F, 4), ,
F(O®)=0,

is a complete representation of ®@(A); this will be called the natural representation
of @(A). Further, it is easily shown that a lattice having a complete representation
is compactly generated, Hence Theorem I implies at once

Corollary 1. 1. A complete lattice L has a complete representation if and
only if L is compactly generated.

This is the analogue of WHITMAN’s fundamental theorem [11], asserting that
every lattice has a representation. In fact, WHITMAN’s theorem is a trivial consequence
of Corollary I. 1. Indeed, if L, is a lattice then we extend it to L, by adding a zero
element. Then we define L as the lattice of all ideals of L, . Obviously, L is compactly
generated, hence by Corollary 1.1 it has a representation (F, H)y which is at the
same time a representation of L;, Thus

Corollary L 2. (WHITMAN [11].) Every lattice has a representation.

Jonsson [8] defined the concept of representation of type n. If x, y€ L and if
(F, H) is a representation of L, then define F(x); F(») as the relation theoretic
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product of F(x) and F(y), i.e. u=v(F(x); F(»)) (u,v€ H) i and only if there is a
we H such that u=w(F(x)) and w=o(F(p)). Then F(x)U F(p) is the join of the
ascending series

F(x); F(), F(); FO); F(),  F(x); ()5 F(x); (), ... .

1f this scrics terminates at its #-th member for all x, y € L then the represcniation
(I, H) of L is said to be of type n.

I is obvious thal an abstract algebra A is of type n if and only if the natural
representation of @ (4) is of type n. Thus we gel

Corollary TI. 1. A complete lattice L has a complete representation of type 3
if and only if it is compactly generated. *

Corollary 11. 2. (JonssoN [8].) Every lattice has a representation of type 3.
And, similarly, the consequences of Theorem III are:

Corollary 1L 1. 4 complete lattice L has a complete representation of type 2,
if and only if L is modular and compactly generated.

Corollary IIL. 2. (JoNssoN [8].) Every modular lattice has a representation of

type 2, and conversely.
*

Another type of representation is obtained by means of subgroups of a group.
A subgroup representation (F, G) of alaltice L consists of'a group G and an isomorph-
ism Fof Linlo L(G), the lattice of all subgroups of G. The subgroup representation
is complete, if the isomorphism preserves complete joins and meets.

From Theorem I we conclude easily

Corollary I.3. A complete lattice L has a complete subgroup representation
if and only if L is compactly generated.

Corollary I.4. (WHITMAN [11].) Every lattice has a subgroup representation.

§ 3. Embedding of abstract algebras

To prove Theorem II and III it is enough to construct only one abstract algebra
A satisfying the hypotheses. In fact, we can prove much more. Given an arbitrary
abstract algebra 4 we embed it in an abstract algebra B, such that @ (4)= ®(B)
and B is of type 3, or of type 2 if @(4) is modular. These — together with Theorem I
— are much more than Theorems IT and ITI. For a precise formulation of these
new theorems we need a definition of embedding, because in these constructions A4
is not a subalgebra of B.

We say that the algebra B is an exfension of the algebra A4 if 2)

1. ASB;

2. to every operation f of A there corresponds an operation f of B (the extension
of f), such that f(ay, a,, ..., &) = f(a1, az, ..., @) if a;,a,, ..., a,€A.

If B is an extension of 4 and © is a congruence relation of B then it includes
a congruence relation ® on 4: let a=b(0), a, b€ A if and only if a=5(0). If @ >0

2) ¢ is the set theoretical inclusion.
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is an isomorphism between @ (B) and ®(4) then we say that @ (B) and @(A) are
isomorphic in the natural way.

Theorem II'. Every abstract algebra A may be extended to an abstract algebra
B of type 3, such that ©(A) is isomorphic to @ (B) in the natural way.

Theorem IIY. Let A be an abstract algebra such that ®(A) is modular. Then
A has an extension B of type 2, such that @ (4) is isomorphic to © (B) in the natural
way.

§ 4. The method and Jay-out of the paper

To prove the theorems listed above we have to construct abstract algebras; to
carry out these constructions seems to be rather difficult. But if we dispense with
the assumption that an operation ,of an abstract algebra must be defined for every
n-tuple (n depending on the operation), thus getting the definition of partial abstract
algebra, then the task is fairly easy. The difficulty lies in the next step: we want
to extend the partial abstract algebra to an abstract algebra so that the ,,good”
properties should not be altered. E. g. such a property is that ®(4) be isomorphic
to L, where L is fixed.

We use two methods to bypass these difficulties: the first is the extension of a
partial algebra to a free algebra; and the second is a procedure which identifies
the ,,new” congruence relations of the free algebra with the congruence relations
of the pa1t1al algebra

It is not surprising that on p10v1ng theorems for abstract algebras the key
role is played by partial abstract algebras, for partial algebras are nothing but
generating systems considered in gbstracto. This was kept in mind when the analogues
of the notions of abstract algebras were defined for partial abstract algebras.

In the Introduction only the most important results are listed. All the theorems
of the paper are numbered by arabic numerals; these are related to the results
mentioned in the Introduction as follows: Theorem I is essentially Theorem 10;
Theorem II is part of the Corollary to Theorem 14; Theorem II’ is part of Theorem
14; Theorem III is contained in the Corollary to Theorem 15; Theorem III’ is con-
tained in Theorem 15.

The contents of the paper are the following: In Chapter I the notion of partial
abstract algebra and the free algebra generated by a partial algebra are introduced
and some of their properties are examined, The most important resull of this part
is Theorem5 which states that every congruence relation of a partial algebra may be
extended to the free algebra generated by the partial algebra. In Chapter II contruc-
tions are developed in order to prove Theorem 10 (Theorem I). In the last section
several applications of Theorem 10 are proved. In Chapter III our first task is to
modify the construction in Chapter IT in order to prove Theorem 14 (Theorem II).
Finally, an analysis of the proof of Theorem 14 shows how to make further modi-
fications which lead us to Theorem 15 (Theorem III).

Some open questions are mentioned in the last section of Chapter III.
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CHAPTER 1
PARTIAL ABSTRACT ALGLBRAS

§ 1. Some notions and notations

Set theoretical join and mect of the sets A, B will be designated by Av B, AAB
and by VA,, A 4,, if « runs over an index sct. 4 \B stands [or the sel theoretical
dilference if A2B, i.e. BV(AN\B) = 4, BA(AN\B) = @ (the void sct).

Let a set 4 be given. A partial operation f on A is a function which maps a part
of AXAX...XA (ntimes) into 4. The domain of f will be denoted by D(f, 4)
(EAXAX..XA).ID(f, 4) = AXAX... XA, then fis an operation. If D(f, A) =D
then f is called trivial.

A partial abstract algebra (briefly: partial ¢lgebra) is a set A and a set P(A)
of partial operations defined on 4. Let P*(A4) denote the set of all non trivial opera-
tions of A, We say that the partial algebra B is the homomorphic image of the partial
algebra A, if there is a many-one mapping # of 4 onto B and a one-to-one corres-
pondence f—g between P*(4) and P*(B) such that the usual property

nf(‘h’ A5 eees an) = g(”lan Nazy «eey 710") (ala Azy eeey an)ED(./; A)
holds true, It is an isomorphism if n is one-to-one. We should like to point out that
in the definition of homomorphism and isomorphism the {irivial operations are
dispensed with. Endomorphisms and.automorphisms are defined as usual.

According to the definition of homomorphism, an equivalence relation ® of 4
is called a congruence relation il (ay,...,a,), (by, ..., 0,) ED(f, A), a;=by(®)
(i=12,...,n), feEP(4) imply flay, ..., a,)=f(by, ..., b,) (®). Under the usual
partial ordering the congruence relations of 4 form a complete lattice ®@(A) called
the congruence lattice of A.

Theorem 1. If A is a partial algebra, then ©(A) is a compactly generated
lattice®).
Proof. The proof of the similar assertion for algebras uses the well known

description of the complete join in O (4). Although this fails to be true in case of
partlal algebras, the following weaker analogue is true: if x=y(V ®,1) (x,y€4)

then there exists a finite subset {@®;} of the {®,} such that x=y V® Using

this weaker assertion one can prove that the congruence relation ® is compact
n

if and only if it is of the form V Ou;, Where O, (a, b € A) denotes the least congru-

ence relation under wich a= b From this the assertion of the theorem follows
as usual.

Let A4 be a partial algebra and H a subset of 4 and P a subset of P(4). If fisa
partial operation of A beloging to P then it may be also considered as a partial
operation 4) of H:(hy, ..., h,) (h;€H) is in the domain of fif (h,, ..., h,) ED(f, A)

3) The notion of compactly generated lattice is defined in § 1 of this Introduction.
1) There is no danger of confusion, therefore we do not introduce notation for the restricted
operation.. '
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and f(hy, ..., h,) € H. With this definition H is a partial algebra and P=P(H)ES
S P(A). In this case 4 will be called an extension of H, (Or we may say that His a
restriction of A.) Using this construction of partial algebras one says that a generating
systems of an algebra may always be considered as a partial algebra. The converse
of this statement is the

Theorem 2. Every partial algebra may be extended to an algebra.

Proof. The assertion is trivial: if 4 is a partial algebra then let B={4, p}
where p is a new element and if f€ P(4) and (uq, ..., )¢ D(f; 4) (uy5 ..., u,€B)
then define f(uy, ..., 4,) =p. Obviously, B is an algebra and it is an extension of A4.

§ 2. Free algebras

In the proof of Theorem 2 the least extension of a partial algebra to an algebra
has been constructed. Nevertheless, this construction fails to have the property
.that every congruence relation of the partial algebra may be extended to the algebra,
which is a very important property in this paper. Therefore we confine now our
attention to the construction of an extension having this additional property.

It is much simpler to perform this construction if on thepartial algebra only
partial operations of one variable are defined. Since in this and in the next chapter
only such partial algebras are dealt with we suppose that this is the case.

Let S be a partial algebra such that P(.S) consists of partial operations of one
variable. In this case if ¢ € P(S) then D(p, S)E S. Further, let ¢ (H), HED(p, S)
denote the set of all p(x), x€H. If @, Y € P(S) we put g/ (x) = @(/(x)). Similarly,
we use the notation @y...p,x) (¢, ..., P, €P(S), x€S).

We fix a p€P(S) and to every x€. S\ D(p, S) we define a new element X,
such that X¢ S and x#y, x, y€ S\.D(p, S) imply X #y. The set formed by S and
all the X is denoted by S[p]. We define partial operations on S[g]:

1. Let every partial operation  of S different from ¢ be a partial operation
of S[@] with an unchanged domain: D(y, ) = D, S[¢l);

2. ¢ is a, partial operation of S[p]; on D(gp, S) it is defined as it was; if
X €SN\D(p, S) then p(x)=X; @(x) is defined for no x€ S[p]\S.

S[p] with the partial operations defined under 1 and 2 is a partial algebra;
it is an extension of S. The element % (x € S\D(p, S)) will be denoted by ¢(x).

To every @ €P(S) we construct S[g] such that if @y then S[p]A S[Y]=S.
We define S; as the join of the S[¢]:

Sy =V (Slel; p€P(S)).

Sy as the set theoretical join of partial algebras is itself a partial algebra. We
may write also P(S)=P(Sy), for every partial operation of S; is the extension of
a partial operation of S. Thus S; is an extension of S. In a similar way we define

S =V (Silgl; p€P(S)),s o0 Sy = V (Sy-19]; @ €P(S)).
The partial algebras S;, S,, ... form an ascending chain, all of them are extensions
of S, indeed, S, is an extension of S,_;; thus their join S is also a partial algebra
and it is also an extension of S, and P(S)=P(S).
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Theorem 3. S as constructed above is an algebra, and S is generated by S.
The algebra S is free in the following sense: if the algebra S* is generated by the
partial algebra S’, P(S")=P(S*) and x--x" is an isomorphism between S and S’
then x-~x may be extended to a homomorphism of S onto S*.

Prool: trivial.
§ 3. Extcnsion of congrucnce relations

Let the partial algebra B be an exiension of the partial algebra 4. We say that
the congruence relation ® of B is the extension of the congruence rclation @ of 4
il x=y(®) and x=y(®) are equivalent whenever x, y€4. If ® has an exicnsion,

then it has, obviously, a least extension, which will be denoted by e.
Thceorem 4. Every congruence relation of S may be extended to S[¢).

Supplement. If @ € O(S) and @ is the least extension of ® to S[p] then ©
may be described as follows: u=v(®) (u,v€ S[p]) if and only if one of the following
conditions hold.:

I. u,0€S and u~v(®),

I w,veS[PI\S, i.e. u=gp(x), v—-(p(y), where x, y€ S\.D(p, S) and either
l. x ~(* y)(@) or 2. there exist a= p(x,), b= (o) € S such that x =xy(0), y =yo(0®),
a=b(0);

I ueS,veS[p]\S (or symmetrically, interchanging u and v), i. e. v=p(p),
y€SN\D(p, S) and there exists an a= (o) € S, for which u=a(®) and y =yy(0).

Fig. 1 helps to visualize case I III.

L .

o)
lo(xf=t

Fig. 1
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1

In Fig. 1 a broken line connecting two elements means that the two elements.
are congruent modulo @, .

Proof, Let ®[p] be the relation defined by I—III of Supplement to Theorem 4.
It is enough to prove that it is a congruence relation, for the relation ®[¢p]=© is
then obvious.

Owing to I and II/1 we get that ®[¢] is reflexive and, by the symetry of I—III in
u and v, it is also symmetric. The substitution property may be proved as follows:
Let y € P(S[g]) = P(S), x=y(O[g]) and x, y€D(y, S[p]). We distinguish two
cases:

(1) #y. Then x, y€D(Y, Slpl) = D(p, S) and by I we get x=y(®) and so-
¥ () = (3)(8), and again by T (x) =y (»)(O[p))

(2) p=1y. Then necessarily x, y€S. We want to prove ¢(x)=@(»)(0[¢l);
this follows from Iif x, y€ D(g, S), from III with a = ¢ (x) if x € D(p, S), y ¢ D(p, S)
(and in the symmetrical case), from II/1 if x, y ¢ D(p, S).

It remains to prove that @[] is transitive.

Let u=v(0[¢]), v=w(O[¢]); we have to prove u=w(®[¢p]). We will distinguish.
8 cases.

(@) u,v, w€S. In this case u=w(@[g]) is clear owing to I and the transitivity
of O.

B) u,veS; weS[p]\S; i.e. w=@p(x),x€S. By I u=v(®); from III we
conclude the existence of an a= @(x,) €S satisfying v=a(®), x,=x(0). Thus.
u=a(0) and x,=x(0), a=p(x,) €S, i. e. by III we get u=w(O[¢]).

B v, weS; uc S[p]\S. The proof is the same as under (B).

(y) u,weS;veS[PI\S; i.e. v=p(x), x€S. By IIl u EU(@[(P]) means the
existence of an a=p(x,) € S such that u=a(0®), x, =x(®). Similarly, there exists
a b= (o) €S with w=>0(0), yo=x(0). Thus xy=y,(@), i. e. a=p(x0) = p (o) =
=b((?); co)nsequently, u=a(®), a=b(®), b=w(®), so u=w(®), and by I we get
u=w(0O[¢]).

(0) ueS;v, weS[PIN\S; i.e. v=p(x), w=¢@(p). Owing to IIl we get that
with suitable a = @ (x,) € S the congruences u =a(0®), x, =x(0) hold. The congruence
v=w(O[¢]) means that either

1. x=y(0®), or that

2.( there exist o’ =@ (xg) and b= ¢(y,) such that x{=x(®), y,=y(®), and
a, Eb ®). ' ) °

In the first case x, =p(0) and a= p(x,) = ¢(y)=w(®[p]). But u=a(®). Thus
owing to III we get u=w(®[g]).

In the second case x, =xo(®), thus a= ¢ (x,) = p(x5) = (®) implying a =b(®)
and so u=b(0). But y, =p(®), resulting — by Il — u=w(O[¢]).

) weS; u, veS[p]\S. The proof is the same as under (5).

() veS;u, weS[p]\S; thus u=@(x), w=p(p).

Owing to III we get the existence of a= p(x,), b= p(y,) € S such that v =a(0®),
+ X =x(0), v=b(0) and y,=y(0). We get from these a=5b(®), and thus owing
to II/2 we get u=w(®[q]). .

(@) u,0, we S[PI'\S, thus u=p(x),v=0(y), w=(2). Let a=@(x,), b= p(¥o),
c=(20), d=p(vy) be suitable elements of S. u=v(O[p]) means either

a/l x=y(0),
or a/2 x=x,(0), a=b(®), y, =y(0).
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v=w(@[g]) is cquivalent to cither

b/1 y=2(0)
or bf2 y=2zy(0), c=d(@),v,=2(0). .

If a/1 and b/1 hold then x =z(®), thus — by II/1 — u=w(®[¢]) holds.

T a/1 and b/2 hold then x =zy(®), thus II implies #=w(®[¢]). The case when
a/2 and b/1 hold is similar,

Il a/2 and b2 hold then a=b(0), y,=y(0), y=24(0), c=d(0), i. ¢, a=d(®),
thus u=w(®[g]). The proof of Theorem 4 is finished.

Based on Theorem 4 wec prove

Theorcm 5. Let S be a partial algebra and S be the Sfree algebra generated
by S (as defined in § 2). Every congruence relation of S may be extended to S.

Before proving this theorem, we need

Lemma 1. Let be given a partial algebra S and a set of partial algebras {S,},
Jfor which

1. S, is an extension of S, (P(S)=P(S,);

2. SuASp=S if a#B;

3. X€S,, pEP(S), p(x)€Sy and a#p imply p(x)€S;

4, every congruence relation of ® may be extended to every S,.

Then S* =V S, is a partial algebra containing S, S* is an extension of S, and
every congruence relation of S may be extended to S*.

Proof. Only the last assertion calls for proof. Let ®, be the extension of @
to S,. We define the relation ®:
I x=y(®), x, y€ S, is equivalent to x=y(0,);
IL x=y(®), x€S,, y€Sp, a7p if and only if with a suitable a€ .S we have
x=a(®,), a=y(®)).
It is routine to check that @ is a congruence relation and, obviously, il is an
extension of ® to S*.

Now we prove Theorem 5. Let ® € @(S). Theorem 4 guarantees the extenda-~
bility of ® to the S[gp,l, ¢,€P(S). The set of the S[p,] satisfies the hypotheses of
Lemma 1, thus ® may be extended to S; (which is the S* of Lemma 1). In a similar

way we get that ® may be extended to S, Ss, ... and hence to S, finishing the
proof of Theorem 5.
CHAPTER II ,
COMPACTLY GENERATED LATTICES AS CONGRUENCE LATTICES

§ 1. Preliminary constructions

Our principal aim in this chapter is to prove Theorem I (Theorem 10). This
will be done in § 3 while in §§ 1 and 2 some preparations are made.

Let S be a partial algebra, @,(x), ¢,(x), ps(x) €EP(S), D(py, S) ={a}, D(p,, S) =
=, D(ps,S)={b},a, b€ S and ¢,(a)=c, p3(b) =4, ¢, dc S. In the partial algebra
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V Sl we identify ¢,(b) with @,(b) and p,(a) with ps(a) getting the partial algebra
T’ (see Fig. 2).

@S

&= e () Sotbi=pb)

®:(S)

A% %{a)=¢2 =7}

Fig. 2

o

T’ is an extension of S but it is not necessarily true that every congruence
relation of S may be extended to 7”. Call a congruence relation ® of S admzsszble
if it satisfies one of the following conditions:

Ai:a2b(0);
A,:a=b(0) and c=d(0).

Roughly speaking, ® is admissible if a=5b(®) implies ¢=d(®).

Now suppose that ® may be extended {0 7 and let ® be an extensions of @.
If a=b(®) then a=b(8) and c = p,(a) = 4(5)(8), P,(a) = ,(b)(©), p3(a) = P3(b) =
=d(@), thus the assumptions ¢,(b) = p,(b) and @,(a) = @4(a) imply that ¢ =d(0),
consequently ¢=d(®).

This proves that if a congruence relation is extensible then it is admissible.
This and the converse of this statement is contained in

Theorem 6. The congruence relation ® of S is admissible if and only if it may
be extended to T".

Proof. We have to prove the ,,only if”’ part of the theorem. Suppose that
.0 is admissible and define a relation ®* of T” as follows: let #=v(®*) mean for
u, v €S that u=v(0) and for u, v € p,(S) (p,(S) denotes the set of all pi(x), x € S) that
u=qp;(x),0'= (pi(y), x,y € Sand x =y(0), othe1w13eletu;7év(®*) Then @* is a symmet-

ric and reflexive relation having the substitution property. Let ® denote the transitive

@
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extension of ®@*, The rclation O is trivially a congruence relation of 7. We prove
that on S and on the ¢,(S) the relations ® and @* coincide. Tt is enough to prove
this for S, a similar reasoning applics then to ¢,(S). Per definitionem u=v(0),
u,v€ S if and only if there cxisls a sequence #=Xxg, Xy, ..., X,=v of elemenis of
T’ such that x;,_;=x,(0%) (i=1,2,...,n). Il all the x;¢S then u=v(@®), thus
u=v(®%*) is obvious. S and a ¢,(S) (p(S) and a ¢,;(S), ij) have al most one
element in common. This if we imposc the natural condition on the sequence
Xo, «+es X, that no clement may occur more than once, then we see that the sequence
must contain elements [rom all the ¢,;(S). It is easy o see that such a sequence may
be substituted by the following simpler onc: u=x,, X; =c, ¥, =@, (D), ¥3 = p,(a),
x4=d, xs=v (or intcrchanging u with v), x, =x,(0*) implies ¢=0(®), and by
A, we gel e=d(0); thus u=v(0) and u=v(0*), proving that ® and @* are cqui-
valenl on S, finishing the proof of this theorem. We proved a litile more than re-
quired; we have cxhibited at the same time a well-described exiension of an admis-
sible congruence relation.
s o sk

Now let S be a partial algebra; the operations of S will be .denoted by w”(x)
(v€Q,) and the partial operations by ¢f(x) (u€Q,,i=1,2,3); we suppose that
D(g}, S)={a"}, D(p4, S)=9, D(ps, S)={b"} and ¢f(@)=ct, 40" =d*
(a*, b*, c*, d*€ S). To each u the ¢f are of the type described at the beginning of
the section, thus the corresponding 7° — which now will be denoted by T, —
may be constructed. We also suppose that uzu’ implies 7, N T,.=S. Further,
let T=VT, and T the free algebra generated by 7.

The congruence relation ® of S is called admissible if it is admissible for any
fixed p€Q, (. e. if for peQ, the congruence a*=>5*(®) holds, then c*=dr(®)).

Let @ €®(S); then there exists a unique admissible congruence relation ®’
which is minimal with respect to @' =@®. Indeed, let Q) denote the set of those
p€Q, for which a*=b#(@), and define @; =OUV(O ugu; n€Q), if ®,_, is de-

fined, set ®, = (®,-,); and @ =\ ©,. Obviously, ®" is admissible and the

n=1
least admissible congruence relation = 0.

A central result of this paper is

Theorem 7. The congruence relation ® of S may, be extended to T if and only
if it is admissible. To every pair u,v of elements of T, there exists a uniquely deter-
mined least admissible congruence relation ® such that under ® (the minimal exten-
sion of ® to T) u and v are congruent.

The first assertion of the theorem is obvious from Theorems 5 and 6 and Lemma
1. The second assertion is rather involved; as a preparation we will prove Lemmas
2 and 3.

Lemma 2. Let S and T" be as in Theorem 6. Then to every u, v € T’ there exists
a least admissible © € O(S) such that u=v(0).

Proof. If u,v€ S and aZb(®,,) (resp. a=b(®,,)), then @,, (resp. 8,,U®,)
is the least admissible congruence relation. ® may be found similarly if u, v € p;(S).
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If u and v are not both in S or in ¢,(S) then it is not simple to find @, We will show
how to construct ® in a typical case, the complete discussion will be left to the
reader.

Lel u€S, v€p,(S); 1. e. v=0,(x), x€S. We state ®=0,,U0,,U06,U06,.
This @ is admissible for a=b(®) and ¢=d(®). Further, u=d(0), b=a(®),
a=x(0), so u=d(®), p;(B)=ps5(a)=p:(a)(0), (@)=, (x)(®); consequ-
ently u=v= p,(x)(®). Finally, we have to prove that if ® € @(S), ® is admissible,
and u=v(®), then ® =0, Indeed, u=v(®) (by the ploof of Theorem 6) implies
that either

L u=d(@*), d=p3(0)=p3(@) = 0,(@)(D¥), p2(a)=p,(x)(D¥)

2. u=c(®*), c=p,(@)=0p1(0)=p,(0)(D*), P2(b)=p,(x)(D¥),
where ®* is the relation defined in the proof of Theorem 6.

Let us consider the first possibility. By the definition of ®* we get from the
relations of 1 the congruences u=d(®), b=a(®), a=x(P). Consequently, ®,,U
U@, U®,=0. Thus a=b(®); hence by 4, we get c=d(P), i. e. O, =. So
0,Ue,ue,Ue,=0. But ©8=0,U0,U6, U0, is obvious, thus in the
first case @ = is proved. The second case may be proved in the same way, thus
the proof is finished.

or

Lemma 3. Let S and T be as in Theorem 1. Then to every u,veT there exists
a least admissible congruence relation ® € @(S) such that u=v(0®).

Proof. Let u,v € T=VT,,it is enough to consider the case u€ T, W \Ss 0ET,NS,
u#v, for the other cases were treated in Lemma 2.

There are nine cases to be distinguished; from these we pick out a typical one,
the others may be treated similarly.

Let u€ p5(S)N\S and v€@y(S), i. e. u=e5(x), v=0p3(»), x,y€S. Let @
be admissible such that #=v(®). Then one of the following conditions 1—4 holds;

L. u = (x) = @5 (b") = dr (@), dr = ¢’ = g (@) (0¥),
i (@)= @1 (0) (@), ¢} (5") = 93 (0") = @3 () =v(D¥)
from which we get '
0, =0,,.U0O ey UB Ly U Oy =D
2. u =} (x) = ¢4 (b*) = d*(0*), dr=d* = p} (5") (D¥),
P3(0") =p3(a”) ((I)*), ¢} (@) = g3 (a¥) = p3(») =0(0*)
from which we get
0, =0,4UBuppUBuyyUB,, =D,
3.-4. u =k (x) = g (@) = p4 (a) (D*), s (@) =
= @} (01)(D¥); 4 (b) = 94 (B1) = P (@) = ¢ (D¥),

further in case 3 ct=c"(D*), c* =g (a") =" (b*) =3 (5") (D*), 3 (D) =3 (») =
=0(0*) and in case 4 ct=d"(D¥),d"=0p}(0")=05(a)=p;(@)(@%), p}(a)=
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=@} () =v(®*), and so we get respectively
®3 = ®\'{ll‘ U @b"“n U @ chev U ®a"b\‘ U @be = ([)
@4 = ®1C(l" U ®bl‘al‘ U @ cidv U ®b"a“ U ® avy =

We prove that ® = @1 (the notation was introduced before Theorem 7). It is enough
1o show that @1 =0} for i=2, 3, 4. But (0’)’ =&’ holds for every & ¢®(4), thus
it is enough to prove @, =0; (i=2,3,4).

The casc i=2 is trivial because of @1 =3, (This follows from the special
choice of u and v.) Now we prove @, = ®3 as follows: obviously

\bl‘— ®xal¢ U ®bl‘a!‘ ’
further ®d"c" = (@buau U ®cu,1v U ®“vbv /;

thus the relation

is obvious. The last relation ®, =®j may be proved similarly finishing the proof
of Lemma 3.

Now we are going to prove Theorem 7. Let u, v€ T, u=1y,...7y,(x), v=>06;...6,,(»),
Y4, 6,€P(S), X6 D(yy, S), y§D(0,,, S). Now we use the assumption that all the
partial operations of S are either operations (the w*(x), v€Q,) or of the special
type ¢f. It follows that y, and J,, are of type ¢f.

Let TP denote the set of all elements of 7" which may be represented in the

form
'yl"-')’u(x)’ n§P; XES, xQD(thaS)’ ')’1,...,7,,€P(S).

Then S=TOCT =TCT?2..,
and T=UT"'.

We suppose u, v€T? and prove our assertions by induction on p.
The case p=1 was settled in Lemmas 2 and 3. Let us suppose that we have
proved the assertion for all £ <p. The set TP\ T?~1 is the join of sets of the form

3
Hy= 1 Ay dye 19 (S)

(« depending on 4, ... A,_4, pand i). If both u and v are in T?~! then the assertion
follows from the mductlon hypothesis. So we may suppose that u¢ 7?1, thus
u€ H, for some o.

Now we may repeat the chain of thoughts of Lemmas 2 and 3; the role of
S is taken by 7?1, that of T, by H,. The only difference is that for S the assertion
was trivial; now, for TP-1 it is the induction hypothesis. This is essential when
we are looking for the least admissible congruence relation, under whose extension.
e.g. c* and d* are congruent.
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§ 2. Compactly generated lattices

Before proving Theorem I we need two easy theorems on compactly gener-
ated lattices the first of which is probably well-known while the second is due

to NACHBIN,

Theorem 8. Let L be a compactly generated lattice and H a complete sublat-
tice of L. Then H is also compactly generated.

Proof. A principal ideal of a compactly generated lattice is obviously com-
pactly generated. Thus we may suppose that the unit element of H is the unit ele-
ment of L. Now let u be an arbitrary element of L, and define a(u) as the meet of

all he H with h=u,
a(w) = \(h; heH, h="u).

H is a complete sublattice, thus a(#) € H; in fact a(u) is the least element of H which
is =u. It is routine to check that if u is compact in L then a(u) is compact in H.
From this the assertion follows easily.

Let F be a semilattice with O, i. e. let be defined on Fa binary operation U, which
is idempotent, commutative and associative, further, x U O =x for all x€ F. A sub-
set I of F is called an ideal, if it is non-void and xUy€I(x, y € F) if and only if
x and y €-F. A natural partial ordering of Fis: x=y if and only if x Uy = y; then
x Uy is the least upper bound of x and y. Now, I is an ideal if and only if 1. x, y €7
imply xUy€I; 2. x€I, y€ F, y=x imply y €. The set I(F) of all ideals of F form
a complete lattice if the partial ordering is the set-inclusion.

Theorem 9. (NAcHBIN [10].) 4 lattice L is compactly generated if and only
if L is isomorphic to the lattice of all ideals of a semilattice F with O. In fact, if L
is compactly generated then F is isomorphic to the semilattice of all compact ele-
ments of L. Further, the compact elements of I(F) are the principal ideals.

A sketch of the proof. Let L be the compactly generated lattice and F the se-
milattice with zero of the compact elements of L. First, one has to prove that F is
really a semilattice, i. e. the join of two compact elements is again compact. Then
take an a¢ L and define I, as the set of all x€ F with x=a. The correspondence
a1, is an isomorphism between L and I(F). The only non-trivial step is to prove
that if I is an ideal of F and a=\/(x; x €I), where the complete joirr is in L, then
I,=1I. Indeed, if y€1I,, then y=\V(x; x€l). Thus by the compactness of y we get
the existence of a finite subset I’ of I such that y=\/ (x; x€I), i. e. y€1. We proved
I,S1 while I€1, is trivial, thus /=1, as required.

§ 3. A characterization theorem

Now we are ready to prove Theorem I.

Theorem 10. A4 lattice L is compactly generated if and only if there exists
an abstract algebra A such that L is isomorphic to © (A4).

Proof. It is known that ®(4) is compactly ,generated (e. g. it follows easily
from Theorem 8).
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Now supposc that L is a compacily generated lattice with more than 2 ele-
menis. Then there cxists a semilattice F such that L is isomorphic to I(£). By using
this fact, we construct first a partial algebra B with @ (B)=: L.

The elements of B arc the finite subsets of J™\{O}. The void set is also an
-element of Bif we identify it with the element O of F., Therefore, it will be denoted
by 0. We define operations and partial operations on B (v and A denoie the sel
theoretical union and iniersection, i. e. the operations of B; U denoles the only
operation of J7);

1. to every u¢ B lel be assigned two operations

p,x) = uVx and ,(x) = upx,

2. 1o any a, b, c€B with ¢c=aUb let a partial operation e, (x) be defined,
whose domain is O and {a, b}: lot 05, (0) =0, ae({a, b}) ={c}.

We assert that @(B)=I(F). First observe that B is a generalized Boolean
.algebra encdowed with the partial operations o, (x); in faci, the join and meet
operation of B was given in such a way that one variable was fixed. Thus every
congruence relation ® is completely determined by I(®)={x; x=0(®)}. Every
element of B is a finite join of atoms, thus J(®) is completely determined by 7{®},
the set of atoms contained in 7(®). The elements of 7{®} are of the form {a}, where
Naef'. }Let I{®} denote a subset of F consisting of 0 and of all ¢ for which {a} €
c1{0}. '

We prove that ® ~I{®} is an isomorphism between ®(B) and I(F).

First we prove that 7{®} is an ideal of F. If a, b€ I{®} then {a} and {b} €I{®},
thus {a, b} € 1(®). But applying o, ; o We get 05 aup({a b)) =y p, s (0)(O), i. e.
{aUb} €1(®) and so aUbecI{®}. On the other hand, if c=a€cI{®}, then {a}€
€I{0}; thus {a}=0 (@) and then o,.({a}) =0y (0) (®) i. e. {c} =0(®) and we
reached ¢€/{®}, as required.

. Now let I€I(F), we prove that there exists a ® € @(B) such that /=7{®}.
On defining @ it is enough to give a criteria for an element x of B 1o be congruent
10 0. This is the following: let x =0 (®) if and only if x =0 or x is the join of atoms
}c{z} such that a€l. It is routine to check that ® is a congruence relation and

0} =1I

}Thus ®-I{®} is a one-to-one order preserving correspondence between
-@(B) and I(K), so this is an isomorphism.

To make possible the application of the results developed so far we change
B to B’. This new partial algebra B’ is essentially the same as B only every oper-
ation o, (x) is replaced by three operations: ok, (x) (i=1, 2, 3). Let

D (O, BY={{a, b}}, D (e, B)=D, D(oigse, B')={0},
and ‘ dase({a, DY) ={c}, 02e(0) =0.

Obviously, B” has more congruence relations than B had, but using the notion
of admissible congruence relations, as defined before Theorem 7, we see that a
congruence relation ® of B’ is a congruence relation of B if and only if it is admis-
sible.

Now we apply the construction of Theorem 7 (we may do so, for every partial
-operation of B’ is either an operation, or one of the type ¢¥, i=1,2,3, pcQ,;
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here Q, is the set of all triples a, b, ¢ of F, for which ¢=aUDb), leading to an al-

gebra B; (which was T in Theorem 7). Now, according to Theorem 7, every ad-
missible congruence relation ® of B’ may be extended to a congruence relation
O of B, ; further, to every pair u, v of elements of By, there exists a smallest admis-
sible congruence relation ®, such that u=v(®). Denoting by ®" {he smallest ad-
missible congruence relation =@, it is obvious that @ =@, , o, With a suitable
a(u,v)€B’. But @, ,y0=0,,,0 (this is perhaps the most important property
of B'!) thus we can associate with ® an element a(u, v) of B’, If we require that
a(u,v) be an atom, then it is uniquely determined.

Now we define for every u,v€B, three partial operations of,(x), such that

D(“iv; Bi):{u}, D(“ﬁva —Bl):Qa D(“SUJ BL)Z{U}’
and oy w=a(u, v), ooy (v) =0.

If we consider B; together with these new partial operations, we get Bi.
We assert that a congruence relation @ of B is admissible if and only if it
is the extension of an admissible congruence relation of B’. ‘
First, let ® be an admissible congruence relation of B;, and let ® denote the
congruehce relation of B’ which is induced by @ (i. e. x=y(®), x,y€B’ if and
only if x=y(®)). Let u=v(®), u,v€B{. ® is admissible, so a(u, v)=0(®); thus
a(u,v) =0(@). We get that in B’ the relation @, ,o=® holds true. By definition

U= U(@a(u, 1))0),
thus u=0(0),

and we see that ® =®. On the other hand, if ® =0 with a suitable ® € ®(B"),
and u=v(®), then @, ,,0=0 by the definition of a(y, v), and so a(u, v) =0(®);
i. e., @ is admissible.

Now, we construct from B{ an algebra B, by the method of Theorem 7, and
proceeding so we get B3, Bs, ... and so on, .

We have constructed an ascending sequence (of type w) of algebras

B'cB,cB,c...
Let A be the union of these:
A=

18

Bi' \

A is obviously an algebra. Every admissible congruence relation of B’ may be ex-
tended to B;, from B, to B, and so forth to 4. We assert that 4 has no other cong-
ruence relation. Of course, a congruence relation ® of A induces a congruence
relation @, of B, (n=1,2, ,..). But ®, may be extended to B,., (in fact, ®,,, is
such an extension), thus — as we have proved above — ® is an extension of an
admissible congruence relation of,B’. Thus @(4) is isomorphic to the lattice of
all admissible congruence relations of B’, which is isomorphic to L, completing
the proof of Theorem 10.

L3

A4
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§ 4. Applications

In this section we will draw some conclusions [rom Theorem 10,

Corollary 1. To every finite lattice L, there corresponds an abstract algebra
A such that L= ©(A).

Morc gencrally:

Corollary 2. Let L be a lattice with zero element and satisfying the ascending
chain condition.*) Then there exists an abstract algebra A with Lz @(A).

The asscrtion of Corollary 2 is obvious from Theorem 10, for il L satisfies
the hypotheses of Corollary 2, then every ideal of L is a principal one, thus Lz I(L);
Theorem 10 gives an algebra 4 with @(4)=I(L); hence we gel Lz @(4), as as-
serted.

Corollary 3. 4 lattice L has a complete representation if and only if’ L is com-
pactly generated.

This is now obvious, for &(H) (see the notation in §2 of the Introduction)
is compactly generated and by Theorem 8 every complete sublaitice of a com-
pactly generated lattice is itsellf compactly generated. Thus if L has a complete
representation (F, H) then the sublattice of &(H) formed by the F(x), x€ L is com-
pactly generated and so is L. Conversely, if L is compactly generated, then by The-
orem 10 there exists an algebra 4 with L= @ (4); let ¢p:x —~xp€ @(A) be this iso-
morphism. If (F, 4) is the natural (complete) representation of @(4) (see §2 of
Introduction) then (Fp, A) is a complete representation of L, where Fp denotes
the product of the mappings F and .

Corollary 4. (WHITMAN [11].) Every lattice has a representation.
% ok ok

We get an other type of application if we consider the special properties of
the algebra A, constructed in the proof of Theorem 10.

In our paper [6] we have proved the following theorem:

To every abstract algebra C there exisls an abstraci algebra D such that
O(C)= O (D) and every compact congruence relation of D is of the form .

The question arises whether or not it is possible to choose such a D where
the element ¢ may be fixed. An answer is given in

Corollary 5. To every abstract algebra C there exists an abstract algebra
D and a fixed element o of D such that ®(C)=: ® (D), and every compact congruence
relation of D is of the form ©,(a€D).

Let L=0O(C) and D= A, where A4, is the algebra constructed in Theorem 10
if we start with L. Then 4 =D has the property stated with 0 =0. The easy proof
is left to the reader.

Let G(A) denote the automorphism group of A. The question arises what
relation has the structure of G(4) to ®@(4). We will prove that already the simplest
G(A) allows @(4) to be arbitrary.

*) This means that if xi, X2, ... are elements of L such that x; =x, = ..., then there exists
an integer n such that x,=Xp+1= ....
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Corollary 6. The algebra A constructed in § 3 has a trivial automorphism
group, i. e. G(A)==1.

Proof. The reader should remember that there is a subset B’ of 4 such that
B’ generates A; there is an operation ¢, which is the identity operation on B, i.e.
®o(x)=x for all x€B'. But if x ¢ B/, then by free generation ¢, (x) #x; thus

(i) x€B if and only if @y(x)=x, where @, is a fixed operation of 4 and B’
is a generating system of A.

Suppose ¢ €G(4) and x€B’ then @q(ax)=o0p,(x)=ax and thus by (i) we
get ax €B’. On the other hand if x€A4 and ax€ B’ then x = a~!(xx)€B’. We get
the following result:

(ii) o (restricted to B’) is an automorphism of B,

By free generation this implies

(iii) the automorphism groups of B’ and A are isomorphic.

B’ is a generating system of the whole 4; it follows that if « # § are automorph-
isms of A then their restrictions to B’ are different automorphisms of B’; we con-
clude:

(iv) if G(B)=1 then G(4)=1.

Thus Corollary 6 is proved if G(B)=1.

Now suppose G(B)#1, i. e. «€G(B’), x€B and ax#x. It is no restriction
tosuppose xis, an atom. Obviously, thereexistin B; elements u, v such that
a(u, v) =x, i. e. there is a partial operation f of Bi which is defined only at u and
B(u) =x. This implies (B (w))##p W), i. e. Bow)#pw), thus au==u and f(ou)=
=oax €B’. But f(a) is in B if and only if a=u or a=v thus au=v, and we reach
ax=0, a contradiction.

# ok ok

Finally we mention

Corollary 7. A complete lattice L has a complete subgroup representation
if and only if L is compactly generated.

An application of Corollary 3 shows that it is enough to prove that &(H),
the lattice of all equivalence relations of A, has a complete subgroup represen-
tation, It is a result of G. BirkHOrr that & (H) has a subgroup representation (see
[11], where the proof is reproduced). But his proof gives, in fact, a complete sub-
group representation of & (H), as may be easily checked. Thus Corollary 7 is pro-
ved. ;

CHAPTER 1
ABSTRACT ALGEBRAS OF TYPE 2 AND 3

§ 1. Preliminary results

If we want to prove Theorems II” and III” then it is not enough to have the
theory of free algebras developed only for algebras with unitary operations. There-
fore we now formulate these results for arbitrary algebras.

Let S be a partial algebra and: € P(S). D(p, S) denotes the n-tuples (ay,...,a,)
for which ¢ is defined. We assigne to every n-tuple (uy, ..., #,) § D(p, S) a new
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element X, .., such that if (uy,..,u,)# (v, ..,v,) then X, . LD PR
Slol denotes the st S together with the new elcmcnts We define operations on
Slel:

1. yr(ay, uvr @) is defined for a Wy» ¢ if and only il (ay, ..., a,) €D@, S).

2. ¢p(ay, ..., a,) is unchanged if (a4, .. ,a,,)CD((p,S), if all the AN but
@150y a) (D (@, S) then @(ay,...,a,)=X,,..,q; for other ntuples ¢ is not
defined.

Now construct S[g] for all ¢ €2(S) such that il gy then S[p]A Shy] =

define Sy =\ (SIpl; p €P(S)), Sp=V(Silpl; p€P(S)) and so on and S= V S,
The same proof as those of Theorem 3, 4, 5 applics to get the following 1esult

Theorem 11. S is the free algebra generated by S. Every congruence relation
of S may be extended to S.
# ok %k
Lei S be a partial algebra, whose partial operations are either operations
WOY(X1 5 ey x,,) (v€Q,) orof the type gi(x): i=1,2,3, p€Q, and D(p¥, S)={a"},
D(pk, )=, D(pk, S)= {bi‘i The congluence relation @ is called admissible
if for every ,uE.QZ, a"—bi‘(® implies ¢f(a") = p4 (") (©).

Theorem 12. [S may be extended to an algebra S* such that a congruence
relation © of S may be extended to a congruence relation ® of S if and only if ©
is admissible, Further, if ® is a congruence relation of S then there exists an ad-
mzsszble congruence relation © of S such that ® = ©. Finally, the relations i =

PEDH), @h(a*)=ph(a®), neQ, hold true in S*.

® ok ok

We need also a new form of the result of our paper [6].

Theorem 13. Every abstract algebra A may be extended to an abstract al-
gebra Ay such that
_ 1. every congruence relation ® of A may be extended to a congruence relation
® of 4;;

2. ® > 0O is an isomorphism between O (A) and ©(4,) i. e. to every P O(4,)
there exists a ® € @(A4) such that ®=0;

3 every compact congruence relation of A, is minimal;

4. zfa,b c, dEA then there exists e, f, g€ A, such that 0,=0,, 0,=0,,

ab U ®cd -

Remark. Conditions 1 and 2 mean that ®(4) and ®(4,) are isomorphic
in the natural way.

The theorem stated in [6] is weaker than our Theorem 13, but we actually
proved Theorem 13 for algebras with unitary operations; a slight modification
of the construction of [6] gives the result of Theorem 13.%)

5) In [6] we used the fact that the algebra has only unitary operations only at the step, when
we constructed A4; from A, in § 3. If 4 has operations f of more than one variable, then we define
its extension on A; as follows: f(ai,...,a)=f(b1, bs,...,bs) where a;=0b;, if aicA, by=a
otherwise. One can easily that with this definition one can carry out the proof of the theorem.
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§ 2. Abstract algebras of type 3

¢

We will prove the following theorem:

Theorem 14. To every abstract algebra A there corresponds an abstract al-
gebra B such that the following conditions are satisfied:

1. B is an extension of A,

2, every congruence relatzon ® of A may be extended to a congruence relation
® of B, __

3. 00 sets up an isomorphism between @ (A) and O(B);

4. B is of type 3;

5. every compact congruence relation of B is minimal.

Remark. Conditions 2 and 3 mean that ®(4) and ®(B) are 1somolp1nc in
the natural way.

One can see that Theorem 14 contains Theorem II’ of § 3 of the Introduction.
Further, according to Theorem 10, for every compactly generated lattice L there
exists an algebra 4 with L= @ (4). Now if we construct the algebra B of Theorem
14 corresponding to this algebra A, then we get that there exists an algebra B with
L=>@®(B) and B is of type 3. Summing up we get the following.

Corollary. The following conditions on a lattice L are equivalent:

1. L is compactly generated;

2. L has a complete representation;

3. L has a complete representation of type 3;

4. there exists an abstract algebra A with L= 0(4);

5. there exists an abstract algebra A of type 3 with L=z ©(4).

Now we are going to prove Theorem 14. We start with the algebra 4,=4
and we extend 4, to 4§ according to Theorem 13. Let x, y, u,v €A} such that
x=y(0,,); then we define three partial operations ¢y, ¢,, @3 on A§:

D(py, AY)={u}, D(p,, A5)=9, D(ps, 45)={v}

and @, @)=x, p3()=y. Let A3 be defined as the partial algebra which we get
if the ¢, are defined on 4§ for every quadruple x, y, u, v(x=y(0,,)).

