ACTA UNIVERSITATIS SZEGEDIENSIS

ACTA.

SCIENTIARUM
MATHEMATICARUM

ADIUVANTIBUS
B. CSAKANY L. KERCHY
S. CSORGO . L. MEGYESI
G. CZEDLI F. MORICZ
E. DURSZT P. T. NAGY
Z. ESIK J. NEMETH
F. GECSEG L. PINTER
L. HATVANI G. POLLAK
L. L. STACHO
REDIGIT

L. LEINDLER

TOMUS 52
FASC. 12

SZEGED, 1988

L. SZABO

I SZALAY

A. SZENDREI
B. SZ-NAGY
K. TANDORI
J. TERJEKI
V. TOTIK

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS



AJOZSEF ATTILA TUDOMANYEGYETEM KOZLEMENYEI

,ACTA
SCIENTIARUM
MATHEMATICARUM

CSAKANY BELA KERCHY LASZLO SZABO LASZLO

CSORGO SANDOR MEGYESI LASZLO SZALAY ISTVAN

CZEDLI GABOR MORICZ FERENC SZENDREI AGNES
DURSZT ENDRE NAGY PETER SZOKEFALVI-NAGY BELA
ESIK ZOLTAN NEMETH JOZSEF TANDORI KAROLY
GECSEG FERENC PINTER LAJOS TERJEKI JOZSEF
HATVANI LASZLO POLLAK GYORGY TOTIK VILMOS

STACHO LASZLO

KOZREMUKODESEVEL SZERKESZTI

LEINDLER LASZLO

52. KOTET
FASC. 1—2

SZEGED, 1988

JOZSEF ATTILA TUDOMANYEGYETEM BOLYAI INTEZETE



ACTA UNIVERSITATIS SZEGEDIENSIS

ACTA
SCIENTIARUM
MATHEMATICARUM

ADIUVANTIBUS
B. CSAKANY L. KERCHY L.SZABO

S. CSORGO L. MEGYESI I. SZALAY

G. CZEDLI F. MORICZ A. SZENDREI
E. DURSZT P. T. NAGY B. SZ-NAGY
Z. BSIK . J. NEMETH K. TANDORI
F. GECSEG L. PINTER J. TERJEKI
L. HATVANI G. POLLAK V. TOTIK

L. L. STACHO
REDIGIT

L. LEINDLER

TOMUS 352

SZEGED, 1988

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS



AJOZSEF ATTILA TUDOMANYEGYETEM KOZLEMENYEI]

ACTA

SCIENTIARUM
MATHEMATICARUM

CSAKANY BELA KERCHY LASZLO. SZABO LASZLO

CSORGO SANDOR MEGYESI LASZLO SZALAY ISTVAN

CZEDLI GABOR MORICZ FERENC SZENDREI AGNES
DURSZT ENDRE NAGY PETER SZOKEFALVI-NAGY BELA
ESIK ZOLTAN - . NEMETH JOZSEF - TANDORI KAROLY
GECSEG FERENC PINTER LAJOS TERJEKI JOZSEF
HATVANI LASZLO POLLAK GYORGY TOTIK VILMOS

STACHO LASZLO .

KOZREMUOKODESEVEL SZERKESZTI

LEINDLER LASZLO

52. KOTET

SZEGED, 1988

:JOZSEF. ATTILA TUDOMANYEGYETEM BOLYAI INTEZETE



Acta Sci. Math., 52 (1988), 3—19

Group theoretic results in Clifford semigroups

J. D. P. MELDRUM

Clifford semigroups or strong semilattices of groups are a class of inverse semi-
groups which are obviously very closely related to groups. This paper attempts to
exploit this close relationship. Petrich’s characterization of congruences on inverse
semigroups is analyzed in this special case to obtain a description of homomorphisms
and their images in terms of the groups involved. Next, the idea of classes and closure
operations due to P. HALL, which has proved very useful in group theory, is extended.
Some results are obtained, but there are many interesting open problems left. This is
applied to nilpotency of groups and a number of interesting results are extended, in
particular Fitting’s Theorem, the Hirsch-Plotkin Theorem and the characterization
of nilpotent groups in terms of subnormal subgroups. Finally some remarks on
solubility are made. The techniques demonstrated here should lead to a very large
number of results being transferred.

This paper describes a technique for applying group theoretic ideas and results
to Clifford semigroups mainly by giving some examples of it in action.

I would like to thank Drs. KowoL and MitscH for a preprint of their paper [4]
and for stimulating conversation and, later, correspondence.

I would also like to thank Dr. O’CARROLL for much help.

We refer to Howie’s book [3] for background on the subject. In this paper we
are exclusively concerned with Clifford semigroups and we give a definition now to
establish notation.

Definition. A semigroup S is a Clifford semigroup or strong semilattice of
groups if S is the disjoint union of a set of groups {S,: a€ E}, where E is a meet semi-
lattice and for all a, # in E such that a=p, there exists a homomorphism ¢, ,:
S,—~ S satisfying

©QapPpy = Pa,y forall a=p=y in E
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4 J. D. P. Meldrum

The homomorphisms {¢, ;; «=p in E} are called the linking homomorphisms. For
all « in E, ¢, , is the identity map on S,. For s,, s,in S, the product is defined by

518 = (sl q’a,aﬂ) (52 ¢ﬂ,aﬂ)

where 5,€S,, 5:€S, af is the join in E and the product on the right is the product
in the group S,z.

We denote the identity of S, by e,. Then {e,: «€ E} is a semilattice of idempotents
isomorphic to E, and we will often denote it by E(S) or even simply E. This will not
cause any confusion. Note that e, is central in S for all a€E.

It can be shown from HowiIE [3], and it is in any case well known, that Clifford
semigroups form a variety of algebras, a subvariety of the variety of inverse semi-
groups. PETRICH [7] has defined a concept of congruence pairs for inverse semi-
groups and related them to congruences. This enables a link to be made between con-
gruences and a substructure which strongly resembles normal subgroups. This cor-
respondence is analysed closely in the context of Clifford semigroups in section 1. In
section 2, some applications are made of the concept of closure operations. In section
3, we deal with extensions of the idea of nilpotency from groups to Clifford semi-
groups, and finally we deal with solubility in the final section.

1. Congruences on Clifford semigroups

This material is a slight extension of the results of Petrich [7] as applied to Clif-
ford semigroups. From now on, unless explicitly stated otherwise, all semigroups
are assumed to be Clifford semigroups. Let S be a semigroup, with constituent
groups {S,: a€E}, linking homomorphisms {¢, z: =8, a, BEE} and semilattice
of idempotents {e,: a€E}. C

Definition 1.1. An inverse subsemigroup T of S is called normal if a=*Ta&ST
for all a€S and full if ECT.

This definition departs from standard practice, as usually normal subsemigroups
are necessarily full. We do not require this.

Definition 1.2. A pair (g, N) is called a congruence pair if N is a normal full
subsemigroup and ae€N, ega~'a implies acN, where acsS, ecE.
If we define
ax(g, N)b if and only if a~lagb—'b,ab €N

then Petrich [7] shows that (g, N) is a congruence on S and every congruence g on S
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is of this form, where
¢ =tro (the restriction of o to EXE),
N = ker ¢ := {soe: ecE}.

Our version is simpler than his because we take advantage of the fact that S is a Clif-
ford semigroup. We now present some fairly straightforward results concerning the
concepts that we have just defined. But first a useful notational device. If T'isan inverse
subsemigroup of S we write T, for TNS,. Then T= UE T,. In general some of

ag
the 7, may be empty. But 7 is full if and only if 7,0 for all «€E.

Lemma 1.3.

(i) If N is a normal inverse subsemigroup of S then N, is a normal subgroup of S,
for all «€E such that N,=8.

(if) Let N be an inverse subsemigroup of S. Then NESN if and only if
N,@, SNy for all o, BCE, a=p.

(iii) Let N be an inverse subsemigroup of S such that NECN. Then N is normal
in S if and only if N, is a normal subgroup of S, for all o€ E such that N,=.

(iv) Let N be a full inverse subsemigroup of S. Then N is normal in S if and only
if N, is normal in S, for all o€E.

(V) The condition in Definition 1.2 is equivalent to: for all o, B¢E such that
e,0e; we have N0, 2,SN,.

(vi) If NESN and N,#9, then ker ¢, ;S N, for all f=a, a, fCE.

(vii) Let ¢ be a congruence on E, N a normal full subsemigroup of S. T\ hen (0, N)
is a congruence pair if and only if for all o, BCE such that e,gey then N7 o, SN,.

These results can all be checked very easily and so no details of proof will be
given. We now look at the minimum group congruence ¢ on S. Then ¢ is a congru--
ence on S such that S/c is a group and all group 1mages of S can be factored through
S/o. See Howie [3] p. 139.

Lemma 1.4. Let S be a Clifford semigroup with semilattice of idempotents E.
Let XSE be a chain with the property that for all a€E there exists B¢X such that
B=a. Then Sfo is the direct limit of the chain of groups

{S2» 0,50 @, fEX}.

Note that such a chain always exists. If E has a minimal element 8, then we can
take X={J} and then S/6=S;. A special case will be used later.

Corollary 1.5. Using the notation of Lemma 1.4, assume that ¢, , is a mono-
morphism for all o, BEX. Then without loss of generality we may assume S,SS,
for all a=fp and Sjo= |J S,.

acX
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These results do not need proving as they seem well-known, and can in any case
be checked quickly. To finish this section we consider homomorphic images of
Clifford semigroups. We use ¢ to denote the identity congruence, i.e., acb if and only
if a=b. It is obvious from the definition that (¢, N) is a congruence-pair for all full
normal subsemigroups N of S.

Lemma 1.6. Let g be a congruence on E. Then the least full normal subsemi-
group N(g) such that (¢, N(g)) is a congruence pair is defined by

N(). = ]lker Pa,ap-
ag

In particular if @, .5 are monomorphisms for all a, BEE such that agP, then (o, E)
is a congruence pair.

Again this result is easy to prove, especially if we use Lemma 1.3.

Lemma 1.7. Let N be a full normal inverse subsemigroup of S. Let x=x(¢, N),
and let T=S|x. Then T,=S,/N, and 0,p5: T,~T, where a=p is defined by
10, 5= Ny5@,, 5, where t=N,s, i.e., 0, ; is induced naturally by @, 4.

This follows easily from the definitions. We finally consider a general congruence
pair.

Lemma 1.8. Let (o, N) be a congruence pair on S. Let x=x(g, N), T=S/x.
Let A=x(g, E) defined on T. Then

T/A = S/x(g, N).

If {A,: y€C} are the congruence classes of ¢ on E, then T[4 is obtained from T by
replacing \) T, by its maximal group homomorphic image T,, and for 7y, 6€C,

ac4,
Y=38, V,,; is defined as the natural extension of the 0, 5 for a€A,, BEA;.

Proof. We first note that, using the notation of Lemma 1.7, the homomorphism
0,,5: T,~T; is a monomorphism. Hence (¢, E) is a congruence pair on T' by Lemma
1.6. Hence T, can be written as a union of a tower of groups as described in Lemma
1.4. This makes the definition of ¥, ; easy to verify. All the rest is very easy to check.

2. Closure operations on classes

We use the ideas of classes of groups and closure operations as developed by
P. HAaLL and apply them to Clifford semigroups. A good presentation of these can be
found in Robinson [8] chapter 1, section 1. They have also been used in many other
settings by many other people. In particular CoHN [1] uses them in the context of
universal algebras.
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The only condition imposed on a class X of groups is that {e}¢X and if GeX
and H=~G then HcX. A closure operation on classes of groups is a map A from
classes of groups to classes of groups 4: X—+AX satisfying AX2%, XS implies
AXCSAY and AAX=AX. A class X is A-closed if AX=2X. Any intersection of 4-
closed classes is A-closed. Hence to define 4 we only need to specify the A-closed
classes. For then AX=N{Y: P2%, 49=9}. The concept of classes and closure
operations can be transferred to any other algebraic structure, and, in particular, to
Clifford semigroups.

Definition 2.1. For a class X of groups, we define %s to be the class of Clif-
ford semigroups given by :

SeXs ifand onlyif S,e¥ for all ocEE(S)‘. '

This gives the natural extension of the definition of a class of groups to a class of
Clifford semigroups. We will see later that this extension of the definition is not
always the most useful one. There is immediately a family of questlons which can be
posed.

Problem 2.2. Given a class X of éroups and a closure operatioh A on classes,
determine whether AX;=(AX)s. Alternatively if AX=2%, is AXg=%?

We will deal with a few cases of this problem, but there is a great deal more that
can be done in this area. We first define the closure operations which we will be usmg,
to cover both groups and Clifford semigroups.

The class X is S closed if every substructure of an X structure is itself an X-
structure.

The class X is Q closed (sometimes the symbol H is used) if every epimorphic
image of an X structure is itself an X structure.

The class X is R closed if given a structure: ¥ such that-a family of homomor-
phisms {0;: i€I} exists with Y8,cX for all i€l and r} ker 0; is trivial, then

t
YeX. We say X is residually closed. )

The class ¥ is L closed if given a structure ¥ such that every finite subset

{915 ..., ya} Of Y is contained in an ¥ substructure of Y, then Y¢X. '
he class X is N(N,) closed if every structure ¥ which can be expressed as a prod-
uct of a (finite) number of normal substructures is again in X.

Lemma 2.3. Let SX¥=X. Then SX;=2X;.

Proof. Let T€SX;. Then there exists U€Xg such that T is a Clifford subsemi-
group of U. Hence for all a€ E(U), T, is a subgroup of U, or is empty. But U,eX=
=SX. Hence T,£X or is empty. Thus T€¥Xs. Thus Xg=SX;.
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Example 2.4. Let X be the class of finite p-groups for some prime p. Let the
semilattice E be the set of negative integers with the natural order inducing the semi-
lattice structure. So (—n)-(—m)=min {—n, —m}. Let S_, be the cyclic group of
order p", ¢_, _,, for n=m be the natural embedding. Then S, the Clifford semi-
group so defined has as maximal group homomorphic image the group C,., the
Priifer group of type p>, which is certainly not a finite p-group. So in this case
X=0X but Q¥;=X;.

The problem with Q closure occurs because group homomorphic images of
Clifford semigroups include direct limits. This leads to the following result.

Lemma 2.5. Let X be a class of groups closed under the operation of taking
direct limits. Then X5 is Q closed.

Proof. Let S¢QXs. Then S is the homomorphic image of a semigroup 7€ Xg.
From Lemma 1.8, we see that the component groups of S are obtained from those of
T by taking homomorphic images and direct limits. Since the component groups of T
lie in X and X is closed under direct limits, and hence Q closed, it follows that S¢ X;.

This finishes the proof.
We next look at L closure. First we prove a result used later.

Lemma 2.6. Let {s, ..., s,} be a finite subset of a Clifford semigroup S. Then
the inverse subsemigroup of S generated by {s,, ..., s,} is contained in the union of a
[finite number of finitely generated groups forming a semigroup.

Proof. Let E=E(S), and let X be the finite subset of E defined by acX if
and only if 5,65, for some /, 1=i=n. Then X generates a finite subsemilattice ¥
of E. For all B€Y, we define

Zy = {5:05,5: 1 =i=n 0= B, acy, 5£8,}

Then Z, is a finite subset of S; and so generates a finitely generated subgroup G, of
Sg. It is routine to check that the inverse subsemigroup of S generated by {s,, ..., 5,}

is contained in | J Gg, and this is a semigroup, which is all we wished to show.
BEY

Lemma 2.7. Let X=LX. Then L¥g=2Xjg.

Proof. Let S€LX;. We need to show that S,€X for all ac E=E(S). Let
{515 --.» 5,} be a finite subset of S,. Then {s,, ..., 5,} ET€Xs, T an inverse subsemi-
group of S. In particular 7,2{s,, ..., s,} and lies in X. Thus S,€LX=X. Hence
the result is true.

Lemma 2.8. Let X=QX=SX=LX. Then X¥s=Q¥;=S¥Xs=LX;.

Proof. Following Lemma 2.3 and Lemma 2.7, we only need to show that
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Xs=0%X5. Let S€Q0Xs, S a homomorphic image of T¢Xg;. From Lemma 1.8,
each S, is obtained from {T;: BCE(T)} by taking homomorphic images and unions
of towers. Let {G,: y€X} be a tower of groups in ¥, G= |J G,. Then any finite

7€X
subset of G is contained in G, for some y, and G,€X. Hence G¢LX=X. Thus each
S,€X and Se€X;.

For any class X we denote by VX the least variety containing X. It is a standard
result from universal algebra that ¥X=X if and only if ¥=SX=0X=RX. (Cohn
[1] IV. 3). We now state

Lemma 2.9. Let X be a class of groups. Then X is a variety if and only if X is a
variety.

This is an easy consequence of known results (Petrich [6]) or can be proved
directly without much trouble.

Corollary 2.10. X is Q, R, S closed if and only if X5 is Q, R, S closed.

3. Nilpotency and its generalizations

Let 9t be the class of nilpotent groups, and let R, be the class of nilpotent groups
of nilpotency class at most ¢. Then R, is a variety and M= (J N,.. The most ob-

cx=1

vious generalization of N to Clifford semigroups is RNy, but this leads to problems as
we now see.

Example 3.1. Let G, be a nilpotent group of nilpotency class exactly n, in
particular let G, be the group of (n+ 1)X(n+ 1) unitriangular matrices over some
field F. Then we can embed G, in G, ., by mapping (a;;)€G,~>(b;})€G,+,, where for
J>=i, a;=b;j+1, b;1=0. Let S be the Clifford semigroup whosea semilattice of
idempotents is isomorphic to the negative integers with the natural order. Compare
Example 2.4. For each —n€E, let S_,=G, and ¢_,, _,, bethe embedding obtain-
ed from the embeddings outlined above. Then S€¢Ng, but S has as a homomorphic
image G= U1 G,, the maximal group homomorphic image of S. And G is not nil-

potent, since it contains subgroups of arbitrarily high nilpotency class.
Because of this example, we make the following definition.

Definition 3.2. The class of nilpotent Clifford semigroups is defined to be

S=U @s
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Hence Se9t if and only if S,cM, for all a€ E=E(S), and some c=c(S).
This coincides with LALLEMENT’s definition [5). As KowoL and MrrscH dealt with
finite semigroups, either definition would have served. In the infinite case this defi-
nition leads to a more satisfactory theory. Denote (R )s by §tc.

Lemma 3.3. 9t is S and Q closed.

Proof. Let T¢S9. Then there exists Ue9t and T is a subsemigroup of U.
So UeHh, and SN,=%N,. By Lemma 2.3 SR, =%,, hence Te9t S9. The case
of Q closure follows the same pattern, using Corollary 2.10 since N, is a variety.
We now introduce upper and lower central series for Clifford semigroups which
extend the corresponding ideas for groups, as was done in Kowol and Mitsch [4].

Definition 3.4. Let S be a Clifford semigroup, N; full normal subsemigroups
of S for O0=i=r.
(i) Z(S), the centre of S is defined by Z(S)={x€S: xs=sx for all s¢S}.
(ii) Let H, K be inverse subsemigroups of S. Define [H, K] to be the inverse
subsemigroup of S generated by
{lh, K] = h=*k='hk: heH, keK}.
(iii) A sequence
ES)=N,CN,S...CN,=8
is called a central series of S if
N; & Z(S/x(e, Ni—1))04

for 1=i=r, where 0;_, is the natural homomorphism associated with »x(e, N;_,).
(iv) The upper central series of S is defined inductively by

Zy(S) = E(S),
Zi+1(8)0; = Z(S/x(e, Zi(S)))s
for i=0, where 6, is the natural homomorphism associated with x(e, Z,(S)) and

Z.,+1(S) is maximal such.
(v) The lower central series of S is defined inductively by

7(S8) =S,
Yi+1(8) = S, 7:(S)],
for i=1.
We now list some easy consequences of this composite definition.

Lemma 3.5. Let S be a Clifford semigroup.
(i) Z,(S) is a normal full subsemigroup of S for all i=0.
(ii) y:,(S) is a normal full subsemigroup of S for all i=1.
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(iii) S/x (e, N) is commutative if and only if N 2y,(S), where N is a normal full
subsemigroup of S.
(iv) [s1, SJ€E(S) if and only if s5,5,=5,5;.

Proof. This is all easy to prove or can be deduced easily from Section 3 of
Kowol and Mitsch [4].

Lemma 3.6. Let S be a Clifford semigroup. Then
%:(8) = U 7:(S0)-
a€E

Proof. Obviously 7;(S,)S7:(S) for all acE. Conversely we prove by induc-
tion on i that y,(S)S U y{S,). This is true trivially for i=1. So assume that this
€E

is true for i Let s€S8, 1€y,(S). Then [s, t]=57 "1st=(504 qp) " (tPp,ap) ™"
(504, 0p) (10p,4), Where SES,, 1€S;. So [s, t]€[S,s, 7:(Sep)] using the induction
hypothesis. This suffices to prove the result since now the generators of y;.,(S) lie
in %}E 7:+1(S,) and this is easily checked to be a normal full subsemigroup.

Lemma 3.7. The upper and lower central series of a Clifford semigroup are
central series.

Proof. This is immediate from Definition 3.4 and Lemma 3.5.
Theorem 3.8. Let S be a Clifford semigroup with a central series
3.9, ES)=N,&SNS...EN,=S.
Then Z,(S)=S, 7,+1.(S)=S and forall i, 0=i=r, N;SZ,(S) and N,_;2y,,;(S).

Proof. We only need to prove the two inequalities which we do by induction on i.
Both are true trivially for i{=0. Assume that both are true for i. Let x€N,,,.
Then N;.10;SZ(S/x(e, N;)), where 6; is the natural homomorphism associated
with x(g, N;). Let s€S. Then (xs5)8;=x0,50,=5s08,x0; since (3.9) is central, and so
xsx(e, N;)sx. Since Z;(S)2N;, it follows that xsx(e, Z;(S))sx for all s€S. Thus
x@,€Z(S[x(e, Z,(S)))=2Z;+1(S) ¢;, where ¢, is the natural homomorphism associat-
ed with (e, Z;(S)). Hence x€Z;.,(S). Thus N;;;SZ;.,(S).

Let x€N,_;, s€S now. Then xsx(g, N,_;_;)sx asbefore. So x~1s7Ixs¢N,_;_;.
Thus [N,_;, SJEN,_;-,. Hence p,.;(S)=[y1+:(S), SISIN,_;, SIEN,_;_, using
the induction hypothesis. This finishes the induction step for both inequalities and
hence the proof of the theorem.

Corollary 3.9. A Clifford semigroup S is in %t if and only if there exist ¢ and
d such that -Z (S)=S, 74+1(S)=E(S) and the least such c¢ and d satisfy c=d.
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This is the nilpotency class of S and is the least ¢ such that S¢ 9N, .

This result follows directly from Lemmas 3.6, 3.7 and Theorem 3.8. Notice the
close connection with the work of Kowol and Mitsch [4], Section 4. We now prove a
selection of theorems about nilpotency and its generalizations in Clifford semigroups
by transferring the results from group theory. As source book for the group theoretic
results any standard text book will serve. We mention particularly Hall [2], an excel-
lent account of the particular areas under consideration here, but not widely avail-
able, and also Robinson [8] and Scott [10].

Theorem 3.10. Let S be a nilpotent Clifford semigroup. Then elements of co-
prime order commute.

Proof. The order of s€S is its order in S,, where s€S,, i.e., the least integer
n>0 such that s"€E(S). Let s,,5€S. If 5€S,, 5€S; then s;5,=
= 5100, ap52Pp,ap= 52 Pp, 2551 Pa,zp> USING the group theoretic result in S,;. Since the
order of s, ; divides the order of s, the result follows.

Theorem 3.11. In a torsion nilpotent Clifford semigroup, the elements of order
a power of p, a prime, form an inverse subsemigroup.

Theorem 3.12. In a nilpotent Clifford semigroup, the elements of finite order
form an inverse subsemigroup, the torsion subsemigroup.

These both follow immediately from Theorem 3.10, and the corresponding
results from group theory. Most of the results from Section 4 of Kowol and Mitsch
[4] can be obtained by transferring from group theory, and we will not repeat them
here. The exception to this is Theorem 4.3 on the representation of an element of a
nilpotent Clifford semigroup as a product of elements of prime power order.

Theorem 3.13. Let S be a torsion nilpotent Clifford semigroup, and let {P;:
ic1} be the Sylow subsemigroups of S, i.e., P;={s€S: order of s is a power of p;},
where {p;: icI} are a set of distinct primes. If s€S, then s=a,...a, is a uniquely
defined representation of s, where a,€S,NP;, a is defined by scS,, 1=i=n, a
Sfinite subset of I.

This follows directly from the group theoretic result. This seems to be the only
uniqueness result of this kind, applicable in general. But under very special circum-
stances, there is a maximal version of the theorem.

Theorem 3.14. Let S be a torsion nilpotent Clifford semigroup such that
E=E(S) is a lattice with the maximal condition, and such that all linking homomor-
phisms are monomorphisms. Let {P;: icI} be the Sylow subsemigroups of S, where
{p;: icI} are a set of distinct primes. If s€S, then s=b,...b, is a uniquely defined
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representation of s, where b,€ P;(\ Sy, and B(i) is defined by (i) is maximal in E
such that b; @y, ,=a;, using the notation of Theorem 3.13.

Proof. Since E is a lattice with the maximum condition, (i) is unique. Since
@pgiy,e IS @ monomorphism b; is uniquely defined, since g; is unique given Theorem
3.13. '

From the proof of Theorem 3.14, it is obvious how examples could be constructed
to show that (i) has to be uniquely defined, and that ¢, , has to be a monomor-
phism, to obtain a unique “maximal” representation.

The next results we will prove are the Clifford semigroup theoretic versions of
famous group. theoretic results on nilpotency. The first is Fitting’s Theorem, the
one about normal nilpotent subgroups.

Lemma 3.15. Let S be a Clifford semigroup. Let N be a normal inverse subsemi-
group of S, T an inverse subsemigroup of S. Then NT=TN .is an inverse subsemi-
group of S. Also (NT),=N,T,, if TE=T, forall acE. If T isnormal, then so is NT.

Proof. Let mt, nyt,€ NI, where m€N, €T, i=1,2. Then n t,nyf,=
=mhty nt=mtn 1t ty=mngt, 1,6 NT. So NT is a subsemigroup. Let tm¢TN.
Then tn=tt"tn=tnt t=n"tc NT. Hence TNESNT. Similarly NTSTN. Thus
NT=TN is an inverse subsemigroup as (nf)~'=¢"n"'¢ TN=NT. We now show
that (NT),=N,T,. Certainly N,T,S(NT),. Let ntc(NT),. Then there exist
p=a,y=a such that fy=«, nE€N,, €T, and nt=ng,,te,,. But ng, N,
1@, £T,. Hence (NT),&N,T,. Thus N,T,=(NT),. Finally let T be also normal
and let nteNT, s€S. Then s~ 'nts=s"ntss is=s nss s¢ NT, for all s€S.
Hence the whole lemma is proved.

This result extends directly Lemma 2.4 of Kowol and Mitsch [4]. We now come
to Fitting’s Theorem.

Theorem 3.16. Let S be a Clifford semigroup. The product of two normal ;zil-
potent subsemigroups of S is normal and nilpotent.

Proof. Let N, M be normal and nilpotent subsemigroups of S. Then NM is a
normal subsemigroup by Lemma 3.15. Also (NM),=N,M, for all acE. Suppose
NES}C, MeR,, then NN, MR, and by standard group theory, N, M €N, ...
Hence (NM),eR.., for all acE, and NMc¢ §tc+d.

Corollary 3.17. Let Ne®t,, MeR, be normal nilpotent subsemigroups of S.
Then NMER, ..

Corollary 3.18. Let S be a Clifford semigroup which satisfies the maximal con-
dition on normal subsemigroups. Then S contains a unique maximal normal nilpotent
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subsemigroup containing all normal nilpotent subsemigroups, called the Fitting subsemi-
group.

The next result which we extend is the Hirsch—Plotkin Theorem.

Theorem 3.19. Let S be a Clifford semigroup. Then the product of two normal
locally nilpotent subsemigroups is a normal locally nilpotent subsemigroup. There is a
unique maximal normal locally nilpotent subsemigroup, containing all normal locally
nilpotent subsemigroups, the Hirsch—Plotkin radical of S.

Proof. Because of Lemma 3.15 we only need to show, for the first part, that if
N, McL$t are normal, then NMcLSt. Since NeL$R, it follows that N,, M, are
locally nilpotent groups which are normal in S,. Let {nym,, ...,n,m,: nEN, mEeM}
be a finite subset of NM. Let Z={n,, ...,n,,m,, ...,m,}. By Lemma 2.6, T, the
inverse subsemigroup generated by Z, is generated by a finite set of elements of the
form n; @, ,, m; @, 5. T, is generated as a group by a finite set of the form {n;¢;,,,
m;@, .}, which is a finite subset of N, M,, the product of two locally nilpotent nor-
mal subgroups of S,. Hence N, M, is locally nilpotent by the Hirsch-—Plotkin Theo-
rem and thus T, is nilpotent. T is the union of a finite number of groups of the form
T,. Hence we can find ¢ such that 7R, forall 7,, and so T¢ §lc. Since {n,my, ...
..,n,m}ET, we have shown that NMeL9t.

The last part follows as in the group case. The product of any finite set of normal
locally nilpotent subsemigroups is locally nilpotent by the first part. Consider the
product H of all the normal locally nilpotent subsemigroups of S. It is normal and
any finite subset of H is contained in the product of a finite number of normal locally
nilpotent subsemigroups which is locally nilpotent, hence is contained in a nilpotent
subsemigroup. Thus H is locally nilpotent. This finishes the proof.

The next result which we extend is a well-known one concerning minimal normal
sﬁbgyoups of locally nilpotent groups.

Theorem 3.20. Let S be a locally nilpotent Clifford semigroup, N a mfnimal
normal subsemigroup of S. Then there exists a unique a€E such that N,>{e,} and
N,SZ(S,), and for all p=a, we have ker ¢, z;2N,. :

Proof. By Lemma 1.3, it is easy to see that if there are two elements «, f of E
such that N,>{e,}, Ny;o{e;}, then Nis not minimal. If § is locally nilpotent, then
sois S,. So N, is a normal subgroup of S, such that for all S¢E, p=a, N,Cker @, 4.
It follows that N, can be replaced by any normal subgroup of S, contained in it, and
we would still have a minimal normal subsemigroup. Then minimality of N forces N,
to be a minimal normal subgroup of S,, hence by group theory N,EZ(S,).

The last results about nilpotency which we will present concern normalizers.
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Definition 3.21. Let T be an inverse subsemigroup of a Clifford semigroup S.
'The normalizer Ng(T) of T in S is the unique largest inverse subsemigroup of S in
which T is normal.

A priori Ng(T) may not always exist. We will show that it does.

Lemma 3.22, Let T be an inverse subsemigroup of a Clifford semigroup S.
Then Ng(T) always exists and is defined by

Ng(T) = {x€S8: x'Tx & T}.

Proof. If U defined to be {x: x~'Tx ST} is an inverse subsemigroup, then it
must be Ng(T'). Now U is obviously closed under products. Let xc¢U. Then x7Tx~12
2xxWTxx '=Txx"t. But x*TxET. So if t€T; and x€S, then x'tx=
=X 710y, 05 1Pp,ap XPa,ap€T. Hence Topz@. So txxT =ty ze,5=1e,,€T, since
e €T ET.

Definition 3.23. An inverse subsemigroup T of a Clifford semigroup S is
called subnormal if there exists a sequence of inverse subsemigroups

T=T,ST,S..CST,=S

such that T; is normal in T;,, for 0=i=n—1. The least length n of such a series is
called the index of subnormality.

Theorem 3.24. Let S be a nilpotent Clifford subsemigroup, T an inverse subsemi-
group such that TEST. Then T is subnormal of index at most ¢ where c is the nilpo-
tency class of S.

Proof. We show that if {Z;: 0=i=c} isthe upper central series of S, then TZt
is normal in TZ;,,, replacing TZ_ by S. Note that Z,=E, so T=TE=TZ,. By
Lemma 3.15 TZ; is an inverse subsemigroup of S. Let x€Z;,,,y€TZ;. Then
xx=x"Yyy yx=yy~Ix"yx=yp[y, x]€TZ;, since y€TZ; and [y, x]€Z, since
x€Z; .. Thus Z,,; ENg(TZ,). This is enough to prove the result. If i=c—1, then
Z,=SSNs(TZ,.,), ESNs(TZ,._,) so S=SECSNS(TZ,_,).

We could have used the group theoretic results and transferred them. But the
details of the links to the group theory would be longer than the direct proof, which
parallels very closely the group theory proof.

Theorem 3.25. Let S be a Clifford semigroup with the property that all its full
inverse subsemigroups are subnormal of index at most c. Then S¢€ 514 where d is a
Sfunction of c.

Proof. Let a€E and consider U a subgroup of S,. Let T be a full inverse sub-
semigroup of S such that T,=U, eg. T,={e} if f£a, T,=Uqp,, if p=a
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Then T=T,ST,S...ET.=S is a sequence such that T; is normal in T;,, for
0=i=c~—1. In particular T;, is a normal subgroup of T}, ,. Hence T, ,=U is
subnormal of index at most ¢ in S,. This is true for all subgroups of S,. By Roseblade
[9], S, is nilpotent of class at most f(c)=d say. Hence SeR,.

Corollary 3.26. Let S be a finite Clifford semigroup such that all its full inverse
subsemigroups are subnormal. Then S is nilpotent.

The result that gives as a sufficient condition for a finite group to be nilpotent that
all its maximal subgroups are normal does not carry over in the most obvious way.

Example 3.27. Let E consist of three elements «, f and af=y. With §,=C,=
=S, a cyclic group of order 2, S, the symmetric group on three symbols. Then
Ouy: S,~1e,, (12)), @4 ,: S;—~1{e,, (13)} defines S=8,US,US, as a Clifford
semigroup. It is easy to check that the only maximal inverse subsemigroups are
EUS,US, and EUS,US,, both normal. But S is not nilpotent.

We leave the reader to find some possible generalizations of this result.

4. Solubility

Let © be the class of soluble groups, and &, the class of soluble groups of solu-
bility class at most d. Then €, is a variety and &= |J ©;. Example 3.1 shows that
d=1

&g again leads to problems. The semigroup S of Example 3.1 s in Sg, but its maximal
group homomorphic image G is not soluble, although it is a homomorphic image of S.

Definition 4.1. The class of soluble Clifford semigroups is defined to be
€ = U (Gos.
d=1 .
Hence Se& if and only if S, for all acE and some did(S). Denote
(S,)s by @d. Lemma 3.3 extends very easily.
Lemma 4.2. & is S and Q closed.

Definition 4.3. Let S be a Clifford semigroup. The derived series of S is defined
to be
5o(S) = S, 8:42(S) = [8:(8), 6:(S))-

ES)=N,E N, E...EN =S

A sequence

is called an abelian series of S if N;is normal in N;_; and N;_,/x(¢, N;) is commu-
tative for r=iz=l.
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Lemma 4.4. Let S be a Clifford semigroup. Then 6,(S) is a fulI normal subsemi-
group of S for all i=1.
Lemma 4.5. Let S be a Clifford semigroup. Then
6:(8) = U 8i(So).
. - a€E
Lemma 4.6. The derived series of S is an abelian series.

These results all follow in much the same way as the corresponding results at
the beginning of Section 3.

Theorem 4.7. Let S be a Clifford semigroup with an abelian series
E(S) = Nr g Nr—l g (:: NO = S
Then N;26,(S) for all i=0 and §5,(S)=E(S).

Proof. We prove the result by induction. Obviously S=N,26,(S)=S"
Assume that N;25,(S). Then N/x(e, N;,,) is commutative and so [s;, s,]€N,
for all s;, s,€ N;. Hence by Lemma 3.5 (iv) [s1, 5)]€ N,y for all sy, 5,€8;(S)EN,;.
Then 6;,,(S)EN,,,. This gives the result by induction.

Corollary 4.8. A Clifford semigroup S is in & if and only if there exists d such
that 0,(S)=E(S).

The least such d satisfying this is called the solubility class of S. It is the least d
such that S¢€ éd.

Lemma 4.9. Let S be a Clifford semigroup. Let N be a normal full subsemi-
group. Then S|x(e, NY¢ &, if and only if §,(S)SN.

Proof. It is immediate that if 8 is a homomorphism, then [s,, $,)0=[s,9, 5,0].
Hence 6,(S/x(e, N))=6:(S)x(¢, N)/=(e, N) by a simple induction argument. Then
S/%(e, N)¢&, by Corollary 4.8 if and only if 6,(S/x(e, N))=E(S/x(e, N)), i.c.
64(S)x(e, N)=E(S/x(e, N)). This is just 5,(S)EN.

Theorem 4.10. Let S be a Clifford semigroup. Let N be a normal full subsemi-
group such that NeS,; and S[x(e, N)€ @e. Then S€G,,,.

Proof. By Lemma 4.9, S/x(e, N) is in ée implies 4,(S)EN. By a 'simple
induction argument J;(N)=20,.(S). But Ne€&, implies §,(N)=E(N) as N is
full. So 6,4+4(S)=E(S) and S€S,,..

Theorem 4.11. Let NE@C, Mc @d be normal soluble subsemigroups of S,
a Clifford semigroup. Then NM¢ S, ra-

2
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Proof. The proof follows closely that of Theorem 3.16. It would be instructive
to develop a proof involving a more general version of Theorem 4.10 and paralleling
the group theoretic proof.

Theorem 4.12. Let S be a Clifford semigroup which satisfies the maximal con-
dition on normal subsemigroups. Then S contains a unique maximal normal soluble
subsemigroup containing all normal soluble subsemigroups.

We present the locally soluble version of Theorem 3.17.

Theorem 4.13. Let S be a locally soluble Clifford semigroup, N a minimal
normal subsemigroup of S. Then there exists a unique a€E such that N,>{e,}, N is
commutative and for all f=a, we have ker @, z2N,.

Proof. A minimal normal subgroup of a locally soluble group is abelian by a
standard result from group theory. The same technique as in the proof of Theorem
3.20 now proves the result.

We will leave the extension of results from group theory here. There is obviously
an almost inexhaustible supply of results which could be transferred, and there are
also some traps for the unwary. Before finishing a few comments might be in order.
Finite soluble group theory has a beautiful set of results in the formation theory of
GascHUTZ. The right extension of this to finite Clifford semigroups should be an
interesting exercise with pleasing results. The other point concerns nilpotent versus
soluble groups. The laws of R, can be defined without reference to inverses. Using
this LALLEMENT [5] showed that regular nilpotent semigroups were Clifford semi-
groups in 9}5. This might be expected because idempotents should be central in a
nilpotent semigroup. The same could be done for solubility. There the natural ex-
pectation is for idempotents to commute. So it should be a theory naturally based in
general inverse semigroups. This is what we hope to attempt soon.
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Semigroups with a universally minimal left ideal

STEFAN SCHWARZ

A left ideal L of a semigroup S is called universally minimal if it is contained in
every left ideal of S. In such a semigroup L is at the same time the kernel of S (i.e.
the minimal two-sided ideal of S) and L itself is a left simple semlgroup We shall
deal with the case that L is a left group.

For simplicity we introduce the following notation. A semigroup containing a
universally minimat left ideal -which is a left group will be called a ULG-semigroup.
If L is a group, such semigroups are called homogroups. Let S be a semigroup and 4
an ideal of S. An endomorphism & of S onto A is called an A-endomorphism if h
leaves the elements of A fixed.

In a forthcomming paper [5] I have been led in a quite natural way to the follow-
ing class of semigroups: S is a ULG-semigroup with kernel L and S has an L-endo-
morphism. The main goal of this note is to show that such semigroups have a rather
simple structure. Though there are several papers dealing with analogous (and even
more general) questions (see, e.g. [1], [2], [3], [4]), I can find nowhere the results given
below (at least not in an explicit formulation).

Throughout the paper we use the following notations. S is a ULG-semigroup,
Lis the kernel of S and E= {e |v€ M} is the set of all idempotents of L (i.e. primitive
idempotents of S). It is well-known that L can be written in the form L= UM G,.

vg

Hereby each G, is a group (with identity element ¢,) and at the same time a minimal
right ideal of S. We have ,G,=G,, G,G,=G, (for any v, a€ M). Moreover each e,
(eke M) is a right identity of L.

In the sequel | 4| denotes the cardinality of A.

1. In order to make this note independent of [5] we give in Lemma 1 a modified
version of a few results proved in [5].

Received May .18, 1984 and in revised form January 10, 1985.
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Lemma 1. Let S be a ULG-semigroup with kernel L and E the set of all idempo-
tents of L. Then the following holds:

a) Any L-endomorphism of S can be written in the form xw—xe, (x€S, e,€E).

b) If for some e, CE the mapping x—xe, is an L-endomorphism of S, then
x—xe, is an L-endomorphism of S for any e E.

¢) The mapping x—xe, is an L-endomorphism of S iff for any x€S we have
IxE|l=1.

Proof. a) Let h be an L-endomorphism of S and x€S. Since xe,€L, we have
h(xe)=h(x)-h(e)=xe,, i.e. h(x)e,=xe,. Since h(x)¢L and e, is a right identity
of L, we have h(x)=xe,.

b) By assumption we have xe,ye,=xye, for any x, y€S. Putting y=e, we
have in particular xe,e,e,=xe,e,. Since e,e,e,=e, and e,e,=e,, we have xe,=
=xe, for any x€S. Hence xe,ye =xe,ye,=xye,=xye,, i.e. x+—xe, isan L-endo-
morphism of S.

¢) If x~»xe, is an L-endomorphism, we have [by b)] xe,=xe, for any veM,
hence xe,=xE so that |xE|=1. Suppose conversely that |xEj=1 for any x€S
and consider the product xe,ye, (x, y€S, e,€E). The element ye, is contained in L,
hence there is a group G, L such that ye,£G,. Therefore (if e, is the identity ele-
ment of G,) e,ye,=ye,. By assumption xe,=xe,, hence xe,ye,=xe,ye,=xye,.
The mapping x—xe, is an L-endomorphism. This proves the statement c).

Remark. To understand well the statement a) consider the ULG-semigroup S
given by the multiplication table
abc.
alaba
b|bab
cla b a
Here L={a,b}, E={a}, hence S is a homogroup. S has an L-endomorphism
¢;: x—xa. Also @,: x—xc is an endomorphism though here c¢E. But ¢, is the
same endomorphism as ¢,. By ¢) whenever S has an L-endomorphism we can rewrite
it in the form x—xE. -
Needless to remark that the mapping x—»xe, need not be an endomorphism of

S. But if it is an endomorphism, it is automatically an L-endomorphism. Hence the
result of Lemma 1 can be reformulated as follows

Theorem 1. Let S be a ULG-semtgroup with kernel L. Then S has an L-endo-
morphism iff for any x€S we have |xE|=

The condition |xE|=1 is a very simple one. If § is given by a multiplication
table it can be immediately verified. But this condition does not reflect any structural
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property of S. The structure of such semigroups is given by Theorem 2. (A part of
this theorem can be deduced from a result in [1].)

Theorem 2. Let S be a ULG-semigroup with kernel L. Then S has an L-endo-
morphism iff S can be written as a union of disjoint right ideals of S each of which is a
homogroup. The kernels of these homogroups are then isomorphic to one another.

Proof. a) Suppose that S has an L-endomorphism. We use the notations intro-
duced above. By Lemma 1 this endomorphism can be written in the form x—xE
(x€S). For any a€cM denote R,={x|x€S,xE€G,}). Cleartly S=|J R, and

veM

R,NR;=0 if ap. Further G,cR, (since G,E=G,).

We show that R,R;CR,. Let x¢R,, y€R,, ie., xE¢€G,, yE€Gy. Then
esyE=yE and xyE=xezyE=xE- yECG,G,=G,. Hence xyeR,, ie. R,R,CR,.
In particular each R, is a right ideal of S, since R,S=R, - [VEJM R/ CR,.

Finally we show that each R, is a homogroup with kernel G,. We have
G,CLNR,, and since G;NR,=0@ for B>, this implies G,=LNR,. The inter-
section LNR, is a two-sided ideal of R,. Since it is a group, it is moreover the mini-
mal two-sided ideal of R,. Hence G, is the kernel of R,. This proves the first part of

- Theorem 2. Moreover it follows from the proof that the kernels of all R, are isomor-
phic groups.

b) Suppose conversely that S is a ULG-semigroup with kernel L and S can be

written as a union of disjoint right ideals of S'in the form S= | R},. Here we sup-
BEN

pose that each R, is a homogroup, hence the kernel of R}, is a group X, .
Write again L= () G,. Since R,LCR,NL, this latter intersection is not
veM

empty and it is a right ideal of S contained in L. Hence LNR; is a union of some
groups from the family {G,},c). If a group G,, %€M, is contained in R}, it is a
minimal right ideal of R;. Since a homogroup contains a unique minimal right ideal,
we conclude G,=K,. Hence LMR; contains exactly one group from the family
{G,}vexr and we have K, =LNR,. Otherwise expressed: To any R there exists
an a€M such that LNR,=K,=G,.

Conversely: Any e,€E is contained in some R;, hence G, is contained in R;,.
Since G, is a right ideal of S, it is also a right ideal of R, and (since G, is a group) it
is a minimal right ideal of R;. Since R, is a homogroup, G, is the kernel of R,.

We conclude |M|=|N| and we may write S= () R,. Also the kernels of all
veM

R, are isomorphic groups.

If x€S, then there is a unique R; such that x€ R;,. We denote this homogroup
R, by R'. The kernel of R will be denoted by G and the identity element of G
by e*). Note that R®e®=e®RX =G,

To prove that S has an L-endomorphism it is sufficient, by Theorem 1, to show
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that x-e,=x-¢&"™ for any x€S, e,E. Now x-€,6R™®.LcR®NL=G™. Tak-
ing into account that e, is a right unit in L and ¢ is the unit element of the group
G™ (the kernel of R™), we have

0 xe, = ePx.e, = e .x = ™. xe® = xe®,
This proves our statement.

Example 1. Suppose that S is a ULG-semigroup with kernel L, S has an L-
endomorphism and S is defined by its multiplication table. To find the right ideals
R, mentioned in Theorem 1 we may proceed as follows. We collect all “‘rows” of
the multiplication table containing a fixed chosen e,€E (i.c. all sets {u, uS'} contain-
ing e,). Then R,={J {u, uS}. Clearly R, is a right ideal of S, it contains e,, and it

follows from the proof that it cannot contain any other idempotent of L.
Consider, e.g., the semigroup S given by the following multiplication table:
abcd f

aacca
bbddb

~ aa o a|
Qa o
a Ao
o O
o
Q£

Here L=E={g,b}. S has an L-endomorphism since |x- {a, b}|=1 for any x€S.
The idempotent a is contained in {a, aS}, {c, ¢S}, {f,fS}. Hence RW={a,c,f}.
Analogously R®={b, bS}U{d, dS}=1{b,d}. Finally S=R@UR®,

We shall return to this procedure in Section 3.

2. In Theorem 2 the right ideals R, have the property that their kernels are iso-
morphic groups. The question arises whether there are some other limitations concern-
ing the ideals R,. The answer is no. To any family of homogroups {Q,} with isomor-
phic kernels we can construct at least one ULG-semigroup which has an L-endo-
morphism. We give a special construction and we do not attempt to find all such
semigroups.

More precisely we have:

Theorem 3. Let Ly be a left group. Write Ly=GyXE,, where G, is a group
and Ey a left zero semigroup. Let {Q,|v€M} be a family of disjoint homogroups
whereby each Q, has a kernel isomorphic to G, and |Ey|=|M|. Then there exists a
ULG-semigroup S having the following properties:

nSs=U 0,

vEM
2) Each Q, is a right ideal of S.
3) The kernel L of S is isomorphic to Ly and S has an L-endomorphism.



Semigroups with a universally minimal left ideal 25

Proof. Denote the kernel of Q, by H, and denote the identity element of H, by

e,. Suppose that 1¢ M. For every vé M let ¢, be a fixed chosen isomorphism of H,

onto H,. Define the mapping ¢.z: H,~H,; by ¢.,;=¢;'¢;. Then ¢, is an iso-

morphism and ¢,, is the identity mapping of H, onto H,. For any a€¢ H, we have
(a0ap) P, = (@0 Pp) Q5" @y = AP Oy = APy

In this way we get a set of mappings {qom} where @,305,=@,, forany a, §, yeM.
Note finally: Since @,, is an isomorphism, we have (e,)@.z=¢;.
1) We now use the set of these mappings to define on S= (J @, a multipli-
veEM

cation (denoted by *). For a#f and x€Q,, y€Q,, we define
X*)y = (eax) ) (eﬂy)(pﬁa’

while inside of each Q, the multiplication remains unaltered.
The definition implies x#*y€H,-H,=H,, hence for a#f, Q,*Q,CH,.
Since H,cQ,, (Hy)@p,=H,, we have H,xHy,=H, and therefore for a=p,

(2 0., %Qp=Q,xHy = H,xHy = H,xQy = H,.