Every congruence relation of 43 is admissible; it further satisfies all the as-
sumptions we have made in Theorem 12, therefore we can extend 43 to an algebra
A,, such that 4, already satisfies conditions 1, 2, 3 of Theorem 14. Now we con-
struct 4, from A;, A5 from A4,, and so on, in the same way as 4; has been con-
structed from 4,, The algebras Ay, A, ... form an ascending chain, therefore

B= V Ay is an algebra. Since all the 4, satisfy 1, 2, 3, and 5 of Theorem 14, there-

fore so does B. It remains only to verify condition 4. Let x=y(0® U ®), then there
exist compact congruence relations ®1 0 and ®; =® such that x=y(®, Ud,).
By condition 5§ ®; =@, and ®, = ®,, with suitable elements’a, b, ¢, d of B. There
exists an integer n with x,, a, b, ¢, d€ A,,. By condition 4 of The01em 13, there
exist elements e, f, g of A} such that 0, =0,p, 0,4=0; and 0,U 0, = O,.
Thus x= y(®eg) Therefore A? has operations ¢y, p,, @; such that @q(e)=ux,

P1(8) = p2(8), p2(e)=p3(e), 9’3(8) ».8) Then zo=x, z;=0;(f), z,=p,(f),

6) See the construction in § 1 of Ch, II and Theorem 12.
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z3=@3(f), za=y is a scquencc of elcments such that zy=z,(0,), z; =2,(0,),
2, =23(0y), 23=24(0,). Indeed, e=f(0,) (for O,=0,,), thus z,=g,(e)=
= p1(/) =2,(0y). Similarly, z, =,(/) = p1(8)(®) (for ©;,=0,) and py(g)=
=02 (8) =0,()=2,(0,) thus z; =2,(0,), and so on.

To sum up, whenever x=y(@U®d) (x,ycd, ®, PcO(4)) we can find ele-
ments x =z, zy, 25, Z3, z4 =y such that z, =z,(0), z; =z,(D), z, =23(0), z; =z4(D)
(we take into consideration that @,=0,=0, 0,=®,=®0), wihch is the defi-
nition of algebra of type 3, Thus condition 4 of Theorem 14 is also verified.

§ 3. Abstract algebras of type 2

The analogue of Theorem 14 for modular lattices is the following:

Theorem 15. Let A be an abstract algebra such that @ (A) is modular. Then
there exists an abstract algebra B such that the following conditions are satisfied:

1. B is an extension of A;

2. every congiuence relation @ of A may be extended to a congruence relation

) of By
3. ® >0 sets up an isomorphism between O (A) and ©(B);
4. B is of type 2;
5. every compact congruence relation of B is minimal,

Remark. Conditions 2 and 3 mean that ®(4) and ®@(B) are isomorphic in
the natural way.

Of course in Theorem 15 the essential conditions are that ®(A)= @(B) and
that B is of type 2.

Again, combining Theorem 15 with Theorem 10 we get the

Corollary. The following conditions on a lattice L are equivalent:

1. L is compactly generated and modular,

2. L has a complete representation of type 2;

3. there exists an abstract algebra A of type 2 such that L=:0(4).

For the Corollary the only thing we must verify is that condition 2 implies
condition 1; it is enough to prove that if L has a representation of type 2 then L
is modular; this is a theorem of [8]7. g

For the proof of Theorem 15 we need some preliminary results. The proof
of Theorem 15 will be given after Theorem 18.

The crucial point of the proof of Theorem 14 was the following: we can prove
that B is of type 3 because the construction given at the beginning of § 1 of Chapter
II and which is perfomed in the construction of B several times gives rise to a se-
quence of elements which guarantee that B is of type 3. In the construction in ques-

7) For completeness’ sake we prove this. Let L have a representation (F, 4> of type 2,
a,b,ceL, a=c. Then aN(bUc)=(aNb)Ucholds always, hence it is enough to prove that
p,q€A. p=q(F@@N ®U ) imply p=q (F((a N b) Uc)). Indeed, if p=g(F(aN b U c))) then
p=qF@NFOBUe), thus p=g(F@OGUc) and p=qg(F(a)). We have a representation of
type 2, thus p =¢q(F( U ¢)) implies the existence of r and s such that p=#(F(c)), r=s(F()),
s=q(F(c). Then c¢=a implies that r=p=g=s (F(a)), thus r=sF(@Nb)). We get
p=q(F(@@Nb)UF(c)) that is p=q(F((a N b) U c)), which was to be proved.



Congruence lattices 55

tion we start from a partial algebra S and we take three further copies of S, and
we identify some elements. One can easily seen that if we want to get an algebra
of type 2 then we must reduce the number of new copies of S to 2. This is the main
difficulty. Of course, the analogue of Theorem 6 for this modified construction
may be proved easily, but Theorem 7 is already not true. We have to introduce
some new operations — using the modu-
larity of ®(4) — to enforce the existence
"of the least admissible congruence rela-
tion, the existence of which is the main
statement of Theorem 7.

So first we modify the construction
of § 1 of Chapter II. Let S be a partial al-
gebra, @;(x), Po(x) €P(S), D(py, S)=1{a},
D(py, H={b}, p1(@)=c, py(a)=d. We
identify in S[p.]US[p,] the elements
@1(b) and @,(b) (see Fig. 3), getting the
partial algebra T.The congruence relation
® of Sis called admissible again if either
a%xb(0) or if a=5b(®) and ¢c=d(0) (i.e.
if a=b(0) ,implies” ¢=d(®)). Then

Theorem 16. The congruence rela-
tion ® of S is admissible if and only if it
may be extended to T'. The minimal ex- Fig. 3

tension ® of © is the transitive extension
of O, where ©% is identical with ® on S, and y(x)= @ ) (0%), if and only if

x=y(0) (x, y € S). The relations ®* and © are identical on S, on ¢,(S) and on @2 (S).
Proof. Copy the proof of Theorem 6.

Now we want to see what can be said about the congruence relation © of §

for which u=v(®), with u,v€T’ fixed. To do this we make three assumptions on
S:1. O(S) is modular, 2. the compact congruence relations of S are minimal;
3. every congruence relation of S is admissible. We distinguish several cases.

A. u,v€S. Obviously®), @ =@;, is the smallest admissible congruence re-
lation for which u=v(0). _
B. u€ S, v€p(S), i. e. v=0p(x), x€S. Let ® be admissible, u=v(®). Then

either
(@) u=c(0), a=x(0),

or b u=d(®), a=b(0®), b=x(0).
Thus the,two congruences
6, =06,U0,, 0,=0,U ®ava Oy

ue

8) The reader should remember that if @ is a congruence relation of S then @ denotes the
least admissible congruence telation =@ (see the text of § 1 of Chapter II, before Theorem 7).
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have the properly that either @1 =@ or @;=0. Il we prove O] =03, then we
arc through. Indeed, a= x(0,U0Oy,), thus O,=03; further a=0(0,), thus
c=d(®3); we gel 0,=0,U0,=0;. Hencc 0,=0;3, so B1=(03) =03,
g. e. d.

C. u€sS, vep,(S). Proof as in case B.

D. u,v€p4(S), 1. e. u=p4(x), v=p4(), x, y€S. Then u =v(®) implics either
(@) x=y(0),
or 0 x=a(®), c=d(®), a=b(B), b=y(0),
or (© y=a(®), c=d(®), a=b(0), b=x(0).

This shows that, obyjously, O =0y, is the smallesi admissible congruence relation
under which u=v(0).

E. u,v€ @,(S). Proof as in case D.

We see that the three conditions imposed on S have not yel been used.

F. ucpi(S), v€,(S) i e. u=gi(x), v=0,(»), x,y€S (or symmelrically,

inlerchanging « and v). If u=v(®), then either
(@ x=b(®), y=b(0),
or (b) x=a(®), c=d(®), a=y(0).

Let ®, = 0,,U0,, 0, =0,U0,U0,. Then, if any, ® or @; should be
the smallest admissible congruence relation ® such that ¥ =v(®). But il turns out
that neither ®{= 03 nor ®; =07 hold in general. Now we use conditions 1-—3.

Let ®; = 0,,U0®,,. Then ®,U0, = ®,UB; and ©;=0,. Thus by the
modularity of @(S) we get

0, = 0,N(0,UB;) = (0,N0,)U6,.

®, and @, are compact congruence relations, therefore we can find a @, =0,N 06,
such that @, is compact and ®,U ®; =0,. Because of 0,,=0,NO, we may
choose @4 such that @,,= 0, is true.

Every compact congruence relation is minimal, therefore ®,=@,, (c,f€S).
Of course, e and f are not uniquely determined by u and v; already ©, is not uni-
que, but if it were, we cotuld, in general, choose several e and f. But let us fix a pair
e, [; we may write e=e(u,v), f=f(u,v).

Suppose that to every u€ p;(S), v€p,(S) we have found e and f. Then we
assign to every u,v a new pair of partial operations a,(x) and a,(x) such that

D(ay, T)={e}, D(oy, T)={f}, (@ =u, o,(f)=v.
Let T” denote the partial algebra T endowed with these new operations.

Theorem 17. T” is an extension of S. A congruence relation of S may be ex-
tended to T” if and only if it is admissible. To every u,v€ T" there exists & least ad-

missible congruence relation © of S such that uEv((*D_).

Proof. Let ¥ be an admissible congruence relation of S. It is in general not
true that W (the extension of ¥ to T”) is a congruence relation of 7. The extend-
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'

ability of W to T” means that extending ¥ to 7" we do not get new congruence re-
lations in S. The extension ¥; of ¥ to T”may be defined as the transitive extension
of W*, where ¥* is a relation equivalent to ¥ on S, ¢;(x)=¢;() (¥*) (x, y€S)
if and only if x=y(¥), and u=g,;(x) =@, (»)=v(¥*) if and only if @,=¥
(e=e(u,v), f=f(, v)).

We have the following remark: let u=@;(x) (=1 or2) v=p,(») (j=1 or 2)
and u=v(¥*). Then x =y (V). Indeed, if i =}, then this is true by definition. If i %7
then ®,,='. But e and f were chosen so that ©,,=0,,. Thus @,, =¥ is obvi-
ous. The transitive extension W, of '* gives rise to new congruences in S if and
only if ¢=d(¥,) while ¢# d(¥). We prove that this is impossible. Indeed ¢ =d(¥,)
means the existence of a sequence c=z,, z, ..., z,=d, all the z; being in ¢, (S)v
v @, (S), such that z,_; = z,(¥*), i=1,2, ..., n. Let z;=q;(u;) where j is either
1 or 2. Then by the remark of the last but one paragraph we have u,=u,(¥),
Uy =y (V), oy oy = 14,(P) 1. e ug=u, (¥). But @y(ug)=c, @,(u,)=d; thus
uo=a, u,=b and we have a=b(FV). Now we use that ¥ is admissible, therefore
c=d(¥), contrary to the hypothesis. Q. e. d.

Now we generalize Theorem 17,

Theorem 18. Let S be a partial abstract algebra with the following properties:
the partial operations of S are ¢*(x), i=1,2 pn€Q, where D(p¥, S) ={a"}, D(p4,S) =
={b*}, p*(a*)=c*, pk(a*)=d"; all other partial operations of S are operations;
if ® is a compact congruence relation then so is®) @’; every compact congruence
relation of S is minimal; the admissible congruence relations of S form a modular
lattice'©).

Then there exists an abstract algebra S* such that

I. S§* is an extension of S;

L every admissible congruence relation ® of S may be extended to a congru-
ence relation © of S*;

III. ® ~O is an isomorphism between the lattice of admissible congruence re-

lations of S and O(S*).

Proof. Copy the proof of Theorem 7 and use the construction of Theorem:
18 rather than that of Theorem 6.

Now we are ready to prove Theorem 15. We apply the same procedure as in
the proof of Theorem 14, the only difference is that we use Theorem 18 rather than
. Theorem 16. The algebra B will be of type 2 because the construction given before
Theorem 16 uses only two new copies of S, therefore whenever x=y (@ U®) we
can find a sequence x =z,, 7y, 2Z,, 23 =y such that z, =z,(®), z, =z, (D), z, =2z, (0).
The construction of the z; is also the same as in the proof of Theorem 14,

%) @ denotes the least adimissible congruence relation =®. Now a congruence relation
& is admissible if for every e 2 the relations a#t= br(D), ct=dr (D) are equivalent.

10) The admissible congruence relations of S always form a complete lattice, which is im
general not a sublattice of ©(S).
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; § 4. Problems

The first main resull of this paper is that to every compacily gencrated lattice
L there exists an abstract algebra 4 such that Lz @(4). Butl the algebra 4 which
is constructed in the proof is pathological. Therefore the problem arises as to whe-
ther or not it is possible to consiruct an 4 which belongs to certain known classes.

Problem 1. Is it true that to every compactly generated lattice there conesponds
.an abstract algebra A such that L=z ®(A) and every operation of A is binary and
assoticative (A is a superposition of semigroups)? Or the same problem, requiring
A to be a semi-group,

In other words, characterize the congruence lattices of semigroups.
EEE
If L is finite the construction used gives rise 1o a countable A.

Problem 2. Is it possible to represent every finite lattice in the form @ (4),
where A is a finite abstract algebra?

This problem seems (o be an extremely difficult one. Its solution should imply
.an answer in affirmaiive to Problem 48 of [1] asking whether or not every finite
lattice is embeddable in a finite partition lattice. A variant of our Problem 2, the
:solution of which does not imply the solution of BIRKHOFF’s problem, is the fol-
lowing.

Problem 2’. Let W, be the class of all (finite) lattices which may be repre-
sented as ©(A), where A is a finite abstract algebra; let W, be the class of all (fi-
.nite) lattices which may be represented as sublattices of finite partition lattices. Is
W, =N, true?

%k %k ok

Let U, be the class of all compactly generated lattices, U the class of all lat-
tices which are isomorphic to the lattice of all subgroups of a group, A¢ the class
of lattices which are isomorphic to a complete sublattice of a lattice from Ug; si-
milarly let 9z be the class of lattices which are isomorphic to the lattice of all sub-
rings of a ring and AR the class of lattices which are complete sublattices of a lat-
tice from g . The relations Wz 2 A%and Y, 2 AR are trivial. We have proved W, =NC.

Problem 3. Find the proper relations between W, (= %G) e, g and AR,

Are all identical?
ok ok

In this paper we have completed the argument of [6] to show that every abs-
tract algebra 4 may be extended to an abstract algebra B such that ®(4)= ©(B)
and every compact congruence relation of B is of the form ®,. And we proved
that for every abstract algebra A there exists an abstract algebra B such that
O(A)= @(B), and every compact congruence relation of B is of the form @,,,
where o is a fixed element of B. Can these two results be combined?

Problem 4.11) Prove that every abstract algebra can be extended to an abstract

1) Added in proof (May 9, 1963): We have proved the following result.

Theorem. FEvery algebra A can be extented to an algebra B such that ©(A) and ©(B) are
.isomorphic in the natural way, further, any compact congruence relation ® is of the form O,
Where o is an arbitrary element of B (a depending on © and o).
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algebra B such that every compact congruence relation of B is of the form ©,,, where
0 is a fixed element of B.
L S
The two main results of Chapter III may be formulated as follows: If L is
compactly generated and L has a representation of type i({ =2, 3) then L= @(A)
where A4 is of type i. We could not prove (or disprove) the similar result for i=1.
It is the following:

Problem 5. Prove that to every compactly generated lattice L which has a
representation of type 1, there exists an abstract algebra A such that Lz @(A) and
any two congruence relations of A are permutable (i. ¢. if x=y(®), y=z(®) then
there exists a w such that x=w(®), w=z(0)).

LU

G. BRkHOFF has proved that to every group G there corresponds an abstract
algebra A such that G is isomorphic to the group of all automorphisms of 4. Let
A be an abstract algebra; we assigne to 4 a couple (GM, L®), where G4 is the
automorphism group of A4 and L@ the congruence lattice of 4, BIRKHOFF’s re-
sult states that every G occurs in the first place in a couple (G, L). We have proved
that a lattice L occurs in the second place if and only if it is compactly generated.
And what is more, we showed that if this is the case, then L already occurs in a
couple (1, L) where 1 denotes the group of one element. These results suggest
that the first and second components of a couple are independent. More precisely:

Problem 6. Let G be an arbitrary group and L a compactly generated lattice.
Prove that there exists an abstract algebra such that (GD, L@®) is identical with
(G, L).
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The generation of affine hulls!)

By V. KLEE in Seattle (Washington, U. S. A.)

0. Introduction. Throughout this paper, E denotes a vector space over a field
@ of characteristic zero, the case of special interest being that in which @ is the
real number field R. A subset 4 of F is called affine iff au+pvéA whenever
u,v€A, a, f€®, and a+f=1. (When @ =R, this requires that 4 contain each line
determlned ‘by any two of its points.) Each intersection of affine sets is affine, and the
affine hull (aff X) of a set X is defined as the intérsection of all affine sets containing
X. Equlvalently, aff X is the set of all affine combinations of X, these belng points

of the form Zax with nEN (natural numbers), x;€X, «;¢®, and Zoc‘-l This

relationship between blank hulls and blank combinations is vahd'not only when
blank means affine, but also when it means linear, positive, or convex (where, for
the last two, ® should be an ordered field). If bla denotes the operation of forming
" the blank hull, then blaX= U bla,X, where bla,X, denotes the set of all

blank combinations of n (or fewer) points of X.

The individual operations bla, are also of interest. When ® =R, aff,X is (X
together with) the union of all lines determined by two points of X, aff; X is (aff, X
together with) ‘the union of all planes determined by three points of X, etc. It is
easily verifield that

bla,,(bla, X ) bla,,X for b]a#aﬂ' (See 1 2)
The present paper is motlvated by the fact that while
aff,, (aff, X) caff,,. X,

the two sets need not be equal. For example, if the affinely independent set ZC E
consists of four points z, ..., z,, then '

. . ) 1

To describe the same exal_hple more geometrically, let a, b, ¢, and d be .the vertices
of a tetrahedron in R3. For each permutation u, v, w, x of these four vertices, let
II(u, v; w, x) denote the plane which contains the line W and is parallel to the

1) Preparation of this paper was supported in part by the Natlonal Science Foundatlon U.S.A.
(NSF—G 18975).
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line wuv. Then .
I(a, b; ¢, d)NT(a, c; b, d)NT(a, d; b, c) = {ib'+lc+ld—la}

. and the set aff,{a, b, ¢, d} ~aff, (aff, {a, b, c, d}) consists of this point - together
with three others which are -similarly situated.

We _study here sets of the form aff, (aff,,(...(aff, X)...)) and others which
are formed in a similar way. Since many of the results are rather technical in nature,
the reader is referred to the text for full statements. However, the general spmt
of our results is indicated by the following corollanes (3 3 and 3. 4):

For all X, aff,,,_; X c aff,, (aff . X); andzfm;én, =aff,, (aff, X) U aff (aff,, X)

1. Results on bla,(bla,X). Let us begin by extendmg the definition of bla X.
For n,,...,n, €N, blag,,.. ,,,m)X will denote the set of all points of the form Z’a,y,
~ for y,ébla,.,X and (o, ... ,,,)EB,,,, where for bla=lin the last condltlon imposes

no restriction, for bla =aff it means that Zoz =1, for bla= pos it means that o;

and for bla=con it means that «; =0 and Zoz,-= 1. Thus, in particular, blamX =
. £ .

=blay, . X with m 1’s and bla,, (bla,X) =blag, ., n X with m n’s.

.....

1.1. Proposition. For all Jour types of operatzon (and for all X) '
bla(,ll iy X C blag X; in partzcular, bla -(bla,X)cbla,, X

Proof. Forp€blay, .. X, letp= 2 Y with y:€bla, X and (aty,..., %,)E€ B,
) . 1 . . '

For each i, y,-' can be expressed in the form 2’ Bi;x; with x;€X and
: Cj=1 : :
(Bis +s Bin) € Bn,. But then of course

’2= Zl' Zaﬂu ijs
M 1= .’_

where it is easily verified that

(0 Bras eees %y Brnys oos O Brmts ..‘.-,a,,,[im,,m)er -1
. . . i
' 1

The next observation is due jio'i'ntly‘ to W. E, BoNNICE and the author.!)

1.2. Proposition. For bla+ aff, bla,,

.....

" )X bla,, X; in particular,
’li .
o

bla,(bla, X)= bla,,,,,X '

Proof. Since this 1s obvious for hnear or pos1t1ve combmatlons we discuss

_only the case of convex combinations. Let k0=0 and k;= > n; for 1=i=m.
r=1

' 1} See also WILLIAM BONNICE and VICTOR KLEE, The generahsatlon of convex hulls, Math
Annalen, 149 (1963), to appear. .
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Consider a point p€con, X — say p= X a;x; with x,€X,a;=0, and > a;=1.
1 1

For 1=i=m, let ;= 2 a;. For ki_1+i§j§ki, define

kiog+1

ﬂj’—f“,/?i when- 0;#0, p;=«; when ¢;,=0.

J=ki1+1

m ki . m
Then p= 2(0,- 2 ,Bjxj), where all coefficients are ‘=0, > ¢;,=1, and
i=1 . R 1

ki
2 B‘=1 When 0’,:#0,’

Ci=kiogtl

2 B;x;=0 when ¢;=0.
J=ki_g+1
Consequently p€cong,, . X.B . '

The proof of 1.2 depends on partitioning the oc, ’s mto m groups such that
there ‘are n; of them in the i group and such that those in each group are.all zero
or have nonzero sum. The same problem arises in connection with affine combi-
nations, but there the desired partition may not exist. In order to discuss the si-
tuation efficiently, we shall introduce the notion of a weighted set and shall study
partitions of such sets.

2. Partitions of weighted sets. Here and subsequently, I" denotes a.fixed (but
arbitrary) ordered abelian group, while <, +, and — are used for the ordering,
addition, and subtraction in both T" and N A weighted point is an ordered pair
'w==(W, w’) for which w €T (w arbitrary); w’ is called the weight of w. A vyeighted
set is a finite set W of weighted points such that for.u, ve W, u=v=u=v". The
wetght w(W) of a weighted set W is the sum of the welghts of its points (u(W) =
= 2’ w'); (W w(W)) is a welghted point. A weighted set will be called good un-

less 1ts welght is zero while at least one of its points has nonzero weight, where
zero is the neutral element of I'.

A partition of a set S'is a finite family of pairwise disjoint subsets of S whose
union is S. For n€ N, an n-partition is one in which each member consists of n po-
ints. An (n,, ..., n,,)-partition is one consisting of m sets which can be ordered in
such a way that (for 1=i=m) the i*h set is of cardinality n;. A partition # of a
weighted set will be called nice iff each of its members is good; thus £ is nice unless
there exist P€# and we P such that w'0=pu(P).

2.1. Theorem. Suppose W is a weighted set and ny, ..., n, € N with Z’n =

=card W. Then W admits a nice (ny, ..., M)~ partztzon if and only if the followmg
three statement are all false:

(S)) m=1 and W is not good;’

(S,;) n;=2 for all i; W is the union of two - sets of odd ca)dmallty such that
all points of one set have the same nonzero weight o and all pomts of the other set
have weight —a;

(S;) there exlsts n=3 such that n;=n for all i, all but one point of W have lhe
same nonzero weight cx and the exceptwnal pomt has weight (1 —n)oc '
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Proof. It is easily verified that if Sy, S,, or S; is true, W does not admit
a nice (ny, ..., n,)-partition. We now assume that W does not admit such a par-
tition, and. wish to show that S,, S,, or S; is true. If m=1, it is evident that W™~
is not good and S, holds, so we assume m=>1. Let k=card W and consider an
enumeration of the points of W in order of increasing weight:

Wi=wi=..=wy.

Let P, be(the set consisting of) the first n, of the w ’s, P, the next n, of them, .

P, the last n,, of them. Then some set P, fails to be good and from the method of -
r—1

construction it is clear that w’ <0 forall we U P;, while w >0 for all w¢ U P,.
r+1

Since m =1, there are three cases to be consrdered
1= r<m" 1<r<m' l<r =m.

However, the first case is treated hke the third, so it suffices to con51der the second”
and third cases. We assume, then that 1<r.

Note that if u€ P, with #’'=0 ‘and w€ P; for i<r, then w =/, for otherwrse
a nice (ny, ..., n,)-partition of W 'results from the partition {_P1, ..., P} upon.
interchanging u# and w. Since. 1 <r, this implies the existence of «=0 such that
w = —a whenever wé W with w’=0. Further, if i<r and v€ P, with v" >0, then
u(P) = —no and hence v = (n;—1)a, for otherwise a nice (ny, ..., n,,)-partition
of W results from interchanging v with a point of P;. Thus there exists #=2 such.
that n;=n for all i<r, and v" = (u—1)a whenever vEP with v >0.

We wish next to show that n,=n, and for this purpose will consider another“
(ny, ..., n,)-partition of W. Let Qr be the first n, of the w;’s (in terms of the given
ordering), Q, the next n, of them, @, the next n, of them, ..es Qy_4 the next n,_,
of them, Q, ., the next n,,, of them, ..., Q,, the last n,, of them. Then Q;= P, for-
i=r and (since 1 <r) there exists s<r such that the werghted set Q is not good )

“If s =1 it follows from reasoning in the preceding paragraph that card Q,=card Q,,.
whence n,=n, =n. If s=1, let R; be the first n, of the w;’s, R, the next n, of them,
and R;= Q, for i¢{1,r}. By hypothesis, some R; fails t0 be good and clearly it is.
R,. But then from the method of construction (usrng the ordering of the w; s) we
conclude that R,=Q,, whence n,=n,=n. _

We have now established that n, =n=2 for 1=i=r, that w = —a for all
wée W with w =0, and that v = (n— l)oc for all v€ P, with v">0. Let [ denote the-.
number of points of P, which are of positive weight. Then

_ 0=uP)=In—Da=m—Da=({-1Dna,
whence /=1. Thus S, holds (with its a the negative of our present a) if r =m and .
n=3, while S, holds if r =m and n =2. If r <m, the reasoning of the above paragraphs.

shows that n; =n for alliand that « =(n— 1) whenever ' =w"=0 for some w€ W,
But then « = (n—1)%0, whence n=2 and S, holds. §

3. The basic theorem on aff(,,

3. 1. Theorem. Let E be a vector space over a field ® of characteristic zero,
Ry, ... By €N, and pEaﬁ"EniX; Then pe€afly, .. . X unless one of the following-
> ' .

Statements is true:
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’

. . i b ' 2m
() m=>1;n,=2 for all i; for each expression of p.in the form 3 wx; with x,;€ X,
. . 1 '
om . .
o, €D, and D a,~=1, there is an odd number 1€ N such that m<I|<2m, 1 of the a;’s
1

-are equal 10 —— 6<I> and the remaining 2m —1 a,’s are equal to~

1 1
(i) m=>1, all n’s have - the same value n=3; for each expressron of p in
the form. Zcxx wzth xEX €D, and Za;l one «; is equal to( _1) E(I) '
.and the others are all equal to ————Ed).
(m—1)n :
(If 1 is the unit element of ® and a,b€N, the point (14+1+4+...+1)=

S ———— -
aterms

S¢S PSS I)E(I) is’ denoted simply by %

PrbowE)mfE Let us suppose first that pEaff(,,l m)X, .whence there exist
ycaff, X and f;€® such that Zﬂ-——-l and Zﬁiyi =p. For each i, there exist
p'oints z"l,. ,z,,, (not necessarily distinct) of X and numbers yl,. .,y,i.,.E(I)'such

_that Z’y,—l and 2 y,z, ;. Now with s-—Z'n,,

1
(xy, ...,xs)=(zl, vees Znyy eves 21 ...,‘z:,"m),

' 1 1
and - (@15 s 0) = (B1Y1s wves BiYnys oes Bu¥ 15 vy BV,
: s : s
‘we have p;Z’cx,x,,x,E_X, and 20:,:1.
" Further, in their natural ordering the indices 1, ..., s are partmoned into m sets

-such that there are n; indices in the i*h set, and the sum ﬁi< = 2 ﬁ,-y,) of the «,’s
' : : <

-corresponding to the i*h set of incides is different from zero unless all of these «,’s
. are zero. From this it is easily verified that (i) and (ii) are both false.
Conversely, we assume (i) and (ii) to be false and want to prove that
peaflyy, ., X Since the field @ is of characteristic zero, its additive group I' is
1somorph1c with a subgroup of a direct sum of a (possibly mﬁmte) number of copies
of the addmve group of rational numbers. Since this direct sum is an ordered group
under the lexrcographrc ordering based on the natural ordering of rational numbers,
‘we may assume without loss of generality that I' is an ordered group (not 1mplymg,
of course, that ® is an ordered field).
Now taking I" as an ordered group, we see from 2. l (and the assvrrptron

‘that (i) and (ii) are false) that p admits an expression in the form p= Z‘ «, X, With

"x,€X,0,€0, 2 a,=1, and such that the weighted set {(r, a,):1§r§s} admrts
. 1 _ R . s .
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a nice (n,, ..., n,)-partition. . We may assume: without loss of generality that the
members of the partition are the sets {(ryo,):5;_y<r=s;} for 1=i=m, where
so=0 and s,——Z n,. Defining o; —Z o,, we see that either g;#0 or a,=0 for all-
) 1
r with 5;_; <r=s,. It then follows as in the proof of 1.2 that pEaff(,,l X b
3.2. Corollary. If the numbers ny,...,n,(EN) are not all the same,
affiy,, .. X = affm : ‘ '

ni

.....

3. 3. Corollary For all X and all Hy, ..., n, €N, aff ) Xcaff,
PILIN

. 1

caff, X; in particular, aﬁ',,,,, X caff, (aff X)caff,,X.
Zni .

1

3.4. Corollary. For m#n, aff,,, X =aff,, (aff,X) U aff (aff,, X).

3.5. Corollary. IfF X is aﬂmely independent and consists of k points, and '
mz2, the cardmalzry of the set.

X =aff,,, X ~ aff,,(aff, X) -
& . .
( ')mn when n=3,
mn . ‘
' ‘ k : . .
is equal to 22m-2 _ when n=2 and m is even,
2m . : R
22m-2 _ when n=2 and m is odd.
2m : 2\ m

3.6. Corollary. Iszsfzmte so is X’. If dim (affX)<mn—l X is empty
If dim (aff X) = mn—1, card X" =c(m, n), where

mn . when n=3,

22m-2 when n=2 and m is even,

c(m, n) = .
. : 1/2m - .

22""2——( > ‘when n=2 and m is odd.

If dim E=mn and m=2 =n, then E containts a set X for which X~ consists of c(m, n)
distinct parallel ,,lines” (genuine lines when ® =R).

Proofs. 4The Corollaries 3. 2, 3. 3, and 3. 4 follow immediately from 3. 1. For
. k mn .
the first part of 3. 5, apply 3.1 (ii) to show that card X’ = (mn) ( 1 ) For the

second and third parts of 3. 5,.apply 3. 1 (D) to show that card X” is equal to mn> _

times the number of sets Y {1, ..., mn} for which card Y is odd and card ¥ <mn—
—card Y. The first three assertions of 3. 6 follow from 3. 1, 3. 3, and 3. 5 respectively.
For the fourth, let F be an (mn — 1)-dimensional linear subspace of E, Y an affinely

AS
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independent set in F with card Y=mn, z€E~F, and X = Y+ ®z. It is eas11y
verified that ‘
aff,, X ~aff,(aff,X) = (aﬁ',,,,,Y~aif (aff,Y)) + @z,

whence the desired conclusion follows from 3. 5. |

4. A qualitative approach For YCE and nf€N, consider the set
bla(":‘y (1))(b1a(" rzvn(z))(""-(bla(",fy o Maiey) Y) ))

With n= ]] (2 ni) it follows from 1. 2 that this set is equal to bla,Y when bla =
j=1

#aff. For bla =aff, the situation is much more complex and a full analysis would

probably cost more than it is worth. In any case, the problem of describing the

above set reduces to one concerning the interaction of operations aff, for various

values of n, since (by 3.2) affi,, .. X =aﬁ“§".X for all X if -the n;’s assume at

leasﬁ two different values, whilé of course aff,, ..., X =aff,(aff,X) if all the n,’s
-have the same value n. ' ‘
From 3.3 it follows that always

aff (aff,(aff, X)) © affy— - X Uafl,p—p-y X-

However, this is a crude approach and becomes cruder as the number of operations - -
‘increases. The present section shows by means of a qualitative approach that always

6)) aff, (aff,,(.. .(aff,,k'X).i. D Caff -1 X
and that if X is finite, so is the set’ ,
@) S affy,, . X ~aff, (aff, (..aff, X)..).

" Section 5 contains a more quantitative analysis, leading to a description of sets
of the form (2) for k=3 which is similar in completeness to that of Section'3 for
the case k=2(cf. 6. 6).

A basic tool is the notion of a welghted partition. When & is a partmon of a
weighted set, the corresponding,: weighted partition is the weighted set #* =
= {(P, u(P)) Pe#}. To illustrate the combinatorial problem which is involved
in the study of sets of the form (2), let us consider a weighted set W consisting of
twelve points, ten of weight 1/6 and two of weight —2/6. Though W admits a nice
3-partition 2, the weighted partition £* must consist of four ,,points” (the sets
PEW), two of weight 1/2 and one of weight —1/2, whence #* does not admit a
nice 2-partition. This corresponds -to the fact that if -an affinely independent set

10 1 1
X C E consists of twelve distinct points x,, ..., x;,, and if p= <Z’ 3 xi> — 3 X
. . . 1 '

—% X,5, then p Qaﬂ'z(aﬁ'z(afg)()), even though p ¢aff,(aff,X) whenever mn =12.

Thus in studying sets of the form (2), trouble is caused (speaking roughly) not only
by weighted sets which admit no nice partitions but also by those whose nice partitions
admit no nice partitions, and so on down the line. To establish (1) we must show
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. that if W is a weighted set of cardinality n,n,...n, with at least one point of zero
weight, then W admits a nice n,-partition 2, such that' 2%, admits a nice n,_, -
partition 2, _,, such that 2{_1,... such that 2§, admits a nice n,-partition P2y~
, The basic lemma is easy to prove, but its statemient requires some additional
notation. Let T be a finite set, § the class of all nonempty subsets of T, and E the
class of all functions on T to I'. For S¢8 and £€5, let S denote the welghted set .
{(s, &s):5€ S} and let ugS denote its weight ((i:S = u(S;) = Z’ &s)). Let ng, ..., n, €N’

-with m=2 and 2’ n; —card T, and let 9 denote the class of all (r, , ..., n,)- partltlons

of T. For each .@E‘B and £€E, let P denote the correspondlng partition of the:
weighted set Ty; that is, Py={S;: S Eﬂ}

4.1. Lemma.’ Suppose A is a finite subset of I and H is the set of all (€8
Such that T, admits at least one nice (ny, ...; n,,,) partztzon 9’@), with P& CA for all
such P&y Then the set H is finite.

Proof. LetIbe the class of all ordered tr1p1es (D £, g) for which £ is a nonempty
subset of B, fis a function whose domam is ‘vaQ and the following conditions
are satisfied:

for each @ED f@ is a function on @ to A

~ for each PeP~Q, gPis a nonempty subset of 2.
For'each : =(Q, f; g) €1, let H, denote the set of a11 n € H which have the- followxng
two propertles
={Q€eP:Q is nice}; whenever SE@E»D then mS=fgS;

for cach ZeP~Q, g2 = {S€P:p,S=0}.
. It is evident that H= U H, and that I is finite. To complete the proof it sufﬁces '

to show (for Lel) that the difference of any two functions in H is constant on X,
for then.it is apparent that each set H, has at most one member. .

- Let e=(Q, f,g)EI and consider two functions & n€H,. Choose Q¢cQ. To "
show that & —# is constant it suffices to show-that whenever u, and u, are points
_ of T which lie in different members U; and U, of @, then &u; —nuy = Euy —nu,.
For such U; it follows from the definition of H, that uU;=p,U; (i=1,2). Let 2
denote the partmon of T which is obtained from @ by interchanging %, and u,.

- Then
= (@~ A{Uy, Uo)U{V1, 72}y
where
Vi = (Ui~ {ud) Ufu} ¢ ¢J)
Clearly . .
: ﬂgVi ="pUp—Eu;+ u;
and ’

,u,,V = ,u,,U —nqu;+ ;.

If #€Q, then (for i=1 and i=2) u:Vi=fpVi=u,V;,and (recalling that uéU ,u,,U)
we conclude that &u; —nu; = &u; —nu;. Suppose, on the other hand, that Z € ~
“Then by the deﬁnmon of H,, neither &, nor 2, is nice. Since @ was nice it follows :
" that ygV 0 for i=1 or i=2 (but not necessarily both), whence V; €gP and
Vi =0. Then as before, fu nu; = Suy—nu;. B A
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“Fora ﬁmte set T and for y EF let A[T) denote the set of all functions & on T
to I such that, Z ét—y For Ay, . nkerrth ]] n;=card T let A, (T; ny, ..., n) '

denote the set of all ¢€A4,(T) for Wthh there exist welghted sets T, =
=Wis1, Wiy .., Wy with W= ¥ for some nice n,-partition 2; of W,+1(2515k)

‘4.2. Theorem. Suppose T is.a finite set, y€T', and ny, ..., nkEN w:th ]] n;=
card T. Then the set A(T)~A[T;ny, ..., ny). is finite. ‘

Proof When k=2, the assertion follows from 2. 1. Suppose 1t 1s known for
k = j—1=2 and consider the case k=] j. Let S be a set of cardinality ]] n; and let
B =A4,(5)~A4 (S ny,...,n;_1). Then B is ﬁmte by the inductive hypothesrs, so
the set A = U nS is also ﬁmte Now wrth card T= ]] n;, let G denote the ‘set. of

all ﬁeAy(T) such that- T, admits no nice -partltlon The set G is finite by 2. 1.
Let H denote the set of all £€ALT) such that 7, admits at least one nice

n;-partition. 2 ,,, but 2§ c A for all such 2. Then H is finite by 4. 1, and. it is
easily verified that I o :
: A(T)~ALT;ny, ...,n)cGUH. |}

4. 3 Theorem For each set XCE,
f"f(,,l,,2 )= 1Xc:af’f (aff 2(...(af’f,,kX)..‘.)).
If X is finite, so is. the set ' , ' ,
aff, . X ~aff, (aff, (...@aff, X)...)).

" Proof. Let r-—]] n;and let T={1, . r} As in the proof of 3.1, we'see that

1f sed; (T;ny, ..., nk) and if x,, ..., x, are (not necessarily distinct) points of X, -
then . '

Zré(r)x.Eaﬂ' (aff, (... (aff,, X)...)).

The second statement of 4. 3 follows at once from this fact in conjunction w1th
r—1

4, 2. F or the ﬁrst part of 4. 3, consider an arbitrary point p Za X, w1th X €X, o€ T,
-1

and Z o, =1. For each BeT, let. the function éﬂeA (T) be deﬁned as follows:

G)=a, for 1=isr—2; &r—D=a,,~F; &0)=P.

Since T is infinite, 4. 2 implies the existence of ST for whrch & EA (T Ry..oy M)
With x,=x,_,, we have

r

= Z&()x € aff x(aﬁ‘nz(...(aff,;kX)...)).I"
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oy
-+ - 5. Troublesome sets: Lemmas. For a welghted set W, W’ will denote the set
{w wE€ W}CF W will be said to have the form (y)*...(y )% iff ‘a;€T,.a;€N,

Za =card W, and a;=card {weW:w =1y} for l<z<k and W has the crude

form (yl)“\..;(y'k)f‘k iff 'y, €0, a;€ NU{0}, 2 a;=card W, and W admits a partition
v , L < : . -

-into pairwise disjoint sets Py, ..., P, such that card P;=gq; and- c{y} for
l=i=k. With a;>0, the first condition requires that W’ ={y;:1=i=k} and the
y;’s are distinct; the second condition requires that W’C{y, 1<z<k} but permits

-a;=0 (with of course P;=&) and y;=7y;, for i#j.

A welghted set W will be called troublesome iff W has the form :
(1) @y (B ...(By)= with r3, 5= 1,

and R -
O<a=min{—f;:1=i=s} or O>azmax {—B;:1=i=s}.

We shall often refer to the expression (T), using its notation without further explanation.

A weighted set W will be called positively (resp. negatively) troublesome iff W
has the form (T) with o:>0 (resp. «<0), doubly troublesome iff it has -the form
(T) with s=1 and B, = —a, singly troublesome iff it has the form (T) with s=1=r,
and t-singly troublesome (for t € N iff it has thé form (T) withs=1=r; and §; = — o
In connection with 2. 1 and with the principal goal of this section;, the doubly and
t-singly troublesome sets are of special interest; unification in the treatment of these
two special types is achieved ‘through the more general notion. Note that a set
which is both positively and negatively troublesome must be doubly troublesome,
but not conversely, and that a troublesome set may be.both doubly and singly
troublesome but need not be either. :

A partition 2 of a weighted set will be called troublesome (resp. doubly troub- :
lesome etc.) iff the weighetd set (#*) is troublesome {resp. doubly troublesome,
etc) When 2 is a partition- of W and y€T, we define 2,={Pc2?:u(P)=y},

P_={PecP:u(P)<0}, and 2, ={PcP:u(P)=>0}. For any family &# of sets,
rF will denote the union of all members of &#. Thus (for example) u(g’ ) is the
union of all members of 2 which have negative weight, while ((#_)*) is the set
of all negative weights attained by members of 2. Since the danger of confusion
is slight, we shall usually omit the parentheses in expressions such as these.

When £ is-a partition of W and x and y are points of W, 2(x, y) will denote
the partition Wthh results-from £ upon mterchangmg X and y. Thus for xcXe®
and yE Ye2,

- P(x,y) = (9’ X, Y})U{(X~{X})U{y} (04 N{y})U{x}}

- When more complicated interchanges are ‘required, they will be described explicitly.
For the remainder of this sectlon we make the :

- STANDING HYPOTHESES: W is a weighted set and /P n,€N; with m=4
and Z n;=card W. W admits a nice (ny,...., ny)-partition, but all such partitions

are troublesome
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Partition will mean an (nl, ey ,,,) -partition of W. A partmon 2 will be called
an o- partltlon iff #* has the form (T) and in addition

N ¥ —y €{—a,0,a} whenever x and y are points of distinct members of P,.
An a-partition P will be called a minimal «-partition iff there is no oc-partttton Q
Jor which Q, is a proper subset of #,.

* * sk
The ﬁrst lemma is

5.1 If .4" isa partttzon and P* has the form (T) ( but requiring only r Z2) then
max 1% =min 1%’ .

Proof. It suffices to consider the case >0, If ucur?; quﬂ ‘and X€EuP, =
=12, then W(u, x) is a partltlon for which

P (u, x)*’ = BU{B:izj}U{B,— W —x),oz+(u —Xx'), oc}

wheré BC {8;}. If ' — X" =0, ‘the partition 2 (, x) is nice but cannot be troublesome
for BJ —(W —x)<p;=—-a<O0<a<a+ (@ —x). The contradlctlon shows that
. w —x"=0 and ylelds the desired conclusion. |

5.2. If 2 -is a partition dnd P* has the form (T) wzth |oe| <max {Iﬁ [ IStss}
then P is an a-partltwn

Pro of, We assume w1th0ut loss of generahty that o >0 If x and y lie in different
members of #,, and x">)’, then

P (x, )*’ = {ﬂ, 1<t<s}U{oc—(x -y, oc—i—(x —v),a}

and 2(x, y) is not positively troublesome since 0 <a<a+(x"—y).'If P(x,y) is .
negatively troublesome, .then s=1 and 0=8,=—a. Smce we knew already that
a=—f,, 1t follows that

|| = Iﬁ1| = max {Iﬂl I=i=s}, . :
- . contradicting the hypotheSIS of 5.2. Thus .Q”(x, y) must fa11 to be nice, whence
a—(x'—y)=0. A .

.5.3. For some o, W admits an a-partition.

Proof. Let & be a nice partition, whence #* has the form (7). Suppose. 2
_is not an a-partltlon whence there exists points x and y in" different members -of
#, such that x’ —y" ¢ {—a, 0, «}. The partition £ (x, y) is nice and hence troublesome.
We assume without loss of generality that >0 and x" —)" >0, whence 2(x, y)*’
contains at least two positive weights and 2 (x, y) must be negatlvely troublesome;
this implies s=1 and B, = —a, whence [31 =—a With 0o—(x" —y)<a, it
© follows that « —(x"—)’) = —a, whence x"—) .= 2o and 2(x, y)* has the form
(— o)+ 1) -2(3a)'. But then r; =2 and Q(x y) is a (—oc) partxtlon by 5.2.§

5. 4. For each oc-partttzon P there is a mzmmal cx-partttton (‘;7, with @, C2,.
Now we add to the

STANDING HYPOTHESES: Q is a minimal a-partztzon of W, with a=0;
zE‘Z €@, with 2 =min1@Q;;y=2z". (The assumption a>0 is only for conve-
nience, since ‘the case <0 can be treated in the same way.)
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"From ({) there follows

5. 5. Either (i) »Q; ——{?,Y-{-a} :
or (i) {y,y+2}cZ' c{y, v+ y+2a} and w(Q,~ {Z}) —{y+a}

The dlscussmn is now d1v1ded into three cases, as follows: ]
(A) y=0; - (B) y<0; y+2aeu@i; (O p<0; ?+20¢ Q.

By addmg the appropriate letter to the number of a lemma, we indicate the addmon
of one of these three conditions to the standing hypotheses

* %k %k

. 5 6A. There exists n€ N such that a=ny and-each member of @, has the form
(y). "In particular, y=0.

Proof. Since y=0 by condition (A), it follows from the definition of y that
all points of v@, have non-negative weight. Consider two points x and y lying in
different. members of ,. The partition @(x; y) is nice but is not troublesome if
x"#y, for then Q(x, y)*’ contains f3, as well as three different non-negative weights, -
and one of the latter is <a= —f,. This shows that x"=)" and consequently
. 1Q; ={y}. The desired conclusions follow. §

5.4 IF Q€8 then_Q’c{y,. —a, =20, y+ﬁj,y+/3-'—a}

Proof. By 5.1, max 1@~ =y. Let U0={uEQ ' <y}, and define the subsets
U; of U, by saying that if u€ U, then :

u€eU, iff Qu, 2) is not nice;

uc U, iff:Q(u, 2) is pos1t1ve1y troublesome

uc U, iff Q(y, z) is negatively troublesome.
Obviously Uy =U,UU,UU,. For ucU,, we have

Q(u, 2)*’ ='BU{Bi'i‘¢j}U{ﬂ-—u’+y, -y +u, o}, ,
with Bc{ﬁj} Clearly u€ U, implies &' = =y+pjord =y—a lfuclU U;, then
a—y+u’ <0, for otherwise @(u, z)* contams the positive weights o and o —y+u

with
o —7 41 <a=min {—Bi.l_S_t_—__s},‘

~and Q(u, z) is not troublesome. If u€ U,, then (since @ is-a minimal o-partition)
Bi—u'+vy=0, whenceﬂj——u +y = aandu’ = y+pj—a.lfucU;,thena —y +u'=
=f; = —a (for i#j, where in fact this situation entails s =2 and r;=1). We have
now proved that Uy {y—a, y— 2a, y+ﬁ1,y+ﬁj—a} |

5. 8,- W is troublesome’ when n=2.
- Proof. Use 5.6, 5.7, and the fact that
max {y—a,y—20,y +8 yHB—a) =y—a=(1-nrl .

5.9, With Q E@,, ,» let a, b, and c denote the number of points of Q whlch are
of weight v, y—a, and y —2a respectively. Let d=0if ;¢ {—o, —20} and otherwise
d=card {ucQ:w = y+p;}. Lete=0if §; = — o and otherwise e = card {uE O =
= y+p;—o}. Then one of the followmg statements is true:
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() d=1,c=e=0; a+1 = (n—1)b;
(i) e=1,c=d=0;a+1 =(n;l)b+n
(iii) d=e=0; (a— (n—l)b (2n—1)c)

' Proof Clearly _
y(a+b+c+d+e)—oc(b+2€+e)+/)’ (d+e) = ,u(Q) = By,
and smce a=ny it follows that ‘
(a+(1—n)b+(1—2n)c+d+(l—n)e)y = (1— —e)p;.

To gain more information about the numbers a, ...,.e, we consider the partmon
‘&, vy Which ‘is obtained: from @ by interchanging two points u and v of Q with
two points which lie in different members of @,. Then -

(u v) = ﬂ U A(u, U)U{O‘};

{_/iiii;éj}chc»{/ii-:Al §.i§s}

where

. and : ' _
A(u,v) = {f;—u =V +2y,a—y+u', 0 —y+0'}.

The possibilities’ of special interest are described in the followiixg table:

u v A(u, v)
(d=2) YT y+B; {—Bj, o+ B}
(e=2) oy +Bi—a YHBi—a - {2a—8;, B3}
Codzl=e) -y yHBi—e o {a— ﬁj’a+ﬁ1’ﬁ1}
(cz1=d) y—2a . +B; © {20, —a, 0Bt
(c21<e) © oy —2a y+B—a © {3e, 0, B}

Recalling that d#0 implies B; ¢ {—o, —2a}, we see that @, is nice in each case
and hence must be troublesome. In the first case, @, ,) cannot be positively trouble-
some since —p;#a and cannot be negatively troublesome since 0=+ f;+ —a.
In the second case, Q, ., cannor be posmvely troublesome since 0<oc<2a B;
and cannot be negatively troublesome since (with e=+0) f;<—o. Similar contra-

dictions ensue in the other three cases. It follows thatd+e=1, and d+e=1 implies
" ¢=0, whence the remammg pOSSlbllltleS for q,...,e are exactly as described
in59.] . :

5. 10A Ifn= 1 each member of @,, has'the form ([3 )Y or the crude form (7)*(— y)°.
Thus W is troublesome

Proof. With n=1, 5.9 (i) is impossible 5 9 (ii) implies a=0, and 5.9 (iii)
becomes (a—c)y=p;. The correspondmg possibilities for the crude form of Q €&,
are (0)®* (8,)! and (y) (0)°(— y)°; to establish 5. 10 we must prove b=0. Suppose
'b=>0 and let u€ Q with &' =0. Then Q(u, 2)* =B;U{B;+7,0,y}, so (Q(u z). is
not troublesome and hence not nice. Since u€ {u} E@(u z), the fact that " =0 does
not account for @(u, z)’s lack of niceness, and it fotlows that ; = — y. Thus p(Q) =

—19, Q contains a point v with o’ = —y, and Q¢/,)=B;U{2y, 0, -7 y} Since 0
appears only as the weight of a onepointed member of @(,, o) &, vy is nice but not
troublesome.. The contradlction implies b=0.



"Affine hulls : . 73

. 5.11,4. Suppose n=1 and there exists Q€ Q_ with card Q >1. Then Q-has the:
crude form (y)*(—y)° for ce{a+1,a+2,a+3} and each member of Q_~{Q} has
the form' (— y)

Proof Clearly c>a+l for (c—a)y = n(Q)<0. Suppose p(Q) B; and let.

vy € Q with v = — 7. Then @(vl,z) = B; U{(a—c+2)y, — 9, ¥} 1f@(o1,z) is not.

nice, a—c+2 = 0. If (v, z) is pos1t1ve1y troublesome, then (since @ is a- mlnlmal

a-partition) a — ¢ c+2 = 1. If Q(v,, z) is negatively troublesome, then g —c+2 = —1

when a—c+2<0.and —1= —a+c¢—2 when a—c+2>0. It follows that c—a¢
€{1,2, 3}, with ¢.= a+3 only when Q(v,, z) is negatively troublésome.

Now suppose ¢ = a+3 and-let v, and vy be distinct points of Q ~{v,} such
that v; = v3= —17. Suppose some member P of @_ ~{Q} has form other than
‘(= Since Q(v,, z) is negatively ‘troublesome, it is evident that u(P) = -7 and °
hence (using 5. 10) if P does not have the form (— y)! there eXISts w€P with w =y..
But then '

@(m uz)(v35 W)* = BU{ 3))9 3% - ya y}

with Bc {f;:1=i= 1} whence the partltlon Qvy, 013, W) is nice but not troublesome-
_and the contradiction shows that P has the form (-t
Alternatively, suppose ¢ —a € {1, 2} and note that ¢ =2 since card Q > 1. Suppose-
some. member P of Q_ ~{Q} has form other than (—7y).! With ul,vzéQ and
: U1=Uz = —7, we have

@(01 vy — BU{#(P)’ (a—c+4)y, —?, y}

s0 @(,,l vyy 18 nice and .the fact that it is troublesome 1mphes p(P) = —+. Thus there-
- exists we P with w' =7 and we have

Q1,2 (03, W = BU{=3), (a—c+4)7, =7, 7},
a contradicti’on.whieh yields the desired conclusion. | |

_ 5.12,. If all the n ’s have the same value n=2, each member of Qy, has one of
the following crude forms -

B;¢{—0, —20:}) Q) G-+ L)Y

B%-a) (i) GF " (r+B;—a)'; . 3

Bi=-a) i) Gr-2G-apy @) Orie-2)'
Bi=-20 M) 3= ) - (-2
(B, =—3%) (i) (yy=*(y —a)*; (vili) (3" (y ~ )2 (y— 20)*;

(iX) (yy=2(y—2a)2.

If some member 0 of Q_ has the crude form (vii), (viii), or (ix), then Q.~{Q} is .
o nonempty and all its members have the- crude SJorm (iii) or (1V) -

Proof:. Here 5.9 () becomes .
n = a+b+d ——"(n—l)b—1+b+1 = nb



o A V. Klee

‘whence b=1, a=n—2, and Q has the crude form (i) above. And 5. 9 (i) becomes

n= at+b+te=n—-1)b+n—14+b+1 = nb+n,

‘whence =0, a=n—1, and Q has the form (ii) above,

For5.9 (m) we have n = a+b+c (and of course a =ny), so f§; = (1 —b—2c)a.
‘Now with g=b, h=c, and g+2h=>1, let &, » denote a partition which is obtained
‘from @ by interchanging g points of welght y—ain Q and A points-of welght y—2a
in Q with g+ #h points of weight y in-a single member of Q,. (When all #;’s have
‘the same value, such an interchange is possible.) Then

R = B;U{B,+(g+2h)a, (1 —g=2h)a, a}.

'Note that 1— —2h<0. Thus if Z, ;, is not nice, f; = —(g+2h)a and g+2h—_
=b+42c—1. lf B;+(g+2h)a<0, then (smce Qisa mlmmal a-partition) R, ) is
negatively troublesome and

/f,+(g+2h)cx = (1 —g—=2ha = —a,

‘whence g + 24 = 2, ﬁj = —3a, and b+2¢c = 4. ]f[i1+(g+2h)a>0 then g+2h =
=b+2c when Z,, ,, is positively troublesome, while negatlve troub]esomeness of -

. Ry.ny implies

—B; —(g+2h)oc5(1 —g—2ha =—

‘'whence g2k = 2 and —f;=a. But then §; = —« and b+2c = 2. .
The preceding paragraph shows that if Q(€Q@_) has the crude form (y)" —b-c
(y —a)(y — 20)°, the pair (b, ¢) must be such that b +2¢ > 1, and such that whenever
g=b,h=c, and 1<g+2h<b+2c, then g+2h = b+2c—1, or g+2h =2 and
b+2c = 4. It is obvious that 5=4 and ¢=2, and a closer examination shows that

(b, ©)€{(0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)},

whence Q has one of the crude forms (iii)—(ix). Note also that if (b, ¢) €{(0, 2),
(2, 1), (4,0)}, then u(Q) = —3« and there exist g and # as described for which .
#(Q) + (g +2h)a<0. But then #,,,, is negatively troublesome, whence Q_ ~{Q}
is nonempty and all members of Q_ ~ {Q} have weight —a. [}

* % Xk

We considef now the case in which condition (B) is satisfied. In this case, y <0
-and a single member Z of @, contains points of weights y and y + 2« (perhaps also
¥+ a), while the other members of &, consist exélusively of points of weight y + .

5.135. « = —2y. Z has the form (y)'(—3y)!, while all other members of Q,
have the form (— y)2. All members of @ _ have the form (y) with at most one exception,
and the exceptional member Q ( zf there ‘is one) has the form (y)'(3y)! or the form
(y)*. If there is such a Q, then _~{Q} is nonempty.

Proof. Note the existence of n€ N such that each member of @, ~{Z} has
‘the form (y+a)"; with a=n(y+a), we have (1 —n)a=ny and thus n22 -

Let x,z€Z and y€uQ,~Z with X" = y+2a,y =y+a, and z'=y. For each
u€1Qp 1@, let @, denote the partition which results from @ under cyclic permu-
itation of u, x, and y (replacing x by u, y by x, and u by y). Then

Q% = BU{B:i#j}U{B;—u' +y+a, —y—a+u, 2u, o}
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w1th Bc{B;}, so &, is not pos1t1vely troublesome Thus n@_ U (Ujuup,
lsjss

o where U} is the set of all u€ 1@, for which Q(,,) is negat1vely troublesome and U}
is the set of all u€u@;, for which @, is not nice.

Now we-claim that for 1=sj=s,
o U= {rthta)

‘and ‘ S
0 Uiy ={»

The statement (1) is immediate from the definition of U? and the form of @(u),
since (by 5. 1) —y—a+u' = —a for ail uen@ Now suppose ucU}. Since a € 45,
it follows that —y —a+u" = —a, whence ¥’ =y and ﬁl-l-océ@(u) Th1s establishes
(2) and (continuing with the assumption that u€ U}) since f;+a=0 we see that
B;+a = —a, whence it follows that g; = —2a, r;=1, f; =—ua for i;éj, and s=2.

If u¢ QN U} (where Q€Qy), the above reasonmg shows that i’ =7y and there
exists k€N such that each member of Q_ ~ {Q} has the form (y)*, with ky = —a.
Recalling that ny = (1—n)a, we see that k = n/(n—1), whence n=2=k and
a = —2y. Thus each membeér of @, ~{Z} has the form (— y)? while each member
of @_ ~{Q} has the form (y)2. We want to show that Z has the form (y)!(—37)?
while Q has the form (y)'(3y)* or the form (y)*.

From (1) and (2) we know that Q consists of a points of wexght y and b of
welght 3y, with ay+3by = u(Q) = —2a=4y. Hence a=1 and b=1 or a=4 and
b =0; in either case, Q has the desired form. A simple interchange shows that if some
such Q occurs with @_={Q}, then W admits.a partition § for which &* has the
form (2y)2(—2y)“(—4y), an impossibility since § is nice but not troublesome..

We know that Z consists of ¢ points of weight y, d of weight —v, and e of
weight — 3y, with c=1=e. Now suppose e =2 (résp. d=1) and let 2 denote the

_partition which is obtained from @ by interchanging two points of weight —3y
(resp. one of weight —3y and one of weight —y) from Z with the two points of
weight y from a single member of @_ ~{Q}. Then #*" ={4y, 2y, —2y} U 4, where
A={—6y, 6y} (resp. 4={—4y, 4y}). Thus £ is nice but not troublesome, and the
contradiction implies that.d =0 and e=1, whence ¢ =1and Z has the desired form. .

‘For the proof of 5. 13, it remains to cons1der the case in which U U= 1@,

. 1=j=ss

whence (for all j) each member of @ﬂ has the form (y 4+ B} + o))" for some k €N.
With (1—k)B; = k;(y +a) and o = = n(y+a), we have n(l—k)[il = kjo. Now
for uEu@ﬁ , note that .

@(u 2 =Bl {B; z;é]} J{ o, ﬂ]+2cx o}

with Bc{p;}. If @(u, z) is not nice, then B; = —2a and 2n = k,/(k —1). This
implies k;=2 and n=1, whence y—-O in contradiction of our basic assumption
that v<0 If ;+200<0, then (since @ is a minimal a-partition) Q(u, z) must be
negatively troublesome, whence B;+20 = —a and 3n = k;/(k;—1), an impos-
sibility. Suppose, finally, that §; +20c =0. If Q(u, z) is positively troublesome, then,
B;+20 = a, while negative troublesomeness of Q(u,z) implies —a= —f;—2a.
But we know already that ;= —a, so both poss1b1ht1es imply f; = —a. From
this it follows that n = k;/(k; —1), ‘Whence k;=2, n=2, and 2Q. = {y}. Thus
each member of Q_ has the form (y)? while each member of @, ~{Z} has the form
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'(—y)z The argument of the precedmg paragraph shows that Z has the form
(M(=3y)?', and this completes the proof of 5 13. 8 '

. -O® >l- "%
We turn finally to the case in which condmon C is satisfied.

‘5. 14¢. Each set X€ Q, has the crude Sorm (yy*® (y + a)*®with (a(X) + b(X Ny =
= (1 —b(X))oc and b(X)=2. Of course a(Z)=1.

Proof. With ay+b(y+a) = u(X) = o, the equahty (a+b)y = (l—b)y is
lmmedlate b=2 because y<0<oz Further z2¢Z w1th 4 =y (as part of the stand-
. ing hypotheses) B

5. 15¢. Suppose a(Z) =1 for at least two different members Z, and Z, of @,,
or a(Z,) =2 for some Z5 € &,. Then Q is doubly troublesome, card Q_ =2, vQ_ ={y},
and W admits a nice (nl, wwey Ny)-partition which is neither doubly nor singly troub-
lesome.

Proof In the first instance, let z, € Z, and z, EZZ, and in the second 2y, 2 €Z,,
‘with z{ =y =23 in each case. Let Y be a member of- C:v different from the Z S, and
Y1, ¥2€Y with yi = y+o = pj.

Let #= &(y19 l)(st 22) Whence

= {B;: 151<s}U{ oc}UA
with {2oc}cA<:{a 2a} or A={o, 3a}. In the first case, 20 appears as the weight
of two different members of %, so in neither case is # doubly or singly trouble-
some. On the other hand, £ .is nice and hence troublesome, which can happen
only if B8, = —a for all i (whence € is doubly troublesome) and card @_=2.

Now suppose i €1@._ w1th u #y. Then ' <y by 5.1, whence a—y+u <a.
Since
o G(u, 41)—{—a —oa—u -|-y,a—y+u a},

it follows easlly that a —y+u = 0 or a—y+u’ = —a. Now if a member of Q_,
contains a point of weight <y —a, or two points of weight = y —«, then by interchang-
_ ing these with points of weight y +a in a single .member of (Qa we obtain a nice
'partition whose members have weights < —oa, = —a, =«, and =>a. Since this
is impossible, we conclude that each member of Q_, has the crude form (y —a)(y)
with c€{0, I}. But then (c+d)y —ca = —a, SO c=1 implies y=0. ThlS contra-
diction completes the proof. || ,

5.16¢c. Wis rroublesome

Proof. By 5. 14, W contains at least six points of- welght y+a. By 5.1, w=y
whenever we W W1th w <y+a. Thius W is surely troublesome if y +a= —7v. Sup-
‘pose, on the other hand, that «>2(—1y). Then for each X€@Q,, (a(X)+b(X))>
>2(b(X)—1), whence a(X)>l [t then follows from 5. 15 that W has the form
(»°(y +a) with 7=<0<y+aand ez=3=f, so of course W is troublesome. |

5.17c. If all n{ s have the same valiie n, then n=3; each member of Q_ has the
form (y)" while each member of @, has the form (y)*~ 2(y+oc)2

Proof. For each X¢@, we have a(X)+b(X) =n, whence (by 5. 14)
(1 —b(X)) a=ny and b(X) has the same value for all X€@,. Thus the same is also
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true of a(X), and S. 15 applies to show that —a = ny. But then l—b(X) =—1"
.and the desired conclusions follow. Jj

6. Troublesome sets : Theorems The" results of this' section are based on the'
lemmas of Section 5.

6.1. Theorem. Suppose Wis a wezghted set and ny, ..., n, €N with m=4
and Zn =card W. If all nice (nl,. ,nm)-partltzons of W are troublesome, then

elther W itself is troublesome or all n/s are equal t0 2 and W has the form
(=3p(—y)*t2a(p)4+26 (39 for some yE_]‘ {0} and a, be NU{0}.

Proof. If W admits no nice (n,, ..., n,)-partition, 2. 1 implies that W is troub-
lesome. Suppose, then, that W admits a nice (n,, ..., A,,)-partition, and let' & be a
minimal «-partition of W as described in Section 5. Referring to 5.8, 5. 10, 5. 13,
and 5. 16, we see that W can fail to be troublesome only if @ satisfies the condition
(B).. ByIS 13, the only non-troublesome possibility for this case is: that described
above

It would be interesting to have an intrinsic characterization of those weigh-

" ted sets W and m-tuples (n,, ..., n, such that all nice (n,, ..., n,)-partitions of W
are troublesome. (This is not provided by 6. 1, for a troublesome set may admit
nice partitions which are not troublesome). Relevant information is supplied by
5.64, 5.7a5 5.94,5. 11,,5.12,, 5. 135, 5. 15¢ and 5. 17¢. The picture is complete
for condition (B) and could probably be completed without difficulty for (C), but
the case of (4) seems more complicated. We have a .complete solution only when
all the n;’s have the same value. For m=4 and n=2,.let §(m, n) denote the class
of all weighted sets W of cardinality mn such that all nice n-partitions of W are
troublesome. Let §(m, n) denote the class of all W¢§ (m, n) such that W admits
no_nice n-partition, and for D€{A, B, C} let §,(m, n) denote the class of all

W €3 (m, n) such that for.some o €[ ~ {0} w admxts a minimal q-partition which.
satlsﬁes condition (D). Then ‘

F(m,n) = Fy(m, )UF ,(m, ) UF 5(m, n) UF c(m, n)

The class § ~(m, n) is completely described in 2. 1, and ‘the other classes are dCSCI‘l-
bed in the following result.

6.2. Theorem. Suppose m=4, n>2 and Wisa wetghted set of cardmalzty _
mn. Then

(@) We§ 4(m,n) iff ‘W has the crude form ,
(,y)kn+a(n 2)+bn—1)+c(n— 2)+d(n 1)+e(n 3)+f(n 2)+y(n 4)+h(n 3)+i(n— 2) .
_”(.y_a)a+20+3e+f+4g+2h(v_2a)d+f+h+21(y +ﬂ0)a(y+ﬁl__a)l (?+ﬂb—0t)1

Jor some y€T ~ {0}, a=n,, B; of opposzte szgn from «a but of greater absolute value
(0=j=b), Bo# —2a, 3=k<m, and a,b, ... h, IENU{0} with e=0=n=3,
g>0=>n§_4, h>0:>ni3 qnd one of the fqllowmg Jour conditions satisfied: -

(a) O=e=f=h=i, a=1; o

(a;) O=a=g=h=i, bx=l, e+f=1;

(a;) O=d=b=g=h=i, c+d=l, e+f=2;
(as) O=a=b=e=f=

0, c+d=1, g+h+i=1;
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(b)  WeFg(m, n) iff n=2 and W has the form (—3y)'(—y)*+22(y)3+2% or
the form (=3NL(=p)**+22(y)*+2(3y)! for some yET ~{0} and a, be NU{0}.

() Wec(m,n) iff n=3 and W has the- form (y—oc)6+2"(y)5" 6+a(n=2)-+bn
for some y€L' ~{0}, a=ny, and a,beNU{0}. .

Proof. It is tedious but not difficult to verify that if W has one of the stated
forms, then W is a member of the appropriate class &, (m, n). This task is left to
the reader. That the members of §z(m, n) and §.(m, n). must have the indicated
forms is an almost immediate consequence of 5. 13 and 5. 17 respectively, with
a slight change of notation in the latter case and use of 5.15 to show that card

=2 when a>0. This takes care of (b) and (c). For (a) we use 5. 12, but some
additional argument is necessary.

Let' Q be as in 5. 12, whence @, consists of k sets of the form ()", a sets of
the crude form (i) (for various B;§{—a, —2a}), b sets of the form (ii) (for various
B; # —w), ¢ sets of the crude form (iii), ..., i sets of the crude form ( ix), where
.3=k<m and the designations (i)...(ix) ,refer to the statement of 5. 12. From 5. 12
it follows that if g+h+i=1, then g+h+i =1, a=b=e=f=0, and c+d=1.
And e+f=2 in any case, for if e+f=3 a simple interchange leads from & to anot-
her minimal a-partition of W for which g+A+i=1 and e+f=1, in contradiction
of 5.12. Note also that if a=1, then a=1 and e=f=g=h=i=0, for otherwise
a simple interchange leads from @ to another minimal a-partition one of whose
members has a crude form other than those indicated in 5. 12. We now see further
that if =1, then e+f=1, for otherwise an interchange leads from @ to another
minimal a-partition for which a=1 and e+f=1. A review of the assembled facts
shows that one of the four conditions (a,) —(as) must be satisfied. [J-

We next discuss weighted sets all of whose nice n-partitions are doubly or
singly troublesome. While the discussion could be based on 6. 2, it will be simpler
to apply the relevant lemmas.

6.3. Theorem. Suppose m=4, n=2, and W is a wezghled set of cardmalzty
mn which admits a nice n-partition. T hen all nice n-partitions of W are doubly trouble-
some " iff W. has.the crude form (y)™+b@-+ct-1) (y —q)2b(y —2a)° for some
yeL ~{0}, a=ny, and a, b, c€ NU{0} such that a+b+c = m and one of the fol-
Jowing additional restrictions is satisfied: o

n=2; 3=g<m me{4,5), a=m-3,;

~ and e=1. 7 bpZ2 and c=1

n=3;  3=a<m; b=0 and c=1 or b€{l,2} and c=0;

nz4; a=m—1; b=0 and c—l or b=1 and c=0."

Proof. The stated crude form for W 18 equlvalent to W’s being the union
of a sets of the form (), b of the crude form (y)*~2(y— oz)2 and ¢ of the form

(r-t(y —2a)t. If a, b, and ¢ are subject to the restrictions given above, it can be -

‘verified that all nice n-partitions of W are doubly troublesome. .

Now suppose conversely that all nice n-partitions of W are doubly trouble-
- some, and let @ be a minimal «-partition of W. From 5. 15 it follows that & satis-
fies condmon (A) or condition (B) of Section 5, whence 5. 12, and 5. 13, will apply.
Since @ is doubly troublesome, the form- (y)! (3):)1 ‘(for a member of @) of 5.13
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is eliminated, as are all the forms mentioned in 5. 12 except for (iii) and (iv). Thus
"if 5.12 holds, W clearly has the desired form with 3 =a<m (but ignoring, for the.
moment, the restrictions on b and ¢). And with the aid of a simple substitution (the- ~
— 9 of 5.13 being the y of 6.3), W as described under 5. 13 is seen to have one.
of the two forms listed above for n=2. It remains only to justify the restrlct1ons
on b and c.

If c=2, we may interchange two points of weight y —2a in n@_a with two- .
points of weight y in a single member of @, to obtain from @ a nice r-partition
A of W for which #*'>{—3x, a}, contradicting the assumption that all nice n--
partitions of W are doubly troublesome. If n=3 and c=1=b, a similar contra-
diction arises from an interchange involving one point of welght y—2a, two of”
weight y —a, and three of weight y. If n=3 and b=3, then 1nterchangmg the two
points of weight y —a« in one member of @_, with points of weight y in two other-
members of @_, leads to a nice n-partition § with > {—2a, oc} again an im-
possibility. Finally, if n=3 and b=2, a contradictory part1t'10n is obtained in a
-similar way by choosing the two points of weight y from a smgle member of @_,..
The stated restrictions have now been justified. ||

‘Note that if #=4 and all nice n-partitions of W are. doubly troublesome .then.
all are singly troublesome.

6.4. Theorem. Suppose m=4, n=2, and W is a weighted set Aof- cardinality
 mn which admits a nice n-partition. Then all nice n-partitions of W are singly trouble-
some_iff W has one of the following forms for some y€I ~{0}, a=ny, 6 and ¢ of "
opposite sign from a but |6|=|a| and |g| =2|a|:

=1y —e)'; (Y2 (r—a) (r—0); ()™ 2(y—a);
(=3 =) (only for n=3);
GNLGY™4(—3)*  (only for n=2).

Proof. Again, case (C) is eliminated by 5. 15. Under 5. 12,, the forms (vii),.
(viii) and (ix) are eliminated by the fact that card @_ = 1 (since @ is singly- trouble-
~some). Combining the representations of (i) and (vi) and of (ii) and (1v), we see-
that W has one of the first four forms listed above.

Under 5.13g, W is seen to have the last form listed. Finally, it can be veri--
fied that if W has one of the five stated forms, then all nice n-partitions of W are-
singly troublesome. [}

6. 5. Corollary Suppose m=4, n=2, and W is a wezghted set of cardmalzty:
mn which admits a nice n-partition. Then all nice n-partitions of W are t-singly troub-- -
lesome (for t€ N) iff W has one of the following forms for some y €T ~{0}:

(= A+ Dm); =2y =)' (y —tny)*;
Oy"=3(y—ny)*  (only for n=3, 1=2);
G ER (only for n=2, 1=1).

With the aid of 2. 1, 6 3, and 6. 5 it is possible to glve a detaﬂed descr1pt1on,
of sets of the form aff, (aff (aff, X )) By way of illustration, we prove
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*6.6. Theorem. Suppose. X is an affinely independent subset of E and card X =
3 =Imn, where I, m,n€¢ N ~ {1} Then the cardinality of the set aﬂ’,,,,,,XwaFf,(a w(aff, X))
is eqiial to c(l, m,n) as given by the following formulae:

when n=3 and mz=4, c(l, m,n)=Imn(imn+1);
when n=3 and m=3," c(l,3,n) =—;—ln(9(ln)2+9ln+8);

_when nz3 and m=2, e(,2n) =InQln+3);

when n=2 and m=3, c(l, m, 2)y=23m- 2+(2[m)2 —f, where f=0 when im
1 _

2Im -
= when Im is odd;
2\ Im

L4\ [4l—1
- whenn= 2and m=2, c(},2,2)=2%4- 2+ 2(( _2>+4l(4[_.1>>——g, where

' 4] 41—1
_=—280 when 1=2, g= 0 when.  is even but >2, and g= (21>+4l<21_2.>
when | is odd.

Proof. Let 4 denote the set of all functions £ on. X to ® such that 2 (x=1,

and for each £€A4 let X, dénote the weighted set {(x, &x):x€X } Then c(l m, n)
is equal to card B+card C, where B is the set of all £¢ A4 such that X, admits no
mice n-partition and C is the set of all fEA ~'B such that for each mce n-partltlon
2P of X, the weighted set 2* admits no nice m-partition. From 2. 1 and 3. 5 it fol- *
“lows that

is even and f =

' lmh n=3 .
22m=2- o n=2 and /m is even
card B = o m when
' 22im- 2-—( > n=2 and /m is odd.
) Im _ :
When mZ3 the set C is determmed by 6.5 (w1th t=m—1) in conjunction "

with 2. 1, whence it is seen that

mé4 or n=2

. Imn + lmn (imn—1 ‘
= o /Imn
card. C Imn+-Imn(Imn—1) +( 3 ) when m=3 and n=3.

When m =2, the set C is determlned by 6.3 in conjunction with 2. 1. For
n=3, we see that £€C iff X, has the form (y)?"-2((1 —n)y)2. or the form
(9)?=1((1 = 2n)y)* (where y—lf(2ln—2)) and it follows that .

dC 2In\. (2ln
car =\ 2 + .1'..

When m=2=n, the above con51deratxons show that £€C iff X, has the form
(p)H-28 (— y)z” with b odd, b/, and 1=b=2/-1, or the crude form (y)¢-2e-t
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» (- 'y)” (— 3)))1 with b even, b;él—l and 0=b=2/—2 or (only when also /=2)
the form (y)® ¢ —y)* (—3y)!, where in each case the value of y is determined by
the fact that u(X) =1. Thus for /=3, . .

4/ Al 4/ -1
cardC=% 2 + E 2

where * and ” indicate the approprlate range and restrlctlons for b, while for /= 2

7
* there must be added a term equal to 8<3> 280. It can be verified that

. ! 4] - (41 )
cardC:Z’ 4i—2 + 4] 4i—4 +g,

where g is as described in the statement of 6. 6.
A review of the assembled facts shows that the value of ¢(l, m, n) is lndeed

given by the stated formulae. I
We conclude with the following table:

~

-1 m n  c({,mn) m n v c(l,m,n)
2 2 2 688 3 2 2 3148
2 2 3 90 3 2 3 189
2 3 2 1168 3 3 2 41550 -
2 3 3 3 3 3

1158 13681

( Received April 17, 1962)
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Semi-Carleman operators*

By M. SCHREIBER in New York (N.Y:, U.S.A)

1. VoN NEUMANN [1] showed in 1935 that a self-adjoint operator on Hllbert
space may be represented on L,(— s, «; dx) as an integral operator of Carleman
" type if and only if O is a limit point of 1ts spectrum. In this note we show that this
result survives in the non-self-adjoint case. In so doing we are lead to ‘the consi-
deration of what we shall call semi-Carleman integral operators. They are opera-
tors T on Lz(—oo o; dx), given by a kernel K(x, y) by the relation '

- Tf(x) = [ Ko NF0),
such that

) . le(x,y)desMZ(y)w, ae. in y.

~According to standard usage (see [2, p. 397]) Carleman integral operators have
symmetric kernels (K(y, x)=K(x, y)). We drop the requirement of symmetry.
There is a natural choice of domain for such an operator making it closed and
densely defined. We shall prove that such operators always have the point 0 as a
limit point of their spectra, extending (and simplifying the proof of) [I, Theorem
IV], and we shall obtain also a converse to this statement.
We are indebted to Dr. L. Gross for a number of interesting and helpful con-
versations on this subject.
- 2. We shall say that 4 complex number A is a limit point of the spectrum
of an operator T if there exist unit vectors x, (n=1,2,...) which converge weakly
to 0 and such, that

(T =2)x,~0.

(Cf. 15, ne 133].) Suppose that T is closed and densely defined, and that 0 is a
limit point of its spectrum (Wthh we are implicitly assuming is not empty) We
know that we may express T in the form T= U(T"‘T)I/2 where (T*T)'2 is self-
adjoint and U is a partial isometry whose initial domain is the closure of the range
of (I*T)1/2 [3, p. 53], and we claim that 0 is a limit point of (7*T)'/2, For if we have
unit vectors x, tending weakly to O such that Tx,—~0 then [|(T*T)'2x,| =
=||U(T*T)"2x,| = Tx,| =0, so that (T*T)'/2x,—~0, as required. Hence by the

*) This research was partially supported by the National Science Foundation under Grant
No. NSF-G14520 while the author was a Temporary Member of the Institute of Mathematical
Sciences of New York University, and partlal]y supported by the Natlonal Science Foundationm
under Grant No. NSF-G136.
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von Neumann theorem {l, Theorem III] (T*T)!? is unitarily equivalent to

an operator H of Carleman type on L,(— e, «;dx), and therefore T may be .

represented as a partial isometry times a Carleman operator. We can in fact say
more, by following voN NEUMANN’s method adapted to,the present (non-self-
adjoint) circumstances. By [1, Theorem I] there exists a self-adjomt operator X of
arbitrarily small Hilbert—Schmidt norm such that 4 = (T*T)'24+-X is a pure
point operator (in the sense that it has a complete orthonormal set of eigenvectors)
having 0 as a limit point of its spectrum. Thus there exists a complete orthonormal
set_{gn}az1 of vectors and real numbers {2.}u=1 (not necessarily distinct) such

' that Ap,=2A,¢, (n=1,2, ...). We know that 0 is a limit point of {An}n=1:
If it happens that 2 [A4}2 < oo, then, wri‘ting Y,=Up,, we may choose a basis

{Pun=1 Of Ly(— oo, oo} dx) and, defining the unitary operator W by We,=g,,
we write l//,, Wiy, and finally we deﬁne K(x,y)= Z'/Inllx,,(x) (p,,(y) Since U is not

unitary, but only the partial isometry from [Range (T*T)'?} to [Range (T)], we
cannot conclude that the family {i,} (and the same applies to {w,,}_) is orthonormal.

Allwe know s [l =¥, = Ug,|| = 1. Nevertheless [[5, (%, (0) i ()5n(3) dxdy=

=8, ¥, |> = &,n, which is to say that the functions F,(x, y) = w,,(x)(p,,(y) are ortho-
gonal and of norm =1 on the plane. Hence the series defining X is L, convergent
on the plane and [[IKCx,y)dxdy=(K, K)=(Z2F,s ZtaF)= SIPIF)?=
= >'|4,|%. Hence K is _é Hilbert—Schmidt kernel, and the operator B it determines
has the. property Bp, =2, That is, B=W{UA} W-!. (This argument, proving
that UA has a representation on L,(— o, «)as a Hilbert—Schmidt integral-oper-
ator, is slightly different from the usual argument (see [4, p. 35]) because of the
perturbation X, so that U is not necessarily isometric on the range of A =(T*T)/2 4+ X
Note that the argument shows that such a representation is achieved no matter what
basis {p,} is chosen in L,(— oo, «).) Hence WIW-1= B— WUXW-!. Now UX
is of Hilbert—Schmidt type since X is (see [5, p. 157]), so that, as pointed out above,
WUXW-! is an integral operator with a Hilbert—Schmidt kernel L. Hence WTW-1
is an integral operator of Hilbert—Schmidt type with. (nonsymmetric) kernel K — L.
If 34,2 =<, and we know only that {4,},—: has 0 as a limit point, then we
employ the following rearrangement of {4,} (in which we are following voN NEu-

MANN exactly). Let M,,,Jé% (v=1, 2, ...), and let {4, } be‘the remaining members

of {1 Set Iy k)‘= Mpe-say1y for k=2,3,.., and I(v,1)=n,. Then
1 : .

A1, k)|_2k G 1)_2k 5 (k=2,3,...),50 that,ZM,(v pli<eforallv=1,2,.... |

Renumber the system so that v=0, +1, £2,.. Deﬁne Ugp,=y,. Choose a ba-

sis of uniformly bounded functions {6,,};,"’ i of L2 (0,1; dx) and define a unitary

operator W, by Wl(p,, @, and write l//,, Wi,. Now define, for v=20, £1,
+2, .., :

f =), v=r=v41
q)‘v,n(t) - {0 R otherWiSe.
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Then {®, ,} isa complete uniformly bounded orthonormal system in L, (— oo, = ;dXx)
. and the map V: L,(0, 1;dx)—~L,(— =, ==; dx) defined as

: : V @i, =D
is unitary. Let in,k= Vl;,(v.k), and define kernels K, by the relation

@ Ko, 9= 2 i a0 W) @, 1 00).

Now K, is 'square integrable on the strip (v=y=v+1, — e <x <o) because for
each fixed v, 3|4, 1)|2 <<= (see above), so K, defines a Hilbert—Schmidt integral
operator T, from L,(v,v+1;dx) to Lz(—oo =o; dx), with the property that
7,0, A,(v oY,k 1f we now write - .

3) o K(x,y) =-§-Kv(x, »)

as we may since the summands are .supported on disjoint strips, we have a kernel
defined -on the whole plane which defines an operator S such that S®, , =1, )W, &
for all v,k. S is densely defined, since’ @ contains the linear span of the basis
{D,,}= {Vquo,(v k), UA is defined on the linear span of the basis {p;,i}=
={p,}, and we have clearly

VWL UAI(V W) = |
on ‘these dense sets. Now |K(x,»)|*=> |K.(x,»)?, fl](‘v(x, »Edx =
= 3 i 104G <= for a.e. y, and for ‘each fixed 3, 3 [IK,(x, )| ==

= |IK (x, 'y)lzdv where vo=y=v,+1, so that f[K(A WN|*dx<e for a.e. y.
Thus UA has a representation on L,(— s, «o; dx) as .a semi-Carleman operator.
To summarize; we have T = U[(T* )‘/2+X] UX = UA—-UX, where X
is self-adjoint of Hilbert—Schmidt type, and U4 is representable on L,(— oo, o3 dx)
as the semi-Carleman operator S above. Now, just as before, UX goes over by the
same representation on L,(—so, «; dx) (i. €., VW,) into an integral operator of
Hilbert—Schmidt type. Hence, upon adding the kernels, we arrive at the following

Theorem 1. If T is closed, & is dense, and 0 is a limit point of the spectrum
of T, then' T may be represented on L,(— oo, ==; dx) by a semi-Carleman mfegral ,
opPrator ’

We have moted above that operators of Hilbert—Schmidt type have kernels
no matter what representation on L, is chosen, and this is true even if /, is chosen
as the representation space (here the kernel is the matrix). We do not assert this
invariance of representation for the more general operators considered in Theo-
rem 1. Indeed, every bounded operator 4 has a representation on /, as a semi-
Carleman operator, where the kernel is the matrix. For, denoting by {x,}i--
the usual basis in /,, T has the matrlx representation ((Tx,,, Y,,,)) and Zl(Tx,,,x,,,)l

= >'|(x,, T*x, 2 =T* ,,,||2<||T||2 But it 1s not true that every bounded oper-
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ator has a semi-Carleman representation on L,. The identity operator may be
" offered as a counterexample (as may be verified just as for Hilbert—Schmidt oper-
ators, but we shall not do it that way since the .same conclusion will follow from
our Theorem 2 below). Thus it is essentla[ that we employ a non-atomic measure
space in Theorem 1.

3. Suppose we are given a measurable function K(x, y) deﬁned on the whole
plane and satisfying the semi- Carleman condmon (1) Let us wrlte (w1th M as
defined in (1))

D= fE Lz‘(— o0, o} dx) ‘ j Mx)|f(x)] dx< oo}.

Let o, —-{x|M(x)<n} (n-l 2,..) and let aCq, be an arbitrary measurable
set of finite positive measure. Then the characteristic function of  is in €. Sup- .

poseJ gfdx =0 for all f¢%. Then fgdx_O, so that g(x)=0 for a. e. x€o,. But

the complemenf of U o,, has measure 0, whence g(x)=0 for a. e. x. Hence ® is .
dense in L,(— o, e; dx). (This is essentlally the argument used in [2, p. 398] for
Carleman operators, and we have included it for the sake of comp]eteness) If f¢8
then

S G [ o= [[ vzt sy 1762y [ e e, 91 1K G, 1
= [Javaz1 /117G (1K G 2 ) ™ ([ 1K D) =

= [J avdz1 101110 | MOIM @ = | [ 1700 MG df < e

Hence the operator. T given by (TH(x) = [K(x Yf(y)dy for fe® is a denselyA
defined semi-Carleman operator. Let 0, = {x|0<x<l M (x)<n} By (1) the measure
of U,q, is 1, so there exists 7, such that 0 <measure of o,,=1. Then

] ju«x,y)idedy— Jar. [|K(x,y>|2dx—JM(y)z dy=n3,
"o' %o %o .

SO that we may regard K as an element of Lz((— oo, oo)><a ) and K*(x P =K(y, x)
_ asanelement of Ly(g,, X (— oo, «)). As such, K and K* define operators S: L,(0,,) -~
— Ly(— o0, o) and S*: LZ(—oo =) —+ L,(a,,), respectively, of Hilbert—Schmidt type,
with N(S)=n,, N(S*)=ny, where N denotes the Hilbert—Schmidt norm. Let

{(p,,},, 1 be a basis in' L,(o,). Then
V(S = S s+ gl =
=Z (S*Sn (Pn)a =2 l|S<Pn||(—~ »=N(SY =ng,

where the subscripts indicate the rorm employed Hence (S*S)!2: L,(q,,) ~L,(0,,)

is a self—adJomf Hilbert—Schmidt operator. Since Hilbert—Schmidt operators. are
completely continuous (see [4, p. 32]) we know there exists a set {$n}n=1 of unit
vectors in L,(a,,), which are orthogonal (because (S*S$)1/2 is self-ad]omt) such
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that (S*S)2y, -0 as n—. Let U: [Range (S*S)!/2] - [Range S] be the partial
isometry in the polar decomposition of S: S=U(S*S)"2. Then [ SY,l-(o =) =
= U(S* ) 2l (—w, «p =(S* )2l 5,,, =0, 50 SY, 0 in Ly(= oo, ). Define
functions 0, by .

ang

- )“{wn(x) X€ 0y,

) XQU"O.

Then 6, is an orthonormal system in Lz('—— o, ). We have 6,€%D for all ﬁ, for

[ M@0, dx= | MG W) dx= g [ Wa (o)l dx = ngalla,, =no < o».

‘Further, we have.

70,00 = [ K(x, 0,0 dy = J K00 dy=150109,

"0

so 76, = Sy,—0 in LZ(—oo =), Since 6, converges weakly to 0, so we have
proved

Theorem 2. An integral operator of sémi—Carleman type has O as a limit point
of its spectrum (which is thereby, in particular, non-empty ).

From this it follows, as we mentioned earlier, that the identity operator cannot
be represented as a semi-Carleman operator.

4. To complete the circle and achieve a characterization of 'operators of this
type we have to show that semi-Carleman operators are closed. Let T be a semi-
" Carleman operator with kernel K actmg on the domain & defined above, ‘and write

{f‘ K(x, ) f(y)dy € Ly(— o, oo) We have seen above that § €. One may
verlfy that T* is determined by the kernel K*(x, y) K(y, x) acting on &* =

{fl [K*(x y)f(y)dyELz} and that T** is determined by K acting on & (the
steps in the verification are the same, ruutatis mutandis, as in [2, Theorem 10. 1,
p- 398] and we omit them). Hence T has the closed extension T**, and if we adopt
& for the domain of K at the outset then the semi-Carleman operator it deter-
mines is already closed.” With this understanding, we ‘have now shown that an
- operator T is representable on L,(— o, ) as a semi-Carleman opérator if and

only if T is closed, densely defined, and has O as a limit point of its spectrum.
(Any partial isometry or projection with infinite-dimensional null space satisfies

the above criterion, and it is easy to see what the representation is for such operators.
For a partral isometry U, we have formulae (2) and (3) above, where 4, \,=0,
k=23, 4 y=1and ®, , ¥, correspond to bases for the initial and final

spaces of U. Thus K(x,y)= Z’ ¥, (ND, (%), with the vt summand supported
(and square integrable) on (v5y5v+l —co=<x=<o), v.=0, £1, +2,.... For

a projection P the representation is even simpler because then k —(I)v 1, SO P
is represented as the direct sum (on @ L,(v=x=v+1)) of operators of rank 1).
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On a pair of commutative contractions

By T. ANDO in Bloomington (Indiana, U. S. A.)

1. Introduction

Let T be a contraction on a Hilbert space §, i.e. |T]|=1. A unitary (resp.
isometric) operator U is called a unitary (resp. isometric) dilation of T if. U acts
on a Hilbert space ® containing § as a subspace, and

() B C Tf=PUf (f€9) n=1,2,...
where P is the orthogonal projection from & onto £. Sz.-NAGY [3, 4] proved the

existence of a unitary dilation of any contraction. In this paper we shall concern
ourselves with a pair of commutative contractions and prove the following theorem.

Theorem. Let Ty, T, be a pair of commutative contractions. Then there exists
a pair of commutative unitary- operators U,, U, on a Hilbert space & . contammg H
as a ‘subspace such that

2 : TITPf=PUNUY (fe9; nl,n2=1.2. s
where P is the orthogonal projection from & onto 9. .

This glves a partial answer to a problem raised by Sz.-NAGY [5] 1n which a
finite number of commutative contractions comes into question.
The author would like to thank Professor Sz.-NAGY for his valuable suggestions.

2. Reduction of the problem

First of all, if the theorem is proved, replacing the word ““unitary” by ““isometric”,
. the unitary operators in question can be readily obtained, because a pair of commuta-
tive isometries can be extended to a pair of commutative unitary operators on a
larger Hilbert space by I1o’s theorem [2] (see also BREHMER [1]). Secondly, if U, , U,
are isometries on £ 8 such that

@) - | Tf=PUf (fed; i=1,2) . -
and _ -
@ . URePc RO  (=1,2)

then the condition (2) is necessarily satisfied. Thus it sufﬁces to prove the following
proposition- instead of the theorem..
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_ For any pair of commutative contractions T, T, there exists a patr ‘of commutative-
isometries U, U, with the propertles (3) and (4). ’ »

3. Proof- -

For the purpose, SCHAFFER’S construction [6] is used in the following modified °
form; R is the orthogonal sum of countably many copies of §, indexed by all non-
" negative integers: the elements of & are the sequences ¢ ={f,}o of elements £, €9-

with norm || ¢|? = Z’ I f,.]l2 £ isembedded in & by identifying f€ with the sequence:

{f.} where f, —f and f,=0 for n=0. Then operators V; (i=1, 2) are defined as.
follows: {g,} =V {f,} if and only if go=T,f,, g, = Zfo, g,=0 and g,=f,_, for:
n=>2 where Z;=(I—T%*T)". Since ' '

©) _ , IIZfIIZ"IIfII2~I|Tf|I2 (fed; i=1, 2)

from the definitions of Vl, V, it is readily seen that they are 1sometr1es with the:_
: propertles (3) and (4) for V, instead of U;. Moreover from (5) it follows that

NZ T fIPHIZ S = ||T1f||2—||T2T1fI| IS =T A1 = llfllz—IITlefll2

and 51m1]arly :
IIZszfll2 + IIvaII2 = 12— 17, T2 /1%

hence the commutatlvxty of T1 with T, implies that
(6 : CNZLT I+ IZ 117 = Ille;fll,2+llszl|2~

~ Now consider the orthogonal sum & of four copies of §,i.e. & = DOHOH D
®9H and lét M, and 9)22 be the subspace consxstmg of all the elements of the'

form
{Z,T:£,0, 2,1, 0} (fE 9)
{Z,T,1,0, Z,f, 0} (fE 9),

respectlvely From the relation (6) it follows that there exists an 1sometry W with-
domain M, ‘and range M, wich assigns {Z,T,f,0, Z,f,0} to {2,710, Z,f,0}
(f€9). If dim(GaM,) = dim (BOM,), W can be extended to a unitary operator
- on ®&. This restriction on dimensions is actually guaranteed; in fact, in case § is
‘finite dimensional, it follows from the fact dim (t,) =dim (,), and in the contrary
case, dim ()=dim (@)=dim (BOM,)=dim (H) (i=1, 2), because each GOM;
contains the subspace, isomorphic to 9, cons1st1ng of all the elements of the form.
{0, £, 0,0} (f€9). The unitary operator obtained is denoted by the same symbol W
Now & can be identified with the orthogonal sum

and

v
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‘where each @, is'a copy of @, under the corfespondence

{fO’fI:fZ’ --j,f;n }"’{fo, {fla'fZ’fB,fa-}’ L) {f4n—3’f4n—2,f4n—lsf4n}, }
In the sequel, this identification will always be in mind. = '

Let W be the operator on { defined as follows: {g,} =W{f,} if and only if

" .&o=/o anq j{g4n—3 s 8an—25 8an—15 &an} = W{f4n—3 s Jan—25Fin-1sfan}  (1>0).
Then the unitarity of W follows from the unitarity of ¥ on G, and both W and
- W#* have the property (4). Finally the isometries Uy, Uz in question are defined by -

"(7) X e ) X Ul —le and U2 —Vzw*

Since all W W*,V, and V, are isometries with the property (4), U,, U, are isometries
" with the property (4). Obviously each U; has the property (3). It remains only to
‘prove the commutativity of U; with U2. For any {f,} €& putting

{2 = UlUg {fi}= Wvazw*{ﬁ-}

and © o {h=UU{L} =V, WEWY (£ =V,V, {f,.},
simple calculations using the definitions of W and U,’s show that
‘ go=T1T,fs

{g1>gz:83:g4} = W{Z T3£5,90,2Z, 15,0}
gn.=f;n-4 (n>4)
ho=T2T1f0

{h1,h2:l?3: h4} = {Zlean 0, Zlf030}

. ho=fo-a  (0=4).
.'Smce T,T,=T,T, and
W{Z,T2fo,0, Z2f5,0} = {Z:T1 5.0, Z1 o, 0}

by the deﬁmtxon of W, it follows that U UL {4 =00 {/}. Thus U, commutes
‘with Uz

:and
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Matrices of normal extensions of subnormal operators

By .T. ANDO in Bloomington (Indiana, U.S. A.)