In order to show that S'is a semigroup we have to check associativity.

a) Suppose first a#f, By and x€Q,, ycQ, z€Q,.
In the following we use: x*y€H, implies e,(x*y)=xxy and uxv€H, implies
e;(uxv)=uxv. We have:

x*(y*z) = x*[eﬁy' (evZ)QDM] = €z X [eﬂy '(e)'z)(pyﬂ](pﬁa =
= €, X '(eﬂy)(Pﬁa' (eyz)(py\z = (x*y) ' (eyz)(pya = ea(x*y) '(e}’z)(pyz = (x*y)*z‘

b) Suppose next. a=f, B=y, and x€Q,, y€Q;, z€0Q;.
In the following we use e;,y€H,, hence e;y=e;ye;. We have:

x#(y*2) = X% (yz) = €%+ (€3y2) g, = (€:X)(€py€p2) Ppo =
= (€.%) * (€pY) Ppa- (€p2) Ppa = (X *¥) - (€52) Ppy = €,(X %) - (€52) Pgp = (X *y) % 2.
c) Suppose finally a=g, =y, and x€Q,, y€Q,, z€Q,.
xx(yxz) = x*[(€)(€,2) Py] = X+ (€2)(€,2) Py

Now since e, x€ H, we have e,x=e,xe, and e,xy=e,xe,y. Also since xe,y€H,
we have e,xe,y=xe,y. Hence e,xy=xe,y. We may write therefore:

xx(y*z) = e,xpy-(6,2) P,y = (Xp) %2z = (x%y) %2z,

This proves that S is a2 semigroup.
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2) The relation (2) implies Q,* Q,=H,cQ, for a=p and 0%c @, (for any
a€M). Next
Qa'*'S = Qa*[ EJM Qv] c Qaa

so that each Q, is a right ideal of S. Denote L= |) H,, then by (2)
HeM
S*xL=[U @]*[U H,]= UH, =L,
veEM pEM vEM

LxS=[U HIx[U )= U H,=L
pEM veEM BpEM
Hence L is a two-sided ideal of S.
To prove that L is a left group it is sufficient to show that for any y€.S we have
Lxy=L. Now y¢S implies ycQ, for some BeM. Denote (e;y)9p,=y,EH,.
We have

Lxy = [ U Hv]*y = U [Hv*y] = [Hv'(eﬁy)(pﬂv] =
vEM veM veM

veEM vEM

This proves that S is a ULG-semigroup with kernel L and clearly L is isomorphic
to L.

3) It remains to show that S has an L-endomorphism. Denote by E the set
of all idempotents contained in L. It is sufficient to show that for x€S we have
Ix*E|=1. If x€S we have x€Q, for some acM. Let e,€E. Then

xxe, = (e,x) (&) @, = €, xe,.
The right-hand side is independent of e,, hence |x* E|=1. This proves Theorem 3.

3. The procedure described in Example 1 can be carried out in any ULG-semi-
group (even if S has not an L-endomorphism). To any minimal right ideal G, of a
ULG-semigroup S there is a largest right ideal R} of S (containing G,) such that
R} is a homogroup. This right ideal consists of all “rows” {u, uS} containing e,

but no other idempotent of E. If e,4¢;, then R;MNR;=@. The union S*= (Jj R}
veM

is a right ideal of S. If S does not have an L-endomorphism, then S* is a proper sub-
set of S.

Lemma 2. Theset S* consists exactly of those elements x€S for which |xE|=1.

Proof. a) Let x€S* hence x€R! with suitably chosen acM. We have
XxECR!LcR}NL=G,. Note that in the homogroup R} we have xe,=e,x (for
any x€R?).
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Let now e, be any element of E. Then xe,£G, implies (xe,)e,=e,(xe,). This
implies xe,=e,(xe,)=(e,x)e,=(xe,)e,=x(e,e,)=xe,. Hence xe,=xe,; therefore
xE=xe,, i.e., |xE|=1 for any x€S*. =

b) Suppose conversely that x€ S—S*. We have to show that [xE|=2." The
right ideal {x, xS} contains at least two idempotents of E, say e,,e; (e,#ep).
(Note that any right ideal of a ULG-semigroup contains at least one minimal right
ideal hence some of the groups {G,}.) Write {x, xS}={e,,e;, Si}, where S, is a
subset of S. (We do not exclude that S, contains some further elements of E.) Mul-
tiplying by E we have

{xE, xSE} = {e,E, ey E, S, E}.

Since SE=L,e,E=e,, egE=¢;, we have
{xE, xL} = {e,, ¢, L,},

where L, is a subset of L. Finally since xEc xL we get .

| xL = {e,, ep, Ly}.
Hence there are two elements g€ L, g,€L, such that
3 xXg = e,,
4) xg, = eg.
Since L= U G,, there are two indices y, 66 M such that g€G,, £,€G;. Denote

by g‘1 the element of G, for which gg~'=e, and by g;° 7! the element of G; for which
g:187'=e;. Then (3) and (4) imply ‘

' xgg ' =e,g7t, xgigi' = epgi’t,
hence
xev = ag—leeaL = Ga’ Xes = eﬁgl_leeﬁL = Gﬂ'

Since G,NGy=H, the elements xe,, xe,; are different elements (contained in L).
Hence xE contains at least two different elements (namely xe,, xe;) so that [xE|=2.
This proves Lemma 2.

The semigroup S* (being a union of right ideals of S) is a right ideal of S. But
we easily show that S* is also a left ideal of S (hence a two-sided ideal of S). Suppose
that x€S*, i.e. [xE|=1. Then for any s€S (sx)E=s(xE) and since xE is a unique
element (contained in. L), we conclude [(sx)E|=1, i.e. sx€S* hence SS*cS*.

We have proved:

Theorem 4. Let S be a ULG-semigroup with kernel L. Denote by E the set of
all idempotents of L. Then there exists a unique largest subsemigroup S* of S containing
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L such that S* has an L-endomorphism. The semigroup S* is a two-sided ideal of S and
it can be characterised by the following two equivalent conditions:
a) S* is the set of all xS such that |xE|=1.
b) S* is the union of (disjoint) largest right ideals of S each of which is a homo-
group.
Remark. The emphasis in the second characterization is on the fact that the
right ideals in S$*= U R are right ideals of S (and not merely of S*).

Example 2. Cons:der the ULG-semigroup S given by the multiplication table
bcd

a
b
c
d

IS ST N S R Y

a
bbb
b
a

Here L=FE={a, b}. The semigroup S has no L-endomorphism. The largest right
ideal R containing the idempotent a which is a homogroup is R}={a, d}. Next
R; is {b} itself. We have S*={a, d}U {b}. The element ¢ cannot be contained in a
right ideal which is a homogroup, since {c, ¢S} contains both idempotents a and b.

It is worth noting that R*={a, d} is a homogroup, but not the largest homo-
group containing a. The largest homogroup containing a is the subsemigroup {a, d, c}
(Of course this semigroup is not a right ideal of §.)
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Principal tolerance trivial commutative semigroups

BEDRICH PONDELICEK

Following I. CHAIDA [1] an algebra A is said to be (principal) tolerance trivial if
every (principal) tolerance on A is a congruence. In [2] B. ZELINKA has shown that a
commutative semigroup S is tolerance trivial if and only if either S is a group or
card S=2.

In this paper we shall describe all commutative semigroups which are principal
tolerance trivial. Non-defined terminology and notation may be found in [3] and [4].

Recall that a tolerance T on a commutative semigroup S is a reflexive and sym-
metric subsemigroup of the direct product SX S. For a, b€S we denote by T'(a, b)
the least tolerance on S containing (a, b), i.e. T(a, b) is the principal tolerance on S
generated by (a, b). We shall use the following notation: (a, b)"z=(a"z, b™z) for
all a, b, z€ S and for every positive integer m. The set of all idempotents of a commu-
tative semigroup S is denoted by E(S) and is partially ordered by: e=f if and only
if ef=e. We write e<f for e=f and exf. We denote by G, the maximal sub-
group of S containing an idempotent e. The notation S* stands for S if S has an
identity, otherwise it stands for S with an identity adjoined.

The following lemma is clear:

Lemma 1. Let S be a commutative semigroup and a, b€ S, asb. For x, y€S,
x5y, we have (x, y)€T(a, b) if and only if there exist z€S* and a positive integer m
such that either (x, y)=(a,b)"z or (x, y)=(b, a)"z.

Note 1. Let S be a zero semigroup, i.e. card se=1. Using Lemma 1 it is
easy to show that S is principal tolerance trivial.

Note 2. Now, we give another example of a principal tolerance trivial commu-
tative semigroup. Let G be a commutative periodic group and let A be a non-empty
set. Suppose that GNA=@ and put S=GUA. Let a multiplication on S be defined
as follows: ‘

Received October 8, 1984.
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a) If e, f€ A4, then ef=e for e=f and ef=h for esf, where h denotes the
identity of G.

b) If ecA and g€G, then eg=g=ge.

c) If g,,2,€G, then the product g,g, is the same as in G.

It is easy to show that S is a commutative semigroup which is a semilattice of groups.
Clearly E(S)=A4U{h}, G,={e} for all e€4 and G,=G.

Now, we shall prove that S is a principal tolerance trivial semigroup. Let
a,besS, a=b. It suffices to show that the relation T'(a, b) is transitive.

Case 1. Suppose that a,b€A. It follows from Lemma 1 that T(a, b)=
=RUR™'Uidgs, where R={(a,b),(b,h),(h,a)}. Clearly T(a,b) is transitive.

Case 2. Suppose that ac4 and b€G. Evidently T(a, b)=T(b, a). Let (x, y),
(y,2)€T(a,b) and x#y, y#z. It follows from Lemma 1 that (x,y)=(a, b)"u or
(x, )=(b, a)™u for some u€S! and some positive integer m. Analogously we have
v, 2)=(a, b)’v or (y,z)=(b,a)’v for some v€S! and some positive integer .

Subcase 2a. Assume that x=au, y=>b"u=av and z=b". Then z=>b"v=
=b"av=b"*"u and so, by Lemma 1, we have (x,z)=(a, b)"*"ucT(a, b).

Subcase 2b. Assume that x=au, y=b"u=>b"v and z=av. If u=v, then x=z
and so (x, z)€T(a, b). We can suppose that u>v. If u, v€G, then b™u=>»"v and
so uv~1=p"""=p" for some positive integer r, because the group G is periodic. By
Lemma 1, we have (x,z)=(u, v)=(b, a)veéT(a,b). If ucG and v€S™\G, then
b"u=b" and so u=b"""=D" for some positive integer r. Hence we have (x, z)=
=(u, a)=(b, a)" for ve{l,a} and (x,z)=(u, h)=(b,a) v for v4{l,a}. This gives
in both cases (x, z)¢éT(a, b). Analogously we can prove that u€S™\G and v€G
imply (x, z)€T(a, b). Let u, v€ S™\G. Then it is easy to show that (x, z)€{a, h}X
X {a, h}. Since G is periodic, there exists a positive integer k such that b*= h and
so (a, h)=(a, b)*. Therefore we have (x, z2)€T(a, b).

Subcase 2c. Assume that x=b"u, y=au=av and z=>b". Since bis a perxodnc
element of G, there exists a positive integer r such that b ™=b". Thus we have
(x, 2)=("u, b"v)=(a, by b™au€ T(a, b).

Subcase 2d. Assume that x=b"u, y=au=>b"v and z=av. Using the same
method as in Subcase 2a we obtain that (x, z)€T(a, b).

Case 3. Suppose that a,b€G. Let (x,y), (¥,2)€T(a,b) and x=y, y=z.
It follows from Lemma 1 that x,y,z€G and so (x, z2)=(x, »)(y~ %y~ )(y, 2)€
€T(a, b).

Theorem. A commutative semigroup S is principal tolerance trivial if and only if
S satisfies one of the following conditions:
(i) S is group;
(i) S is a zero semigroup;
(iii) S is of type defined in Note 2.
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Proof. Let S be a commutative semigroup. If S satisfies one of the conditions
(i), (ii) or (iii), then S is principal tolerance trivial (see Notes 1 and 2).
" Now, we shall prove the following lemmas, in which we shall suppose that the
commutative semigroup S is principal tolerance trivial, card S2=2 and S is
not a group. '

Lemma 2. If acS\a%S, then a® is a zero in S.

Proof. Let acS\a®S. Then a=a® and, by Lemma 1, we obtain (a, a®),
(a®, a®)€T(a, a®). Since T(a, a?) is transitive, we have (g, a®)€ T(a, a*). According to
Lemma 1, there exists a u¢ S* such that (a, a®=(a, a®u and so a®*=a’u=a®. Put
h=a® Clearly h*=h=ah. Now, we shall show that hx=~h for all x€S. Assume
that hb=h for some b¢ S. If hb=a, then a€a?S, whichis a contradiction. We have
hbsa. 1t is clear that (hb, h)=(hb, a)a. According to Lemma 1, we have (a, hb),
(hb, h)ET'(a, hb) and so (a, h)€ T(a, hb)=T(a, a®h). 1t follows from Lemma 1 that
(a, h)=(a, hb)u for some u€S'. Hence we have h=ah=ahbu=ahb=~hb, a contra-
diction. Therefore k is a zero in S.

_ Lemma 3. Let S have a zero O and let a,b€S. If a*=0=>b* and a=0=b,
then ab=0.

Proof. Assume that abs=0. If a=ab, then a=ab?=0, a contradiction. We
have azab. By Lemma 1, we obtain (a, ab), (ab, 0)¢ T(a, ab), because (ab, 0)=
=(a, ab)b. Hence we have (a, 0)¢ T(a, ab). If a=abu for some u€S*, then ab=0,
a contradiction. Lemma 1 implies that (a, 0)=(q, ab)u for some wu€S?'. Then
ab=aub=0, a contradiction.

Lemma 4. Let S have a zero 0 and let a, e€S. If a*=0, e*=e and a=0+e,
then ae=0.

Proof. Assume that ae0. We have (e, 0), (0, ae)¢ T(e, 0) and so (e, ae)é
€T(e, 0). If e=ae, then e=a?e=0, a contradiction. Hence we have ezae and so,
by Lemma 1, e=0 or ae=0, which is a contradiction.

Lemma 5. S is regular.

Proof. Suppose that S is not regular. From Lemma 2 it follows that S has a
zero 0. Since card $2=2 by hypothesis, therefore there exist a, b€ S such that
ab#0. According to Lemmas 2 and 3, a or b is a regular element of S. This implies
that there exists an idempotent e=0 in S. Evidently, S has an element ¢>0, which
is not regular. It follows from Lemma 2 that ¢>=0 and Lemma 4 implies that
ce=0. Clearly c#e, and according to Lemma 1, we have (c, ¢), (e, 0)€T(e, c),
because (e, 0)=(e, c)e. Thus (c,0)€T(e,c). If c=eu for some u€S', then
0=ce=c, a contradiction. Hence, by Lemma 1, we obtain (c, 0)=(c,e)u for



32 B. Pondélitek

some u€Sl. Then c=cu=cu® and so u*#0. Lemma 2 implies that u is regular,
which means that u=u% for some v€S. Hence we obtain uv#0 and (uv)*=uv.
According to Lemma 4, we have cuv=0 and so c¢=cu=(cuv)u=0, a contradiction.

Lemma 6. If e=f<g for e,f gCE(S), then e=f.

Proof. Assume that e<f. Then e<g and (f, e)=(g,e)f. It follows from
Lemma 1 that (f;e), (e, g)€T(e,g) and so (f,g)€T(e,g). By Lemma 1, we have
either f=ez or g=ez for some z€S!. If f=ez, then e=ef=f, a contradiction.
If g=ez, then analogously e=eg=g, a contradiction.

Lemma 7. E(S) is of the type defined in Note 2.

Proof. It follows from Lemma 5 that E(S)=f@. If card E(S)=1, then S is
a group, which is a contradiction. Hence we have card E(S)=2. Our statement
follows from Lemma 6.

Lemma 8. S is periodic.

Proof. It follows from Lemma 5 that S is a semilattice of maximal subgroups
G, (e€E(S)). Suppose that there exists a ¢€S which is not periodic. Then c€G,
for some ecE(S). Clearly c#e. It follows from Lemma 7 that there exists an
fEE(S) such that either f<e or e<f.

Case 1. f<e. According to Lemma 1, we have (¢,f), (f, ¢)€T(f,¢) and so
(¢, AET(f, ¢). It follows from Lemma 1 that either c=fu or c¢*=fu for some
u€ S, Then either e=fuc™ or e=fu(c™')? (¢! denotes the inverse element of ¢
in G,). This gives in both cases e=ef=f, a contradiction.

Case 2. e<f. Then we have (c, e)=(c,f)e and so, by Lemma 1, we obtain
(f; ©), (¢, ©)€T(f. c). By hypothesis we have (f,e)€T(f,c). Lemma 1 implies that
either (f; e)=(f, ¢)"u or(f; e)=(c, f)"u for some u€ S* and some positive integer m.
If /=fu and e=c"u, then e=ef=c"uf=c"f=(c"e)f=c™ and so c is periodic, a
contradiction. If f=c™u, then e=ef=ec™u=c™u=f, a contradiction.

Lemma 9. If h<e, e, h€E(S), then card G,=1.

Proof. Assume that there exists a ¢€G, such that c=e. It follows from
Lemma 8 that ¢*=e for some positive integer k. By Lemma 1, we have (c, h), (h, e)€
€T(h,c) and so (c,e)€T(h, c). It follows from Lemma 1 that either ¢=hu or
e=hu for some ueS'. If c=hu, then e=c*=m* and so h=he=e, a contra-
diction. If e=hu, then analogously we have h=e, a contradiction.

The proof of Theorem follows from Lemmas 5, 6, 7, 8 and 9.

Corollary 1. A semilattice is principal tolerance trivial if and only if its length
is not greater than two.



Principal tolerance trivial commutative semigroups 33

It is known (see [5] and [6]) that the set £ (S) of all tolerances on a semigroup S
forms a complete algebraic lattice with respect to set inclusion.

Corollary 2. Let S be a tolerance trivial commutative semigroup. Then the
lattice £ (S) is modular.

Proof. If S is a commutative group, then £ (S) is the lattice of all congruences
on S and so .Z(S) is modular. If S is a zero semigroup, then £ (S) is the lattice of
all reflexive and symmetric relations on S and so .Z(S) is distributive. If S is of the
type defined in Note 2, then it follows from Theorem 1 of [7] that .Z(S) is modular.
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On non-modular n-distributive lattices
1. Lattices of convex sets

I A. P. HUBN i

1. Introduction. A lattice is called n-distributive if it satisfies the identity

1) xAV yi=V [xAV y]

i=0 j=0 i=0

ix]

A lattice satisfying the dual of (1) is called dually n-distributive. The class of n-distri-
butive (respectively, dually n-distributive) lattices is denoted by 4, (respectively,
V,). n-distributive lattices were introduced to describe dimension like properties of
modular lattices. Here we present some examples of non-modular n-distributive lat-
tices. E"~! denotes the (n— 1)-dimensional Euclidean space and £(E"-1) denotes its
lattice of convex sets. Our first result describes how {(E* 1) is situated in the classes
4,and V,,.

Theorem 1.1. LE" V)4, N4, )NV \V,-1).

The proof of n-distributivity in Section 2 is based on Carathéodory’s theorem,
while the dual n-distributivity is derived from Helly’s theorem.

In Section 3 we strengthen part of this result. Let F denote the class of finite
lattices.

Theorem 1.2. @(E")cHSP(4,NF).

In other words, 8(E"™) is in the lattice variety (equational class) generated by
the finite n-distributive lattices. The intuitive reason for Theorem 1.2 is that, if we
restrict the operation of convex closure to a finite subset H of E*~1, then this closure
system has an n-distributive lattice of closed sets by Carathéodory’s theorem, and this
lattice resembles 8(E"~*) as H becomes large. We note that S(E"?) is also in the
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class HSP(V,N F). The proof of this theorem involves more geometry and will be
published separately together with other Helly-type results.

Notice that the above sketch of the proof of Theorem 1.2 gives rise to a high
variety of n-distributive lattices: associated with any finite subset of E”~! there is an
n-distributive lattice. The example given by the following theorem is of different
character. Let €(E"~1) denote the lattice of closed convex sets of E"~L. In Section 4
we prove:

Theorem 1.3. S(E* Y4, \4,_)N(V,\V,_y).

Carathéodory’s theorem provides also a new aspect to the study of modular
n-distributive lattices. In Section 5 we characterize complete, complemented, modu-
lar, completely n-distributive lattices among all projective geometries as those satis-
fying a Carathéodory type condition. (Completely n-distributive lattices are defined
in Section 5 in analogy with completely distributive lattices.) An unexpected conse-
quence of our characterization is that this class of lattices (as well as the correspond-
ing class of projective geometries) is self-dual.

Finally, in Section 6 we prove the following fact on modular n-dlstrlbutlve
lattices:

Theorem 1.4. Every modular n-distributive lattice is a member of HSP(4,NF).

It is now natural to ask whether there are any further examples of non-modular
n-distributive lattices in other branches of mathematics. It is not hard to show that
the partition lattice of an (n+1)-element set is in (4,\4,_1)(V,\V,-1). This
example will be developed further in Part II of this paper, where graphs with an n-
distributive (respectively, dually n-distributive) contraction lattice are characterized.
Partition lattices occur as special cases, as they are the contraction lattlces of complete
graphs. :
In an independent paper [3] HorsT GERSTMANN also considers nonmodular
n-distributive lattices, defines complete and infinite n-distributive laws and character-
izes the different sorts of n-distributivity of the closed sets of a closure space in
terms of properties of the closure operator. Gerstmann’s generalized distributive laws
cover, beside the n-distributive laws, the concepts of (von Neumann) /\-contmunty
and of Scott-continuity. :

2. The lattice of convex sets. We first quote the two classical theorems that are
in the centre of this paper.

Helly s theorem. Let € be a finite family of convex subsets of E"71. ]f any
n elements of € have a non-empty intersection, then the intersection of the whole fam-
ily € is not empty.
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Carathéodory’s theorem. Let H be a subset of E"™' and let p be a point in
E"~Y If p is in the convex closure of H, then it is in the convex closure of an n element
subset of H.

We first prove that £(E"™?) is n-distributive. Let X, Yy, Y5, ..., Y,€Q(E"D).
Let p be a point of E*~! and assume that

PEXA v Y;
i=0

(where the A and V are the operations of Q(E "-1)). Then, by Carathéodory’s theo-
rem there are n elements of the set union U Y;, say pg, P1» ---s Pu_1, Such that p

is an element of their convex closure. If P JGY , j=0,1, —1, then p is also in
n—1
\V Yi‘.'Of course, p€X, hence
j=0
eV [XAV 1],
) i=0 i=0 - "~ -
ij
that is,
XAV Y, S V [XAV Y]
i=0 j=0 i=0
i#j
The reverse inclusion is obvious.
Now we prove that the dual n-distributive law holds in L2(E"-1). Let
X, Yy, Yy, ..., Y,€R(E"Y). Let

pe A [XV A 1.
=

Then there exist points x,, X3, ..., X, and yg, ¥y, ..., ¥, such that

n
x€X, yeANY, j=01,..,n
o

and p is a convex linear combination of each pair x;, y;. Now a trivial induction over
k yields that, whenever y is a convex linear combination of y,, ¥, ..., ¥, (k=n)
then there is a convex linear combmatlon x of x4, X3, ..., X, such that p is a convex
linear combination of x and y.

We are ready to apply Helly’s theorem. Let Y be the convex closure of {y,, ...
ves Yic1s Yis1s -» Va) Then

iji/\ K’, j = O, 1, [ (}
=0

i]
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By Helly’s theorem, the intersection of the Y] is not empty. Let

y is a convex linear combination of, say, y,, ¥y, ..., V,—1- Applying our last obser-
vation, there is an x in the convex closure of x, x,, ..., x,-, (hence also in X) such
that p is in the convex closure of x and y:

PEXV A Y, S XVA Y,
i=0 i=0

as claimed.

Finally, 2(E""1) is not (n— 1)-distributive, as the following counterexample
shows: Let § be a simplex, let x€S such that x is not contained in any (n—2)-
dimensional face of S, and let y,, y;, ..., ¥,—1 be the extremal points of S. Then

-1

WAV = ) =0 =V [9A Y ]

#J

L(E"Y is not dually (n— 1)-distributive either: Let X be a closed halfspace disjoint
from S (S is also closed) and let Y, Y3, ..., Y, _; be the (n—2)-dimensional faces of
S. Then
n—1
XVAY=XV6=X,
i=0
which is a proper part of

A XVA X = A [XVE]

3. On the variety generated by all finite #-distributive lattices. In this section we
prove Theorem 1.2 via the following three lemmas.

Lemma 3.1. @(E""Y)eHSP(&;,(E"™Y)). where £,(E"Y) denotes the set of
all those convex sets of E"~ that are the convex closures of a finite set of points.

Proof. Every element of £(E"~1) is a join of atoms and every atom of L(£"1)
is compact by Carathéodory’s theorem. Thus £(£”77) is algebraic. Furthermore, its
compact elements are exactly the elements of £, (E"~1). Hence L(E" 1) is isomorphic
to the ideal lattice of 2 (E"~1), whence it is in the variety generated by £, (E"~%).

In the above proof we implicitely made use of the fact that 2, (E"~?) is a sub-
lattice of £(E"1), that is, the intersection of two convex polytopes is a convex poly-
tope, otherwise we could not have spoken of the lattice L, (E"~Y).
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Now let H be any finite subset of E"~1, and let 2(H) denote the set of all those

subsets X of H which are of the form X=CNH with CSE"! convex. Clearly
2(H) = {X(SH)|X = (convX)N H},

where “conv” denotes the operator associating with any set its convex hull. Now it is
clear that 8(H) is a lattice relative to the inclusion and its operations v# and A ¥
are as follows.

XVEY = (convXVconvY)N H,

XABY = (conv XAconvY)NH = XNY,

where V and A are the operations in 2(E"~1).

Lemma 3.2. &(H) is n-distributive.

Proof. Assume that X, Y,,Y;, ..., Y,€Q(H), pcH, and

PEXNTVERY,.
As in the proof of Theorem 1.1, Carathéodory’s theorem and the descriptions of
V# and Af before the Lemma yield that there is a j€{0, 1, ..., n} such that
pEVIY,

ij

peVI AT VHX],

i#zj

that is,

proving the lemma.
The following lemma finishes the proof of Theorem 1.2.

Lemma 3.3. €, (E")e¢HSP(QH)HSE™ ™, |H|<8,).
Proof. Let #={H|HSZE", |H|<R,}. Let

L= ]] £(H),
HEx
and let M consist of all a€L for which there is a P2, (E"~Y) with the property
that for some Hy,€s# and for all HE# containing Hy, we have a(H)=HNP, If
a¢M and P has the above property, then P is called a support of a. The support of a
is uniquely determined. Indeed, if P P€ 8 (E"™Y), H,, Hi¢#, a(H)=PNH
for all HySHe# and a(H)=P'NH for all H,CHEH then extend H,UH,
to an Hc s that contains an element from the symmetric difference P A P’. For
this H we have a(H)=PNH=P'"NH=a(H), a contradiction.



40 A. P. Huhn

We first prove that M is a sublattice of L. Let a, b€ M, let P, and P, be the
supports of a and b, respectively, and choose H, and H, such that

a(H)=HNOP, if H,C H¢cH
and
b(H)= HNP, if H,< HeH.

Let Hy€s# contain the sets H, and H, and the sets of extremal points of P, and of
P,. Then we have

conv(HNP)=P, conv(HNPR)=P,
whenever HyC HEH . Compute the values of avb and aAb at H (H as above).
(aVb)(H) = a(H)VEb(H) = (HNP)VE(HNP,) =
= (conv(HNP)Vconv (HNP)NH = (FV P,)NH.
Clearly P, VP, €8, (E"™Y), whence aVbeM,
(aAb)(H) = a(H)A¥b(H) = (HNP)N(HNP,) = HN(PAP,).

Applying that P,AP,cL; (E"1), we obtain that aAbcM.

We have also obtained that the map M — £, (E"~), a—P, is a lattice homo-
morphism. For any P€8; (E"™Y), P is the support of the choice function a defined
by a(H)=PNH. Hence £;,(E""") is a homomorphic image of M, which completes
the proof.

4. The lattice of closed convex sets. In this section we prove Theorem 1.3.
The operations of L(E"!) will be denoted as sum and product. Obviously,
XY=XAY and X+7 is the topological closure of XY if X, Y¢2(E"™1). Choose
a point

pEX 'Y,
i=0

where X,Y,,Y,,.., Y, €Q(E"Y). Then pcX and p="1lirn P for some
{PmtmenS \7 Y;. By Carathéodory’s theorem, for every m€N there is a j(m)€
i=0

€{0,1, ..., n} such that p, ¢ \7 Y,. For at least one k€{0,1,...,n}, k=j(m)
i=0
i j(m)
for infinitely many mé€N. Therefore, the subsequence {p,}im=r Of {Pm}men 1S
infinite and converges to p. Besides p,,€ \'} Y;. Hence
. i=0

izk

pEXiZ Y;.
=0

ixk
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Thus

fin

i
i#=k
To prove the dual n-distributivity, we need a lemma.

Lemma 4.1. Let p,q,r€E""'. Then, for any u€conv {p,r}, v€conv {g, s},
and xeconv {p, q}, there exist y€conv {r,s} and z€conv {u,v} such that
z€conv {x, y}. \

Proof. We may assume that u¢{p,r} and v¢{g, s} as otherwise the state-
ment is trivial. The conditions of the lemma show that there exist real numbers
., 2, B1s Bes 715 72 such that

qg=0o5+0v, at+a=1 o =0,
p=pr+pBu, Bt+h=1 B =0,

X=y1qg+y:p, N1+y2=1 91,7 =0

Hence
X = P05+ 91000+ + 7. fou =
= (y10+ 7280 ( ha s+ L ") +
Y101+ 725 Y10 + 281
V1% 72 B
+(yro2+ ( v uJ =0,y+06,2,
010 +7252) P10+ 72 Be P10z + 72 Be vy 2
where

0y = 110+ 721, 02 = P10+ 72 Pe,

_ Y1%1 Y281
— R) N
P10 + Y2 B4 719 + Y251

— Vil v+ 72 B2
P10+ 72 B2 Y102+ 72 P

This representation shows that y€conv {s,r}, z€conv {u, v} (the coefficients are
non-negative and sum up to 1). Finally, 6,+J,=1, ;=0 yield that zcconv {x, y}.
The following extension of this lemma is now proved by an easy induction over k.

Corollary. Let py, Prs eoes Pis 9o Qs --+s s Fos F15 oo EE""L Assume
ricconv {p;, q;}, i=0,1,..,k. Let pé€conv {py,p1,....,px}. Then there exist
geconv {go, ¢15 ..., gu} and reconv {ry, 1, ..., ry} such that réconv {p, q}.
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Now we pass on to prove the dual n-distributivity of $(E"~1). Let

pe Il [Xx+ I v}
i P
i)

where X, Y,,Y,, ..., Y,€2(E""). Then there exist sequences {p;n}men> j=0, 1, ...
..., n, each converging to p, such that

Pim€XV [[Y,, mEN, j=0,1,..,n
i=0
i)

Now choose, for all meéN and j=0,1,...,n,

n
xjm€ Xs yjme I](; Yl
i=
i j
such that p;, is a convex linear combination of x;, and y;,. By Helly’s theorem there
exists an

Ym€ I Y;
i=0

for all meN, and y, can be chosen to be an element of conv {¥Voms Vims ---> Vam}-
Thus, by the Corollary, there exist points x,€conv {Xom, Xims s Xymy and p,€
€conV {Poms Pims --+s Pam} With p,€conv {x,, .} for all meN. Obviously, p,—p
as m~ oo, thus p is in the topological closure of {p,,}.c~ and each p,, is a member of

Xvﬁ' Y;. Hence
i=0
pEX+ [[Y:.
i=0

The counterexamples at the end of Section 2 also show that S(E"-1)¢4,_,,
Vll—l'

5. Complemented modular lattices revisited. rn-distributivity of comple-
mented modular lattices was studied in [4]. Here we add a result describing those
projective geometries in which “‘Carathéodory’s theorem holds™. As it is well-known
by FRINK [2] there is a one-to-one correspondence between projective geometries and
their subspace lattices, which are exactly the complete, complemented, modular,
atomic lattices such that every atom is compact. It will be convenient to call these
lattices projective geometries. We say that a projective geometry M satisfies the prop-

erty (C,) iff, for any atoms p, p;, ..., p,, m=n+1 of M with p= (l/ p;, there
i=1

exist iy, &y, ..., ,€{1, 2, ..., m} such that p=YV i,
j=1
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A lattice is called infinitely n-distributive iff it satisfies the identity

XAV Y= V [xAV ¥]
icl llélg:" ieK

for arbitrary index set I. It is called completely n-distributive iff the identity
AVx;=VA V x;
i€l jeJ, ¢ il jeol)
holds in it for arbitrary I and J;, i€] and |J;|=n, where the V, at the right hand
side is to be formed for all choice functions ¢: I-(J P,(J) (with @@)EP,(J)),
iel

where P,(J;) denotes the set of n element subsets of J;, i€l. Now we are ready to
state the main result of this section.

Theorem 5.1. Let L be a complete complemented modular lattice. Then the
following conditions are equivalent:
(i) L is a projective geometry satisfying (C,);
(ii) L is atomic and infinitely n-distributive;
(iii) L is completely n-distributive,
(iv) L is isomorphic to a direct product of irreducible projective geometries of
length =n. ‘

Corollary. The dual of a projective geometry satisfying (C,) also satisfies (C,).
The dual of a completely n-distributive complemented modular lattice is also completely
n-distributive.

Proof. (i)=(v). If (i) holds, then, by FrRINK [2], Theorem 7, Corollary, L is a
direct product of irreducible projective geometries L,, y€I'. We show that L, must
be of length =n for all y¢ L. Indeed, in the contrary case L, contains an independ-
ent set of n+1 atoms: pg, py, ..., p,- By irreducibility, p,Vp,=p, for some atom
Pa#Po, 1. We have also poVpVp.ZpnVps=pes for some atom pys#py, ps-
Clearly, po2EpoVp: (otherwise poVp,=poiVpa=p., a contradiction). Similarly,
for {i,j}={0,1}, PpueEpVp: as otherwise pVps=pNVPoaVp2=pVPVP>=
=pNPaVp:=p;. By induction, we find an atom py, ,=p,Vp,V...Vp, such that
Por..nEDV .- NVD; NP V.. VP, i=0, 1, ..., n. This contradicts (C,).

(iv)=(iii). Irreducible projective geometries of length =n are completely n-
distributive (in fact, any meet of joins equals one of the meets of 7 element subjoins),
hence so are their direct products.

(iii)=>(ii). It is easily seen that complete n-distributivity implies infinite n-distri-
butivity. So we only have to show that L is atomic. It suffices to show that every ele-
ment of L is a join of elements of height =n. Let x€L be of height greater than ».

Consider all independent sets {x,g, X,15 ..., X;,}, Y€ such that \7 Xp=x. As
i=0
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usual, HT denotes the set of all mappings of the set I' to H,={0, 1, ..., n}. By the
complete n-distributive law,

= /\ \"/ xy, = V vee V Ar (x,,,,l(y)V...men(y)).

yEr i=0 myeHY mnEH,';Yﬁ
We show that the elements

n
Zmy...m, = /\ V Xymi(y
1 n yeri=1 i(?)

are of height =n. Indeed, in the contrary case, some of the intervals [0, z,,,r“,,,n]
contains a chain of n+1 elements. Thus there is an independent set {x;, X3, ..., X,}

such that xj:= V Xi<Zp .m and /\ x,;=0. Let x, be a complement of x{ in
" i=1

[0, x]. Then V x;=x. Therefore, some of the joins V x; occurs in the
i=0 i=0,i¥j

A-representation of z,, , . For j=0, this yiclds XoZZy .. > @ contradiction. If
j#0, then
n n
Xo = XoN\zp, .. m, =x0/\Vx =V xx<Vx=x
1#1 x;=0?j =t
This contradiction yields (ii).
The implication (ii)=>(i) being very easy, the proof is complete.

6. Modular lattices. In this section we prove Theorem 1.4. By a result of
FAIGLE [1], every modular lattice M can be embedded into a modular lattice A”
such that every element of M’ is a join of compact completely join-irreducible ele-
ments. If we prove that M’ is in HSP(4,NF), then the theorem follows. Let &
be the set of all completely join-irreducible elements of M (these elements are all
compact) and let # be the set of all finite subsets of 2. For any HE#; let My
denote the set of all finite joins (in M”) of elements of H. My is clearly a lattice relative
to the ordering of M’. Let A and V¥ denote the operations in M (note that V¥
is the same as V). For any element x€M’, and, for any He#, let Xg=sup {y|y<

=x,yEM H} Then '
xAy = V (xgNyg)’
Hcx

and
xVy = V (VHV Yn)-

Indeed, observe that x=V,xy and HEGEH implies xy=xg. If p=xAy for
some pE®? then xy=yy=p holds for H={p}, whence p=pAp=xyAtyy.
This proves the first equality. Now let p=xVyy. Then p=vyy, K(xHVyK)—
=Vu(xgVy)=Va(xzVEyg), proving the second equality.
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Assume that p=gq is an m-ary lattice identity holding in all finite n-distributive
lattices. Then p=gq holds in all the lattices M},. Let x;, X,, ..., X,€M’, and let p¥
and g¥ be the realizations of p and ¢ in M. Then

P(X15 Xay ooy Xp) = Hy#pﬂ((xl)Hs (X2ps -ee» (xm)H) =

= \/ qH((xl)H’ ('xZ)Hs (R (xm)H) = q(xla Xay eens xm)'
HeH#
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Free product of ortholattices

SYLVIA PULMANNOVA

The purpose of this paper is to prove a structure theorem for the free product of
ortholattices. The method of BRUNs [1] for constructing a free ortholattice is combined
with GRATZER’s method for constructing the free product of lattices [2].

An ortholattice is a lattice L with a smallest element 0 and a largest element 1
and with an orthocomplementation /;L—L such that

(i) a’=a, acL,
(ii) a=b implies b'=a’, a,bEL,

(iii) ava’=1, aha’=0, a€cL.

The free product of ortholattices is defined as follows.

Definition 1. Let (L;, 0;, 1;, "), i€1, be a set of ortholattices. An ortholattice
(L,0,1,")is a free product of the ortholattices L;, i€l, if

(i) for any i€, there is an injective homomorphism #;: L;—~L which preserves
the lattice operations and orthocomplementation so that each L, can be considered
as a subalgebra of L, and for i,jel, i=j, Li—{0;, 1;} and L;,—{0;,1;} are dis-
joint;

(i) L is generated by U{u,(L): i€l};

(iii) for any ortholattice 4 and for a family of homomorphisms ¢;: L,~ A4,
icl, there exists a homomorphism ¢: L—-A such that gou, agrees with ¢, for
all icl

Definition 2. Let X be an arbitrary set. The set P(X) of polynomials over X
is the smallest set satisfying (i) and (i), where

(i) XcP(X),

@) if p,q€P(X), then pVg and pAgeP(X).

For a lattice 4 we define A°=AU{0? 1°}, where 0%, 1°¢4, and we order 4°
by the rules: 0°<x<1? forany x€A4, x=y in A%if x, y€A4 and x=y in 4. Thus

Received February 13, 1985.
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A*# A and we have aAb=0" onlyif a=0" or b=0% and avb=1% onlyif a=1°
or b=1%.

Let {L;: icI} be a set of ortholattices. Put Q=U{L;: i€I}. We suppose that
L; and L; are disjoint provided ij, i,jel.

Definition 3. Let P(Q) be the set of polynomials over Q. The upper i-cover
of peP(Q), p®, is an element of (L)), defined as follows:

(i) for acQ (i.e. acL; for exactly one icl), aP=a if j=i, a?=1> if
o,

(i) (PAQ)P=pPAg? and (pvg)P=plvq®?, where A and V is taken in
(L)

The definition of lower i-cover, p,, is analogous, with 0° replacing 1° in (i).

It is clear that p®=0, and p;=1°. An upper or lower i-cover is proper if it
is not 1° or 0.

Corollary 4. [2] For any pcP(Q) and i€l we have that pg,=p®, and if
Py and pY are proper and pg=pY, then i=j.

Definition 5. For p,q€P(Q), we put pESq if one of the following cases
(i)—(vi) below occurs:

) p=q,

(i) for some icl, pP=q,

(iii) p=poAp, where pySq or p, &g,

(iv) p=p,Vp, where p,Sq and p, &g,
(v) 9=q,A\q, where p&gq, and p&q,
(vi) g=¢,Vq, where pSq, or p&q,.

The rank r(p) of a p€ P(Q) is defined as follows: for pcQ, r(p)=1 and r(p)=
=r(p)+r(py) if p=pAp; or p=pVp;.

Lemma 6. [2) Let p,q,rcP(Q) and icl. Then
() pSq implies ps=qu and pP=¢®.
(i) p&q and qSr imply p&r.

Since by 5 (i), pSp for any p€ P(Q), the relation < is a quasiordering, and so
we can define p=gq iff pCq and gSp, p, g€ P(Q). We put

R(p) = {g: q€P(Q) and p =g}, R(Q) = {R(p): pcP(Q)},
_ R(p)=R(g if pSq.
Lemma 7. {2] R(Q) is a lattice, and we have

R(p)AR(g) = R(pAg), R(p)VR(g) = R(pVg).
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Furthermore, if a, b, c,d€ L;, i€l, andif aNb=c, aVb=d in L,, then R(@)AR(b)=
=R(c) and R(a)VR(b)=R(d).

As a consequence of Lemma 7 we get that p—R(p), p€L;, is an embedding of
L;into R(Q). Therefore, identifying p€ L, with R(p) we get each L, as a sublattice
of R(Q), and hence Qc R(Q). It is also obvoius that the partial ordering induced by
R(Q) on Q agrees with the original partial ordering.

Let us add the set {0, 1} to P(Q) and let us define 0SpES1 for any pe P(Q),
pVO=p, pA0=0, pV1i=1, pAl=p. Let usfurther define the map’on P(Q)U {0, 1}
as follows: if x€L, for some i€l, put x'=x"; 1’=0, 0’=1, and recursively,
(@A\bY=a'yb’, (avb)'=a’ AD".

We note that the elements 0, 1 are different from the auxiliary elements 0® and
1° used in the definition of the lower and upper covers. In the following lemma we
put (0%)Y=1% (1%’=0".

Lemma 8. For any peP(Q), (P)"=(py)" and (p')y=p"".

Proof. We shall proceed by induction on r(p). If r(p)=1, then pEL; for
some i€l, and pP=p,=p, pP=1° p;=0" for j=i. Therefore, p=(1%'=
=0°=p;, for j=i, and as p’=p’ is the orthocomplement of p in L,, we have
(P)=1, (p');=0" for jsi. From this we obtain that (pV)y=0°=(p"),,
(P(,)),—lb_(P’)m for j=i. Further, (p')?=p’ =(pw)s (P)up=p"= =(pYy. Now
let p=qVr, then p’=g’Ar’, and (p")P=(g)PA(r")P=(q,) Arg) by the induc-
“tion hypothesis, so that (p")?=(q,Vr,)'=(py)> and dually for p=gAr. The
proof of (p)s,=(p®?) is similar.

Lemma 9. a’=a for any aEP(Q).U{O, 1}, and aSbh implies b’ Sa’ for any
a, be P(Q)U{0, 1}.

Proof. By the definition, 0"=1'=0, 1"=0"=1. If acL; for some icl, then
obviously a”=a. Let a=bAc. Then a’=b"y¢’, and a”=b"Ac”. By induction we
obtain that @”=a. For a=bVc the situation is dual.

Now we shall prove the second statement. If a=0 or b=1, it is obvious.
We shall suppose that a, b¢{0, 1} and proceed by induction on r(a)+r(b). If
r(a)+r(b)=2, then aSh holds by 5 (i) or 5 (ii), so that a,beL; for some i€,
and a’=a", b’=b", which implies that b’Ca’. Now let r(a)+r(b)=r, and let
the statement hold for all r(a)+r(b)<r. If aSh holds by 5 (i), then a’=b". If
aSh holds by 5 (i), then a?=b, for some icl. By Lemma 8, (a®)= =(a’); and
(b)) =®)?P. Therefore a®=b;, implies (b')P=(a’);, which in turn implies that
b’Sa’ by 5 (ii). If aSb by 5 (iii) with a=ay,Aa;, then 4,&b or a,Sbh, which
implies by the induction hypothesis that b'Say or b’CSa;j. As a’=a}Va;, we get
that b"Sa’ by 5 (vi). If aSbh by 5 (iv) and a=a,Va,, where 4,Sb and @, b,

4
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then b’CSay and b’Saj and this implies that b’ SagAaj=a’ by 5 (v). If aSh by
5 (v), then b=b,Ab,; and aSb, and aSh,. This implies that b;Sa” and b; &a’,
which implies that b’'=byvb;Sa’ by 5 (iv). If aSb by 5 (vi), where b=b,vb,
with aSb, or aSh,, then by,Sa’ or b;Sa’, and therefore byAb;Sa’ by 5 (iii).

Following Bruns [1], we shall define the subset S of reduced elements in

P(Q)U{0, 1}.

Definition 10. Define a subset S of P(Q)U{0, 1} recursively as follows:
ais in S if

(@) ac{0, 1} or ac U{L;—{0;, 1}: i€l},

(ii) a=bvyc with b,ccS and b Ea, ¢’ Ea,

(i) a=bAc with b,c€S and a&d’, a&c.

Lemma 11. The set S is closed under °.

Proof. If a€{0,1}, then obviously a’¢{0,1}. If acL,—{0;,1;} for some
icl, then a’¢L,—{0; 1;} so that a’c€S. If a=bVc, b,ccS and b"Ea, ¢’ Ea,
then a’=b'Ac¢” and a’Ebh, a’Ec. By induction, b’, c’€S, and a’€ S by 10 (iii).
If a=bAc with b, c€S and aEb’, afc’, then by induction, b, ¢’€ S, and bEa’,
¢%a’ implies that a’€S by 10 (ii).

Lemma 12. If a€S—{0, 1} then a®=0; and a1, for all icl.

Proof. We shall proceed by induction. If a€L;—{0;,1;} then a¥=g,=
=a¢{0;, 1;}, and a;,=0° a=1° for j=i. Now let a=bVc. Let us suppose
that a®=0; for some i€l. Then a®=bDvc? implies that b and ¢ are proper,
and b¥=c"=0;, which contradicts the induction hypothesis. Now let a=bAc,
b, c€S, aZbd, aLc. If aP=0;, then a®=bDAc? implies that b or ¢ are
proper, and a®=0,S(bP) =(b");, implies by 5 (i) that aSd’, a contradiction.
Now let us suppose that a;=1; for a€S, i€l. By Lemma 11, a’€S, and by
Lemma 8, (a(,.))’=(a’)(°=0,-, which contradicts the above part of the proof.

Lemma 13. For any acS—{1}, a'Ea. If acP(Q) and beS— {1}, then
a%b or a Eb.

Proof. If acS—{1} by 10 (i), then a=0 or a€cL,—{0;, 1;} for some i€l
In both cases a’Ea holds. Now let us suppose that ac S—{1} and a’Sa holds
by 5 (ii). Then (a')?=aqy;, for some i€l. This implies that (a')?=(a;) =4, but
this is impossible by Lemma 12. Now let a€S by 10 (ii) with a=bVec. If b'Ac’S
Sbvc holds by 5 (iii), then b’ShVc or ¢"SbVc, which contradicts 10 (ii). If
b’Ac"ShbVc by 5 (vi), then b’Ac’Sh or b’Ac’Sc. From this it follows that 4" Ca
or c¢’=a, contradicting 10 (ii). If a=bAc, then if b'Yc"SbAc by 5 (iv), then
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b’ChAc and ¢’ ShAc. But this implies that b’ Sband ¢’Sc by 5 (v), contradict-
ing the induction hypothesis. If b"y¢’SbAc by 5(v), then b'Vc¢'Sb and b’V ESe,
and this implies by 5 (iv) that " Sb and ¢’&e, contradicting the induction hypothe-
sis. Thus the first part of Lemma 13 is proved.

Finally, if aCb and a’Sh with ac P(Q) and beS— {1}, then a’Sh implies
b’ Ca, and this together with aSh gives b’ Sh, which contradicts the first part
of the proof. '

Obviously, the relation & defined on X S by Definition 5 together with the rule
0SxC1 for all x€S, is a quasiordering on S. Let © be the relation defined on
SX S by a@biff aSh and bSa. We prove now that S/@ is an ortholattice with
0/@ as the smallest and 1/@ as the largest element, a/@Vb/@=(aVyb)/O if aybeS
and a/OVb/O=1/0@ if ayb¢sS, and, finally, that a/@®—a’/@ is an orthocomple-
mentation.

Let us define a/@=b/@ iff aSh, a, beS. Obviously, = is a partial ordering
on S/@, and 0/® and 1/© are the smallest and largest element of S/@, respectively.
If, for a, b¢ S, the element aV b€ S, then a/@\b/@=(ayb)/@ by Lemma 7. If, for
a, be S, theelement a\/b¢S, then a’SaVb or b’ SaVyb holds, and forevery cin S
such that a, bCc we get by 5 (iv) that @, a’Sc or b, b’ Sc. This implies by Lem-
ma 13 that ¢=1. Thus 1/0 is the supremum of a/® and b/®. For meets the situa-
tion is dual. Therefore, S/© is a lattice. For every a€S—{0, 1} the elements aVa’
and aAa’ are not in S, and this implies that a’/@ is the complement of a/@ in S.