1. A (bounded) operator T on a Hilbert space © is called subnormal in case
there exists a normal operator N, called a normal extension of T, acting on a Hilbert
space & containing 9 as a subspace such that

1 ©ONf=Tf (fEDH):

A characterization of subnormality in terms of T has been obtained by HaLMOs
‘[2] and Bram [1]; T is subnormal if and only if

) zj (T'f;, Tif) =0

for every finite sequence (f;) in 9. Their construction of the space &, however,
depends heavily on T. It seems natural to raise a problem whether & can be taken
to be a fixed Hilbert space, independent of T as in SCHAFFER’s construction [4] for
a unitary dilation of a contraction, and whether N can be constructed on & along
a definite line from 7. In this paper this problem will be settled (Theorem 1), producing
another characterization of subnormality (Theorem 2). At the same time a discussion
concerning a commutative family of a subnormal operators will be made (Theorem 3).

Introduction of some notations will simplify later discussions. For any
positive integer n, 9" staids for the orthogonal sum of n copies of 9, indexed .
by 0,1,2,...,n—1. In other words,. the elements of Sg" are the n-sequences -¢ =

—{fo,fl, s Sue1} of elements f;€9 with norm ||(p|]2—2 £l = is similarly

defined. In case n>m, SZ)'” is embedded 1nto D" by 1dent1fy1ng {fosSis eorsSme1} EH™
with {fo, /15 ---sSm—-105 .., 0, 0} €H" § is always.identified with H'. ‘An operator
© M on @ (I1=n=o)can be associated with a square n-rowed matrix each of whose

entries is an operator on . More precisely, if M(f, j) stands for the (i, j) th entry of
"M, {g;}= M{f,} means that -

n-1 .
g= .Z(') MG, j)f; O=i=n-1).
. J= . .
The requirement that § is invariant under M and the restriction of M to § coincides

with T can be expressed by the requirement that M(0,0)=T and M (1 0) 0 for
all i=0. Fmally we shall formulate a 51mple Lemma.

- Lemma 1. If T is subnormal and V is an operator from $ into another Hilbert B

'space WM such that V¥VT =T, then VTV* is subnormal on .
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In fact, since (VTV*)k: VT V* (k=1,2,...) by assumption, for every finite
sequence (¢,) in M , :

z ((VT'V*)"%, VTV g)= 3 (VT'V=g;, VIV g) =
—Z(V*VT‘V*q)J,TJV*(p) Z(T V*(pJ,TJV*(p)ZO

(the last inequality follows from (2)) hence the criterion (2) yields the subnormality
of VTV*,

2. First of all, if N is a normal extension of 7, from (1) and the normality
of N it follows that

3 } NN*f=N*Nf=N*Tf,
@ o N, =(T*,8)  (f8€9),
) o T T =INA = INf = T

and moreover on account of BraM’s theorem {1} the norm ||N|| may be assumed
to be equal to | T||.

(5) is equivalent to the positive deﬁmteness of T*T —TT*Let S=(T*T— TT*),
then . '

(6) ' o ANE=THA =057, (feD),
becalse by (4) and (5)

AN* =T*)f|2 = IN*f]|2 =2 Re(N*f, T*f) + | T*f||* = ITA12 = T*f 12 = 1571

From this it follows that Sf=0 is equivalent to N*f=T*f, and the latter, in turn,
is equivalent to the fact that N*fis contained in £). Now each element @ in +N*$g

can be written in the form
o =f+N*-T*)g with fg€9

. and this decomposition is unique, because of the orthbgonality of © with
(N* —T*)$ by (4), consequently - . '

0 ‘ Il = /12 + (N* — T*)g] 2.

Combining (7) with (6), it follows that the operator V which assigns {f, Sg} to ¢
maps isometrically §+N*9 into D2, and can be extended isometrically on the
‘closure & of D +N*9. On the other hand, € is invariant under N because by (2)

N(@+N*@)cT@+N*T\wc@+N*9

Therefore the restriction M of the normal operator N to the invariant subspace
& is subnormal with norm equal to | T|| by the definition of subnormality. Since
cledrly V*VM =M, Lemma 1 yields the subnormallty of T =VMV* and the norm
IT| is equal to | T|.

In order to obtain the matrix of T on 2 it sufﬁces to calculate T{/, Sg}
(f; g€9), because V*{0, i} =0 whenever S$*h(=Sh)=0 and the orthogonal comple-
ment of the null space of S coincides with the closure of the range of S. To this
effect, consider the densely defined operator S—!, called the partial inverse of S,
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such that S— 15‘ P and S—!(I— P)=0 where P denotes the orthogonal projection
from $ onto the closure of the range of S. From (3) and the definition of V it follows

that
' T{f Sg} = VN(f+(N* =T*)g) =
= V(Tf+(T*T—TT*)g +(N* — T*) Tg) = {Tf+ S, STg)
T S

0STS-1
Jfortiori STS—1 is bounded. The bounded. extension of ST'S—1 on $ will be denoted
by the same symbol. Moreover, since N*f¢$ implies N*Tf = NN*/¢ D by (3), it
follows that Sf=0 implies STf=0, i.e. ST=STP=STS~ LS.

Summing up, if T is subnormal, then T*T —TT* is positive definite, STS~ !

T S

0 STS—1>‘ on $? is subnormal A
. ‘with norm equal to || 7). This can be further generalized as follows: -

Lemma 2. Let T be subnormal and let R,,, S, and T, be defined by ‘the followmg
" recurrent formulas:

and this, in turn, means that the matrix in question is given by , a

is bounded and ST = STS~1-S, and the oper,ator‘(

R0:S0=09 TO‘_:T, .
Ro=SEs 4TS r Tyt —TuorTior, Sa=RE, To=S:To1S7'  (n=1,2,...)
Then, in each step, R, is positive definite, T, is bounded and S,T,_,=T,S,, and the
operator N, on 9" with the entries N,(i,)=T; (0=i=n—1), NG, i+1)=S;,,
O=i=n— 2) N,,(I D=0 ( for all other indices ), is subnormal with norm equal to
1.

Proof by induction. The assertions for n=1 have been just proved above.
Suppose that the assertions on R;, S; and T; (0=i=n—1) and on N, have been
proved. On account of the arguments preceding this lemma, N3N, —N, N* is positive .
definite, WN, W—1 is bounded, where W= (N,’.kN —N,N?* and"W ! is its partial

N, W
inverse, and WN =WN,W-'W and the operator 0 WN,W-!

sum " G H" is subnormal with norm equal to [N,| =|T]. Puttmg N*N* =A and
N,N ¥ =B, simple calculations show that

on the orthogonal

AG i—-1)=8T,_, (I=i=n—1),
CA@, D) =SE4TIT; O=i=n-1),
AW i+ D) =TS O=i=n—-2),
- A(G.j) =0 (for all other mdlces)
and similarly : ,
- BG,i—1). =TS, C(I=isn-1), .
BG, ) =TT +S%, ~ (O=i=n=2),
B(i,i+1)  =SuaTia (O=i=n-2),

Bn—1,n—1)=T,_ 1T.. 1 o
B(i, ) =0 _ _ (for all other indices).
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Since, by assumption, - ' .
: S-T,~_1=T-S- ' (I=i=n-1),

S?+T7 ¥+ St O=i=n-2),
‘all the entries of NIN, — N, N} are equal to 0 except the (n—1, n—1)th, which is
equal to S2 ,+ Tk _1T —T,_1T¥ . = R, by definition. Hence the positive

definiteness of NiN,—N Nﬁ implies the positive definiteness of R,. Slmllarly all

the entries of WN, W1 are equal to 0 except the (n—1, n—1) th which is equal

to S,T,.,Si1=T, by definition and is bounded. Moreover WN,=WN,W~-1.W

implies S,7,_,=7,S,. Finally considering the operator V, with norm one, from

‘@ ?’b 1nt0 %n+1 deﬁned by V{{f03f19 . ’f;l 1} {gO’ 815+ 9gn 1}} - {f0=f17
n—-1>8n-15>

v W N, W ; N, W .

o wN,w-1) =\ o wN,w-1) 24 R =V g w1 )Y
hence by Lemma 1 N, is also subnormal with norm equal t0 [Nyl =T Thus
induction is complete.

Inspecting the above proof, from the definitions of R,, S, and T,, and of N,
and from the relations S,7,_,=T,S, (n=1,2,...), it follows.

®) CINRapl = Nl (pE$Y)

where, on the right side, ¢ is considered as an element of §+!.
Now the matrix representation of a normal extension of T is near at hand,
- using R,, S, and T, in Lemma 2.

Theorem 1. If T is subnormal, the operator N on = with the entries N(i, i) =T;
(=0), NG, i+1)=S;4, ({=0), N(i,j) =0 (for all other indices ), is a normal extension
with norm equal to | T|.

In fact, in view of Lemma 2, all P,NP, are bounded with norm equal to |7||
n=0,1, 2, ..., where each P, is the orthogonal projection from H~ onto 9", con-
sequently, as readlly seen, N itself is.bounded with norm equal to |T|, and is an
extension of T. Moreover from (8) .it follows that

IP, +1N*Pntpll =|P,NP,pll = (p€97) (n=0,1,2,...)

" INg| —llm [P, NP, ] —hm ([P N*P, pf| = “N*(PH

hence

This shows the normality of N.
Lemma 2 also produces a characterlzatlon of subnormahty in terms of R,,, S,
and T, in it.

Theorem 2. If, for an operator T, each R, is positive definite, each T, is bounded
and S,T,_,=T,S, (n=0,1,2,..), then T is "subnormal:

In fact, the operator N on 9= in Theorem 1 can be defined on the linear sum
M of all H*’s, and is an extension of T. Moreover by (8)

INgl =IN*gl  (peM).
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 Since M is dense in o=, it follows that N*Ne =NN*¢p (¢ €M), in particular N*/Nif =
=NINtIf (f€9) (5,7=0, 1,2, ...). Therefore, for every finite sequence (f}) in 9.

3 @ Ty = 3 (VN f) = 3 (NI, Nfy =) I N1 =0,

"and the-criterion (2) can be applied.

3. It [3] answered to the question when a commutative family of subnormal:
operators admits simultaneous commutative normal extensions. At this moment,
it seems, however, difficult for us to construct matrices for these simultaneous
commutative extensions along the lin¢ as that developed in § 2. Hére we shall confine
ourselves to a special case, namely, a doubly commutative family of subnormal:
operators.

Let (T,),eq be a doubly commutative family of subnormal operators, that is,
each T, commutes with both T, and T whenever w#y. Let A denote the space
of all generalrzed sequences {zw} such that all i, are non-negative integers and
> i, <<o. 0 denotes the element of A whose terms are all equal to 0. For any w €Q:
(=9}
and FEA wris the co-th term of T and ' 4+ w stands for the element A such that
wy = op+1and y, =1y for all y#w. $* is the orthogonal sum of copies of 9;
indexed by all the elements in A; the elements of 2 are the generalized sequences.
@ ={/fr} whose terms are in § with norm ke —2 Il/cl2. © is embedded in H2 by

identifying f€$ with {f;} where f,=f and f,-—O (F #0). In Theorem 3 below,
Sy and T, , correspond to S, and ‘T, respectively in Lemma 2, starting from T
mstead of T. :

Theorem 3. 4 doubly commutative family of subnormal operators (T weca
has srmultaneous commutative normal extensions (N, ),cq on O with the entries:
N, T) = Topop> No(T, T +w) = Sy 00415 NI, A) = 0 for all other indices..

Proof. Just as in Theorem 1, each N, is a normal extension of T, (0eQ).
For w#y, puttmg N,N,=A and N,N, =B, simple calculations based on the defi--
nitionsof N,’s show that

AQC.T) = T, ,.T B(I“,I“)_T T

@, or~" Y, 7r? 7,9yt w,or?

A(r,r+(0) = m,mr+1Ty e

AT, r+)’) = T,, mrSv yr+1s B(T, r'*‘)’) = 9y, erTw,wr’
A(F F+w+y) - wwr+1Sy~”-+1a B(r F+w+y) }’7[‘+1Sm or+ls

B(F7 F+w) = T‘/,‘lr'Sto,mr+19

and all other entries of A and B are equal to 0. ‘Therefore the commutatrvrty of”
N,, with N, will follows from the commutativity of the family {S,, i To, T, ;}izo With

the family {S, ;, T, ;}i=o. In order to prove the latter commutativity, we shall
show, by mduction that T,=T, , is doubly commutative with all S7 .and T, ,

n=0,1,2, ... The assertion for n =0 follows directly from the assumption. Suppose-
that the assertlon for n is proved, then T, commutes with S, ,. because as in [2],
“the latter is unlformly approximated by polynomrals of 82,4+ Ty, T, w—T, Ty s
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which commutes with T,,. This, in turn, implies the commutativity of T,, with §,;°1,,
. hence with T, ,, . Similarly T, commutes with 7}%,.,. In quite a similar way it

:is proved that the family {S, ;, T,,-;}i=o commutes with the family {S, ., T, ;}i=o.
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- Uber die Weylsche Vertauschungsrelation
+ .Von C. FOIAS in Bukarest und L. GEHER in Szeged .

Herrn Professor Béla Sz.-N agy zum 50. Geburtstag gewidmet

Einfithrung

Es seien P und Q zwei selbstadjunglerte Operatoren fir d1e die quantenmecha- h
nische Vertauschungsrelatlon

o) . PQ-QP =il

. erfiillt ist. Wle H. WevL [1] zuerst bemerkt hat, geht (1) durch eine formelle Rechnung
in die Relatlon (d1e 808, Weylsche Vertauschungsrelation): '

(2) 4 eitP elSQ eits pisQ eul’ (_ o<l §< + oo)

.uber wobei Ie"P}_,,<,<+m und {€@} __ i<y die durch die infinitesimalen Genera-
toren iP bzw. iQ erzeugten emparametrlgen starkstetlgen Gruppen' von unitdren
.Operatoren sind. '
In der. Arbeit [2] wurden Bedmgungen angegeben, unter denen (1) und (2)

streng dquivalent sind. Sogar wurde das allgemeinere Problem betrachtet, wobei
statt. Gruppen- von unitdren Operatoren, Halbgruppen von-Kontraktionen -auf-
treten.

. Dieser allgemeinere Fall kann in gewiflem Sinne auf den ursprunghchen Fall
unitirer Gruppen zuriickgefiihrt . werden. In dleser Arbeit werden wir ndmlich
den folgenden Satz beweisen.

Satz. Es seien {T,},ZO und { S} =0 2Wei etnparametrzge starkstetige Halbgruppen
von Kontrakttonen in emem Hilbertschen Raum H, fur dte die Weylsche Vertauschungs—
relation - -

e T(1)S(s)=eSE)TE)  (—eo<t,s< o)

erfiillt ist, wobei " o ' ' _

T T, fir t=0 4 ) S, fiir s=0’
0= T*, fiir t<0 uﬁ _ S(s).— S*, fiir s<0

gesetzt wird. Dann gibt es in einem geigneten Erweiterungsraum H zwei eznpaiametrige
starkstetige Gruppen von unitdren Operatoren, {U(t)}__,<,< b Und {V()} ci<tes
fiir die die Weylsche Relation ' .

@ R U(t)V(s) e"‘V(s)U(t) (—00<t,S<+w)
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erfiillt fsi und fiir die _
& T@)S6) = prU@VE)  (— =<t s<+=)

giltY). Der Raum H karin in dem Sinne minimal gewihlt werden, daf er von den Elemen-
ten UR)V(s)h (h€H; —o<t,5s< + ) aufgespannt wird. Dann ist die. Struktur
{H U(1), V(s), HY bis auf Isomorphie bestimmt.

Die gewiinschten unitiren Dilatationen {U()} und {V(s)} werden wir in zwei
Schritten konstruieren. Im ersten Schritt konstruieren wir in einem Erweiterungs-
raum H°von H eine einparametrige starkstetige Gruppe {U°(f)} von unitdren Ope- -
ratoren und eine einparametrige starkstetige Halbgruppe {V$}s=0 von Kontraktionen
fur die die Weylsche Relation

. UV = e“‘V°(s)U°(t) (o=t 5= + o)
erfiillt ist und : o
’ T(1)S(s)=pr U°(t)V°(s) (= co<t,§<Foo)

] b . V° fir s=0
g1t wobei V(s) Vot fiir 5<0 '
in einem Erweiterungsraum H von H° unitire Dilatationen {U(t)}_,,,<,<+_, und
{V(s)}_w<s<+,, von {U°(t)} bzw. von {V°(s)}, die die gewiinschten Eigenschaften

- besitzen.
Zum Beweis beniitzen wir den folgenden Satz von B.Sz.-NAGY (siehe [3)):

gesetzt wird. ' Im zweiten Schritt konstruieren wir

Es sei {T, },zo eine emparametrzge starkstetige Halbgruppe von Kontraktionen in
einem Hilbertsthen Raum H. Dann gibt es in einem geeigneten Erweiterungsraum
H eine einparametrige starktetlge Gruppe {U(t)}_,,<,<+,, von unitdren Operatoren,
Siir die

I(1) =prUQ) (—°°<t< + o)

T, fir t=0
]‘tg fur t<0

gesetzt wird. Der Raum H kann in dem Sinne minimal gewdhit werden, daf er von den
Elementen von der Form U(t)h (h € H; = oo <t < 4 o) aufgespannt wird. Dann ist
- die Struktur {H,U(t), H} bis auf Isomorphze bestimmt.

gilt, wobei C T = {

Beweis des Satzes

Es sei {U°(t),_,,<,<+,, die minimale unitire Dilatation von {T(#)}; der. ent-
sprechende ‘Erweiterungsraum H° ist von den Elémenten von der Form U°(t)x :
"(x€EH; —eo< t<+ o) aufgespannt also ist die durch die endlichen Lmearkomblna-
" tionen

©) =3 vy

1) Sind 4 und B beschriinkte lineare Operatoren in H, bzw. in einem Erweiterungsraum H
von H, so bedeutet A =prB, daB fiir Jedes Element he H, Ah =PBh gilt, wobei P die orthogona]e
Projektion von H auf H ist. B heiBt eine Dilatation von A
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geblldete hneare Manm gfalt1 gkelt L°in H° dlCht Ist & durch (6) gegeben, so setzen wir
m o 1) =3 e U)Wy, (m<s<t).

N

Dlese Zuordnung E—-n(s) 1st emdeutlg, d. h. von der speziellen Wahl der Dar-
) stellung (6) des Elementes ¢ unabhingig: Offenbar genugt es hierzu zu zeigen, daB
aus {=0 folgt 7(s5)=0 (—co<s< + o). _ .

, Aus - (= 2U°( j)xj=0
folgt fiir Jede reelle Zahl ¢t
Z'T(t—i-tj)x =P° Z U°(t+t )x = P°U°(t) 2 U°(t,)x, = P°U°(t)f =0,

wobe1 P° die orthogonale Projektion von H® auf H bedeutet.. Daraus folgt weiter . - -

PU°(Dn(s) = P° 2 e~ stU°(t+1 )S(s)x =
. = = eits Z e""('+‘f)T(t+ )S(S)xj = eitsS(s) Z' T(t+ tj)xj =0

(——oo<t< +oo), und daher L )
_ (1(s), U°(9)x) = (U°( - )n(s), x) = (PU(—1)n(s), x) =0
fir jedes x€H. Der Raum H° ist aber von den Elementen U°(f)x -
(x€H; — oo <t=< + ) aufgespannt, also ist n{s)=0, w.z. b. w.
Aus (6), (7) und aus der soeben bewiesenen Eindeutigkeit der Zuordnung
£ >n(s) folgt, daB der durch n(s)= V°(s)§ definierte Operator V°(s) die Linear-
mannigfaltigkeit L° éindeutig und linear in sich iiberfiihrt.
~ - a) Von (7) kann man. unmlttelbar d1e folgenden Elgenschaften von V°(s)
ablesen: - :
o 1° VO(s). st starkstetlg in s, d h. von s,—s folgt V°(s,.)§->V°(s)f fiir jedes .
gele.
' 2° Fiir Jedes :L" und fiir belleblge s, 8 Z0 gilt V°(s+s)§ V°(s)V°(s)é,
ferner ist V°(0)§ sf )
b) Fur je zwei Elemente g, e’ ist . : _
VO &) = (¢ Vi 9E) (=<t o)
Es ist ndmlich '

(V°(5)¢, é")_=(;2 e~me°(t )S(s)x,, Z vt )xk)= .
T 2 E)se), U )xi) = -

e"“f(S(s)x,, Ut —t))xi) = «

.

-'S'J(x,, S( T —1))xi) =

Il

e- m,(x e—i=s)t~ r)T(z —1))S(=s)xi)=

I

et (x], U (1t — 1)) S (= )xk) =
e U ()], U ) S (- 9)x8) =(8, V98D,

33
3
S
3
-3

»M wM »M »la »t
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¢ Fiir jedes £¢L° und reelle s gilt |V°(s)&| =||&]. Ist namlich

=2 U@)x;,
so gt V) VE()E= 3 U() S(=9)SE)x;,
ko IV@ER=(VEE VY =(V )V 0E &)=

=2 Z(U0)S*(©)56)x;, U(t0x) =
= ,Z %’ (S*)S()x;, Uty — 1)) x) =

=3 Z(S*OS©x,, Tt—1)x)= ’
=33 (T, =S 5@, 0);

~ andererseits ist o -
1€12=3 3 (U@yx;, Utox) =
—Z Z(Uo(l — )X}, %) = Z Z(T(f — 1) X5 Xg)-
Wir haben also zu beweisen, daB
IICIIZ—IIV°(S)€IIZ—Z Z(T(t —t)(I — S*(5)S(5))x;, xk)ZO
Wegen ]l S@)|=1 ist I— S*(s) S(s)=0; man setze Q(s)-—[l S*(s) S(s)]* Aus
S*()SE)T(A) = S(= ) SET(t) = S(—s)e~ =T (1) S(s) =
=TA)S(=5)SE) =T )S*(5)S(s)
folgt, daBB Q(s) mit T(¢) vertauschbar ist (—oo<t,5<'+ =); 'folglich gil;
14 s ||V°(S)€H" —2 Z(T(t —1)Q()x;, () %)=
=IZ'%(U°(t —tk)Q(s)xp (S)Xk) ZZ(U ) 0)x;, U°(tk)Q(S)xk)—
| SISV =0, wz b.w.

" d) In L° erfiillen U°(¥) und V°(s) die Weylsche Vertauschungsrelatlon Fiir
beliebige reelle ¢ und s gilt ndmlich

. COVEE=U0 v‘e"s‘JU°(t,)S(s)x-= -
' —e”‘Ze ls(t+U)U°(t+t )S(s)x - ‘

=ei'V°(s) 2 Ue(t+t )x = e"SV°(s)U°(t)€
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‘¢) Endlich gllt fiilr £=x¢€H, und fiir. beheblge t und s: f U°(0)x VO(S)g
S(s)x, U(HV°()E=U(t) S(s)¢, also

' P°U°(t)V°(s,)x = T(t) S(s)x.

Wegen c) kann man ‘di'e Definition von -V°(s) auf den ganzen Raum H° durch -
Stetigkeit. erweitern: {V°(s)},., wird eine einparametrige starkstetige Kontraktions-

halbgruppe in H°, {V°($)}-.<i<+. und {U°(D} .. <+.. werden die Weylsche
Vertauschungsrelation im ganzen Raum H° erfillen, ferner gilt -

T()S(s) = prUS(OVE(s) = (—o<t, 5= +o0).
Es sei jetzt {V ()} - << .. die minimale unitire Dilatation von {V°(s)}__ < i<+

in emem entsprechend geéwihlten minimalen Erweiterungsraum H von H°. Die -
~ lineare Mannlgfaltlgkelt L der Elemente von der Form :

) ‘ : , ' —Z_ V(spx; (x;€ H%)
. J ,
- “ist in H dicht. Fiir so ein 519 setzen Wwir. .
w . = 5’e"SJV(s)U°(t)x- (Coo<t= +oo).

 Die Zuordnung 4 —a (1) 1st emdeutlg, d. h. von der speziellen Wahl der Darstel-
lung (9) des Elementes # unabhingig. Definiert man den linearen Operator U(?)
(— o <t< +)in L mit U@E)? =0(f), so kann man mit Wiederholung der Rechnun-
gen im ersten Schritte leicht sehen, daB die Definition von U(f) (—oo<t< 4 o0)
zum ganzen Raum H fortgesetzt werden kann, derart, daB die f‘olgenden Bezichungen
erfiillt werden:

1) U(=5)=U*(()- (—oo<t< + =),

2) {U(#)};=¢ ist eine einparametrige starkstetlge Kontraktxonshalbgruppe

) U@ VE)=e-V(UE) (—=<t,5< ),

) T()SE) =prU@® V() (—e<t,5<+e).

Wir werden beweisen, daBl U(¢) sogar unitir ist.

- Wiederholt man die Rechnung c) aus dem ersten Schrltte so sieht man, daB
U(t) (— o <<t< + o) auf L isometrisch ist. U(r) (moo<t< + o) bildet aber die
lineare Mannigfaltigkeit L ein-eindeutig auf sich ab, wie man von (9) und (10) un-

mittelbar ablesen kann. L ist in H dicht, voraus die Behauptung folgt.
Also besitzen {U(r)} und {V(s)} dic gewiinschten Eigenschaften, w. z. b, w..

A

‘Bemerkung. Wir fuhren die. folgenden Bezelchnungen ein:
X(t s)=e Z U(t)V(s) = e2 V(s)U(t),
Y(t, 5)=e 3 T(t)S(s)—e2 S(s)T(t)
Man kann leicht ‘nachrechnen, daB die- Be21ehungen
(t1s2—-5112)

an . e TIKE 5 +5) =X, 5)X (2 52)
(—oo<ty,ty, 8,5, < +), X¥t,5) = X(—1t, —5) und X(0, 0).=I gelten,
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Es sei {x,} ei'ﬁ_ beliebiges endliches System der Elementen von H, und seien
{84}, {#n} zwei entsprechende Systeme von reellen Zahlen. Dann folgt aus (5) und (9):

i . .

X — (St — teesy) . L
Z%’ 2 (Y(t tk, Sj—sk)xk, xJ)=
J .

i ' . : '
= (Sij=1iSj) : ) o
=.j2‘§e 27 (X5 =t 55 =59 %> ;) =1 2 X* (s 9% 1%,

und folglich . _ A
w 3 z e T T ¥ — by, 55— )% X;) 2O,
: . i : .

Man kann beweisen, daB3' das Bestehen der Ungléichung (12) fiir jedes endliche
System {x,} von Elementen von H und fiir. entsprechende Systeme {s,}, {z,} von
-reellen Zahlen, auch hinreichend dafiir ist, daB unitire Dilatationen {U@®)} cecr<+
und {V (s)}_,,,,< <o mit den gewunschten Elgenschaften existieren. (Dlese Konstruk--
tion ist analog einer Konstruktion in [4]. :

Konnten wir also die Ungleichung (12) unmittelbar beweisen, ‘so wurden wir
einen neuen Beweis des Satzes dieser Arbeit' bekommen. Wir haben jedoch (12)
bisher nur in dem Falle unmittelbar beweisen konnen, daB mindestens eine der
Halbgruppen {S;},z0, {Ti}:=0 aus lauter normalen Kontraktionen besteht.
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Ergodrc ‘theorems for gages

By I. KOVACS in Szcged

To Professor ‘Béla Szokefalvi-Nagy on his 50th birthday -

Introduction . o

-The theory of ‘‘non-commutative integration” which summarizes various
analogies between the theory of measures and the theory of von Neumann-algebras
has been investigated by several authors in- the last decade (espe01a11y of. 3], [8)
and [10}).-

’ ‘The purpose of the present work is to extend some of the notions and results
of ergodrc theory to the case of non-commutative 1ntegrat10n

.§ 1 is devoted to general preliminaries. In § 2 a special case of the Riesz con- .
vex1ty theorem is extended to non-commutative L?-spaces. This result is applied
in § 3 where a-non-commutative analogue of the concept of measurable transfor-
mation is introduced and a non-commutative extension of the. von Neumann—
Dunford—Miller mean ergodic theorem is given. In §4 an ergodrcrty concept for
“gages” on a von Neumann algebra A with respect to a group of *-automorphisms
of A is introduced, and it is shown that the extreme points of the convex set formed
by the probabrhty gages on a von Neumann algebra A, which are invariant under
a group of *-automorphisms of A, are precisely the ergodic-ones.

The proofs are modelled on the. corresponding proofs in the ordinary 1nteg-
ration ‘theory supplemented by some devices necessitated by the non-commutative
character of the situation. The key role in the course of our proofs is played by a
:method of J.. Dixmier used in § 3 of [3].

The results of this paper were announced in. [6].

§ 1. Deﬁnitions and preliminaries

1. Let ﬁ) be a complex Hilbert space. A von Neumann algebra') on § wrll
meéan a self-adjornt algebra of bounded, every-where defined linear operators on-
9, which is closed in the weak (6r strong) operator topology, and contains the

identity operator Iy of $2). In what follows, A, wrll denote the set of the projec-
tions of the von Neumann algebra A. .

1) For the theory of von Neumann ‘algebras cf. [4], chap 1, §8 1 —6. Reference to this book
in each particular case will.be omitted.

2) For any Hilbert space 9, I@ will denote its 1dent1ty operator
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Let A be a von Neumann algebra A non- negatlve valued functlon <p on A+ 3)
is called a trace on A*, if it has the following prope=rties:.

(i) if S, TeA+ and A, u=0; then p(AS+ul) = )(p(ﬂ‘)%-ﬂ(p(T)

(i) for every T€ A+ and for every unitary operator U'in A: o(UTU- n= (p(T)

A trace «p on A+ is said to be a) Jaithful if the conditions T€A*, . p(T)=
imply T'=0; b) normal if, for every increasing drrected set FEA+ with sup §=T¢ A+

. we have (p(T)—sup @(S); ¢) finite-if @(T)< + o for every TecA+, d) semi-finite

if, for every T€A+ T#O there exists SEA*+, S0 such that §=T and P(S) <.+ oo.

Let A be a von Neumann algebra, anid let ¢ be a trace on A*. The set of ele-
ments T of A+ for which ¢(T) < + =, is the positive portion of a two-sided ideal
mt,, called the two-sided ideal assot:iated with ¢. @ can be uniquely extended to a
posmve linear form ¢ on m,, and for every S¢im,, T€A, we have ¢ (ST)=¢(TS).
If ¢ is normal, then for every Sem the linear form 7'— ¢ (ST) (T€A) is strongly
~continuous on the unit sphere of A. If @ is finite, evrdently ‘we have m,=A (1n
this case ¢ is a positive linear form on A).

Let now ¢ be a semi-finite farthful normal trace on A+, For any S, Teluq, ),

we define {S|TY = ¢ (T*S). Then m,,, becomes a unitary algebra®) with i 1nner product
(S|T. Let Si)ma} be the completion of the pre-Hilbert space m?. For any. Rem* -

the mapping S—~RS (resp. S— SR) can be uniquely extended to a bounded lmear
operator ®(R) [resp. ¥(R)] on .SZ)mar @ (resp. V) is a *-isomorphism®) (resp.

-antusomorphlsm) called canonical *-1somorphzsm (resp. *-antiisomorphism) be-
tween A and the left ring R? (resp. right ring RY). of m?. - :

2. Under a non-commutative measurable space we shall mean a system ©, 8
composed of a complex Hilbert space § and a von Neumann algebra A on §. A gage-
space (9, A, m)'is a non-commutative measurable space (9, A) with a non-negative
- valued function m on Ap which is completely additive, unitarily invariant and
such that every projection in A is the supremum of the projections on which m is
finite. (We say that m is completely additive, if m(P)= 2 m(P,) for any set (P.).er

el
of mutually orthogonal projections 1n A with ¥ P.=P, and we say that m is unit-
) el
arzly invariant if for every unitary operator U €A and projection P€A,, we have
m(UPU-') = m(P).) . The function m is called a “gage” (a “non- commutative,

3 ‘For any set M of linear operators in a Hilbert space 9, M+ denotes the posmve portion
of M, i. e. the set of all non-negative symmetric elements of M.

4) Let m be a two-sided ideal in a von Neumann algebra A. If T runs over m+ then
T2 (0<a-< -o0) rins over the positive portion of a uniquely determined two-sided ideal of A
it will be denoted by ma (cf 2D. .

5) A unitary.algebra R is an algebra over the complex numbers, on which an involutive anti-
automorphism x -~ x* and an inner product (x| ») are defined, such that R becomes a pre—Hllbert :
space satisfying the followmg axioms: (i) (x|y)=(* |x*> @) {xy|2)= (ylx*z) (iii) the mapping -
X xy with fixed y is continuous; (iv) the set of elements of the form xy is dense in R (x, y, z arbit-
rary in R). Let §, be the completron of the pre-Hilbert space R. For every x €R there exists a bound-

ed operator U. (resp. V) on- &)R satisfying U.y =xy (resp. V»y = yx) for every yeR. The weak

(or strong) closure of the operators U. (resp. Vx) is'a von Neumann-algebra Re (resp. R9), called
the left (resp right) ring of R. The commutant (Rf)’ of R is identical with Rd (¢f. [4], chap. 1, § 5).
8) A *.isomorphism is an isomorphism (in algebraical sense) preserving the adjunction.
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‘measure’) of A, It is evident that the restriction on A, of a semi-finite normal trace
on A+ is a gage of A. Conversely, one can show (cf. [1]) that every gage of A can be-
uniquely extended to a semi-finite normal trace on A+ For any gage m, ¢, will
denote this extension.

A gage space (@ A, m) is sa1d to be finite (resp regular) if Pm ‘is finite (resp
faithful).

In any gage space (D, A, m) there ex1sts by Vlrtue of the complete additivity’
of m, a maximal among those projections of A on which m vanishes; let it be denoted
by F£,. It belongs to the centre of A. Iy—F, is called the support of m. In the
following it will be denoted. by E,,. Then for every P€A, we have m(E P)= m(P) '
- (D, A, m) is regular if and only it E w=1g.

Let (.SZ) A) be a non-commutative measurable space. A closed hnear operator
T on D is said to be “measurable” with respect to A if:

(i) T is affiliated”) with A;

(i) there exists a sequence {P,}._1 of prolecnons of A such that, for every
n, P9 <Dy (D denotes the domain of T), Iy— P, is algebraically ﬁn1te8) and
6 —P, 40 strongly’ (n— o). It is evident that ACB(A). Defining the *“‘strong sum’
and “strong product” of any two S, T€¢B(A) by the closure of their usual sum
and product, respectively, B(A) is a selfadjoint algebra relative to.the strong sum
and product, the usual operation of- multiplication by scalars, and the adjunction..
In what follows, when sum or product of measurable operators gccurs, always
the. strong. sum or strong product is understood, respectively.. ‘

Let (9, A, m) be a gage space. For every -T€B(A)*, we put

m(T) < 'sup on(S). -

Sem S =T

Then m can be uniquely extended to a complex (possibly infinite) valued linear
form on B(A) (identical with @, on i, ), designated by the same letter 7. An ele-
ment T¢B(A) is said to be zntegrable (with respect to m) if m(|T) < +°. An
element T'¢B(A) is said to be ph power integrable if |T|? is integrable. Let L?(m)
(1=p < + o) denote’ the set of all p* power integrable operators of B(A). The -
Le-norm of T€L?(m) is defined as [m(|T|?)]'/?, and denoted by |T,. = .

Let (H, A, m) be a regular gage space. Then, for every 1<p< +oo L?(m)
1is a Banach space with the LP-norm defined above. Further we have

(i) my/? is dense in L’(m) (1=p<+e);
(i) if 1<) pP<+4oco and ~—+=="=1, there is -an isometric isonlorphism between

the -dual space [L"(m)]* of L?(m) and L%(m) in which correspondlng elements

7) A closed, densely defined linear oparator T in a Hilbert space 9 is said to be affiliated with
a von Neumann algebra A on 9 (in sign TnA) if it commutes with every operator of A",

8) A projection P¢A is called algebratcally finite if there exists no partlally isometric operator
VeA such that V*V=P, VV*=Q<P."

9) Every closed densely defined operator T in a Hilbert space can be uniquely written as a

product of a partially isometric operator with the closure of the rangs of |T|=(T* T)* as initial
domain and the closure of the range of T as final domain. The decomposition 7= WIT| is called
the polar decomposition of T. If TpA (A being a von Neumann algebra), then WeA, |T|nA. Hence,
if TeB(A), we have |T|e B(A).
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FE[LP(m]* and Sp€Li(m) are related by the identity
F(T)=m(TSg),  T€Lr(m).

The dual space L=(m) of L‘(m) is identical with the Banach space A considered
‘with the usual operator norm;

(iii) if ;+———1 where lsp, qs -|—oo then m(ST) m(TS) for SEL”(m),
TeLi(m); A , ) : : . A

@ (T T n)|'sm(|T1T2..,Tn|)§'1|T1||,,1||T2u,2...nT,,u,,,, T,€Lr(m) with

2 =1 p=l (=12, m). | -

i=1p;
: For the enumerated facts concernmg the theory of the non-commutative in-
- tegration, we refer the reader to [3], [8] and [10]. . ’

Let (9, A, m) be.a gage space. An element T of A is sa1d to be quasi- szmple
if it has the form T= VT, where T o is a finite linear combination of mutually ortho-

gonal prOJectlons inm, T, = Z A;P;, PPk—O (z;ék) Piem, and V is a par-

tially isometric operator in A whose initial domain contains the subspace P+ +
+P,) .i) It is easy- to see that for a quasn-smple element T=VT,=

—VZ) P we have
j=1 . R :
T = 2 |41P55
=t

1

Cif Isp<+te
|T|p—_.>:|ﬂ PP; and ||Tn,,=[_21 m,-vm(P,-)];
further = nTua.,—||T||—sup(Mi|,..' 24])-

In what follows the terms and symbols introduced here will be used without
further references '

§ 2. A convexity theorem for finite regular gage spaces

/ "The: following lemma which will be often applied- throughout this paper is
due to J. DixMmIeR (cf. [3], § 3). For the convenience of the reader we recall its proof.

_ Lemma 2. 1. Let (9, A, m) be a regular gage space. Then the set of the quasi- .
szmple elemenrs of Ais dense in LP(m) for 1 =p < + .

Proof As m, is dense in L?(m) for 15p< + oo (cf. § 1.), 1t is enough to show
that .every element of m,, is the limit in- L?-norm of a sequence of qua81 -simple
elements of A. e .

Let T be an arbitrary element of: m,, . Let T=W|T| be the polar decomposition
of T. Using the spectral representanon of |T|, we can determine a sequence {7, }a=1
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4

of elements of A+ commuting with T such that: 1) 0=T,=1s; 2) TT, is quasi-
simple for every n=1,2,...; 3) T,tIg strongly as n—eo, .
By the uniqueness of the polar decomposition, we can see that [T—TT,|=
=|T(Ig—T,)| = |T|(s—T,). ‘Therefore |T—TT,; = m(T|?(Is—T,F) =
on(ITIP(Ig~TYP). As |TiPem, , 0= (I@—T)P:SI@ and (Is— T,)40 strongly, we
have |T—TT,|,~0 as n—~o (cf. §1. '
To facilitate the statement of the next lemma which is a companion result -
to Lemma 7 of VL. 10 of [5], it will be convenient to .introduce the following no-

: tatlons

Definition2. 1. Let ©, A m) be a finite regular gage space. If a¢ R' 1%) and .
a=0, we define A(a) to be the set of qua51-51mp1e elements T of A for which ’

1

() ' ‘m(T°)=1. ,
If a=0, the condmon (%) is replaced by -
(* %) ‘ A IT|=1.

. Definition 2.2. Let (HO, AD, m») be a finite regular gage space for each
Jj=1,2. Let o be the product of A" and A®: o = ADXAD, If a=(a,, a,) € R?
with @, =0, a,=0, we define d(a) to be the set of all elements T=(T,, T,) of
o with T; EAU)(a) : s ‘ :

Lemma. 2.2. Wzth the notations of the precedmg definitions, let F be a com-
Dlex valued bilinear form on sf =AM XA® and let :
1. - M(a)— _sup |F(ST)|. ')

Se 1, TES(a)

Then log M(a) is a convex function'?) of a=(a,, a,) for 0=a, =1, O=a,=1.

Proof. Let o/ *(a) denote the totality of all T=(Ty, T) in .sz¢ (a) for which
T,=0, T,=0. First we prove that
) M (a=_ sup  |F(ST?)|,

) o sed), Tea *()

where T*=(T1',T7") and &/ (1)=sZ(1, 1). To see this we have to show that the
sets I = {ST}sem Tewm and = {ST*}sew,, Tewq) are identical. Let T= (T, T,)=

'=< 3 }f-l )P(l) Zz' /1(-2 )P(-Z) be an arbitrary-element of o/*(1). Then, for every

]=l j=1
a= (al,az) w1th a,=0,a,=0, T"=(T1,T) = 2 (i(l))“‘P(l) 2 (/1(2))"21’(2)) “is
an element of o +(a)cd (a) and it follows that eazcgm Let now T’ =T, Ty)=

10) Rk (k—l 2) denotes the k-dimensional real Euclidean space.

1) For a von Neumann algebra A, A;.denotes its unit sphere.

12) Let C be a convex subset of R2, and let M be a function defined on C havmg values which
" are either real or + . M is said to be convex if for any u, ve C

M(au+ (1 —a)v)faM(u)-}—(l —a)M@)
whenever Oéaél.’ . ’ .
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LT ' om ; ) .

= (V1 > )f,-”P;l), v, > P(,-2)>‘ be arbitrary in «/(a). First suppose that
j=1 . j=1 o . K .

a;>0,a,>=0. It is evident that

", v Z ' N
T = V1< Z‘ eiarg).j P‘1)>|Tll, T = V2< Z’ erargl‘l)P(‘2)>|T£|. »
. j=1 i

~ Putting

S=(819 SZ) (Vl (' etargl‘, P(l) V2 2 elargl} )P(z))
. J_ . =
1 1.

=(T,, T,) = (Ti|=, T3],

we have SE,@A,TEM*(I) and T =ST=. If a, =a,=0, then we have T’E.sz{’l
‘and T'=T'T° for every TC¢o/*(1)(0=(0,0)). As o, =/ o,, it follows that
N c . The cases when either a,>0, a,=0 ‘or a;=0, a,>0, can be treated
by ‘a similar way. Hence 9Il=8T which proves (2).

"Let now b=(b;, 5,)€R? and T=(T,,T,)€/*(1) be arbitrary. Put Tv=
_(T"’l "’2) Then for every a= (al,az)ERz with a,=0, a, =0, we have
_ sup* IF (STa+b)| = sup ]F(ST"’T")| = M (a).
. : SEaf1, TES +(1) Seds, TES+(1)
Therefore, o :

: ' sup{ sup  |F(ST**")|} = M(a).

_ bERZ S, TES *(1)
" On the other hand, it is ‘clear that

sup{ . sup |F(ST*+®)|}= M(a).
bER2 Seo ), TEA (1)

‘Hence sup{  sup |F(ST“+“’)I} M(a).
- bER? SE 1, TESX *(1)
- Let now T= (TI,TZ)Ed’f(l) be arbitrary. Then, for every b=(by, b,)€ R?
and a=(a,, a,)€ R? with a;20,a,=0, T =(T7"*", T3*™) belongs to (a).
In fact, if T, = 2“ ,:.(,.k)Pg.“) (k= 1,‘2); then 1'2**‘"“: 2 Py P which means
. = e
. 1
that Tp*™ is a quasi- 51mp1e element of A®, Further m® (| Tty =
=™ MmO (T)=1if a0, and |73 ™| = €™ ™| =1 if 4,=0"2). Con-
. sequently, )
' : |F(ST‘*+“’)|§sup |F(ST"+“’)|§M(a).
. . bER?2 :

It follows that : _
' M(a)=sup{ sup |F(ST**®)}=
" bER? SEM},TE.{J D

=sup{ sup [sup |F(ST=+)|]} =
b€R2 Sed,, Ted”(l, bER2

= sup {sup |F(ST"+'b)I}<M(a)
ses, TEd*‘(l) beR?

13) We may suppose that Tie= 0 for k=1, 2.
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Hence we have

Q) ' M(a)— sup {sup |[F(ST*+")]}.
Se«, TE.:l*(l) bER

Let z=(zy, 23)=(a, +iby, az +iby) and let T=( 3 wpn 3 A‘”P‘”)e
\j=1 j=1

.sz(*(l) We may suppose that every A k)>0 (]—1 ,n,,; k=1,2). Then, for

every S=(S;, S;)€&,, we have - . )

ST =( (2(1))215 P(l) Zzl (‘/1(]-2)):25’2})5'2)) =
\ij=1 j= ]

' =<Z enlossf’ g pV, e221°8‘3‘2)SZP§~2)>. T
' j=1 : = S
" As Fis bilinear, F(ST?) can be written as a finite sum 3 ,.f,(z,, z,) F(B,) with B, € «Z,
where f,(z,, z,) is an analytic'4) function of the complex variables (z,, z,) and is-
bounded on the strip 0=q;=1 (=1, 2). Hence, by VI. 10.4 and VI. 10. 2 of [5],
. and the mcreasmg nature of the logarithm, we obtain that. ‘

log-M(a)— sup log {sup ]F(ST“"’)]} .
Sed;, Ted ‘*(l) bER2 .

is a convex function of a=(a,, a,) for 0<a1<1 0=a,=1. Hence Lemma 2. 2
is proved.

. The next theorem can be considered as a non-commutative extension of a
special case of the Riesz convexity theorem (cf. [5], VI. 10. 11).

Theorem 2. 1, Let (9, A, m) be a finite regular gage space, and let ® be a li-
near-mapping of A into itself. If for agiven.p (1=p=+ o) ® has an extension to a
bounded linear mapping of the Banach space L*(m) into ltself let ||®||, denote the
- norm of this extension; if no such extension exists, let [®ll,= + 0. Then log (D ¢/a
-is a convex function of a for 0=a=1. )

Proof. It is evident that
 F(M)=F(Ty, T,) =m(®(T,) T,)

is a complex valued bilinear form on Z = AxA. Let a'=—;— (I=p=+4w; a=0
if p= + o), and let] '

M, 1 —a)= - sup |F(ST)|.
. Se, TEH (a,1-a)

Now we are gomg to show that | @], ,,,__M (a, 1 —a). If both of M(a,1—a) andv
I®,/, are identically infinite, our assertion is trivial. Therefore, we show that

14) Jet G be an oﬁen set in the space of the complex variables (z:, z2). A complex valued func-
tion f defined on G is said to be analytlc in G if fis continuous and the first partial derivates 8//32‘
(i=1,2) exist at each pomt of G .
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M(a, 1 - a) is finite 1f and only if ||<I>|| 118 finite and in thlS case we have M(a, 1 —a)

—"q)lllla
For any _ae[O, 1] we have
M(a,1—-a)= - sup |F(ST)| = ~sup  |m(®(S,Ty)S,T,)|=
: : segal,.re‘%(a,l—a) SeB,, TeB (6,1 -a)
= sup - |Sall 1721, Il<I>(S1T1)lI
Se#y, TeH(a 1-a)
. 1
= sup lI<I>(S1T1)II,, : <p=—-)-
Sed,, TeB (4,1~a)

As ||.S1T1||,,S||S1||||T1||p§1 and A, conmtains the 1dent1ty operator by virtue of
Lemma 2.1 -we have . :

1®ll,= sup [ ®T))ll,= sup 19(S: T, =
T\E/(a) s€#, Te B, 1-a)

= sup (O, =Pl

' Ted, | T|p=1
which implies . sup (@S T)I,= 1P,
. SEB(, TERB(@,1-a)
Hence . M(a1-d)s sup (S, T =],

Sed,, TeH (@ 1-a)

It follows that if ||®], /a 1S finite for a given a€ [0, 1], then M(a, 1 —a) is ﬁmte and
M(a, 1—a)5||<I)|I 1/a- Conversely, suppose that M(a, 1 —a).is finite for some a in

[0,1]. Let p=— (p =+towifa= 0), and let i+l—1 Then for every quasi- 51mp1e

v/

element T7 of A the linear form

Hr(R) —m(q>(T;)1§) (ReA)

is bounded in L”-norm on:a dense subset of L? (m), namely on ACLP (m) In
fact

: _ . ~ T
Hyl, = ®(T7)R)= Tilllm| R)\=
1#rily Reiﬁ?_@'"’( TDR)= sup ‘”"'”’( <||T np> )l

=ITil, s Im(@STS,TS) = ITil,M(a, 1-a)
SE.?ZI,TG.%’(al a) :

' (S (Sl, S,), T=(T,, T,)). Consequently, HT can be.uniquely extended to all
L?(m), i. e. Hy;€ (L7 (m))*. Hence there exists an element Q € L?(m) with || ol,=
= M(a, 1—a) ITill; (cf. §1) such that

" Hp(R)= m(CD(Tl)R)_m(QR)
for all ReL” (m) It follows (¢f. §1) that Q= CIJ(T,) Hence -
DT, = M(a, 1=a)|Til,



Ergodic theorems -for gages C1n

for all quasi-simple elements T1 in A. Hence
v 1®l,=M(a,1-a)
and we can conclude that |1<I>||1,‘,_M(a, 1—a) for 0=a=1. By Lemma. 2. 2,

logM(a)=log[ - sup = [F(ST)[] °
' se#,, TeB@

is a convex functlon of a=(a,, a;) for 0=q,=1, OSazél therefore log Ild)ll,,,,.“
is also convex for 0<a<1 and the proof is completed

‘§-'3 The4non-commutativel'mean-ergodic thegrem

We begm this section by giving a non-commutatrve analogue ‘of the concept:
of measurable transformation. - : o .

Let (X, S) be a “measurable space i e.a set X'and a o-algebra S of subsets,.., g
of X. Denote by B(X) the algebra of. all complex valued functions f(x) defined.
on X which are measurable with respect to S. Let T be a measurable transformation.
of (X, S), i. e. a mapping of X into itself such that the inverse image of every element
of S by T belongs to S. By f(x) ~0(f(x)) =f(Tx),.T defiriés-an endomorphism 0 of -
B(X). By the nature of the theory of gage spaces as a non- -comimutative extension
of the classical theory of integration over an abstract measure space, it will be na-.
tural to define a non-commutative measurable trasformation as a mapping of the-
set of all measurable operators into itself with analogous algebralcal and topolo--
gical properties as 0.

Definition 3. 1. Let (&), A) be a non—commutative measurable space. A meas-
urable transformation of (9,A) is a *-endomorphism (homomorphism into.
itself which preserves the adjunctron) 0 of B(A) w1th the followmg propertles

@) 0(s)=Ig;

(i) the restriction of 6 to A is a norma115) *.endomorphism of A sending
the set of all algebraically finite projections of A into itself. An invertible measur- -
able transformation of (9, A) is a *-automorphlsm of B(A), whose restriction
to A is a *.automorphism of A.

It follows immediately from the preceding deﬁnmon the

Proposrtron 3.1. Let (9, A) be a non-commutative measurable space and let

0 be a measurable transformation of (9, A). If a sequence {T,}nz1 of elements of ™
B(A) converges nearly everywhere') (relative to A) to an element T of B(A) then:

{0(T,)}n=1 converges nearly everyhere to B(T). .

15)°A *—endomorphlsm 6 of A is said to be normal if it has the following_ property Cif TehA+

is the supremum of an mcreasmg directed set F of elements in A+, then we have 6(T)=sup S. .
. SeF

16) A sequence {T,.}" 1 of elements of B(A) is said to be convergent nearly everywhere (relative-.
to A) to an element T of B(A)) if for every & > 0 there exists a sequence {P.}, -1 of projections in.
A such that P, t I@ as n—-e=, (T—T)P.l<e'(n=1,2,...) and I@— , is algebraically finite-
for every n=1,2,... (¢f. [9], def. 23). ‘ . '
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The next proposmon can be proved by the same' way as Theorem 1 in [8], hence
‘the details are omitted.

Proposition 3. 2. Let ©, ‘A) be a non-commutative measurable space, and let

0o be a normal *-endomorphism of A with the following properties: (i) 0,(Ig) =1Ig;
(ii) O, sends the set of all algebraically finite projections of A into itself.

Then 0y can be uniquely’ extended to a measurable transformation 0 of (9, A).

The preceding propositions imply

Proposition 3. 3. Let 8 be a measurable transformation of the non-commutative
. -measurable space (9, A). Then 0 is uniquely determined by its restnctton to A.

Now we formulate our main résult which can be considered as a non-commutative
.extension of the von Néeumann—Dunford—Miller mean ergodic theorem (cf {51,
VIII. 5.9. )

Theorem 3.1. Let (9, A, m) be a fmzte regular gage space, and let 0 be a
- measurable transformatzon of (,i) A). Suppose that, for every projection P€AP and.
for every n=1,2,..., 0 satisfies the inequality

j=

(3.1) - S %‘Elm(ef(m)éM‘m(P)

with a constant M independent of P and n. Then, for every p with1 =p < + o0, T -06(T)
is a continuous linear ‘mapping of LF(m) into itself and the. sequence of operators

n—-1 b .
{% > 4. )} ‘is strongly convergent in the Banach space LP(m).
“ . , _

The folllowing'lemmas,ére required_ for the proof.

Lemma 3. 1. (¢f [5], VIIL 5. 3)..Let T be a bounded operator in gn arbitrary

' ' v . B R T
«complex Banach space X. If the sequence {7 Z’ T/ 1 is bounded (in norm),
s M j=0 - )=

: : 1 ,
then it converges strongly in X if and only if — T"x -0 as.n—oo for x in a fundamental

ser'7) in X and the sequence { 2 T Jx} is weakly'8) sequentially' compact!®)
=1 .
Jor x in a fundamental set in X. ' ' '

Lemma 3.2 (cf. [12], th. 3). Let (D, A, m) be a finite regular gage space,
.and let K be a bounded subset of L)(m). If, for any sequence of projections {P,}n=1
in A with P, 0 (n—o<), m(TP,) converges to zero umformly with respect to T€K,
then K . is weakly sequentially compact ’ .

”) A subset € of a Banach space X is said to be fundamental in X if the lmear subspace span-
. ned by € is equal to X.
18) By the weak topology of X is understood the weak topology induced by the dual of %.
19) A subset & of X is said to be sequennally compact if every sequence of points in & has
a subsequence converging to a pomt of X.
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‘Lemma 3.3. Let (§,'A, m) be a finite regular gage space, and let 0 be a rheas-
urable transformatzon of (H, A) Suppose that, for every PEA,,, m satisfies the
inequality
3.2 ‘ . m(O(P))<Km(P)

with a constant K 1ndependent of P. Then for every p with 1=p< + o, T—»O(T)
is a continuous linear mapping of L¥(m) info itself.

Proof. For the sake of brevity, denote by A, the set of all quasi—simple elements'
of A. It is not hard to see that 6 maps A, into itsélf. Further for every T¢€ Ao w1th

T= VZ'AP we have R .

I9(T)I"—9(ITI”) =, Il PO(P)),
and . :
‘ . 1
) 1@, = [;; Iljl”m((?(P,-))],-
Hence, by (3.2), we have ’

(3.3) ' ’lIB(T)II,,éK"[Zl Iijlpm(Pj)] =K?|T|l, (sp<-+eo).
j= . ) :

Let now T€A be arbitrary. As in the proof of Lemma 2.1, we can determine a

sequence {T,}n=1 of elements of A+ commuting with |T| such that DO=T,=1;
2) TT,€Ay; 3) Tt I strongly asn— e, It follows that [TT,,|P |T|1’T tT|P strongly :

as 11— oo, As P i normal we have || TT,,Ilp—m(iTT |P)P—<pm(]TT [”)P—»tpv (ITll’)P—

=m(|T[P)"—-!|T||,, (n—»oo). Further, IB(TT,,){P-—O(|TT|P) for every 1=p-< + oo,
Since 0 is normal on A (cf. Def 3.1, IB(T DIP116(T)|P as n—~o and thus

lim |0(TT,)], =lim m(IG(TT,.)I”)"=m(19(T)I”)”“|]9(T)II,, Since TT, EAo, by (3. 3)_

N—co
we have
1

I - NOTT N, =KP|TT,|,. .
. Thus, we_obtain N :
» . g .o 1
10(T)l,=1lim [|0(TT,)||,= K? lim 17T, =K? 1T 55
S 1e. .
(3.9 o eI, =K*|T], (1=p<+<)

for every T €A. The 1nequa11ty (3.9 shows that the restriction of 6 to A, denoted
by 0,, is a continuous linear mapping of A into itself with respect to the L?-norm."
Since A is dense in L?(m), 0, can be uniquely extended to a continuous linear mapping
- 6, of L?(m) into itself. Now, using the fact that every sequence {T,},=1 of elements

of A which converges in L”-norm to a measurable operator T contains a subsequence

A8
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converging nearly everywhere to T (¢f. [8] and [10]), it can be seen as in the- clas-
sical case that 0,(T)=60(T) for every T€L?(m). Thus Lemma 3.2 is proved.

Proof of Theorem 3.1. If n=2, the inequality (3.2) gives m(0(P))=
=M~ l)m(P) for any projection P in A. Hence, by Lemma 3. 3, 8 is a bounded

" linear operator in L?(m) (1 =p< + ). To complete the proof of Theorem 3.1,

we have only to show the following (cf. Lemma 3. 1):
.1

a) for every TEL”(m),“ §M7IIT”,, n=1,2,..);
p .

i 2 o)
b l 6"(T) converges étrongly' to zero as n—eo for T in a fundamental set

in L"(m), . | S
¢) the. sequence {— Z‘ 0!(T)} ., of elements of LP(m)‘_is Wéakly sequéri-

tially compact for T in a fundamental set in L”(m)
Let us ‘prove a). First we show that

1 ,.2 6’(T)“ =MITl;  (n=12,..),

j=0

3.5

for every T€A. The reasdning in the proof of Lemma 3 -3 shows that it is enough
to prove (3.5) for the quaSI -simple elements of A, Let T= VTO be an arbitrary

element of A, with T, O—Z AP;. Then we have

. n— n—-1 n-1
WHZWmWﬂlzwwmméizwwwwmm§
=0 1 nj=0 . 1 R jzo .

n-1

=1 2 3 m(@E) = ZDM—ENMMMJSMMM

which proves (3. 5). Further, for every T€ A we have

. 1 n—1 . 1 n—1
= 2 16Ml=— 2 ITI=ITI.
j=0 n j=o

1zt
(3. 6) "ZFZO 0/(1")‘

. n-1 ' ‘ . o
Putting <I),,(-)=% 2 /() for every n=1,2, ..., we have obtained
Jj=0 . .
1@l =M, |O,].=1.
®,(-) is a linear mapping of A into itself, Theorem 2. 1 now gives
i ' 1 | . 1 - 1
log|®,], §<1 - ;) log [|®@,].. + > log|®,[, =log |®,l|f =log M?, .

1

and so - ||‘~'_I),.||,,=M7 l(”=],2,_l~),
which gives a):
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1

To prove b) we note that the set Ap is fundamental in every Lr(m) for
15p< + oo (cf. 1 [11]) Now if PEAp, we have
1

1
75—’11— [m(Ig)]? -0 as n—co,

- [M(I""(P)l”)] P= [m(9"(P))]

o] -

whence b).
Finally, ¢) follows from Lemma 3. 2. Indeed, let P, EAP such that P,} 0 strongly

as n—oo, Then, for every Qchp, _
m( ‘ ,lcﬁ 0’(Q)) ( 2 ||01(Q)u)nPnnrfnPnul—wm(Pn)»o as n--eo
' ' : k=1,2,..)

mdependently from Q, and thlS completes the proof of Theorem 3. L

§4. An ergodlclty concept for gages

v In his paper [11], H. UMEGAKI introduced a concept of ergodicity for “traces’
of a D*-algebra R (a normed *-algebra over the complex number, with an approxi- .
mative identity) which are ‘‘stationary” (i.e. invariant) concerning a group of
*_automorphisms G of A. He called a stationary trace of R ergodic if it is not a linear
. combination with positive coefficients of two other linearly independent stationary .
traces of R, and he characterized the ergodic traces with the aid of*the two-sided
representations corresponding to them. The ergodicity concept for gages introduced
" by us is analogous to that for measures in the ordinary integration theory2°).
We shall show the relation betwéen our definition of ergodicity and UMEGAKT’s, the
latter definition being cons1dered in the case when R is supposed to be a von Neumann
. algebra. .
- Let (9, A, m) be a gage space, G a group of invértible measurable. transformatlons
" of (9, A) (¢f. Def. 3. 1). In what follows, an element T E?B(A) is said to.be (m, G)- -
invariant if for every € G we have E,0(T)=E,T (E, is the support of m). T is
said simply to be G-invariant if for every GEG we have 0(T)= .
- Our ergodicity concept for gages is given by the following

. Definition 4. 1. Let (£, A, m) be a.gage' space, G a group of invertible
measurable transformations of (, A). m is called G-ergodic if for every (m, G)- -
invariant projection P of A(A” we have either m(P)=0 or m(ly~P)=

Analogously to the classical case we have

Theo rem 4. 1. Let (9, A, m) be a gage space, G a group of invertible measurable
transformatlons of (9, A). In order that to- m be G-ergodic it is nécessary and sufficient

20) Let (X, S, #) be a measure space, and let G be a group of one-to-one mappings of X
onto itself and which at the same time is a group of automorphisms of S. We recall that. y is said
to be G-ergodic if for any E¢S such that [EU 6(E)l—[En 0(E)] has u-measure O for every 0¢ G,
we have either #(E)=0 or u(X—E)=0. u is G-ergodic if and only if every S-measurable func- .
* tion f(x) such that, for every 0¢G, f(O(x)) f(x) almost everywhere, is equal to a- constant
almost everywhere
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that every (m, G)-invariant element T of ?B(A) aff zltated with AQA’ be a scalar multiple
of E,.

Proof. If the COIldlthIl of Theorem 4.is fulﬁlled then every (m, G)-invariant
projection P in ANA’ satisfies the equality E,P=AE, with some scalar . Since
E, c(ANA), E,P is a projection, so we have elther 1=1 or 2=0. Hence either
m(P) m(E,, P) 0 or m(ly—P) = m(E,(Ig—P)) = m(E,)~m(E,P)=0. This
means that m is G-ergodic. Conversely, suppose that m is G-ergodic. Let T¢(ANA")

be a self-adjoint (m, G)-invariant operator with T-~f/1dE,1 Since E,,,E(ADA’),

we have E, T—]Ad(E E), and E0(T)= fld(E O0(Ey)) for every 0€G. As
E,(0(T))=E,T, it follows from the uniqueness of the spectral representation that
E,O(E,)=E_E; for every A and 0€G. Since E,€(41A4"), we obtain, by the G-
ergodicity of m, that for every A either m(E;)=0 or m(Ily—E;)=0, i.e. either
E.E,=0 or E,E,=E,. This means that the spectral family of £, T.contains only
two projections, namely 0 and E,,. Hence we have E,T=A,E,. Let now T¢(ANA)
be an arbitrary (m, G)-invariant operator. It is easy to see that 7T can be written
as a linear combination of two self-adjoint (m, G)-invariant operators in ANA’,
Hence T is also a scalar multiple of E,,. Finally, let T be an arbitrary (m, G)-invariant
operator in B(A) .affiliated with ANA’". Let T=W|T| be the polar decomposition

of T with T=jldE,_. It is known that We¢(ANA’), and EAE(AOA’) for every A.
Further, -as  E,0(T) = E,0(W)0(IT|) =(E 0 W))(EO(T)=E,T=E,WI|T| =
=(E,WYE,ITI|), it follows from the uniqueness of the polar decomposmon that
E09(W)=E,W and E,0(|T|)=E,IT! for every € G. Since We{(ANA"), we have
E,W=qE,. Since 0(|T|)_Ild0(EA) (of: ), ELD(TN)= | 2d(E,0(E), similarly
as above, it may be seen that the spectral family of E,|T| contains only two pro-
jections: 0 and E,,. Thus we obtain E,|T|=8E,, which proves Theorem 4. 1.’

" Pefinition 4.2. Let (, A, m) be & gage space, G a group of invertible -
measurable transformations of (§, A). m is said to be G-invariant if for every pro-
jection P of A and for every #€G we have m(6(P))= m(P)

Let now A be a von Neumann algebra, G a group of *-automorphisms of A.

.. Let PG denote the set of all G-invariant probability?!) gages on (9, A), and pe =

={g,:m€PC}. Tt is evident that PG is a convex subset of A*22), The next theorem
- characterizes the G-ergodic elements of PG as follows

.Theorem 4.2, mEPG is G- ergodtc if and only if @,, is an extreme“) point
of pG.

Proof. First we note that if. mEPG then E, is G-invariant. Indeed, for every
0¢G we have m(Iy—0(E,))=m(ls) — m(B(E,,,))—m(E,,,) m(E,,,) 0. This means
that Iy —0(E,)=I;—E, (0€G). It follows that I{, E,=1I;—0-'(E,) for every

21) A gage m of A is said to be a probability gage if m(I y=1.

22) For a von Neumann algebra A, A¥ denotes the dual space of A when A is considered as
a Banach space with 1T} as its norm.

" 23) ¢, is an extreme point of PG if it is not'a mlddle point of any segment belongmg to PG
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BEG As the mapping 0 —~ 9 L of G onto 1tse]f is one-two-one, we have I@—-E = -
=/ly—0(E,) (0€G). Thus we have E,=0(E,) for every 6¢G.

Further, if m€PS ‘then for every T€A and 6¢G we have ¢,(0(7))= @u(T).
In fact, let 7 be an arbitrary element of A*. As in the proof of Lemma 2. 1, we can

choose a sequence {T,}._1 of elements of A* such that: 1) 0=T, I@, 2) Ttig
strongly; 3) 77, is a ﬁnlte linear combination of elements of A, with pos1t1ve coeffi-
cients. The G-invariance of m implies that ,(0(TT,))= @ (TT,). As 0 is a *-auto-
morphism, it follows that §(T,)tIs. Thus 0(TT,)=0(T)0(T,)t16(T). By the norma-
lity of ¢, we have q)m(H(T))zlim Pa(0(TT, ))=lim ©u(TT,)= 9,(T). Since every
element of A can be wrltten as a ﬁmte linear combmatlon of elements in A+, our
assertion follows.

For m € P8, consider the von Neumann sub-algebra Ay, = {T€A:TE,, T} of A,
~ We note that the restriction of ¢, to At , denoted by the same letter g,,, is a ﬁnlte
. faithful normal trace on A} . Let R, oe the unitary algebra associated with ¢,,,
and let @,, be the canomcal *-1somorphlsm between A; and the left ring RY, of
R,,. Since O(E,,,) ' for every 0€G, it is easy to see that the mapping 76§’ (T)_ _

. —<I),,,[6((I>_1(T))] deﬁnes a *-automorphism & of RY, for every 6, and so .G induces -
through @, a group of *-automorphisms G’ of Ré. Further, it is not hard to

see that an element T€RY, is G’-invariant if and only if _d);l(T) is G-invariant.
Let now V,, be the set of all bounded linear operators ¥ on g, for which

(VG(S)]G(T)}M—<VS|T>%

for all S, TER,,, 0CG. It is easy to see that V., is a von Neumann algebra on 9g,,.

By a theorem of H. UMEGAKI (cf. [11], Th. 5), ¢,, is an’extreme point of PG if and -
only if (V,, R NR3) = {afg, }. Hence we have to prove that m€PS is G- ergodlc

if and only if (V,, R ﬂR")—{aIc,R }.
First we show that for an element TE(Ry ﬂR“) we have 7€V, if and only

if T is G’-invariant. Suppose that TE(R? NRY) is G’-invariant. Then (D;I(T) is
G-invariant. Thus, for every #€G and R, SER,, we have

(TO(R)| 0(S)sn= Pm(0(S%) i (T)O(R)) = ., (0(S*®5; " (T) R)) =
= Pu(S*®,  (T)R)=(TR|SY, "

which gives that T¢V,,. Conversely, suppose that T E(V,,,ﬂR” F‘R") Then for
every 0¢G and R, S¢R,,, we have

Pm(@n (T)O(R)O(S¥)) = rp,..(a(S*)m"a)e(R)) <T0(R>|0(S)>q,m—<TR|s>¢m
= §u(S*®p ' (T)R) = 5,(®m (T) RS*) = P(0(@n” (T)B(R)O(S)).
In particular, for S=E,€R, we have '
Pu(0(®n (1)) 0(R) = %(@"(TWR))
Thus for every 6¢G and R€R,,,
107" (1) 05 D1O(R) =0. |
- It follows that @, ()= 6(®n (T)) for every 0 EG which gives that T'is G’-1nvar1ant.

0y
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Suppose now that m¢PS is G-ergodic, and let TE(V,,,ﬂR,‘{,ﬂRf,,)' be arbi- |
trary. Then ©,'(T) as an element.of ANA’ is (m, G)-invariant. By Theorem 4. 1,
®;'(I')=aE,. Hence T=0a®,(E, )—aI@R , which gives that (V,,NR{NRI)=
={algy }. Conversely, suppose that (V.NRENRE) = {olg, }, and let T€(ANA)

be (m, G)-invariant. Then TE, is a G-invariant element of Ag NAz . It follows
that ®,(TE,)e(V,,NRY ﬂR“) therefore ®,,(TE,,)= algy -a(I),,,(E ). "Thus TE, =

-=uokE,,, which comp]etes the proof of Theorem 4.2.
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Uber prOJektlve Veranderung der Ubertragung
in Lmlenelementmanmgfaltlgkelten

'Von ARTHUR MOOR in Szeged .

Herrn Professor Béla Sz.-Nagy zum 50 Geburtstage gev'vidrﬁet

§1. Emleltung

Das leferentlalglelchungssystem

L “d2x! o oodx\ o . o
(1.1 - R~ +2G( ds) 0 (@(=12,..n),

. i o . . dxt ' : N . .
wo die Groflen G'(x, x) in den x*=—— hoinogen von zweiter Dimension sind,

ds

bestimmt eine Geometrie der Bahnen, deren projektive und affine Eigénschaften "

schon vielfaltig untersucht wurden; wir erwdhnen nur die grundlegende Arbeit
[1] von L. BERWALD, wo man auch weitere Literaturangaben findet. - -

Die Geometrie &, der durch (1. 1) definierten Bahnen ist durch die Grund-- '
groBen Gi(x, x’) bestimmt; man kann aber @, auch mit Finslerrdiumen §, in Zu-

sammenhang bringen, falls man bedingt, daB die Gleichung (1. 1) eben die Extre-
malen einer Finslerschen Geometrie ¥, bestimmt.
_ Eine pro_]ektlve Veranderung der GrundgroBen ist durch die Formeln

(L 2) ' . G (x, x’),= Gi(x, x) +-¢(x, xXyxi o xt= Z—);

angegeben!), wo ¥ (x, x’) eine in den x’ von erster Dimension homogene skalare
Funktion der Veridnderlichen (x', x’") ist. Im folgenden wollen wir nun fiir die
skalare Funktion (x, x’) diejenigen Bedingungen bestimmen, die notwendig und
hinreichend dafiir sind, daB nach der projektiven Veridnderung (1.2) der Grund-

gréflen G, die’ Krummungstensoren des Raumes unverindert bleiben, bzw. daB

der Basisraum @, in einen sog. affin-skalaren Raum iibergehe.
Der affin-skalare Raum ist ein spezieller Typ der metrisch-affinen Rédume.

Ein metrisch-affiner Raum ist ein n-dimensionaler Linienelementraum bezogen -

auf ein lokales Koordinatensystem, in dem die Metrik durch einen metrischen
Grundtensor g;(x, X) festgelegt ist und in dem eine kovariante Ableitung der Vektoren

1) In der Arbeit [1] ist p(x, x") durch — P(x, x") bezeichnet.
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definiert ist. Der metrisch-affine Raum ist ein affin-skalarer Raum, falls sein Kriim-
mungstensor eine gewisse spezielle Form hat (vgl. unsere Formeln (3. 1)—(3. 3)),
die in die charakteristische Form der Finslerrdume von skalarer Kriimmung iiber-
geht, falls die Ubertragungsparameter mit den Cartanschen Ubertragungspara-
metern eines Finslerraumes von skalarer Kriimmung iibereinstimmen. Diese Réiume .
sind also Verallgemeinerungen der Finslerrdume von skalarer Kriimmung (vgl. [4],
Definition 2 auf Seite 159 und § 4); beziiglich weiterer geometrischer Eigenschaften
dieser Rdume verweisen wir auf die Sitze 5—7 von [4]. :

§2. Pfojektive Veridnderung der Ubertra_gung

: Wir fiihren' die folgenden — auch von L. BERWALD beniitzten -— Bezeichnun-
gen ein (vgl. [1] Formeln (1. 4)): '
gd_et“aG (x__@ i d;_fﬁ(;i(xs X) i def 9°G! (x x)
oxi > T Toxiaxk 0 M 6x!0x"6x’
Diese GroBen sind Funktionen des Linienelementes (x, X). Die Ableitung i—i nach
dem affinen Parameter s wird mit x" bezeichnet. Die GroBen G' sind in den X?

homogen von zweiter Dimension; dementsprechend sind Gij, Gj-k bzw. G;k, in den
X! homogen von erster, nullter, bzw. (—1)-ter Dimension.
Die wichstigsten Kriimmungstensoren des Raumes @ sind die folgenden °

(vel [11§2):

(2 1) . l def aG aG

ox/  Oxr i
st der affine Abweichungstensor, '

2.2y P, 1-<aj<"k aK",.> _ 0G; _4Gi
Sl . J

u —+G; Grk IG;Girj

3\ ox/  oxk) T axk oxi
ist der Grundtensor der affinen Kriimmung und -
@ ke

ist der affine Krummungstensor

Die Transformationsformel von G stimmt mit der Transformatlonsformel
der gewohnlichen affinen Ubertragungsparameter iberein, somit ist die von L.
BERWALD eigefiihrte Operation: :

aer OF1 af
oxk T ox

eine kovariante Ableitung des kontravarianten Vektors &; diese Operatlon kann
in der gewohnlichen Weise. auf beliebige Tensoren erweltert werden (vgl. [1] § 3)2).

'ék Gk+G,ké

.®) In [1} ist diése Operation durch ein Semikolon bezeichnet.
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_ Fiir einen Skalar S(x,'fc) lautet die Berwaldsche kovariante Ableitungi

o5 3S
S =5 T ow O |
Die Krummungstensoren Ki; und K‘ ik verindern sich nach einer pI'O_]ekthen Ver-

dnderung (1 -2) der GrundgroBen Gi gemaB den Formeln:

(2.4 Ki=K,+2y, x X — g +’5j(l// — X

und . _ : _ - . L

@3 K=K (00, — )~ W~ + G~ 0,05,
| w OV '

wo. L7 e

bedeuten Dle Formeln (2. 4) und (2. 5) erhilt man leicht aus (2. 1) und 2. 2), wenn

.man’ diese Formeln statt G¢ mit den durch (1.2) angegebenen G aufschrelbt (vgl
[1] Gleichungen (5. 3), (7.3) und (7. 4)).
’ Nach diesen Vorbereltungen beweisen wir den folgenden

Satz 1. Fiir die Re]anonen

(2-6) S - K=K
bzw. , ST
en . . - Ea=K'% (0>D)

" ist-die Relation’

' R ‘ der O
(2 8) T W,, ‘p‘l’; <l//1 axj)
_notwendig und hinreichend.

Beweis. Wir bewelsen zuerst daB aus der Relatlon 2. 6) die Relation (2. 8) :
folgt. Die Relation (2. 6) ist nach der Formel (2 4) mit

2.9 ‘ Q=& —w,)fc'+5-(w — Y Ey=0"

glexchwertlg Eine Verjiingung iiber die Indizes 7, j gibt wegen der aus den Homogem--.
tatselgenschaften von y und G fo]genden Identitdt

4 |//.’kx1x"=|p,kx"
und X' = xp unter Beachtung der Ungleichung n#l
(2.10) ' R n// x'—.
Nun ist |

ey C k=g



122 . - A Mobr

“eine Idenﬁtéit, wie das durch eine unmittelbare Rééhnung: sofort bestétigt werden
kann. Eine partielle Ableitung von (2. 10) nach x/ gibt wegen der Identitit (2. 11):

{2.12) : 2 i~y X =0,

Auf Grund von (2.10) und (2. 12) bekommt man aus. (2.9) durch Elimination
von y; X' die Formel X(y ;—yy;) =0, woraus wegen x‘#0 die zu beweisende
Relation (2. 8) unmittelbar folgt

Die Relation (2. 8).ist also fiir die Relation (2 6) notwendig. Wir beweisen
jetzt, dal} sie auch hinreichend ist. Nehmen wir also an, daB die Relation (2 8)
gilt. Wir zeigen, daB dann auch (2. 6) gelten wird.

Aus (2. 8) folgt offenbar nach einer Uberschiebung mit x/ wegen der Homoge-
nitét von erster Dimension von ¢ in den X' die Relation (2. 10). Aus (2. 10) erhilt
man ebenso wie vorher, durch partielle Ableitung nach X/, die Relation (2. 12).

Auf Grund der Formeln (2. 8), (2. 10) und (2. 12) folgt aber daf} die Relation
{(2.9) giiltig ist, man muB nur aus (2. 9) die GroBen y; ,x* mit "Hilfe von (2. 12) und
dann ¢ ; mit Hilfe von (2. 8) eliminieren. (2. 9) ist aber schon auf Grund von (2. 4)
mit, der zu beweisenden Relation (2. 6) gleichwertig.

- 'Wir gehen jetzt zum Beweis des zweiten Teiles des Satzes iiber und zeigen,
«daB (2.8) auch fiir das Bestehen von (2. 7) notwendig und hinreichend ist.
"Aus (2.5) und (2.7) folgt: .

@.13) B ;=) — 80k — V) + (i — ¥, % =0,
Nach einer Verjiingung iiber i, & wird:,

@ (r= D)=V ) + ey — 5.5 =0
und nach einer neuen Uberschiebung mit %/: '

.15 | W =Y )i =

Da %' 0 fiir einen beliebigen Index 7 bedingt werden kann, erhilt man aus
‘der Gleichung (2. 13) nach einer Uberschlebung mit x* in Hmswht auf die Relation
(2. 15):

2 - w,,-—‘l//tﬁ,~+(l//;,,,-—*/fj,r)>5'=

Eliminiert man nun aus dieser Gleichung den Ausdruck (¥, ; —y; )xt mit Hilfe
-der Formel (2. 14), so erhélt man wegen der Bedingung n>2 (vel. unsere Formel
«2. 7)) die zu beweisende Relation (2. 8).
: ‘Wir miissen noch zeigen, dafB3 aus (2. 8) die Relation (2. 7) folgt. Substltuleren
wir ¢ ; aus (2. 8) in die Identitét (2. 11), so wird aus der Formel (2. 11):

' L -  def 52¢
(2. 17) ' Wk,j=‘//jl//k+l//jk, lp,k:W

Aus (2. 8) und. (2.117) folgt schon,-daB die Relation (2. 13) giiltig ist; aus (2. 13)
und (2. 5) folgt aber.die Relation (2. 7). Der Satz 1 ist also vollstindig bewiésen.

Die Relation (2.8) verallgemeinert den Fall der affinzusammenhingenden
Punktridume (vgl. [3] § 32). Ist der Skalar  in den X' linear, d. h. ist y von der Form

(2.18) | W B =g (0%
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und sind die Uberfragun'gsparameter Gl nur von x* abhingig, von x' aber unab-
‘héngig, so bekommt man aus (2.8) wegen (2. 18) und wegen G5 =Gj:
2.19) ' (PR =

da aber nach den gestellten Bedingungen ¢; und ¢, ; von den x* unabhangxg sind-
und (2. 19) fiir Jede Richtung x' besteht, folgt aus (2 19) die Relation '

(ptq),: = 0 .
und das stimmt mit dem Fall der Punktraume uberem (vgl [3], Formel (32. 17))

§ 3. Af f in—skélare Riume

Wir nehmen jetzt an, dafl unser Raum @, ein Finslerraum $, ist. Das .bedeutet
daB im Raume eine metrlsche Fundamentalfunktlon F(x, X) existiert?), d1e durch
dle Formeln : ‘ .

einen metrischen Grundtensor definiert, und daB die GrundgréBen durch die Formeln -

Gi; % I-.;}(ik)z:; o
bestimmt sind, wo 1“’}‘ x(x, x) die wohlbekannten Cartanschen Ubertragungspara-
meter des Finslerraumes §, bedeuten (vgl. [2]).
Nach der projektiven Verdnderung (1. 2) von G' bekommt man einen metrisch-

affinen Raum 23,,, der ein affin-skalarer Raum von erster, zweiter, dritter Art ist;
je mach dem sein Krummungstensor die Form

(3 1) ) ’ . : KJ:KF (')) ono_yﬂ');ﬂi)’

(3.2 @) K=KF*GY=740),  (0) K=KF*(30—1%0),.
bzw. -

3.3) o KG=KF*@i-1T)

hat, wo K einen Skalar — moglicherweise ist K=1 — und $; einen von ¥ und:
g; J,l bzw. von den kovarianten Ableltungen dieser GroBen gebildeten gemischten
Tensor bedeuten. Die Abhingigkeit von 7' ; von den erwihnten GrundgroBen des
‘Raumes ist in'den einzelnen Féllen verschieden, die Formeln (3 1)—(3. 3) driicken
aber aus, daB der Tensor X' ; der affin-skalaren Rdume eine sehr spezielle Form
haben muB die ermoglicht, da mehrere geometrischen Eigenschaften der Finsler- -
rdume skalarer Kriimmung auch in diesen Ridumen giiltig seien (vgl.-[4] § 4): Der

%) Die gewShnlichen Eigenschaften von F(x, ) sind B. z. in der Einleitung von [4] angegeben: ,
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Index:. o bedeutet — wie gewéhﬁ]ich — die Uberschiebung mit dem Einheitsvektor

idef'*‘i def oF
/= i bzw, [;= Fr
des Fmslerraumes ‘
Wir werden jetzt notwendige und hmrelchende Bedmgungen bestlmmen dafiir,

daf3 der d -Raum ein affin-skalarer Raum se1

Satz 2 " Damit K ‘die Form (3. 2) (b) hat, ist notwendzg und hinreichend, daﬂ
Ki. ebenfalls die Form (3 2) (b) habe.

J

Bewels Die Formel (2. 4) schrelben wir in der Form:

B4 Ky=KG+F? {5011 YT =1 (=24 + !//J)I}

Offenbar ist (3. 4) mit (2. 4) vollstandig identisch, da wegen der Homogemtat von
erster Dimension: X' =y besteht und: /! ;=0 ist." Mit der Bezelchnung

R R v & — 2w,,,+z/z,,+n// v
_ geht die Formel (3.4) in . ,
(3.6 L K=KYF (5,%0 1'%

" iiber. Hat nun K' die Form (3 2) (b), so besteht fur K'; nach (3 6) die Formel:

K'j=F* (830 —1I' )’aj) mit 3o, Kjoj— 5.

‘Damit haben wir die Notwendigkeit bewiesen.
Wir nehmen jetzt an, daff K'; die Form

K =K*F’ (51 yoo I Vo))
hat. Offenbar w1rd dann K' 'nach (3 6) die Form (3. 2) (b) haben, wo 1etzt
’ ‘ “K 'Ykm+ykm (K—l)

bedeuten wird. Damit haben wir also den Satz 2 vollstindig bewiesen. _
. Mit Hilfe der Formeln (3. 5) und (3. 6) kann auch der folgende Satz leicht
bewiesen werden:

Satz 3. Notwendig und hinreichend dafiir, daﬂ K‘ die Form (3 3) habe, sind
die folgenden Relationen: .

. ' B
(3. 70) . ‘ y:’kj:]j<K~ﬁT2>,
(3.7b) S K'=B(G-1']),
wo B den Skalarf )
. - o -1
@7 BE——K"

. bedeutet und v¥; durch (3; 5) definiert ist.
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Beweis. Substltulert man v5; und - Kl aus den Formeln (3.7a4) und (3. 7b) )

in die Formel (3. 6), so bekommt man fiir K' eben die Form (3 3). Die Bedin-
gungen (3.7a) und (3. 7b) sind also hmrelchend .
E Um die Notwendigkeit der Formeln (3. 7a) und (3.7b) zu bewelsen nehmen"

wir jetzt an, daB K‘ die Form (3.3) hat. ‘Aus (3. 6) und (3. 3) folgt dann:’
(3.8) K4 (5,y.,,, I'yE)=KF*(5i—I'l).

In diesem Paragraphen haben wir vorausgesetzt daB der Bas1sraum ein Finsler-
raum ist. Im Fmslerschen Fall ist aber - ’

K'Y =R/,

‘wo R.,; der kontrahlerte Krummungstensor dés Finslerraumes ist (vgl [2], §38)
In dlesem Falle ist aber wegen R(k,),,, ;=0 (vgl. [2], §38) auch :

Ky =F2 R, =0%).

oooj

Eine Uberschlebung der Relation (3. 8) mit l ergibt somit:
3.9 - . I,yoo yo,-O
Eine Verjungung von (3. 8) iiber den Indexen i, ] ergibt:
K'+F (n—l)Yoo—KF (n—1).
Naéh der Bezéichming (3. 7¢) bekommt man au{s_uns'ere‘r letzten 'Gleichung:

. - 12
v:;== K- };}l
Setzén wir nun diesen Wert von 7% in die Gleichung (3. 9) ein, 16sen wir dann
'(3. 9) beziiglich vaj, so erhalten wir eben die Formel (3. 7a). Eliminieren wir nun
v&; und- py, mit Hilfe von (3. 7a) aus der Gleichung (3. 8), so bekommen wir fiir.
K'; die Formel (3. 7b). Damit ist der Satz 3 vollstindig bewiesen.
Die projektive -Verdnderung (1.2) verandert auch dlC Berwaldschen Uber-

tragungsparameter G,k Es wird:

. i e iayb iaz ¢}
G.10 Gle= Gt U + U6+ Y3, %kg—fg;:f— B

Deﬁmenan wir ‘nun ein invariantes leferentlal mit den Ubertragungsparametern
G,k durch die Formeln :

BE = d' + Gutlart +A,kf""<d)
wo A e den Torswnstensor des Fmslerraumes ¥, und
‘ - O ()L di* +Giodx' = DI*

bedeuten, so bekommen wir emen von uns m der Arbelt [4[ als afﬁnen Fmslerraum

4). Offenbar st ,K°,-=K.~,~g".l = ,»,-liz o
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'bezeichneten Raum: Sjl,, (vgl. [4] Definition 1 auf S. 159; statt ,,*” bezeichnen
wir jetzt und im folgenden die GrdBen unseres Raumes mit ,, A”

Die Hyperflichen des Raumes 9, betrachten wir als die Mannigfaltigkeit
der tangentialen Linienelemente, d. h. die Grundglelchungen einer Hyperflache
9.-1 sind durch

x=xiu!, u?, ..., u’."i), ii:ﬁ
-aﬁgegeben, wo iiber a von 1 bis (n—1) summiert werden soll und (#*, #*) ein Linien-
element der Hyperfldche bedeutet. Das invariante Differential D induziert durch
Projektion ein invariantes Differential fiir- die Hyperfliche 9,_;. Die zum invari-

anten Differential D gehorigen autoparallelen Kurven sind im allgemeinen von
den .autoparallelen Linien  des induzierten invarianten Differentials von $,_,
verschieden. Sind aber die autoparallelen Linien von $,_; gleichzeitig autopa-
rallele Kurven des Raumes, so nennt man §,_, eine autoparallele Hyperfliche
erster Art (vgl. [4]§7, insbesondere Definition 5). Mit Hilfe der autoparal-

lelen Hyperfldchen erster Art kann man die 9,-Raume von skalarer Kriimmung

vierter Art definieren. Nach der Definition ist der Raum 2, ein Raum von' skalarer
Kriimmung vierter Art, falls in jedem Punkte eine autoparallele Hyperfldclie erster
Art A, existiert, und fiir den Normalenvektor von 4,_, jede Richtung moglich
ist (vgl. [4] § 8, insbesondere die Definition 6 auf S. 183).

Die Forderung, daB der Raum ein SJA[ -Raum von skalarer Kriitmmung vierter

. Art sei, fiihrt zu eciner Reihe der. Bedmgungsglelchungen fir die Krimmungsten-

soren. Sie bestimmen die analytischen Bedingungen dafiir, daB der 9,-Raum ein
Raum von skalarer Kriimmung vierter Art sei (vgl. [4] Formeln (8. 3)) W1r wollen:

im folgenden die mdgliche Form der Kriimmungstensoren K und G,kz der 9[ -
Réaume von skalarer Kriimmung vierter Art zu bestimmen.

Im Beweis des Satzes 9 unserer Arbeit [4] bemerkten wir, daB der'Tensqr G"_jk[

dhnliche Eigenschaften hat, wie der Tensor Gj,s in den Untersuchungen von
A. RAPCSAK (vgl. [5], Hauptsatz I auf S. 12). Die Ursache hiervon ist die folgende:
Ist der Raum U, ein Finslerraum §,, S0 stimmen die autoparallelen und die geoda-
tischen Kurven des Raumes uberem und die Flidche 4, .., geht in eine Hyperebene:
erster Art iiber. Die Finslerriume, in denen A,_,-Flichen in jedem Punkt und
zu jeder Rlchtung ex1st1eren sind von skalarer Krummung vierter Art. In unseren
R&umen 9[,, hat nur X,' ok einen anderen Charakter als in den Rdumen . Es muB
also, falls unser Raum Q[ ein Raum von skalarer Krummung vierter Art ist, G i
die Form:

(3 11) G,kx—x<P,k:+q>,k5z+(pﬂ5k+¢k15x
und K, nach der Formel (8.6) von [4] die Form
(.12) ' . o K= Ail' + 54 B

haben, wobel qo, s Pijk solche symmetrlsche Tensoren bedeuten die von den Grund-
groBen des Raumes gebildet sind, wahrend A, und B einen Vektor bzw. einen Ska-
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lar bedeuten. Es ist dabei ]E'hi,-k das Analqgon' des Tensors 2.3), d. h.

(3:13) . K& —

wo l?ik durch (2.5) angegeben‘ist.-

Bemerkung. Die Tensoren .kij,kijk_ und Iz'(.i,-k erhidlt man, wenn man:
in die Formeln (2.1)—(2.3) statt G' die GroBen .G" schreibt.— " N
Aus (3.13) folgt wegen der Homogenititseigenschaften von K'; und K'i,.
da3 o ' , ' :
(3 14) , ) ’ . Ko ok = F—,Z'K k
ist. Aus (3. 12) und (3. 14) folgt- somlt daB in einem Raum von skalarer Kriimmung:
vierter Art K’ die Form ’ :

(3.15) (O Ky=80+1I'P
haben muB, wobei Q einen Skalar und Pk einen kovananten Vektor bedeuten
-0 =F?B, Pk-—FAk :

Satz 4: K‘ und G' ik besttmmen dann und nur dann einen affinen Finslerraum:
von skalarer Krummung vierter Art, falls auch K!; und G', ;. einen solchen Raum be--
stimmen.