Theorem 14. Let {L;: i€I} be a set of ortholattices and let Q= U{L;: icI}.
Denote by P(Q) the set of all polynomials over Q and by S the subset of P(Q)U{0, 1}
given by Definition 10. Finally, let @ be the congruence relation defined by a@b iff
aCh and bSa. Then S/O is af;ee product of L;, icl.

Proof. Put L=S/©. We have to prove that
(i) each L;, icl, is a subalgebra of L and for i,j€l, i#j, L,—{0;, 1,} and
L;—{0;,1;} are disjoint,

(ii) L is generated by U{L;: i€l},

(iii) for any ortholattice A and for a family of homomorphisms ¢;: L;~A4,
icl, there exists a homomorphism ¢: L—~A such that ¢ agrees on L; with ¢; for
all iel .

(i) We have already proved that L is an ortholattice. Define ;: L,~L by
Vi (x)=x/0=R(x) if xc¢L;—{0;, 1;}, and ¢;(1)=1/0, ¥;(0)=0/6. Clearly, we
have ¥;(x)=y;(x), and ¥,(xVy)=y¢;(x)Vy¥(y) for x,yeL;. If x€L;, x#0;,
then x/@0/©, which implies that ¥, is an embedding.

(ii) is clear.

(iii) We define inductively a map v: P(Q)—~A4 as follows: for peQ we set

4‘
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v(p)=0;(p) if p€L;, i€l. If p=pyAp, or p=poVp1, v(po) and v(p,) have already
been defined, we set v(p)=v(p)Av(py) or v(p)=v(p)Vv(p,), respectively.
We need the following lemma.

Lemma 15. For pe P(Q) and icl, the following hold.
() If pg, is proper, then v(pu)=v(p).

(i) If p© is proper, then v(p)=v(pV).

(iit) pSq implies that v(p)=v(g).

(iv) v(p)=v(p)’ in A.

Proof. (i)—(iii) The proof is the same as the proof of Lemma 9 in [2].

(iv) If p€Q, then pcL; forexactly one i€l, and v(p)=g,;(p), so that v(p')=
=0;(p)=0,(p)=v(pY. If p=pApi, then v(p)=v(peVp)=v(PIVVv(p)=
=v(p,)'Vv(py)’ by the induction hypothesis, which implies that v(p")=(v(p)A
Av(py))=v(py. The situation for p=pyVp, is dual.

Now we can complete the proof of Theorem 14. Take a p€S and define
o{p/@)=v(p) if pcS—{0,1}, and ¢(1/@)=1, ¢(0/@)=0 in A. ¢ is well-defined
since if p, g€ S—{0,1} and p/©@=gq/O, then pSq and ¢gCSp, which implies by
Lemma 15 that v(p)=v(q). Further, ¢@(p/OAg/@)=0((pAg)/O)=v(pAg)=
=v(DAv(@)=9(p/O)\p(q/0) if pAgES, p,qeS—{0,1}. Clearly, @(p/OA
NO/@)=¢@(0/@)=0=0(p/@)A\p(0/0), and @(p/OA1/@)=0¢(p/O)=¢(p/O)A
ANp(1/@). If p,q€S, and pAg4S, then pAqSp’ or pAqSq’, so that v(pAg)=
=v(p) or v(g), which implies that v(pAq)=v(p)Av(g)=0. Hence, ¢ (p/@)A
Ap(g/@)=v(P)Av(9)=0=0(0/0)=¢(p/ONg/®).  Further, ¢(p’/@)=v(p’)=
=v(p)=¢@(p/@) if peS—{0,1}, and ¢(1/@)=¢(0/O). We see that ¢: S/O~ A4
is a homomorphism. Finally, for p€L;, p#0;,1;, we have ¢(p/@)=o(Y;(p)=
—v@)=0:p) P 0))=00/O)=0=0,0), e¥:(1))=(1/O)=1=g,(1), so
that @oy;=¢;. This completes the proof.

References

[1] G. Bruns, Free ortholattices, Canad. J. Math., 28 (1976), 977—985.
[2] G. GrATZER, Free products and reduced free products of lattices, in: Proc. Univ. Houston Lattice
Theory Conf. (1973), Dept. Math., Univ. of Houston (Houston, 1973); pp. 539—563.

MATEMATICKY USTAV SAV
OBRANCOV MIERU 49
814 73 BRATISLAVA, CZECHOSLOVAKIA



Acta Sci. Math., 52 (1988), 53—67

Abstract spectral theory. II: Minimal characters and
minimal spectrums of multiplicative lattices

N. K. THAKARE, C. S. MANJAREKAR and S. MAEDA

1. Introduction

A multiplicative lattice is a complete lattice in which there is defined a commu- -
tative, associative multiplication which distributes over arbitrary joins (i.e., a(V,b,)=
=V,ab,), ab=aAb and the greatest element 1 acts as a multiplicative identity.
Throughout this paper, let L denote a multiplicative lattice. In L an element p dif-
ferent from 1 is called prime if gb=p implies a=p or b=p. A minimal element in
the set of prime elements of L will be called a minimal prime element of L. A charac-
ter of L is a homomorphism of L onto a two element chain C,. It was shown in [9]
that an element a of L is prime if and only if there is a homomorphism ¢ of L onto
C, with a=V{x: ¢(x)=0}. This means that a prime element of L can now be equiv-
alently associated with a character of L, and so a prime element itself will be called
a character of L. We denote by ¢ (L) and n(L) the sets of characters and minimal char-
acters of L respectively.

This work is a continuation of the work initiated by THAKARE and MANJAREKAR
[9]. Here we are concerned mainly with minimal characters of L and with the topology
on the set 7 (L) which is the restriction of the hull kernel topology introduced on the
set a(L) (see [9]).

The studies of minimal prime ideals for commutative rings, commutative semi-
groups, distributive lattices, lattice ordered groups, f~rings and recently 0-distributive
semilattices (THAKARE and PAwAR [11], [7]) have been carried out extensively. An
attempt to unify these scattered studies was nicely made by KemMEL [4]. Our study in
this paper is close in spirit to the study [4], though however we carry out investiga-
tions to include many more novel notions the motivation for which stems from the
desire to abstract available notions in commutative rings on thelines of DILWwORTH [2].

Received December 27, 1984.
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The notion a* of an element a of L is defined as the join of annihilators of powers
of a, and this concept plays an important role in the investigations of minimal char-
acters in Sections 2 and 5. The concept of minimal characters belonging to an ele-
ment, appeared in MURATA [5] and ANDERSON [1], is discussed in Section 3. We ab-
stract the notion of an ideal B of a commutative ring R that is related to an ideal 4
of R, and this concept is used in the arguments on primary decompositions of ele-
ments of L in Section 4.

In the previous paper [9), we assumed that L always satisfies the following condi-
tion which is equivalent to the ascending chain condition:

(K) Every element of L is compact.

In this paper, we assume that condition (K) or some weaker ones according to the
need.

We remark that for any p€o (L), the existence of a maximal character ¢ with
P=gq can be proved under the assumption that L satisfies (K) (see [9]) but the exist-
ence of a minimal character r with r=p can be proved without this assumption
{because. if Q is a chain of characters then p=AQ is also a character).

2. Characters and minimal characters

A subset S of L is called multiplicatively closed if a, b€ S implies ab€ S, and S
is called submultiplicatively closed if for a, b€ S there exists ¢€S with c=ab. With-
out assuming the condition (K), the Separation Lemma can be stated as follows
(cf. [9], Lemma 2.2):

Separation Lemma. Let S be a submultiplicatively closed subset of L, and
assume that every element of S is compact. If SN[0, a]=9 for some a€L, then there
exists a character p of L which is a maximal element of the set {x€¢L: a=x and

SN0, x]=4}.

In fact, this set has a maximal element p by Zorn’s lemma since every element
of S is compact, and we can prove that p is a character since S is submultiplicatively
closed. :

An element a of L is called M-compact if a" are compact for infinitely many in-
teger n. Every nilpotent element is M-compact. An idempotent is M-compact if and
if it is compact.

Proposition 2.1. If a is an M-compact element of L and if a"£b for every
integer n, then there exists p€o(L) such that b=p and azp. Especially, if a is
M-compact and is not nilpotent then there exists p€a(L) such that aZ%p.
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Proof. The set S={a": a" is compact} is submultiplicatively closed and
SN0, b]=0. Hence, by the Separation Lemma there is p€a(L) such that b=p
and SN[O0, p]=@. Then, aZp.

Corollary 2.2. If the greatest element 1 of L is compact, then for any beL
with b<1 there exists p€co(L) such that b=p.

Proof. Put a=1 in Proposition 2.1.

We need to introduce the following notation which is important in the arguments
on minimal characters. For a€L,

a* =V{x€L: a"x = 0 for some integer n}.

Evidently, 0*=1, 1*=0, and a=b implies b*=a*.

Lemma 2.3. (i) If a* is compact, then a’a*=0 for some n, and ala* is nil-
potent.
(ii) In the case that 1 is compact, a€ L is nilpotent if and only if a*=1.

Proof. (i) Theset S={x€L: a"x=0 for some n}is an ideal, since a™*"(x\/ y)=
=a™xVa"y. Hence, if a* is compact then g*€S. Thus, a"a*=0 for some n, and
(aha*)"*+1=0.

(ii) If a*=1 then a is nilpotent by (i). The converse is evident.

Lemma 2.4. Let acL and pco(L). axp implies a*=p. (Hence, aha*=p
always.)

Proof. Assume azp. If a"x=0 then we have a"x=p and a"£p. Hence,
x=p. Therefore, a*=p.

Using the condition (K), we now get a fundamental result with some interesting
corollaries.

. Theorem 2.5. Assume that L satisfies (K). For acL and pco(L) the Sfollow-
ing statements are equivalent:

(1) a*=p;

(2) -there is some q€n(L) with g=p and azxq.

Proof. (1)=(2): Let S={a"x: x£p, n=1,2,...}. Then S is multiplicatively
closed. We have 04 S, because if a"x=0 then x=a*=p by (1). By the Separation
Lemma there exists r€o(L) such that SN[0, r]=@. Take g€n(L) such that g=r.
We have r=p, since otherwise ar€ SN[0,r], a contradiction. Also, azr, since
acS. Hence, g=p and azgq.

(2)=(): If g=p and azq, then a*=g=p by Lemma 2.4.
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Corollary 2.6. Assume that L satisfies (K), and let pco(L). If p*=p then
p is not minimal.

Proof. If p*=p, thereis gen(L) with g=p and pFqg by Theorem 2.5. Thus,
g<p, and p is not minimal.

As stated in the previous paper [9], the hull kernel topology on o(L) is given as
follows. For acL we put

V(@) = {pca(L): a = p}.

Since V(0)=o(L), V(1)=08, V(@UV(b)=V(ab) (=V(aAb)) and N,V (a)=
=¥(V,a,), we obtain a topology on o (L) such that {¥V'(a): acL} is the family of
all closed sets. It is easy to verify that the closure R of a subset R of ¢(L) coincides
with V(AR).

Corollary 2.7. Assume that L satisfies (K), and let a€ L. V (a*) is equal to the
closure of the open set o(L)—V(a).

Proof. By Lemma 2.4, we have o(L)—V (@)c¥ (a*). Hence, it suffices to show
that if a(L)—V({a)cV (x) then V(e*)cV(x). Let peV(a*). By Theorem 2.5 there
is gén(L) with g=p and axq. Then, gco(L)—V(a)c ¥V (x), and hence x=g=p.
Hence p€V(x), and we obtain V(a*)CV(x).

The concept of regular characters was introduced by [3], [8] and {9], while its dual
concept, coregular characters, appeared in [8] for bounded distributive lattices.
A character r€o(L) is called coregular if for p,q€o(L), r=p and gq=p
together imply r=g. The companion of Theorem 2.7 of [9] would now be proved.

Theorem 2.8. Assume that L satisfies (K). For réo(L) the following five state-
ments are equivalent:

(1) r is coregular;

(2) the set V(r) is open;

QB) V)NV (r*)=0;

@ rvrr=1;

(5) there is x€ L such that x\r=1 and r"x=0 for some integer n.

(We remark that (5)=(4)=(3)=(2)=(1) can be proved without the assumption
(K).)

Proof. (5)=(4) is evident. (4)=>(3): If V(r)NV(r*) had an element p then
rVr*=p<1, contradicting (4). (3)=(2): We have V(r)UV(r*)=0¢(L) by Lemma
2.4. Hence, by (3) we have V(r)=o(L)—V (r*), and then V'(r) is an open set. (2)=
(1):Let r=p and g=p, and put G=0c(L)— ¥ (r). Since G is closed by (2), we have
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p¢G=G=V(AG), and hence AG%p. As q=p, we have AGZq, whence ¢4G.
Hence, r=gq. .

Next, we assume that L satifies (K). (4) implies (5), since r"F*=0 for some n
by Lemma 2.3 (i). (1)=(4):If rvr*<1, then there is pco(L) with rvr*=p by
Corollary 2.2. By Theorem 2.5 there is g€n(L) with g=p and rzgq, con-
tradicting (1).

Recall the concept of multiplicative normal (i.e. M-normal) lattice introduced in
[9]. A multiplicative lattice L is called M-normal if each character of L contains a
unique minimal character of L. We shall have several characterizations of M-nor-
mal multiplicative lattices in the following two theorems.

Theorem 2.9. The following two statements are equivalent:
(1) L is M-normal;
(2) every minimal character of L is coregular.

If 1 is compact, (1) is also equivalent to the following statement:
(3) q1Vg.=1 for any distinct minimal characters q,, q, of L.

Proof. (1)=(2): Let ren(Ll), and we take p,gc€o(L) with r=p and ¢=p.
There is q’¢n(L) with ¢’=gq. Then, r,¢’=p, and hence r=¢g'=q by (1). Hence, r
is coregular. (2)=>(1): Let p€o(L), r€n(L) (i=1, 2) and r,=p. Sincer, is coregular
by (2), we have r,=r,. Similarly we have r,=r,, and hence r;=r,.

()=(3): Assume that 1 is compact. If ¢,V¢,<1, then there is p€o(L) with
¢7,:Vg.=p by Corollary 2.2, and hence ¢;=g¢, by (1). (3)=(1) is evident.

Recall that a topological space is called extremally disconnected if the closure of
each open set is open.

Lemma 2.10. A topological space X is extremally disconnected if and only if
for open subsets Gy, Gy of X, G,NG,=@ implies G,NG,=0.

Proof. Assume that X is extremally disconnected. If G,NG,=@, then
G,cX—G,, since X—G, is closed. Hence, G, X—G,, Since G, is open, we have
G,cX—G,, and then G,NG,=0.

Next we shall prove the converse. For an open set G, we put U=X—G. Then,
U is open and UNG=#, and hence UNG=0. Hence, UCcX— G=U, which im-
plies that U is closed. Hence, G is open.

Theorem 2.11. Assume that L satisfies (K). The following five statements are
equivalent:

(1) L is M-normal;

(2) if G, and G, are open sets of 6(L) with G;NG,=@ then G,NG,=0;

(3) o(L) is extremally disconnected;
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(4) V(a*) is open for every a€L;
5) if V@UV()=0c(L) then a*Vyb*=1.

Proof. The equivalences (2)«(3) and (3)«(4) immediately follow from Lemma
2.10 and Corollary 2.7, respectively.

(1)=(2): Let G, and G, be open sets with G;NG,=0. We can put G;=a(L)—
—V(a;) forsome a;€L (i=1,2). By Corollary 2.7, we have G,=V (a}). If G,NG,
had an element p, then af=p and by Theorem 2.5 there would exist g;, ¢.€n(L)
with ¢;=p and a;%q;. By (1), we have g,=¢q,, which implies ¢,€G,NG,, a
contradiction.

2)=>0): Let V(@UV(b)=0c(L). Putting G,=a(L)—V (@) and G,=o(L)—
—V(b), we have G,NG,=@. By (2) we have V(a" )NV (b*)=G,NG,=0. Hence,
a*yb*=1 by Corollary 2.2.

(S)=(1): Let g;, g,€n(L) with g,#¢,, and we shallshow ¥V (g})UV (g})=a(L).
For any p€o(L), thereis gcn(L) with g=p. If gs#q,, then since g;&q we have
gi=q=p by Lemma 2.4. If g=gq,, then gs%g, and hence we have g;=p. Thus,
we get V(gy)UV(g))=0(L), and then ¢{*vg;*=1 by (5). Since g;£q; by Cor-
ollary 2.6, we get ¢7*=gq; by Lemma 2.4. Hence, ¢,V ¢,=1, and there is no char-
acter which contains both ¢, and g,. ’

3. Minimal characters belonging to an element

We consider a relation between characters and multiplicatively closed subsets.
For acL, we put
C(a) = {x€L: x £ a}.

(This notion was introduced in Nemitz [6].) The set of all multiplicatively closed
subsets of L is denoted by .#(L).

Lemma 3.1. C(p)e# (L) if and only if p is a character of L. The mapping
p—C(p) of a(L) into M (L) is one-to-one, and p=g<C(p)>C(q).

Proof. Evident.

Lemma 3.2. Let acL, and take M¢c /(L) with MN[0, a]=0.

(i) #={Ne#(L): NOoM and NN|O,al=0} has a maximal element.

(it) N*c¢% is maximal in % if and only if for any x€L with x¢ N* there exists
YEN* such that x"y=a for some integer n.

Proof. (i) For any chain ¥ c%, the union U {N: N€¢ ¥} belongs to #.
Hence, % has a maximal element by Zorn’s lemma.
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(ii) Let N* be maximal and let x¢N*. The set N,={x",y,x"y: yeN*
n=1,2, ...} is multiplicatively closed since N*c.#(L), and N,>N*. Moreover,
N, =N* for x¢N; and x¢N*. Hence, by the maximality of N* we have N,N
N[0, a)=@. Then, there exists y€ N* such that x"y=a for some n.

Next, take Ne# (L) with N N*, and take x€ N—N*. If N* satisfies the
given condition, there exists y€ N* such that x"y=a for some n. Then, x"ye NN
N[0, al. Hence, N* is maximal in %.

Recall the concept of minimal characters belonging to an element, which was
initiated by MURATA [5]. For a€L with a<1, a minimal element of ¥V (a)=
={p€o(L): a=p} is called a minimal character belonging to a. The set of all minimal
characters belonging to a is denoted by V,;.(a). For any chain Q in ¥ (a), we have
AQ€V (a). Hence, for any peV(a) there is g€V, ;. (a) with g=p by Zorn’s
lemma. We remark that ¥, (0)=n(L).

Theorem 3.3. Let acL with a<]1 and let pco(L). If L satisfies (K) then
the following statements are equivalent:

(1) PEVjin(@); |

(2) C(p) is maximal in the set {Ne.#(L): NNI[O, a]=p0};

(3) a=p and there exists x€L such that x£p and p"x=a for some integer n.

Moreover, without assumzng (K), the statements (2) and (3) are equivalent, and
(2) implies (1).

Proof. (2)<(3): Putting M={1} in Lemma 3.2, (2) is equivalent to the follow-
ing statement: “a=p and for any x=p thereis y£p such that x"y=a for some
n”. Evidently, this is equivalent to (3).

2)=(1): If a=q=p with gco(L), then C(q)eA#(L), C(g)N[0, a]=@ and
C(q)oC(p). Hence, C(q)=C(p) by (2), and then g=p.

We assume (K) and prove (1)=(2). Put #={N¢e.#(L): NN[0, a]=8}. C(p)cu
by a=p. If C(p)c Ne%, then NN[0, a]=@, and by the Separation Lemma there is
g€o(L) with a=q and NN[0,g]=0. Then, C(g)DN>C(p), and hence p=q.
Hence, p=gqg by (1), and then C(p)=N. Thus, C(p) is maximal in %.

Theorem 3.4. Let acL with a<1. If every finite product of elements of
V .ia(@) is compact (especially, if L satisfies (K)), then V;,(a) is a finite set.

Proof. Assume that V;,(@) is an infinite set. The set M of all finite products
of elements of V,,,(a) is multiplicatively closed. If b€M, then b=p,...p, with
Pi€V mia(@), and by the assumption there is g€V ,;,(a) which is different from all
p;. Wehave bxq since p;%=q foralli, and then bzxa. Thus, we have MN[0, a]=0.
By the Separation Lemma there is r¢a(L) with a=r and MN[0, r]=0. But, we
can take ro€V (@) with rg=r, and then ry¢ MN[0, r], a contradiction.
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The concept of radicals is a classical notion of commutative ring theory and its
abstract formulation has been attempted long back and is scattered in several papers
in various forms (see for example MURATA [5] and ANDERSON [1]). Let us recall this
concept in abstract form. The radical of an element acL, denoted by Va, is de-
fined by .
Ya =V{xcL: x" = a for some integer n}.

Evidently, a=ya for any acL, and p=Vp if p€o(L). Hence, we have
V(Va)=V(a).
Lemma 3.5. (i) If yq is compact then Va"=a for some integer n.

(i) If Va and Vb are compact then Yab =YaAb=VaAVb.

(iii) If 1 is compact, then a<1 implies Va<l1.

Proof. (i) The set S={x¢L: x"=a for some n} is an ideal, for (xVy)"+"=
=x™Vy". Hence, if Va is compact then VacS.

(ii) Evidently, Vab=VaAb=VaAVb. By (i), Ya"=a, Vb"=b for some m, n.
Then, (YaAVb)™t"=({a AYb)"(Va AVb)"=Va"Vb"=<ab. Hence, YaA Vb <V ab.

(iii) By Corollary 2.2, there is p€o(L) with a=p. Then, Va=Vp= p=<l.

Theorem 3.6. Assume that L is generated by M-compact elements, that is,
every element of L is a join of M-compact elements. For acL with a<],

Va = A{p: p€¥un(@} = A{p: pe¥(a)}.

Proof. Evidently, AV,.(@)=AV(a), and Va=AV(Ya)=AV(a). If Va <
<AV (a), there would exist an M-compact element x such that x=AV(a) and
x%Va. Then, x"%a for every n, and by Proposition 2.1 there is p€a(L) with
a=p and xZp. This contradicts x=AV(a).

Corollary 3.7. Assume that L is generated by M-compact elements, and let
a€L with a<1. V. (a) contains only one element if and only if Va is a character.

Proof. The “only if” part follows from the theorem, and the converse is evident.

We remark that the r-lattice introduced in [1] satisfies the assumption of this
theorem, because any compact element of an r-lattice is M-compact by Theorem 2.1
of [1].
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4. Related elements and associated characters of primary elements

We now take up a notion of one more related concept which is found in ring
‘theory. The notion so far has not been pulled down to lattice theory nor has been
abstracted in the sense of DILWORTH [2].

Let acL with a<1. An element b€ L is said to be related to a if there exists
x€L such that xFa and bx=a. If b is related to a and b'=b then evidently b’
is related to a. Hence, the set of all elements of L which are related to a is multiplica-
tively closed. Next, let pc€o(L). Evidently, b is related to p if and only if b=p.
Hence, the set of all elements of L which are unrelated to p coincides with C(p) and
hence it is multiplicatively closed.

Lemma 4.1. Let acL with a<]1, and let beL.

@) If a=a,\...Na, (a;<]1) and if b is related to a, then b is related to a; for
some 1.

(ii) If there exists x€L such that x=£a and b"x=a for some integer n, thenb
is related to a.

(iii) Assume that Va is compact. If b is related to Va then b is related to a. Espe- _
cially, Ya is related to a.

Proof. (i) is evident.

(ii) If x%a and b"x=a, then taking the smallest integer i such that b'x=a,
we have b'~1x%a and b(b'~lx)=a (b°=1). Hence, b is related to a.

(iii) By Lemma 3.5 (i), Ya"=a for some n. If x%=}a and bx=Va, then x"=%a
and b"x"=Va"=a. Hence, b is related to a by (ii).

Theorem 4.2. Assume that L satisfies (K), and let acL with a<1. Every
minimal character p belonging to a is related to a.

Proof. By Theorem 3.3, thereis x€ L suchthat x£p and p"x=a for some n.
Then, we have xZa, for a=p. Hence, p is related to a by Lemma 4.1. (ii).

Following DILWORTH [2], an element g€ L with g<1 is called primary if xy=gq
implies x=gq or y"=gq for some integer n.

Lemma 4.3. If gcL is primary and if Vq is compact, then Vqco(L) and
Vuin@={Vq}. Moreover, b€ L is related to q if and only if b=Vq.

Proof. This can be proved by using the fact: Jg"=g for some n, and the details
are omitted.

Hereafter in this section, we assume that
(%) For every primary element q of L the element Vg is compact.
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By this assumption, we have Vq"=q for some integer n, and Vq is the least
element of ¥ (q). We call Yq the character associated with q.

As stated in [2], we have the following lemma (the proof is omitted).

Lemma 4.4. If q, q, are primary elements associated with the same character p,
then q;\q. is also a primary element with the same associated character p.

Following [2], an element a¢ L is said to have an irredundant (or normal) pri-
mary decomposition, if a=gq,A...Aq, for some primary elements ¢, ..., g, and if
this expression cannot be reduced further. Then, by Lemma 4.4, ¢,, ..., q,, are asso-
ciated with distinct characters.

Remark 4.5. If a¢L has an irredundant primary decomposition a=gq;A ...
...Aq,, (m=2), then a is not primary. This fact can be proved by the same way as

[5], Lemma 7, since Ya =Yg A...AVq, by Lemma 3.5 (ii).

Lemma 4.6. Let acL have an irredundant primary decomposition a=q ...
...Ag, and put p;=Vq; (p:€o(L)).

(i) For pca(L), a=p if and only if p;=p for some i.

(it) An element c€L is related to a if and only if c=p; for some i.

m
Proof. (i) Let a=p. We have pli=g; for some integer n;. Put b= JJ p}.
i=1

Since b=gq; for every i, we have b=a=p. Then, p,=p for some i, since p is a
character. The converse is evident.
(ii) If cis relatedto @, then c= }/E, =p,; for some i by Lemma 4.1 (i) and Lemma

4.3. Conversely, let c¢=p, for some i. Putting b= A ¢;, we have b>a since the .
j#i

m
decompositon is irredundant. Since p}=gq; for somen, we have c"b=q,b= j/—\l g;=a.

Hence, c¢ is related to a by Lemma 4.1 (ii).

Theorem 4.7. Let ac L have an irredundant primary decomposition a=q,A ...
...\q,, and put p;=Vq;. The set of all minimal elements of {p,, ..., pn} coincides
with V;.(a). The set of all maximal elements of {p,, ..., pn} coincides with the set of
all maximal elements of the set {x€L: x is related to a}.

Proof. These statements_immediately follow from Lemma 4.6.

Corollary 4.8. If a€L has an irredundant primary decomposition, then every
maximal element among all the elements related to a is a character containing a.

For acL and p€o(L), we put .
a(p) =V{x€L: xy = a for some y % p}.

®



Abstract spectral theory. II 63

We now set ourselves to describe the elements a(p).
Lemma 4.9. If a=p then a=a(p)=p. If axp then a(p)=1.

Proof. Let a=p. If xy=a and y=£p, then we have x=p, since xy=p.
Hence, a(p)=p. Moreover, a=a(p), since al=a and 1Zp. Next, af£p implies
a(p)=1, since la=a.

Lemma 4.10. Let a€L have an irredundant primary decomposition a=q,\ ...
...\q,, and put p;=Vq;. For p€a(L), if we put I(p)={i: p;=p), then a(p)=
=Mgi: i€l(p)). (a(p)=1 if I(p)=0)

Proof. Let i€l(p). If xy=a and y=£p, then since p;=p, we have yxp,=
=Vg;, and hence y"Zgq, for every n. Since xp=gq;, we have x=gq;. This, a(p)=
=q;- Put b=A{g;: icI(p)}. As above we get a(p)=b. Next, since py=gq; for
some n;, we put ¢= [ {p}: j¢I(p)}. Then, cEp, since p;£p for every jcI(p).
We have c=A{g;: j4I(p)}, and hence bc=a. Therefore, b=a(p). (If I(p)=0
then we may put b=1.)

Theorem 4.11. Let a€ L have an irredundant primary decomposition a=q,A ...

...\q,, and put p,=Vq;. For pca(L), p=p; for someiif and only if a(p)<1 and
p is maximal among all the elements related to a(p).

Proof. Let p=p, and put I={i: p;=p,} (I#0, since kcI). By Lemma 4.10,
a(p,) has an irredundant primary decomposition a(p,)=A{g;: i€l}. Since p, is
maximalin {p;: i€I}, p,is maximalin {x€L: x is related to a(p)} by Theorem 4.7.

Conversely, if a(p)<l1, then I(p)={i: p;=p} is non-empty and a(p) has an
irredundant primary decomposition a(p)=A{q;: i€I(p)}. If p is maximal among the
elements related to a(p), then p coincides with a maximal element of {p;: i€cI(p)}.

Corollary 4.12. Any two irredundant primary decompositions of an element
ac L have the same number of components and the same set of associated characters.

5. Minimal spectrum

First we shall introduce a new concept. A character pcg(L) is called purely
minimal if C (p) is maximal in the set {Mc.#(L): 0¢M}. It follows from Lemma 3.1
that any purely minimal character is minimal. The set of all purely minimal charac-
ters is denoted by m,(L). This is a subset of n(L).

Theorem 5.1. (i) For pco(L) the following four statements are equivalent:
(1) p is purely minimal;
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(2) there exists x€L such that x%£p and p"x=0 for some integer n:

3) p*£p;

(4) for any x€L,p contains precisely one of x and x*;

(ii) if L satisfies (K), then any minimal character is purely minimal, that is,
no(L)=n(L).

Proof. The equivalence of (1) and (2) follows from Theorem 3.3 by putting a=0.
The statement (ii) also follows from Theorem 3.3. The equivalence (2)<(3) and
the implication (4)=>(3) are evident. (3)=(4): If x£p, then x*=p by Lemma 2.4.

If x=p, then p*=x*, and hence x*£p by (3).

Corollary 5.2. If p€o(L) is purely minimal then p*™*=p, and x=p implies

x*=p. ,

Proof. Since p*p by Theorem 5.1, we have p**=p by Lemma 2.4. If x=p,
then we have x*z=p*, and hence x**=p**=p,

The hull kernel topology on n(L) is the induced topology of the hull kernel top-
ology on o¢(L). n(L) with this topology will be called the minimal spectrum of L. For
any a€L, the set h(a)={p€n(L): a=p} is called the hull of a. For any subset R
of n(L), the element K(R)=A{p: pcR} is called the kernel of R. Then, a subset R
of n(L) is closed if and only if R=h(a) for some a€L. Evidently, a=K(h(a)) for
every acL, and for every Rcn(L), h(K(R)) is equal to the closure of R.

Now we get an important topological property of purely minimal characters.

Theorem 5.3. If pen(L) is purely minimal then p is an isolated point of n(L).

Proof. Put G==n(L)—h(p*). G is an open set, and p€G since p*zEp. If
gén(L) and ¢ =p, then p£q and hence p*=¢q by Lemma 2.4. Hence we have
G={p}, and p is an isolated point.

Corollary 5.4. The induced topology on ny(L) from n(L) is discrete. If L satisfies
(K) then the minimal spectrum n(L) is discrete.

Proof. These statements follow from Theorem 5.3 and Theorem 5.1 (ii) imme-
diately.

Remark 5.5. If every finite product of elements of 7 (L) is compact (especially,
f L satisfies (K)), then (L) is a finite set. This follows from Theorem 3.4 by putting
a=0.

Finally, we shall obtain several important results about hulls and nilpotent
elements, assuming the condition (K).

Lemma 5.6. Assume that L satisfies (K). For a€L and pen(L), a=p if aud
only if a*Z%p. Hence, h(a)=n(L)—h(a*)=h(a**).
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Proof. This follows from the property (4) in Theorem 5.1.

Theorem 5.7. Assume that L satisfies (K), and let R be a subset of n(L). If we
put a=V {p*: p€R}, then R=h(a*)=h(K(R)).

Proof. If p€R, then we have p*=a and p*£p, and then aZxp. Conversely,
if axpen(L), there exists g€ R such that g*zp. Then, g=p by Lemma 5.6, and
hence p=g€R. Therefore, R=n(L)—h(a)=h(a*). Next, we have a*=K(h(a*))=
=K(R), and hence h(K(R))ch(a*)=Rch(K(R)).

Lemma 5.8. Assume that L satisfies (K).
(i) VO is the greatest nilpotent element and is equal to A {p: pen(L)}.
(ii) x€ L is nilpotent if and only if h(x)==n(L).
(iii) x* is nilpotent if and only if h(x)=40.
(iv) xAx* is nilpotent for every x€L.

Proof. (i) follows from Lemma 3.5 (i) and Theorem 3.6. Evidently, (ii) follows
from (i). (iii) follows from (ii), since h(x*)=n(L)—h(x). (iv) follows from Lemma
2.3 (i).

Theorem 5.9. Assume that L satisfies (K). The following eight statements are
equivalent:

(1) no nonzero element of L is nilpotent;

(2) NMp: pen(L)}=0;

() x*=A{pen(L): x£p} for every x€L;

(4) x*=K(h(x*)) for every x€L;

(5) x*=K(h(x)) for every x€L;

(6) x=x** for every x€L;

(7 xAx*=0’ for every x€L;

(8) x*=1 implies x=0.

Proof. The equivalence of (1) and (2) follows from Lemma 5.8 (i). The equiva-
lence of (3) and (4) follows from Lemma 5.6. (2)=(4): Putting y=K(h(x*)), we have
x*=y. If xspen(L), then y=p, since x*=p. Hence, xy=p for every pe€n(L), -
and hence xy=0 by (2). Thus, y=x*. (4)=(5) is evident, since h(x**)=h(x).
(5)=>(6) is evident. (6)=-(8) is evident, since 1*=0. (8)=(1) follows from Lemma
2.3 (ii). (1)=(7) follows from Lemma 5.8 (iv). (7)=(8) is evident.

Theorem 5.10. Assume that L satisfies (K) and that no nonzero element of L is
nilpotent.
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(1) L is pseudo-complemented and x* is a pseudo-complement of x for any x€L.
(i) For x,y€L, h(x)ch(y) if and only if x*=y*. Hence, h(x)=h(y) if and
only if x*=y*
(iii) x***=x* for every x€L.
(iv) For acL, the following four statements are equivalent:
(1) a=a** (following [10), a may be called normal);
(2) a=b* for some bEL;
(3) a=K(h(a));
(4) a is the kernel of some subset of n(L).

Proof. (i) If yAx=0, then xy=0 and hence y=x*. Then, by (7) of Theorem
5.9, x* is the greatest element of the set {y€L: yAx=0}.

i) If h(x)ch(y), then h(x*)=n(L)—h(x)Dn(L)—h(»)=h(y*), and hence
x*=K(h(x*))=K(h(y*))=y* by (4) of Theorem 5.9. Conversely, if x*= y then
h(x*)oh(y*) and then h(x)ch(y).

(iii) By (6) of Theorem 5.9, we have x*=(x*)**, and moreover x**=x implies
(x**)*< x*

(iv) (1):>(2) and (3)=>(4) are trivial. (1) and (3) are equivalent by (5) of Theorem
5.9. Q)=): If a=b* then a**=b***=b*=a by (iii). 4)=(): If a=K(R) for
some RcCn(L), then we have h(a)=R by Theorem 5.7.
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Varieties and quasivarieties, generated by two-element
preprimal algebras, and their equivalences

KLAUS DENECKE*

Dedicated to Professor H.-J. Hoehnke on his 63rd birthday

1. Introduction

The subsequent considerations on universal algebras are stimulated by the follow-
ing situation in the variety of Boolean algebras: It is generated by the two-element
Boolean algebra 2 which has the property that every function defined on the two-ele-
ment set {0, 1} is a term function of 2. This property corresponds to the functional
completeness of classical propositional calculus since the class of Boolean algebras
constitutes a semantical basis for classical logics. As a generalization one defines a
finite nontrivial algebra A=(4; F) to be primal if every function on A4 is a term
function of A. Then many properties of Boolean algebras carry over immediately to
varieties generated by a primal algebra. This is already implied by the categorical
equivaience between any variety which is generated by a primal algebra and the
variety of Boolean algebras. '

This equivalence is generalized now in two directions: firstly to preprimal alge-
bras and secondly to quasivarieties. The term functions of a preprimal algebra
A=(4; F) constitute a dual atom in the lattice of closed classes of functions defined
on A. All two-element preprimal algebras were determined by E. L. Posrt [11]. Iden-
tifying algebras with the same term functions we obtain exactly the following two-
element preprimal algebras (up to isomorphisms):

Cy =<{0,1}; A, +,0), A;=<{0,1}; A,V,0,1),
D; = ({0, 1}; 4, x+y+2,N), L ={{0,1}; +,N,0,1).

Received January 7, 1985, and in revised form July 3, 1985.

*) During the preparation of this paper, the author worked at the Institut fiir Ziich-
tungsforschung der Akademie der Landwirtschaftswissenschaften der DDR, Quedlinburg..
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Here A, V, +, N are the Boolean operations conjunction, disjunction, addition
mod 2, and negation. Further d is the ternary operation with d(x,y, 2)=(xAy)V
V(xA2)V(¥Az). Our main result is the following: A quasivariety is equivalent to the
quasivariety generated by one of the two-clement preprimal algebras if and only if it
is generated by a preprimal algebra of a special form. The result can be applied in
non-classical logics and in electrical circuit theory. Consider a variety V,, generated
by a two-element algebra and assume V,=ISP(2’) (I—isomorphisms, S—sub-
algebras, P—direct products), i.e., assume the quasivariety QF, =ISP(2") generated
by 2" agrees with the variety generated by 2’. In [2] the algebras B€ISP(2’) are called
pure dyadic algebras. Boolean algebras and Boolean rings, distributive lattices,
implication algebras, median algebras, and Boolean groups are well-known examples
of pure dyadic algebras. Let B(X)€V, be the free algebra freely generated by
X={x;, ..., x,}, and let p, q be two terms of B(X). The fact that every algebra of V,,
is isomorphic to a subdirect power of 2’ implies that p, q¢ B(X) are identical if for
all homomorphisms h: B(X)—~2" one has h(p)=h(q). In the case of Boolean
algebras this property is meaningful in the complexity theory of Boolean functions
and the truth table method of classical logics ([8]). Let " be a variety which, as a
category, is equivalent to ¥,,. Then there is a map ¢ from the n-ary terms of V,, to
the n-ary terms of o such that

@ 1x)=x;,

(i) if « and B are self-maps of {l,...,n} and V, satisfies p(x,, ..., X,)=
=p(Xp1, ...» Xgy), then A satisfies (p)(xy1, -+ Xun) = (A (X1, ..., Xpn)-

It follows that o satisfies (tp)(Xu1> ---» Xun) =(1Q) (Xp1, ..., Xgs) if h(P)=h(q) holds
for all homomorphisms h: B(X)—>2’. '

2. Preliminaries

Let A be a nonempty finite set. The collection of #-ary operations on 4 will be
denoted by 09 (n=1). We set 0,= ) OP. Let ¢ be an h-ary relation on A4

n=1

(h=1), i.e. ¢S A" Let Pol g denote the set of all operations from O , preserving g,
i.e. all operations f€ 0, such that g is a subalgebra of (4;f)". A ternary operation
dc 0% is called a majority function if for all x, y€4 we have

d(x,x,y) =d(x,y,x) = d(y, x, x) = x.

We adopt the terminology of [7] except that polynomials will be called term
functions. T(A) denotes the set of term functions of an algebra A=(4; F). Ais
said to be primal if T(A)=0,. A is order complete if there is a lattice order = on 4
such that Pol ==T(A). A is said to be preprimal if T((A)># 0O, and the algebra
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(4; FU{f}) is primal for every operation f€0,\T(A). By a compatible relation of
an algebra A=(A4; F) we mean a relation ¢ on A4 such that F& Pol ¢.. The compat-
ible binary reflexive and symmetric relations on A are called tolerance relations of A.
We say a relation g generates an algebra A if T(A)=Pol ¢, and we write Ag for any
such algebra.

For 2=h< let 6,={(a,, ..., a)€A": q; #a,, 1 si<j=h}. Furthermore we
set 1,=A"™\@g,. Anh-ary relation gon A (h=3) is totally reflexive if ¢21,. A bmary
relation on A is called trivial if ¢=1, or g=A2

We say that an algebra is tolerance-free if it has no nontrivial tolerance relation.
An algebra A=(4; F) is said to be semiprimal if every operation on 4 admitting
all subalgebras of A is a term function of A and demiprimal if A has no proper sub-
algebra and every operation on 4 admitting all automorphisms of A is a term func-
tion of A. We need the following result from [1]. ER

Theorem 2.1. Let A=(A; F) be a finite algebra with a majority term function. .
Then an operation on A is a term function of A iff it preserves all compatible bmary
relations of A. .

From Theorem 2.1 we obtain immediately the following

Corollary 2.2. Let A=(A; F) be a finite algebra with a majority term func-
tion. Then A is primal iff it has no nontrivial compatible binary relation. Moreover,
A is preprimal iff it has a nontrivial compatible binary relation and for any two nontri-
vial compatible relations ¢, and 9, of A we have Pol g,=Pol g,.

We need the following list of preprimal algebras ([12], [5)):
A=, where = is a lattice order on A4, hence A= is order complete,
Ay, where {b} is a one-element subalgebra of A(,,), hence Ay, is semiprimal,
A, where s, is a permutation on 4 without invariant elements- and with cycles of
the same length 2, hence A, is demiprimal, |A4|=2m, mEN,
A, , where a,= ={(x,,z,€): e= x+ y+z}, x+y+z is the operation of a Boolean
3-group G7=(4; x+y+z) with |4|=2", mEN, m=l. :
Clearly, A,, C;, D, and L, are preprimal algebras of these forms with [4]=2.
Let .# and X be quasivarieties which are equivalent as categories, i.e., there
are functors G: X' —~% and H: £—~X, and for each Ac and Bc.% there
are isomorphisms a,: A~HG(A) and f;: B~GH(B) such that for each
g: A=A’ in & and each h: B-»B’ in ¥ the following diagrams commute:

A—2 . A B—' . B
“Al 114’ ﬁal . lﬂa’
HG(A) 259, HG(A") GH(B) 2%, GH(B)
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The question arises, which properties of a quasivariety carry over to equivalent
quasivarieties? Necessary conditions are given by

Theorem 2.2. [3] Let & and A~ be quasivarieties which are equivalent as cate-
gories via the functors G: A ~% and H: L ~A.

(1) If A€ % is afinite algebra, then H(A) is a finite algebra.

(2) Forall Ac ¥ the subalgebra lattices of A and H(A) are isomorphic. Therefore
the subalgebra lattices of A® and H(A?) are isomorphic and since H(A?) is isomorphic
to H(A)?, the subalgebra lattices of A* and H(A)*? are isomorphic.

(3) H maps subdirectly irreducible algebras to subdirectly irreducible algebras,
simple algebras to simple algebras, and tolerance-free algebras to tolerance-free algebras.

(4) If & is the variety generated by some algebra A, then A’ is the variety generated
by H(A).

_ (5) If & and A are varieties and if in & there exists a majority term then in A
there also exists a majority term; i.e. if & is the variety generated by A and A has a
majority function among its term functions then H(A) also has a majority function
among its term functions.

3. Tolerance-free algebras having majority term functions

The two-element preprimal algebras C,, A, and D, have majority functions among
their algebraic functions ([4]) and admit no nontrivial tolerance relation. By [4] the
quasivarieties generated by C;, A, and D, agree with the varieties generated by these
algebras. Therefore, by Theorem 2.2 (3), (4), (5), varieties equivalent as categories to
Vey Va,yo Vp, are generated by tolerance-free algebras H(C;), H(A,), and H(Dj)
having majority functions among their term functions. In order to characterize
varieties equivalent to V¢,V , Vp, We give some properties for tolerance-free
algebras having majority term functions.

For a binary relation on A define two n-ary relations g, and g, (2=n=|A|) as
follows:

o= {(a, ..., a)EA": (@, u)€@, i =1,...,n, for some ucA},

o, = {(ay, ..., a,)€EA™: (0,a)€0, i =1,...,n, for some o0€A}.

Lemma 3.1. Let ¢ be a binary relation on A preserved by a majority function
dcO0®. If gog='=A? (0 lop=4?), then g,=A" (¢,=A") forevery n=2, ..., |A|.

Proof. We prove the lemma by induction on n. Clearly, g,=gop =A%
Suppose that g,_;=A4""", 2=n=|4|. From the definition of g, it follows that
.21, l.e. g, is totally reflexive. Now, if (ay,...,a,)€A" then (a,,as, as,
ayy .y Q)€ 0n, (Gy, @y, A3, Gy, ..., a)EQ, and (ay, Gy, G5, 4y, ..., a,)€@,. Therefore
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(a]_, very an)=(d(a21 ala al)’ d(aZs al’ az)a d(a35 03, az), d(a4, a4’ 04), evy d(a,,, an, an))E
€g,. Hence g,=A4". (Similarly, we can prove that ¢ 'og=4A* implies g,=A4",
n=2,...,|4|)

Lemma 3.2. Let A={A; F) be a tolerance-free algebra admitting a majority
term function, and let ¢ be a binary nontrivial reflexive compatible relation of A. Then
0 is a lattice order.

Proof. gNg~! (S ) is a tolerance relation of A distinct from A42. Therefore
0N g~ *=1,, ie. g is antisymmetric. gog~! and ¢~ log are tolerance relations dis-
tinct from 1,. Therefore, gop '=p 'og=4A% which by Lemma 3.1 implies that
141=0{4=A"!. Hence there are elements 0, 1€ 4 such that (g, 1)€¢ and (0, a)¢ @
for every acA. Let d be a majority term function of A. It is known [6] that
d(0, a,b)=apb and d(1, a, b)=aVb are the infimum and supremum of a and b
with respect to ¢. Finally we show that g is transitive. Let (a, b)€¢ and (b, c)€g.
Then d(0,a,by=aAb=a and d(l,b,c)=bVc=c. Therefore (a,c)=(d(0, a,b),
d(1, b, c))€ ¢, which completes the proof.

Lemma 3.3. Let A={(A; F) be a tolerance-free algebra with a majority term
function admitting no proper subalgebra. Let g be a binary nontrivial symmetric com-
patible relation of A with 9N1,=0. Then o={(a, s(a)): ac A} where s is an automor-
phism of A without fixed points and with cycles of equal length 2.

Proof. Since gog~! and @ log are tolerance relations of A it follows that
gog™1, 0 *o0€ {1, A%). If gog~'=A? then by Lemma 3.1 ¢, =A"!. Thus there
isa u€A such that (a, u)€g for every a€ A, implying that (u, u)€ g, a contradic-
tion. Similarly we can prove that g log#A4% Hence gog '=p log=1,, which
implies that ¢={(a, 5()): ac4} for a permutation s on A. Clearly, s has no fixed
point (¢N,=0). From g=9¢~! one gets g*=1,. Therefore each cycle of s has
length 2. ‘

The proof of the next lemma is given in [6].

Lemma 3.4. Let A=(A; F) be a tolerance-free algebra having a majority term
Junction. Then A has at most two compatible lattice orders ¢ and ¢~ 1.

Lemma 3.5. Let A={A4; F) be an algebra with a majority term function and
exactly one proper subalgebra which moreover has exactly one element. Let {b} be
the one-element subalgebra of A. Suppose A has exactly three nontrivial binary compa-
tible relations. Then A is a semiprimal algebra of the form Ay, and thus preprimal.

Proof. {b}x{b}, 4X{b}, and {b}X A4 are all nontrivial compatible binary rela-
tions of A. Therefore, by Theorem 2.1, T(A)=Pol ({b}Xx{b})NPol (4X {HP)N
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NPol ({b}x 4)=Pol ({b}), i.e. A is a semiprimal algebra of the form A, and thus
preprimal.

We are ready to formulate and prove our first theorem.

Theorem 3.6. Let P be one of the two-element algebras A,, C;, Dy, and let
Vp be the variety generated by P. Let A" be a variety equivalent as a category to V.
Then A" is generated by one of the preprimal algebras As, Ay, or A4;,.

Proof. Let A be a quasivariety which is equivalent as a category to the quasi-
variety QVp via some functors G: & —~QVp and H: QVp—X. Since P has a
term function which is a majority function, by a result of JONssoN [10], we have
QVp=Vp. By Theorem 2.2, A is the variety generated by the finite algebra H(P)
and H(P) is tolerance-free, having a term function which is a majority function.
H(A,) and H(D;) have no proper subalgebras and H(C;) has exactly one (one-ele-
ment) subalgebra. By Theorem 2.2 (2), the subalgebra lattices of P2 and H(P)?
are isomorphic. Therefore H(D;) has exactly one nontrivial compatible binary rela-
tion o and ¢Ni,=9 holds. By Lemma 3.3, Theorem 2.1, and Corollary 2.2 H(D,)
is a demiprimal preprimal algebra of the form A, . Further, H (A,) has exactly two
binary nontrivial compatible relations which are reflexive. By Lemma 3.2, Lemma 3.4,
Theorem 2.1, and Corollary 2.2 H(A,) is an order-complete preprimal algebra
A=. H(C,) has exactly three nontrivial binary compatible relations. By Lemma 3.5,
H(C,) is a semiprimal preprimal algebra of the form Ag,.