Beweis. Aus (3 10) folgt

3. 16) v G,kt = ,k1+x !P,kz+!ﬁ,k51+l//;15k+¢k15n
L a0 g 0%
mit o S g b ey

Verglelcht man (3 11) und (3.-16), so sieht man unmlttelbar daB G d1e Form :
(3 17) ) ijl =x q),k1+q),k51+q),t5k+q)m5l

haben ‘muB, wo ®@; - und <I)J,‘ symmetrische Tensoren bedeuten und umgekehrt
aus (3.17) folgt (3 11) Es ist

: _(Djkd=ef%ic ‘P,k,’ ,ktd_ef%kz Y-
Ebenso folgt.aus (3. 6) und 3.15), da Ki; die Form"
@18 - . KL=so+ip,

hat wo Q einen Skalar und P; emen kovarlanten Vektor bedeuten, und ofTenbar
folgt aus (3. 18) und (3. 6) fur K' eine Form von (3. 15). Damit haben wir den
Satz 4 vollstindig bew1esen es 1st Q0= Q Fyd,, Pi= P Fzy,,,

B
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Uber die Rieszschen Mittel.allgemeiner 'Ort.h‘ogonalreihen
) 'Von L. LEINDLER in Szeged ‘

" Herrn Professor Béla .Szo"kefa.lvi-Nagy zum 50. Geb'urtstag gewfdmet

.~ 1. Meper. [4] und K. TANDORI [6] haben Approximationssitze fiir die (C, 1)-
Mittel allgemeiner Orthogonalentwicklungen mit den iiblichen Methoden der
Theorie der allgemeinen Orthogonalreihen bewiesen. G. ALExITS und D. KRALIK [3]
haben neuerlich den Satz von K. TANDORI, welcher den von J. MEDER erweitert,
,mlt rezhentheoretzschen Methoden noch verallgememert Ihr- Satz lautet folgender- .
weise:

Sei <;o,,(‘c)} ein im Intervall (a, b) definiertes, beliebiges Orthonormalsystem,
{cajel? 1) eine reelle Zahlenfolge und

0 - : . fx) = é’) c,,'(p,l(x) (Konvergenz in. L2(a, b)).

Wir nehmen an, daB_die Bedingung

oo

_Z c29? (n) <o

d1e (G 1)- -Summierbarkeit der Reihe (1) auf einer Menge E c(a, ‘b) swhert wobei

19(x) eine positive, monoton gegen + o> wachsende Funktion ist. Bedeutet l(x)
eine positive, von unten konkave, monoton gegen + e strebende Funktion, fiir

welche x?/I(x) mit festem 0 <7y <1 bei geniigend groBem x monoton nicht abnimmt,
so folgt aus dem Erfiilltsein. der Bedingung:

gcnz (n)ﬁz(n)«o '

daB die (C 1) M1tte1 o,(x)-der Orthogonalrelhe (1) die Funktion f(x) auf E mit dem
Annaherungsgrad

. I
2 o o — =
@ | 10,(9) —f()] 2o (1( ))

approximieren.

) D, h. > e < oo,
n=0.
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“In §2 beweisen wir wieder mit den klassischen Methoden der Theorie der
allgemeinen Orthogonalreihen drei mit Rieszscher Summation verkniipfte Sitze, aus
denen sich als Spezialfalle der Satz von G. ALexits und D. KrRALIK und das Ergebnis,
daB im Falle I(x)=x" (0<y<1) schon die Bedingung c2l?(n) = D cintr < oo
fiir (2) hinreichend ist, ergeben. Bevor wir unsere Sitze formulieren, fithren wir
einige Begriffe und Bezelchnungen ein, die wir im folgenden immer in demselben
Sinne verwenden.

- Sei A(w) (w=0) eine positive, im strengen Sinne wachsende Funktion mit
A(0)=0 und A(n) > und A(w) die eindeutig bestimmte inverse Funktion von:
A(w). Die Orthogonalreihe (1) heiBt (R, A(n), 1)-summierbar zur im Falle {c,} €/?
durch den Riesz— Fischerschen Satz bis auf eine Nu]lmenge emdeutlg bestlmmten
Funktion f(x), wenn fiir o =n mlt n-—oco

R, = (l(w) A0) 6 () 1)
M)

fast iiberall gilt. Wir setzen
50.(%) = Z a@(x), m=A@) und . m, = [m,];?)

hler sind @ und m, nicht notwendigerweise ganze Zahlen. Es seien Q(CO) (0=0)
eine positive monoton gegen Unendlich wachsende, u(w) (w=0) eine positive,
monoton nichtabnehmende Funktion und y(w) (w=0) eine positive, monotone
Funktion, fiir welche die Funktion y(w)/¢(w) monoton gegen Null konvergiert.

Satz I.'Es sei [(w) eine positive monoton nichtabnehmende Funktion mit

Im,+1) = l(m,+2)=".. =l(ﬁ,,+1)_(n==1 2,..) und

Q) - Iy, )=Kl(m) (n=1,2,...; 0<K<2).
Ferner sei {c,,} eine Zahlenfolge mit der Eigenschaft "

@ S C212(n) <o,

Ist die Reihe ' ) ,

® ' Z cal (M) u(x)

A\

auf einer Menge Ec(a, b) (R, A(n) 1)-summ1erbar so approximieren die (R, A(n), 1)
Mittel R (x) der Orthogonalréihe (1) die Funktion f(x) auf E fast iiberall mit dem
Annaherungsgrad :

® IR f(X)I—O(,(n))

In diesem Satz konnen die ,,guten” Elgenschaften des Systems {(p,,(x)} aus-
genutzt werden. Im- Spezialfall A(n)=n ist es bekannt, daB die Reihe (5) im Fall
(4) z. B. fir das trigonometrische System (R, n, 1)- (d h. (C, 1)-) summierbar ist;
dasselbe gilt fiir ein beheblgcs Orthogonalsystem {<p,,(x)} dessen 2"-ten Lebesgue-

~

oY [a] bezeichnet den ganzen Teil von a. -
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schen Funktionen (n=1,2,...) auf der Menge E gleichméBig beschrinkt sind
(siehe z. B. ALexits .[2]). Die Ersatzbedingungen fiir /(w) sind leider notig.
Aus dem Satz I ergibt sich der folgende

Satz 11. Sichert die Bedmgung

. S et (ny< o
n=0 L. :
. die (R A(n), 1)-Summierbarkeit der Rezhe (1) fiir jede die Bedingung (7) erfiillenden
Koeffizientenfolgen {c,} auf einer Menge Ec(a, b) fast iiberall, so folgt aus dem
Erfulltsem der Bedmgungen o

® - 20 c2e* () ()< oo
und ’ : ' _
® )= =Ku(m)  (1=1,2,...; 0<K<2),

dap die (R, A(n) 1)-Mittel R,,(x) der Orthogonalrelhe (1) die Funktion f(x) auf E fast
iiberall mit dem Annaherungsgrad _

- o 1
(10) | | fRn(x)—f(x)l = Ox(m>
approximieren. '

Der folgende Satz besagt dap 1fur die (R /l(n) 1) Summlerbarkelt die Heran~
-mehung der Folgc {Q(n)} in geWIBen Fillen unnotlg ist. : .

Satz 1. Gilt _
a1y , Kl#(mn)‘—s—u.(mnfl)§K2.u(mn) “mit 1<K1§K2<IZ,

" s0 folgt schon aus der Bedingung
[0) I . Z é2u2(n)<oo

daf die (R, /'L(n) 1)- Mittel R(x) der ()rthogonalrezhe (1) die Funktion f(x) in (a, by
fast iberall mit dem Annaherungsgrad (10) approximieren.

Es ist bekannt, dafl im Falle des (C 1)-Verfahrens A(n) =A(n)=n ist. So sind-
die Bedingung (9) mit u(2"*!)=Ku(2") (0<K<2) -und die Bedingung (11) mit
u)=an’ (a=>0,0<y<1) erfiillt. Daraus ergeben snch unsere vorerwdhnten Be-
hauptungen. :

Der folgende Satz ergibt sich-unmittelbar aus dem Hilfssatz I, der in den Ap-
proximationsséiitzen eine analoge: Rolle splelt wie das Kroneckersche Lemma in den
GroBenordnungssatzen

Satz IV. Es. sei {p,,} eine im strengen Sinne wachsende Indexfolge und {w,}

eine positive, monoton nichtabnefimende Zahlenfolge mit W, .\ =W, 43= ... =Wy
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n=1,2,..).

). Konvergieren die 'Part_ialsumm‘en 5,.(x) der Orthogonalreihe

' 2 Cn W PulX)

auf einer Menge Ec (a, b) so approximieren die Partialsummen sp"(x) der Reihe (1)
auf E die Funktion f(x) mit dem Anndherungsgrad

' ] 11
lsl'Jn(x) _f(x), = 0x<;n>'

Dieser Satz -ist eine Verallgemeinerung eines Satzes vén K. TANDORI [6].
In § 3 geben’ wir Sétze fiir die GréBenordnung der (R, A(n) 1)-Mittel der Ortho-
gonalreihe (1). ‘

Satz V. Es sei l(w) eine posmve, monoton mchtabnehmende Funktzon mit
Im,+1) = l(m,+2) =

= I(M,+,) (n=1,2, ...) und I/(n) - . Ferner sei {c,} eine
Koeffizienten folge mit der Eigenschaft : ‘ - :
(13) j [l(n)] 2 <o,
Ist die Reihe .
a9 Z e e )

auf einer Menge E C(a b) (R A(n), ]) summlerbar so gilt die Abschdtzung
(15) R(x)=o(l (m) .
Siir die (R, A(n), 1)-Mittel R,(x) der Orthogonalreihe (1) auf E faat iiberall.
Die ,,guten” Eigenschaften des Systems {@,(x)} konnen auch im Satz V aus-
genutzt werden. .

Aus dem Satz V folgt der folgende:

Satz VL. Sichert die Bedingung (1) die (R, A(n), 1)- Summlerbarkett der Reihe

(1) fiir jede, die Bedingung (7) erfiillende Koeffzzzentenfolge {c,} auf einer Menge
Ec(a,b), so folgt aus der Bedingung

2 aym=e
' fiir die (R, A(n), 1)-Mittel R,(x) der Orthogonalreihe (1) auf E die Abschdtzung
| @(n)> -
16 s 3 Rll =0, .
(16) g ) o(v(n) '

Fir y(n)=1 wurde dieser Satz im Spezialfall g(n)=loglogn, A(n)=n von

K. Tanpori [7] und im Fall o(m)=logloglogn, A(n)=logn von J. MEDER [5]
bewiesen.
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§ 1. Hilfssiitze

Zum Beweis unserer Sitze werden wir einige Hilfssitze vorausschicken.

H11fssatzI Es sei {p,} eine Indexfolge (15)p1<p2< c<pp<.. Sind
{u} eine bellebzge und {1} eine positive, monoton nichtabnehmende Zahlenfolge

mit Ay o1 ==y ., (m =1,2,...), so folgt aus der Konvergenz der p,,-ten Partial-
summen sy der Reihe 2 u,l, die Konuergenz der p,,,-ten Partialsurnmen s, “der
. n=1
Reihe Z u, und es gilt fur s=lims, die Beziehung
=1 . : : . - .
. s —si=of ).
. . a p SR XPmH )

Die Notwcndlgkelt der Ersatzbedingung fiir {l } kann mit einem Gegenbeispiel
leicht bewiesen werden.

‘Beweis von Hilfsts‘at*z I Durch Abelsche Umformung érgibt sich fi‘!f ‘

. Pm+k 1
D Spmak ™ Spm —. 2 T'Ivuv
. v=pm+1 Ay
die Abschitzung T
, Pmrr—1 / 1 1 1 *- C
Ispm+k—spr;|| = 2 o (S" sl’m)+ (sp’"_+k_spm)
y! A A
. R v=pm+1 vy v+ 1 Pm+k

m+k-—-1 1 V 1 .'_ » 1
> (T—T)<s:,—s:m>+ n

i=m+1 \%p;  Apivi/ Pm+k

- '__0< 1 _.1>+o 1)_0 1
—, lpm+1 lpm.-i»k . j"vl.lm-i'k B )'Pm+1 '

Daraus folgt im Falle k -~ oo die Beziehung (1. 1).
Damit haben wir Hilfssatz [ bewiesen.

. (s§m+k - s:m) =

Hilfssatz II. Gilt ‘
(1; 2) o o u(vn+1)§K
‘ #(v,)
so folgt aus der Bedingung (12), dafi die Partzalsummen 8,,(x) der Reihe (1) in (a, b)
die Funktion f(x) fast iiberall mit dem Annaherungsgrad ,

sy 09— = (ﬂ(‘v)

Ay

~ approximieren. (Hier sind v, nicht notwendigerweise ganze Zahlen.)



134 L L. Leindler

Beweis von. Hilfssatz II Dann ist nach (1.2) und (12)

3 o) f (S0 dx = 3 p2(on) 3 b =

k>vn

= 3w 3 3 @=om3( 3 o 3uwo=

n= m=n Vym<k=vp41 m= Vm<KkSvma41
=0 Z( 3 () =00) 3 ciut()<ee.
m= Vm <K=Vmi1 i . . n= !

'Nach dem Satz von B. LEvi konvergiert die Reihe

3 120)(5,00 =f00)?

fast uberall und so gilt (1. 3) in (a, b) fast iiberall, womit der Hilfssatz TI bewiesen
ist.

‘Hilfssatz II1. Unter den Voraussetzungen von Hilfssatz 1 und der erganzenden _
Voraussetzung A, —~oo folgt aus der Konvergenz der p,-ten Partialsummen s, der

Rethe 2 u Ay die Abschatzung

.

(1. 4 ' s, _o(;pm) ,
Beweis von Hilfssatz III Die Behauptung folgt unmittelbar aus dem
Kroneckerschen Lemma (sxehe z. B. Arexits [1), S. 68), wenn wir dleses auf die

, Zahlenfolge {4,,} und die ‘Reihe Z’ < pmjl u, anwenden.

m= 0 v=pm+1

Hilfssatz. IV. Es sei I(w) eine positive, monotone Funktzon mit (7, + 1) =
=G+ D) = . = IFpr) und

(1.5) E S 7(m,+;)§‘1'<i(m,') (n=1,2,...; 0<K<2).
Dann folgt aus der Bedingung
e | Z"cnl (m) <<
die Abschitzung ’ R
' 1
1.7 Sm x,——Rx = 0, —
wn LG (7)

P

fiir jede n-und k mit m,<k=,,,, fast iberall in (a, b).

" - Beweis von Hilfssatz IV. Wir wcrdcn. die Gleider auf der rechten Seite
der Ungleichung

(L8 155,09 — Re()| =15, (9 — R, (] + | R, (3) — Ry 1 ()] + | R4 () — Re(3)
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einzeln abschétzen. Mit ‘einfacher. Rechnung ergibt sich nach (1.5) und (1.6)

. b . ) _ _ .
3 PPm) Jf (5na(3) = Rn, ()" dx = O(1) 3 7 55 2 A0k =

n—1

= O(1)n§ iz(m,,)%,v; _2 (e =

5 ﬁZ /12(k)clf 5 Im) _

=hiy+ n=v+1 22n

= 5 m_Z (k) 2———1 me1) o(l) Zc,.l (n)<oo.’
Darau,sf ergib?; sich, daB die Reihe -
L P (s )~ Ry, )

fast ﬁbefall konvergiert; also.'gilt fast iiberall

¢-2 w0 R’""(x) <l(m")).
Weiterhin gilt die Be21ehung ‘ o o .
o |Rmn+1(x>—Rm"(x>|=ox(—l.(-l;))- (< Tins )

fast uberall in (a, b). Dies folgt mit Anwendung des Satzes von B. LEVI _daraus,
daB :

22 ' o2 Siv § 5 1 i 2 |
é‘l I*(m,) f(Rﬁn+ 1(%) —_Rm,.(_x)) dx = 0(1) "é’l [ z(mn)mkgl lZ(k).Ck =

—om 3B pwd F LI _om Fdrm==

v=0k=mv+1 n=v+1l ~ 22"

Nach (1. 6) gilt auch die Unglelchung

< - A@)I°E) ' =
lZ; m—j‘(]z (x)— R: 1(x)) dx

- o 3 (“'j(,l))iz(l Qo 3 it -

3y X bedeutet, daB man nur fiir die n mit m,<#.;e 1 summiert.
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3 L l(z)(l(l'f'l) A0
_o(l)ké“")c"é WOFGFy

o) Slz(k)ck :1 2() (zz() /12(11+1))

= 0(1) Z’ (k) i 32((113 = 0() 2 i’ (k) <o

Nach dem Obigen gﬂt

:ﬁn+l /1(1) 1'2(1) . . .
i=ﬁ+lm<’?<> Ries () = 0,0

~ Offensichtlich ist

= ,{(,-+1)_—/1‘(i) Ay +1)

izfn 1’ A) - = Ay +1) - o,

also ergibt sich durch Anwendung der ‘Ca’uchyschen Ungleichung:

- o
a1 Rk(x)|_{ D rraa L LTS e

i=mn+2

{ ﬁ ,1(1'+1)~2—,1(i)}1/2=-0'< 1,>
w2 A@) () i(k)

Daraus und aus (1. 9) und (1. 10) folgt die Abschatzung 1.7 nach (1. 8).
Damit haben wir den Hilfssatz IV bewiesen.

Hilfssatz V. Damit die Orthogonalrezhe (1) mit {c }El2 auf einer Menge
E (R, A(n), 1)-summierbar ist, ist notwendig und hinreichend, daff die Parttalsummen
Sw,(x) auf E fast iiberall konvergieren.

Der Hllfssatz V wurde von A. ZYGMUND [8] bewiesen.

" §2. Approximationeh

Beweis von Satz. I. Wir nehmen an, daB die Koeffizientenfolge {c,} und
die Funktion /(w) die Bedingungen des Satzes I erfiillen: Dann konnen wir den
Hilfssatz V mit der Koeffizientenfolge {c,/(n)} anwenden, und so ergibt sich die

Konvergenz der Partialsummen 3, (x) der Reihe (5) auf E fast iiberall. Also kénnen
" wir den Hilfssatz I fiir die Reihe (5) mit p,=m, anwenden, und so ergibt,sich auf
E fast iiberall der Anndherungsgrad .

en I57, () —f ()] = (ﬁ_ﬁi—))

Nun wenden wir den Hilfssatz IV mit () =1(w) an; dies ist mdglich nach den ~
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Bedingungen (3) und (4). So ergibt sich die Abschitzung

ey C - Rk(x)l—o(,(lk)>

fiir jede n und k mit m,<k=m,, , fast iiberall in (a, b). Aus 2.1 und (2 2) folgt.
“die Behauptung (6). .
Damlt haben wir den Satz I bewxesen

"Beweis von Satz II. Es sei - ) g
- ”(mn+1) flll' mn +<1§w§mn.+19 '
K (Q)._' w(w) sonst. '

Nach den Bedingungen des Satzes II ist die Reihe > c,i(n)@,(x) fast iiberall auf E°
(R A(n), 1)-summierbar, weiter bestehen die Bedingungen (3) und (4) des Satzes I
mit /(w) = (w). Darum kénnen wir Satz I anwenden: so folgt nach der Definition:
von ji(w) der Annaherungsgrad (10) fast iiberall auf E.

Damit haben. wir den Satz IT vollstindig bewiesen. -,

Beweis von Satz III. Wir wenden den: Hilfssatz 11 mlt v,=m, an, SO
bekommen wir die Beznehung

(=0 = ( e ))

in (a, b) fast uberall Auf Grund von (11) und (12) kénnen wir Hllfssatz v mlt
I(a)) #(w) anwenden und so ergibt sich nach (1 7) die Abschitzung

' 1
IS, () — Rk(x)l =0 <”(k))

fir jede n und k mit m,<k=m,,, fast iiberall in (q, b) Aus dem Oblgen und
(11) folgt die Behauptung des Satzes III. . :

§3. Abschiit'zu'ngén

Beweis von Satz V. Wir nehmen an, daB3 d1e Bedingungen des Satzes V
erfiillt sind. Wir wenden zuerst Hilfssatz V mit der Koeffizientenfolge {c/~*(n)} an.
So ergibt sich die Konvergenz der Partialsummen 53 (x) der Reihe (14) -auf E fast
iiberall. Also konnen wir Hilfssatz ITI fiir die Reihe (14) mit p,=m, anwenden:
$0 erglbt sich nach (1. 4) fast iiberall ‘auf £ die Abschatzung

S (X) = ox(l(mn))

Hiernach wenden wir H]lfssatz v m1t l((o)—l 1(a)) an. So bekommen w1r die -
Abschitzung -

lsz, () — Re(x)] =.0 (l(k))

-fiir Jede n und k mit m,<k=m,,,, fast iiberall in (a, b). Aus dem Oblgen erglbt
~sich die Behauptung (1 5) .
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Damit haben wir den Satz V. vollstindig bewiesen.

Beweis von Satz VI. Es sei

2t i mlswsR,,
- Q(mn+1)
Y(w) = @)
-sonst.
o(w) .

Nach den Bedingungen des Satzes V1 ist die Reihe

Saimee

auf E fast- iiberall (R, A(n), 1)-summierbar. Mit [{w)]~'=7(w) erfiilen sich
auch die weiteren Bedingungen des Satzes V, also kdnnen wir den Satz V anwen-
den. So ergibt sich die Abschitzung (16)- fast iibrall auf E.

Damit ist der Satz VI bewiesen.
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Uber die Konvergenz- der Orthogonalrelhen

Von KAROLY TANDORI in Szeged

Herrﬁ Professor Béla' S zé’kefalVi-Nag y zum 50. Geburtstag gewidmet

Einleitung
Fiir jede endliche Folge c;, ..., cy von feellen Zahlen setzen wir -
. ‘
I(cyy ooy Cy) = supJ‘( max  |g@i(x) + ... +c;p;(x))? dx,
_ “1sisjsN ]

wobel daé Supremum fiir alle im Intervall [0, 1] orthonormierteﬁ Funktioneﬂsysteme
{@.(x)} (n=1, ..., N) gebildet wird. Offensichtlich hidngt I(c,, ..., cy) nur von den
von Null verschledenen Gliedern der Folge {c.} ab, und zwar stetig.

- Satz 1. Sez {a,}7 eine gegebeng Folge .von ‘reellen Zahlen. Gilt’

(1) . . L *Zl(a,,kﬂ,'..., "k+1)<°°

' C k=0
ﬂir jede Indexfolge ((')=)nj0“< <My <..., SO kbnuergiert die Reihe
)] L Zan®

fiir jedes orthonormierte System {¢,(x)} fast iiberall. Gilt aber (1) fiir eine Indexfolge
nicht, so gibt es ein orthonormiertes System {@,(x)}, fiir welches die Réihe (2) sogar
Jast iiberall divergiert. Insbesondere ist also das Bestehen von (1) fiir jede Indexfolge
_ notwendig und hinreichend. dafiir, dap die Reihe (2) fiir ]edes orthonormierte System
{@u(x)} fast iiberall konvergiert. .

- Fiir die Funktion 7 gibt es keine explizite Darstellung, wohl aber verschiedene
Abschitzungen. Aus dem klassischen Resultat von MENCHOFF und RADEMACHER')'

-1 D. MENCHOFF Sur les séries de foncuons orthogonales (Premiére partle) Fundamenta
Math., 4 (1923), 82—105; H. RADEMACHER, Einige Sitze iiber Relhen von allgemeinen Otthogo-
] nalfunktlonen, Math. Annalen 87 (1922) 112-138 )
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folgt lelcht dle obere Abschatzung
| Hers ) = O 2 cZlog? (n+1),

woraus man, auf Grund von Satz I, den klassischen Satz von MENCHOFF und RADE-
MACHER?) bekommt, daB im Falle > a7 log? n < e~ die Reihe (2) fiir jedes orthonor-
mlerte System {(p,,(x)} fast iiberall konvergxert

Da

Slergi () + . +CN<P~(X)I< max - |e;g;(x)+ .. +¢,<P,(x)l

. s;sjs
-gllt besteht die untere Abschatzung
c2+ et =1(ey, .., cy).
Verfasser3) hat eine feinere untere Abschidtzung angegeben:

N : _
I(Cl, "'3CN)%Q _21 cl%’ln(cb ey CN) (Q>0)
mit . B . '
. (log(c}+... +c§)—logc?)?, wenn c}+...+ck=8ct>0,
her e =1 |

Auf Grund dieser Abschitzung folgt aus dem Satz I leicht, daB 3 a2 log?1/a2 <<=
mit a,#0 und a, -0 notwendig dafiir- ist, damit die Relhe (2) fiir jedes orthonor-
mierte System {(p,,(x)} fast iiberall konverglert“)

Es sei (0=)mg<...<m,<... eine gegebene Indexfolge. Wir setzen

A, = {a,e,k.u+...+a3,k+.l'}‘/z C(k=0,1,...).
Satz 1L Das Bestehen der Bedingung ' '

sonst.,

©) L S U e Ay )<

fiir jede Indexfolge O0=ny<...<n,<... ist hinreichend dafiir, daf3 die Folge der
my-ten Partialsummen von (2) fiir jedes orthonormierte System {(p,,(x)} fast iiberal
konvergiert. Gilt aber (3) fiir eine Indexfolge nicht; so gibt es ein orthonormiertes
System {@,(x)}, fiir welches die Folge der my-ten Partialsummen der Reihe (2) sogar
fast iiberall divergiert. Insbesondere ist also das Bestehen von (3) fiir jede Indexfolge
{n.} notwendig und hinreichend dafiir, daf die m,-ten Partialsummen der Reihe (2)
fiir jedes Orthonormalsystem fast iiberall konvergieren.

Es sei T=|c, | eine Matrix mit o
hmc”—O (=1,2,...) und hch“—l
i=roo i _,_

welterhm nehmen wir an, daB die T-Summlerbarkelt der Orthogonalrelhe (2) fiir

2) Siehe loc. cit. l)
3) K. Tanpory, Uber die’ Divergenz der Orthogonalreihen, Publicationes Math Debrecen.

Y 8 (1961), 291-307.

4) Siehe loc. cit. 3).
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eine beliebige Koefﬁ21entenfolge {a,} (3 a2~<<) und fiir ein beliebiges orthonor-
miertes System: {@,(x)} mit der Konvergenz der Folge der m-ten Partlalsummen
fast iiberall #quivalent ist. Es gilt dann die folgende Behauptung:

- Damit die Reihe (2) fiir jedes orthonormierte System {@,(x)} fast uberall T-
summierbar ist, ist es notwending und hmrelchend dafi die Bedingung (3) fiir jede
Indexfolge {nk} gilt.

Ist namlich (3) fiir jede Indexfolge {n} erfiillt, so konvergiert die Folge der
m-ten Partialsummen der Reihe (2) fast iiberall. Aus (3) folgt also > a2 < oo und
auf Grund unserer Annahme iiber das Summationsverfahren T ergibt smh daB
die Reihe (2) fast iiberall T-summierbar ist. Ist aber (2) fiir jedes orthonormierte -
System {¢,(x)} fast iiberall T-summierbar, so ist > a2 <<e. Im Falle > a2=o
ist namlich die Rademachersche Reihe 3 q,r,(x) fast iiberall nicht 7-summierbar?).
So folgt aus unserer Annahme iiber das Verfahren 7, daB die Folge der my,-ten
Partialsummen der Reihe (2)-fiir jedes orthonormierte System. {(p,,(x)} fast iiberall
konvergiert und so besteht (3) auf Grund des Satzes II. :

Nach den Sitzen von KoLMOGOROFFS) und KaczMARZ?) ist die (C, 1)-Summier-
barkeit der Reihe (2) fiir eine beliebige Koeffizientenfolge {a,} (> a2 <<o) und
fiir jedes orthonormierte System {@,(x)} mit der Konvergenz der Folge der 2™-ten
Partlalsummen fast tiberall dquivalent. Also gilt die folgende Behauptung:.

Damit die. Reihe (2) fiir jedes orthonormierte System {@,(x)} fast iiberall (C, 1)-
summierbar ist, ist es notwendtg und hinreichend, daf} die Bedingung '

(4) - : 2 I(Ank+1, ".+1)<°° .
Sfiir jede Indexfolge 0= )n0< .<n,<... erfiillt wird, wobei .

An = {02m+1 4 .. +(12m+1} Va2 (m=0, 1,.)
gesetzt wird. ,

Offensichtlich konnen é&hnliche Sitze auch fur andere Summatlonsverfahren
z. B. fiir die Rieszsche Summation bewiesen werden. Mit Anwendung der erwihnten
Abschitzungen folgen aus Satz II einige bekannte Satze iiber die (C, 1)- Summler-
barkeit der Orthogonalreihen.®)

Da aus Bedingung (1) insbesondere

Sai<e

folgt, so konvergiert die Reihe (2) jedenfalis'im quadratischen Mittel gegen eine '
Funktion f(x). Wir wihlen eine Indexfolge derart, daf3

2 ap<ee
=mc+1

M

k

]
(=]

3) A. ZyéMUND, On the convergence of lacunary trigonometric series, Fundamenta Math.,

16 (1930), 90—107.
- 6) A. N. KoLMoGOROFF, Une contribution a I'étude de la convergence des séries de Fourler

Fundamenta Math.,. 5 (1924), 96—97.

7) S. KACZMARZ Uber d1e Summierbarkeit der Orthogonalreihen, . Math. Zeitschrift,
{1927), 99—105.

8) Siehe z. B. D. MENCHOFF, Sur les séries de fonctlons orthogonales. Deuxiéme partie, Fun-
damenta Math., 8 (1926), 56—108.; S. KACzZMARZ, loc. cit. 7); K. TANDORYI, loc. cit. 3).
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“besteht. Dann ist

!

é J(f(t) — 8, (1))? dt < oo,

wobe1 S.(x) die n-te Partlalsumme der Rexhe (2) bezelchnet Hleraus, auf Grund
des Satzes von B Levi folgt, dafl die Reihe

2 (J@ =5, )y

fast iiberall konverg_iert. Die positive Quadratwurzel der Summe dieser Reihe be-
zeichnen wir mit F(x). Also ist F(x) quadratisch integrierbar; ihr Quadratintegral
héngt offenbar nur von den Koeffizienten a, ab. Aus (1).folgt, dal die Funktion

. - , » 1/2
G(x) = { 2 ( max lge(x)+.. +aj¢j(x)|)2}

k=0 nx<isjmngs, .
quadratisch 1ntegr1erbar ist; ihr Quadratintegral hingt nur von den Koeffizienten
a, ab. Es sei n ein behebxger Index und n,<n=n,,,. Da offenbar

I8 (_x)l SO 180, (0) —fO + I8 (6) = 5 ()] = ()| + F() + G(x)

gilt, so ergibt sich auf Grund des Satzes I Folgendes: ist die Bedingung (1) erfiillt,
so konvergiert die Reihe (2) fir jedes orthonormierte System {(p,,(x)} ,,beschrankt”,
d. h. konvergxert fast iiberall. und’ die-Partialsummen bleiben im absoluten- Betrag
unterhalb einer nur von dem System {@.(x)} abhingigen, quadfatisch integrier-
baren Funktion; das Quadratintegral dieser Funktion bleibt unterhalb einer nur
von den Koefﬁzxenten a, abhidngigen Konstante.

* -Also gilt auch die folgende Behauptung:

Satz III. Die Konvergenz fast iiberall der Orthogonalreihe (2) fiir jedes ortho-
normierte System {{p,(x)} ist mit ihrer beschrankten Konvergenz fiir jedes orthonormierte
System {p,(x)} gleichwertig.

Nach der Definition von I(cy, ..., cy) gilt I(Zc¢,, ..., Tcy)=1(cy, ..., cy) und -
I(c+d,, ..., ey +dy)=2I(cy, ..., cy) +2I(d,, ..., dy). Es sei ci, ..., cy eine Folge,
die sich aus ¢, ..., ¢y 50 ergibt, daB einige der c; gleich 0 gesetzt werden. Auf Grund

- der obigen Bemierkungen folgt die Ungleichung I(ci, ..., cv) =4I(c,, ..., cy). Daraus,-
auf Grund des Satzes I folgt ..

Satz IV. Ist die Reihe (2) fiir jedes orthonormierte System {q),;(x)} fast iiberall
konvergent, so ist jede Teilreihe von (2) fiir jedes orthonormierte System {p(x)}
_fast iiberall konvergent. .

Es soll aber bemerkt werden, dafl aus der Konvergenz von (2) fast iiberall
fiir jedes orthonormierte System {@,(x)} die unbedingte Konvergenz von' (2) fir
.Jjedes orthonormierte System {¢,(x)} nicht folgt. Es kann némlich eine Koefﬁzxen—
tenfolge {a,} mit a2 =a2,,

) - 22v+l . 1/2
< Datlog?n<e und Z'I: 2> a,%logzn] S =oo
. . v=0 .

n=22"41
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angegeben werden. Auf Grund der zweiten Bedingung existiert ein orthonormiertes:
System {@,(x)} derart, daBl die Reihe (2) in .gewisser Anordnung ihrer Glieder fast
iiberall divergiert?), und wegen der ersten Bedingung konverglert der Reihe (2) fiir
jedes orthonormierte System {@,(x)} fast iiberalll®). .

Die n-te (C 1)-Mittel der Orthogonalreihe (2) bezeichnen wir mit o',,(x), d.h_

k—1

a(x) Z;(l—

Offensichtlich ‘ist die Konvergenz bzw. die béschrinkte Konvergenz der Folge der
2™-ten Partialsummen der.Orthogonalreihe (2) mit der Konvergenz bzw. mit der
beschrinkten Konvergenz der Reilie ‘

) A P (x)

©) , : -z An®n(x)
4dquivalent, wobei ' :

Opn(x) = A (‘12M+1‘P2M+1(x)+ +azm+1¢2"-+1(x)) (m= 01 )

gesetzt wird. (Ist A =0, so soll man statt A 12.B.1 setzen ) Ist ) erfult so erhalten
wir — wie oben — daB die Partlalsummen der Reihe (5), also die 2”-ten Partial-.
summen der Reihe (2), beschrinkt konvergieren; also _gibt es eine quadratisch. -
integrierbare Funktlon H(x) mit

_ |s;m(x)|§H(x_) C (m=0,1, ..).
Wegen .

.i’fszm(x) o) dx = 3 ”"22,“ Za,%kz O(I)Zak«o
m=0 0
ist . '

L e
M(x) = {m;; (szm(x)—gzm(x))z} €L?,

Durch einfache Rechnung erhalten wir weiterhin:

i [\/18

. Z”Iv nJ‘(a,,“(x)——a,,(x))_2 dx é is Zn' = 0(1) kz.,; ag < oo},
n= 8 . ) k=1 v =

es besteht also auch

- . T Y12
N(x) = { ;; n(0,41(x)— an(x))Z} €L

?) K. TANDORI Uber die orthogonalen Funktlonen X (Unbedmgte Konvergenz), Acta Sci...
Math., 23 (1962), 185—221.
10) D. MEeNcHoFF, loc. cit. 1); H. RADEMACHER loc: cit. 2).
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‘Es sei n ein beliebiger Index und 2™ <n<2m+!, Dann ist

0 =0l = | 3 (001 ()~ u() | =

» C o (amH1_y 1 1/2 (pme1_y1 1/2 . ‘
. .§-{ > E} { 2 k(a,wl(x) ak(x))} =V2N(x).

k=2m
‘Nach den Obigen gilt : . : ’ _ '
| 104 = I52m ()] +162m(X) = 53] + |52 (x) = 00 (0)| =
=H(x)+ M) +V2IN(x)€ L2

‘Ist also die Bedmgung (4) erfiillt, so ist die Orthogonalreihe (2) beschrinkt (C, 1)
-summierbar. Damit haben wir auch die folgende Behauptung bewiesen:

Satz V. Die (C, 1)- Summzerbarkezt‘ fast iiberall der Reihe (2) fiir jedes ortho-
.normierte System {,(x)} ist mit ihrer beschrankten (C, 1)- Summzerbarkezt Siir Jedes
- .orthonormierte System {@,(x)} dquivalent.

- Offensichtlich kann ein dhnlicher Satz auch fiir andere Summatlonsverfahren
.Z. B fiir- die Rleszsche Summatlon bewiesen werden. '

§1. Beweis des Satzes I

- Hinldnglichkeit. Wie schon bemerkt’ Wurde aus (1) folgt, mit Anwendung
-des Satzes von Riesz—Fischer, daB ¢s eine Indexfolge {n,} derart gibt, daB d1e Folge
{5, (x)} fast Uberall konvergiert. Aus (1) folgt wexterhm
8(x) = max. |ag;(x)+... +aj<pj(x)|—-0 (k—»oo)

Mm<i=jSmng+y

fast iiberall. Es sei n,<n<n,,,. Dann ist also _
I5a(%) =55 ()| Z04(x) =0 (n<0)

fast iiberall. Damit haben wir die Hinldnglichkeit der Bedingung (1) bewiesen.
Mit derselben Methode kann auch die folgende Behauptung bewiesen werden:
Ist fiir eine Indexfolge to<...<py<... die Folge {5, (x)} fast iiberall konvergent
.und besteht- T - . Co

‘ ZII(Huk+1""’auk+1)<°°’
k=0
.50 ist die Reihe (2) fast-iiberall konvergent.
-Notwendigkeit. Zum Beweis benotigen wir den folgenden Hilfssatz. -

Hilfssatz. Fiir jedé Folgg Crs ey Cy MUt €3+ ...+c=>0 gibt es. ein in [0, 1]
-orthonormiertes und von der Folge {c,} abhingiges System von Treppenfunktionen

Ay (x); .o WN(X) derart, daf3 -~
T ' max |y () + ... +cjy;(x) =1

l=sisj=sN
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in einem Intervall E( S0, 1]) mit .
mes (E) Zal(cl, vees cN)
gilt, wobei o eine posztwe absolute. Konstante ist.

Beweis des Hilfssatzes. Nach der Deﬁmtlog von I(cy, ..., cy) gibt es ein
orthonormlertes System @(x), ..., <pN(x) fiir welches- '

©® f (lslflax lepi¥)+ ... +c tp,(x)l)zdx >-—1(c1,: SN

g11t Zu einem beheblgen s>0 gibt es Treppenfunktlonen %21 (), .- xN(x) mit

f(qv (X) x,(x))zdee (i=1,...,N).

Wir setzen

: “é,,-="fx.~(X)xj(x)‘dx (G,j=1,...,N)
. p /

¥

und . : : ' : . .
i1 N - -
2 gl + 2 lyd=m  (=1,..,N).
1= 1=i+1 A

‘Bei geniigend kleinem ¢ gelten hach (6) offenbar:

1=isj=N
. ) )
=
- (8) J‘(lgl?éaj;zv ) dx=
0 B
_16 I(cl,. ,c,’v)

Wir deﬁmeren ein in [0, 2] orthogonales System von Treppenfunktlonen 21X, ...
. Tw(%) folgenderwelse Wir teilen das Intervall (1, 2] in N(N—1) Telhntervalle
Il j @, j=1,..., N; i#j) von gleicher Léinge ein und setzen:
1), x€[o, 1, |
zl(x) = [2_1N(N— l)lalyi”l/z, . . xEI,-’, ’ (l=l, ceey N; l?éi),
" =R2-INV=1)]a, V2 signey;  x€1; (=1, .., N; I#i)
(i=1, ..., N). Wegen '

J( max [c () +.. —I—c x,(x)l)zdx = —](cl, s €3y -

1 - ' Ly
ci<l—m)Xt(x)i*'-"+cj<¥‘— V“JJ +, )x_,(x)

-

[}

3 1

’ i1 N

J‘iiz(x) dx = fxz(X) dx + 12; o, 5f +1 21 oy, it = o i +1;
= =i+ . .

¢ . o

A 10
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bjlden die Treppenfunktionen

’ai(x) Xl(x) (i=1, 9N)

Val i ”l
e¢in orthonormiertes System in [0, 2], fiir welches wegen (7)-und (8) gilt:

® f( max lcz<P )+ +c;p;(0))2dx = T I(cl,. .,cN).'

lsis-,

F(x)= max le;pix)+... +cj¢j(x)| ist eine, Treppenfunktion: sie nimmt auf den

1si=j=N . .
pacheinander folgenden Intervallen /7, ..., I, konstante Werte, etwa w,, ..., w, an.
Es sei . '

2
2 wmes(l)=A4;
1

r=

-ohne Beschrinkung der Allgemeinheit kénnen wir A=2 vannehmen. Wir setzen

und

. Va_( 2 . . | | .
)= Pz, )+ Zmes ) | x€ M, tr10), w20, r=0, Lose=l

0 sonst in [0, 1]

(z—l , N). Offensichtlich geniigen diese Funktionen '%(x) und das Intervall
=[0, u‘,] allen den gestellten Bedingungen.
Damit haben wir den Hilfssatz bewiesen.
Ist die Bedmgung (1) nicht erfillt, so gibt es eine Indexfolge O=)ny<...
<, <..., fir die

(10)

I(a, s, ...,a,,kﬂ):

DM 's.

k=0

ist. Ohne Beschrankung der Aligemeinheit kann (@415 -5 Gy} >0, d. h.
a..k+1 +.+ a,,,‘+ >0 angenommen werden.

' Durch Induktion werden wir ein in [0, 1} orthonormiertes System von Treppen-
funktionen ®,(x) und eine Folge von einfachen (d. h. als Vereinigung endlich vieler
Intervalle entstehenden) Mengen E,( < [0, 1]) definieren mit den folgenden Eigen-

. schaften:

a) die Mengen E, sind stochastisch unabhéngig und fiir jedes k gilt
(11) mes (Ek)éal(ank+1’ AR ank+1)

'b) fiir jedes k gibt es von x abhingige Indizes v, =v,(x), u = u(x) (m, <v, =
= Emyy) derart, daB fir x<E,

12) |4, @, () +...+a,®, X)N=1"
besteht. o B

>
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Wir wenden den Hilfssatz in Falle ¢;=a; (i=1, ..., n;) dn, die entsprechenden
Funktionen und das entsprechende Intervall bezelchnen wir mit @,(x), ... <I>,,l(x)
bzw. mit E,.

Es sei x(=1) eine beliebige naturhche Zahl. Wir nehmen an, daB3 die Trep-
penfunktionen ®,(x) (1=n=n,_,) und die einfachen Mengen Ek (I=k=x-1)
schon derart definiert sind, daB diese Funktionen orthonormiert und diese Mengen
stochastisch unabhanglg sind, und (11), (12) fiir k=1, ..., x—1 bestehen.

A Dann konnen wir das Intervall [0, 1] in endlich v1ele Tenlentervalle J,= (%, B)
(g=1, ..., Q) cinteilen, derart, daB die Funktionen ®,(x) in jedem J konstant
“sind und jede Menge E, die Veremlgung gewisser J, ist.

: Wir wenden den Hilfssatz im Falle ¢;=gq,; (1— n.-.+1,...,n) an; die ent-
sprechenden Funktionen und das entsprechende Intervall bezeichnen wir mit
P (x) (1,4 +1$n<n,) bzw. mit E. Es sei

. (I) (X) Z (pn( . (nx—1+1§n§nx)
und . '
Q
En = UE(Jq
: gq=1,

wobei fiir ein beliebiges Intervall I=]u, ]

X—U .
1 %) = f<Tu) Hex=n

0 sonst

gesetzt wird und G(I) das mit der linearen Transfogmation x = (v—u)y+u er-
haltene Bild in [u, v] der Menge G(E[0, 1]) bedeutet.

Offensichtlich bilden die Treppenfunktionen ®,(x) (1=n=n,) ein orthonor-
miertes System, die einfachen Mengen E; (1 Sk<x) smd stochastlsch unabhingig,
und (11), (12) sind auch im Falle k= erfiillt. :

- Das Funktionensystem {®, (x)} und die Mengenfolge {Ek} mit den geforderten
Eigenschaften erhalten wir also mit Induktion.

Es sei H=1im E, (k - ). Auf Grund von (10) und (11) mit Anwendung des

zweiten Borel-Cantellischen Lemmas folgt

mes (H)=1. |

Fiir x¢ H ist die Orthogonalreihe >a,®,(x) wegen (12) divergent.
Damit haben wir den Satz 1 vo_llstéindig bewiesen.

§ 2. Beweis des Satzes IT
Hinlénglichkeit. Diese folgt leicht, mit Anwendung des Satzes I, aus

der Bedingung (3), da die Konvergenz fast {iberall der Folge der m-ten Partial-
summen der Reihe (2) dquivalent mit der Konvergenz der Orthogonalreihe

(13), . - 2 Ay (0
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ist, wo'bei, ' ' . )
\Pk(x) = Alc_l(arnk+1¢mk+l(x)+ +amk+E(Pmk+((x)) N (k=0a 1’ )

gesetzt wird, (Fiir 4, =0 soll man hier anstatt 4. ! etwa 1 schreiben.)

Notwendigkeit. Wir werden Folgendes beweisen: Ist die Bedingung (3)
nicht erfiillt, so gibt es ein orthonormiertes System {®,(x)}, fiir welches die Folge
der my-ten Partialsummen der Reihe 2a,®,(x) fast oiberall divergiert.

Ist.- die Bedingung (3) nicht erfiillt, so gibt es nidmlich eine Indexfolge
O=ny<..<m~<..., fiir die - :

’ ZI(Ank+l,"--s Ank+1)=°°

gllt Ohne Beschrinkung der Allgemeinheit kann’ A4y 415 e

A’Z, +1-%- .+ A2 >0 angenommen werden,

Wir wahlen+eme Folge {b,} von rationalen Zahlen derart, daB
(14) - S lby—ay << und S I(Byiis..r By, )=
gilt, wobei ' )

)>0dh

"k+1

Bk—{bmkﬂ‘f‘ +bmk+,}1/2 © (k=0,1,..)

gesetzt wird., Dies ist ‘offenbar moglich.

Mit der im § 1 angewandten Methode kann man ein in [0, 1] orthonormiertes
System von Treppenfunktionen ,(x) und eine stochastisch unabhanglge Folge
von einfachen Mengen E,(E1[0, 1]) derart angeben, daB .

(15) _ 2 mes (E)=o

besteht und es fiir jedes xEEk von x abhingige Indlzes Ve =i (%), = (x)
me<vi=w=n.,,) gibt, so daB

(16) = le'kvak(x) +'-'--+P,,k¢,,k(x)|%1

besteht.

Durch Induktlon werden wir ein orthonormiertes System von Treppenfunk-
tionen ®,(x) und eine Folge von cmfachen Mengen F, definieren mit den folgen-
den Eigenschaften:

a) die Mengen F, sind stochastisch unabhingig und fiir jedes k bestcht

an _ -mes (F)= mes (E); -

-b) zu jedem x€F, gibt es Indizes v, =v,(X), w=p(x) (nk<vk5yk Neyyq)
derart, daf} die Unglexchung .