4. Dualities and full dualities of quasivarieties

The next statements concern the category equivalence of a quasivariety generated
by any preprimal algebra of the form Ax, Ay, A, A, to the quasivariety gen-
erated by a two-element preprimal algebra A,, C;, D;, L,. These considerations rest
upon concepts and results of DAVEY—WERNER [3] on dualities and equivalences of
quasivarieties.

Let C={(C; F) be a finite algebra and let £=ISP(C) be the quasivariety
generated by C. Let C=(C; 1, R) be a topological relational structure where R is
a set of compatible relations of C, and 7 is the discrete topology on C. Let & be the
class of all topological relational structures of the same type as C. For X, YeZ
a morphism X—Y is a map between the carrier sets of X, ¥, which preserves the
defining relations of X, Y. Let 2 (X, Y) denote the set of all continuous morphisms
X—Y. A mapping $€Z(X,Y) is an embedding if it is one-to-one, closed, and for
each relation réR and x, ..., x,€X we have

(D(x1)s ..., P(X))Er = (X1, .05 Xp)ET.
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An onto-embedding is an isomorphism in Z. Let XcZ and YSX. Yis a closed
substructure if the inclusion map Y —~X is an embedding. A power of C is always
endowed with the product topology and the pointwise relations, i.e. the sets

@i; p):= {x€Ch:x(i) = p} with i€l and peC
form a subbasis for the topology on CI. For x, ..., x,6C! one has
(%15 - s X)EF & (VIED(X,(0), ..., X,(D))Er.

The subclass of Z consisting of all members isomorphic to a closed substructure of
a power of C is denoted by £. Symbolically, we write £=ISP(C).
The following lemma shows the interconnection between the categories . and Z.

Lemma 4.1. There exists a pair of adjoint contravariant functors D: ¥ —2,
E: 2-~2.

A pair (D, E) as in Lemma 4.1 is called a protoduality. The protoduality is called
a duality if for each algebra A in % the embedding e,: A—~ED(A) is an isomor-
phism.

Let 2,42 be the subcategory consisting of all structures isomorphic to some
closed substructure of a power of C. Then the duality (D, E) is called a full duality
between . and &, if for all X¢%&, the embedding &y: X—~DE(X) is an isomor-
phism. C is said to be injective in %, (with respect to some class .# of embeddings)
if for each embedding o: X—Y in 2%, (6€f), every continuous morphism
@: X—~C extends to a continuous morphism : Y—-C with oo=¢.

The next statements rest upon the following two conditions (IB) and (EF).
(IB) For every substructure X of a finite power C” of C, each morphism ¢: X—~C

extends to a term function @: C"—~C of C.
(EF) If X is a proper substructure of some finite Y€ £, then there exist two differ-
ent morphisms ¢, {: Y-C such that ¢/X=y/X.

Lemma 4.2. Let #=ISP(C) for a finite algebra C=(C; F). Let C=
={(C; t, R) be a (finite) relational structure where R is a finite set of compatible rela-
tions on C and R=ISP(C). Suppose the conditions (IB) and (EF) hold. Then the
protoduality (D, E) is a full duality between & and &, and C is injective in R,.

Now we assume that C admits a majority term function.

Lemma 4.3. Let C={(C; F) be a finite algebra with a majority term function.
Let R be the set of all binary compatible relations on C. Then the protoduality (D, E)
is a duality between & and R, and C is injective in %,. If (EF) holds, (D, E) is a full
duality between & and ;.
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We are ready to apply the preceding duality theory to obtain dualities or even
full dualities for varieties (quasivarieties) generated by two-element preprimal
algebras.

Theorem 4.4. Let 2,={({0,1}; F) be a two-element preprimal algebra
(2,€{A;, C3, D3, L,}). Ler 2,=({0,1}; ¢) be a finite relational structure with
F=Pol ¢ and A=I1SP(2;). Then the protoduality is a full duality between & and
R, and 2p is injective in %K.

Proof. By Corollary 2.2 for any two nontrivial compatible relations g,, ¢,
of a preprimal algebra A=(A4; F) we have F=Pol g,=Pol g,. Therefore we can
set 2,=({0, 1}; @) with F=Pol g. The algebras A,, Cs, and D, have majority term
functions. In view of Lemma 4.3 it is sufficient to prove that condition (EF) is satis-
fied. We define A,=({0,1}; =), C;=({{0,1}; 0), D;=({0,1}; N). In the first
case, if XcYeR,, Y finite, and ac Y\ X, then both (a]={y€Y: y=a} and (a)=
={y€Y: y<a} are ideals such that XN(a]=XN(a). Thus o¢,y: Y-{0,1},
p(x)=0=x=a, Yy(x)=0ox<a are two order-preserving maps which agree on X.
In the second case, let XY be a substructure of a finite Y€4%,, i.e. 06X and let
o, y: Y-C, with ¢(x)=0 and

0 if xcX
l“")={1 if x¢X.

Then ¢ and Y are morphisms, @=y¥ but @/X=y/X.

Now we consider D;. Let X Y€, Y finite,i.e. NXE X where N is a permu-
tation on Y with cycles of the same length 2 and without fixed points. Then we con-
sider two proper subsets X;, X,C X with X;={x€X: Nx€X,}, X,={x€X: Nx€Xy},
0¢X,, 1€X,, NO=1. From Nx=x, x€Y it follows X;NX,=0. Further, we have
X,UX,=X, X, and X, can be extended to Y, and Y,, respectively, such that
Y ={x€Y: Nx€Y,}, Y,={x€Y: Nx¢Y,}, Y,NY,=0, Y,UY,=Y. We choose

[0 if x€X; 0 if x€X,

) af xeX; 1 if xeX,
=1 i xernx’ YO TN i xern
1 if x€Y\JX, 0 if xeY\ X,

¢ and  are two distinct morphisms which agree on X.

Finally, we consider L,={{0, 1}, +, N, 0,1). Let £=ISP(L,) be the quasi-
variety generated by L, (& V). The term functions of L, are exactly all Boolean
functions which preserve a={(x,y, z, €): e=x+y+z}. Here x+y+z is the ternary
operation of the Boolean 3-group G,={{0, 1}; x+y+z). For L;=G; condition
(IB) is satisfied. ISP(G;,) is the variety of Boolean 3-groups. X being a proper subal-
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gebra of a finite Boolean 3-group Y€%,, we choose a maximal subgroup Z of Y
containing X. YN\ Z is simple and thus isomorphic to L,. Hence we have two homo-
morphisms Y--L, with kernels Z and Y, respectively, which therefore agree on X.
Thus condition (EF) is satisfied.

5. Application of the Equivalent Quasivarieties Theorem

In this section we prove that the quasivarieties generated by the preprimal alge-
bras A=, Ay, A, Aam, respectively, are equivalent as categories to the varieties
(quasivarieties) generated by the two-element preprimal algebras A, C;, Ds, L,.
We need the following Equivalent Quasivarieties Theorem [3].

Theorem 5.1. Assume that the protoduality (D, E) is a full duality between
¥ and R, and assume further that C is injective in Ry. Then a quasivariety A" is equiv-
alent as a category to the quasivariety & if and only if the following conditions are
satisfied.:

(i) there is a finite algebra Q in A" and a family R of compatible relations on
Q such that Q={(Q; R) is an object of R,
(i) (@ oA =ISP(Q),
(b) C is isomorphic to a subalgebra of a power of Q,

(iii) Q is injective in Ry (or equivalently, Q is a retract of a finite power of C),

(iv) for each positive integer n every morphism Q"—-Q is a term function on Q.
If A is equivalent as a category to &, then Q above can be chosen to be H(C).

Let 2,=({0,1}; F) be a two-element preprimal algebra and let 2,=({0, 1}; ¢)
be a relational structure with F=Pol g. We set £ =ISP(2,) and 2=ISP(2p).
By Theorem 4.4 (D, E) is a full duality between % and %, and 2; is injective in %,.
In order to apply Theorem 5.1 for the proof that the quasivariety generated by one of
the preprimal algebras A=, Ay, A, A, is equivalent as a category to the quasi-
variety % one has to show that conditions (i)—(iv) are satisfied.

Lemma 5.2. The variety generated by a preprimal algebra A< is category equiv-
alent to V, .

Proof. By Theorem 3.6 2 =ISP(Ax) is the variety generated by A<. It is
clear that C=A,={{0,1}; =), Q=As, Q=Ax=(4; =) fulfil the conditions
(i), (i) (a), and (iv). A, is isomorphic to the substructure of A= consisting of the least
and the greatest element with respect to =, i.e. (ii) (b) holds. Then the lattice P(4)
of all subsets of A is isomorphic to a finite power of A,, and the maps ¢ and t
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given by
o: A — P(4), o(a) = {xcA4: (x,a)¢ = for all ac 4},

T: P(4) -~ A;, 1(B)=supB forall BE 4,

are order preserving and such that gor=1, . Hence (iii) holds.

Lemma 5.3. The variety generated by a preprimal algebra Ay, is category equiv-
alent to Ve, .

Proof. By Theorem 3.6 we have .%’=ISP(A(,,))=VAM. For €=C;=
=({0,1}; 0), Q=Ay,, Q=A,=(4; b), conditions (i), (i) (a), and (iv) hold.
C, is isomorphic to a substructure of A, consisting of b and any other element of 4.
Hence (ii) (b) holds. We choose a positive integer n such that |4|=2". Then there
exist a monomorphism o: Ay, —({0, 1}"; 0) and an epimorphism 7: {{0, 1}"; 0)—~
—Ag, such that cor=1 Ay’ Hence (iii) holds.

Lemma 5.4. The variety generated by a preprimal algebra A, is category equiv-
alent 10 Vy, .

Proof. By Theorem 3.6, we have 9{=ISP(A)=VAS’. For C=D,=
=({0,1}; N), Q=A,,, Q=A,=(4; N), conditions (i), (i) (2), and (iv) hold. C; is
isomorphic to a substructure of A, consisting of any two elements a, b, a=b, of 4
with Na=b, Nb=a (|A|=2k). Hence (ii) (b) holds. We choose n such that
|A|=2". Without restriction of generality we choose As‘=({0, 1,..,2k—1}; N)
with N=(01)(23)...(2k—1 2k), and 2"=({ay, @y, ..., Gyn_,}, N). Then we can
define a monomorphism o: As’—>2” by o¢(i)=gq;, i=0,...,2k—1, and an epimor-
phism t: 2"~A; by t(a)=i for i=0,...,2k—1 and t(ay.)=i for i=0, ...
..oy 2"—2k such that aor=1As. Hence (iii) holds.

Lemma 5.5. 4 quasivariety XA is category equivalent to the quasivariety gen-
erated by L, if and only if it is generated by a preprimal algebra Aam.

Proof. Let #=ISP(L,) be the quasivariety generated by L,. By Theorem
4.4,for C=L,=G3={0, 1}; x+y+z), Z=ISP(L,) the protoduality (D, E) is a
full duality between . and %, and L, is injective in Z,.

Let & be equivalent to #=ISP(L,). Then by Theorem 5.1 (i), there exist.a
finite algebra Q in & and a family R of compatible relations of Q such that
Q=(Q; R) is an object of %,, i.c. Q is a Boolean 3-group and therefore Q is a finite
power of the two-element Boolean 3-group. By (iv), Q is a preprimal algebra of the
form A, with o, ={(x, y, z, ¢): e=x+y+z} and x+y +z the operation of a Boolean
3-group GIF={(4; x+y+z), |4|=2", m=1. Conversely, let ISP (A,) be the
quasivariety generated by A, . Taking Q=A, , Q=Gyg, (i), (i) (a), (b), and (iv)
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are satisfied. Since Gj is injective in %,, Q=G also is injective in %,. Hence (iii)
holds and ISP(A, ) is equivalent to ISP(L,).

Finally, by Lemmas 5.2—5.5 and Theorem 3.6 we obtain

Theorem 5.6. A quasivariety is category equivalent to the quasivariety generated
by a two-element preprimal algebra iff it is generated by a preprimal algebra of one of
the forms A=, Ay, A, (A4|=2k), Aam (|4]=2").
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Examples of local uniformity of congruences

IVAN CHAJIDA

Following [6], a congruence @ on an algebra A is uniform if every two congruence
classes of @ have the same cardinality. An algebra A is uniform if each @¢Con 4
has this property. A class of algebras is uniform if every algebra of this class has this
property.

It is well known that groups and Boolean algebras are uniform. Moreover,
every variety generated by quasi-primal algebras (i.e. a discriminator variety, see [7])
is uniform, see [6] or Theorem 2.2 in [7]. Some classes of uniform algebras are depicted
also in [3]. Although such “nice” varieties are uniform, W. TAYLOR [6] proved that
the class of uniform varieties is not definable by a Mal’cev condition. He introduces
the following concept: an algebra A is weakly uniform if for every cardinal m there
exists a cardinal n such that whenever B, and B, are congruence classes of some
©¢Con A4, if card B,=m then card B,=n. It was proven in [6] that the class of
varieties of weakly uniform algebras is definable by a Mal’cev condition.

For algebras with a nullary operation, we can give a local version of uniformity :

Definition. An algebra 4 with a nullary operation ¢ is c-locally uniform if for
each element a€ A4 .and each @¢Con 4, card [ale=card [c],. A class K of algebras
of the same type with a nullary operation c is c-locally uniform if each A€¢" has
this property.

It is clear that every uniform algebra with a nullary operation ¢ is c-locally
uniform and every c-locally uniform algebra is weakly uniform with n=card [c],.

Recall that an algebra A is regular if every two congruences on A coincide
whenever they have a congruence class in common. An algebra 4 with a nullary
operation ¢ is weakly regular (with respect to c) if every two congruences @, @€
€Con A coincide whenever [clg=[cls. A class " of algebras is (weakly) regular if
each A€ has this property.

Received January 23, 1985.
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Proposition (Lemma 2.6 in [5]). Every uniform-variety is regular.
We can prove a similar result for c-locally uniform algebras.

Theorem 1. Let ¢ be a class of algebras of the same type with a nullary opera-
tion ¢ closed under homomorphic immages. If o is c-locally uniform, then 5 is
weakly regular with respect to c.

Proof. Let ¢ be a nullary operation of a c-locally uniform class 2. Let 4 be
closed under homomorphic immages. Suppose A€X#’, @,, ©,6Con 4 and

(%) [cle, = [clo.-

In this case we have clearly [c]g1 A92=[c]91V98=[c]91=[c]92; without loss of gener-
ality, we can assume @,=6,. Denote by © the identity relation on 4/0,. By (%),
the congruences w=0,/0, and O,/O, of A/©,€4" have the same congruence class
containing the nullary operation [cle, of 4/®,. Thus

card [c]g,/e, = card [c], = 1.
Since A/O, is c-locally uniform, we have
1 = card [dlg,/e, = card [clg,9, = 1
for each acA, thus 0,/0,=w, ie. O,=0,.

The aim of this paper is to show that there exist important classes of finite alge-
bras which are c-locally uniform but not uniform. By Theorem 1, they must be weakly
regular. By [4], such algebras can be found among Heyting algebras, implication
algebras and other types of lattice ordered algebras with pseudocomplementation.

An algebra (L; V, A, -, 1) with three binary and one nullary operations is an
rp-aigebraif (L; \/, A, 1) is a lattice with greatest element 1 and - satisfies the follow-
ing identities:

(% %) xx=1, @NAy=yp, (x-p)Ax=xN\y.

Theorem 2. The class of all finite rp-algebras is 1-locally uniform but not uni-
form.

Proof. Let 2 be a class of all finite rp-algebras. Clearly 2" is not uniform,
because, e.g. the three-element chain C={0, a, 1}, 0<a<1, with a binary operation
- defined by

a-0=0,1.0=0 and x-y=1 for all other combinations of variables

is an rp-algebra but the partition {0}, {4, 1} forms a congruence on C which is not
uniform.
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We prove that " is 1-locally uniform. Let A€, z€ A, @¢Con 4. Since Aisa
finite lattice, the congruence class [z), contains a greatest element a. Put ¢(x)=
=a-x. We prove that ¢ is an injection of [z] into [1]g. If x€[z]g, then (x, a)€O.
Since ¢ is an algebraic function over 4, it follows that {p(x), ¢(a))={¢(x), a-a)=
=(p(x), 1)€0, ie. @(x)€[lle. Thus ¢: [zlg—~[l]le. Suppose @(x)=¢(y) for
X, y€[z]lg. Then a-x=a.y, whence aA(a-x)=al(a-y). By (% ), this yields
alAx=aly. Since x=a, y=a, we obtain x=y. Thus ¢ is an injection, and therefore
card [z]g=card s

Let L be a lattice and a, b€ L. An element x€L is called a relative pseudo-
complement of a with respect to b if x is the greatest element satisfying aAx=aAb;
denote it by axb. A lattice L is rélatively pseudocomplemented if a* b exists for each
a, be L. Then clearly L has a greatest element 1, and axa=1 for each ga¢ L. Clearly
the operation #* satisfies the identities (* %), i.e. we obtain the following

Corollary 1. Every finite relatively pseudocomplemented lattice is 1-locally
uniform.

Note that a finite lattice is relatively pseudocomplemented if and only if it is
distributive. Corollary 1 implies immediately (for the definition, see e.g. [7])

Corollary 2. Every finite Heyting algebra is 1-locally uniform.

Remark. By [4], a Heyting algebra is regular if and only if it is a Boolean
algebra. Every three-element chain O<a<1 with a pseudocomplementatlon is a
Heyting algebra which is not uniform.

Following [1], an algebra {4; -) with one binary operation is an implication
algebra if it satisfies

xyx=x, x)y=@-x-x x-(y2z=y(x-2).

As it was proven in [1], every implication algebra A has a nullary operation 1 such
that a.a=1 for each acA.

Lemma 1. Every implication algebra is a \ -semilattice with greatest element 1
with respect to the operation a\/b=(a-b)-b.

For the proof, see Theorem 3 and Theorem 4 in [1].

Lemma 2. (Theorem 5 in [1]). Let A be an implication algebra and a, bé A.
If p is any lower bound for a and b (with respect to the semilattice ordering), then
the infimum aAb of a and b exists, and aAb=[a-(b-p)]-p.

Theorem 3. The class of all finite implication algebras is 1-locally uniform but
not uniform.

6*
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Proof. Let A4 be free implication algebra with two free generators a, b. By the
Corollary of Theorem 2 in [1], A has the following diagram (as a V-semilattice):

1

b-a 0’ b

a

Clearly the equivalence ® given by the partition
{b * a’ l}’ {as (a ’ b) ) b}’ {a ) b}’ {b}

is a congruence on A4 which 1s not uniform.

Let A4 be a finite implication algebra, @¢Con 4 and z€A4. By Lemma 1, there
exists a greatest element a in [z]g. Put @(x)=a-x. Clearly ¢(@=a-a=1. If
x€[z]e, then (x,a)c® which implies (@p(x), (@)={p(x), 1)€0, ie. p(x)E[l],.
Thus ¢ is a mapping of [z]g into [1]g.

We prove that ¢ is an injection on [z]g. Suppose x, y€[z]y and @ (x)=¢(»).
Then a-x=a-y. Since x=a, x=a-x and y=a, y=a-y, therefore x is a lower
bound of a and a- x, y,is a lower bound of @ and a-y. By Lemma 2, aAa-x and
ala-y exist,and a-x=a-y impliesthat a-xAa=a-yAa. By Lemma 2, a.-xAa=
=[(@-x)(a-x)]-x=1-x=x, and analogously a-yAa=y. Hence x=}.
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On the category of S-posets

SYED M. FAKHRUDDIN

0. Introduction. Gereralizing usual posets as well as semilattices both of which
have been treated from categorical viewpoint in [5] and [8], we study in this article
the category of posets acted on by a pomonoid S and the action satisfying the usual
properties. Qur main results are:

(i) adjunctions from our category to the category of usual posets,

(i) a structure theorem for projective S-posets, and finally

(iii) if S is a pogroup, our category admits injective hulls.

1. The category of S-posets — SPOS. Let S be a pomonoid which is not
necessarily commutative and let E be a poset. We call E a left S-poset (the adjective
“left>” would be omitted in the sequel) if S acts on E in such a way that (i) the action is
monotonic in each of the variables, (ii) for s, 1€.S and x€E we have s(tx)=(st)x
and (iii) ex=x where e is the identity of S and sx stands for the result of the action
of s on x. Let us call such an order on E an S-order. A morphism from an S-poset E
to another S-poset F is 2 monotonic map which preserves S-action. The class of S-
posets and morphisms evidently forms a category, which we denote by SPOS.

2. Congruences in SPOS. An equivalence relation @ on an S-poset E is called
a congruence ifs @ is compatible with the S-action on E and the quotient set E/@
can be endowed with an S-order so that the canonical surjection is a morphism in
SPOS. Let now @ be an equivalence on E compatible with S-action and
A={4,, 4,, ..., A,} be a finite sequence of distinct equivalence classes of ©. A
is called a ©@-chain if each class in A contains an element which is smaller than some
element of the following class. Then @ is a congruence iff no element belonging to a
member in a O-chain is smaller than an element of a previous member in that chain
(cf. [4], p. 177 or [1], p. 42).

If @ is a congruence on E then the induced S-order on E/@ is given by [a]=[b]
iff there is a @-chain from [a] to [b]. Moreover, every equivalence relation R on E

Received October 10, 1984, and in revised form April 15, 1987.
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compatible with S-action generates a congruence @p: a @b iff there is an R-chain
from [q] to [b] and another from [b] to [a] (cf. [1], p. 46 or [4], p. 182). Finally if @,
and @, are congruences on E such that ©,=0, then the unique map E/@,—~E/@,
is a morphism.

3. Standard constructions in SPOS. Let E be an S-poset. The usual notions of
S-subposet, S-subposet generated by a subset X of E and convex S-subposet, etc., can
be defined in the obvious way. The convex S-subposet generated by X will be denoted
by (X).

The usual definitions of monics and epimorphisms carry over to SPOS. However,
an epimorphism need not be surjective. Let f: E~F be a surjective morphism. Then
one can check that ker /=@ is a congruence over E and E/@, equipped with the
smallest order making the natural surjection E--E/@ an order-preserving map,
is isomorphic to F. Let {E;};c; be a family of S-posets. Then the categorical product
is the usual cartesian product with product order and the coproduct is the disjoint
union.

The equalizer of f,g: E—~F is j: G—~FE where j is the natural injection and G
is given by G={x|x€E: f(x)=g(x)}. The coequalizer is F—F/® where O is the
congruence generated by the binary relation R over F, where aRb iff there exists an
x€E such that the sets {f(x), g(x)} and {a, b} are the same in F.

By [7], Theorem 1 and its dual on page 109 we have

3.1. Theorem. SPOS has arbitrary limits and colimits.

There is another construction which is peculiar to SPOS. Given a family of S-
posets {E;};cp indexed by a poset P, the ordinal sum []° E; of the family is the dis-
icP
joint union and obvious S-action; the order relation is now given for x, y€ [[° E; by
icP
x<y if x€E; and y€E; with i<j orelse x=y in E;=E;. The ordinal sum has
the universal mapping property (UMP): given a family f;: E;,— F* of morphisms
such that for x€E;, y¢E; with f(x)=f;(y) in F, there exists a unique morphism
f ‘[[ ° E;—~F with f-j,=f; whére j; is the canonical injection of E; into the ordinal
€pP

sum.
4. Free S-posets. Let P be a poset. Then a free S-poset over P is a pair (E, ¢)

where E is an S-poset and ¢: P-E is a monotonic map such that for every monot-
onic map ¢ : P—F into an S-poset F, there is a unique morphism f: E—~F such

that y=f" .

'4.1. Theorem. Given a poset P there exists a free S-poset E over P and E is
unique up to isomorphism. :
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Proof. Let E= [[°S where S;=S for each i and ¢: P—~E given by

¢ (i)=e, the identity of S in S;. Then the UMP of the ordinal sum implies the UMP
for the pair (E, @) as given above and the uniqueness is clear.

We shall denote the free S-poset over P by F(P). It is isomorphic to PX S where
Px S is the product poset with lexicographic order and S-action only on the
second component.

The subset B={b,=(i, )} of PX S has the property: every element of PX S
is a unique multiple of one (and only one) member of B and if b;<b; then for any
s, t€S, sb;<tb;. If we call such a family an ordered base, then clearly an S-poset £
is free over a poset P iff E has an ordered base {x;};cp indexed by P. In this case
Sx;=(x;). The poset P is called the order type of the free S-poset E. Then two free
S-posets E and F are isomorphic in SPOS exactly if their order types are isomorphic
in POS — the category of posets.

Not all S-posets are free even if S is a pogroup. For example, let E be the set Z
of all integers and S be the full permutation group of E. Then S acquires a poorder
from the natural order of Z and the resulting S-poset E is not free.

Let E be an S-poset. Consider the free S-poset over the poset E, F(E)=EXS
with the map ¢: E—~EXS defined by ¢(x)=(x,e), then there is a unique mor-
phism II: EXS—~E defined by II((x, s))=sx such that II-¢=I; and we have
F(E)/ker I=E. Hence

4.2. Proposition. Every S-poset is the quotient of a free S-poset.

Remark. For a systematic study of standard constructions in ordered algebras
we refer the reader to [2] and [3].

5. Some functors. An ordinary poset can be considered as an S-poset with
trivial S-action. Let POS denote the category of posets and U be the inclusion func-
tor. In this section, we shall find a left adjoint H to U and study the properties of the
resulting adjunction.

First observe that a morphism from an S-poset to a poset is just a monotonic
map which is constant on each orbit Sx for x¢E.

5.1. Proposition. Let E be an S-poset. Then there is a poset H(E) and a mor-
phism hg: E-~H(E) such that for any morphism f: E~X into a poset X, there exists
a unique monotonic map f: H(E)~X with f-hy=f.

Proof. Let @ be the congruence on E generated by the binary relation aRb
iff there exists s€ S such that sa=b. More specifically define x@y for x, y€E if
there exist elements x=ay, 4y, ..., a,=y such that Sa,NSa;,,#0. Let H(E)=E/O®
and hg be the natural morphism: E—E/©. Suppose f: E~X is a morphism into a
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poset X. Then clearly ker f=©@ and so there exists a monotonic map f: H(E)—~X
such that f.hy=f.

Now if f: E~F is a morphism in SPOS, the above construction implies that
there exists a unique montonic map fy: H(E)—~H(F) such that f,-hg=hp-f
and the correspondence (H(), ()g) defines a functor from SPOS to POS. Let
ng=U-hg: E-~UH(E) be the natural homomorphism. Then we have

5.2. Theorem. H is left adjoint to U.

Proof. The correspondence 5: Ipos— UH is clearly a natural transformation
such that #;: E—~UH(E) isuniversal — from E to U for every E in SPOS. Then the
assignment @f=Uf-nz: E-~U(X) for f: H(E)—~X establishes a bijective corre-
spondence between the respective hom-sets. Now the theorem follows (by [7], Theo-
rem 2, condition (i), p. 81).

Remark. The unit of this adjunction is n and the counit &: HU—~I,os is
the natural order isomorphism.

Now let us discuss the associated monad of this adjunction ([7], p. 134). This is
given by (UH; n: Igpos—UH; p: UHUH~UH) where p assigns to every object
E in SPOS the map U-ey.,,: UHUH(E)~UH(E) given by the rule [[x]] mapped
to [x] for each x€E.

If (T, n, p) is a monad in a category X, then an Eilenberg—Moore algebra (in
short: EM-algebra) is a pair (x, h) where x is an object (the underlying object of the
algebra) and h is an arrow h: Tx—~x of X (called the structure map of the algebra)
with the following properties:

(i) hTh: T?x—~x is the same as h-pu, (associative law),

(ii) h-ny: x—>T,—~x is the identity on x ([7], p. 136).

Hence applying this general definition to our situation, we find that an Eilen-
berg—Moore algebra for the monad above is a pair (E, g) where E'is an S-poset and g
is a left inverse for Az such that the associative law above holds.

A morphism f: (E, g)—~(E’,g’) of Eilenberg—Moore algebras is a morphism
in SPOS such that g’ f,=f-g.

Now consider the category of EM-algebras (SPOS)”. This gives rise to an ad-
junction (HT, U, 57, e7): (SPOS)—~(SPOS)” in which H" and U” are given by the
respective assignments

(E,g) — E Ew (UH(E), ug)
uT 1!' 1/' and HT lf 1UHU')
(E',g)—F’ E’ — (UH(E"), 1)

and nT=n and eT(E, g)=g for each algebra in (SPOS)T (cf. [7], Theorem 1, p. 136).
The monad defined by this new adjunction on SPOS is the same as the original monad.
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Also, this new adjunction is related to the original adjunction by the comparison
functor. This functor K is from POS to (SPOS)”T with U’K=U and KH=H".
This is defined by K(P)=(U(P), Ugp) for any P in POS and K(f)=U(f):
{(U(P), Ugp)~(U(P), Uep.) for any morphism f in POS ([7], Theorem 1, pp. 138,
139). When this functor K is an isomorphism, the functor U is called monadic. In
the present case U is indeed monadic, and we shall indicate the proof.

A functor G: A—X creates coequalizers for a parallel pair f,g: a—~b in A
when to each coequalizer u: Gb—~z of Gf, Gg in X there is a unique object ¢ and a
unique arrow e: b—c with Gc=z and Ge=u and when, moreover, this unique

arrow is a coequalizer of fand g. Also a fork a =:b—>c in a category is called an
absolute coequalizer if it remains a coequalizer under the action of any functor. Hence
in particular it is a coequalizer. By Beck’s theorem ([7], Theorem 1, p. 147), the func-
tor U: POS—SPOS is monadic iff U creates coequalizers for those parallel pairs
£, g in POS for which Uf and Ug has an absolute coequalizer in SPOS. Now this is
easily verified, since a coequalizer is surjective both in POS and SPOS. Hence we
have

5.3. Theorem. The inclusion functor U is monadic.

On the other hand, let F be the free S-poset construction. Then it is easily seen
that F defines a functor from POS to SPOS and let V be the forgetful functor from
SPOS to POS. The map &,: P—F(P) associated with F is a natural transformation
from Ipogto F. Let dp=V&,: P-~VF(P). Then J, is a universal arrow from P to
V. Hence we conclude

5.4. Theorem. F is left adjoint to V.

The unit of this adjunction is é and the counit is the canonical epimorphism
(Prop. 4.2) I1: FV~Ios. The associated monad is given by (VF, S: Ipos— VF,
o: VFVF—~VF) where ¢ assigns to every object P in POS the map VI, from
VFVF(P)—~VF(P) given by the rule ((p, €), ¢) of VFVF(P) is mapped into (p, e)
of VF(P) for P in POS.

Now an Eilenberg—Moore algebra for the monad above is a pair (P, h) where P
is a poset and h: VF(P)— P is a left inverse for §: P—VF(P). Using the method of
((7), Theorem 1, p. 152) we can show

5.5. Theorem. The forgetful functor V is monadic.
Summarising we have

5.6. Theorem. In SPOS the functor UV which trzvzahses S-action has a left
adjoint FH.
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6. Projective S-posets. An S-poset E is called projective if every epimorphism
to E is a retraction.

By 4.2 an S-poset E is projective iff it is a retract of a free S-poset. The following
theorem gives a characterisation of a projective S-poset similar to the one valid for
projective modules.

6.1. Theorem. Let E be an S-poset. Then E is projective iff there exist maps
h: E~E, g: E~S with the following properties:
(i) h is a monotonic map which is constant on {x) for x€E.
(ii) g preserves S-action, and if x, y€E, x=y, h(x)=h(y) then g(x)=g(»).
(iii) g(x)h(x)=x for every xCE.

Proof. Suppose E is projective. Then I1: EXS—~E given by II((x, s))=sx
is a retraction, so there exists an S-morphism f: E~EXS where f(x)=(h(x), g(x))
such that IT((h(x), g(x)))=g(x)h(x)=x for every x€E. Thus it remains only to
check conditions (i) and (ii) above.

Since f is monotonic A is also monotonic. Also, if y=tx for some t€S then
[(x)=(h(tx), g(tx))=tf (x)=t(h(x), g(x))=(h(x), 1g(x)). Thus h(tx)=h(x) and
g(tx)=1tg(x). If, however, ax=y=bx then f(ax)=f(y)=f(bx). Therefore (h(x),
ag @)= (h(»). eM)=(h(x), bg(x). Thus h(x)=h(y) and ag(x)=g(»)=bg(x).

Conversely, given h and g a priori satisfying the above conditions, define
f: E=EXS by f(x)=(h(x),g(x)). Then by (iii) (II-f)(x)=x for every x€E.
Also  f(tx)=(h(tx), g(tx))=(h(x), 1g(x))=1(h(x), g(x))=1f(x) and if x<y then
h(x)<h(y) or else g(x)=g(y). Then (h(x),g(x))=(h(»),g(»)) and thus fis an
S-morphism and E is a retract of a free S-poset, so it is projective.

Since the map h factors through h;: E—~H(E), we have a different, but equiv-
alent formulation of the theorem above.

6.2. Theorem. Let E be an S-poset. Then E is projective iff there exist maps

W:H(E)-E and g: E—~S with the following properties:
(i) K" is a montonic map.

(ii) g preserves S-action and if x=y, W' ([x])=Hh ([y]), then g(x)=g(y).

(iii) g(X)H'([x])=x for every x€E, where [x] is the class of x in H(E) for xcE.

Example. If E=XXS, the free S-poset over X, then h: XX S—+XXS is
given by h((x, s))=(x,e) and g: E~S by g((x,s))=s.

Call an ideal J in S projective if J is a projective S-poset. Then we have

6.3. Theorem. An S-poset E is projective iff E is isomorphic to an ordinal sum of
the form [[°J;z; where z; is a suitable element of E and J, is a projective ideal of S
icl

with the property
(i) there exists an s,€J; such that s;z;=z;, and
(ii) a=b in J; exactly if az;=bz,.
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Proof. Projective property is stable under isomorphism and ordinal sum, hence
sufficiency is clear.

Conversely let E be projective and h: E—~E, g: E~S be the functions given in
Theorem 6.1. Then the equivalence classes E; of h are convex S-subposets. Let
h=h|g, and g;=glg. By the previous result E; is projective with the aid of the
maps g; and A;; also A; is constant on E; and (g;4;)(x)=x, so g; is an isomorphism.
Thus g,(E)=J; is a projective ideal of S and if h;(E;)=z,€E; then J;=J;z;=E,.

Consider E’'= ]J]° E;= [l[ ©J,z;. Then E’is projective and as sets E=E’. However,
fer er
the identity map x=g;(x)z; is a bimorphism, so in particular an epimorphism from

Eto E’ and since E’ is projective this is an isomorphism.
6.4. Corollary. Over a pogroup G, all projective G-posets are free.

7. Complete S-posets — completion — injectivity. An S-poset E is complete
if E is a complete lattice and given a family of elements {x;} in E and s¢S we have
s(Vx;)=Vsx; where V denotes the supremum. A morphism between complete
posets is complete’if it preserves supremum of arbitrary family of elements.

A completion of an S-poset E is a pair (E*, ¢) where E* is a complete S-poset
and ¢: E—~E* is a monomorphism with the property that ¢(x)<¢(y) exactly
if x<y in E and for any other pair (F, {) with the above data there exists a unique
complete morphism f: E*—F such that f-¢=y.

7.1. Theorem. Every S-poset E admits a completion, which is unique up to iso-
morphism.

Proof. The proof is essentially the same as that of Theorem 2 in [6].

Now call a monomorphism f'of an S-poset strict if f(x)<f(y) exactly if x<}y.
An S-poset E is injective if given a strict monomorphism g: 4—B and a morphism
f: A—E, there exists an extension of fto B, h: B—~F such that h-.-g=f.

7.2. Proposition. An injective S-poset is complete.

Proof. If E is an injective S-poset and (E*, ¢) its completion then by the de-
finition applied to the identity morphism on E, ¢ is a coretraction. Hence E is
already complete.

For a converse, we have

7.3. Proposition. Let G be a pogroup. Then a complete G-poset is injective.

Proof. Let E be a complete G-poset and g: A—~B be a strict monomorphism
of S-posets and f: A—~E be a morphism. For b¢B we define h(b)= V f(a).
g9(a) Sb

Now h(b) exists in E and clearly h is monotonic; moreover, since g is strict, we have
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h-g=f. For s¢G we have
hisp)= V fx)= V f(sa) = S(g(a\)/sbf (a)) = sh(b).

g(x)=sb ga)=b
Further sh(b)=sh(s~Y(sb))=ss~'h(sb) which gives sh(b)=h(sb). Thus h(sb)=
=sh(b) and h is an S-morphism.
Noting that a minimal injective extension is a hull, we have

7.4. Corollary. IfG is a pogroup, then the category of G-posets admits injective
hulls.
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On the minimal ring containing the boundary
of a convex body

IMRE BARANY

1. Let KcR? be a convex compact set with boundary C. For each point x€K
there exist a minimal circular disc B(R(x), x) containing K and a maximal circular
disc B(r(x), x) contained in K, where B(r, x) denotes the disc with radius r and cen-
ter x, '

The function R(x)—r(x) attaines its minimal value in a unique point x,€K.
This was shown by BONNESEN [1], Bonnesen and FENCHEL [2]. So the circular ring
around x, with radii R(x,) and r(x,), respectively, is the minimal ring containing the
boundary C of K.

This result was used by Bonnesen and Fenchel [2] to sharpen the isoperimetric
inequality in R2. Later 1. VINczE [7] showed that

min {R(x): x€K} _ ﬁ

@ R(x) =72
and
@ max {r(x): x€K} -2

r (%)
and these inequalities are sharp.

Answering a question due to I. Vincze we genetalize the inequalities (1) and (2)
to arbitrary dimension. To do so we need a theorem characterizing the minimal ring
in R% For d=2 and d=3 such a theorem was found by Bonnesen [1] and by
KRriTikos [4]. The main tool in the proof of our results is the use of convex analysis
(see: Viopde — Tuxommpos [3] and ROCKEFELLAR [5]).

2. Again, let KcR? be a convex compact set with boundary C. B(r, x) stands
for the ball with radius r and center x. For x¢K we define

R(x) = min{R: B(R,x) 2 K},
r(x) = max {r: B(r, x) € K}.

Received January 18, 1985.
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1t is easy to see that the maximum and minimum above exist, so the definition is
correct. Moreover, this means that for each x€ K there exist points p and g such that
p,q€C and | x—p|=R(x) and ||x—gqll=r(x). In this case we say that p supports
R(x) and g supports r(x).

Theorem 1. There exists a point x,€K in which the function R(x)—r(x)
attaines its minimal value. This point x, is unique.

The set {x€R?: r(xp)=|lx—x,/l=R(xy)} is called the minimal ring containing C.
The characterization theorem for the minimal ring is this:

Theorem 2. The point x,€K is the center of the minimal ring if and only if
there are points p., ..., p,€C supporting R(x,) and q,, ..., q,€C supporting r(x,)
(k,I=1) such that

Pi—Xo . . _ Gi—Xo . . _ : } -
conv{ RGo) - i=1, ...,k}ﬂconv{ o) 1j=1,.., 1 =0,

where conv denotes the convex hull.
There is a certain converse to this theorem. We describe it when x,=0.

Theorem 3. Let py, ..., Dys G5 ---» 4; be vectors in R? such that
@ lpll=...=lpll=R=r,

(i) lg:ll=...=lgll=r=0,

(i) {p/R: i=1, ..., k}Nconv {g,/r: j=1, ..., I}#0,

(iv) each p; is contained in the halfspaces

{x€R*: {g;,q;—x)= 0} (j=1,..,0D).

In this case there exists a convex compact set KCR? for which R(x)—r(x) attaines
its minimal value at x,=0, R(0)=R, r(0)=r and R(0) is supported by p,, ..., p,€C
and r(0) is supported by q,, ..., q,€C.

Now we give the generalization of the inequalities (1) and (2).

Theorem 4, For d=3, max r(x)/r(x,) isnot bounded from above. On the other
hand, for d=3,

. 1 1 0
min R(x)/R(x,) = 5 [cos2 &y +cos ay— 1 +m) = 0.8054,
where 0y€(0, nf2) is the root of the equation sin®a—2 cos® a=0. This inequality is
sharp.

3. This section contains the proofs. We start with some simple facts and obser-
vations.
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Claim 1.
R(x) = max [x—pll = max lx—pl,

r(x) = inf |x—p| = min |x—pl,

and the points in which the maximum (minimum) is attained support R(x) (r(x), re-
spectively ).

Claim 2.

. X1+ X 1
@ R(ZE% < L (RGw) + Rex)
and if equality holds here, then there is a unique p&C supporting R((x;+x.)/2)
and this point lies on the straight line through x, and x,, and p supports R(x;) and
R(x5) as well.
X1+ X 1
(b) 2 (——12—3—) = (rxD)+r(xy)
Proof. (a) Let pcC be a point of support for R((x;+xp)/2). Then
pEB(R(xy), x;)NB(R(x,), x5} and the triangle-inequality proves the claim.

(b) Obviously conv (B(r(xy), x1) UB(r(x,), %)) EK and an easy calculation
shows that _

B[ r(x) ;—r(xg) , 2 ;xZ] S conv (B(r(xy), X)) U B(r(x,), x2)).

Proof of Theorem 1. By Claim 2, R(x) is a convex, r(x) is a concave func-
tion. So R(x)—r(x) is convex and attaines its infimum. What we have to show is the
uniqueness of the minimum. This will be done by showing that x;, x,€K, x;#x»
and R(x))—r(x)=R(xy)—r(x)=h implies that R((x;+x,)/2)—r((x;+x,)/2)<h.

Convexity implies that R((x;+x5)/2)—r((x,+x,)/2)=h, so assume, by way of
contradiction, that R((x;+xp)/2)—r((x,+x;)/2)=h. Then by Claim 2, we have
R((x;+x2)/2)=1/2(R(x;)+ R(xs)) and a unique point p€C supporting R(xy),
R(x5) and R((x,+ x,)/2) and p lies on the straight line through x, and x,. Without loss
of generality we suppose that x; lies between x; and p on this line. By our assumption
R(x)—r(x)=R(xx)—r(x;), s0 B(r(x,),x;)SB(r(xy), x;), and then there is a
unique point g€C supporting r(x,) and this point lies on the line segment joining
X, and p. But K contains the set conv (B(r(x,), x;)U {p}) and this set contains g in
its interior. This contradicts the assumption

x1+x2)__ [x1+x2)_
R( 3 r 5 =h 0O
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For fixed p€C define Z(p) as the set of unit outer normals to K at p, i.e.,

Z(p) = {zeR": |lz| = 1,{z, p) = max(z, x)}.
Define now
I = {(p, 2)ER*X R: z€Z(p)}.

It is clear that I' is compact.
Claim 3. (a) R(x) = max {{z, p—x): (p, 2)€T},
(b) r)=min {(z p—x): (p, €T}
Proof. (a) Clearly for each (p, z)€o
(zp—x) = |lz] - |p—x] = |p—x|l = R(x).
If p, supports R(x), then (py, ((po—x)/llp—xl)€I' and

Do—X >
S py—x) = R(x).
Ipo—x] * o ()

(b) Trivially {(z, p—x)=r(x) for each (p,z)eI'. On the other hand it is easy
to check that if p, supports r(x), then Z(py)={po—x/llpo—x|} and

Po—X
|po — x|
Using Claim 3 the function r: K—~R' can be extended over the whole space
R% It is again easy to see that the extended r(x) is concave, and so the function
R(x)—r(x) (x€RY) attaines its minimal value at xo€K only.

R po—x> =r(x). O

To prove Theorem 2 we need some definitions and theorem from convex analysis.
Definition. Let f: R*~R be a convex function. The set .
f (x) = {x*€R%: (x*,z—x) = f(2)—f(x) (for every z€R%}
is the subgradient of f at x.

It is well-known that the subgradient of a finite convex function is nonempty,
‘convex and compact.

Theorem A (Fenchel, Rockafellar—Moreau, see [5]). Let f: R‘~R be con-
vex, g:R!=R concave functions, finite over the whole space. Then f(x)—g(x)
attains its minimum at x, if and only if

0€df (%0) + B(—£)(x0).

Here the last addition is meant in the Minkowski sense; (—g) is a convex func-
tion so d(—g)(x,) is its subgradient at x,.
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Theorem B (Modpe — Tuxomupos [3]). Assume I' is compact and the map
y—(x}, a,)ER*XR. is continuous. Let f(x)=sup {(x}, x)+a,: yéT'}. Then f: R’~R
is a finite convex function and df(xg)=conv {x}: yeI and (x}, Xo)+a,=f(xo)}-

Now we are réady to prove Theorem 2.

Proof of Theorem 2. First by Theorem B
. dR(x,) = conv {—z:A (p, 2)ET, {z, p— xo) = R(xp)},
d(=1)(xo) = conv {z: (p, 2)€T, (z, p— Xo) = 1(X0)}-

By Theorem A, R(x)—r(x) is minimal at x, if and only if for some x*E R, x*€OR(x,)

and ——x*€3( r)(xp). But x*€IR(x,) is the same as x =—Zaz, for some

=0, Z a;=1 and z; with (p;, z)€I, (z;, pi—Xop=R(x,).
Thls is true if and only if z;=p;— x,/| p;— x0||, i.e., if p; supports R(xo) Simi-
larly — x*€0(—r)(x,) is equivalentto —x*= 2’ B;w; for some B;=0, Z’ B;=1 and

w; with (g;, w,)€T, (w;, q;— Xo)=r(x,). In this case again w; —(ql—xo)/llqj xoll and g;
supports r(x,). These conditions imply that R(x)—r(x) is minimal at x, if and only if
there exist points pi, ..., p€C supporting R(x,) and ¢, ...,q;€C supporting
r(x,) such that

conv{pl‘((_—xf)": i=1, ...,k}ﬂconv{—q-’(T j

So we are finished with the proof. We mention that k=1 (or /=1) implies
that K is a ball. Further, it can be shown that if conv P(conv Q=@ for some
P, QcR?, thenthere are subsets P’S P and Q' SQ suchthat conv P’Nconv Q' =0
and |P’|+|Q)'=d+2. This means that we can suppose k+/=d+2 in Theorem 2.

I mention here that the “only if” part of Theorem 2 can be proved in a simpler
way: Set P={(p;—xo)/R(xo): i=1,...,k} and Q={(g;—xo)/r(xp): j=1,....1}. If
conv PNconv Q=#, then there is a hyperplane separating P and Q with normal
acRY, say. One can easily see that R(xy)>R(x;+a) and r(xg)<r(x,+a) which
shows that R(x)—r(x) cannot attain its minimal value at x,.

=1, ...,l} = 0.

Proof of Theorem 3. Set

Knin = conv (B(r, 0)U{py, ..., p}).

Ko = BRON() (52 <03 9= = 0}
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It is easy to see that both K, and K satisfy the conditions of Theorem 2 with

xo=0 and p,, ..., px, 41, -.., q,- Moreover, any convex compact set K with K, &
CKCK,,, will do the same.

Proof of Theorem 4. First part. We construct a convex compact set Kc R?
for each d=3 such that max r(x)/r(x,) is “large”.

Let Py, Pz 415 92 be the vertices of a square such that ||pyf| =[Pl =llg:ll =llg.ll =1
and the length of the diagonals p, p, and q, g, is 2—¢ (where ¢>0 is small). The hy-
perplanes (g, ¢;—x)=0 and {g,, g,—x)=0 meet in an affine flat 4. The halflines
starting from the origin in directions p, and p, meet 4 in the points p,=Rp; and
ps=Rp,. Consider the set X ,, from Theorem 3 with p,, p, and ¢, ¢,. A simple
calculation shows that

2

R(0)=(s—%]—1, 7(0)=1, and maxr(x):(s—%z-]—llz.

So we have
max r(x) ( e’]-”z
—_— =l —
r(xo)

4
which indeed tends to infinity as £—0.

Second part. Let KcR? (d=3) be convex compact body and suppose that
R(x)—r(x) attaines its minimal value at x,="0 and r(x)=1, R(x;)=R. By Theorem 2
there exist points p,, ..., p; supporting R(x,) and ¢, ..., g, supporting r(x,) with

conv{p/R:i=1,..,k}conv{g;: j=1,..,1} =0,

and we may assume k,/=2, k+I/=d+2. Then conv {p,,...,p;} is a simplex
whose nearest point to the origin is p, say. Clearly |p,—pol=...=|pi.—p,] and
the angle between the vectors p; and p, is the same for each i. Denote this angle by «.

Now the halfspaces (g;,q;—x)=0 (j=1, ...,1) have to contain the simplex
conv {p;, ..., p} and so the point p, as well. On the other hand, for some j=1, ...,/
the angle between the vectors g; and p, is not larger than « for otherwise

conv{p/R:i=1,...,k}Nconv{g;: j=1,...,1} = .
This implies that
0={(g;,9,—pPy) = 1—{q,P0) =
= 1—1lq,]| - || ol c0s (€(g;0po) = 1— Rcos®a.

Consider now min R(x)=¢ and set R(X)=p, x€K. Then B(p,X) contains the

points py, ..., p, and the ball B(1, 0), so it contains the point py=—p./ll p,ll as well.
We are going to give an estimation from below for the radius of the smallest ball
containing the points p,, py, ..., py. It is clear that the smallest ball containing
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D1s .- Py 1S B(Rsin o, py) and so Rsin a=g. However if || p,—pol=R cos ¢+ 1>
>R sin a, then B(R sin «, p,) does not contain p,. In this case, using some elemen-
tary geometry, we get the estimation

14+2Rcosa+ R?
o=
2(14+ Rcosa)

Define now
sina if Rsine = Rcosa+1,
S (R,a)=1 1+2Rcosa+ R?

2R+ Roos®) otherwise

where R=1, 0=a=n/2 and Rcos?a=1.

What we have to do is to find the minimum of fin the domain determined by
these inequalities. This is a routine calculation. The main steps are:

1) for R fixed f(R, &) is monotone non-decreasing, so the minimum is attained
on the curve Rcos?a=1;

2) on this curve the minimum of f'is equal to

—%—(cos2 g+ oS ag— 1 +cos— ap)

where o, is the solution of the equation sin?x—2 cos® =0 with 0=a,=n/2.
This proves that

min R(x) 1

1
———————— — 2 —
@ R(x0) = 5 (cos op+-cos og— 1+ oS % )

Finally we give an example showing that equality can occur here for d=3,4, ....
Again, let Py, P», q1, g» be the vertices of a square such that the diagonals p,, p,
and ¢,, g, meet in a point ¢ and the angle between ¢ and P,, p,, g1, 4o €quals o.
Now set p= cos~2a, p; and p,= cos~2«, P, and apply Theorem 3 with the vectors
P15 P2» 41 g2 tO get the convex compact set K ;.. An easy calculation shows that for
K., (4) holds with equality.

Acknowledgement. The author is indebted to professor I. Vincze for raising the
problem and for fruitful discussions. .
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OO0 ogHOM HHTEPHOJIAMOHHOM HpoLecce 3pM1rra—(I)euepa
IpH yJabTpachepuvdecknx y3/ax

II. J. BEPMAH

1. IIycts C MHOXeCTBO BCceX (yHKUuii, HeNPEPLIBHBIX B [—1, 1]. ns Ma'rpnum
JHCEJT
(m) {x™), k=1Ln n=12 ., —1<=xP <xP<..<x <1,

crpoum monusoM H,(f, X) cTemenu 2n—1, OAHO3HAYHO ONMpENCAIOIIMHCT H3 YC-
nosuit  H,(f, xX™)=f(x™M), H/(f,x™=0, k=1,2,...,n. Knaccaveckas Teopema
JI. ®eitepa [1] yrBepxmaeT, 9T, €CITH n-51 CTPOYKA MATPHILL (M) COCTOHT H3 YHCEI

(1) X = cos ZE=DT s n=1,2, ..,

2n
TOo Ang moboit f€C BHIMONHAETCS paBHOMepHO B [—1, 1] cooTHomEHHE
(2) Hn(f» x) g f(x)’ n — oo,

Xopol1o u3BecTHO, uyTo Mpouece {H,(f, xX)} Ha3EIBaeTCs MHTEPHOIAUMOHHBIM IPO-
neccom IpmaTa—Peiiepa. .

Iycts nonuroM H,(f, x) mocTpoeH I n-H CTPOYKM NIPOU3BOJIBHON MAaTpPUIBL
y3i0B Buma (m). Hapsay ¢ monuromoMm H,(f, x) paccMoTpuMm monuaoM F,(f, x)
cTemeHd 2n+3, KOTOpbIi OJHO3HAYHO OINPENENSETCA W3 YCIOBHM

F(f, x) = f(x™); F(fi £D = f&1); E (LX) =F(+£1)=0,
k=12,..,n

B [2]—{3] aBTOp M3yuan mpouecc {F,(f, x)} mwif cuyyas y3iaoB
XD = 1, X = cos (k= 1)n/2n), k=Tn, x50 =—1, n=12,.

Oxa3ainock, YTO 3TOT NMPOUECC, MOCTPOeHHEIH Wit f(x)=|x|, pacxomuTca B Touke
x=0. B [4] 6pu10 HOKa3aHO, YTO OH pacxoamTca Bcrony B (—1, 1). Takoe ke yTBepx-

ITocrynano 5-oro mexabps 1984.



102 H. JI. Bepman

IeHHEEe MMeeT MecTo miAd f(x)=x" u ma f(x)=x opu x#0 [5]—[6]. B {7]—[8]
u3ydancs npomecc Dpmuta—Peiiepa npu y3nax

(my) x((,"“) =1, x{+D = cos ((2k— 1)75/2"), k = m, n=12,..,
(my) x0H0 =—1, x{*D =cos(k—1)n/2n, k=1,n, n=12,..,

Brsuto goka3zaHo, 4ro mpomecc DpmuTa—®Peitepa, nocrpoennsii mist f(x)=|x|
npwH y3nax (m,) pacxogutes B kKaxznoi Touke u3 [—1, 1). Ecnm xe 3ToT mponecc noc-
TPOHTH IpH y31ax (M), TO OH pacxoauTes Bcroay B (—1, 1.

Ha nepBrIii B3 MOXET MOKAa3aThCH, UTO 3T OTPHLNATENBHEIE PE3YJIbTATHI
CBA3aHLI C OTCYTCTBHEM NpOW3BONHOH y yHxkmum f(x)=|x| B Touke x=0. Ho
3TO He TaK, ubo B [9] ycraHOBAEHO, 9TO Nponecc DpmuTa—Deitepa npu yznax (m,)
st f(x)=x pacxonpures Beroay B [—1, 1). C apyroi cTopoHsl, IPOCTOH IPOBEPKOH
MOXHO yOeOuThCH, YTO mpomecc Dpmuta—Deitepa npd y3nax (m,) ans f(x)=
=(x—1)? cxomarcs paBHOMepHO B [—1, 1]. TI03TOMy BO3HHKAET BOIPOC O HAXOX-
JIeHHA HeOOXOOHMBIX M HOCTATOYHBIX YCAOBMEH IIf (QyHKOHH AJd PAaBHOMEPHOM
CXOMMMOCTH Tponecca pmura—Deiiepa npm MaTpuie y370B (m;). AHAIOTHYHLIH
BOOPOC BO3HMKAET JUIS MATPHIHI y3JI0B (M,y). DTHM BOTIPOCaM, B OCHOBHOM, M TOC-
BAIIEHA 3Ta 3aMeTKa. AHAJIOTMYHAX 3ajaya BO3HHUKAET Takxke A Tpoilecca
{F,(f, x)}. Ona u3y4anace B [10]. PaccMoTpeHHe OymeM BecTH Uit HEKOTOPOTO
KJIacCa MATPHIL Y3JIOB, BKITFOYAIOLIETO MATPHIIL! y3J10B ufs KOpHeil ynbTpachepuuec-
xax mommHomoB {J(x)}, rme —1/2=a<0. Henasug R. Boianic [13] m3yyan
3Ty 3azauy aid y3a0B (1), YTOo COOTBETCTBYET TOMy, 4To o= —1/2. Crueayer moa-
YepKHYTh, YTO HAIlle PacCCMOTpeHHEe COBEpIIEHHO 3JEMEHTApHOE H He MONb3yeTcs
ACHMIOTOTHYECKAMA (QOopMydaMM [ji1 HOAHHOMOB SIko6wH.

2. XopolIo U3BECTHO, 9TO NpH Nr060it MaTpulle y310B (m) nmojauHoM H,(f, x)
MOXeT ObITh Hpe[CTaBlIcH B BUIC

3 H(x)= ké; SO (%), B (x) = h(x) = [ (P (x),

1900 = b)) = Gy @) = 0() = ] (x- 3,

B () = %ilx) = 1- 0" () — 5?) (0 (xf)

U3 opnosuwaunoctn nonunoma H, (f, x) cneayer, 410

ShO)=1 n=12,..
k=1
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Bynem roBopuTh, 4T0 MaTpuua y3noB (m) obaapaet csoiictBoM (F), eciid BBIMOII-
HSIOTCS YCJIOBHS:

) AP(1)=0, k=1, n=12..;
2) lim 3 xPh(1) = 1;
A0 k=1
3) cymectByer KoHeunsii mpemen lim 3 (™ (1)]2
k=1

O603Ha4nM "epe3 4 moaMHOXKeCTBO n3 C, cocTosllee U3 Beex byHkuui f(x), uMero-
IEx Jesyro mpoussodHyio f’(1). Beegem ¢yrkunoHan

4) %(f) = Hy(f, D)2+ (0,(D/e,(M)Lf (1)~ Hy(f, D],

n
rae @,(x)= JJ (x—x™) u uncna {xM}7_, cOCTABNAIOT n-y10 CTPOYKY MATPHIE (m).
i=1

Cnpane,unmaa cleayromada JjeMma.

Jlemma. Hycme @yuxyuonan o,(f) nocmpoen npu mampuye yzaoe (m), obaa-
daroweit ceoticmgom (F). Toz20a das aoboti f€A cywecmsyem KoHeuHblil "lin; o,(f)

U 6bINOJAHAECMCA PABEHCMBO
&) lim a,(f) = ((1 +d)/2) f'(D),
2de d=lim > [IP(L)P.

o =1

HJoxa3zatenbcTBO. MBI YaCTO OIyCKaeM BEPXHHIf HHIEKC # pajd IPOCTOTEHI
nucbMa. Q4eBuaHO, YTo d=0 — xoHe4yHoe uncio. W3 (3) monydmm, uto

(6) H(f, )= 21 SO ROV (D) + 2L EMF(D).

OueBHIHO, YTO

, Wi ()7 (x)
KW =~ P i—mr

Tlociie DpoCTHIX BBIMMCIECHUH HMEEM

o) _(;_ai(h
on(x ) (1 — x)? ,(1)

Ky = - (1-x).

Tloatomy
o” (x) 2 20°(1)

RO W+ 2L EOV = (L3 -2 py+ 2 n.
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Otcroma # m3 (6) moAy4uM, 4TO

20 (1)
w(1)

o HEy=-F L0 5 L0 ‘x") r)+ 22D g0y,

W3 (4) u (7) BiTEKaeT, 9TO

®  an=-3 3L nw-1 3L 5y T0 s
k=1 23 Xk w(1)

TTonoxum B (8) f(x)=1 u yurem, 4uro u3 (4) cineayer, 4To B 3ToM cnydae a,(f)=0.

Crano 6niTh, U3 (8) BLIBOAUM, YTO

w(l) 12 n 1

Hoacrtasnas (9) B (8), monyuum, 4ro
(10) o, () = 7, ;”'Mh (1)+ ZMF(I) S 4+ 8SM,

ITo ycnoeuto cyirectayer f'(1). IloaTtomy no &=0 MoxHO HaiiTu Takoe 6 >0, uro

an MOS0

< g,

ecma 1 —x,<d. Tax Kak th(1)=1, TO
k=1

(12 s~ L0 = 3 S{LALG) iy,
U3 (11) u (12) BBITEKAET, 4TO

S
2

SD—f (%)

1—x;

a3 |S- =S (D) I (D).

=5, 2 Wty 3

—x, =8

Cornacto yciaosuto 1) Teopemsr 1 4,(1)=0, k=1, n. Tostomy u3 (13) monyuaem,
9TO

(14) 1S1—f"(1)/2] = ¢/2+(1/2)21f1/5 + If’(l)l)l_xZ;a (1),
ree [|fll= _max | f(x)|. 3ameTum, 4TO
1s) 3 () =1/ 3 (- x0h(D),
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4 4TO AN MaTpums! obnaparowneii ceoiictBoM (F)

(16) lim 3 (1— x(")h{ (1) = 0

LE o = |

Y3 (14) u (15—(16) BBBOOMM, 9TO

) lim S = 1(1)/2
PaccmoTpum Tenepb SU. OueBuiHO, 4TO
k=1

rae dk=k§i I}(1). ScHo, uTto

a0 fsp-LR%) =3 Zrwrg 3 FRELE- o,

ITockonpky MaTpula y3i0B obnamgaer coiictBoM (F), To cyliecTByeT Takas KOHC-
n
tagta C,>0, 4TO Z IM(DP=C,, n=1,2,.... ostomy u3 (19) BBHIBOOUM

(20) 17 —f'(1) d/2} = 801/2+(1/2)(2Ilfll/5+lf (l)l) 2 k).

—xk_

OueBuAHO, UYTO

2D 2 k1) =@/5) Z' (1= xR (D).

1-x,=3
W3 ToxaecTra

x= Znh()+ 3 (e-%) B)
clenyer, 4To

) .:331 (1= x)B(1) = 1—5"; % hy(1).

W3 ycnoBug 2) MaTpHIE! y3n0B, obnanaromneit cBoficteoM (F) u u3 (22) monyunm,
910

(23) lim Z' (I-xM)UP (P = 0.

ITosTtomy m3 (20), (21), (23) BHIBOOHM, 4TO
(24) lim S{ = £/(1)d)2,

u6o ,}Lnalo d,=d. N3 (10), (17), (24) Burrexaer (5).
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3. Unrepnonsmuonnbii nonaaoM Q,(f, xX) Opmuara—Deiiepa cTenenu 27+ 1
ana togek xP<x <. <xP<1 onpegenserci ogHO3HAYHO H3 YCIOBHIL

O.(f, x™) = f(x™), Qufix™) =0, k=1n, Q(f,1)=r(1), Qf,1)=0.

IMonoxum

(25) ra(fs x) = ry = Qu(f, X)— Ho(f, x).
U3 oupepenenns nonuomos Q. (f, x) u H,(f, x) numeeM, uTO
(26) r, = @*(x)(4x+ B),

roe A 1 B onpefessioTCs U3 CUCTEMBl YpaBHEHHUH
o*()(4+B) = f()—H,(f, 1),
20(1) @’ (1)(A+ B)+ Aw*(1) = — H}(f, 1).
Orcroma # w3 (26), mocie MPOCTHIX BBEIYHCIICHUH, IONYyYHM, YTO
Q1) = 2(of ()@ (1)1 = X) o, (f) +(@F (x) @3 (D) (f (1) — Ha(f; 1)),
roe o,(f) onpenmenserca cormacHo (4). Temepp MoOXHO [OKa3aTh CIEAYIOLIYIO
TeopeMy*.

Teopema 1. Ilycms unmepnoaayuonnsii npoyecc {Q,(f, x)} nocmpoen 0asn
fed npu mampuye y3nos (m), obaadaroweli ceoiicmeamu:
D K" (x) =0, 1x|=1,

2) lim Zn'(x,((") " (x)=x', i=1,2, pasnomepro & [—1,1].
n--co p_2

3) Cywecmsyem xoneuntiii npedes lim 2 IO

4) Buinoansemca HepaseHcmeo |w,(x)| =Cylw,(1)], 2de |x|=1, C, — konuc-
manma.

5) |w,(=D|=|w,1)], 20e m,,(x)=k]] (x—xM) u (X0 _. cocmasasiom n-yio

=1

cmpouxy mampuybl (m).

Tozoa 0an pasmomepnoii cxooumocmu npoyecca {Q,(f, x)} k f(x) e [—1,1]
Heobxo00umo u docmamourno, umobsl gvinoanasocy ycaogue f'(1)=0.

HoxkaszatenbcTBO. JJokaxeM clepBa AOCTATOYHOCTH. U3 (3) ¥ u3 ycmosus 1)
TeoepeMs! 1 crenyet, uro onepatop H,(f, x) mosoxatensHslit. IloaToMy U3 yc1oBus

2) Teopemst 1 m u3 paBercTBa D, i (x)=1, B cuny Teopemsr II. IT. Koposknna
k=1

*) OrmeTHM, YTO BCE Pe3yabTaThl 3TOH CTaTh# 6e3 Tpyma mepeHOCATCA HA Ciywail, xoraa
mponecc Dpmura—deliepa CTPORTCA Mtst MaTPHIR 3o — 1<x{M <x{ <., <x™, n=1,2, ....
Venosre f’(1)=0 3amenserca ycnosreM f/(—1)=0.



HHTepnonsaumonHsli npoiecc Ipvmra—Deiiepa 107

[12], 3axmrovaeM, 9T0 O mroboii f€ C BeImOJHSETCK paBHOMEPHO B [—1, 1] cooTHO-
menge H,(f, X)~f(x), n—>eo. _

Crano 6wITB, HyXHO OOKa3aTh, yTo mpum f’(1)=0 sBemommsercs B [—1, 1]
PaBHOMEPHO COOTHOIINECHHE

(28) r(f,x) -0, n—oo.
W3 ycinoswmit TeopeMbl 1 HEMOCPEACTBEHHO CICAYET, 9TO

(29) 7 (f, )| = 4C,loa () + Col (1) — H,y(f, DI

ScHo, uTo MaTpuna y3noB obianaer cBoiictBoM (F). ITosToMy npuMmeHrMa JIeMMA.

Otcrona, mockoasky f'(1)=0, To momydaem, 4To ,}Ln.l o,(f)=0. Kpowme TorO, H3

(2) caenyer, uto f(1)—H,(f, 1)>0, n—>e. IloaTomy u3 (29) BoiTexaer (28).
Heobxomumocts. ITonoxumM B (27) x= —1 u yd4TeM, YTO 1O YCIOBHIO

lw,(— 1) =]w,(1)]. TostoMy B3 (27) moyyumm, 4TO

(30) 0.(f, =)= H,(f, = 1) = 4a,()+(f () — H (£, 1)).
IIo ycnosuro '}Lrg 0,(f, —1)=f(—1). Kpome TOro, corjacHo 2) uHMeeM
}Lr{lo H,(f, + D=f(£1). Cramo 6wts, H3 (30) 3ammoyaeMm, 4TO '}Lrg o, (f)=0.

Otcrona B cuiy neMMsl BeiBomuM, uto ((1+d)/2)f'(1)=0. Tak kak d=0, To oT-
crofa monyyaem, yro f'(1)=0.

4. IIycts n-st CTpoyuKa MATpHIBI (M) COCTOMT M3 KOpHel momuHoMa w,(x)=
=w(x)= ﬁ (x—x™). Cornacno JI. ®eiiepy [11] MaTpuua (m) sBiseTcs g-HOpP-
i=1

MaJIBHOM, €CliM CYHIeCTBYeT Takoe uncino g0, 4to Bcioay B [—1, 1] BemmosHsAeTCA
HEPAaBEHTCBO

B(®) = 1= (x= X (@) > 0> 0, k=Tom, n=12, .,

roe {xM™)}i_, — xopuu w,(x). JI. @eitep [11] poxasan, 4ro, ecitm MaTpuua (m)
COCTaBJIeHa U3 KOpHeil monuHOMOB SIko6u J@P)(x), rome —1<a,, B,<—7y<0,
n=1,2,..., ay— CkoJIb yTOJHO MaJIo¢ (HHKCHPOBAHHOE YHCIIO, TO OHA Q-HOPMAJlb-
gas. I'. TprouBansa [14] mokasan, 4To Ipe ¢-HOPMANBHOM MaTpwIle y3J0B (m)
s moboit f€ C Bemonnsercs B [—1, 1] pasroMepHO cooTHOmeHME (2). IToaTomy
43 TeopeMs! 1 BEITEKAET

Teopema 2. ITycmb mampuya y3406 (M) g-HOPMAALHAA U RYCMb GbINOAHAIOMCA
yeaosua 3), 4), 5) uz meopemur 1. Tozda 0 pasnomeproii cxodumocmu npoyecca
{0.(f, x)} x f(x) 6 [—1, 1] Heobx00umo u docmamouro, 4mobol 8bINOAHAAOCE YCAOSUE
f(1)=0. MapuM IOpuHIOXEHHE TEOpPEeMHI 2 K CIyyalo, Korja MaTpuma y3joB (m)
cocTaBlieHa H3 KOPHell ynbTpachepuieckux mommaomoB JO(x), —1/2=a<0. Jas
3TOro HyxHa cieayromas Teopema JI. deitepa [15]
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Teopema (JI. ®eiiepa). Ecau n-a cmpouxa mampuys: (M) cocmasaeHa u3 KopHei
noaunoma Axobu J*P(x), n=1,2,... u a, B ydoesemeoparom Hepasencmeam
—1<a, f<0, mo cnpasedauswt pasenmcea

@31) lim 3PP = - Ve
32) lim 3 [~ ) = — 1B;
(33 lim SEOCF =1, <1

V ®deiiepa [15] paBenctsa (31) u (32) uMeloT cenylOILMii BHA:

(34) lim 370 (0F = 1/(1-28);
(35) lim 30 (- D = 1/(1~29)

u6o oH monb3yercsa obo3HaueRHssME CTuntbeca [16], roe o 1 f COOTBETCTBYIOT B
Hammx o6o3navennsax (f+1)/2 u («+1)/2. PaBerncTsa (34) u (35) npuBoAATCH TaKXKe
B pabore I'. FprouBanbaa [14]. Ilo moBoay noka3aTenbcTBa 3Toi TeopeMel Peitep
[15] mameT ,,Auf dem beweis werde ich hier nicht eingehen”. ¥V I'prorBansna [14]
TaKXe HET JOKA3aTeAbCTBA. MHE HEM3BECTHO, [JIe M3IOXEHO NOKA3aTeNHECTBO YIIO-
MsHYTOM Teopemsbl Peiiepa. IlosToMy A 371eCh BKpaTHoe H3HOXy €€ IoKa3aTesbeT-
Bo. Mpes sToro moxa3aTeNbCTBa, MJIA Clydas HOJWHOMOB JlexaHnpa, MpHHamTe-
xut JI. deiiepy [15].
PaccMoTpuM ciepBa ciiy4aif, korga x=1. BeeaeM ¢QyHKOHIO

(36) fx) = (1+x)/o(x),

rie ¢(x)=(1+p(1—x)—a(l+x). OueBumuo, ut0 @(—1)=2(1+p)=0, wubo
B=—1. ¢(1)=—2a¢<0, ubo mo ycmonuo oa<0O0. Ilockombky @(x) — nuHelHas
GyHKOHA OT X, TO OTCIOJa 3akniodaeM, 910 ¢@(x)=>0, B [—1, 1]. 3naunT QyHxous
(36) menpeprisaa B [—1, 1. ITosToMy cornacrHo ymomsaHyToil Teopeme I'. I'proii-
sanbna [14] BomonHAETCS paBEHCTBO

@37) lim 3 FGORO DU DF = £ D).

Ho dysxuas (36) BreGpana Tak, uto f(xMVP(1)=1, k=1, n, n=1,2, .... Crano
65ITD, (37) NprHAMaeT BHA:

lim 3 [ () = — 1/a.
nwoo Ty
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AHajlorHIHbIM 06pa3oM nokasbiBaeTcs paBeHCTBO (32). HokaxeM Tenepb paBeHCTBO
(33). Urak, nycrb a — duxcupoBannoe uucno u3 (—1, 1). Beegem dyurmmuio

(38) [1(x) = A=x")/p:(x),

roe ¢, (X)=¢,(x, o, H=(a+p+Dx*+[(a—B)—(¢+B+2)d]x+1—a(e+p). Hoc-
KOJIbKY @,(x, o, f) — nuHeiiHas QYHKIHUSL OT o0 U S, TO HETPYAHO HPOBEPUTH, YTO
npr x€[—1,1], —1+p,=a=0, —1+79,=4=0, ¢(x, a, f)=0, npustoM y,>0 —
ckoJsb yrogHo manoe uucio. Cornmacao teopeme I'. I'proaBanbaa [14] nmeem, uto

(39) lim 3 AR @UP@F = £@, al <1,

6o f;(x) vempepsisHa B [—1, 1]. @ysxmus f,(x) Beibpana TaxkuM o6Gpa3om, 4TO
LGV Pa)=1, k=1,n. Mosromy (39) MpHEAMAET BH.: ‘

(40) lim 300 @F = i@, ol <1

U3 (38) Bugno, uto fi(@)=1. Hosromy (40) copmamaer ¢ (33).
Ione3yscey Teopemoii JI. Deitepa [15] MoKHO H0OKa3aTh TAKYIO TeOpeMy

Teopema 3. Ilycmb n-2 cmpouxa mampuysl (In) cocmoum U3 KopHel yaAbmpa-
cgepuueckux noauromos J@(x), z0e

@1 ~12=0a<0,

u nyemo f€A. Toz0a Oaa pasnomepnoii cxodumocmu npoyecca {Q,(f, x)} x f(x)
8 [—1,1] wHeobxo0umo u docmamouno, umober evinosHasoce ycaogue f['(1)=0.

Hoka3zaTenbCTBO. ITA TeopeMa HEMOCPEACTBEHHO CIENYET M3 TEOPEMBI 2s
ub0 BCE YCIOBHS TEOPEMEI 2 BBINQNHEHEL. IelicTBETENBHO, npd BoimonHennn (41)
MaTpHIa y310B (m) g-HopmaibHast. Kak u3BecTHo, Ipu o = —1/2, |[J@(x)| =|J9(1)],
|x|=1. Crano 6viTh, BEmIONHAETCS ycJioBHE 4) B3 Teopemsl 1. [ yabTpacdepn-
yeckux NonuEOMOB [JP(—x)|=|J@(x)|. TTo3TOMy BBHIONHSETCA YCIOBHE 5) W3
teopems! 1. B cuny (41) n (31) BemoaHseTcq yenosre 3) u3 Teopemsl 1. UTak, teo-
pema 3 mokasaHa.

B ¢BsA3M ¢ 3TOH Teopemo#l BO3HHKaeT BONPOC O HAXOX/IEHUM aHAOra 3TOH
TeopeMsbl, Korna HepaBeHCTBa (41) zamMensiorcs yenosueM of(—1, «)\[—1/2, 0).
BepositHO, mns pemeHus 3T0ro Bonpoca OyayT moJjie3Hble HCCIEAOBAaHHS SZABADOS
[17]n P. VErTEST [18]—[19].

3ameuannme. Kak BUOHO U3 MOKAZATENBCTBA JIEMME! YCIOBHE, YTO CymIecT-
ByeT KoHeuHbiii lim d,=d<c MOXHO 3aMEHHTb YCIOBHEM, 4YTO CYIUIECTBYET
n-—-oco
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J@o d,=d<o> W Torga paBeHCTBO (5) 3aMEHHTCS PaBEHCTBOM
"1112 (a(N= (1 +d)/2)f (1) =0,

KOTOpoe IOCTAaTOYHO Iid Aoxa3aTtenbcTBa Teopeambr 1. ITostomy B Teopeme 1
MOXHO paBeHCTBO lim d,=d <o 3aMeHATH paBeHCTBOM lim d,=d<<. Xopomo
N> -0

u3secTHO [11}, uTo mns g-HOpManbHOI MaTpump! y3noB d,=1/p. IlosToMy B 3TOM
cnydae [im d,<eo. Crajo GbITh, W3 TEOPEMB! 2 MOXHO HCKIIOYMTH YCIOBHE 3).
n—-oo

JI. ®eiiep [11] mokazai 410, eciiu MaTpULa y3/10B (M) COCTAaBJICHA M3 KOPHER 1IOJIH-
HoMmoB Skobu J“P(x), rne —1<a, f<—y, y — CKoNp yroguo maioe (puKCHpo-
BaHHOE YMCNO, TO

S UO WP = max (— 1o, —1/B), xI=1,
k=1

TMosToMy TIpH AOKA3aTeNBCTBE TEOPEMHI 3 MOXHO oGolTHCH 6e3 TeopeMsl JI. de-
tiepa (cM. ctp. 7). Beipaxaro GiarogapHocTh pedepeHTy 32 TIOJIe3HBIE 3aMEYaHUsA.
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A note on optimal interpolation with rational functions

THEODORE KILGORE

Introduction. This note provides a further application of results derived in [7],
which dealt with polynomial interpolation.

Let Y be the space of rational functions whose numerators are of degree n or less,
with denominator

Q(1) = (1—ty41)... (0~ tysm)-
If nodes of interpolation ¢,, ..., #, are chosen on an interval, [a, b] such that
a=ty<t <..<t,=b,
and such that
tx€lte, 1) for ke{l,...,n},
it is possible to construct fundamental functions y,, ...,y, such that y,(t,)=4y;
(Kronecker delta) for i€{0, ...,n} and for j€{0, ...,n}, by means of the formula

o) ik (t=1)

=96y L=y
J#i

One defines an interpolating projection L: Cla, b]-Y by
Lf = 2 f(t)y: for feCla, bl
i=0
Clearly, L is bounded, and
LI = H_Z;Inlll-
Our purpose here is to minimize ||L|.

Notation. We define, for i€ {1, ..., n}, X; to be the function (in Y) which agrees
with Jzn' |y;l on theinterval [1,_,, ], 4=X,(T}), and T, as the point in (#,_,, t,)
=0

Received March 11, 1985.
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at which 4; is attained. We note that
X/(T)=0, for ie{l;...,n}.
Results.

Theorem. If interpolation is done on an interval [a, b] with rational functions
having denominator

Q(t) = (t_ tn+1)"'(t_ tu+m)
and nodes of interpolation t, ..., t,, such that

a=ty<..<t,=b<tyyy<..<lyims
then , )

(i) interpolation of minimal norm is characterized by the Bernstein condition [1]
that Ay=...=12,, which is produced by a unique choice of nodes;

(ii) the quantities 2., ..., A, obey the Erdgs condition [3] that if one of them is
greater than the common value given in (i), another is less;

(iii) the norm of interpolation is governed by the ratio (b—a)/(t,;1—b). Specifi-
cally, the norm increases without bound as b—t, ., and decreases as b—a, with lower
limit equal to the norm of optimal Lagrange interpolation with polynomials of degree n
or less.

Corollary 1. The above theorem also holds when the space of mterpolatzon con-
sists of all multiples of the function

(t_ tn+1)k""(t - tn+m)k"'
by a polynomial of degree n or less, with k;<0 for je{l, ..., n}.

Corollary 2. Some or all of the points t, .y, ..., t,1,, can be to the left of t,
as well as to the right of t,, and the above results are still valid.

Proof of Theorem. One notes that the functions
oAjot; = —y (T X/ (t;), i€{l,...,n}, j€{O;...,n}

exist and are continuous in #y, ..., ¢,. The points T, ..., T,,, of course, depend in an
analytic fashion upon the nodes. .
All of our results will follow from properties of various submatrices of

- (a)'l/atj i, j=1s
which represents the derivative of the functxon

(s s t) = (A1 ooy A)
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We define 4; for i€{l, ...,n} to be the matrix obtained by deleting the it
column and n'* row of A. To prove (i) and (ii) of the theorem, it suffices to show
(1) det 4,70 for ic{l,...,n} for arbitrary #y, ..., tyypm,
and ’
(2) det 4; alternates’ in sign on {1, ..., n}.
To prove (iii), it is enough to prove
(3) det A=0.
To show (1) and (2), we first perform some row and column cancellations. For
J€{1, ..., n}, the j* row of A is given by '

— V(T X (t)... =y (T) X, ().
It is possible therefore to multiply the /" row by the “denominator” of y;, namely by

n+m

Q(t oy U

Ij

When this procedure has been completed the /** column, for i€ {l, ...,n+m} is of
the form

——T—:_ ]=] i— ;) X (t,),

and the non-zero quantity ]] (T;—t;) may be divided from the i** column. Follow-
ing this operation by multlphcatlon of the i*® column by Q(T}), the matrix is left in
the form : .
[ X;(tl) X, (t) |
T1 S

Xl(tn) X (1)
Iy _.Tl t,,—:[;,

Now, it is possible to multiply the j/* row by (Q(#;))?, and the expression

a(t) = %%(Q(x))?,, ie{l, ..., ntmi)

is a polynomial of degree n+m— 2 or less which is evaluated at the successive points
t, ..., t, down the i column of the matrix.

sl
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Clearly, the roots of the polynomials (#— T;)q,(t) will strictly interlace on the
interval {7}, =], and it is possible to choose points 7}, ,, ..., T,,,, With

L<ti<Thi<..<Thim

such that the following conditions are satisfied by q,, ..., g,. .
(i) Each polynomial ¢; has exactly one root in each of the subintervals (7}
T;41), J€{1, ..., n+m~1} of the interval [T}, T, ,], except that g; has no root in
(P ) for i€{l, ...,n+m—1}, nor in (T;_,, T;) for i€{2, ..., n+m}.
(i) q,(T)#=0 for i, je{l, ..., ng-m}.

Proposition. Let polynomials qy, ..., 4,4, and points T, ..., Ty, satisfy
(i) and (ii), and let points t,, ..., t,_, be situated so that

L<ti<Diy<..<Thy<ty<T,.
Then, for k¢c{l, ..., n},
det (qi(tj))1§;in,1§j§n—l # 0.

A proof of this Proposition appears in [7)]. :

At this point, (1) and (2) follow. To prove (3), we need only to note that, in the
present context, n— 1 may be replaced by n in the above Proposition, with k=n+-1
and the proposition still holds, permitting one to analyse what occurs as #,—~f, or
t,~1,+1, subject to the condition A;=...=4,.

This completes the proof of the Theorem. Corollary 1 is now established by a re-
examination of the steps of matrix cancellation, leading to a similar system of poly-
nomials gy, ..., g,. Details of a similar argument appear in [7]. Corollary 3 can clearly
be obtained by a slight modification of the above Proposition.
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Operators of Toeplitz and Hankel type

VLASTIMIL PTAK and PAVLA VRBOVA

. In the present note the authors investigate abstract analoga of classical Toeplitz
and Hankel operators and extend to these more general classes some of the results
known from the classical theory. The investigation is based on the use of isometric
dilations of contractions and on the properties of their Wold decompositions. In
particular the unitary part of the isometric dilation plays a decisive role. To explain
the genesis and motivation of our investigation let us recall some of the classical facts
which are essential for our considerations.

We denote by T(¢) the Toeplitz operator on H2defined for f€ H? by the formula
T(¢)f=P.of where P, stands for the projection operator of L2 onto H? and ¢ is
an L~ function, the symbol of T(¢). The projection onto the orthogonal complement
H? =10 H?* will be denoted by P_. Since P,ZP_=0 we have P, ZP, ¢(z)zf(z)=
=P.¢(2)f(z) forevery fe H2 If Sstands for the shift operator (multiplication by z)
on H? this relation may be restated in the form

S*T(9)S = T(e)

and it turns out that the relation S*A4S=4 is characteristic for Toeplitz operators
on HE
There is another important class of operators which may be characterized by a
similar relation. Hyponormal operators are defined by the inequality TT*=T*T
and may accordingly be characterized by the existence of a contraction C such that
T*=CT. Hence
CTC*=T*C*=(CT)*=T

so that T satisfies a relation of the same type.

In a paper on hyponormal operators [4] C. Foias and B. Sz.-NaGy used dilation
theory to show that for each hyponormal operator T acting on a Hilbert space $
there exists a normal operator N on a suitable Hilbert space ®, a unitary operator

.. Received November 20, 1984, and in revised form April 23, 1986.
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U on ® and a contraction X: $—® such that T=X*NX while N*=UN and
[X*Ugl=1X*g|l for all g€®.

The relation T=X*NX is clearly an analogon of the formula T=P, p{H?2: X
replaces the injection operator H2—L?, N replaces the symbol ¢ and X* plays the
role of a projection of ® onto $. Starting from this observation these two authors
developed a theory of Toeplitz type operators [3] where the L™ function ¢ is replaced
by an abstract symbol.

It is interesting to note that the relation N*=UN implies N=UNU?*. Indeed,
N=(UN)*=N*U*=(UN)U*; it is one of the purposes of the present note to
explain the importance of this relation.

In the classical case there is a parallel theory for Hankel operators. Starting from
a @¢L~ we define H(p): H2~H?> by the formula H(p)f=P_¢f. Since
P_zP, =0 we have

H(9)zf = P_zp(2) f(2) = P_zP_¢(2) f(2) = P-zH(9) f

so that

H(p)S = ZH(9)
if Z denotes the operator g—~P_zg on H2 . Again, this relation turns out to be char-
acteristic for Hankel operators from H? into HZ.

In the present paper we intend to show that the class of Hankel operator also
has an abstract analogon and propose to out line a theory of symbols for operators of
Toeplitz and Hankel types.

To obtain the symbol for an operator 4 on H? satlsfymg the relation S*4S=4
we first use this relation to extend A to the whole of L?; it turns out that this extension
commutes with the shift so that it coincides with the operator of multiplication by
an L= function ¢. The operator 4 appears then as a compression to H? of this mul-
tiplication operator M (o). :

In the sequel we shall view the symbol of A as this multiplication operator rather
than the function generating it — this is possible in view of the isometric isomorphism
between L™ taken as an algebra and the corresponding algebra of multiplication
operators.

To obtain a symbol for an operator X: H2—~H? satisfying XS=ZX we use
first the theorem on intertwining dilations to obtain an operator from H? into L2
intertwining S and M(z); extending its domain of definition to the whole of L2 we
obtain an operator which commutes with M (z) and which yields the original operator
as a compression, this time from H?2 into H% .

Observe that Z=P_M(z)|H: and that M(Z)=M(z)* is the minimal iso-
metric dilation of S*. A similar situation obtains in the general case.

In a manner of speaking the construction of symbols for generalized Toeplitz
and Hankel operators proceeds — in its early stages — along similar lines as in: the
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classical theory; at a certain point, however, difficulties present themselves which have
no counterpart in the classical case. In particular, a relation of the type XS=ZX
alone is not sufficient to characterize a class with satisfactory properties. We intend to
show that, in the general case of abstract Toeplitz and Hankel operators, it is also
possible to.construct a symbol which is characterized by a certain commutativity
relation and as a compression of which the given operator may be reconstructed.
The investigations of B. Sz.-Nagy and C. Foias indicate the important role played
by the space R, the unitary part of the Wold decomposition of the isometric dilation of
the contraction T by means of which the abstract Toeplitz operator is defined. The
results of the present note seem to confirm the hypothesis that this space forms the
natural domain of definition for operators which should play the role of an abstract
symbol both for Toeplitz and Hankel operators. The main difficulty seems to lie in
the fact that the Wold decomposition is trivial in the classical case, the isometric
dilation of S* being unitary, so that little help can be expected from 1mrned1ate anal-
ogies. : :
It turns out that the methods presented below work even in the more general
case when a Toeplitz operator X is defined by the relation X=T,XTy where T}
and T, are two arbitrary contractions acting on the spaces $, and $, which may be
different from each other in general. In this manner we hope to eliminate results
whose validity is essentially based on the equality T,=T,; at the same time, this
generality does not seem to be excessive. We still obtain analoga of the Kronecker
theorem as well as of the identity

T(oy)—T(o)T(W) = H(e*)*H().

In a paper on operator equations [1] R. G. DouGLAs considered operators satis-
fying X=T,XTj. His investigations proceed along different lines; nevertheless, his
ideas provided inspiration for some of our methods.

The paper is divided into five sections: In the first section we list some technical
facts from dilation theory which will be needed in the main text.

Section two contains a short exposé of the theory of Toeplitz operators In spite
of the fact that the emphasis of this note is on Hankel operators it is, in our opin-
ion, useful to include this short section. Our approach differs in details from that of
Sz.-Nagy and Foias, the differences being motivated by the necessity to prepare the
ground for the theory of Hankel operators. Since we intend to represent Toeplitz
and Hankel operators as compressions of their symbols (like in the classical case) we
use the term symbol in a slightly different way — nevertheless there is a one-to-one
correspondence between symbols in our sense and those used by Sz.-Nagy and Foias.
This makes it possible to present a unified theory for both types of operators.

Section 3 contains the definition and basic properties of Hankel opreators includ-
ing a generalization of the Nehari theorem. The last two chapters are devoted to an
analogy of analytic symbols and to a generalization of the Kronecker theorem.
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1. Preliminaries

We start by recalling some of the properties of the minimal isometric dilation of
a contraction. Let $ be a Hilbert space, T€ Z(9) be a contraction. We denote by U
the minimal isometric dilation of T on the space !+, i.e. an isometry U defined on a
space ]* D9 satisfying
T = P(HU"H for n=0,1, ...
K+ = Yy U*S.

k=0

and

We shall denote by P(2) the orthogonal projection of &+ onto a subspace
Lc |/,

Any two minimal isometric dilations of a given contraction are unitarily equiv-
alent.

We shall frequently use the following facts:
(1) TP(H)=P(H)U;
) U*9cH and UXH=T*;
(3) the subspace H1=R*©$H can be decomposed as follows

$ = LaULBHUD...,

where 2=((U-T)$)";

@) US*cH*t and U|H* is a unilateral shift of multiplicity dim £;

(5) the sequence {P(H1)U*"} tends to zero in the strong operator topology;

(6) T* is an isometry if and only if the minimal isometric dilation of T is a unitary
operator;

(7) let W be a unitary operator on a Hilbert space ®, let Mc G be a subspace
invariant with respect to W; then the restriction of W* to the W* invariant
subspace of ® generated by M is the minimal isometric dilation of the operator
(W |m)*.

The reader is referred to [2] for proofs of (1)—(4).
For lack of space the proofs of the remaining results in this section have to be
left to the reader.

If S is an arbitrary isometry on a Hilbert space & then the Wold decomposition
applies. In other words, the space | can be decomposed into a direct sum of two sub-
spaces reducing with respect to S,

| = (QOS"R)ea((ReSR)ea(SReSZR)@...)

so that the restriction of S to the first subspace is a unitary operator and the restric-
tion to the second one is a unilateral shift.
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Now, let R be the reducing subspace in the Wold decomposition of the minimal
isometric dilation U on & * on which U is unitary, i.e. R= ﬂo U"R*. Then we have
(see [2)):

(8) UP(R)=P(R)U, U*P(R)=PR)U*;
(9) the sequence of projections {U"U*"}s” is decreasing,
P(R) = UU*™ for n=0,1, ...
and
P(R) k= lim U"U*k for all ke QK+,
(10) P(R)h=lim U'T*"h for all he$.
There are two subspaces of the space R which play an important role in our

investigations, namely, (P(R)9)~ and H$NR. Denote by R the restriction of U
onto the subspace R. :

1.1. Lemma (see also [3]). The operator U* maps P(R)S into itself and
U*|(P(R)H)~ is an isometry. The sequence of linear manifolds {R"P(R)H}=., is

increasing and
R= (szo R'P(R)9H)".

If T is a contraction on a Hilbert space $ then $ can be uniquely decomposed
into an orthogonal sum of two subspaces reducing 7, $=9,09H, such that T|H,
is unitary and T'|9, is completely non-unitary. We have

H. = (h€9: |T"h|| = |T* k| = ||h]| for all n = 0}.
See [2].

1.2. Lemma. We have
HNR = SNP(R)S = (heH: |T*h)| = ||h| for all n= 0} =
= {heH: T"T**h = h for all n = 0}.

The subspace $N is invariant with respect to U* and U*|$NR is an iso-
metry whose Wold decomposition has the form

SNAR = $,0NOU*NRGU" NS ...)

where R=(HNR)SU*(HNR). _ ,

We close this section with two results of a different character which we shall use
later. The first is a technical proposition based on the following observation. We have,
for each complex number a,

U(l—oT)—~(1—aU)T = U—T.
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If |aj<1 this relatlon 1mphes
(1—aU)~Y(U=T)(1—oT)" = (1= al)-'U|$—T(1 - oaT)™.

1.3. Proposition. Let T be a contraction on a Hilbert space with the minimal
isometric dilation U. Let oy, &, ..., o, be complex numbers of modulus less than 1.
Then -

U(1—U)1....(1—U)"1$ = T"(1 —ay 7). (1 — 0y T) ! =
= S U*(1—oU)"...(l= o U) " (U= T)T"*(1— 0, T)"... (1 —a, T)2,
k=1

1.4. Proposition. Let $,5,, K1, K, be Hilbert spaces, X€B($1, )
A€ B(H15 K1), A€B(De5 Ro)- I |(Xhy, )=l A1l - Aoholl - for all  hi€9,,
h,€9, then there exists a contraction operator C: (Ran AI) —»(Ran Az) for
which X—A*CA;

2. Toeplitz operators and their symbols

Consider two contractions T,€ B(91), T.€B(9,); denote by U; and U, their
minimal isometric dilations acting on the spaces K;, ! respectively. We denote by
R, and R, the subspaces of K and K which reduce U; and U, to their unitary
parts R, and R,. We denote by P(3) the orthogonal projection of & onto a subspace
3c K. ,

2.1. Proposition. Consider the set & (T, T,) of all operators ZE.%(S%z, ‘.Rl)
satisfying the condition
ZR2= RIZ, .
and the set &'(Ty, T,) of all operators YEB(KY, KF)- satisfying
Y = U,YU;.

If YEB(R}, &) then the following four conditions are equivalent:
1° Ye&'(Ty, To);
2 YU, = U,Y and Y=YP(R,);
P YUr=UY and Y=P(R,)Y;
4° Y=1im U7P(9,)YP(H)U;" in the strong operator topology.

Furthermore

5 if ZES(Ty, Ty) then ZP(R)ES (Ty, To);
6° if Ye&'(Ti, Ty) then Y|R, €S (Ty, Ty). .
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Proof. If Y¢B(8K;), &) satisfies Y=U,YU; then YU,=U,Y. Also, for
each x€ 8K}, .
YP(R)x = lim YULUS"x =
= lim U}YU$"x = lim¥Yx = Yx.

On the other hand, YU,=U,Y and YP(R,)=Y implies
U, YU} = YU U = YP(R)UL,UF =Y

since U,Uf= P(R,). This proves the equivalence of 1° and 2°.
 Yes' (I, T,) if and only if Y*¢ &’ (T,, Ty). The last inclusion is eqmvalent to
Y*U,=U,Y* and Y*=Y*P(R,). Taking adjoints we obtain the equivalence of 1°

and 3°
The implication 4°=>1° is obvious. On the other hand if Y= UIYU* then, for

n=0,
Y =U0YU;" =

= U P($)Y P(H,) U3+ U (1 - P($)) YU+
+UPP($)Y(1-P($)) U3 =
= U P($)YP(H,) U3+ Up(1 — P(H))UT"Y +
UrP($H)Y (1 - P(9:))Us™
Both (1—P($H))Ui" and (1—P(H:))Us" tend to zero in the strong operator

topology.
Now suppose Z€ B (R, R,) satisfies ZR,=R,Z. Then Y=ZP(R,) satisfies
YU,=ZP(R,) U,=ZU,P(R,)=U,ZP(R,)=U,Y and YP(‘RZ) Y. It follows from

2° that Ye &' (T1, Ty).

If Ye&’'(Ty, T,) we have, for each n and each x€ &, Yx=UYU}"x€ U”R’r
so that the range of Y is contained in R,. Since Y=U,YU; we have YU,=U,Y
and, in view of the inclusion Yx€R, for each x, this implies

(TIR)R; = Ry(Y|Ry)
as asserted. The proof is complete.

2.2, Remark. The correspondence between elements of sets & and & described
in 5° and 6° is contractive in both directions and so it is an isometric linear mapping,

2.3. Definition. An element of the set &#'(Ty, T,) will be called a symbol
with respect to T3, T,.

2.4, Proposition. Let Y=%'(T,,T,) be a symbol. Denote by
A= P($)Y|H:, B= P(S{)Y(9..



124 - V. Ptk and P. Vrbova

Then

(12) A4 = T AT},

(13) (UL 15E)B = BTy

Moreover, there exists a pbsitive K such that A sdti.sﬁes the estimate
(14) ll4holl = K- [|IP(Re)hell

for all h,€9, and similarly, B satisfies

(15) (Bhs, hit) = K- |P(R)hal|: | P(Ry)hL|

Jor hy€9,, hi€Hi.
Proof. Using the relation T,P($,)=P(H) U, we have, for h,€9,,
T1P(551)YT2*h2 = P(H)U YUz hy = P($1)Yh,
which proves (12). Similarly, using the inclusion U}$,c$,,
BT;'hy = P(H5{)YUsh, = P($i)UiYh, =
= P(S{) Uy P(Hi")Yhy+ P($1) UL P(9,) Yh, =
= P(${)U{ P(9{)Yh, = P(${)Uf Bhy =
= (U,|9i)* Bh,.
The estimates (14) and (15) with K=Y || are immediate consequences of the relation
Y = YP(R,) = P(R)YP(R,).
It is interesting to observe that the estimate (14) is a consequence of (12). On the
other hand, we shall see that condition (13) alone does not imply (15).
'2.5. Remark. If A=T,AT; then
| 4hs]l = |AINP(Re)h|
for each hy€9H,. )

Proof. For each h,¢$, and each natural number n,
Ahz = E"ATz*"hz

so that | 4ho|=||AIIT5"hsll= Al - |UsT5 holl. Since  P(R)h,=lim ULT}"h, the
assertion follows. .

2.6. Example. Let ,, 9, be Hilbert spaces, T,€%#(H,) be such that T} is
a nonunitary isometry. Then the minimal isometric dilation U, of T; is a unitary
operator acting on the space K, R,= & and the operator V=(U,[$)* has a
nontrivial kernel. Lo : o ol
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The operator T,=0 on £, is a contraction whose isometric dilation U, is a
unilateral shift on the space ;. The subspace R, reduces to {0} and the operator
Vi=(Uyl9y)* again has a nontrivial kernel.