(18) by, 41y 1 () + e+ b, By (O]

- besteht. '
Wir schreiben die rationalen Zahlen b2/B (m,<n=my,,; k=0, ..,n,; my=0)
. als Briiche von natiirlichen Zahlen mit gemeinsamem Nenner auf:

ba/Bi =pilq,.
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Wir teilen ‘daé_ Intervall {0,1] in g, Teilintervalle gleicher Linge I, =[u,, v,,j
(1=v=gq,) ein. Es sei fir my<n=m,, (k=0,...,n;) '

g PatoER ' w
q)n(x) = b— . 2 ! wk(]v: X) und -FO = U1 EO(IV)'
"r=pl g+t a2 T v=

Offensichtlich bilden die Tfeppenfunktionen D, (x) (lsnsrh,l1+ ) .ein ‘orthonor-
miertes System, d1e Menge F, ist einfach und b..steht (17) fir k=0. Jeder Punkt

x € Fy ist in einem E,(1,) enthalten ¢! Sv<q0) Dann 1st y—i—)x——EEo und so

gibt es auf Grund von (16) Indizes vy = vo(x) o =Uo(x) O =<vy= Mo = nl) derart,

‘daB
|Byo¥vo(») + et B, ¥, (=1

gilt. Also gilt auch ' :
. ’ |BV0¢V6(IV;:X)+"'+Bﬂo¢uo(1v;x)l—a-l‘

Nach der Definition von ®,(x) ist aber.

’ b +i¢mv +1(x)+---+bm +1 ” *l(x) Bvolp'vo(lv; x)+."'+Byol.kyo(1v; x)_’

my,
also ist (18) fir k=0 erfiillt.

Es sei »#(=1) eine beliebige natiirliche Zahl. Wir nehmen an, daB die Trep-
penfunktionen ®,(x) (1=n=m,,,,) und die einfachen Mengen F, (0sk=x-1)
schon derart definiert sind, daB die Funktionen @,(x) ein orthonormiertes Sys-
tem bilden, die Mengen F, stochastisch unabhanglg sind, und (17), (18) fiir
k=0,..., x—1 erfillt sind. . )

Dann kann das Intervall [0, 1] in endlich v1ele Tellmtervalle J, 1=s=0)
derart zerlegt werden, daB in jedem J, dic Funktionen -®,(x) (1<n5m,,,,+ 1) kon-
stant sind und jede Menge F, (0<k5x—1) die Verelmgung gewisser J ist. Wir
schreiben die endlich vielen ratlonalenZahlen bZ/B,‘2 (m,<n=m, ;k=n+ 1 Bos1)
mit gemeinsamem Nenner auf:

bi/Bi = plg..

Wir teilen deCS J, in g, Teilintervalle gielcher Lidnge J [us e Us.0 (1 =5=g,
1=9=gq,) ein und wir setzen fur m,<n=m,;, (k =n, +1 ey Myt y)

p‘m"iH R

B, 2 L '
q)n(x) 7 Z N Z R l)bk(']s,(); x)
: lo= pf;‘2+1+...+p,(,"21+1‘ .
und
F, = U1 U E (Js,a)
5= e=1

Offensichtlich bilden die Treppenfunktlonen D, (x) ‘(1 =n=m,_, +1) ¢in orthonor-
miertes System in [0, 1]. Die Menge F, ist einfach, . die Mengen F, (0=k =) sind
stochastisch unabhingig und (17) ist auch fir k=x erfiillt. Es sei x¢ F,. Dann
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ist x€ E, (J;,,) fur gewissé sund ¢ (I=s=0, 1=9=g,). Also ist

X —u
y=—->LCE,
Vie—Use

und so gibt es auf Grund von'(16) von x abhingige Indizes v, =v,(x), u,=u, (x)
(nx = V,,§ o = nu'-i- 1): fur dje

. |B"x¢"x(y) + v + Bﬂxlljﬂx(y), = 1
besteht. Daraus folgt ’

lexwvx(J.;',e; x) + + Bﬂxll/ﬂx(']s,e; x)l = 1'
Nach der Definition von ®,(x) ist aber

b1 P 1 O+ b Oy () = BulinUis D+ o+ BV 2,

also ist (18) auch fiir k=2 erfiillt, ' -
Durch Induktion ergibt sich also das Funktionensystem {®,(x)} und dle Men-
genfolge {F,} mit den erwihnten Eigenschaften.
Wegen (15) und (17) folgt

2> mes (F) =-e.

Daraus und aus der stochastischen Unabhingigkeit der Mengen F, erhalten wir
mit Anwendung des zweiten Borel-Cantellischen Lemmas:

mes (lim F)=1.

k—oo

Fir x E—li_m F, divergiert aber die Folge der m,-ten Partialsummen der Reihe

2b,®,(x)
wegen (18) fast iiberall.
Es ist leicht emzusehen daB wegen (14) die Orthogonalreihe

Z(b - ”)(I) ()C)

fast iiberall konvergiert. Daraus folgt endlich, daB die Folge der mk-ten Partial-
summen der Reihe Z’a,,CI) (x) fast iiberall divergiert.

Damit haben wir den Satz II vollstindig bewiesen.

Fiir die Folge der my-ten Partialsummen der Orthogonalreihe (2) konnen
wir auch das Analogon der Bemerkung in § 2 beweisen.

Fiir eine Indexfolge (0=)my<... <m, <... betrachten wir die Mittel

(19) 71-[s,,,,(x)‘+... Yo @] (k=1,2,..),

wo' s,(x) die n-te Partialsumrhe der Orthogonalreihe (2) bezeichnet. Offensicht-
lich ist die Konvergenz ‘der Mittel (19) mit der (C, 1)-Summierkeit der Orthogo-
nalreihe (13) dquivalent, Ist 3 4% <o, d. h. > a2 <o, so gibt es nach dem Satz
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von, Riesz—Fischer eine quadratisch integrierbare Funktion f(x), fiir die

N

1 " 1

[(5.00 1) di = [ (5., 7@ dx 0
0 0 .
gilt, wobei

k M4y
Sk(x) = I=Z'0 Al‘Pl(x) = "g; an(pn(x)

bedeutet. Nach einem Satz von ZYGMUND!!) hat man .

’ 1 N-1

@) - ¥ .2 156 O = & 2 l50, () ~FCIP =0

fast iiberall. Da aus (20) die Konvergenz fast uberall der Mittel (19) folgt, ist die
Konvergenz-von (19) mit (20) fast iiberall dquivalent. °

Die Orthogonalreihe (2) heiBit sehr stark summierbar, wenn die Relation (20)
fiir jede Indexfolge {m,} fast iiberall erfiillt wird. Aus dem Satz II und aus den
erwihnten Sétzen von KOLMOGOROFF und KACZMARZ erglbt sich also der folgende
Satz: '

Damit *die Orthogonalreihe (2) fiir jedes orthonormierte System {@a(x)} sehr
stark summierbar ist, ist es notwendig und hinreichend, daf

2 ](Anx+1 ({mk})’ <iey Amn({mk})) =
fiir alle Indexfolgen {;rzk} und {m} gilt, wobei

v /L({mk}) = {A§l+1 +... '-{-A;tn}llz = {0,2,,2,+1+1 +... +Aa,2,.2,”+1}1/2

bedeutet.
(Eingegangen .am 26. Oktober 1962)

.

1) A! ZyoMuUND, Sur l'application de la premiére moyenné arithmétique dans la théorie
des séries de fonctions orthogonales, Fundamenta Math., 10 (1927), 356—362.
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Equlvalence of a problem of set theory to a hypothesis
‘ concermng the powers of cardinal numbers

By G. FODOR in’ Szeged

¢ To Professor Béla Szdkefalvi-Nagy on his 50th birthday .

Let E be an arbitrary set of power &, and suppose that with every element .
x of E is associated a non empty set J(x) such that for any x € E the power of the
set f(x) is smaller than a given cardinal number &, which is smaller than &, and
 f(x) #f(y) (x#y). We say that the subset I' of E has the property T(q, p), where
q and p are two cardmal numbers. such that p=q=§,, if

xélrf(x) =q and x&J (f(xmf(y))<v

We ‘define the ordinal number B, as follows:

Let B, be the smallest ordinal number g <p such that the set E@ of the ele-
ments x€E for which f(x)<& has the power X,.

Consider now the followmg propositions.

(I) Under the above conditions E has a subset T wiih the property T(X,, 8,,)

(II) For every ordinal number y, f<y<a, the mequalzty .

o

(®52)%0 < ¥,
holds, where &“”0 =3 g“e .
Q<ﬂo B
We shall prove in this paper the following
Theorem. The propositions (1) and (II) are equivalent.

We shall use the following notations. For any subset T’ of E let
= U (f(xmf(y))

X, y€&!
x:#y

For _any cardinal number t we denote by t* the cardmal number immediately fol-
lowing r. The symbols S and y denote the cardinal numbers of the set S and of
the ordinal number y, respectively. For every ordinal number t, R, denotes the
least cardinal number n such that 8, can be expressed as the sum of 1t cardinal num-
bers each <#,. If m and n cardinal numbers, then we define me= > m. Put, for
every ordinal number y, W(y)={&:&<y}. . r<n
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In the proof of the theorem we shall use the following theorems:
Theorem 1. If &, is regular and U f(x) has the power 8., then E has a.sub--
“set wzth the property T(&a, 8,). (See [1], theorem 1.)

Theorem 2. Let 8, be a singular cardinal number, t, a cardinal number which
is smaller then &, and {&¢}¢<mwm a sequence* of regular cardinal numbers such
_that 8,>R, (a>r) max {Regs> &ﬁ,r0}<x¢<& and 8,= . 3 R If for every

§<cu

& <Oy, Ey is a subset of power = R, of E such that E; has a subset E; with the
property T(R;, 1o), then E has a- subset with the property T(R,, [8cf(a) Tol*). (See
[1}, theorem 4.) .

Theorem 3.If M. is.an infinite set oj power M, and if n=m, then the set S of
subsets XM with X <W has the power S= 2> -m*. (See for example the theorem.
3 of §34 in [2].) ) Fen

‘Theorem 4. » S

(m¥ for p=of(o),
m¥)% = (m' for cf(Q)<p=o+l,
- m& for p=o. )
~ (See theorem 7 of § 34 in [2].) ' ,
Theorem 5. Let 8, be a singular cardinal number and n an ordinal number

smaller than w,. If to every element y of W(w,) there corresponds an ordinal number-
_h(y)<n, then there exists a subset M of power &, of W(w,) such that '

h[M] = Ref(a) *

Proof. Let. {a¢}¢<wm,, be an increasing sequence of ordinal numbers such_
that lim a, = & for every ¢ <w.pu), W, >1 and w,, is regular. It is clear that

o E<ocf(a)
W(wa = U W(wag)

< §<wcs(a)

Let us define g,(y) on W(w,) as follows:

&M=k (YEW(0,)).

Since w,, is regular and .w,, >7, there exists an ordinal number n:€ W(n) and a.
subset M, of power R,, of W(w,,) such that-

: &My ={ng}. s
Let . . M= U M,
’ CE<acr@) | .
Clearly the power of M is &,. Let further N be the set of all dlstmct elements of
the sequence {n§}§<wcm) It is clear that
. ' h[M]=N.
Since N= R, theorem 5 is proved.

-
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Cbrbllary If n is an ordinal number of the second kind and cf (n)%cf (),
then there exists a subset M’ of power R, of M and an ordinal number ' <1 such
that* : , _

M IE W ().

Proof @) If- N< Rere)» then it follows from the regularlty of wg, that there
€Xists an 1ncreasmg sequence {¢, }chm) of the type wc,y of ordinal numbers
‘smaller than w.g, such that

Mgy = Mg, =oeee =T, = ... (V<wcf(a))' ¢
‘But then - EMih) =ngl = 3 Re = R
v<Wef(a) .
and . hIM) = h{yEM:h(y) = mg J]S W(ng, +1).

G) If N = Rermy» then let {n,},<,.,,, be an increasing sequence of ordinal
numbers for which 11m r,v—n

(y) If cf (a)<cf (ry), then it follows from the inequality NC W(y) that there
exists -an ordinal number vo<wgy,, for which -

NSWh)cWn). -
(j2) If cf (@) > cf (), then let N,=NNW(x,). It is clear that '
U N=N

v<Wcf(n)

Since wcg,y is regular, there exists an ordinal number vy <, such that

Nyy= &cf(a)

It follows that there exists an increasing sequence {ég}gwm,) of the type wyy,
. such that ‘

NVO = {ﬂ¢9}0<wc](2) N
Thus we get from the definition of {”<}§<mc,m that M'= (J M, has the power

V< Wef(a)
ZR% and

h[M’] < W)

Theorem 6. Let &, be a singular cardinal number and n an ordinal number
smaller than w,. If to every element y of W{w,) there corresponds an ordinal number
h(y)<n, then the smallest ordinal number 1o, for which there exists a subset M of
power R of W(w,) such that

hIM)C W(no) S W(n), ,
is either of the first kind, i. e. no = 1o+ 1 or of the second kind with cf (3,) =cf (o).

Proof. (i) W(n,) has a greatest element. In this case the power of the set M’,
for which A[M’)={n,}, is &,.and the power_of the set M”, for which_. .

h{M")E W (7o),
is smaller than .§,. Thus 5o = 75+ 1.
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(ii) W(n,) does not contain a greatest element. Then 74 is of the second kind.
It follows from the definition of #, and the corollary of theorem 5 that cf (o) =
=cf («). Theorem 6 is proved. With the aid of theorem 6 we get

Theorem 7. The ordinal number B, is elther of the first kzna' or of the second.

kmd with cf(By) = cf ().

Proof of the theorem. (A) First we prove that (I) follows from (II). Sup-

pose also’ that the proposition (II) holds. Put

Ng\N
(RFIZ2 = Rpor)-

It follows from theorem 4, that

8% for cof(Bo)=4o .
Ngon =

' Rfﬂ" for cf(Bo)<Bo.
This implies that
_ w2 (x::.%)’i’;o

N, __
o) 7" = Rpon

for cf (B,) =B, and

hJ g AN No N, Neg, WX
8/35(07)_281300) Z(Rﬁo)e_z Ry oTe= 2 R)Pe = PRy, =

8
e<po e <ﬂo folr)

for cf(By) <Py, i. €. in both cases &ﬂ = Rptro) holds As the sets f(x) are distinct
it follows from this that the set U f(x) has the power &,. Thus, if &, is regular,

we get by theorem 1, that F has a subset with the property T(&,, 8. Suppose
now that &, is smgular Then E®9 has for every y, f<y<a, a subset E, with the
property T (Rpo+ 1 Rpaps s 1€

Mg, = Rpoy <Rpom +1-

Let S(y) be the set of subsets XCIIy with X < x,, It follows from
theorem 3 that S('y)< ;My) R poty) - Hence, since for given 7 the sets’

SOX)=f(x)—Hg (x€E,) are mutually disjoint, we obtain that there exists an
element X, of S(y) and to this a subset Ej of power Rg,;+y of E, such that

Sf1(x)#0 and
‘ FR=fPx)UX,

for every x€ Ej, i. e. E; has the property T(Rgo;)+1, Rg,)- It follows from theorem
2 that E has a subset w1th the property T(R,, g, Reray+1)-

(B) We prove now that from the. proposition (I) follows the proposition (II).
Suppose therefore that (II) does not hold Then we prove that the proposition
(Iy is false.

Let 8, is an ordinal number of the first kind, i. e. S, —ro+1 If (IT) does not
hold, then there exists an ordinal number j,, B <y, <o for which

-~

RO R,

Y0



15.6 - * G. Fodor:- A prbblem of set theory

Let E1 be a subset of power R,, of E and T, a set of power &, of subsets of power
8., of E;. Let further f(x) be 2 one-to-one mapping of E into T;. It follows that
if 1s a subset of E with the property T(q, p) then q=¥, , because the sets

’ ) = f(x)~TrCE,

‘must be not empty and mutually disjoint for q elements x of I
Let B, be an ordinal number of the second kind. Then cf(B,) =cf(a) by the
theorem 7. Let {a,}, <0, a0d {B,}n<0.,., De two increasing sequences Of ordinal:

numbers such that lim «,=a and lim pf,=p,. We have two cases:
N<Wef(a) N<Wecf(x).
(1) there ex1sts a smallest ordinal number r10<a)cf(,) and -an ordinal number

Vo> B<9y,<a, such that z\“""ozx
(ii) for every o <f, there exists an o <P such that R 9 >R oﬂ’ In this case
we assume that, for every n < gy, [3,, is the smallest ordmal number such that

Y0

-

Rg ",
=R, :

"Let T, be in both cases (but in the case (i) we assume that n5§n<[30 holds)

a set of power R, of subsets of power R, of E;, where E1 . It is clear that
the set .
U T,
N<Wcf(x)

has the power ¥,. Let f(x) be a one-to-one mapping of E into T. If T is a subset
of E with the property T'(q, p), then g =R,,, because the sets f'(x) = f(x) -II;CE,
must be non empty and mutually disjoint for q elements x of I". The theorem is
proved.
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MPUMUTUBHBIE KJACCHI AJITEBP,
SKBI/IBAJH:.HTHbIE KJACCAM TIOJYMOJYJIEN M MOlIYJ]EI/I

B. UAKAHbL (Mocksa)*

Ilenbio HacTOsIIER CTATbU SABASETCS NPOJOHKEHME HMCCJIEIOBAHUH, NMpPOBe-
JEHHBIX B paﬁoTe aBstopa (3], B 4aCTHOCTH, yCUJEHHE HCROTOprX pe3yJ/IbTaTos,
Tam M3JlO)K€HHbIX BBMIl,y 3TOro npennonarae'rc;l 3HAKOMCTBO 4UTAaTENSA C OIl-
pefeieHnsMH, 0G03HAYEHUAMM UM pe3yJbTaTaMM YNOMsSHYTO# paGoTsl. :

§1 . -

B [3] cq)opmynnposaubl CIIEJlytoWIHe YCOBHS, KOTOPbIMH MOXeT 00.1a4aTh
HEKOTOPHIl MPUMUTUBHEIK Khacc U:

L B % cymecTByeT HyAbMECTHas onepaunﬂ OTMEYEeHHBIH
KOTOpO#t 2JIeMEHT o6pa3yeT nogaiare6py B mo6oﬁ anre6pe
kaacca .

. Baw6oit anre6pe us 9[ KaXKas KOHTPY3HUMA OJHO3HAYHO

onpeuenﬂeTca CBOUM KJACCOM, BINIOUMMCH HOpMaJIbHOPI noj-
anre6poit. —

"III. B nw060it anreépe u3 A xaxaas nonanreépa Hopmanbua

IV. Knace %° HOPpMaNbHBI.

KpoMe 3TMX yC/10BHH, HaM MOHAfOGUTCA U CEYIOLIEE:

V. B kaacce A npamoe M cBOGOJHOE NPOM3BENEHHUHA JABYX
anre6p coBnagaioT. VIHBIMH cioBamu, MEXRY DPAMBIM #  H-CBOGOJHBIM |
npoussefennsimu are6p A u B xnacca I cyuiecTByeT TaKkoi H3OMOPdU3M,
Npy KOTOPOM 3Je€MeHTH! A U B COOTBETCTBYIOT CaMum ceGe. ‘

Ycnosue V wuccaepoBan A. A, TepexoB [2]. Vim oTmeueno, uto V umeer
CMBbICJ JIMLIL NP HamuMuuu I, a TalKe faHa XapaKTePUCTUKA KBa3UIIPHMHUTHB-
HBIX KJIACCOB, YNOBJETBOPSIOLIMX ycnosmm I, V. Hanombsum, 4TO CyuI[eCTBO-
BaHue CBOOOJHOTO MPOM3BEJEHUS B npummusuom xaacce ycraxosneHo Cu-
KOPCKUM [4]

* B. CSAKANY .
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Anre6py R C OCHOBHBIMM ONEpauusiMM +,-, U C .HyJIeBblM anemeHTom 0,
IJisi KOTOPbIX BLIMOJJHAIOTCA aKCHOMBI '

4

rikra=rygtry (hr)Frs=ri+(a+rs),
(rytr))rs=rirs+rors, ’3(’;+’2)=’3’i+7372:'
(ryrp)rs=ry(ryrs),

r1+0—r1, r,0=0 r,=0,

[ r11r23r3€R ‘MBI GyeM Ha3blBaTh (aCCOLMATHBH bIM) MOTYKONbUOM.

ApuTuBHyio “ moayrpynny A € eIMHHYHBIM 3aemeHToM O, B KOTOpoOil on-
PElENEHO ONnepaTopHOE TPOM3BENEHHE ag, TAe a€ A, ¢ — 3JNEMEHT HEKOTOPOro
MOJMYKOJIbLA C efMHuuell R, NMOXYMHEHHOE YCJOBHAM

a(e +e2)=a¢; +ae;, (a+b)e,=ae; +bey,
a(0,0;)=(ag1) 02, a0=0, al =a, 0¢,=0,

3

rie a, b€A, o,,0,€R, 0 — Hynesoi siement, a 1 — enuﬂuua B R, Mbl Ha-
30BEM NPABHIM YHUTAPHBIM R- nonymonynem

Jlerko BupeTh, uTO ecnu R (MKCHPOBAHHOE MOJNYKOABUO C eummueu TO
BCE MpaBble yHUTAapHbIE R-MOAYMOAY/IM OGPa3ylOT MPHMHUTUBHBIA KJacc.

§2 ~

Ceiiuac Mbl 0XapaKTEpPHU3yeM C TOYHOCTHIO 1O IKBUBAJEHTHOCTH NPUMUTHB-
Hele Kaaccel aare6p ¢ ycaoBusmu I, V. TloaroToBkoit cayxut cregylowas

JNemma. Ecau. 9kBMBAJEHTHOCTb NPUMUTHUBHBIX kiaaccoB A u
B onpepenserca oroGpaxeHuem onepauuil ¢ u anre6pam -4, A
u3 A coorBercTByOT ajare6pel B, B u3 B, To anreépe AXA
cooTBeTcTByeT BXB, a A-cBoGogHOMy mnpousdBejeHui0 AxA —
B-coGoaHoe npouspegeHue BxB.

JdokasaTtenbcTBo. IlycTh § — OTOGpaKeHHe DEMEHTOB A Ha B npu

paccMaTpuBaeMoil IKBMBAJIEHTHOCTH, & § — OToGpa)eHHe ajleMeHTOB A" Ha B'.
[MocTpoum otobpakenue n aneMeHToB AX A’ Ha BX B’ TaK:

(a,aYyn=(ab,a'60"), (acA,a’cA).
7 B3AMMHO OJHO3HAYHO M €C/M v IPOM3BOJIbHAS n-MECTHAs Omepauus Kiaacca
A, T0 g MOOLIX ai€Ad, ai €A (i=1,...,n)
. ((ﬁl,ai)...(a,,,a,’.)v)ﬁ:(al .GnY, ai...aav)n =
=((a1...am)0, @i ...a;)0) = ((a10)...(ai0) (v, (@i0)... (@i 0) (b)) =
C =(ai0, ai0)...(a.0, a;0") (ve) = ((a1, ai)n...(an, a)n)(ve).
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3HauuT, AX A’ . 3KBUBaJEHTHa BX B’, a noatoMy BX B’ u30MOp¢{Ha TOM
anrebpe wiaacca B, KOTOpas COOTBETCTBYET anreépe AX A" npu paccmarpu--
BAEMO SKBUBAJEHTHOCTH KjaaccoB A u B.

Ilepeiigem K cBoGopHbIM mpousBeaeHUAM. [Ipu OmnpefeNeHn B B%B’ omne--
paupm kiacca, 9 nocpeacTBom :

W biobe=blbew), BEBXE, i=1,...n),

B% B’ npespauiaercs B anre6py wiacca 3 BxB (cm. nemmy 1 u3 [3] u ee:
noxasarenbctso). Ilpu atom 60, & usomopduo oroGpawkaiotr 4, 4° Ha noja’--
re6pel B, B’ anre6pnl B* B’. [lockoabky Ax A’ —'CQI-CBoﬁon‘Hoe npon33eue-—l
Hue, 0 U ' MOXHO NPOJO/DKUTL N0 TOMOMOP(HOro OTOGPAKEHUS ua n A% A’ B
B%B'. Tomomopdusm. Ha CaMOM Jie€. eCTb- oTo6paskenne Ha Bx B lleucr-~
BUTEJbHO, ecii XEB¥x B, T0 CylIeCTByeT 3anuCb BUAA x=by...b,bi...bno, THE:
o — rJaBHas TPOM3BOjHAA omepauus knacca W, bEB (i=1, vy ), BJER

(=1,..,m). Omako oc=pp, TAe @ — HexkoTOpas onepauus kiacca U, a.
TI09TOMY, BBHUALY (1) B ajredpe B*B’
=by. bb1 ..bmo.

‘Onpegiensst B A% A onepauuy kiacca B nyrem
él..'.a,(9¢)=a1...a;g, (aicdx A4, i=1,..,r),

_Mbl TpeBpaTHM A% A’ B anre6py kinacca B Ax A, nputom 0-1!; ¢'-1 W30~
MopdHo oToGpaxatoT B, B’ B nopaire6psl A, A" anre6ps A% A’. Kak u Bbiue,.
,0°' ¥ 6’~! MOKHO TPOROKMTB O TOMOMOPGHOro 0T06pa)l(eHH$I ¥ B¥B Ha
Ax A

Ny SIBISIETCSA oroépameﬂuem Ax A" Ha ce6;1, TOYKAECTBEHHBIM 151 :-memeﬂ--
ToB A u A’. Imeer mecto '

(@1...a0a ... an0) (02) = (@1ny-.. (ann)@in) ... (arn) (@) £ =
= ((‘“9.) o (@n0)(@i®)...(an0) (@)X =a1 ... ana] ... Amg,

T.®€. 7y — TOXJIECTBEHHOE OTOGpaweHme. WTaKk, § — B3AMMHO OJHOBHAYHO,.
T. €. OHO eCTh HM3oMOppu3m Ax A" HA BxB'. Beupy (1), A% A" u B% B’ 3K~
BUBAJIEHTHb! NPH OTOOpA)KEHUHM ONepauuit @. JTUM JemMMa JOKa3aHa.

Eute pas ommerum, uTo oTOGpakeHue onepauuii ¢, ONPENESSIOLIEe IKBU-
BQJIEHTHOCTh KjaccoB A u B, TeM CAMBIM OJHO3HAYHO OMpEJENsieT M COOT-- °
BETCTBME Mex(ly ajnre6pamu kiaccos A u B. E :

Teopema 1. Mlpumurusnnii kaacc anre6p A Torpa M TOALKO
TOTla 3KBUBAJEHTEH NMPUMHUTUBHOMY KJacCy BCeX NPaBBIX YHU-
TAPHBIX MOJYMOAYyJeH "Hal HEKOTOPBIM AaCCOUMATUBHHIM MONY-
KONbUOM C efuHuued, ecau U yaoBaeTBOopser ycaopuam I n V.
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JlloxaszarenbctBo. Ecau B A Beinosnsores ycaosust 1, V, To CBOGOA-
Hylo anre6py knacca U c ByMs CBOGOAHBIMM OGDA3YIOLUUMU- MOMKHO OTOM-
JECTBUTH C NpPSIMBIM NPOM3BEJEHHEM JBYX CBOGOAHBIX anre6p kiacca A ¢ qa-
HUM CBOGOJHBIM 00pasyiollum Kaxkjas. M3 sroro ¢axra, kak M npu joxaza-
TeJbCcTBE Teopemsl 1 B [3], BbiTekaeT, uto B N CyulecTBYeT Takasi [ByMECTHas
-ACCOLMATHBHAS OMEPALMsS + C HYJIEM, qTo At OGOM  n-MECTHO oOmepauuy
‘@ Knacca A TOKAECTBEHHO ’

‘) : (x1+y1) (%, FINO= Xy D F Y1 Fo)

‘Otciopa, B qacmocm nonyqaem ROMMyTaTHBHOCTb onepauuu +.

Muo)ecTBO M, COCTOsILIEE M3 BCEX OJHOMECTHBIX ONMEPaUMH U M3 HYJb-
.MeCTHO#i* onepauuu 0 xnacca U, MOXHO NPEBPATUTb B MOJIYKOJBLO C €IMHHULE,
/€CJIM B HEM ONPENENUTh ONEPaLMH 10JyKOJbLA CIEIYIOLUM 06PA3OM:

X(py+ ) =xpy +xpp, x0=0, x(upy)=(xp)pu,.

MNonyyenHoe nonykonbuo 06Go3Haunm uvepes R. Ceiluac Mbl MOKEM 1OKa- °
:3aTh, YTO NPHMMHUTHUBHBIH KJAacC N BCeX NPaBBIX YHUTAPHBIX R-nonymopyneit -
-akBuBasienTeH kaaccy . JlokasaTenbCTBO COCTOMT B JOCIOBHOM NOBTOPEHHH
JlokasartenbcTBa Teopembl 2 3 [3]. OTmeTuM, 4TO TIpU 3TOM HaM TNPUXOAUTCS
" MCMOJIb30BATh PA3OKMMOCTL Onepauuii ka1acca R B CyMMy OXHOMECTHBIX Ore-
pauuii, KOTOpasi BMECTO CCHIJIKM Ha CBOWCTBA abesieBbIX Q-rpynm JoKasbiBaeTcs
‘MHAYKLMet N0 CTEMEHM CNOBa, ONPEJEJSIONIero ONepaLuio, Hag CUCTEMOH one-
paumii, cocrosiuieil u3 CIIOKEHUS U YMHOXKEHUII Ha 3JIeMeHTH mnoJjykosbua R.
* C.upyroit CTOPOHBI, .NyCTh NPUMUTHBHBIA Kaacc U SKBMBAJIEHTEH NPUMH- °
“THBHOMY KJaccy N BCcex MNpaBbIX YHUTAPHBIX MOJYMOMYJEN - HAll HEKOTOPHIM
.aCCOLMATHBHLIM MOJYKOJBUOM C eauHuueit R. Bomosunenne I B U oveBuaHo.
Paccmotpum B U npsmoe mpoussenenne AX A" (A, A"€9) u Bo3bMeM rnpsamoe
.npoﬂ'saeneuue nosymonyiaeit P, P/, coorBerctByloluux B R aiarebpam A4, A4'.
‘CorniacHo semme, PXX P’ cooTBeTCTBYeT anrebpe A X A’. Y6enumesi, 4to PX P\ —
€BO6OJHOE Tpou3BefeHHe moaymopyneit P u P’ B-knacce R.') B camom pene,
PX P’ nopmraaeTcs cBoumu nogmonyasmu P u P, [lanee, ecau 6, 0’ — romo-
" :MOpHM3MBI P, COOTBETCTBEHHO P’ B HEKOTOPHI R-moaymofyib Q, TO MNycTh

«QTOGpaXkenue n PX'P° B Q ONpEResAercs TaK:

(p, PYn=(p,0)0 +(0, p)0 (pEP, p'eP).

’

Jlnst snemenToB M3 P # coBmamaer ¢ 0, a mias ajiemeHTOB u3 P° — ¢ 6';
IKPOME TOro, OHO SIBJAETCS romomopdmsmom PXP B Q, ubo ecnu p,,p,€P,

1) NlokasaTenncTBO 3Toro (hakta no cviuecTry nue-r o1 A A Tepexo Ba [2] N Mbl
BKJIIOYAEM E€FO JNIBbL AJsT y106c-rea quTaTens.
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pi,pr€P, TO ' o _
[(p1, p1) +(p2, PN =(p1+p2, p1 +p2)n'=

=(p1+p2, 000+, pi+p2)0'= .
- =(p1,0)0+(p2, 0)9+(O,pi)0’+(0, p2)0" = (p1, p)n+(p2, p2)n

H A m06'oro 0€R

i[(}a_l,pi)Q]n=(p1@,piQ)n=(bne, 0)6+(0, pie)0'=
=[(p1, 081 +[©, p))0Te=[(p1, 08+ (0, p) 0] = [(p1. pi)rle.

M3 n0xa3aHHOrO HA OCHOBAHMHU JIEMMBI CjefyeT, 4To. AX A’ ecTb A-CBo-
60jiHOe TpousBefenne CBOMX nopanredp 4 u A’. IJTUM NMOKA3aHO BBHINOJHEHUE
ycaoBust V B 9, 4TO 3aBepLIAET JOKA3aTENhCTBO TEOPEMBI 1.

§3 ’

Teneps mbl Gygem paccMaTpmBaTh, KaK u B pabore [3], Kkaacc. YHUTapPHBIX
MojyJieil Hal KOJIBLOM.

Teopema 2. [lns npumuTMBHOro kjgacca % cnenyloume ye-
Thipe YTBEP)AEHHS PABHOCHJIbHBL: : : .

(). A SKBUBAJEHTEH NPUMUTHBHOMY KJacCy BCeX NpaBhHIX
YHUTAPHBIX Moaynei Han HeKOTOprM aCCOUUATHBHBIN KONbLOM
C efnHuLET.

(B). A ypoBaersopsieT ycaosuam 1, 1V, III,

(C). A yposaerBopser ycaosuam I, II', V

(D). A yu‘OBne;rBopﬂeT ycnoﬁmnm L1V, V. A

JlokazaTeabCcTBO. (4) BiedeT (B). B camom fene, BCAKMA NPMUTHB-
HBI KJIACC MPAaBbIX YHUTAPHBIX MOAyJedl Hajl acCOLMATMBHOM KOJBLOM € enu-
HUIEH yroBJaeTBOpseT ycaosusam I, 117, IIL [Tostomy HaMm JOCTATOYHO 3aMETHT,
ITO €C/IW NPUMHUTHBHBIE KJAcChl. A W BV SKBMBANEHTHBI, TO OTOOPAKEHUE 3Jle-
MEHTOB, yCTAHABJNBAIOLIEE IKBHBAJICHTHOCTb COOTBETCTBYIOWIMX anre6p A4 u3
A uBus Y, “MIEPEBOAMT MOfaredpsl A B nonanreﬁpm B, a TawKe KOHrpy-
3HLUHMH. A B KOHIPyaHUMU B. '

(B) Baeuet (C). B wnacce A.co CBOACTBOM (B) csoﬁonﬂoe npouseeneﬂue
ABYX aiareGp coriacHo Jiemme 2 u3 [3] COBmajaer ¢ X MNPsSMBIM NPOU3BENECHUEM.

(C) Bneuet (D). Knacc A co-coitctBoM (C) no Teopeme 1 .IKBUBAJIEHTEH
npummrTHBHOMY Knaccy R Bcex NPaBbIX YHUTAPHBIX MOJYMOAyJe#d HAaj HEKOTO-
PBIM  ACCOUMATHBHBIM nonjxonbuom .C eauduuern R. PaccMoTpum.B knacce RN
cBOGOAHBI MONYMOAYNb F C JABYMS CBOGONHBIMM OGPa3yIOLMMU Xx;, X,. Ole-

A1l
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MeHTb! F NpefCTaBuMBI CIOBAMM KJacca R c nepemeHHblmu Xy, X,. VIH;LyKLU/Ieu
MO .CTEMEHH CJIOB HAJl CUCTEMOH ONMEpauuid, COCTOAUIEd U3 CIOMEHHA M YMHO-
" JKEHWd Ha 3JeMEHTHl M3 R, MNONYy4MM, 4TO BCAKMIL 3neMeHT u3 F vMeeT Buj
X101+ X302, 01,0,€R. Taxkoe npeicTaBneHue SIBJAAETCA EIUHCTBEHHBIM, HGO
eCJIN * X101 + X202 = X101 + X203, 01, 02€ R, T0, TaKk Kak F cBOGOjEH B Kjacce
R, 5TO PaBEHCTBO BHLIMOMHAETCA B N TOMIECTBEHHO, M, NOACTABIAS X1=X,x,=0
M x1=0, X=X, Mbl TIOJly4aeM, 4TO @1=0i, 02=03. , '

Beepem B F crefyoliee GMHAPHOE ~ OTHOLUEHUE: x10'1+x20'2_x1‘cl+x2r2 |
TOrla M TOJMbKO TOTAQ, €CHH 0y +0,=1y+7,. W3 akcuom nomymonyns BbITE-
KAET, - YTO 3TO OTHOLIEHME ONpeNe/sieT KOHrpysHumio x» B F. B wnacce R, k-
BuBaneHTHOM Kiaccy U, BuinoJnsercs yciosue II'. [lpunumast BO BHUMaHme;
YTO X; =X,, U60 X, =x,1+x,0, x,=x,0+Xx,1, .MBL BULMM, 4TO HYJEBOH Kjacc
KOHFPYSHLUM » COJEPXKUT HEHyJeBOH 3/eMEHT, B MPOTUBHOM Clyvae x OKa-
3anach Gbl TPUBMAJIBHOR B cuny II'. TlosTomy CyluecTByeT TaKOd a/eMeHT
X,T1 +X;3712€F, 4TO X7y +X,7,=0, HO X7, +X,7,%0. Takum o6pasom, cy-
LIECTBYIOT TaKkue Ty,7,€R, 4TO.7;+7,=0, npuroMm OHH OTJIAYHBEI OT HyJIf,
nocKoJbKYy t,=0 Breder 3a co6oit 7,=0, OTKyaa Xx,7,+x,7,=0 BONpeku
npeanooxenuo. CefoBaTeNbHo, B TOJMYKOJIbUE R CYyLIECTBYIOT HeHyJieBble
_3/MeMeHThl, 00J1aJa0IKE TNPOTUBOMOOKHBIMU DJIEMEHTAMM OTHOCHTEJIBHO CJIO-
swenud. COBOKYNMHOCTb BCEX TAKMX 3JIEMEHTOB 00pasyeT noaxosibuo R; B R,
ABJAIOILEEC] B HEM Jaxe (ABYyCTOPOHHMM) wujeatoMm. [lokaweMm, 4to R, =R

jlohyCTuM YTO 3TO HE TaK, T. €. Ry C R M 3JEMEHTbl U3 R, He TMpHHAj]-
Jexaue K R;, He HMEWT npomsononomuoro anementa. PaccmoTpum B R
CMEXHBIE _KJIACCHI R1+g(g€R) Eciu oi1+o=0i+0’, (01, 01€R:1, 0, ¢"€R),
T0 0=(— 91‘*'@1)'*‘@-’ a noatoMy Ri+¢= R1+( o1+e1)+¢ =R;+¢’, o1-
Kyaa CJIeyeT, YTO €C/AM JBa CMEKHBIX KJIAacCd HMEIOT OOLIMil 3/MEMEHT, TO OHM
coprianator. Mrak, oTH KJacCel OCyLUECTBAAIOT pasOUeHue noJjiyxoJjpua R, Ko-
TOpOe, OYEBMJHO; SIBAsIeTCA W KOHrpyaHumed B R. Ilockosbky Hyseoil wiacc
9TOH KOHrpysHUMH ecTh R;, TO MOJIy4EHHOE .(haKTOPMOJYKOJNLLO Mbl MOMEM
0603Ha4ath uepe3 R /R,; ero emunuueii caywur R, + 1.

PaccMoTpum npUMHTHBHBIA KJIAacC BCeX MPABbIX YHUTApHBIX R R;-nojy-
monynedd. Kawgblii R R;-MOTYMORY/Ib €CTECTBEHHBIM 00pasoM MOXHO' pacc-
MarpuBaTh KaxK R-MOJYMOAYJb W NPH 3TOM KOHTPYSHUMM B HEM OCTAalOTCA Te
e cample: [loaTOMY NDPUMUTHUBHGBIA KNACC BCEX NPABBLIX YHUTAPHLIX . R, R,-
noJiyMOfyJieil yaosieTBopsier ycaosuio II', ¢npaBefiMBOCTb ke ycaoBuit 1 n V
BbiTEKaeT U3 TeopeMbl 1. [loBTOpeHMeM mpenblAyLIEro MpoUEecca Mbl MOJYYUM,
410 R/R; CONEP)KUT HeHyJleBOe MOAKOIbLO R, Rys A€ R, — COOTBETCT-
Byrolee mnopnosykonasuo B R. [lyctb @,€R,, ¢4 R;. Torpa cyiwectsyer
02€ Ry, IUISI KOTOPOro @2+ @5=01€ R1. Mbl BuguM, ut0 02 +(02—01)=0, T. €.
0, 06;1a5aeT NPOTHBROMOJIOXHBIM 9JIEMEHTOM, YTO MPOTUBOPEUMT NPEANONIONKEHUIO.
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MbI BHEMM, 4YTO R SIBJSETCS KOJBLOM, a NOSTOMY eJMHHULA M3 R UMEeeT
NPOTHBONONOMHLIA 3/1ement. Paccmorpum B R-onepauuio xyzo=x+y(—1)+z.
ToxIEeCTBEHHO MMEET MeCTO xxzw=zxxw=z. bepeM onepauuio ’ u3 %, co-
OTBETCTBYIOILYIO @ NPH OTOGPAKEHWU OMepauuil, OMPeiesioIeM IKBUBAIEHT-
HOCTb Mexay N u N. Cornacito nemme 1 u3. [3, B U TOXAECTBEHHO XXz =
=zxxw’=z. [lo Teopeme 4 u3 [1] aro pasHOCHJNBHO TOMY, uTO B U BHINOJ-
Hsietcd -1V.

(D) BAeder (A) Knace %A co CBOACTBOM (D) aKBHMBAJIEHTEH npnMMTnB-
HOMy KJaccy SR BCEX NpPaBbiX YHUTAPHLIX MOJYMOAYJEH Hajl HEKOTOPBIM MOJy-
KOJIBLIOM C euanuen R. W3 BuinonHenus IV crenyer, . fo [1], cywecTsoBauue
B9, a Tawke B N, TepHapHbIX omepauuii ', COOTBETCTBEHHO @ C TOXAECTBOM
xxzo =zxxw=z. Kak ynomsaHyTo mpu jokasaTeJnCTBE TEOPEMBI 1, @ pasiara-
erTca CAENyIOLUIMM 06Pa3oM: Xyzw=Xw;+yw,+20;. 31ech w; (i=1,23) -
3JIEMeHTh! U3 R, ‘{TO . TI0OKa3blBaeTcs TaKHM JKE NMYTEM, KAK U B JOKA3aTebCTBE
teopembl 2 u3 [3]. Torma, mosb3ysach TOXKIECTBOM (2) U TEM, 4TO R CaMmo sB-
JI9€TCS MPABLIM YHUTAPHBIM R-MOJYMOYJIEM, MOMY4UM:

1+a)2_1+1a)2_100w+010co (1+0)(0+1)(0+0)m_110w 0.

3uauut 1, a BMecTe C Heil I/I-KEI)KJ],bIIA a/MeMeHT M3 R, uMeeT NPOTHBOMNOIOKHBII
DAEMEHT, T.e. R — KOJbUO. YYUTHIBASA, 4TO CHCTEMA AKCHOM YHUTAPHOrO MO~
JIYMOAYJISI  COAEPIKHUT cnéremy aKCHOM YHHTAPHOTO MOJyJsl, Mbl BUAUM, 41O R
eCTh ﬂpl/lMl/lTl/lBHbm KJACC BCEX NPAaBbIX yHmaprlx R-monyneit. Teopema Io-
Ka3aHa.

[Tockon6Ky 9KBHBANEHTHOCTD rIpI/IMldT]/IBHbIX KJIACCOB SIBNAETCA TPAHBUTHB--

HOM, M3 TEOPEMBI 2 ¥ u3 Teopembl 2 padorsl [3] BhITEKaeT

Cnepncrsue. [IpumutuBubii xnacc ¥ Torpa u TONBKO TOorjaa
9KBUBAJNECHTEH HEKOTOPOMY NPUMMTHUBHOMY KkJjaaccy abeneBhHIX
Q-rpynn, écau gas U BepHO K'alcoe-nnﬁo M3 VTBEPKAEHUH (4),
(B, (C) u (D).

‘ Omemm 4TO CUCTEMBI YCJIOBMH B yrsep;«ueﬂmx (B), (C), (D) asnsiorcs
MUHUMATBHBIMI B TOM CMBICJIe, 4TO HH B OfHOM M3 HUX HeNb3s BBHIYEPKHYTb
Hu opHoro u3 ycsopuid I, III, IV, V. [lns noxasarenscTsa aToro (haxra joc:
TATOYHO 3AMETUTb, YTO B MPUMUTMBHOM KJIACCE BCEX TPYNN BHIIOJHAKTCA I,
Il,-1V, HO He Beimoawusiiorcst II, V; B NMPUMUTUBHOM KJIACCE BCEX- KOMMYTa-
TMBHBIX MOJIYTPYNN C €IMHUUEA BeiojnaAoTea I, V, HO He Benoanstores 1T,
‘IV; HawkoHel, B NPUMUTHBHOM KJACCE BCEX AOJYrpyIn ¢ TOMAECTBEHHBLIM CO-
OTHOLIEHHEM XX, = X3X, Bblloansaercsa I, III, HO He Bbinoausierca 1.

Otmerum Tawke, uto B pesyavrate Llloge! [4], untupoBaHHoM U B § 5 pa-
6otsl. [3], ycaosue HOpM&JIBHOCTVI paccMaTpuBaeMoro MNPUMUTMBHOTLO KJacca
OKa3bIBAETCH HBJIMIIHMM, TAK KaK OHO SIBJISIETCS CJEACTBUEM ycaosuit I, I, IIL
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O HEKOTOPBLIX RJIACCAX MNOJIYMOLYJJER 1 MOLYJIEN
. . TEYET (Ceren)*)

[Mpotpeccopy” B. Cexkedanspu-Hanb « NSTHAECATUNETAIO CO NHS POXIEHMS

Beepenue
WsBectHo (CM. [2]), 4TO TEM NPUMHTHBHBIM KJIACCaM YHMUBEPCANbHBIX all-
re6p, B KOTOPBHIX MpsiMble ¥ CBOGOAHbIE TIPOM3BEAEHMS] COBMAJANOT,” MOXKHO
MOCT3BUTh B COOTBETCTBUE HEKOTOPOE MOJYKOJbLUO C €JMHHLEH, OZHO3HAUHO
onpeaeseHHOe C TOYHOCThIO 10 M30MOPPHU3MA, KOTOPOE MOXKET PACCMATPHIBATHCS,
KakK 06J1aCTb ONEPATOPOB AAHHOrO Kjacca. AHAJOrMYHO, MOGOMY MPHUMUTHBHOMY
knaccy abeneBplX Q-rpynn COOTBETCTBYET HEKOTOPOE BIOJIHE ONpEJe/IeHHOE
KOMbUO ¢ emunuuei [1]. B Hacrosiuit paGoTe Mbl BHISICHAM CTPOEHHE KOJIeL,
COOTBETCTBYIOLUX HEKOTOPLIM KOHKPETHBIM MPUMHTHBHBIM KJIACCAM YKA3AHHBIX
BUA0B. B 3ariovuTenbHOH uacTH JAOTCA NPU3HAKH omocm@.ribﬂo 3KBaLUO-
'HaJbHOH MOJHOTBHI MCC/IEJOBAHHBIX KJIACCOB.