Take an arbitrary nonzero operator X€#(9,. Hi°) such that Ran XcKer V7.
Then obviously ViX=0=XT; and [X*hi|=|X*AH]=IX*||P(R)A] for
all hteHi. Since R,={0} the operator X does not satlsfy ||Xh2[|*k | P(R) bl
for all h,€9, with any positive k.

Similarly, let ¥ be any nonzero operator from %(9,, Hy) which is zero on
(T¥$,)~ and with values in Ker V3. Then ViY=0=YTY, |Yh|=|Y[lhl=]Y1]-

N PR for all he$H,, but Y * does not satlsfy | Y *ht|| = k|| P(Ro)h|| on Hy
with any positive k.

2.7. Definition. Denote by
T(h,T) = {Aég(ﬁg,ﬁl) A=T, AT}}.

Operators from the set 7 (T, T,) will be called ‘Toeplltz operators with respect to
Tl’ T2 . .

Further, operators BE% (9., Hi") satisfying (13), i.e. (U1|9;)*B=BT} and
(Bhs, BV = y I P(Ro)hel | P(R) A

for all hy€$,, hi€$H; - and a suitable constant y will be called Hankel operators

with respect to Ty, T,. Similarly, the family of all Hankel operators will be denoted by
x(Tl > T2)

2.8. Lemma. Suppose X E.@(ﬁg, 1) satisﬁe;v the relation
X =T, XT;.
Then there exists exactly one operator X: K —~$, with the following three properties:
1 R=T,XU;,
20 X=X|Ss, -
3° | X=1X1].

" Conversely, if XeB(8, 51) satisfies 1° and if X is defined by 2° then X=T,XT;
and |X|=|ZX|.

Proof. Suppose first that .Y satlsﬁes 1°and X is deﬁned by 2°, Then, for h,€H,,
Xhy, = Xh; = 1"1)?02h2 = Tl,i’:r*h2 = T, XT}h,.

It follows that X=T,XT;.
Further, given n=0, h,€$H,, we have

XUsh, = TPRUUhy = T Khy = TP Xh,.
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This together with R“*—span Uh, proves that there is at most one X satisfying 1°

and 2° for a given X.

Now, suppose X€% (9., 9,) satisfies X=T,XTy. To prove the existence of X
it would be sufficient to define it for finite sums of elements Ush (k=0, h€$,) which
form a dense subset in &. Let m=k, hc$H,, then

TrXh = THTPXTF™Yh = TP XU™*h = TrXUEm-*(UUNh =

| = TP XUUh
and consequently,

3 TEXh, = THXUM (S Uphy)
0

0

for each M=zm and hiE€9,. In particular,
12 7exm)| = 1x1 |3 vEm)

It follows that the operator X defined on hm Ukg, by ¥ 2' U"hk—Z' TrXh,
is well defined, Xh=Xh for he$, and |X ||<||X || so that || X II—I[X I Moreover

LYUH(S Uth) = TR 3 U b+ T XU hy =
1] 1
= T, 3 T Xh+ Ty XTih = 3 TE Xhy + T, XTthy =
1 1

= STEXh + Xhy = £ 5 Ukh,.
1 [))

The proof is complete.

2.9. Remark. The preceding lemma can be reformulated in a dual version.
Namely, if X€B(D,, ) satisfies X=TXT; then X*cB(H,,9H, satisfies
X*=T,X*Ty. It follows that there exists exactly one operator W*cZ(8{, 9,)

such that
W* = T,W*Uf, X*=W*|9:, IX*|=[W*,

‘ or equivalently;
WedB(5,, 8t), W = U,WT,

X =PS)W, |X| =Wl
2.10. Theorem. Suppose XE€RB(Ds, D) satisfies -
X =T XT,*
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" Then there exists exactly one operator YEB(RF, |) with the following proper-
ties S,
1° Y is a symbol with respect to Ty, T,
- 2° X=P(H)Y (9.,
e XiI=hry.

-The operator Y will be called the symbol of X.

Proof. According to 2.8 there exists an Xc¢ #(K;, $,) such that =T, XU},
X=X|9, and |X||=||X|. Again, according-to 2.9 there exists a YEB(K], &)
such that -

Y= U1YU2s P(gx)Ylﬁz X|5 X
and

| 1Yl = 1%1 = 1]
The rest of the proof is straightforward.

. Proposition 2.1 and Theorem 2.10 show that thereisa one-to-oné correspondence
between & (T, T,), .9’(T1, T,) and 9 (Ty, T,). Summing up, we have the followmg

2.11. Theorem. Let B: B(K;], K7)>B(Hs, H,) be deﬁned by
BY = P($)Y|9. for YcA(KS R.*_')-

Then B maps &' (Ty, Ty) isometricaIIy onto I (Ty, Ty).
_ The inverse mapping « of the restriction of ﬂ to (T, 15 Tz) ass:gns to a Toeplitz
operator X €T (T s Tz) its symbol and

oX = lim U} XP(gZ) U*"
in the strong operator topology.

Proof. Suppose X belongs to 7 (T, T,) and that X is generated by a symbol
Yes' (T,, Ty) so that X=P($H)Y|H,. Since Y=lim U"P(sjl)YP(sz) U;"* and
P($H)YP($H.)= XP(st) we have Y=1lim U"XP(ﬁg) Uz

_ 3. Hankel operators

In this section we intend to develop an analogous theory for generalized Hankel
operators. To obtain a symbol for operators of this type we shall apply Lemma 2.8
again, this time to.a certain operator of Toeplitz type which we shall construct using
the theorem on intertwining dilations; as a consequence of the nonuniqueness of
the intertwining dilation a situation analogous to the classical case presents itself:
a Hankel operator has more than one symbol in general.
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The theory is based on the following lemma, a particular case of which is already
contained in [5].

3.1. Lemma. Let M,, M, be two Hilbert spaces, Gy, G, isometries on T, , M,
respectively. Denote by W€ B(R,) the minimal isometric dilation of Gt so that the W,
are unitary (i=1, 2).

Suppose CEB(M,, M,) satisfies the relation GfC=CG,. Then there exists an
operator D: N,—~N, such that

: D = W*DW*, |D|l = |C|
and
C = PR D|M,.

Proof. The operator G, is its own minimal isometric dilation. By the
theorem on intertwining dilations [2] there exists a D: DM,~N, such that
w,D=DG,, PR D=C and |D|=|C|. Since W, is unitary we may write
D=w;DG,=W}D(G})*.

, Now apply Lemma 2.8 in the situation T,=Wj, T,=G;, 9,=N;, H=M,.
It follows that there exists a D: 9N,—~N, such that D=W}DW}, D=D|M, and
1DI=|D|. Hence C=Pg D=Pg DIM; and |D|=[C].

A linear transformation 4 from $, into $;i- is said to be R-bounded if there
exists a constant « such that

I(4h, k)| = « |P(R:) Al P(R)K]

for all h¢$, and all k€$H;. The minimum of all a for which the above inequality
holds will be called the R-norm of 4 and will be denoted by || 4|lg. Clearly every R-
bounded operator 4 is norm bounded and its norm does not exceed the R-norm.

3.2. Theorem. Suppose X€B(H.,Hi) satisfies

WX = XT},
\where V, is the restriction of U, to $;- and the domination condition
(XA, bid)l = [ X sl P(Re) hal | P(Rp) b |

holds for all hy€$H, and hi€Hi.

Then there exists an operator Y€B(8F, &) with the following properties

Y =U, YUy, |Y]=I|X|s
and
X = P($i)Y|9D,.

Proof. Introduce the abbreviations A,=P(R)|H{, A.=P(R)H., W=
=(P(R)S{)", My=(P(R)H,)~. According to Proposition 1.4 there exists an
operator C€B(M,, M,) such that [C||=||X|lq and X=A*CA,. Thus V*4*CA,=
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=AfCA,T§. Consider first the product Vi4f. We have A4,V,=PR,)U|H;=
=(0h|P) PRIHL = (U, M|) 4, so that VyAF=A}(U,|M,)*. Furthermore, for
h2E52,

Asz*hz = P(mz)Uékhz = U;P(mz)hz = U;Azhz-
Thus .

AT(U1|9321)*CA2h2 = K*ATCAzhz = ATCAsz*hz = AfCUékAzhz-
Since Aj is injective on M, =(Ran 4,;)~ we have
' (Ullgﬁl)*c = C(Uglimz)-
The minimal isometric dilation W, of the coisometry (U,|M,)* is unitary. Since
M,cR, the operator (U;|M,) is an isometry.

Now apply Lemma 3.1 with G,=U,|M,;, G,=U;|M,. Since G}=P(M)U,|M,,
its minimal isometric dilation is U, on the smallest U, invariant subspace of K7
containing M,: this.is R,. Thus Wy=U,|R,, N.=R,.

Since Gy=P(M)Uf|M, we have W,=Uf on the smallest U} invariant sub-
space of & containing P(R,)H;: thus N,cR, but the inclusion may be a strict
one. By Lemma 3.1 there exists a D: R,~R, such that D=U,DU}|R,, |D|=|C|
and

C = Py D|M,.

Finally, set Y=DP(R,). Then
Y = DP(R;) = U, DU; P(R,) = U,YU5,

¥l = 1D = [Cll = | X
and
X = AfCA4, = AfCP(R,)|9: = 4F Pu: DP(R,)|H. = AT PRY|D..

To complete the proof it suffices to show that A;‘Ps‘;‘,‘,l1 =P(H)IR,. Indeed, for
r1€m19h%€5]+,

(4f Pyrs. hi) = (BSira, PORIE) = (12, PRDAL) =
= s B = (PSP, ).

Notation: Suppose Y€’ (Ty,T,). We shall denote by T'(Y) and H(Y) the
corresponding Toeplitz and Hankel operators, i.e.

T(Y) = P(H0Y]9:
H(Y) = P(91)Y|De.

The well-known identity for products of Toeplitz operators extends to the ab-
stract case without any change.

and

9
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3.3. Proposition. Let Ty, T,, T3 be contractions acting on spaces £,;, Hss O
respectively. 1If Ye&'(Th, To), Z€S' (T3, Ty) then ZYES' (T3, T;) and

T(ZY)—T(Z2)T(Y) = H(Z*}*H(Y).

Proof. Consider Y€B(KF,K}), ZeB(K,K}) satisfying Y=U,YUy,
Z=UzZUf. Then
ZY = U,ZUIU, YU} = U, ZYU}
and

P($:)ZY |9, = P(H3)ZP(H1)Y |D:+ P(H3)ZP(H1)Y1D. =
=T(Z)TXY)+H(Z**H(Y).

3.4. Definition. The operators Y¢%’'(Ty, T,) for which the corresponding
Hankel operator H(Y) is zero will be called analytic symbols. Thus Y is analytic if
and only if ¥ maps §, into £,. The set of all analytic symbols with respect to Ty, T,
will be denoted by &/ (Ty, T5).

Obviously

H(T,T) =T (L, T)Y N, Th)

in the sense of isomorphism of linear spaces.

The classical theorem of Z. NEHARI may be formulated as follows. We denote
by {e;} the natural basis of L? and consider a linear operator 4 defined on the alge-
braic linear span of the {e,} with nonnegative indices taking its valuesin H2 . Further-
more, we assume the existence of a sequence of complex numbers gy, g, ... such
that

(dey, e)) = ap;

for k=0 and j<O. Then the Nehari theorem asserts that the operator 4 is the
Hankel operator corresponding to some ¢@€L” if and only if 4 is bounded.

We intend to show that the Nehari theorem has an analogon in the general situa-
tion described in the preceding sections. In the abstract theory, however, the bound-
edness condition has to be replaced by a stronger one — this boundedness condition
reduces to ordinary boundedness in the classical case but is different from it in gen-
eral. It is only in the present generality that the role played by the spaces R as well as
their meaning for the theory manifests itself; since R*¥=%NR in the scalar case, it is
not so easy to see the essential features of the classical results which make the theory
work.

Using the notion of R-boundedness it is possible to formulate the following
extension of the Nehari theorem.

3.5. Theorem. Suppose MC D, is such that the linear span O, of all elements
of the form T}*m, k=0, mcM is dense in H,. Let X: o> i be a linear trans-
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formation which satisfies
Vi*Xh = XT;*h
for all he$,.
Then the following assertions are equivalent:
1° X is R-bounded;
2° X is a Hankel operator.

Moreover, if X satisfies 1° or 2° and X=H(Y) with a Y& (T}, T,) then
IH@)|ls = dist (Y, (T3, Tp))
and the infimum is attained.

Proof. If 1° is satisfied then X can be regarded as an operator acting on the
whole space $,. Thus X is a Hankel operator and according to Theorem 3.2 there
exists a symbol Y such that X=H(Y) and [ X|z=]Y|. To complete the proof it
is sufficient to observe that H(Y+ A)=H(Y) for all A€ (T, T,).

4. Symbols

One of the interesting questions to be asked in the context of the abstract theory
is a more detailed description of the set of all symbols. We can only give partial
results in this direction: we do give, however, a complete characterization of those
pairs T, T,, for which nonzero Toeplitz operators exist. This question is equivalent
to that of the existence of non zero symbols and will be given in terms of the spaces
R, and R,, the unitary parts in the Wold decomposition of the minimal isometric
dilations of T; and T,. The answer is particularly interesting in the case T3=T,=T.
The nonzero Toeplitz operators exist if and only if R#={0}. The situation is consi-
derably more complicated in the case of analytic symbols. More delicate considera-
tions are necessary this time; we show that it is possible to reformulate conditions
for the existence of nontrivial analytic symbols in a form which may not be much
easier to verify but which provides, in principle, a complete description of the set of
all analytic symbols.

Consider now the particular case where T,=7T,; it is interesting to characterize
those contractions T for which the corresponding set of Toeplitz operators consists of
the zero operator only. In other words, to characterize those contractions T€%(H)
for which X¢2(9) and X=TXT* implies X=0.

4.1. Proposition. Let T be a contraction on a Hilbert space $. Then these are
equivalent:

1° the only operator X satisfying X=TXT* is the zero operator;

2° im T*"h=0 for each he$;

o»
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3 P(R)H=0;

4° P($)R=0;

5° P(H)P(R) P(H)=0;
6° R=0.

Proof. Assume 1°. According to 2.1 the projection P(R) is a symbol so that
X=P(9) P(R)|H isa Toeplitz operator. Since X=0 we have also P($) P(R)P(H)=
=0. Since P(H)P(R)P(H)=P(H) P(R)(P(H)P(R))* the condition 5° implies 4°.
If 4° is satisfied we have P(R) P($)=0 as well. Now assume 3°. According to Lemma
1.1 we have SR=(nL£I0 U"P(R)H)~ so that R=0. The implication 6°=>2° follows

from (10) and the implication 2°=1° is obvious.

Let us remark that condition 5° appears implicitly in the paper of R. G. Doug-
LAS [1]. The ideas used in the proof of Theorem 3 in [1] may be used to describe
existence conditions even in the case of operators Toeplitz with respect to possibly
different T; and T,. To this end it will be convenient to recall a definition.

Consider two unitary operators U,€ Z(9,) and U,€ B(H,) with spectral meas-
ures E; and F, respectively. Following R. G. Douglas we shall say that the operators
U, and U, are relatively singular if, for each h,€$; and h,€9H,, the measures
(Ex(-)hy, 1) and (Ey(-)hs, hy) are mutually singular.

According to R. G. Douglas [1] the set of operators intertwining U; and U, is
trivial if and only if U, and U, are relatively singular.

Using this notion it is possible to formulate conditions for the existence of
Toeplitz operators.

4.2. Proposition. The following assertions are equivalent:

1° the only operator X€B(9Dq, H,) satisfying X=T,XTS is the zero operator;

2° either one of the subspaces R,, R, is trivial or the unitary operators R, and R,
are relatively singular.

Proof. In view of what has been said above it suffices to observe that, according
to 2.11 and Remark 2.2 condition 1° is satisfied if and only if the only operator inter-
twining R, and R, is the zero operator.

In the classical theory analytic Toeplitz operators may be characterized by the
relation X'S=SX. The corresponding relation TyX=XT; does not guarantee, in
general, that X is (T3, Tp) Toeplitz; we list below some supplementary condition
which, together with the above relation, make X Toeplitz in which case the corre-
sponding symbol is analytic.

4.3. Proposition. Suppose X€B(H,, H:) satisfies

(16) XT¥ = TF X,



Operators of Toeplitz and Hankel type 133

Then the operator P($H,) P(R)X belongs to I (Ty, T;) and the following four
conditions are equivalent: .

1° Xe 7 (1, T,),

2° X=P($H) P(R) X,

3° X=P(H.NRDX,

4° Ran XcH,NR;.

Moreover, if X satisfies (16) and one of the conditions 2°, 3°, 4° then X is a Toeplitz
operator whose symbol is analytic.

On the other hand, if Ye&'(Ty, T;) is analytic then the corresponding Toeplitz
operator X satisfies (16) and the conditions 2°, 3°, 4°.

Proof. Consider an X€#(9,, H,) satisfying XTf=T;X. Then
LP(H)PRYXT = P(S)U PRI X = P($)U, P(RYUTX =
= P($)P(R)X
so that the operator P(9,)P(R,)X is Toeplitz.
Now, assume (16) and 1°, Then, for h,¢$, and each natural number n,
Xhy, = TP XT,"hy = Ty Xhy = P($)UTT "Xhz',,__:’ P(Sjl)P(iRI)Xh2

. This proves the implication 1°=-2°.
If 2° is satisfied then .
X = (P(S0) P(R)) P(H1) Xorr P(H:NRYX
so that 3° is satisfied. The equivalence of 3° and 4° is obvious as well as the implica-
tions 4°=2°=1°,
Again, assume 4° and (16). Let ¥ be a symbol corresponding to X. Then, accord-
ing to 2.1

Yh, = lim U} XT;"hy = lim UpT" Xhy = P(R,) Xh, = Xhy€Hy

for all h,€$9,, so that ¥ is an analytic symbol.
It remains to show that the Toeplitz operator X corresponding to an analytic
symbol Y satisfies (16). Since X=Y|9, we have Ran X=Ran ¥Y|9,cH,NR, and

X]"z h2 XUékhg YU2h2 U]_Yhz_].iXhz

for h,e9,. The proof is complete.
The following example shows that the condition (16) alone does not imply 2°.

44, Example. Let us take 7;=0 on a Hilbert space $; (i=1, 2). Then any
Xe B(9,, 1) satisfies (16). Since both R, and R, are trivial, the only Toeplitz oper-
ator with respect to T, T, is the zero operator.
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Now let us turn to existence conditions for analytic symbols. To this end we
introduce some notation. The space $;NR, is invariant with respect to Uy and the
restriction of U to it is an isometry. Let us denote by M, and N, the unitary part
and the wandering subspace respectively in the Wold decomposition of U{{$,NK, .
Similarly, U; maps the subspace P(R,)9, into itself and the restriction of U; to
it is an isometry ; we denote by M, and N, the analogous subspaces for the Wold de-
composition of U;|P(R,)H; . Using this notation, we intend to prove the following

4.5. Theorem. Nontrivial analytic symbols with respect to T, and T, exist if
and only if the following three conditions are satisfied:

1° M, and M, are both nontrivial and the unitary operators Uf|W, and U;|TM,
are not relatively singular;

2° N, and N, are both nontrivial;

3° M, and N, are both nontrivial and the spectral measure E of UM, is not
concentrated on a set of Lebesgue measure zero.

Proof. In view of the one-to-one correspondénce between the set of all
symbols and the set of all Toeplitz operators, the set & (T, T,) will be nontrivial if
and only if the corresponding set (T, T,) of Toeplitz operators is nontrivial.
According to 4.3 this set consists of all X€Z(9H., H.NR,) satisfying XTF=TyX.
We shall establish a one-to-one linear correspondence between elements of the
set I°(Ty, T,) and certain triangular matrices. To simplify the notation we shall
write £,=(H;NRYSM,, L=(PRYN,)-0M,. To each XcIT*(T,,T,) we
assign a matrix

[t Y]
ox =

defined by the following relations
Y = P)Y (M, Y = P(ﬁml)Ylﬁz, Yo = P(ﬂl)Ylﬁz,

where Ye&’'(Ty, T,) is the symbol corresponding to X.
Now denote by # the set of all matrices of the form

My, sz]
0 M,

with M, €B(M;, M), M€ B(L,, M), M€ B(L,, L)) such that the following
relations are satisfied .

eY) (U 194) My, = My, (US| DY),
(18) (UL () My = My (U [L,),
(19) (Uiklﬁl)MH = M22(U2*122)-
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We intend to show that 3 is an injective mapping of the set 7°(T;, T,) onto 4.
Let us consider an X€J°(Ty, T;) with the corresponding symbol Y. Since
Y=YP(R,) we have

YP(R)H: = YH=XH, < H,NR,.

Furthermore, the relation UjY=YU; implies that 3Xc.#.

Consider now the operators Z=P(£,)Y|M, and S,=U;|L,. Using UiY=
=YUy again we have also S,Z=Z(U;|M,) so that Z*S;"=(U;|M)*"Z* for
every natural number n. Given meM, we have

IZ*m|| = (U1 W)™ Z* m)| =
= |Z*Si"m| = | Z*||S7"m]| - O,

sothat Z*=0 and Z=0 as well. Thus, for each h,€9H,, X can be decomposed as
follows
Xhy = YP(Ry)hy = Y33 P(My) P(Ro)hy +

+ Y15 P(£5) P(Ro) ho + Yoo P(L5) P(R2) By

Hence 9X=0 implies X=0 and 9 is injective.
On the other hand, each M¢.# defines an operator from P(R,;)H; into
$MNNR,. The relations (17), (18), (19) imply that

[Ui‘liml 0 ]Mn Mm]: My Mm”Ué"li’ﬁz 0 ]
0 Ufledl o M, 0 Mipll 0 Ufigl

so that UfM=MUJ|P(R,)H;. If we set Xh,=MP(R,)h, for h,€%, then
Xeg*T,,T,) and 9X=M.

In view of the isomorphism between J°(T;, T;) and .# our problem is equival-
ent to that of describing conditions for .# to be nontrivial. An element M¢c# is
nonzero if and only if at least one of its entries is nonzero.

If M,,>0 then clearly both M, and M, must be nontrivial subspaces; at the
same time M7, is a nonzero operator intertwining the unitary operators Uj|M, and
U;|M, and this yields condition 1°. On the other hand, if condition 1° is satisfied,
there exists a nonzero operator Z€Z(M,, M,) for which

(UL I9)Z = Z(UF| My);
then
Z O]
00 €M.
If M,,0 both its domain and range must be nontrivial, hence condition 2°.

Conversely, if condition 2° holds, take a vector g€, and a vector hAcH,. It is
easy to see that ((UZg, Uig)=0 for all integers p+#q. The sequence Uth, k€Z
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possesses the same property so that it is possible to define an operator Y€Z(8F, |})
by the formula

o

Yx = 2 (x, Ufg)Uih;

— oo

clearly Y=U,YU;. If k=1 we have
(Ufg, 9:) = (8, Uz*9s) = (g, P(R)U*9,) =
= (g, U;"P(‘Rz)sz) =0,

so that Yx= 3 (x, Usg)U*hc$, for x€H,. Thus Ye L (Ty, Ty).
k=0

Consider the case M;,0; it follows that £,{0}. The operator S,=U;|L,
is a unilateral shift so that the minimal isometric dilation of S is a unitary operator
W with the following properties (see [2], Ch. 2, Theorem 6.4):

(i) the spectral measure Ew (-) of W is equivalent to Lebesgue measure,

(ii) for each nonzero z€®,, the measure (Ey (- )z, 2) is equivalent to Lebesgue
measure.

Since M,, satisfies (18) we have Mf,=S;M},(Uf|M,) so that M€ T (S%,
(U|MM))*). The corresponding symbol G satisfies G=WG(U}|M,) so that
G(UfW)=W?*G and this implies condition 3°.

On the other hand, if condition 3° holds there exists a nonzero vector x€M,
and a set M of positive Lebesgue measure for which (E(M)x, x)>0. Furthermore,
if z is an arbitary vector in RN, the measure (Ey (- )z, z) is equivalent to Lebesgue meas-
ure. It follows that there exists a nonzero operator K defined on 9; which inter-
twines W and (Uf|M,), K(U{|W)=WK. Hence K=WK(U|M,)* so that
Ke’(Sy, Uf|My) and the corresponding Toeplitz operator T(K) satisfies (18).

Accordingly,
oT (K)] ‘
[0 0 €M

The proof is complete.

4.6. Corollary. If T, is completely nonunitary then </ (T, T,) is nontrivial if
and only if both %, and N, are nontrivial.

Proof. It follows from Lemma 1.2 that M, =$,(T3). If T; is completely non-
unitary then M, =$,(77)={0}. It follows from the preceding theorem that o (T}, T,)
is nontrivial if and only if 2° is satisfied.

Of course it is possible to reformulate the existence conditions for analytic
symbols in a manner analogous to Proposition 4.2 The problem does not become
any easier in this reformulation ; nevertheless, it provides some more insight into the
structure of these symbols.
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4.7. Proposition. Let T\€B(H,), T£HB(9H:) be two contractions. Let us
denote by ®, the smallest U, reducing subspace containing $,\R,. Then these are
equivalent:

1° o(T;, Ty)={0},

2° the unitary operators R, and U,|®, are relatively singular.

Proof. If Y is an analytic symbol then Y=U,YU; and Y maps
R,=\V P(R)U!H, into V U7 ($H,NR,) which is nothing more than the smallest
n=0

nz=0

reducing subspace &, for U, containing $;NR,. Thus

YR, = (U;16)(Y| 9{2)(U2|5Rg)*.

5. Rational symbols and the theorem of Kronecker

It might seem that there is little hope that a reasonable extension to this general-
ity of the algebraic notion of rational function would be possible. We intend to show
in this section that such an extension does exist and that it may be used to obtain a
generalization of the theorem of Kronecker.

We shall use an abbreviation: if p is a polynomial of degree n, we shall write p,
for the polynomial defined by the relation p,(x)=x"p(1/x).

5.1. Proposition. Suppose Y¢ o/ (T, T;) and let q be a polynomial of degree
n with roots of modulus less then 1, gq(x)=(x—a,)...(x—a,).
Then q(R}) 'Y is a symbol and the corresponding Hankel operator may be expres-

sed as follows
- H(gRD™'Y) =

= kzl U (1= U~ (1= U~ Y (U, - T (1= T) ™ (1= 1) 7 Y [,

or in an equivalent form

kz; (Uf — %) (Uf — ) (U) U~ 1(Uy - T) -
(M) V(T — o). (B — o).
Proof. Since Y=P(R,)Y we have
Urg(R})™'YUF = Ryg(RY)'YU; = q(R) 'R, YUS = q(R)™'Y

so that g(Ry)~'Y is a symbol.
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Since R, is unitary we have

4@®D = [[(R*—a)™ = Ri(l—sR)™..(1= 5, R) ™ =
= Rig,(R)™!

and

P(91)qR)Y|D: = P(5i) Rigy(R) Y9, = P(HT)Uiqa(U)7'Y D, =

= Ujgy(U)'Y |9, — P(H) UL (V)Y |H2 = Uigs(U) Y9, —
—T'q:(T) Y| 9.

Now, it suffices to apply Proposition 1.3.

5.2. Theorem. Let H be a Hankel operator, HE #(T,, T,). Then the following
assertions are equivalent:

1° the range of H is finite dimensional;
2° there exists a polynomial g with roots of modulus less than 1 and an analytic

symbol Y€ (Ty, Ty) such that

2.1° H = H(g(R)™Y)
and one of the two following equivalent conditions is satisfied

2.2° d;=dim (U,— T)) TIQ—a,T) 7.1 —a; 4, T) Y Hy< o for j=0,...,n—1
where o, ..., o, are the roots of q, deggq=n,

2.3° dim (U;— )T M (1=, 1) (1= 0, T3) 1Y Hy< oo
If these conditions are satisfied then

dimRanH = dy+d,+... +d,_;.

Proof. The range of H is invariant with respect to V7. If it is finite-dimensio-
nal there exists a polynomial g such that g(V{|Ran H)=0 so that q(V})H=0.

Since ¥, is a unilateral shift both ¥V, and V' have no eigenvalues on the unit
circle. Hence we can assume that all the roots of g lie inside the unit disc. If Z is any
symbol for H, i.e. H=P(H})Z1H;, Zc¢S Ty, T.) we have

0 = g H = Hq(Ty") = P(Hi)Zq(U5)|9: = P(H1)9(UDZ|9..

Hence q(U*)Z$H,c$,. Since the range of Z is contained in R, it follows that
Y=q(U{)Z is an analytic symbol and Y=¢(R})Z whence Z=¢q(R;)~'Y which
proves 2.1°.

The range of the operator P(£,)q,(U;)H is also finite dimensional and it follows
from Proposition 5.1 that it is equal to the space (Uy—T)T7 g, (T1)"1Y$H,. Thus
condition 2.3° is satisfied.
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Let us show now, that, for any polynomial g with roots inside the unit disc and
any analytic symbol ¥, condition 2.3° implies 2.2° Since Y is an analytic symbol
we have Y9, $,MNR,. On the other hand Ty is an isometry on $,NR; and
T:)Trh=h for all h€$H,NR,. Using these facts we can write, for |af<]1,

Y9, = (1-afy) (A - a))YH, =
= (1-aQ) (O —el)YH, = (1-aL) ' LG — ) YH, =
=h(1-ah) 'Y (G- 99 & H(1—aB) ' YS,.

It is easy to deduce from the just established relation that 2.3° implies 2.2°.
Assume that 2.2° is satisfied for a polynomial g with roots inside the unit disc

and some analytic symbol Y. Then, according to Proposition 5.1, the Hankel oper-

ator H(q(R})~'Y) is finite dimensional and dim Ran H(q(R})™'Y)=dy+d;i+ ...

ctd, 4. _
The proof is complete.

5.3. Corollary. Suppose dim £, <-<e. Given a symbol of the form
g(R1)Y,

where q is a polynomial of degree n (with roots inside the unit disc) and Y ¢ ot (T, Ty,),
condition 2.2° is automatically satisfied and

dim Ran H(q(R})™'Y) = ndim £,.

The corollary applies in particular in the case where dim £,=1. Furthermore,
for classical Hankel operators it is more natural to view the symbol as an equivalence
class in L=/H* rather than as an individual function; in conformity with this point of
view it seems natural to define a rational symbol as a class which contains a rational
function, or equivalently, a class which contains a quotient h/gq, h€¢ H*, g a poly-
nomial. In view of this it is not unnatural to use the name rational symbol for opera-
tors of the form ¢(R)™*Y, Y analytic.

Theorem 5.2 appears thus as an extension of the well-known theorem of Kronec-
ker. It is natural to ask whether the assumption 2.2° in Theorem 5.2 is essential for
the validity of the generalized Kronecker theorem. We limit ourselves to stating that
there exist examples which show that ranges of Hankel operators with rational
symbols may be both finite and infinite dimensional if dim £, is infinite.
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Normalcy is a superfluous condition in the definition
of G-finiteness*

JOSEPH M. SZ(UCS

Dedicated to Professor Kdroly Tandori on his 60th birthday

Let M be a W *-algebra and let G be a group of *-automrophisms of M. In [2]
we have proved that if there exists a faithful G-invariant normal state ¢ on M, then
for every 1€ M, the w*-closure of the convex hull of the orbit of ¢ under G contains a
unique G-invariant element ¢ and the mapping ¢—¢¢ is normal. (In fact, we have
proved this result under the more general assumption that the family of G-invariant
normal states on M is faithful, i.e., M is G-finite [2]. If M is o-finite, for example,
if M is an operator algebra in a separable Hilbert space, then this assumption ob-
viously implies the existence of a faithful G-invariant normal state on M.) In the pre-
sent paper we shall prove that the assumption of normalcy of ¢ is superfluous in
this theorem (cf. Theorem). Under additional hypotheses, we shall also prove that ¢
itself is a normal state (cf. Corollary 1). Furthermore, we shall prove some converse
results (cf. Corollaries 2 and 3).

For the general theory of W *-algebras, we refer the reader to [1] and [3].

At the end of the paper we shall make two comments on our paper [4].

Theorem. Let M be aW*-algebra and let G be a group of * -automorphisms of M.
If there exists a faithful G-invariant state ¢ on M, then there exists a faithful G-in-
variant normal state y on M, i.e., M is G-finite.

Proof**. Let o= ¢, @5 be the canonical decomposition of ¢ into normal part
¢, and singular part ¢, [3]. Consider an element g€G. Then ¢,(g-)is normal due to

* This work was supported in part by organized research money granted by Texas A&M Uni-
versity at Galceston.
** The author’s first proof of this theorem was much more complicated. This proof originated
from a comment by R. R. Smith at a seminar at Texas A&M University, College Station.

Received January 8, 1985.
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the continuity properties of g. On the other hand, ¢,(g-) is singular, since a positive
linear form p on M is singular if and only if every nonzero projection p€ M majorizes
a nonzero projection g€M such that u(g)=0 [3]. Since ¢ is g-invariant and the
decomposition into normal and singular parts is unique, we obtain that ¢, is g-in-
variant (for all g€G). Furthermore, ¢, is faithful. For let p be a nonzero projection
in M. Since ¢, is singular, there exists a nonzero subprojection g of p in M,

such that ¢,(g)=0. Then @,(p)=@,(q)=¢(9)—¢,(9)=¢(q)>0 because ¢ was
assumed to be faithful. Summing up, we can choose Y =g¢,.

Corollary 1. Let M be a W *-algebra and G a group of % -automorphisms of M.
Suppose that for every t€ M, the norm-closed convex hull of the orbit Gt of t under G
contains at least one G-invariant element. If @ is a G-invariant faithful state on M and
the restriction of @ to the fixed-point algebra M€ is normal, then ¢ is normal.

Proof. According to Theorem, M is G-finite {2]. Consequently, the G-invariant
element, say %, in the norm-closed convex hull of Gt is unique [2). Moreover, the
mapping t—t¢: M—~M?¢ isnormal [2]. Since ¢ is G-invariant and norm-continuous,
@()=0(%) (teM). Therefore, the mapping t--¢(t): M—~C is the composite
mapping of t~t¢: M—~M€% and t—¢(t): M®—~C. Since both of these mappings
are normal, ¢ is normal.

Corollary 2. Let M be a W *algebra and G a group of *-automorphisms of M.
Suppose that for every t€ M, the w*-closed (norm-closed) convex hull of the orbit Gt
of t under G contains exactly one G-invariant element, say 1°. If 1°#0 for t=0,
t#0, then M is G-finite.

Proof. The mapping t—-1°: M—~M? is linear. In the case of the norm-closed
convex hull, this can be proved as follows. The homogeneity of the mapping ¢
is obvious. To prove its linearity, let £, s€ M and let é=>0 be a given number. There
exists a v, in the convex hull conv G of G, such that |v,(¢)—t¢||<g/2. Similarly,
there exists v,€conv G, such that [|»,v,(s)—s¢]|<e/2. Since every element of G has
norm 1, we have |, v,(¢)—#°|<e/2. Consequently, |ov,v5(t+5)—(15+5%)|=
=[lv,0y(t)— 19} + | vy vo(5)—s%|| <e. Since &>0 was arbitrary, this proves that
(14 5)°=1%45C.

In the case of the w*-closed convex hull, the linearity of z—¢¢ can be proved as
follows. The homogeneity of ¢t—t¢ is obvious. Let us verify its additvity. Let s, t€ M.
Then there exists a net v, in conv G, such that linm v,(5)=s%. Since the unit ball of
M is w*-compact, there exists a subnet v, of v,, such that t,‘=li’1cn v, () exists. Then
lizri v (s+ t)=1i£11 v ($)+ li,gn U (t)=1inm v,(8)-+t,=s%+1t, belongs to the w*-closed
convex hull of G(s+1). By the definition of (¢,)°, there is a net w, in conv G, such
that  limw,(1)= (t)¢.  Then lim w, (5% + f)=lim (W, (s9)+w,(t)]= lim [+
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+w, (t,‘)]=sG+li'r'n w,(t)=s%+(t)°. Consequently, (s9+12,)°=5%+(t)¢. Since
59+ 1, belongs to the w*-closed convex hull of G(s+ 1), we have (s+£)°=(s%+1)C.
Therefore, (s+1)¢=s%+(#)° Similarly, since #, belongs to the w*-closed convex
hull of G(¢), we have 9=(z,)°. Summing up, we have obtained that (s+ )=
=5+ (1,)9=5%+1¢, which was to be proved.

So far we have proved that t—~?¢: M—~M¢ is linear. On the other hand, it is
evident that [g(#)]=1C for every g€G, t€M and ¢=¢ for t¢MC, the G-fixed-
point algebra in M.

Now let @, be a normal state on M. Let @(t)=,(t®) for t€M. Then ¢isa
G-invariant state on M. Let p be the support of ¢,. Then peM® and (pip)°=pi®p.
Consequently, ¢ is faithful on pMp, by the hypotheses of the corollary and by the
faithfulness of ¢, on pMSp. Since ¢ is invariant under the restriction of G to pMp,
Theorem can be applied. We obtain that pMp is finite with respect to the restriction of
G to pMp. This implies [2] that ¢ is a G-invariant normal state on M with support p.
Since supp=1 if @, runs over all normal states of MY we obtain that M is
G-finite [2].

Corollary 3. Let M be a W *-algebra and G a group of *-automorphisms of
M. If ©: M—~MC€ is a G-invariant faithful positive linear mapping which leaves M€
elementwise fixed, then M is G-finite.

Proof. It is similar to the end of the proof of Corollary 2.

Remarks. 1. The proof of one half of Corollary 2 does not require Theorem:

Let M be a W *-algebra and G a group of -automorphisms of M. Suppose that
for every t€M, the norm-closed convex hull of the orbit Gt of t under G contains
exactly one G-invariant element, say t°. If t°#0 for t=0, t#0, then M is G-finite
(and t—1t® is a normal positive linear mapping of M onto M€).

Proof. As in the proof of Corollary 2, we first prove that ¢+ is a linear
mapping. This done, let ¢, be a normal positive linear form on M€ and let p denote
the support of @,. Then (ptp)®=pt®p and t—-¢,(:%) is a faithful positive linear
form ¢ on pMp, invariant under the restriction of G to pMp. Let e be a nonzero
projection in pMp, such that ¢(e-e) is normal [1]. Then ¢(-e)eM¢. Let
v,€conv G be such that |lv,(e)—ef|~0 as n—o. We have ¢(-v,(e))eM® by
the G-invariance of ¢ and by the fact that ¢@(-e)M,. Then the norm limit of
o(-v,(0) in M, is ¢(-€%), since pcM*. Therefore, ¢(-e%)€M,. Consequently,
@ (e%1€%) =, ((€%1e%) )= py(¢°t°¢®) is a normal positive linear form on M. Since
eS=p, eS¢ M€, we obtain that t—~e%%?" is normal on M. If @, runs over all nor-
mal forms on M€, we obtain that every nonzero projection p€ MS majorizes a
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nonzero projection e€M (it is eS¢ M) such that 7—1eSe is normal. This implies
that ¢—¢¢ is normal on M and thus M is G-finite [2].

2. The assumption of Theorem that ¢ is faithful is essential. Indeed, let G be
an abstract infinite Abelian group. Then G acts naturally on M=I=(G) as a group
of % -automorphisms. A G-invariant state on M is noting else but an invariant mean
on G. We know that there are ifinitely many invariant means on G, none of wich are
normal (actually, they are singular).

Finally, the author would like to make two comments on his paper [4]. The
first comment is that in Proposition 2 and in its corollary the assumption that A is
o-finite should be replaced by the assumption that the predual of M is separable.

The second comment is that all the results of the above mentioned paper remain
valid if G is only assumed to be an amenable group (instead of an Abelian one).
Indeed, if U,cG is a summing sequence [5], then it is easy to prove that under the
hypotheses of Lemma 1, the sequence -I—é—l Dac v, g(t) w*-convergesto ° for every
t€ B*. The remaining results of the paper can be extended to amenable groups G
without altering the proofs.
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Commutative G ¥ *-algebras

JANOS KRISTOF

GW *-algebras (i-e. generalized W *-algebras) were introduced in [2]. In this paper
the structure and the spectral properties of commutative GI¥ *-algebras will be ex-
amined in detail.

1. Preliminaries

Here we give a short summary of our former results concerning GW *-algebras.

The vector space of the linear forms on the #-algebra 4 will be denoted by A*
and the weak o(A4*, 4) topology relates to the canonical duality between A* and 4.

If A4 is a unital *-algebra (whose unit is denoted by 1 throughout this paper) and
Pis a set of positive linear forms on 4 then the set {f€ P|f(1)=1} will be denoted by
the symbol P(1). Further, assuming that P(1) is non-void and bounded in the o (4*, A)
topology, |l - ||, denotes the mapping from 4 into R defined by

I¥lp = sup VF(x*%)

¢ SEPQ)
forall x€A. If is obvious that || - || p is 2 seminorm on A; the dual seminorm is denoted
byll - I3

If Sis a subset of 4* then the linear subspace of 4* spanned by S and the convex
hull of S is denoted by sp (S) and co (S), respectively, while the ¢(A4*, 4)-closed
linear subspace of 4* spanned by S and the o (4*, 4)-closed convex hull of S is de-
noted by §p(S) and &3 (S), respectively. If the elements of S are || - || ,-continuous
forms (where P is a set of positive linear forms on A such that P(1) is non void and
o(4*, A)-bounded) then the || - | -closed linear subspace of 4* spanned by S and the
|| -l p=closed convex hull of S is denoted by sp (S) and 6 (S), respectively, provided
there is no danger of confusion as for P.

Received January 9, 1985.
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If fis a linear form on the % -algebra A then for every x€ 4 we define the linear

forms x-fand f- x on 4 as the mappings y—/(xy) and y—f(yx), respectively. If
f€A* and x, y€A then x-f-y stands for (x-f)-y.

Definition. The pair (4, P) is called a weak GW *-algebra if A is a unital
*-algebra and P is a separating set of positive linear forms on A satisfying:
(I) P(1) is non-void and o(A*, 4)-bounded;
(I1,) R,PcP and x*.P.xc¢c3(P) for all xc4;
(II) x- Pcsp(P) for all x€4;
(IV) A is sequentially complete with respect to the uniform structure defined by
the o(4, sp (P)) topology.

The pair (4, P) is called a GW *-algebra if it is a weak GW *-algebra and instead of

(I1,) satisfies the more restrictive condition :

(II) R, PcP and x*.P.xcco(P) for all x€A.

Finally, the pair (4, P) is referred to as a complete GW *-algebra if it satisfies:

(1Vy) 4 is quasi complete with respect to the uniform structure defined by the
(4, sp (P)) topology.

The most important elementary facts concerning weak GW *-algebras are the
following. If (4, P) is a weak GW *-algebra then:
— A is a C*-algebra whose C*-norm coincides with | - || p, that is why we refer to
I - Il p as the C*-norm of A (cf. [1] and [2]);
— the 6(4, sp (P)) and (4, 5p (P)) topologies coincide in every C *-norm bounded
subset of A (cf. [1] Lemma 1);
— the multiplication of 4 is C*-norm boundedly left and right continuous in the
(4, sp (P)) topology (cf. [1] Lemma 2);
— the involution of A is proper and continuous in the ¢ (4, sp (P)) topology;
— the set of projections (i.e. self-adjoint idempotent elements) of 4, equipped with
the natural ordering: g=h<g=hg and the orthocomplementation: el:=1—e¢,
is a o-complete orthomodular lattice admitting a separating set of g-additive states
(cf. [2] Theorem 1); '
— the partial isometries are countably summablein A and, consequently, the equiv-
alence of projections is countably additive in A4 (cf. [2] Proposition 2).

Here we deduce an important auxiliary result for general (not necessarily com-
mutative) weak GW *-algebras.

Proposition 1. Let (4, P) be a weak GW *-algebra. Then the order in A defined
as x=y Iff f(y—x)ER(f€P) coincides with the algebraic order of the C*-algebra A.

Proof. Since the elements of P are positive linear forms on A, we have obviously
x=0 with respect to the order defined by P, if x=0 in the C*-algebra 4.
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Conversely, suppose that x=0 with respect to the order defined by P. Since the
set of positive linear forms f on A satisfying f(x)¢R, is o(4*, A)-closed, we have
f(x)=0 for every fcCo(P). Since f(x)ER, (f€P), we have f(x*)=f(x)=f(x),
hence x=x* since P separates the points of 4. We know that 4 is a C*-algebra
thus we may write x=x*"—x~, where x* and x~ denotes the positive and negative
part of the self-adjoint element x, respectively. Then the positive square root Yx—
of x~ exists in 4 and it is well known that the set {}/F, x*,x~} is commutative;
moreover, x*x~=x"x*=0. Fixeda linear form fin P, we have (x~)-f-(Yx~ )¢
€E6 (P) thus

0= (V> )L (V> ) = FI/x~(x+ —x)Yx7) =
=Gt =) = =f() =0,

ie. f((x7)*x~)=0 (f€P). Since P separates the points of 4 and the involution of 4
is proper, it follows that x~=0 thus x=x* isa positive element in the C *-algebra 4.

>

II. A type of commutative GW*-algebras

If # is a o-algebra of subsets of the set T then F2(T, %) will denote the set of
bounded complex valued #— % (C) measurable functions defined on 7. The set
F(T, #8) will always be thought of equipped with the pointwise defined algebraic
structure and the sup-norm on T (denoted by ||| - |||1), thus FZ (T, %) will be regarded
as a commutative unital C *-algebra.

It is known that given a o-algebra of subsets of the set T and a finitely additive
mapping ©: #—C, the following statements are equivalent:

'— © is bounded, i.e. :ugl@(E)|<+°°;
€

— there is a unique continuous linear form @ on FE(T, B) (called the integral on
FLE(T, B) defined by O) such that O (x;)=0O(E) for all EcA.

Moreover, @ is g-additive if and only if the integral @ defined by @ satisfies the con-
dition:

(L) For every uniformly bounded sequence (¢,),n of functions in ZZ2(T, %), if
@,~0 pointwise on T then &(p,)-0.

Lemma. Let B be a o-algebra of subsets of the set T and P the set of integrals on
F(T, B) defined by positive o-additive set functions on B. Then P is a separating set of
positive linear forms on the unital % -algebra A:=FL(T, B), P satisfies (1) and sp (P)
is a || - |p-closed set.

Proof. Since {5,|t€T}c P, the set P separates the points of 4. On the other
hand, P(1)={a|u: #—-R, c-additive and pu(T)=fi(1)=1}, thus for every ¢cA4

10*
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and fic P we have the inequality |f(@)|=u(T)||i@||]; showing that P(1) is ¢ (A*, A)-
bounded and non void.
Now we prove that || -[|,=|||-|ll;. Indeed, if @€A then

lolle == sup Va(e*¢) = sup Va(lel) = sup Vu(D)llolllr = lllellir,
e PQ) pEPQ) AePQ)

i.e. |-l=|l-{lly. Conversely, if €A and c<l|||¢|||; then there is a point ¢ in T
such that c<lp()=Vé(o*@)=lolp, ie |lI-lllr=1"lp.

Let O¢sp (P) and choose a sequence (@,),.y in sp (P) with the property
|©,— 6] z—~0. We have to show that @¢sp (P). With regard to our former consider-
ations, it sufficies to prove that for every uniformly bounded sequence - (@,),cn
in 4, if ¢,~0 pointwise on T then O (¢,)—~0. If n, mEN then

If e=>0 is arbitrary then there is a number N, in N such that |0 -0y [z=¢/2(M+ 1)
where  M:=sup|||g,lil;. Since Oy €sp(P) we have O (¢,)>0 (m—~+<)
meN °

. thus there is a number N in N with the property that @ ((p,,,)|<s/2 for meN,
m=N. Then the above inequality implies that |@(¢,)|=¢ for mEN, m=N, ie.

0(,,)—0.

Theorem 1. Let & be a o-algebra of subsets of the set T, A:=%2(T, #) and P
the set of integrals on A defined by positive a-additive set functions on . Then (4, P)
is a commutative GW *-algebra.

Proof. With regard to our Lemma we have only to prove that the pair (4, P)
satisfies (II), (II1) and (IV). If p€A4 and A€ P then ¢*-f-p={p|?n where |p|2u
is the positive o-additive set function on % defined as: E—f(|@|%xz), thus
¢* fi-@¢P and, consequently, ¢-fcP—P+iP—iPcsp(P), ie. (4, P) verifies
1) and (I11).

In order to prove (IV), let (¢,),cn be a sequence in A such that (ﬁ((p,,))"eN is
convergent for every A€P. Since 5,6 P (t€T), there is a unique function ¢: T—C
with the property that ¢,— ¢ pointwise on 7. From this we infer that ¢-is necessar-
ily #—%(C) measurable. We intend to show that ¢€A4 and ¢,—¢ in the
o(4, sp (P)) topology. In order to prove this we first define for all n€N the linear
form @,: sp (P)~C; ©—0(g,). On account of our Lemma, sp (P) will be consid-
ered a Banach space whose norm equals | -||;. Then @, is a continuous linear form
on the Banach space sp (P) for every n€N and, by our assumption, the sequence
(@n)en is pointwise convergent in sp (P). Consequently, the theorem of Banach—
Steinhaus implies that :161113 [@all <+ eo. If nEN and c<]||{@,l||; then there is a

point 7 in T such that c¢=<|g,(1)|=|@,0)= 5151, =I@ll, since [3;=1 holds
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obviously, thus |||,|||;=/@,|| showing that the sequence (¢,),y is uniformly bound-
ed in T. From this we obtain that the mapping ¢ is bounded, i.e. p€A4.

Finally, if € P then the theorem of Lebesgue applied to the measure u and the
uniformly bounded, pointwise convergent sequence (@,),cn result in 2(@,)—~A(9),
ie. @,~¢ in the o(4, sp (P)) topology.

This theorem provides a great deal of commutative G *-algebras that are not
*-isomorphic to any W *-algebra.

II1. On the Gelfand representation of commutative GW*-algebras

If Tis a compact Hausdorff space then € (T") and #(T) will denote the vector
space of complex continuous functions defined on T and the vector space of complex
Radon measures on T, respectively. Then €, (T') and .# , (') denote the convex cone
of positive elements in €(T) and A (T), respectively. The complex vector space
%c(T) will always be thought of equipped with the pointwise defined multiplication
and conjugation, i.e. ¥c(T) will be considered a commutative unital %-algebra. It is
well known that €(T) is a C*-algebra whose C*-norm equals the sup-norm ||| - |||
on T.

Given a commutative unital C*-algebra A, the celebrated representation theo-
rem of Gelfand and Naimark assures that 4 and %(X(4)) are isometrically *-iso-
morphic C*-algebras, where X(A) denotes the compact Hausdorff space whose
underlying set is the set of non zero multiplicative linear forms on 4 and whose topo-
logy is the well known Gelfand topology (cf. [3] ch. I, §6, Theorem 1). The Gelfand
isomorphism between 4 and %.(X(4)) is denoted usually by ¥,; we have
(%,(®))@=x(x) for all x€A and xeX(A).

In this section the structure of the compact Hausdorff space X(4) will be ex-
amined in the case when (4, P) is a commutative GW *-algebra.

Proposition 2. Let T be a compact Hausdorff space, P .#,(T) and sup-
pose that (6c(T), P) is a weak GW *-algebra. Then
(i) T=( LGJP Supp u)~ and 5161? u(@=0 for every non-void open subset G of T.
(ii) The ;'lnterior of a closed uG,, -set in T is closed.
(iii) If F is a closed Gs-set in T and there is a measure p in P such that u(F)=0
then the interior F of F is non-void, i.e. F is not nowhere dense in T.

Proof. (i) Let G be a non-void open subset of T. Then there is a function
@€¥%.(T) such that 0=¢=1, Supp oG and ¢@0. Since P is a separating set,
there exists a measure p in P with-the property u(p)>0. Then we have u(G)=
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=u(p)=>0. This proves the second part of (i) and the first part of our assertion is an
easy consequence of the second part.

(ii) Let F be a closed G,-set in T. Then there is a sequence of functions (¢,),
in €, (T) such that ¢,=¢,,, (NEN) and ¢,—~yr pointwise on T. If u€ P then
(;1((;;,,)),_GN is a decreasing sequence of positive real numbers thus the sequentially
completeness of €c(T) in the a(%(T), sp (P)) topology now gives the existence of
a function ¢ in ¥c(T) such that u(e,)—~u(p) for all ueP. Since u€P implies
u(@)=0 and pu(ep,)=p(p) (mMEN), by Proposition 1 we obtain that ¢,=¢=0
(n€N). From this we conclude that ¢=y,. If ¢’¢¥,(T) and ¢'=yp then ¢’'=
=¢, (n€N) thus u()=p(e,) and u(e)=lmp(p,)=u(p) for every ucP, ie.
applying again Proposition 1, we find that ¢’=¢. This means that

1) @ =sup{p’: ¢’€%.(T), ¢’ = 1z}

If neéN then inf(ng, )=y and inf(ne, )€€, (T) thus by (1) we obtain
inf (nep, 1)=¢. Then we have

Yio>0) = SUP (inf(np, 1)) = ¢ = x¢

showing that ¢=1 on the set [¢=>0] thus ¢=1 on the set Supp ¢=[@=0]" as
well. Since ¢=0 on T\Supp ¢ we deduce that g, ¢=¢E(€+°(T), i.e. Supp ¢
is an open-closed subset of T and Supp ¢ F thus Supp ¢ F. We claim that
F equals Supp ¢. On the contrary, suppose that Supp @=F. Then F \Supp ¢ is
a non-void open subset of T thus there is a mapping ¢’€%,(T) suchthat 0=¢'=1,
Supp q)'CI?'\Supp(p and ¢'#0. Then ¢+ ¢'€¥,(T) and ¢+ ¢ =y thus by (1)
we have @+ ¢’=¢ in contradiction to ¢’=0. This proves that Supp ¢= E ie.
the interior of the closed G,-set F is closed in T.

(iii) If Fis a closed Gs-set in T and p€ P is a measure such that p(F)>O then,
applying the notations introduced in the proof of (ii), we obtain

p(@) = lim p(@,) = p(xe) = n(F)

thus @0, ie. G=Supp p=F.

Corollary 1. Let T be a compact Hausdorff space and let Pc M, (T) be a set
such that (€c(T), P) is a weak GW *-algebra. Then the open-closed subsets of T form
a basis for the topology of T and the closure of every open F,-set isopenin T. Partic-
ularly, Supp ¢ is open-closed for all @B (T).

Proof. Let ¢ be an arbitrary point of T and G an open neighbourhood of ¢.
Then we can choose a function ¢@€%.(T) with the property that O=¢=1,
Supp ¢ G and tisin the interior of [¢p=1]. Since [p=1] is G;in T, by Proposition



Commutacive GW*-algebras 151

2 we deduce that the interior of [¢=1] is open-closed and contained in G. This means
that at every point of T there is a basis consisting of open-closed sets, or equivalently,
" the topology of T has a basis formed by open-closed sets.

The second part of our assertion is a simple reformulation of (ii) in Proposition 2.

Theorem 2. Let (A4, P) be a commutative weak GW *-algebra. Then A is a
C *-algebra whose underlying x-algebra is a Rickart «-algebra. Consequently, the set
of projectors in A is total in the topology defined by the C*-norm of A.

Proof. Compare Corollary 1 with Theorems 1, ch. I, § 6. in [3] and 1.8 in [4].

IV. Spectral theorem for commutative GW*-algebras

If T is a compact Hausdorff space then %,(T") denotes the o-algebra in T gen-
erated by the closed G; subsets of T'; %,(T) is usually referred to as the Baire g-algebra
of T. On the other hand, a mapping ¢: T—C is called a Baire function if ¢ ~2(E)¢
€48,(T) for every Borel set £ in C. It can be shown without difficulty that %,(T)
coincides with the least g-algebra in T with respect to which every continuous complex
valued function defined on T is measurable.

Let T be a compact Hausdorff space; for every countable ordinal number o we
define by w,-induction the function space %&(T) as follows:

— GUT)=%(T),
— if O<a<w, then @€%¥E(T) if and only if ¢ is a function T—C such that there
is a sequence (@,),(n in ﬂga %&(T) which is uniformly bounded and pointwise

converges to ¢ in T.
Then we define 4 (T):= L J (gc(T) It is easy to show that ¥g(T)=

=F2(T, B,(T)), i.e. 65 (T) cons15ts of the bounded complex valued Baire functions
defined on T and a subset E of T belongs to %,(7T) if and only if y;€%Z(T). In the
sequel the sequence of function spaces (4¢& (T))Ma,l will be referred to as the standard
graduation of 4g (T).

According to Theorem 1 and the fact that €3 (T)=%2(T, B,(T)), the pair
(%2 (T), P) is a commutative GW*-algebra, where P is the set of integrals on € (T)
defined by positive o-additive set functions on Zy(T).

Lemma 2. If T is a compact Hausdorff space, PC M (T) and ¢ is a univer-
sally integrable complex valued function defined on T then the relation f o du=0
T

(u€ P) implies that f @ du=0 for all pcsp (P), where sp(P) is the closure of

T
sp (P) in Mc(T) in the measure norm topology.
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Proof. Since the mapping #-(T)—+C, O— f ¢ dO is a measure-norm conti-
T

nuous linear form on . (T), the assertion is obviously true.

Lemma 3. Let T be a compact Hausdorff space and let Pc 4. (T) be a set
such that (€c(T), P) is a GW *-algebra. If ¢€%g(T), ¢*€%c(T) and [ o du=
T

=u(@®) for all p€P then we have |ll¢%llIr=l1ollly-

Proof. Let ¢ be a fixed point of T and &, denote the basis at ¢ of T consisting
of open-closed subsets of T (see Proposition 2, Corollary 1). With regard to (i) in
Proposition 2, to every E¢ %, there is a measure ug in P such that pg(E)=>0. Let
U be such a measure and put Ap:=yzpug/ug(E) for every Ec%,. Then Az€sp(P)
by (III), and it is easy to see that the continuity of ¢® in ¢ implies that éig lg(e®)=

=¢®(t). Now Lemma 2 yields that f @ dig=Az(¢® for all E€4,, since the meas-

T
ure-norm closure of sp (P) in #(T) equals 5p (P) (viz. ||| - |[|;=Il - |l p). From this
we infer that

b . by — 17 =
lo*(tl = lim 25(e)| = lim | [ ¢ 42| = llellir.
ie. [llotlllz=llellly-

Proposition 3. Let T be a compact Hausdorff space, P # . (T) and suppose
that (fgC(T ), P) is a GW *-algebra. Then to every bounded complex valued Baire
function ¢ defined on T there is a unique continuous function ¢® defined on T with the
property that ¢=¢" a.e. for all pcP.

Proof. Since P separates the points of 4c(T), the uniqueness of ¢® is obvious.
The existence of ¢ will be shown by the use of the standard graduation of €g(T).
Assume that @€%g(T) and by w,-induction we show that for every a<aw,;, if
@€FE(T) then there is a function ¢’€%(T) such that p=¢® a.e., for all ucP.

The assertion holds for «=0, evidently. Suppose that O<wa<w, and the
assertion is true for every B<a. Since @€%E(T), there is a uniformly bounded
sequence (@,),cn iN ,,U %E(T) such that ¢,—~¢ pointwise on T. With regard to our

<a

induction hypothesis, for every néN we can define a function ¢? in €-(T’) such that
¢,=¢> ae., for all ueP. Now Lemma 3 gives that |||Z]||={||@.l|l; (#€N) so the
sequence (@), in %c(T) is also uniformly bounded.
If pcP then the theorem of Lebesgue applied to x and the sequence (¢,),(n
implies f @, dp—~ f @ du. On the other hand, f @, du=p(¢2) (n€N) thus we obtain
T T T

@ limp(pd) = [odu (ueP).
T



Commutative G *-algebras 153

The sequentially completeness of €.(T) in the (4 (T), sp (P)) topology now results
in the existence of a function ¢*¢%.(T) such that

(3) lim p(gp) = p(e®) (REP).

Comparing (2) and (3) we deduce that pu(e®)= f ¢ du for every u€ P. According to
T .
Lemma 3, @(¢%= f(p doe for all @¢sp(P). If ucP and Ye%(T) then by (11I)
T
we have Yuesp(P) thus (eW)@)= [ @ d¥m=Ww(@)=@* W), ie. ou=0"s
T
for all ucP. This shows that ¢=¢° a.e., for every ucP.

We call the attention to the fact that Proposition 3 holds only for commutative
GW *-algebras and not for commutative weak GW *-algebras.

Theorem 3. Let (4, P) be a commutative GW *-algebra. Then there is a unique
x -homomorphism OF: €Z(X(A))—~A preserving the unit elements satisfying

“) 10%@) = [od(fo¥i")

X(4)

for all feP and @c%g(X(4)).
Remark. Note that fo%;*c.#,(X(A)) for every positive linear form f on A.

Proof. The uniqueness of OF follows from (4) and the fact that P separates the
points of 4. In order to prove the existence of ®F we first mention that the pair
(6c(X(A)), Po%;") is a commutative GW *-algebra. Then, by Proposition 3, we can
define the mapping

éc (X() ~ Cc(X(4)), o=

satisfying @=¢" a.e., for every p€Po%;' and @€¥Z(X(4)). It is routine to
check that this mapping is a %-homomorphism between 4Z(X(4)) and €(X(4))
preserving the unit elements. For every ¢€%g(X(4)) we define 07(p):=%7(¢").
Then @F is a unit preserving % -homomorphism between g (X(4)) and 4, evidently.
If fcP and ¢c%S(X(4)) then fo¥%'cPo%' thus ¢=¢° ae., for fo¥,?,
showing that the equality holds for ¢ and f.

Of course, Theorem 3 can be appreciated as the global (or better to say, collec-
tive) spectral theorem for commutative GW *-algebras. In order to formulate an indi-
vidual version of the spectral theorem, we note that the spectrum of an element x
in a unital algebra A4 is usually denoted by Sp, (x), or, if no confusion arises as for
the algebra, the letter A4 is omitted. It is well known that given a unital C *-algebra 4,
to every normal element x of A4 there is a unique unit preserving * -homomorphism
6,: €-(Sp (x))~A such that O, (idg,,)=x and O, is an isometry whose range
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equals the C*-subalgebra of A generated by the set {1, x, x*} (cf. [3] ch. I, § 6, Propo-
sition 5).

Theorem 4. Let (A4, P) be a commutative GW *-algebra and x€A. Then there
exists a unique unit preserving %-homomorphism OF: Z2(Sp (x), Z(Sp (x)))—~4
which is an extension of ©, and satisfies

) f@E@) = [ 0d(fo8,) (feP),

Sp(x)

for every bounded complex valued Borel function ¢ defined on Sp (x).
Remark. Note that fo@®.€.4, (Sp(x)) for every positive linear form on 4.

Proof. The set P separates the points of 4, thus the uniqueness of @F follows
from (5), evidently.

Since Sp (x) is a metrisable compact topological space, the o-algebra % (Sp (x))
of Borel sets in Sp (x) coincides with the s-algebra %,(Sp (x)) of Baire sets in Sp (x).
Consequently, we have ZZ(Sp (x), Z(Sp (x)))=%c(Sp (x)). Since the mapping
% ,(x) is a continuous function from X(A) onto Sp (x), the operator

Gu(x)*: 6c (Sp(x)) ~ 6c(X(4), @ @oF,4(x)

is an injective unit preserving % -homomorphism between the C *-algebras €& (Sp (x))
and 4g(X(4)). Then we put :

Oi’ = @POgA(x)#5

where ©F denotes the %-homomorphism between ¢Z(X(4)) and 4, introduced in
Theorem 3. Thus @F is a unit preserving * -homomorphism between €& (Sp (x))and 4.
It remained to prove the equality (5). Let there be given a linear form f€P and a
function @€%Z(Sp (x)). Then, by the definition of ©F, we have

©6) F(OE(9) = F(OF(G4(x)*(9)) = f(OF (9o%4(x)) =
= [0o%u®d(fo%:Y) = [ed(Gu(x)(fo%:),
X(4) X(A)

where 9,(x)(fo%;") denotes the Radon measure on Sp (x), which is the image of
the measure fo%;'€.#,(X(A)) established by the continuous function %,(x).
It is obvious that the mapping

G (SP(x) ~ 4, ¥ G (YoF,(x))

is a unit preserving %-homomorphism between %(Sp (x)) and 4 which assigns x
to idg,,y, so the uniqueness of @, results in O, (Y)=9; (Yo%, (x) for all
Y€Gs(Sp(x)). Thus we obtain (fo@)Y)=(fo% (Yo% ,(x)) for every



Commutative GW*-algebras 155

Y€%:(Sp (x)) showing that fo®,=%,(x)(fo¥;"). Comparing this equality with
(6), we finally deduce that (5) holds for every f€P and @€%¢& (Sp (%)

At last we mention that both the x-homomorphisms ©@f and ©F introduced in
Theorem 3 and Theorem 4, respectively, depend essentially on P.
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The invariance principle for functionals of sums
of martingale differences

I. SZYSZKOWSKI

1. Introduction. Let {(X,;, F,;), 1=i=k,}, n=1, be a double array of square-
integrable random variables whose rows are martingale difference sequences (MDS),
i.e. foreach n=1 therv’s X,;, 1=i=k,, given on some probability space (2, /, P)
with' sub-o-fields F,,CF,<...CF, , are such that X, is F,-measurable and
E(X,|F,:-1)=0 as. for every 1<z<k,,. Define

k
Spe = Z X, oh= E(Xfi|Fn,i—1),

s =ES?% and S, =s%=0 if k=0, n=1. Let us observe that without loss of gen-
erahty we may and do assume that for every n=1, EX2%0, 1=isk,, s$2=s =1,
where k,>eco as n-—ce. -

Let D[0, 1] be the space of functions defined on [0, 1] that are right-continuous
and have left hand limits, endowed with the Skorohod J,-topology (cf. [1, §14]).
By W we will denote the Wiener measure on D[0, 1] with the corresponding Wiener
process {W(t): 0=t=1}.

Let Fy be the space of functions defined on [0, 1]X (— oo, =) satlsfymg the
following condition : there exists an absolute constant M such that if f¢ Fy, then f
and its derivatives satisfy inequalities of the form

0 - IDf(s, x)| = M(1+1x[%),

where D denotes either the identity operator or a first derivative and « is some positive
constant. . -
Define a random function W,(¢), 0S t=1, by

(2) W(t) - n,m,,(r), nh= 1’
where mi,(t)=max {i=k,: s3=1t}, t€[0, 1].

Received November 27, 1984, and in revised form February 21, 1985.
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We shall give sufficient conditions for the weak convergence of the process
{z, (t)— Z’ f,,( 2s Sa) Xni+1, 0=t=1}, in Skorohod’s space D[0,1], to

the process {ff(s,W(s))dW(s): Oétél} in D[0, 1], which we denote by
0

{Z(@), 0=t=1}.
The results obtained are generalizations or extensions of those given in [I,
Theorem 16.1}, [3, p. 179], [2], {4] and {5].

2. Limit theorems. Suppose there exists a double array {C,, 1=i=k,, n=1}
of nonnegative numbers such that

3 64=C,, as. l=i=sk, n=1

and set
m,(t)
W'* = Z Cm'v IE[O, 1], n=1 (C"o = O)
i=0

The main result of this paper is given in the following

Theorem 1. Let {(X,;, F), 1=k=k,}, n=1, be a double array of random
variables whose rows are martingale difference sequences such that si=1, n=1.
Assume

(4) the finite dimensional distributions of {W,, n=1} converge weakly, as
n—oco, to those of {W(t), 0=t=1},

(5) there exists an array of nonnegative numbers satisfying (3) such that for every
t, 1,€[0, 1], t,—ti=m(n), n=1,

Wit (t)— W () = [F(t)— F(1)T,

where m(n)=min {EX%: 1=i=k,}, F isa nondecreasing continuous function on [0, 1)
and r>1/2 is some positive constant.

Then Z,~Z as n—oo, in D[0, 1], provided that f, f,€F\, n=1, and for every
s€[0, 1]

©6) Df.(s,x) >~ Df(s,x), as n -

umformly in x on every finite interval. Here, the stochastic integral in the definition of
Z(t) is taken in the L2-sense.

From Theorem 1 we get the following

Theorem 2. Assume {(X;, F), i=1} is a square-integrable martingale dif-
ference sequence such that EX'=1, i=1, and

Q) sup E(XP|F-) = M, a.s.
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[nt]

for some positive constant M. If (4) holds with W,(t)= 3 Xi/ﬁ then, in D[0, 1],
i=0

® D" E 1 SR K [ S5 W)W, a5 e,

provided (6) holds as well.

To prove Theorem 2 we note that, in this case, (5) is satisfied with X, =(X;+...
.+ X)Vn, Cy=Min, 1=k=k,=n, F(t)=2t,r=1, m,(t)=[nt]. Thus Theorem 2
follows from Theorem 1. It is easy to see that Theorem 16.1 in [1] is a consequence of
Theorem 2 (it is enough to put f,=f=1, n=1).

We note that a necessary and sufficient condition for (4) to hold is given in Theo-
rem 7.7 [1, p. 49]. Furthermore, if W,={W,(t): 0=t=1} converges weakly, in
DJ0, 1], to a standard Wiener process W= {W(t), 0=t=1}, then (4) also holds.
On the other hand, the assertion of Theorem 1 implies the weak convergence of
W,,as n—oo, to W. Thus the assumption (4) is necessary for (6) to hold. For exam-
ple, it is well known that if {(X;, F.), 1=i=k,}, n=1, is a double array of
square-integrable random variables whose rows are martingale difference sequences

satisfying the Lindeberg condition and Za ;> 1, then (4) holds. Moreover, one

can easily observe that every sequence {X,, n=1} of independent random variables,
with EX,=0, EX?=1, n=1, satisfying the central limit theorem also satisfies
the assumptions of Theorem 2. It should also be mentioned here that the assumptions
(1) and (6) concerning the functions f,, n=1, and fare very general. Some examples
of such functions can be found in [3, Section 5).

To give a better illustration of the meaning of Theorem 1, let us note that froma
very special case of it we immediately obtain the following assertions. If {(X, F)),
i=1} is a sequence of random variables with EX;=1, i=1, and satisfy (4) and
(7), then in DJO, 1],

. ot
{n—ll .2[ ]Xin, 0=t= 1} {[ws)aw), 0=t=1}
si<j=[m 1]
.and ) :
[ne) !
—3/2 i—1)X;, 0=¢t= 112 dw(s), 0=t =1
from Z6-DX, 0= 1= 12 [ sawe), 0= =1}

as n—oo, The first assertion follows from Theorem 2 with f, (¢, x)=f(t, x)=x, and
the second one with f, (¢, xX)=f(¢, x)=t. The distributions of the integrals

f W(s)dW(s) and jtde(s)
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are well known. For example,
t
[ W(s)dw(s) = (W*(1)—1)2
0

Remark. We note that condition (5) implies
) W,*(1) = K, n=1, for some constant K. :
Moreover, by (5),
max C,,, ssup{[F(t)— Ft)V: ta—t, =m(n)}, n= 1,

1=i=

and, by (3), EX% = C,, and lim m(n) = 0, so that

(10) max EX3 -0, as n —oo,

1=isk,

because the function F is uniformly continuous.
3. Auxiliary lemmas. Let for every function f€F,,
fC(s, x) = f(s, )I([{-C, CP(x), s€[0, 1},

where C is a positive constant and 1(A4)( - ) denotes the indicator function of the set A,
and set
G, Plle = (24572, (x, y)ERE

Lemma 1. Let {f,, n=1} be a sequence of functions such that f,€ Fy, n=1,
and let O=py<p,<...<p,=t, t=ty<h<..<t,=s, 0=t<s=1, be partitions of the
intervals [0, t] and [t, 5), respectively. Assume that for each n the MDS {(X,;, F..),
1=i=k,} satisfies the assumptions of Theorem 1. Then, for every e=>0 and each
C=0,
1y lim lim B(e,7, 7, C) = 0,
where

¥y = max (p;—pi-1)+ max (4,—t;-,)

and .
m, () r—1
Pl(sa ¥, 1, C) = P(H(é, fuc(snzi’ Sni)Xn,i+1— j;; fnc(pj: m(pj))(m(pj"l'l)— I/Vn(pj))a

m,(s) -1
) Z(;)anc(sma Sui) X iv1— _Z:).f;zc(tj, I’Vn(tj))(I'Vn(tjﬂ)—I'Vn(tj)))llz > 8) =
=m, Jj=
= P(I(X(n,7,0,1), X(n, 7, 1, Dz > &) = P(||(X1, Xp)||= > e)-
Proof. To prove Lemma 1 it is enough to show that

(12) lim lim EX%(n, y; t,5) = 0,

Y0 n-voo
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because, in the same way, we can prove that (12) holds with X(n, y, 0, t) and then
Py(e, 7, n, C)=¢c~2(EXZ+ EX?Y).
Let, for every i (m,(t)<i=m,(t;.,)), Wy=WR=[fE(s%, S)—fE(t;, W, ().
Then we have .
—1 mt J+1)

I?l(sa ?s n, C) P(| 2 ijn,i+1I = 8)'

Jj=0 :—mn(tl)+

On the other hand, for every i<i’ (m,,(tj)§1<m,,(tj+,), my () =i <m, (1) 41))

‘ EI'VU nz+1W'1 ni'+1 = EWJ n:+1I'Vu E(Xni+1|Fm)_O
Thus

b—1 m"(t“_l) . b—1 m,(t;,,)
EX;}=3 3 EW:,;Xi=3 > EW2 E(XilF,;-)=
Jj=0 i=m,()+1 j=0 i=m,(¢;)+1

m,(s)
=sup EWj( 3 Cu)= W,*(1)sup EW}.
_ i,j i=m, (1) iLJj
Hence, by (9),
(13) ExX; = Ksup EWjj.

Let us observe that, by (1), for every feF, and (s,x), (s, x)€[0, 11XR,
14 1£E(s, X) =1 (51, %) = Ke(Is— 1| +[x—xy]),

where K¢ is an absolute positive constant Wthh depends only on C. Thus, for every
n( )<lsmn(tj+1)’ OSJSb l

EW = 2K2{|-"2ni—tj|2+E(Sni-Snm,,(:,))2} =
= 2KE{(tj+1—t;+ max EX2) +(tj+1—t,+ max EXZ)}.

1=isk, 1=si=

(15)

Taking into account (10) and (15) we obtain (12)

Lemma 2. Let f, f,, n=1, be functions satisfying the assumptions of Ti heorem 1.
If the assumptions of Lemma 1 are also satisfied, then for every C=0
(16) hn(} hm Py(e,y,n,C) =0,
y—b

where

Py(e,7,n,C) = P(H(,Z,l {15 (25> Wa(2) =S (25> Wa(P))Y (W2 +2) — Wa(Pp),

:é: AU A BT OR AN HCATIEAD)) ?) =
= P(I(X1, X3)lle > &),

11
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‘Proof. Again, it is enough to show that
lim lim E(X3)? =

¥*0 n—~>oo

Let, for every 0=j=b, V,;(x)=f(t;, x)—f(t;, x). We have

-1 . my(ty,y)
E(X) = "2 E(uOhe)f S B Fan (1))

i=m,(t ,) +1

Let R = oax. susz(x) Then, by (6) R,~0 as n-—oo,
Thus

bl . ' '
EX(*= R, 3 S EX% = R(EW?(s)— EW2(t)) = R, ~ 0, as 1 —oo.

J =0 l—mn(t J)+1

Lemma 3. Let the assumptions of Lemma 1 and Theorem 1 be satisfied. Then
for any given C=0,

(2 7y WaoD) oy~ W(p,» g_:f"(t,-, AP AT AR e
an :
e (2 Sy W)W (2se1)—W(PD)) 2 S5, W)W (t)42) — W(1)))
v as n-—»oo,

.where {W(): 0=t=1} is a standard Wiener process in D[O; 1].

The assertion of Lemma 3 follows from (4) and Theorem 5.1 [1].

Lemma 4. If fE-FM'»,;,vth'en for every. ¢=0 and any given C=0

PS5, WD) F 00~ Wio)— [ 193 W) (),

(18) Jj=0 . : 0 : . :

o ng(t,-, WD) (¥ (22) = () - f Fo(e W) aW ), > &) <0

as
y= max (piy— P:)'f' max (fj+1“")"0

0=isr—-1

where O=py<p;<..<p,=ht=l<h<..<l,=S, OSt<ssl are partitions of the
mtervals [0, 1] and [t s], respectwely

The proof of Lemma 4is essentlaly the same that is gnven in [4]
4, Proof of Theorem 1. Let us observe- that -

(19) P(max.|Syl > C) =

1=i=
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Furthermore

(20) P(sup [W(@®)|>C)~0 as C —o.
¢ 1

==

Thus, taking into account (11) and (16)—(20) we get
(21) (Zo(1), Zu()— Zo(D) 2+ (Z(1), Z() - Z(1) a5 1 —~eo,

for every O=t<s=1. Clearly, using this method we may prove that the finite dimen-
sional distributions of {Z,,n=1} converge weakly, as n--o, to those of {Z(¢):
0=1=1)}.

To complete the proof, we have to verify the tightness condition. We use Theorem
15.6 in [1]. From this theorem and (19) we infer that it suffices to show

(22) E(ZL (1)~ ZL(t)P(ZE ()= ZE (1)) = [F(ty)— F(t)I,s
for any f=t=t,, n=1, C>0, where

Zf(’) = .mtizt)r_lﬁ'c(sgi’ Sm’)Xn,i-i-l’ t€[o, 1]
We first note that, by (3) and (1),
E(ZS() = ZE WV (ZE ()= ZE () =
= K(O)Y(W,* (1) — W (t))(Wa* (t) — WX (1)) = 47 K(O) (W, (1) — WK (1))’

where K(C) is some positive constant which depends only on C. Hence, by assump- »
tion (5) condition (22) holds, because in the case 1,—t,<m(n), ZE(1)=Z(t,) or
ZE()=ZE(ty).

Acknowledgement. 1 would like to thank the referee for helpful comments.
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On the group of analytic automorphisms of the unit ball
of J*-algebras

JOSE M. ISIDRO™

1. Introduction

Our purpose is to present an elementary method to integrate a certain Riccati
differential equation that plays an important role in the study of the unit ball of J*-
algebras of operators as symmetric spaces. Our approach consists in the use of Pota-
pov’s generalized Mobius transformations together with some elementary facts in
the theory of holomorphic functions between Banach spaces. These methods have
proved to be successful in the study of J *-algebras and in some other questions, too
(11, 21, 13).

Let $ and & be complex Hilbert spaces and denote by % a J *-algebra of bounded
linear operators X: $— K. That is, by definition, % is a closed complex subspace of
Z(9, &) such that AB*C+CB*Ac% whenever A, B, C€%. Let B(%) be the open
unit ball of % and assume that A€% and X¢B(%) are given. Then, we consider the
Riccati initial value problem:

() 2y = 40 4'y@), yO) = X, y(OEB®)

where 4* stands for the adjoint of 4. We give an explicit formula for the maximal
solution y,(¢; X) of () in terms of the initial value X and the parameter 4. See also
(131, page 57) and ([4], page 509) where other (but non elementary) approaches to the
problem can be found.

We recall the following principal property of J*-algebras [1]:

Given M¢eB(%), the Mgbius transformation

(1) Tu(X) = (1—- MM*~2(X + M)+ M*X)"\(1- M* M), XcB(%)

Received November 2, 1984 and in revised form September 24, 1985.
(*) Supported by CAICYT, contract 1525/82.
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is a holomorphic automorphism of B(#). Moreover, we have

2 Tu(0) =M, T_y=Tg", Tu(X)" = Ty (X*)
and
3) ATy (X)Y = A= MM*'2 (1 4+ XM*) 'Y (1 + M* X)) (1 - M* M)

for X¢B(#) and Y€%.

Here, positive and negative square roots are defined by the usual power series
expansions and, at each ocurrence, 1 denotes the identity operator on the appropiate
underlying Hilbert space.

Furthermore, we recall from [5] or [8] the following basic facts concerning
Aut B(%), the group of holomorphic automorphisms of B(%):

7
Let the vector field f(X) X be complete in B(%) and denote by y(¢, X) the

solution of

@ L= yo=x e

Then, for each fixed 7€ R, the mapping X—y(¢, X) is an element of Aut B(%).
Moreover, the mapping t—y(¢, -) is a continuous one-parameter group of auto-

d
morphisms of B(%) and we have f(X)ZZ y(t, X) for XeB(%).
(1}

2, The main result: one-parameter groups

Let us fix arbitrarily any operator 4¢%. By the polar decomposition [6], there
is a partial isometry We £ ($, & such that A=WP where P=:(4*A4)"? and
E=W*W is a projector onto the closure of the range of P. Let tgh(f)=

= Z'az,,HI W+l (¢ R, be the power series expansion of the function hyperbolic

tangent tgh and define
tgh (tP) =: > apnss((PY™, 1CR.
n=0

Then tgh (tP)€£(9) and |tgh (tP)|=tgh |jtP|<1 for all z¢R.

2.1. Proposition. For t€R, the operator F(t)=:W tgh (¢P) satzsﬁes F(t)e
€B(%) and the mapping t—~F(t) is continuous.
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Proof. One has
F()=Wigh(tP) = W 3 g1 (tPY"+ =
n=0

= 3 G BWP(AAY = 3 gy AL AV,
n=0 n=0 . . .

Moreover, ||F(t)|=|W]-|ltgh (tP)|<1 so that F(¢)¢B(%). Obviously, #—~F(t)
is continuous. . , , _
2.2, Propositidn. Let the opérﬁtors M,' NeEB(%) be given with
(5) MN* = NM*, M*N = N*M. '
Then we have TyoTy=Tr -

Proof. By Cartan’s uniqueness theorem, it suffices to show that the automor-
phisms Ty oTy and Ty, have the same 1magc and the same derivative at the
origin 0.

From (2) we obtain (TyoTy)0=Ty,(N)= TT (N)(O) On the other hand,
from (3) we get

(6) dTr,,m(0)X = (1—- TM(N)TM(N)*)”’X(I — Ta (N T (N )2
where, by ([1], p. 22) ‘
M 1-Ty(NY'Ty(N) =

; (1-=M*M)"*(1+N*M)"(1-N*N)(1 +M*N)‘1(1-M":M)1/2.
Using (2) together with (7) we obtain
(™) 1-Tu(N)Tu(N)* = 1= Tyo(N*) Ty (N*) =
= (1-MM*'"*(1+ NM*)~(1—- NN*)(1 + NM*)~1(1 - MM*)'2,

Now, from the assumption (5) we see that the operators MM™*, NM* and NN*
commute ; thus the operators (1— -MM W2 (1+ NM *) ~*and (1—- NN*) also commute
and (7’) yields

1-Ty(N)Ty(NY* = (I—MMr*)(l+N1-l'l*)-2(l — NN%),
whence
[1-Ty(N)Ty(N)*]'? = (1— MM***(1+ NM*)~*(1— NN*)\/2,
In a similar manner

[1— Ty (N)* Ty ()2 = (1— N*NY2(1+ MN*)~1(1 - M* M),
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Substitution in (6) gives
€) dTIr,w(0)X =
= (1—-MM*?(14 NM*)~1(1— NN*'?X(1— N*N)'2(1 + MN*)~}(1 - M* M)~

By the chain rule and (3) we have '

dTyoTy(0) X = dT,(N)odTy(0) X =

= (1-MM**(1+ NM*)~*(1— NN*2X(1—- N*N)2(1+ MN*)~(1— M* N)\/*
which is the same as (8).

Let us fix any A€% and consider the operator

F(1) = Wtgh(tP)cB(%), tcR.

2.3. Proposition. The mapping R—~Aut B(%) given by t—Ty,, is a contin-
uous one-parameter group of Mobius transformations.

Proof. Sincethe mappings R—B(%) and B(%)—Aut B(%) given respectively
by t—~F(t) and M—T, are continuous, so is the composite.

Obviously, we have T =idpg,. Let us fix s, t€R arbitrarily. As E=W*W
is a projector onto the (closure of) the range of P, the operators M=:F(s) and
N=:F(t) satisfy

MN* = W tgh (sP) tgh (tP)W* = Wtgh (tP)tgh (sP)W* = NM*,
M*N = tgh (sP)W*W tgh (tP) = tgh.(sP) tgh (¢P) = tgh (¢P) tgh (sP) =
= tgh tPYW*W tgh (sP) = N*M,
and we can apply Proposition 2.2. Therefore
TroTrwy = TuoTy = Ty
and, in order to obtain the result, it suffices to show that
Tu(N) = Wigh(s+1)P.

By the spectral calculus we have

(N+M)(1+M*N)~1 = W(tgh tP+tgh sP)(1+tgh tPtgh sP)-1 =

= W tgh(s+1)P. "

Since the operator tgh(s+¢)P obviously commutes with (1—M*M)/2=
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=(1-tgh? tP)"2, we have

®) Ty (N) = (1— MM*Y2(N+ M)(1+M*N)~}(1 — M* M)? =
= (1 - MM*)\*[Wtgh(s+)PI(1-M*M)? =
= (1-MM*)"PW(1~M*M) " igh(s+ )P

As W is a partial isometry, we have WE=WW*W=W and, as E is a projector onto
the range of P, EP=P= PE. Therefore

Etgh(sP) = tgh (sP) = (tgh sP)E.
Let us set Q=:tgh(sP). Then
1—MM* = 1-WQ*W*, 1-M*M=1-0°

and
(1 —MM*)1/2W(1 __M*M)l/z = (1 _ WQ2w*)—1/2 W(l - Q2)1/2 —

= Z (7 orewey | wa- gpe =

= [ 2 (7)) were]a-oyn =

_ . S’ (_ 1)” ( 1/2] WEan] (1 Q2)1/2 —
Ln=0 '
= WE(] —_ Qz)—1/2(1 _ Q2)1/z —

Substitution in (9) gives the result.

2.4, Theorem. Let % be any J*-algebra. Let Ac%U be arbitrarily given and
write P=:(A*A}?, A=WP and F(t)=:W tgh (tP) for t€R. Then, the mapping
R—Aut B(%) given by t»—»TF(,) is a continuous one-parameter group of automor-

phisms of B(%) whose associated vector field is f(X) _3__ (A-XA*X ) —

Proof. By Proposition 2.3, the mapping #—T, is a continuous one-para-
meter group of Mobius transformations. Therefore, the mapping

d
X 2| Tro(X),  XeB(%)

is a holomorphic vector field that is complete in B(%). Now an easy calculation gives

-dd? Ty (X) = A— XPW*X = A— X(WP)*X = A— XA*X.
0
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2.5. Corollary. If % is any J*-algebra and A€¥, then t—Tg, is the maxi-
mal solution of the initial value problem

4y = 4—y)4750), O = X, YOEBA)
for XeB().
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Sur un théoréme de J. Bourgain

C. FINET

Introduction

J. Bourgain a démontré (voir [1] et {1’]) que le dual de I'algébre du disque a la
propriété de Grothendieck. Nous étendons ce résultat aux algébres séparables uni-
formes 4 sur un compact X telles que :

(1) Il existe une suite (¢,) dans le spectre de A telle que pour tout 7, ¢, ait une
unique mesure représentante p, sur X (les mesures p, étant mutuellement singuliéres);

(2) I n’y a pas de mesure non nulle dans A+ qui soit orthogonale & toutes les
mesures p,. (O0 4+ ={u€(X) : pul,=0}).

L’article comprend trois parties. La premiére consiste en des rappels notamment
sur les algébres uniformes. Nous nous intéressons a I’opérateur de conjugaison dans
le cadre des algébres dites « w*-de Dirichlet ». Dans la deuxiéme partie, nous établis-
sons quelques propriétés de la projection de Riesz d’ou1 nous tirons des conséquences
analogues 4 celles obtenues par J. Bourgain dans [1]. La derniére partie de ce travail
est consacrée A la démonstration du résultat principal et & quelques exemples et
problémes. ‘

I. Rappels

Soient X, Y deux espaces de Banach. Notons B(X, Y) Pespace des opérateurs
linéaires bornés de X dans Y, II,(X,Y) l'espace des opérateurs p-sommants de X
dans Y et X’ le dual de X. Rappelons la définition des algébres « w*-de Dirichlet »

(voir [2)).

Définition 1. Soit (X, u) un espace de probabilité. On dit que A4 est une al-
gébre « w*-de Dirichlet » si A est une sousalgébre de L=(u), contenant les constantes,
telle que la mesure u soit multiplicative sur I’algébre 4 et A+ A préfaiblement dense
dans L*=(u).

Regu le 3 janvier, 1985,
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Notons que si A est une algébre uniforme sur X et u P'unique mesure représen-
tante de ¢ dans le spectre de A4, alors A est une algébre « w*-de Dirichlet ». Pour
DE[1, +<=[, V’espace H?(u) est la fermeture de 4 dans LP(u), et H™(u) est la fermeture
préfaible de A dans L (). Sur LP(u) (1<p<-<o), on définit I'opérateur de conjugai-
son (noté «~») qui posséde les principales propriétés de la transformée de Hilbert
(«classique » ) (voir [2]) : on commence par définir la conjugée f pour une fonction f
dans A+A4 : fsécrit alors de fagon unique : f=f,+C+f, avec C€C et f,, f:€A4,
ot 4,={f¢4, f fdu=0}). On pose f=if,—if;.

Définition 2. Pour chaque p€]l, «f, il existe dans L”(u) un unique opéra-
teur continu, que I’'on appellera « opérateur de conjugaison », (et quel’on notera « ~»),
qui coincide avec I'application «~» définie précédemment sur 4+ A4.

Rappelons les principales propriétés de [’opérateur de conjugaison :

1. Si l<p=<eo, pour tout fELP(y), f+ifc H?(u). :

2. If existe une constante M telle que si p€]l, [ et f€LP(u), on ait :

1/, = Mpp'IIfll, (o8 p" = (p/p—1)).
3. Si fcRe L™(u), alors exp t(f+if)€ H=(u), pour tout f€R.

De plus, il existe ([2]) un unique opérateur «~» défini sur L'(1) qui coincide avec
«~» définie sur LP(u) (p=1) et de type faible (1—1).

1I. Lemmes preparatoires

Dans ce qui suit (X, p2) est un espace de probabilité et 4 une algébre « w*-de
Dirichlet». Nous définissons la projection de Riesz (notée R). Soient p€]l, oof,
et feLP(y), on pose :

R(f) =27 (f+i/+ [f).
Des propriétés de I'opérateur de conjugaison, on déduit le lemme suivant.

Lemme 3. (1) Soient 1<p<oo et p’=p/(p—1), si|R|, désigne la norme de la
projection de Riesz considérée comme un opérateur sur LP(u), alors il existe une cons-
tante C (indépendante de p) telle que

IR, = Cpp’.
(2) La projection de Riesz est de type faible (1—1).

Mentionnons quelques propriétés faciles qui nous seront utiles par la suite.
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Lemme 4. (a) Pour tout feL’() (l<p<oo), f=—f+ [r
(b) La conjuguée d’une constante est la fonction nulle.

(c) Soit 1<p<-<o, pour tout f€e H (1), R(f)=f.
On aura aussi besoin du
Lemme 5. Pour tous fet gcL¥(u), ona
0)) [fRg = [gR_/,
ot R_ désigne la projection de Riesz négative :
R.(NH=27(/~F+[7).
Démonstration. Prouver ’égalité (1) revient 4 démontrer :
[rr+ef=0.
Supposons d’abord f et g dans A+ 4 et 4 valeurs réelles. On peut écrire :
f=fi+[f+h =2Refi+[f ficdy;
g=2Reg+[g 4.
Dés lors, f=2Imf, et §=2Img,. Ainsi,
[fi+ef= [(2Refi+ [f)2Img,+(2Reg, + [¢)2ImSf,

= [4(RefiImg,+RegyImf) = 4 [Im(fig1) = 0.

On obtieﬁt alors facilement le résultat souhaité pour f,g€A-+A. Par densité de
A+A dans L*u), Iégalité (1) est vérifiée pour tous f; g€ L*(p).
~ De la propriété de type faible (1—1) de R, on déduit le

Lemme 6. Si feL'y), w€LT(y), O<a<l, on a:
SIR.(NHFo = C.(1—a) o]}~ [l | £13.

D’autre part, on a

- Lemme 7. Si K est un sous-ensemble mesurable de X et >0, alors il existe
deux fonctions @ et \y dans H>(u) telles que :

@ lel+ll=1; o

@ le@—1/5l=¢ pour 2z¢K; -
3 W@I=¢e pour z€¢K;

@ ol = C(loge™")?u(K) ;

() -yl = C(loge )u(K)'2
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Démonstration.- Soit t=1—(1—¢)xx, logr=(loge)yx€Re L*(u). Donc
f=exp (log t+i 13;1)6 H=>(u) (propriété 3 de 'opérateur de conjugaison). L’opéra-
teur de conjugaison est borné en norme L?, ainsi :

I—=flls = 11— llz+ logll, = (1+loge=")u(K)'/2

On choisit @=5"Y1—-f)2%€¢H=(x). Soient G=1—|p| et g=Gexp(i lng)E
€H>(u) puisque log GERe L=(u). On prend alors y=f-gc H™(u) et les cinq
conditions sont remplies par les fonctions ¢ et  de H> (p).

Nous obtenons, dés lors, le méme lemme de découpage que dans [1].

Lemme 8. I/ existe une constante C telle que pour toute fonction f dans LY, (p),
S=1 et 0<bé<1, il existe des scalaires positifs (c;) et des suites (), (z)) de fonctions
de H>(u) telles que :

1) 6w =C; @ Salul,=C-6C;
@ IZkif-=Cs (& fli-Zexdf=0
3 lulf=e ps;

I11. Le resultat principal

1. Nous étudions les opératenrs p-sommants définis sur des algébres uniformes
vérifiant les conditions 1, 2 citées dans l'introduction. Notons 4 une telle algébre.
Nous établissons le théoréme de décomposition suivant :

Théoréme 9. Tout opérateur T p-sommant sur A (p=1) se décompose comme
suit : T=T,+T, ou Ty, T, vérifient les propriétés suivantes :

M (1) + 7 (T)® = 7,(T)" ;5

Q) 1 existe une suite d’opérateurs S, : G(X)—~A telle que (T,S,) converge en
norme w, vers un opérateur T, vérifiant T,=T,oj ou j est I'injection canonique de A
dans € (X )

(3) La premiére composante Ty s’ étend & H™(m) ot m est une des mesures repre-
sentantes ;.

Démonstration. 1) Comme T est p-sommant sur 4 (p=1), par le théoréme
de factorisation de Pietsch ([5]), il existe une mesure de probabilité sur X telle que
pour tout @€A4 :

1T = 7, (T) ol Loy -

La mesure y admet la décomposition de Lebesgue : p=p, + u, avec g, <a et p;.1 a'ou
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o= 2’ 2 "u,. Ona: u,= Z’ h,u,. Puisque u, n’est pas nul, on peut supposer h, j,

Inon nul. Soit o= Zh,,u,, 1l existe L= U F,, F, fermé tel que u,(L)=0=

=|o+ ud (XN\L). On applique alors le lemme de Forelli ([3]) il existe (@ )cA
telle que |y, ll..=1, (y,) converge ponctuellement vers O dans L et () converge
vers 1 (u,-presque partout). Dés lors, si on définit T1(<p)_11m T(py,) et T,=

=T—-1T,, on obtient :

@ 1Tl = 7D @leerpy, NP = 2T @lLreo 4,

Et donc :
(TP + 7, (T = my(TY.

2) On désire étendre Popérateur 7, a tout P’espace ¥(X). Soit alors F=J K,;

K, compact, K,CK,,, tel que pu(X\F)=0=a(F). Puisque 4 est séparable et
At c L¥(w), on peut définir une extension linéaire préservant la norme : E, : ¢(K,)—~
-4 ([4]). Soit opérateur restriction : R, : ¥(X)—>%(K,). On pose S,=E,R,. Et
on montre alors facilement que la suite (7;S,) converge en norme T,

3) De l'inégalité (2), on déduit que 7, s’étend en un operateur sur H=(h, yl)
et donc en un opérateur sur H™(u,).

Le théoréme est ainsi démontré.

2. Le résultat principal de notre travail est le

Théoreme 10. Si une algébre séparable uniforme A sur un compact X vérifie
les deux conditions suivantes :

(1) 1l existe une suite (¢p,) dans le spectre de A telle que pour tout n, @, ait une
unique mesure représentante u, sur X (les mesures p, sont mutuellement singuliéres);

) Il v’y a pas de mesure non nulle dans AL qui soit orthogonale & toutes les
mesures [1,,.

Alors le dual de A a la propriété de Grothendieck, ¢’est-d-dire B(A, IY)=1II1,(4, V).

Démonstration. La démonstration du théoréme est basée sur l'inégalité
‘d’interpolation suivante.

Proposition 11. Soit T 2-sommant sur A. Soient 2<qg=o et 0 tels que

1 1—9[,_ q]
7=t =77

‘Alors, pour tout 0=@<0, on a I'inégalité
@ i (T)= CO—@)T|* m(T)-*

(o i,(T) désigne la norme g-intégrale de I’opérateur T).
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Pour démontrer cette proposition, il suffit en fait ([1]) d’établir le lemme suivant.

Lemme 12. Sous les hypothéses de la proposition et pour 0<dé<1, I’opérateur
T a une décomposition T=I+S ou
(1) I est strictement g-intégral et

(B) i,(I) = | Rliz(8— 9)~*6~CC=92| TP my(T)' =% ;
@ ISl = CITI et 7(S) = C& my(T).

Démonstration du lemme. En vertu du théoréme 9, on peut identifier T
avec sa composante 7. Donc T s’étend & H=(m) (ou m est une des mesures représen-
tantes p,), il existe f¢ L (m), f f=1 telle que pour tout o€ H=(m), on ait

1T = 7o(T)  @lees amy-

Soient (¢)), (0y), (t;) les suites obtenues par application du lemme 8 2 la fonction fet
0<d<1. Définissons

I(p) = T((pZ'Bt?) S=T-1

On obtient ([11) : ISI=C| Tl et n,(S)=C-Y2. 7, (T). On désire étendre 13 4(X).
Soit pour @€A+4 :
I(p) = T(Z wROm9),

o @I =sup | f (3 ©:RO::0) F|
pour FeLY(m) tel que

| / (deml = ||Te|| pour tout pcH=(m).