§1

Bynem mpexnonaraTh, 4TO JJI YMTATesid 3HAKOMbI OGO3HAYEHHSI, OTPENE-
nenus u pesyabtaThl ‘pador [1] u [2]. Ceifvac pis yno6CTBa Mbl HANOMHUM
HEKOTOPblE U3 HHUX, 4 TAKKe MNPUBOJMM RajbHediuue oOO03HAUEHUS M ONpefe-
JIEHNs1. ’ : o _

Tlograace B npumutusHOro kiacca A, o6pasyrolinii NPUMUTHBHBIH Kiace
OTHOCUTEJIBHO OMEpalMid TOrO e KIacca, Ha3blBAETCS NPUMHTHBHBIM MOAKJIAC-
com xuacca A. MHOWeCTBO BCEX TOMNAECTB NPUMHUTMBHOrO kjaacca A Mmbl 0603- -
Hadum 4depes A Q). _

Mycts R — npousBobHOE KOJbLO.. [IpAMATHBHBIA KIacC BCeX MpaBbiX
moayJiell Haj R oGo3nauvaercss vepe3 PR, a Mpu HAJIMYMK EAMHMYHOTO 3JIEMEHTA
B R J/1% NPHMHTHBHOTO KJIAcCa BCEX NPAaBbIX YHUTAPHBIX R-MOfyseit bl Gymem
M01b30BATCA 0603HAYEHUEM DY, Ecam M SIBJISIETCS. MOYJIEM Haj KOJbLAMH R
u L, T0 oHO HaswiBaeTcs Gumogyaem Hag R u L. [lpumuTubHmil xiacc Bcex M,

- %) F. Gécsea (Szeged)
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SABJAIOIIMXCA OJHOBDEMEHHO JIEBHIM R- i npaBuM L-Mony.nem "0603Ha4aeTcs
yepes "ML, a B cayuae yHmapHocm onepaTopHbIX o6iacteii R u L — Hepes
RIML .
O‘ICBMJLHO MR, MR, Dt u Y — npumuTHBHBIE KJacChl aGesieBbX Q-
rpynn (cm. "[3], [1D. | A :
"Cornacto Teopeme 2 3 [1] Ramnomy TIPUMUTHBHOMY Kaaccy U aGenenbix
* Q-rpynn COOTBETCTBYET KOJbUO R C emuHmueil, ONPEIeseHHOe C TOUHOCTHIO 10
u3oMOpdU3Ma, C TAKMM CBOHCTBOM, uTo iR skeuBanenten kiaccy A. B panb-
HejilueM R HA3bIBAETCS KOJIbLOM, COOTBETCTBYMOLMM KJaccy 9. .
Tlop TeH3opHLIM npon3Bene}me£vx kojen R u L mbl 6ysem MOHMMATh KOJBLO

RRL, coctosiuee K3 3/IEMEHTOB 2‘ ri®s; (k=1,2,...; r,€R, s;€L), rae KoJab-

k4+m=n
. lleBbIe onepauuu npOPI3BO}1HTCH cnenyromum 06pa30M 2 r; ®s + Z rn®s =

=Z ri®sj; (2 r,~®s,-)(2 r}®s;)=2rir}®sis} M BBIMOJHSIOTCA  CJENyIOLIHE
=S T i j 07 - ‘ : . o

TOXAECTBEHHBIC ONPEACAIOLINE COOTHOILEIHUA .

@ (r +r)®s=r®s+r,®s  (r;, rER; s€D),
(B) - TQ(S1+5)=r®s,+rQs, (reR; sy, 5,€l),
)  0®s=r®0. '

Ecau P u T — noaykoabua [2], To 9P 03HaYaeT NpUMUTHBHBIA KIacC BCex
P-nosymonyseit; a B ynHutapHOM cjy4ae npumensiercss o6o3Hauenue 9°. Ecrtect-.
BEHHBIM . TlyTEM ONPEMENOTC GUIONYMONYNH, AJSl KOTOPHIX Mbl BBOAUM 0GO-
anavenue P9, coots. PN]. Meronom A. A. Tepexosa ([3], [1]) MOKHO NOKa3aTh,.

© YTO VISl BCEX STMX KJACCOB BBINOJHAIOTCH YCIOBHS: '

I CyLueCTBOBaHue HYJIbMECTHOM -Onepanuy, OTMEYAHHBIN - KOTOPOi SJIEMEHT
ofpasyer nogajre6py BO Bcex aiare6pax IaHHOro kJjacca.

II. CoBnajanue npsMoro u CBOGOJAHOTO NPOM3BENEHUM ABYX MPOM3BOJILHBIX
ajireGp B JaHHOM Kjacce. - ' ' ' .

Mo Teopeme 1 U3 [2] NPUMUTHBHBIH Kjacc %, YAOBJIETBOPSIIOLLMA YCJIOBHSIM
I u II, SKBUBANEHTEH NPUMUTMBHOMY KJACCYy BCEX MPABBIX YHHTAPHBIX- MOJIy-
Nojyneil Haj HEKOTOPBHIM BIOJHE OMPEIENICHHBIM TIOJYKOJIbUOM P ¢ eguHuLEH,
. KOTOpoe Mmbl Oyjlem * Ha3bIBATh ﬂOJ]yKOJlbuOM COOTBETCTBYIOLUMM KJjaccy - 3.

Tensoproe npouspejenue nonykoneu ONpejie/IAeTCs  aHANOrHIHO cnyqalo
KOJIell, ,

- I o3na4aer xonbuo "HEJBIX pauuonanbnux 4Yuces, a J*— fIOJYKOJbLO €
-HyJIeM -HaTypaJbHbIX 4HCeL. Yepes . (/+R) mbl 0603HAYUM M3BECTHOE ‘PABLLH-
penne Jlopo kossua R mpu nomowwm f (cm. [8], [4)). BnonHe ‘aHaJIOTMYHO On-
perenstercs- (I* +R).
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ConocraBiM napy [m, k] Toii KOHrpysHIuMu I*, B KOTOpOil m — HauMeHbliee
YHCIIO KoHrpyaHTﬂoe ‘OT/IMYHOMY OT HEro 4YUCiy, a m-+k — HaMMEHblIEe CPefw
quceJ, KOHFPY3HTHBIX m, HO -OTJHMYHBIX OT Hero (m= 0,1,2,...; k=1,2,..).
Jlerko yGeauThCsl, YTO 3TO COOTBETCTBHE E3dMMHO OJHO3HAYHO.

B paneueiiiem Oykebl R m L 03HAualOT KOJIbLA, WM JKe MOJYKOIBHA B .
COOTBeTCTBPIe TOMy, SABJSIOTCA-TM OHH oGnacmmu onepaTropoB Monyneu UJTH
e foymonyaei.

[TpUMUTHBHEIH xnace A anre6p HA3LIBAETCA JKBAUMOHANBLHO MOTHBIM [6],
ecin npuGaBisis K MHOXECTBY BCEX €r0 TOXIECTB XOTb OJHO HOBOE TOXECTBO,
f1oNy4eHHas CHCTEMA TOXECTB BBIMOJIHACTCS JHMIUb B TPUBHANLHOM (cocTostutem
U3 e MHCTBEHHO OJHOIJIEMEHTHOI aJreGphl) NPUMUTHBHOM nofkaacce kiacca . -

§2

Mycrs § — HeKOTOprM npnmmnBHbm Kjace nonymo,uynen 'a R — coor-
" BETCTBYIOLUEE ‘eMy* TIONYKOJIbUO. ViMeeT mecTo

Jemma 2.1. IIpuUMUTUBHBIA KAacCC § MMEET HETPMBHUAJLHBIH
IPUMUTHBHB /i MOJKAACC TOrjga M TOJABKO TOCHA, ecau R o6aa-
laeT HETPUBHAJBHOHN Kourpyeﬂuu'eﬁ Mexay NpUMHUTHBHBIMH
mojkjaccaMu §F kjacca § v KOHCpysnuusmu € mosaykoibua R
“MOJXHO YCTAaHOBHThH B3aMMHO OJHO3HAa4YHOE cooTBeTCTBHE (F ~C)
' TaK, YTO NMPUMHUTHBHBIA KJIAacCC BCEX MPABHIX - YHHTAPHHX Noay-
Moaysedl HayW paKTOpP-NONyKOAbLOMNO G 3KBUBATEHTEHKAACCY .

JlokazaTenbCTBO. [lycts § — NPUMHUTHBHBLIA NOAKJACC Kjgacca . B
ciydae §'=F knaccy nonymo,uyne" it § craBuTCS B COOTBETCTBHE KOHTPyaHumua €,
NOJIyKOJIbHA R, KIACCHI KOTOPOi CyTh OTAeJbHbIE deMeHTbl. Ecaim § =0, To knaccy
& COOTBETCTBYeT KOHrpysHuus €, noaykonbuanR, €/IMHCTBEHHBIM KJ1ACCOM KOTOPOil
ABngeTca camo R. B ocraswemcs cayuae, eciu c% 10 A(F)CA@Y.T.e.B
NOAKAACCE ¥’ UMEET MECTO HEKOTOPOE TOMHAECTBO X;...Xph = X;...X,,V, HE IPUHAL-
Jexaniee A(F). VIMeroT MeCTO Pa3NOMKEHUS Xy ... Xyt = X1 fg + o + Xppbly ¥ Xy o0 XV =
=xVyt e+ X [lopcraenas x,=x, x;=0"(=j; i,j=1,2,...,m) Myl nony-
quM xp,—xv Ilycts Temepp ¢ — B3aUMHO OJHOBHAYHOE 0T06pa>x<e1me ome-
paumii knacca § Wa onepaumm kaacca Ny, npu KOTOpOM TOKIECTBA  KJacca §F
M TOJNbKO OHM MNEPEeMAyT B TOXAECTBA KJjacca N. Paccmorpim cregyiouee
pas6uenue € noaykansua R: ry,r,(€R) cogep)katcsa B ONHOM H TOM JKe Kjacce
TOra ¥ TOJLKO TOTAA, eciu x(r,p~Y)=x(r,@~!) — TOoMuecTBo B F. OueBHIHO,
€’ aBNsETCA KOHrpysHUMER. ‘ ‘ .

~ C npyroit cropossl, nycte §& — HekoTopas HETpPIBI/IaJleaH KOHTPy3HLHUA
nosykonbua R, u nycTh §’ COCTOMT M3 BCEX Tex anre6p wiacca ‘§, B KOTOPBIX
TOKIECTBA Xu;=XV; BBIMOJIHAIOTCA KaXKIblA Pas, KOA (g M v;p COAepIaTca



.168 . ®. Teyer

B OIHOM U TOM K€ Knacce KOHpr3HuMM . ¢-F u €cTb TpefyeMoe B3aUMHO
OHO3HAYHOE COOTBETCTBUE MEX]Y KOHIpyoHUMAMH R M npuMHUTHBHBIMM NOJI-
. KJaccamu §, a NPUMUTHBHBIA KJACC BCEX MNPAaBbIX YHHTAPHBIX MOJYMOLy/eEH
Hal daxrop-noaykoabuom no ¢ skBUBaNeHTeH Kiaccy .

OGoana4yum uepes M npuMHTHBHBIA knacc alenesbix Q-rpynm, a R —
COOTBETCTBYIOLLEE €My KOJIbLO. TaKMMM Ke PaCcCy’KAEHHAMM NOJYYaeTcs

Jemma 2.2. Knacc MM uMMeeT HETPUBUANbLHLIA NPUMUTHBHBIH
NOQKJIACC T_orna M TOJNBKO TOrAd, €CJAU KOJbLUO R o6nagaeTr HeT-
pPUBUANbLHBIM HAEANOM. MOXHO yCTAHOBHTb B3aHMHO OJHO3HAY-
HOE COOTBETCTBHME MexXAy mnojaknaccamu P waacca M u ujea-
‘namu N KoJbUA R TAK, 4TO MPUMMTUBHBIE KAacC BCeX NPaBhix
YHUTAPHBIX MOAYJIel Haj $aKTOp-KONLLOM N0 N 3KBUBAJEHTEH
- knaccy . ‘ ' -

C nomouyo semm 2.1 ¥ 2.2 MOXKHO Onpefeauthb NOJIyKOJIbLA, COOTBETCT-.
ByIOUIME NPUMUTUBHLIM TMOJKJIACCAM KJIACCa § BCEX KOMMYTATHBHBIX MOJIYrpymnn
C eAMHMIEH ¥ KOMbUA, COOTBETCTBYIOLIME NPUMUTUBHBIM MOAKAaccam kaacca
BCex abesieBbIX TPyn.

Knacc § ect He 4TO HMHOE, KaK MPUMUTMBHBIAE Kkaacc N® BCex MPaBbix
nojymofyneii Haj noayxoisuom I*. Pesynwrathl crepyroulero naparpaga mno-
KasblBAIOT (HO M HEMOCPENCTBEHHO JIErKO BUAETH),. 4TO N SKBUBAJIEHTEH NpH-.
MUTHBHOMY Kjaccy i . KOHIpysHLMM MOAyKOJAbUA [* ONpPeNesstioTcsh napamm
[m, k] (cM. §1). Tax kak N0~ N, To no Jemme 2.1 QA (POM3BOJNBHOTO MPH-
‘MMTUBHOT'O noumacca U wkaacca N°. cywlecTBylOT Takue uucia m Uk’
(m=0,1,2,...; k=1,2,..)), 4ro I’ sBJSETCS KJIACCOM BCEX KOMMYTATHBHBIX
nojayrpynm ¢ euunnuen YAOBAETBOPSIOLUX TOXKAECTBY X™==xm+k,

Knacc U siBasercs npumutuBHbIM Kaaccom M Bcex npasbix MOJLyJieH Han
KOJIbUOM /. Jlerko BUAETb, uTo MO~ M|. Tax Kak Bce (haKTOP-KOJIbLA KOMbUA
I umerot Bup I/{k}, BCAKMI NPUMUTHBHBI nogxiace kiaacca A ABAAETCSA KJIACCOM
Bcex aGesieBbIX rPyNI 3KCNOHEHTA k, Te k — MOAXOAsLIEe HATYPAJIbLHOE 4UCIIO.

Mol Buaum, 4yTO B' 060MX Ciyuyasx OmpefeleHbl W MOJNYKOJbUA (COOTB.
KOJIblid), COOTBETCTBYIOLME NPUMHUTUBHLIM MOAKJIACCAM. :

<

§3

Tenepb MOCMOTPUM NPUMUTHBHBEIE Kkaacchi R u MR, rae R — npousBoib-
‘Hoe. Tloka)keM, 4TO MMEET MECTO Cleayouas '

Teopema 3.1. TNpumuTuBHBIA Kaacc N¥ 9KBUBANEHTEH NpPHU-
mutuBHOMy kaaccy N{ P (O~ NP,

lloxazarteascTBo. [lycth y—m-mectHas onepauus (m=0) B Knacce 512“
QU Pa3NaraeTcs B OJHOMECTHBIE OMEPAUMM: Xy...XpH =X ft; + ... + Xull,,. MeTOTOM
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UHLYKLIUH MOYKHO TOKAa3aTh (cM. [1]), 4TO MPOU3BOJILHAS ONHOMECTHAsI Onmepauust
it B kaacce MR umeer BUN: xuu=x (r,+n), tae r,€R, meI*. Tak, x;..x,p=
=x,(ry +1) 4 .o. + X (r+n,). O6mmit Bug- omepaumit B xnacce N *® cae-
AYOUMA: X X' =X {1y, 1)+ oo+ X (B, Py (BET*, 1€R; i=1,2, ..., m).
“ Bo3bmem cneny}omee oTo6paxkenue ¢ MHOMecTBa O (9R) Ha 0(51 GrHRYy: pp =y
1 Op=0. [lokakeMm, 4TO ¢ — B3AMUMHO OfHO3HAYHO. Ecim x,..x,u=x,...x,v TO
X1 (r 1)+ s+ X (P M) = X1 (P 1) + ..+ Xm(rie +15) M, TOACTABAAA X=X,
x;=0 (i#j; i,j=1,2, ..., m), Mbl NOJy4UM x(ri+n)=x(r{ +n{). Tlokaxem, 410
(miyriy = (niyriy, T eom=ni w ri=r{. JlefiCTBUTEIBHO, CaMO. NOJYKOBLO R
SIBJSIETCA  IPABOCTOPOHHEH 006/1acTbio Oneparopos NOJIyTPyTbl (I*+R)+ no-
JyKOAbUA (1*+R) :

- A{n, r>r1-(n r¥0, ry) ((n, r}E(I*+R) rléR)

B atom ciyuae <n, ry(ry+n) ={n,r)Y{ng; rd. 'loqumo ,x(r,-+n,-)=x(r,’+n{) B:
cay4ae x=(1, 0) paeT MCKOMBbI# pe3y/nbTaT. ITUM OJHO3HAYHOCTL @ MOKA3aHA.

C apyroit cTopoHbl, ecu pp=ve, TO, YYUTHIBAs, 4TO @ nepeBonuT m--
MECTHYIO onepaumo B m- MeCTHle Ke, ﬂOle‘{HM

x1{ng, rd+ . +xm<nm, Fry=X1{n1, riy+ ... + Xmltim, Fm)y’

omyna noacTaBAd xi=x, x;=0 (i#]; i ]_1 2, .o, m): (i, riy={ni, /), 3HAYUT
ni=n{, r;=r{. o :

[Ipu oroGpasxeHuu ¢ TommeCTBA KJACCA 9’BR M TOJbKO OHHU NEpPEeXoisT B
Towpectsa knacca NY . Dr0. nokazbiBaeTcs - TAKUM ke MyTeM, KaxK 3To GbuLIO
CAENaHO NpPH JROKA3ATEIbCTBE aRBuBaneHTHoéTu abeneBblXx Q-rpynn ¥ npa.blx
YHHUTapHBIX monyseit (cm. [1] Teopemy 1) DTUM YTBEPIKIEHHE JOKA3aHO.

Jns mopysell Haj KOJIBLOM aHANOMMYHO TNOJIYYaeTCs

Teopema 3.2. TpumutusHbid kjaacc MR 9KBUBAJEHTEH NpHU-

‘MutuBHOMY Kaaccy MIHP (@R~ M),

Cnencreue 3.1. [lycTh R — NpOM3BOIBHOE nonykonbuo cenmn-
Huueit. CyuecrByer ¢akrtop- MONyKOJAbUOG MOJNYKONbUA I +R)
M30MOpdHOE noaykoabUy R

_ NlokazaTenbcTBo. [IpumuTuBHBIE Kiacc 915 SABISETCS NPUMHTUBHBIM
noaknaccom knacca M. Opnako NR~NY *®, Tax yro mo nemme 2.1 cyuiect-

BYeT (aKTOP-I0JYKOJbUO MOJyKOAbLA (I* +R), npnmumsubm KJIACC TOJIYMO-
fyJeil Haj KOTOPHIM SKBUBAJEHTEH TNPUMATUBHOMY KJaccy Ni. Mo Teopeme 1
U3 [2] 3TO TOAYKOMBLUO C eAuHUIledl SBJIAETCS eJUHCTBEHHBIM C TOYHOCTBLIO [0
M30MOphH3Ma, 4TO 3aBepluaer JOKA3aTENbCTBO.

Mo Teopeme 3.2 awanornyto nosy4nm

Caeacrsue 3.2. [lycte R~nponsBoibHOE KOABLUO C eAUHUILEH.
Tor,ua CymecTByeT $akTOP-KOJAbLO Konbua (I+R), Msomoptpﬂoe
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Koabuy R (dT0 bakTop-KONbUO ABAAETCA PAKTOP-KOAbIOM MO
. upeany, nopomnaemomy 3JEMEHTOM (1 —e} rne s—ennﬂnua KOJ1b-
ita R).
¢ 3ametum, uto A. Keptec B pa60Te [7] nokasan BO3MOXKHOCTH PAcCMOT-
‘penusi n10Goro. Mopyst HaJl NPOM3BO/ILHBIM KOJIBUOM B K3a4€CTBE YHUTAPHOTO-
MOMyJiA Hax KoOJbLOM ¢ eauuuued. Teopema 3.2 SBIAETCA €CTECTBEHHBIM
0600LIEHHEM 3TOTO pesy/ibTaTa A/ NPYMUTHBHBIX KIaccoB. [lanee, pesy/nbTarsl
-ClIeflyoLIero naparpaq)a TOXE SIBJISIIOTCS 0606meuuﬂmn HEKOTOPBIX Pe3yJIbTaTOB
Kepreca.
§4
Jlerko yGeauThCs, MTO, €Cau noJiyKoNblo R CJIy)KVlT npaBon oénaCTbro
.ONepaTopoB s MoJIyMORyJIst *F, TO €ro anmusomopqoﬂbm o6pa3 R MOXHO
‘paccMaTpbiBaTh JEBOH oénaCTb}o onepaTopoB F Tak, 4TOGbI NPH 3TOM pe3yJib-
'Tathl NpPUMEHEHHi 06pa301§ u npob6pasos cosnapanu. CoOTBETCTByIOLIEE YT~
'BEPIKAEHHE HMEET MeCTO Takke Uit MOJyJleil Haj KOJBUOM. JTH 3aMEYaHHs -
JIAI0T HaM BO3MOXHOCTb OTPaHMUYNTLCA PACCMOTPEHUEM cnyqaeB RNL, coors. RIML.
*  HMmeer mecTo crepyoias

Teopema. 4.1. IlpumuTueHblii Kaacc Rt 3KBHUBAJEHTEH npu-

* I* I+ I*+L
MHTUBHOMY Kkaaccy NYHROUTHY (P9~ RS

lloxasateabctro. Ecan [ = m-MecTHast onepauusi (m=0) B Kacce R,
“T0 OHA PAasjJaraeTcsi B OAHOMECTHBIE ONEPALMM: X . Xyl == Xqfy + oo 4+ Xpubly-
TlpoussoJibHast OJAHOMECTHas omepauust u; B kjacce FNL umeer Bup:

xipti=(ri, 1+, l-)xi(si, 1+ ni)+ . (et ni,k.-)xi(sg,k; +ni k).

I“+R)®(1"+L)

‘B knacce NY oGlmii B onepauuii Caeayioumil:

Xm,u =X1 ((m 1,71, 1>®<l11 1,31 1>+ AR kg, T, k,>®<n1 ki S1, A,>)+

+xm(<nm 15 rm 1>®<nm 1, Sm, 1>+ +<nm km» 'm km>®<nm ks Sm km>)

Boabmem Cnenyloulee 0T06pa>l<euue @ - MHOYKECTBA ‘onepatopos O(RNY) Ha
ORIy yp =1 u 0p=0. TokaKeM, 4TO @ — BIAUMHO- OJHO3HAYHO.
Ecnu xy...xpp=x,...x,v, rae

1o Xy = ()X (5T A iR D e+ O 8 ) X (T il i)
F(rE 1 ) Xm(SE 1) o (k1 ) Xm(SE e, 1)
‘TO MOACTaBAA x;=x, x;=0 (i#j; i,j=1,2, ... m), nony4nm
(1 (ri, 1 +n, 1)X(Si 1+ai)+ . +n; k)X (Sik H0ik) =
= L+ rE ) x(sF +af )+ A (i nE k)x(S. P k,) -
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Mokaen, 41O o : B
@ - (n, 1, Fi,1)®{ni, 1 S.,1>+ < A{ni ki, l‘.,k>®<n. Kis Si ki) =" -
'—(n;,l,h DM, st + ..+, M) @ (mifk,, s& k,) -
: lleucrsmenbuo, (I*+R) n (I*+L) asaserca neBo- u npaBocropOHHeu yHuTap-
HO# o6nacThio moaymomyns ((I* +R)® (I* +L)+:
(n, r>(2 <71n ry®<{nj, °1>)<” S/— 2 (nj, 1><” r>®(n,, s;)(n’, 8)

Tak kax ToxgecTBo (1) BBITIOJILHAETCA M B [ONyMOAyJe ((I*+R)®(I*+L))+ B
cayyae x=(1,0)®{1, 0) nmxyqum PaBeHCBo ). :
‘O6parHo, ecin

©) x (i1, i) @iy 81,1) A ik, ) @ (ke Sii) =
| = x((nis, FED® (it ST+ oo A (i, P @k, SE)),
torm)a . - : ,
“@ (ri, 1+ mi;0)x(s0,1 +nia)+ oo +(ri,k;- + 15,1k X (S5 1L k) =
=(rF o+ m)x(sEr+nE) + o e ) x (sEi + nEk).

JleiiCTBUTENBHO, €C/IM MOJIyTPyNNbI BCEX NOyMofyieil knacca RNt cnaﬁnmb
eCTEeCTBEHHBIM 00pa3oM 06/1aCcTbi0 MPaBHIX YHMTAPHBIX OMEPATOPOB I*+R®
S ®I*+1), TO. U3 TOXKAECTBA (3) moayqum ‘(4). : )

Mpu 0T06pa;l<eﬂvm @ ToaecTBa kinacca RINL m TONBKO OHM NEPEXOJAT B
toskaectBa kiacca: NY TPV 310 nokaswiBaeTca ONATH TAKUM E OGPA3OM,
KaK NpM [0KasaTeabcTBe B Teopeme 1 pa6oTsi [1]. ’ )

B cnyqa'e GuMOyJieil aHaNOrMYHO nonquc;{ N I

Teopema 4,2, HpummnBHbm knacc ML oKBHBANEHTEH Npu-
I
MMT"BHOMy kaaccy 9:)}([+R)®(I+L) (R ~ 93}(1+R)®(+L))

§5
0603Haun qepes Sﬁ npnmumaubm Kjacc asnrebp, y,uosne'rBopmom,uu
ycnopusam .1 i II. . o

Teopema 5.1. IlpumutuBHBIH Kjaacc N ABASETCA dKBalu-
OH4a1bHO MOJHBIM TOrjAa M TOJBKO TOTJA, €CJAM OH IKBUBAJEH-
TEH_NPUMUTHBHOMY KJACCy BCEX YHHUTAPHBIX MOJYMOAyJEHd Hap
nbnyxonbuom R ¢ epunuued, o6bnaaywlum JAMIIL TPUBHAIb- -
HHIMH KOHTPY3HUMSIMU. ' A T

JloxazatenbctBo. Ilo nemme 2.1 NpUMMUTUBHBLIE nokiacchl kuacca N
MOHO MOCTAaBUTb B B3AMMH® -OHO3HAYHOE -COOTBETCTBHE: KOHTPYBHIMAM HOMy-= ~ == —=r= -
xonbua R. Ilpu aToM 9 COOTBETCTBYET KOHrpyaHUMM Gy, a NPUMUTHBHBIA MOA-
KJiacc 0, copepykawyil Ul OJHOBJIEMEHTHYIO anre6py, — KOHrpyeuuun G,.
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lloﬁaBuM K MHOKECTBY A(‘R) HpOI/ISBOHbHOE HOBOE - Tomuecmo [TostyyenHoe
MHOXKECTEO TOYKIECTB ONPEIE/UT HEKOTOPLIA NMPUMUTHBHBIM mofkiacc kiacca N.
Kourpysuuus noaykosnbua R, cooTBercrsylolias 3TOMy MOAKIaccy, OTJIM4YHA OT
"€, 1 no YC/IOBMIO COBMNIAJAET. C €,. Otciona BUAHO, YTO EIMHCTBEHHBLIM MpPH- .
MHUTHBHBIM ' IOLKJIACCOM - KJ1acca N ABIIAETCS 0. Heo6xopumocTs e yCJIOBUs Te-
OPEMBI OYEBMIHO..

-AHaJIOTHYHO [OKA3bIBAETCS

Teopema 5.2. [lpumurtuBuniii waacc A abeneBbix Q-rpynn
ABJSAETCA 9KBAWMOHANBLHO MOJHBIM TOFAd M TOJNBKO TOTFAA, €CAHU
OH €KBUBAJEHTEH MPUMUTUBHOMY KJACCy BCEX NMPABBLIX YHUTAP-
HbIX MOJYJi€if Hall HEKOTOPHM NPOCTHM KONbUOM R ¢ exmHuMuEil.

Mul Bupenn, ure DR~M*®. Ho koabuo (7+R) muxorza He spnsiercs
NPOCTHIM, TAK YTO MMEET MECTO ' '

CunepcrBue 5.1. [IpuMUTUBHBIA KJACC BCEX MPaBbLIX MOAYyJei
HAal KOJbUOM R He MOXeT ObIThH 9KBAUMOHAIBHO MOJHBIM.
Haxoneu, us npoctoTsl mosieii BbITEKaeT

Crneacrsue 5.2. BesaAkMil NPUMHTUBHBIH KJ14CC BEKTOPHBIX
MPOCTPAHCTB SABJSAETCH 3KBAUUOHAJBHO MOJHBIM.
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P. Médgyessy, Decompbsition of superpositions of distribution functions, 227 Seiten, Buda-
pest, Verlag der Ungarischen Akademie der Wisscnschaften, 1961.

- In der Physik, Biologie usw. kommt das folgende Problem oft-hervor. Nach gewissen Expe-
rimenten ergibt sich eine Kurve, woriiber man annehmen kann, daB sie die Superposition von Ver-
teilungsfunktionen bzw. D1chtefunktlonen von gewissem Typ ist; aus der Kurve sollen diese Kom-
ponenten bestimmt werden. -

Das Buch gibt eine systematische, mathematische Behandlung solcher Probleme und umfaft
neben den vorherigen Resultaten auch neue, vom Verfasser selbst erzielte Ergebnisse.

In § I wird das Grundproblem in der folgenden Form formuliert. Es sei F(x; a, f) eine nicht-
entartete und von den Parametern a, § abhingige Verteilungsfunktion. Es sei weiterhin

@(x) Zka(x s B, . .

wo die Parameter N, px, ax, fx (k=1,...,N) unbekannt sind. Auf Grund der Kenntnis von G (x)
sollen diese Unbekannten bestimm't'werden Es wird an einigen Beispielen gezeigt, wie dieses Grund-
problem in verschiedenen Wissenschaften aufgeworfen wird. Z. B., in der Spektroskopie soll die
Intensitdtskurve g(x) in normalen Komponenten zerlegt werden, d. h. in der Formel

1 L _(x—ak)z]
8= Vzn ,2] B [ 2

die Parameter N, px, ax, S (k—1, ..., N) bestimmt werden. In §II werden allgemeine Ldsungs-
methoden fiir das Grundproblem behandelt. In den weiteren Paragraphen werden die allgemei-
nen Losungsmethoden in speziellen Fillen, z. B. im Fall' von normalen Komponenten, ange-
wendet, die Wirksamkeit der allgemeinen L&sungsmethoden diskutiert und weltere Losungsmetho-
den behandelt.

Das Buch wurde in erster Reihe fiir diejenigen Fachleute geschrieben, d1e die Lésung von der-
artigen Problemen in ihrer Praxis benétigen. Darum sind die gebrauchten, weniger einfachen mat-
hematischen Instrumente nicht im Text ausgearbeitet, sondern werden sie am Ende des Buches
in 10 Anhdngen zusammengefalt.

Mit diesem Buch bekommen Fachleute von verschledenen Wlssenschaften ein gewiB niitz-
liches Hilfsmittel.

. K. Tandori (Szeged)

Lajos Takdcs, Introduction to the theory of queues (University Texts in the Mathematical Sci-
ences), X+ 268 pages, New York, Oxford University Press, 1962.

The theory of queues is the fashionable term for the mathematical study of service systems
in which either the demand for service or the services given, or both, have a stochastic or probabi-
listic nature. In telephony, where the subject began at about the turn of the century, it is clear that
the times at which calls are made and the lengths of such calls (the holding times of the circuits trans-
mitting the calls) are of such nature, and a great deal of the development of the subject has appeared
in this context, as attested by the following roll call: ENGSET, ERLANG, FRY, KOSTEN, MOLINA,
PaM, PoLLAcZEK, VAULOT (and indeed the present author). Lately, similar problems have appeared

- elsewhere: in air traffic control at airports, in automobile road traffic, in docking of ships,
in hospital clinics, in the filling and emptying of water reservoirs, and in a variety of other situations.
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. The mathematical description of a class of such systems may be made in three parts. First,
the traffic input is given by a sequence {¢1, t2, ...} of time epochs where service demands arise. Next,
the service times for each demand and each server are given by distribution functions (glvmg the
probability that the service time in question is at most ¢, say, for every f). Finally, the service arran-
gements, the number of servers, the assignment of servers to customers, the provision for waiting or

.not, the order of serving waiting customers, and so on, appear in almost infinite variety Curiously
he “busy signal” systems of telephony, in which demands arising when all servers are busy
are dismissed because there is no provision for waiting and hence no queue, are still regarded as
belonging to the theory of queues! The simplest traffic input has single demands at demand epochs,
which are such that the differences #; —¢;- 1 have a common exponential distribution; this is called
Poisson input, because the number of demands in a finite time .nterval has the Poisson distribution.
When the common: distribution is arbitrary, the input is called “recurrent”, which, of course, in-
cludes the Poisson. Usually all distributions of service time are taken to be allke and to be mdepen-
dent of each other, as they are in the book under review. .

This introduction, by a distinguished Hungarian mathematician, is addressed to mathemati-_
cal analysts. It is’written in clear, simple style with many repetitions of the mathemaical specifica-
tion, and with main emphasis on the transient {that is, complete) behavior. Of course, the limits
(the steady state results) are also noticed. The development for the most part is the -author’s own.
and throughout meets his high standard of mathematical elegance; indeed the tyro may despair
over the prospect of similar attainment. Over half of the book is devoted to single servers (the
very rare case in telephony) but also there are chapters on the many server case, with and without
waiting lines (the author calls the latter telephone traffic processes, although, of course, there are
many delay systems in telephiony), the infinite server case, the machine-repair problem, and (electro-
nic) particle counters. Finally an appendix collects statements of a number of auxmary theorems.
Each chapter is followed by a bibliography, usually very extensive.

While this reviewer would have preferred a somewhat less general treatment, at least occa-
sionally, in favor of greater intuitive snmphcnty, there is no doubt that the reader in search of ma-
thematical rigor,will find his answer in this book. As a combinatorialist, the reviewer must make
one small cavil; at the top of page-30°the author says that to obtain a certain formula “we have
to use Lagrange s expansion of [g(w)]*.”” Actualy the definition of g(w) relates g*(w) and g{(w) and
may be used to give a recurrence relation for the coefficients of powers of w in the expansion of
powers of g(w), Wthh is an easy alternate to Lagrange’s expansion.

John Rlordan (Murray Hill, N. J., " USA)

O. Ore, Theory of graphs (American l‘\'Iathematical Society, Colloquium Publications, Vol.
XXXVIII), IX+-270 pages, Providence, R. I., American Mathematical Society, 1962.

The present monograph deals primaril)" with such branches of the graph theory which had
not yet been explained in any book. The author turns his interest with preference for graph-theore-
tical aspects of notions originating from set theory and algebra, further for questions concerning
extreme subgraphs and numerical extreme values. The book has a rich- content. However, to the
reviewer’s opinion the importance of the selected material is not quite homogeneous and the pre-
sentation is sometimes not the most felicitous.

The book consists of 15 chapters, there are more than 200 blbllographlcal references grouped
according to the chapters. It is promised a second volume, containing chleﬂy practical appllcatlons
and duestions related to topology. .

In Chapters 1 —2 (Fundamental concepts; Connectedness) the most important initial concepts
are introduced. Chapter ‘3 (Path problems) is devoted to studying Euler paths, Hamilton lines and.
labyrinth questions. Chapter 4 (Trees) deals not only with trees but also with questions involving
general graphs, namely with circuit rank, structural investigation of certain directed graphs, special
one-to-one correspondences bewween vertices and edges. Chapter 5 (Leaves and lobes) discusses
some very natural homomorphism concepts for non-directed graphs. In Chapter 6 (The axiom of
choice) some maximal principles of set theory are investigated and applied for proving the existence .
of certain maximal subgraphs of infinite graphs. Chapter 7 (Matching theorems) presents a detailed
discussion of maximal subgraphs with degree 1 in bipartite graphs. Chapter 8 (Directed graphs)
deals with homomorphisms, embeddability in order relations and basis graphs. Chapter 9 (Acyclic"
graphs) gives an analogon of the Jordan—Holder theorem (arising in abstract algebra) and discus-
ses the possibility of certain bipartition of the vertices in a directed graph. Chapters 10—11 (Par-
tial order; Binary relations and Galois corresporidences) study some notions, being well-known
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in 6ther branches of mathematics, in terms of graph. theory. The main assertion of Chapter 12.

" (Connecting paths) is MENGER’s theorem on minimal separating vertex sets and maximal families.

of disjoint connecting arcs. Chapter 13 (Dominating sets, covering sets and mdependent sets) inves-
tigates subgraphs with certain extremal properties. Chapter ‘14 (Chromatic graphs) is. devoted to
studying the chromatic number of ‘graphs. In the final chapter (Groups and graphs) it is proved.
that any finite group appéars as the automorphism group of a suitable gtaph, there is studied how:

edge 1somorphlsm and circuit 1somorph1sm are related to the isomorphism in customary sense..

A. Adam (Szeged)

-

J. Favard, Cours d’Analyse de PEcole Polytechnique, tome I, VIII+ 675 pages; tome II; 578.

‘pages; tome I1I, fasc. I, 294 pages; fasc. II, 542 pages (Cahiers Scientifiques publiés sous la direc-

-tion de Gaston Julla), Paris, Gauthier— Vlllars 1960 — 62

Les trois volumes traitent d’une fatiére étendue aussi bien en largeur qu’en profondeur; pour
s’en rendre compte, il est indiqué, d’abord, de jeter un coup d’oeil sur le contenu. *

Tome I. (Introduction. Opération.) — Ensembles, éléments d’algébre et de topologie, intro--
duction a la théorie des espaces fonctionnels, séries et produits infinis, fonctions & variation bornée,
fonctions convexes. Dérivées, différentielles, fonctions implicites, déterminants fonctionnels, élé-- -
ments de géométrie différentielle, points singuliers. Mesure de Jordan, intégrale de Cauchy —Rie--
mann, quadrature. mécanique, intégrales curvilignes, intégrale de Stieltjes, fonctionnelles, analyse
vectorielle, intégrale de Lebesgue et ses extensions, dérivabilité et recherche des primitives, théo--
réme de Riesz—Fischer, représentation dés fonctionnelles linéaires, convergence faible et forte,
espace produit, théoréme de Fubini. — La notion de fonction y est introduite comme application
d’un espace métrique sur un autre espace metrlque Les espaces vectoriels normés jouent, natu--
rellement, un rdle important dans cette maniére d’exposer la matiére introductoire. Or ce ‘point de-
vue général est conservé dans Pouvrage entier, ce qui permet au lecteur de se familiariser avec les
notions modernes, souvent nécessaires méme pour ceux qui s’intéressent aux mathématiques du.
point de vue’'des applications. Le point de vue général n’est quitté que lorsque la nature du sujet
traité ’exige nécessairement (p. ex. au cas des fonctlons monotones ou des théorémes speclaux de-
dérivabilité, etc.)

Tome 11I. (Représentations.: Fonctions analytiques.) — Fonctlon I', principes de convergence»
dans les espaces de Banach, théoréme d’approximation de Welerstrass, représentations dans L2.

. Séries trigonométriques, convergence, sommation, intégrale- de Fourier, polyndmes orthogonaux,

/

interpolation, éléments de la théorie des distributions. Fonctions & une variable complexe, fonctions
monogenes, transformations, théoréme de Cauchy, théorémes d’unicité, théoréme de Liouville,
points singuliers isolés, foncuons méromorphes, zéros et poles.. Transformations conformes, lemme*
de Schwarz, théoréme de Bloch, espaces de fonctions holomorphes et méromorphes, familles nor-
males, représentations conformes par fonctions univalentes, théoréme de Picard. Séries entiéres,
séries de Laurent, théoréme de Mittag— Leffler, produits infinis, fonctions entiéres, transformations.
de Laplace, représentations diverses. Fonctions elliptiques. Prolongement analytique, surfaces
de Rierann, théoréme de monodromie, théoréme de Weyl sur le caractére topologique des surfaces.
de Riemann. Fonctions analytiques a plusieures variables. Fonctions algébriques, théoréme de-
Nother, intégrales abéliennes, théoréme de Riemann—Roch et d’Abel, fonctions thétas. Générali--
sation de la notion de fonction holomorphe, fonctions vectorlelles analythues d’une variable sca--
laire et vectorielle.

Tome IIL. (Theorle des équations.) — Equatlons différentielles dans le champ réel, théoremes.
d’existence et d’unicité, méthode de Cauchy, théoréme de Peano, stabilité et 1nstab1hte, systémes .
d’équations différentielles, théoréme de Frobenius, équation de Sturm— Liouville, systémes station--
naires dans I'espace euclidien, systémes définis sur les variétés. Equations différentielles dans le
champ analytique, existence et unicité, singularités, théoréme de Painlevé, équations de Fuchs,.
équations de fonctions hypergéométriques, fonctions de Legendre et de Bessel, développements
asymptotiques, méthode de Laplace. — Equations aux .dérivées partielles, probléme de Cauchy,.
systemes d’équations, théoréme d’existence de Cauchy—Kovalevskaya, probl¢émes d’unicité et de-
stabilit¢, équations du second ordre, équations hyperbohques, équations des telegraphlstes des
ondes, de la corde et des plaques vibrantes, opérateurs de Heaviside, méthodes numériques d’inté-

- gration approchée, équations elliptiques, fonctions harmoniques et-sous-harmoniques, probléme

de Dirichlet, potentiel de volume, méthode numérique pour la solution approchée du probléme-
de Dirichlet, équations paraboliques, fonctions caloriques et sous-caloriques, problémes aux limi-~
tes. — Equations intégrales, équations de Fredholm et de Volterra, étude _des types de noyaux, appli--
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-cations aux équations différentielles. — Calcul des variations, fonctionnelles semi-continues, équa-
tion d’Euler, condition de Weierstrass, Legendre et de Jacobi, existence de I’extremum, méthode
«directe et solution du probléme de Dirichlet, probléme de Plateau. *

Cette matiére vaste est encore complétée et approfondie par de nombreux exercises et complé-
iments & la fin de chaque chapitre. Les compléments conduisent.souvent jusqu’a des problémes pro-
fonds. Pour en donner une idée relevons, a titre d’exemple, le théoréme de compactification d’Aleé-
xandroff, ’homéomorphie d’un complexe K avec un polyédre du RQr+1)  le théoréme de point
ffixe de Brouwer, dans le chapitre introductoire de topologie; ou bien, dans la partie traitant des
‘fonctions analytiques, le théoréme de Phragmén—Lindelof, quelques théorémes de Stoilow con-
«cernant les transformations internes, recherche de la périodicité des intégrales hyperelliptiques,
«€léments de la fonction {(s) de:Riemann, etc. Ainsi, il est visible que ces trois volumes contiennent,
outre Ja théorie classique, une ‘grande quantité de méthodes et de résultats modernes.

On peut se demander si, par I’agglomération de tant de’ faits, on ne risque pas de composer
wne sorte d'encyclopédie qui, évidemment, ne peut pas étre assez profonde pour le spécialiste, mais
qui est trop large pour un technicien, méme créateur? Oui, ce probléme subsiste, mais il n’est pas

- ‘le probléme .de cet ouvrage, mais celui de notre temps comme conséquence du fait que les idées
mathématiques utilisées par le technicien créateur deviennent de jour en jour plus abstraites et plus
.compliquées. Lés temps sont passés, olt on a pu se contenter d’une suite de recettes, comme la ,,Cui-
sine de Tante Marie”; aujourd’hui, il faut initier les futures cadres supérieurs ‘de la technique a
la pensée mathématique moderne, puisque les jeunes éléves de I’Ecole Polytechnique d’aujourd’hui
seront les techniciens dirigeants a la veille du XXI. siécle, quand le constructeur technique sera,
probablement, comblé de problémes mathématiques, §’il veut tenir au courant du développement
-de sa spécialité. .

L’auteur a rendu un grand service a ’enseignement supérieur des mathématiques — d’ailleurs
‘toujours en crise — en composant les trois volumes de son Cours d’Analyse, car il n’a pas perdu
-de vue ni exigence moderne de généralité ni celle du technicien, car il a voulu que la matiére pré-
:sentée soit applicable directement aux problémes de physique et de -technique. C’est un ouvrage
‘qu’on peut consulter avec fruit; il est profitable tant pour le technicien avancé que pour le jeune
-mathématicien cherchant une initiation a I’Analyse moderne. La présentation des idées est tou-
Jjours aussi simple que le sujet traité le permet, et le texte peut étie bien suivi par un lecteur intéressé.
Nous croyons que ce Cours d'Analyse restera pour longtemps un ouvrage recherché par tous ceux
qui désirent approfondir leurs connaissances antérieures et se faire une image des méthodes de
1°Analyse moderne. : . o

: G. Alexits (Budapest)
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Die Verbandstheorie ist erst in neuerer Zeit in den Vordergrund- des allgemeinen Interes-
ses geriickt. Ungeachtet dessen, daB ihre Entwicklung erst vor einem Vierteljahrhundert in gro-
Berem AusmaB begann, zihlt sie heute bereits zu den wichtigsten Kapiteln der abstrakten Algebra,
obwohl sie bisher viel weniger wirklich tiefe Ergebnisse aufgewiesen hat als etwa die Gruppen-
theorie, die Korpertheorle oder die Theorie der Ringe. Die Bedeutung der Verbandstheorie liegt
vor allem darin, daB ihre Begriffsbildungen und Methoden auf zahlreichen Gebieten der Mathe-
matik und der theoretischen Physik Anwendung finden. ‘

Das vorliegende Buch wendet sich vor allem an Leser, die sich allgemein {iiber die Ver-
bandstheorie orientieren wollen oder diese bei ihren anderwértigen mathematischen Forschungen
.zu verwerten gedenken. Dementsprechend war der ‘Verfasser bestrebt, einerseits die wichtigsten
Begriffe und die am hiufigsten verwendeten einfachen Methoden der Verbandstheorie darzulegen
-und andererseits, in dem durch den Umfang des Buches gesetzten Rahmen, die Beziehungen der
Verbandstheorie zu anderen Zweigen der Mathematik aufzuzeigen. Diesem Ziele dienen ins-
besondere auch die zur Erlduterung der auftretenden Bcgrlffsblldungen aus verschledenen Ge-
bieten der Mathematik herangezogenen Beispiele.

Beim Abfassen des Buches dachte aber der Verfasse}' auch an diejenigen, die die Durcharbeitung
des Buches als- ersten Schritt auf dem Wege zu selbststdndigen verbandstheoretischen Forschun-
gen anschen wollen. Fiir diese Leser weist er auf zahlreiche neuere Ergebnisse hin, die sich zwar .
inhaltlich dem Gegenstand des Buches anschlieBen, dabei aber im Rahmen eines Einfithrungs- -
werkes nicht ausfiihrlich behandelt werden kénnen.

Am SchluB der einzelnen Kapitel finden sich Ubun_gsaufgaben; ihre Losung soll dem Leser
helfen, sich eine gewisse Fertigkeit in der Anwendung der Theorie anzueignen. Zur Lésung der
schwierigeren Ubungsaufgaben sind Anleitungen am Ende des Buches angegeben.

- INHALT: Teilweise geordnete Mengen — Uber Verbinde im Allgemeinen — Vollstin-
dige Verbinde — Distributive und modulare Verbénde — Modulare Verbiande mit ~speziellen
Elgenschaften — Boolesche Algebren — Halbmodulare Verbinde —  Ideale in Verbinden —
Kongruenzrelatlon - Ubungsaufgaben — Literaturverzeichnis — Sachvelzelchms
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