On procéde alors comme dans [1], 4 + A4 jouera dans ce cadre, le role de ’ensemble des
polynémes trigonométriques. L’opérateur 7 s’étend a ¢ (X) (dens1te de A+A dans
(X)) et vérifie Vinégalité (B).-

Revenons maintenant a la démonstration du théoréme. Du théoréme fondamen-
tal de Grothendieck B(%, IY)=II,(%, ) et de 'inégalité d’interpolation (4), nous
obtenons I'équivalence des normes opérateur et 2-sommante pour les opérateurs de
rang fini de 4 dans /. Puisque /! a la propriété d’approximation bornée, on obtient :
B(A4, IY=1I1,(4, IY).

3. Conséquences, exemples et problémes. Dans ce qui suit, A désignera une algébre
séparable uniforme vérifiant les conditions 1, 2 du théoréme 10. Notons que I'on a
démontré en fait le résultat suivant.

Corollaire 13. Si Y est un espace de Banach ayant la propriété d’approximatibn
bornée et tel que B(€(X), Y)=I,(%(X),Y) alors B(4,Y)=1II,(4, Y).
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Corollaire 14. Si Y est un espace de Banach de cotype 2 ayant la propriété
d'approximt?t?on bornée, alors B(A,Y)=II,(4,7Y).

Corollaire 15. §i T¢I, (A4, Y), T s’étend en un opérateur T sur €(X) tel que
ITI =C|\ Tl log (HAT)ITI).

Corollaire 16.: Tout opérateur de rang n sur A s’étend en un opérateur T sur
4(X) tel que |T|=C (logn)||T]|.

Corollaire 17. Si X est un sous-espace de dimension n de A, complémenté par
une projection P, X est un P,-espace avec A=C(logn)|T].

Nous mentionnons quelques exemples d’algébres vérifiant les hypothéses du
théoréme 10. Soit K un compact du plan complexe. P(K) est I’algébre uniforme des
fonctions a valeurs complexes qui sont limites uniformes sur K de polyndmes en z.
A(K) est I’algébre des fonctions continues sur X et analytiques sur Uintérieur de K.
R(K) est Palgébre des fonctions limites uniformes sur K de fonctions rationnelles
avec poles sur C/K. Les algebres suivantes (considérées sur leur frontiére de Shilov)
vérifient les hypothéses du théoréme ([6]) : P(K) pour tout compact K, 4(K) quand le
complémentaire de K est connexe et R(K) quand R(K) est une algébre de Dirichlet.

Remarque. Soient O<r<R et K,={z€C: r=|z|=R}. R(K)) en tant qu’es-
pace de Banach est isomorphe 4 I'algébre du disque et le dual de R(K,) a la propriété
de Grothendieck. Par contre, l'algébre R(K,) ne vérifie par les hypothéses du
théoréme 10.

Problémes. Si 4 a la propriété de Grothendieck et est isomorphe 4 sa c¢,-
somme directe, A" est de cotype 2. Il serait donc intéressant de savoir si, sous les
hypothéses du théoréme, I'algébre A4 est isomorphe 4 sa cy-somme directe.

Si A4 est une algébre uniforme et 4 une unique mesure représentante, ’espace
L) g,y est-il de cotype 2 ?

Les résultats de J. Bourgain et ce travail conduisent a la question : tout opérateur .
0-sommant de A (algébre uniforme vérifiant les conditions du théoréme 10) est-il
nucléaire ?
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On perturbations of boundary value problems for nonlinear
elliptic equations on unbounded domains

L. SIMON

Introduction

In [1] it has been proved the existence of variational solutlons of boundary value
problems for the elliptic equation :
> (—D)D*f,(x,u, ..., DPu, ..} +
. la|=m :
+ 3 (=D D*g(x,u,...,DPu,...) = F, x€Q
|al=1 '

where Q is a possibly unbounded domain in an; IBl=m; lis an integer with the prop-
erty /<m—(n/p)(1—p+¢); p and g are real numbers such that 1<p<e, p—1<
<g=p. Functions f, satisfy the same conditions as in [2} and g, satisfy (essentially)

8.(x, §)¢, =0,
lg2(x, O = K(ENC1(x)+1£719)
where ¢=(&, £¢”) and &’ contains those coordinates efﬁ of & for whxch 1Bl<m—(n/p),
C,€ Lrle ().
In the present paper we give some stability results for solutions of the above prob-
lem. These results are connected. with [3] and with-several works referred in [3]

where perturbation of other boundary value problems and var1at10nal mequahtles
has been considered.

1. Preliminaries

Let QCR” be a (possibly unbounded) domain, p>1, m a positive integer.
Assume that Q has the weak cone property (see [4]), and for all sufficiently large p,
there exists a bounded ,c Q with the weak cone property such that Q,> {x€Q:
|x|<p}. Denote by W,"(X2) the usual Sobolev space of real valued functions u

Received February 21, 1985.
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whose distributional derivatives of order =m belong to L?(£2). The norm on W,"(2)
is defined by

al ={ 2 [1Duleax}
aj=m q

where

< 0
o=, ..., %), ld= >a; Df:a_’
Jj=1 XJ

D = Dt...Dy.

Let N and M be the number of multiindices o satisfying |¢|=m and [a|=m—1,
respectively. The vectors &=(&, ..., &, ...)ERY will be written in the form
&=(n,{), where n€RM consists of those £; for which |f|=m—1. Assume that: -

I. Functions f, ;: @XR¥=R (le|=m; j=0,1,2,...) satisfy the Carathéo-
dory conditions, i.e. they are measurable with respect to x for each fixed ¢RV
and continuous with recpect to & for almost all x€ Q.

II. There exist a constant ¢;>0 and a function K,€L%(Q) (where 1/p+1/g=1)
such that

[ fo 5%, O] = €17~ 4 Ky ().

for all [a|=m, j=0,1,2,..., a.e. x€Q and all é¢RY,
1L For all (5, 0), (1, )R with n€RM, (¢ and a.e. x€Q (j=0,1,2, ...

Va1 oy, DNE— 8D > 0.

1V. There exist a constant ¢,>0 and a function K,cIL'(Q) such that for a.e.
x€Q and all &<R¥

PFC BE, = ealelP—Ky(x) (i =0,1,2,...).
v. }’_{’3, ED = ¢O  implies
lim £, ;0% €9) = fo,o(x §9)

for a.e. x¢Q and all |a|=m.
VI. Functions p,, ;, 1, ;: @QXR¥=R

(Ial = 19j= 0, l, 2, ...)
satisfy the Carathéodory conditions and
ga,j - pa,j+ra’j.

VIL p, ;(x, =0 and |r, ;(x, O|=h,(x) for all |a|=], EcRY and ae.
x€Q where h,LP(Q), j=0,1,2, ....
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VIII. There exist a continuous function K; and C,€LP'¢(Q) such that

|26, 5(%; O = K(E)Cou(x)+1E71) j=0,1,2,...
for all |a|=/, {=(&, {")ERY and ae. x€Q (& contains those &, for which |f]<

<m—(nlp); p—1<g=p, I<m—(np)(1-p+0)).
IX. lim &9 = &9 implies

Jroo

hm pu,j(xa é(j)) = Pa,O(x’ 6(0))’ ) hm ra,j(x9 éu)) = ’a,o(x, 6(0))
l—b“ _I-»co

for ae. x€Q and all |¢|=/.

X. V is a closed subspace of W,"(Q) with the property: veV, ¢@€Cg(R")
imply that @veV. (By Cg°(G) is denoted the set of infinitely differentiable functions
with compact support contained in G.)

XL F;eV’ (j=0,1,2,..), i.e. F; is a linear continuous functional on ¥ and

lim |5~ Folly, = 0.
Remarks. 1. Assume that I—IV, VI—VIHI are fulfilled for j=0, ie. f,,,

8,0 satisfy conditions of the existence theorem in [1]. Further suppose that f, ;,
g&,; (j=1,2,..) satisfy I, VI such that

lim [gseulgv [fo, i &)= fro(x, O] =0 for ae. x€Q,

Jroo
:seuRgv | fo, i(% )= fao(x, O = @(x) for ae. x€Q

where @cl4(Q), j=12,...;
lim [éseulg' |82, (% &) = £ayo(x, O] = 0 for ae. x€Q,

{Sgligv |ga,j(xa 6)'—ga.0(xs é)l = I/I(X) .fOI' a.c. XEQ

where yeL?e(Q), j=1,2,....

Then I, II, IV—VIHI are satisfied for f, ;, g, ;(j=1,2,...) with p, ;:=p,,,
rz.j:z(ga,j_ga.0)+ra,0'

2. If there is a constant ¢>0 such that for a.e. x€Q, all (n,0), (4, {)ERY

| é' [f;,o(x’ s C) _f:z,o(xa n, C/)](éa - é;) = CIC— Cllp
and
e, 106 1 ©) =1, 506 1, O = Lo (s 11, O = foo (e 1, Ol =
=4;l(-0UP (G=1,2,..)

where jlirg d;=0, then f, ; satisfy III for sufficiently large j.
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Lemma 1. Assume that u;—~u weakly in V and for any bounded domain wcC Q

(1.1) fim jh dx =
where :
(1.2) hj(x) = laé’m [f;'j(x, uj, civy D"u}-, ceey Dpui, ...)—

—fauj(Xujs ..y DVuy, .o, DPu, (D7 u;— D*u),

[yl<m, |Bl=m. Then there is a subsequence (u;) of (u;) such that DPy; —»Dﬁu a.e.
in Q for all B with |Bl=m and for any bounded wCQ, u; U with respect to the
norm of W"(w).

Proof. Since u;—~u weakly in V there is a subsequence (u; ) of (u,) such that
for ly]<m
Diu; - D'u ae. in Q
and :
(13) ’!llzlo "D.’lljk—Dyll”Lp(w) =0

for any bounded subdomain w of 2 (see e.g. [5] and [4]). Further, by assumption I1I
h;=0 and so (1.1) and Fatou’s lemma imply that h;—~0 a.e. in @. Thus there exists
w,Cw of measure 0 such that for xcw\w,

(1.4) |DPu(x)] <oo, |Ky(x)] <o, |Kp(X)] <oo,
(1.5) DYu; (x) -~ D'u(x) (7]l <m), hj(x) =0, k —>eo.
Set
EB(x) = (..., DPu; (x), ...)
where |f|=m. By assumptions II, IV, V and (1.4), (1.5) we have

(1.6) hjk(x) = Z L,jk(x, ujk, veey D”ujk, ey Dﬂujk, ...)D"‘ujk——

laé’ [ fa s> (%5 55 ooy Dty oooy DPuy ) D%l —

——l IZ | fo (6 g5 oo DPutjp ooy DPu, ) (DPuy, — DPu)| =

= ¢ EV(X)|? — cy(X)[1 4 |E® (2)|P~2 + [EB (x)[]

if x€o\w, where [|y|<m, |Bl=m. (For a fixed x€w\w,, D'; (x) and
Sai Gty s Dy .» DPu, ...) are convergent and thus they are bounded.) By
Q. 5) (h;, (x)) is bounded for a fixed x€ @\ @y, thus (1.6) implies that (¢®(x)) is boun-
ded, t0o. Consequently, for a fixed x€w\w,, ((¥(x)) contains a subsequence
which converges to a vector ¢¥(x).
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Now we show that

(%)) E(x) = &(x) = (..., DPu(x), ...).

Indeed, applying (1.2) to the subsequence of (h jk(x)) with k-, by (1.5) and as-
sumption V we obtain

0= 2. [fuo(x, u(x), ..., DYu(x), ..., E(x))—
—faro(% (), s DPu(x), ..., SN E3(x) — Eu()]

which implies (1.7) in virtue of assumption III.

So we have shown that all convergent subsequences of the bounded sequence
(6% (x)) tend to &(x). Therefore, lim EM(x)=¢(x) if x€w\w, and thus, by (1.5)
Dfy, k—»D"u a.e. in o for all B satlsfymg |[Bl|=m. Since w is an arbitrary bounded
subset of Q we have .

(1.8) Dby, —~ Dfu ae. in Q if [fl=m.

By using notations
Fi(x) = 1 IZ’ SoiuC6 s ooy DPuy, ) DPuy,
x|=m

Fo(x)= 2 fuolxsu, ..., DPu, ..)D*u,
lal=m

from (1.1) one obtains that

kadA— 2 ff“k(x Wiy voes D'y ooy, DPuy ) DPudx—

" ffa (ot oo D'ty ooy DPu, ) Dty — ) dx — O,
ie.

(1.9) : [ Fudx— [ Fydx—

—laém f[f;,fk(xi ujks cory Dyujk’ seey Dpujk, ...)—‘

—faolxsu, ..., D'u, ..., DBy, . ) D*udx—
- fﬁ, o u o, Dy, ..., Dy, ...)D’(ujk—u)dx.—» 0.

laf= =m gy

By assumptions II, V, (1.8), Hélder’s inequality and Vitali’s theorem the third term
in (1.9) converges to 0. Furthermore, (1.8), assumptions II, V, (1.3) and Vitali’s
theorem imply that

S Xty ooy D'uy o ooy DPuy ) > fr (X, 1, ..., DYa, ..., D, )



184 L. Simon

in the norm of L4(w). Since }‘P.l D’(ujk—u)—»O weakly in L?(Q) one finds that the
fourth term in (1.9) converges to 0, too.
Therefore, from (1.9) it follows that

(1.10) lim [ Fdx= [ Fyax.
By assumption IV
Fi(x) = ¢, mZ' | D2 u;, (x)|P — Ky (x).

Thus for functions G,=F,+K,, G,=F;+K, we have

1.11) Gi(x) = e > |DPu, (x)? = 0,
. Bl=m

and by (1.10)

(1.12) Tim mf G, dx = mj G, dx.

(1.8) and assumption V imply that G,~G, a.e. in w, thus from (1.11), (1.12) it fol-
lows that

(1.13) : G, —+ Gy, in L'(w)
(see [6]). Consequently, (1.8), (1.11) and Vitali’s theorem imply that, for |B|=m,

D”ujk—»D"u in LP(w), and the proof of Lemma 1 is complete.
Assume that instead of III condition

r. | é e, i (s &) = Sa 5%, ENE—~ &) = O
is fulfilled if &=¢'.
An easy modification of the proof of Lemma 1 gives

Lemma 2. Suppose that u;—~u weakly in V and
lim fizjdx =0,
2

Jeo

where 7
hy(x) = | r§ U s 5 ooy DPutgy )= fo (%, 1, <.y DPu, .. )|(D"u;— Dui).

Then there is a subsequence (u; ) of (u;) such that u; —~u with respect to the norm of
wm(Q).
p
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2, Stability results

Theorem 1. Assume that conditions I—XI are fulfilled and u;cV is a solution

of R

@.1) 5 [ faiCx ujs s DPuy, ) DPvdx+
la|=m &

fga i uj, o, DPu;, ) D*vdx = (F;, v)

[a]sl Q
forall veV (j=1,2,..).

Then there is a subsequence (u; ) of (u;) which converges weakly in V to a solution
u€V of (2.1) for j=0. Moreover, D”u ~Dlu ae. inQif |fl=m, andfor arbztrary
bounded wcQ, u; ina” Strongly in W"‘ (w).

If solution u of (2.1) for j=0 is unique then u;—u weakly in V and strongly in
W (w) for any bounded wC Q.

Remark. According to [1], for any F;€¥”’ there exists at least one solution
u, €V of (2.1). »

Proof of Theorem 1. Applying (2.1) to v=u;, by assumptions IV, VI, VII
we obtain that

(2.2) e llujllp — f Ky(x)dx - [Zz I1all e/eqor D% wjll gy ) = I1Fllv littslly
Q ap= :
where ¢, is defined by 1/(p/g)+1/q,=1.
By an imbedding theorem (see e.g. [4]) for
lof = I(< m—(n/p)(1—p+@)), vEW™(Q) we have
(23) "Da U“qu(_q) =c ”1)” W)

(c is a constant) because q,<np/(n—(m—1I)p). Thus (2.2) and p=1 imply that (u;)
is bounded in V. Therefore, there exist a subsequence (« ik) of (u;) and u€V such that

2.4 u; ~u weaklyin V,
2.5) D'uj ~ D'u ae.in Q for [pl=m—1
(see [5))- '

Consider an arbitrary bounded domain wcQ and a function OeCy (R
such that =0 and @(x)=1 for x€w. By the theorems on compact imbedding
(see e.g. [4]) it may be supposed that

(2.6) D'u; — D'u in LP(QNsupp®) for |y =m—1
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and

2.7 D'u; -~ D'u in LY(QNsupp®) for |y| =/,

where ¢, is defined by 1/(p/e)+1/g,=1 (I<m—(n/p)(1—p+g)). By a “‘diagonal
process” the subsequence (ujk) can be chosen so that (2.6), (2.7) are true for any

fixed @cCy (RY).
In virtue of assumption X O(u jk—u)EV and thus from (2.1) one obtains

(2.8) gm [ fu i s s DBy, ) DP(O(uj — )] dx +
|| y S [ 8anx Jk,...,D”’u-,...)D‘[@(ujk-—u)]dx=
, < Jk’ ll)>
Since (u; —u) ~ 0 weaklyin V'
2.9) O(u;, —u) - 0 weakly in V.
From (2.8) it follows that
2.10) o > [ Ui ttjs oo D'ty ooy DPuy, )~

—foiX s ., D'y, ..., DPu, ...]OD(u; — u)dx =
[ fosts, ooy Duy, ..., Dy, ) @D (u—uy,) dx +

lal=m g
+ [2 [ funxttiys ooy D'y, .., DP u,k,...)l]z; ¢, D'(u—u;, ) D*~70 dx +
a yl=m-1
| 1 [ fos 6 thys oo D0y oy DPuy, ) DO (u—uy)] dx+
aSm—lg
S [ 8ai (st ooy DYuy, ., DPuy, ) DF[O (u—~uy ) dx +

Ial__

< .Ik’ —ll)> (l')’l < m, |ﬁ| = m).

Now we show that all the terms on the right-hand side of (2.10) converge to 0
as k-~ By (24), D*(u; —u)—~0 weakly in LP(Q). Furthermore, from (2. 5) and

assumption V we get
(2.11) Ofy i (X, 5 oo, D'ty 5 ..., DPu, L) —~
- Of olx, ty ..., Du, ..., DPu, ...)
a.e. in ©, and, consequently, by assumption 1I, (2.6) and Vitali’s theorem (2.11) is

valid in L*(2) norm, too. Thus the first term in (2.10) converges to 0.
By assumptions I, II the functions

Son (s uys .oy D'uy, .., DPuy , L)
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are bounded in L(Q), hence (2.6) implies that the second and third terms in (2.10)
converge to 0 as k— oo,
From assumptions VI—VIII it follows that

ga,]k(x’ ujk9 arey Dvujka seey Dﬂujk, ...)

is bounded in LP¢(QNsupp @), thus (2.7) implies that the fourth term in (2.10)
converges to 0 as k—. Finally, for the last term we have

KEI& > @(u]k - u)>| = KFik — Ky, @(ujk - u)>| +
+|(Fo» Oz, — )| = |Fj,— Folly 10 (j, — )lly + KFo» O (s, —w),

thus assumption XI, (2.9) imply that also the last term in (2.10) converges to 0 as
koo, _
Thus we have shown that the term on the left-hand side of (2.10) converges to 0
as k—oo. By assumption IIl and @=0 we find that (1.1) is valid for a subsequence
of (h;). Consequently, from Lemma 1 we obtain that (ujk) contains a subsequence
(w;) such that

(2.12) Duy; .. DPu ae. in Q
if |B|=m, and for any bounded wcCQ
(2.13) () ~u in Wr(w).
(2.12) and assumption V implies that
JajiCowrs s DPur, ) — foo(%, 4, ..., DPu, L)

a.e. in Q. Therefore, assumption II the boundedness of llgzlly, Holder’s inequality
and Vitali’s theorem imply that for any v€V

(2.14) lim = ﬂff,,,.k,(x, Uy ooy DPuy, ) Do dx =

k—+eo la
= z [ fuoltsuy oy DPu, ) D70 dx.
la|=m g

By using assumption IX and (2.12) we find g, (x,uy, ..., Doy, ..)~
=g, 0(X, 4, ..., DPu, ...) a.e.in Q and thus, by assumptions VI—VIIL, (2.3), Hélder’s
inequality and Vitali’s theorem we find that for any veV

lim 3 [g, (e, ... DPuy, .. )DPvodx =

k= laj=1 Q

= &ao(X 1, ..., DPu, ... )D*vdx.
|¢é‘ 0 .
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Thus from (2.1), (2.14), assumption XI it follows that u is a solution of (2.1)
for j=0 and, by (2.4), (2.12), (2.13), the proof of the first statement of Theorem 1 is
complete.

If solution u of problem (2.1) for j=0 is unique but “u;—~u weakly in V> is
not true then there are GEV’, a positive number ¢ and a subsequence (u;) of (u;)
such that

(2.15) |Gu;—Gu| =¢, j=1,2,....

Applying the first statement of Theorem 1 to () instead of (u;) we find that there is
a subsequence () of () which converges weakly in ¥ to a solution of (2.1) for j=0,
ie. uj—~u weaklyin ¥ (because the solution of (2.1) for j=0 is unique). But this is
impossible because of (2.15). It can be proved similarly that then u;—~u strongly in
W™ (w) for any bounded wcQ. :

Theorem 2. Assume that conditions I—II, III, IV—XI are fulfilled and u;cV
is a solution of (2.1). Then there is a subsequence (u jk) of (u;) which converges strongly
inV to a solution ucV of (2.1) for j=0. If the solution u of (2.1) for j=0 is unique
then (u;) also converges to u strongly in V.

- Proof. Assumption III’ implies III thus all conditions of Theorem 1 are fulfilled.
Consequently, by Theorem 1 there is a subsequence (ujk) of (u;) such that

(2.16) u; —u weakly in V
and
(2.17) DPy; —~ DPu ae.in Q@ for [B| = m,

where u is a solution of (2.1) for j=0.
Now we show that the sequence (u; ) satisfies the condition of Lemma 2. Since

u;_is a solution of (2.1) with j=ji, v=u; and u is a solution of (2.1) with j=0,

v=u, we have

(2.18)

é,,. nf U 1, (6 g5 oy D2ty yoo ) —fo 5 (0 1, ooy DR, )} (D0, — D*u)dx =
= ;aém gjfa,,.k(x, u, ..., DPu, .. )(D*u—D*u; ) dx+

la

+ > f[fa,o(x, Uy .oy DPu, ) —fo, 5. (% 15,5 oo, DPuy,, L)) DPudx +

laj=m g
+ [ [gan(x, t ooy DPu, ) D= g, (X, 4y, ..., DPuy, ) DPuy ) dx +
al=l g
+ {<Eik’ u1u>— <EJ’ u>}‘
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Applying Vitali’s theorem, Holder’s inequality, assumptions I, 11, V and (2.16), (2.17),
we find that the first and second terms on the right-hand side of (2.18) converge to
0 as k—oo. By assumption XI and (2.16) we have

KE» 10— (Fo» )] = KBy — Fo, i, )|+ KFo, uj,—u)| =
= ||Fj, ~ Folly-luyllv + KFo, wj— )] ~ 0 as  k —oo.
Furthermore, (2.17) and assumption IX yield
Pa (X Ugs ooy DPuy , . )D*uj, — po(x, 4, ..., DPu, ...)D*u

ae. in Q. In virtue of Fatou’s lemma and assumption VII we get the inequality

(2.19) fpa,o(x, U, ..., DPu, . .)D*udx =
Q2
= liginf f'pa,,-k(x, U s oo DPuy , ...)Duy, dx.
o

Assumptions VII, IX, (2.17), Holder’s inequality and Vitaii’s theorem imply that

,}llg fra,,-k(x, Uy ..o DPuy , .. )Duj dx = ,
Q
= fra,o(x, U, ..., DPu, .. )D*udx.
2

Hence and from (2.19) it follows that

limsup > f[g,, (x,u, ..., DPu, ..)D*u—

ke o=t g
~ 8, 5 (X Uz ooy DPuy ) D?uy ldx =
= hmsup f[p,, (x,u, ..., DPu, ..)D*u—

ke oz
= Da, 3 (%5 Uy oy DPuj, ) D%uy ) dx =
5 [Pao(® s ..., DPu, .. )D*udx+

|¢|§l Q

+ Z’ llmsup f[ Pa, 5 (X Uy ooy DPuy , ) DPu;ldx = 0.

lal=t
In virtue of (2.18) we have shown that
lil"‘nsup f[f, n(x up oo, DPuy )~

—fa 5 (5 Uy ooy DPu,  (D*u,, — D*u)dx = 0.
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Hence by assumption IIl” it follows that (u; ) satisfies the conditions of Lemma 2
and there is a subsequence (u;) of (u; ) such that u;—~u in W(Q). This completes
the proof of the first statement of Theorem 2. The case when the solution u of (2.1)
for j=0 is unique can be treated in the same way as in the proof of Theorem 1.
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A characterization of weak convergence of weighted
multivariate empirical processes

J. H. J. EINMAHL, F. H. RUYMGAART and J. A. WELLNER

1. Introduction

The characterization of weak convergence of the one-dimensional weighted
empirical process indexed by points is obtained by Caisisov [5] and O’REwLY {11].
Later, SHORACK [16] and SHORACK and WELLNER [17] wanted to give a new, “‘ele-
mentary” proof of this so called Chibisov—O’Reilly theorem but their proofs were
not correct wihout additional monotonicity conditions on the weight functions. This
was pointed out in Cs6RGO, CsORGO, HORVATH and MasoN [6] (pp. 25—27). SHORACK
and WELLNER [17] also gave a characterization of weak convergence of the one-
dimensional weighted empirical process indexed by rectangles. Their proof, however,
is again only correct with an additional monotonicity condition on the weight func-
tion. Recently a new approximation of the empirical process is established in Cs6RG6
CsorG(, HORVATH and Mason [7] which among others yields a proof of the Chibi-
sov—O’Reilly theorem.

The aforementioned theorems can be generalized in two directions: (I) the case
of dependent and/or non-identically distributed random variables and (II) the multi-
variate case. Case I has been studied by ALEXANDER {1], ALY, BEIRLANT and HORVATH
[3] and BEIrRLANT and HorvATH [4]. In our paper, which is a revision of the technical
report EINMAHL, RUYMGAART and WELLNER [9], we study case 11, i.e. we derive nec-
essary and sufficient conditions on the weight functions for weak convergence of
weighted multivariate empirical processes; these processes are indexed by quadrants
(points) and rectangles respectively. Our main tools are exponential probability
inequalities for the empirical process. The paper is a continuation of RUYMGAART
and WELLNER [14], [15], where the basic tools are already presented but attention is
focussed on strong convergence properties.

Received November 8, 1984.
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During the preparation of the earlier version of this work we became aware of
recent developments in this area, especially the work of ALEXANDER [1], already quoted
before, on weighted empirical processes based on non-i.i.d. random elements and
indexed by Vapnik—Chervonenkis classes of sets. Although his results are of impres-
sive generality, also this author needs a rather unnatural monotonicity condition
which we can avoid everywhere, i.e. though his theorems allow more general indexing
classes, our theorems allow more general weight functions. Very recently, ALEXANDER
[2] also obtained our (stronger) version of the multivariate characterization theorem
for points.

In order to be more explicit we need to present the basic notation. Let
X, ..., X, neEN, be a triangular array of i.i.d. random vectors that are uniformly
distributed on [0, 1]¥, déN. Adopting the notation in OREy and Prurrt [12] we
shall write x=(x, ..., x,)={(x;)={x(j))€R? if it is desirable to display the coordi-
nates of x. If x;=¢ for all j we simply write (¢). For x, y€R? we write x=y if
x;=y; foralljand x<y if x=y and x#y. It has some advantage to denote the
half-open rectangles (x;, 11X ... X(x,, ¥, by R(x, y) rather than (x, y]. The classes

(L) & = {REO)»»): RCOLY) < [0, 11}, 2 = {R(x,»): R(x,») < [0, 1]%,

of all half-open quadrants respectively rectangles in the unit square will play an im-
portant role. We will write |t{=#,X...X1,, |dt| for Lebesgue measure on {0, 1}¢
and |R| for the Lesbesgue measure of a rectangle R. Using this notation for the uni-
form underlying d.f. F we have

(1.2) 4 F(1) = |4, te[o, 11°.
Given any function A: R*~R and an arbitrary rectangle R=R(x,y) we write
(1.3) A{R} = A{R(x, p)} = 4% 4,

extending the difference operator 47, usually applied only to distribution functions.
The weight functions will be always restricted to the class’

(14) 2*={q:[0,1] - [0, ) with g continuous and non-decreasing,
' g >0 on (0, 1]}.

The subclasses that will appear in our characterization are
1
(1.5) 2, = {qe.@*: f o~ exp (—Aq*(0)/o)do <= for all . > 0},
[

(1.6) 9, = {q€2*: q()/Vo(log(1/0))* —~< as o0}, keN.
Occosionally it will be convenient to use

(.7 2 = {g€2*: (-)~"*g(-) non-increasing on (0, 1}}.
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The (reduced multivariate) empirical process (indexed by pomts) is defined by
(1.8) U= n1/2(F -1, t€[o, 1,

where the empirical d.f. £, is based on X&), .., X® and defined by nF,(¢)=
= g {l=i=n: XD¢R0), 1)}, t€[0, 1}*. 1t is well-known that U,—,U, as n-co,
where U denotes the standard tied-down d-parameter. Brownian motion. The so
called Skorokhod construction ensures the existence of processes, equal in law to the
U, and U above and all defined on the same probability space, for which this conver-
gence in distribution may be even replaced by almost sure convergence in the supre-
mum norm. Without loss of generality we can and will assume that the present U,
and U are obtained from the Skorokhod construction so that we have

(1.9) | sup Uy ()= U] 2.0 , as n-oo.
te[o0,1 L

In view of (1.3) it will be clear that we even have

(1.10) SUp [Up{R} — U{RY| =000, as 1 —oo.
RER .

It is the purpose of this paper to give necessary and sufficient conditions on the
weight functions ¢ and § in order that

(1.11) sup |U,{R} = U{R}/a(IRZ(1 = IRI) =0, as noos,

where either %=Q’o (Section 2) or ¥ (Section 3). 4
Since for R=R((0), t)€#, we have U,{R({0), 1)}=U,(¢t) and |R({0), t)|=|t],
the random variable in (1.11) could as well be represented by means of the time
points t€[0, 11* instead of the quadrants. More generally, a similar remark holds true
for R=R(s, t)€# provided we allow the time points to be of dimension 2d. Let us
write §=(§;)=(1—s;) and note that
F{R(s, )} = P(X{™€R(s, z)) =
1.12) =PUl-XB =5,..,1-X" =5, X( Eh, L X0 =1y =
. {|t+§—1| = |t—s|, for s<t, s,1t€[0, 1],
=FG 9= [0, if s<2¢t isnotfulfilled;

cf. K1erFer and WOLFOWITZ [10] Let U, denote the reduced empirical process based on
the vectors (1—X{7, ..., 1=X1, X1, .., X)) in [0,1]%, for i=1, ...,n. Now it
suffices for our purposes to consider : -

U,,(S', l) . U {R(S, t)}
(1.13) 2Qr=sDal—j=s) instead of q([R(s, t)|)q(1——|R(S 0

This will be called the point representatlon for rectangles,

13
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To conclude this section we present, in the next paragraph, our basic inequality
which can be found in RUYMGAART and WELLNER [14], [15). The main results are pre-
sented in Section 2 and 3. They are derived under the assumption that the d.f. of the
X is uniform. We conjecture, however, that extension to the case that F has a den-
sity w.r.t. to Lebesgue measure that is bounded away from 0 and < is possible. Let
Y: [0, o)—[0, =) be the decreasing function defined by

i
(1.14) Y(A) = 247* [ log(1+0)do, 2 > 0; ¥(0) = 1.

See SHORACK and WELLNER [17] for elementary properties of .

Theorem 1.1 (basic inequality). Let RER with |R|=1/2. Then we have

— A% [ A ]]
2d+4 =
(1.15) P(SS‘C‘E'U"{S}' = 1) = 2¥+iexp [32|RI '} AR Az 0,
where SER.

2. Weight functions for quadrants (points)

We first derive a useful inequality that should be compared with Inequality 1.1
in SHORACK and WELLNER [17]; see also RUYMGAART and WELLNER [14] (Corollary
2.3). For the proof a special countably infinite partition of (0, 1} will be used that
becomes arbitrarily fine near the lower boundary of this set. This kind of partition is
motivated by O’REILLY [11]; see also SHORACK and WELLNER [17]. This partition is
the collection of rectangles

2.1 2 = {R({((1/D*D), ((1/2)*P 1)) (k(j))eN}.
For any R(a, b)¢? we have the useful property
Ial (l/z)k(1)+~--+k(ﬂ)

22 = (1/2)* = 8(d) = 6¢(0, 1);

Tl ~ (12F®-D+-+¢@=D

notice that 6 is independent of the particular rectangle in the partition.
For any O<a=pf=1 let us introduce the subclass

23) 2. 5 = {R(a, b)eP: |b] = a, |a] < B},
consisting of all rectangles having a non-empty intersection with the set {t€[0, 1]¢:
a=|t|=p}. The inclusions
2.4) Cfe={l=pc U Rc (be=|=p/6)
ReD

. . a p
are immediate.
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Inequality 2.1, Let us choose any 6¥a§ﬁ§0/2=1/2‘f1. For any qc2
and 1=0 we have

25) P( sup [U,(0l/g(t) = 2) =
Blo d—1 2,2
sara  (logljo) —024°(0) (lq(a)]
=2 0! c °xp 32 4 4an'l? do.
Proof. It follows from the monotonicity of ¢ and from Theorem 1.1 that
2.6) P( sup Ux(l/g(1t) = 2) = P(R( maxy L .Sup IU(t)I/q(IaI)Z A=
o Bt

= > P(swp IU(t)IZlq(Ial))<

R@bDEP, , 1ER(@,D)

—A2¢%(|al) (Aq(lal) ]
§224+4 [ .
wesies,, P\ 32ml Y\ Tl

In view of (2.2) and because (-)~%2g4(.) is non-increasing we may bound the
first factor in the exponent in (2.6) below by

@7 A*q*(lal)/321b] = 04°¢7(11))/32]¢], for t€R(a, b).

Using the monotonicity of ¢ and ¥ and ¢¢€Q, the second factor in the exponent in
(2.6) may be bounded below by

(2.8) y(Ag(lal)/41b|n''?) = y(Ag(a)/4an'®), for R(a, b)EP, ;.

When we use

(2.9 1=2Ypl [ ldl=2" [ 1didd, for R(a,b)c?,
R(a,b) R(a,b)

at the transition from summation to integration we find, by combining (2.4), (2.6)—
(2.8) that

2.10) P((sup 10, 0lig(ih) = 4) =

= 28d+4 f -l—CXp[ elzqz(ltl) lll ( ).q(oc) )] ldtl

(6a=lil=p10) ] 3244 4an'/?

To complete the proof we use the change of variables o=s,=|t|, s,=t,, ...
., §4=1,; with Jacobian ( ]] )~ to compute the integral on the right hand side
of (2 10). This yields as an upper bound for the right hand side of (2.10)

glo, 1 1 —0A%q? A
2.11) f[f js2 = .dsd);exp( 321(0)“43’52)](1«7,

which is easily seen to be equal to the expression on the right in (2.5).

13+
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Theorem 2.1. Let F(t)=|t|; t€[0, 1), deN, and q€2*. Then we have
(2.12) OSSIl‘lIl;llU,..(t)—‘ U@l/g(e) =50, as n—e,

if and only if q€2,_,.

Proof. The theorem is well-known for d=1: see O’REILLY [11]. Hence we
assume d=2. The notation
@13) 8(9) = 4(@)//aGog /oy, @ >0,

will be used in both parts of the proof.
(«<=) Suppose that g€2,_;. Following SHORACK and WELLNER [17] (p. 649)
we can and will assume without loss of generality that -

(2.14) g(-)=V(logl/(-)’"* and g on (0,1] (hence gc2).

For any 0<6=(1/2)"*1 we have
(2.15) oSup AGES U(t)l/q(ltl) = Z'Y,.k,

where, with o,= 2(1/n), B,=(d—1!-(n(logn)*~1)~1 and y€(0, <), the r.v.’s
Y, are given by o

(2.16) Y, = oéﬁgm! Ua(l/g (11D,
2.17) Y = i |Ux(Dl/g (1)),
(2.13) Yoz = L 1U()I/q(leD),
(2.19) Yu= sup U@,
(2.20) Yoo = sup U.()—-U (t)rl/q(é)-

It will be shown that for any >0 and each:k=1, ..., 5 there exist y=y(¢), 6=5(¢)
and n(e)éN such that '

(2.21) . P, =c¢) =g for n=n(e).

~"To show (2.21) for k=1 let |X|;;,=min {{X)|,...,|X"|}. Note that
P(|X|1:n=Bu/y)1—exp (= 1/y), as n—o, so that P(|X|;,,=B,/y)=e for y suf-
ficiently large. Under the condition sup F,(t)=0, which is fulfilled with

o=li|=8,ly
probability =1—¢ according to the remark _]llSt made, 1t is easy to see that

(2.22) Yo=n' sup  |d/g(l1]) = n'2(Bu/y)"* {g(Buly) (log n)- l”2}“

=t =80y
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for n sufficiently large. Hence it follows that

(2.23) P(Y,=¢)=P( sup F,(t)=0)+

0=|t|=p,/y
+B(_swp |Ulig() = ¢l _sup  Fo(§) =0) =,
=t = b4

0slt]=B,/y sl =8,
for n sufficiently large.
For k=2 the left hand side of (2.21) is for any y;€(0, ) bounded above by
P( sup U, = eg(e,) (log 1/, )¢ ~VP2) =
Bulysiti=a,

=P( sup |U,@)|/IH2 = yy (log n)-17),

B.ly=tl=q,

(2.24)

for n=n,=n,(y,). Hence, applying Inequality 2.1 with g(-)=(-)"%, we see that
there exist ¢;, ..., ¢,€(0, =) such that the last expression in (2.24) is in turn bounded
above by .

¢; (log n)* exp (—cayi (log n Y~y (e, y** (log m)' 1)) =

2.25) d -1/2
= ¢, (logn)? exp (—cyp 72 loglogn) = &,

provided y, and n are chosen sufficiently large.
Inequality 2.1 may be directly applied to ¥,; with a=a, and f=4J. The integral
in the resulting upper bound decreases to 0 as J}0, since g€2,_, implies that

(2.26) [ (/6®) exp(=ig*(6)/o) do <eo, forall A= 0;

see SHORACK and WELLNER [17], ((1.9), (1.15) and (1.26)).
According to ORey and Prurtt {12] (Theorem 2.2) the function Ag is point
upper class for U, for all A=0. This yields

2.27) os}llpalU(t)I/q(ltl) ~as.0, as 540,
=|(t|=

which entails (2.21) for k=4. The validity of (2.21) for k=5 is immediate from (1.9).
(=) Let B, be as before. We obviously have

(2.28) oSup U —U®l/g(11)) = oup U.()—=U@)/q(t)) = Y.
Using the remark below (2.21) we see that with probability larger than 1/2 we have

(2.29) Y= {i(nt - ﬁ")_o;ﬁfgp U@} a8 =

= (2n'2q(B)" = (3((d— DY g(B))

for all large n, where for the second inequality again Theorem 2.2 in OREY and
PrurtT [12] is applied.
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The assumption that \ 2}:& . [U,@)-U®l/q(|t])>,0, as n—>oo, jointly with
(2.28), (2.29) and the fact that ¢ is nondecreasing, implies that g€2,_,.

Theorem 2.2. Let F(t)=|t], t€[0, 1}, déN and GE2*. Then we have
(2.30) oSup U.()-U®IG(A—|1) »,0, as n-—eo,

if and only if gc3,.
Proof. Suppose §€2,. Starting with the equalities

@2.31) Un(1) = — UAR(O), 0} and  U(r) = — U{RKO), )%}
we obtain using the union-intersection principle
(2.32) U(-U@)| = :52.; U ARi(0)} = U{R:(0}|,

where the R;(¢)’s are rectangles and # a finite index set. This yields
(2.33) oSup Ua()—=U@lg(1~ 1)) = g oSup |Un{R:(1)} — U{R:()}|/3 (1 1))

It tufns out to be convenient to split this sum into two parts. Define .#, as the
set of all i€# such that Ri(¢) is (0, 1¥~1X(¢;, 1]x (0, 1P~/ for some 1=j=d.
Write S,=4\.%,. For ic4, we have
(2.34)

oSp |Un{R:(0)} — U{R:(1)}|/g(1 - 11]) = oup |Un {R:(0} = U{R:0}/G(IR:(2)).

Application of Theorem 2.1 with d=1 (the case d=1 is symmetrical) completes
the proof for this part of the sum.

Now let i€ #,. Define dimension (R;(2))=${/: Ri(t) depends on ¢;}. Suppose
dimension (R(t))=!, 2=I=d. By symmetry considerations, studying

sup |U {R(D} — U{R«(1)}]/a(1 1))

0=|t]=

is equivalent with studying

sup |Un(f)=U()I/g(1~ K1)~ ),

os|t]=

where ¢’ is ¢ restricted to [0, 1]’ in the way suggested above.
Define (= max ;. We have
1=j=d

(2.35) g1~ KD —1) = (%),

and for small values of ¢

(2.36) o =ve,
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because §€3,, using an argument similar to SHORACK and WELLNER [17] ((2) en
p. 648). Define g€2,_, in the following way:

q(6) = sup ¥t (logl/7).
0=r1s0c
Using &'=|t’|, it is easy to see that

2.37) Ve = VIr1Qog i) = q(if'h)

for small values of |¢’|. The assertions (2.35)—(2.37) entail that

sup U, (1)—U()/q(it']) »,0, as n oo,
. . v¢fo, 1]
implies
oSup UL —-U@NGA-K1)—1]) ~,0, as n e
Combining this with Theorem 2.1 completes the “if”’ part of the proof.
The “only if” part is clear from the “only if” part in the one-dimensional case by
restricting the supremum e.g. to points of the form r={t, 1, ..., ).

Combining Theorems 2.1 and 2.2 yields
Corollary 2.1. Let F(1)=|t|, t€[0, 1}, deN and q,3c2*. Then we have

(2.38) oésﬁlPSllUn(t)—U(')I/‘I(Itl)ti(l—lfl) —p0, as n-oo,

if and only if both q€24_, and J€2,.

3. Weight functions for rectangles

Extending an example in SHORACK and WELLNER [17] to the multivariate case we
have

3. sup |Un(R}/4(IR) ===, as.

for any q€2* with q(0)=0. For this reason |R| should be bounded away from 0
when the growth of the empirical process for small rectangles |R| is studied.

Our first goal is to obtain a snitable modification of Inequality 2.1. The special
countably infinite partition of (0, 1]**\{F=0} that will be used now becomes arbi-
trarily fine near the lower boundary of this set; for d=1 this boundary is the line
segment joining (0, 1) and (1, 0). This partition cannot be written as a product of a
partition of (0, 1] like (2.1), but it can be written as a product of a partition of a subset
of (0, 1%, namely the set A= {(x, »)€(0, 1]*: x+y=>1}. So we know the partition
completely if we define it on 4.



200 J. H. J. Einmahl, F. H. Ruymgaart and J. A. Wellner

Let us first introduce a sequence 5’1”, 5—1’2”, ... of partitions of (0, 1]? consisting of
a finite number of half-open squares. More specifically, let

32 27 = {R{1/2+ k() — DY, (172 + k(DN): CkGNEAD, .. 274712}

Let us next define recursively

a3 P = {ReP!: Rc {(x, 1€, 11*: (1/2) < x+y-1=1}},

Z; = {ReZ;: R < [{(x, »)€(0, 1: (112 < x+y—1 = 3-(1/2'}\ 9] R]},
for n = 2, RESnes

and finally the desired partition of A by
(3.4) 7= U7,
n=1

We now obtain the partition of (0, 1)\ {F=0} by taking the product of #’ taking
the co-ordinates s; and ¢; together to form (0, 1]?, 1=j=d. Denote this partition
as 2.

- For any R(a, b)€? we have the property
3.5 F(a)/F(b) = (1/2)¢ = 8(d) = 8¢(0, 1).

Again for O<a=p=1 we introduce

(3.6) .5 = {R(a, b)c2: ﬁ(b) = a, F(a) < B}

and remark

(&X)) {fa=F@G,n= B} c U Rc{fe= FG 0= B/}
. - REP, 4

Inequality 3.1. Let us choose any 0<a§ﬂ§9/2=(>1/2)"+1. For .any qe2
and }=0 we have

(B8 P( sup lUn(ﬁ, Djg(t—s) = ) =

a=F(,

B f (IOg l/o)d-I exp [——129 7'(a) W [ Aq(x) )] do.
Ba a*

32 g ° \dan/?

" Proof. The same reasoning as in the proof of Inequality 2.1. yields

O P(_sup 10, Ol/alt—sD) = 2) =

= H2d+4 ~2¢*(F()) Aq(F(a)
= Q2+ > exp[ 10 ¥ 4F(b)n1/2]]'

R(a,b)EP, 5
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In this case we have, moreover, that

(3.10) A2q*(F(a))[32F (b) = Glzqz(F(t))/32F_(t), for t€R(a,b);

(3.11) Y (Aq(F (a))/éiF(b)nl/z) = y(Ag(x)/4n**a), for R(a, b)EP, 5.
The way of construction of 2 entails

(3.12) 1= 24.3% [(1/F(O)|di| for ReZ.
R

Combination of (3.7) and (3.9)—(3.12) yields

(3.13) B(_sup 10,5, DlfaCli~sh) = 2) =

ae=F(5, )=

F(s ~0¢(FG.0) | (@) )] e
- D4d+4  22d 2 i '
=2 {aas_p_fs]gpm (1F G, ) exp [ 32FG, 1) 'p_( y I )] 1dGs, 0l

To complete the proof let us recall formula (1.12) for F(§, t). The change of
variables u;=f;+5;—1 and v;=t;—§; for 1=j=d, with Jacobian (1/2), yields
as upper bound for the integral in (3.13)

(3.14) 1 exp [_zqu(lul) ‘/I( 2q(2) )] .

waslil=pmy 32 Ju] 4n'2g

Another change of variables, similar to the one above (2.11), completes the proof.

Theorem 3.1. Let F(t)=|t|, t€[0, 1}, deN, and q€2*. For any fixed
9€(0, =) we have

(3.15) 4 sup  |U{R}—U{R}|/q(IR]) ~,0, as n—co,

ylogn/n=|R|=1
if and only if q€2,.
Proof. (<) Suppose that g¢ 2,. Likein the proof of Theorem 2.1 the notation

(3.16) ' g(e) = g(o)/Valogl/s, o =0,

will be used. We can and will assume without loss of generality that (2.14) holds true
(for g as in (3.16)) with }/(log 1/(-))*~! replaced by Vlog1/(-). We have for any
0<d6=(1/2)’** that

4
G.17) sup U {R}—U{R}/q(R) = 2 Zp,

ylogn/n=|R|=1
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where with o,=¢*n~1) and B,=7ylogn/n the r.v.’s Z,; are given by

(3.18) Z,= sup |U,{R}/a(IR)),
B.=|R|=a,

(3.19)  Zn= SR |U.{R}|/a(R)),

(3.20) Z,= sup |U{R}|/4(IRi)
0=|R|=3

(3:21) Zu= sup |U.{R} — U{R}|/4(5)-

Again it will be shown that for any &>=0 and each k=1, 2, 3,4 there exist
0=0(¢) and n(e)éN such that

(3.22) PZy=z=¢e)=¢ for n=n(e).
For k=1 the left-hand side of (3.22) is bounded above by
P( sup |Un{R}|/IRI'* = eg () (log 1/, )'/%) =
B.=|Ri=z,

(3.23) ,
= P( sup |Un(R}/IR} = 3, (tog n)'")

for y,€(0, =) arbitrary and n=n;=n,(y,). Using the point representation for
rectangles we can apply Inequality 3.1. This yields the existence of ¢y, ..., ¢,€(0, <)
such that the last expression of (3.23) is bounded above by

(329
¢y -n(logn) =2 exp (—cy v} log ny(csy1)) = cyn(log m)'~*exp (—c,y, logy, logn) = &,
provided y, and n are chosen sufficiently large.

To handle Z,; we can again use Inequality 3.1. The integral in the resulting upper
bound decreases to 0 as §40 since ¢€2, implies

1 d-1 g
625 | (log :’/;’) exp( l‘fr (")Jda<oo, forall A=>0, deN,
0

by a slight modification of the proof of Proposition 3.1 in SHORACK and WELLNER
[17].

Using Theorem 2.1 in OREY and PRruItt [12] we can treat Z ; in the same way as
Y, in the preceding section. We also have similarity between Z,, and Y5 using (1.10)
instead of (1.9).

(=) For this half of the proof we refer to CsorG6, Cs6rRGO, HORVATH and
MasoN [7] (pp. 87—89) where the proof is given for the quantile process and the one-
dimensional empirical process. Their proof immediately carries over to the multi-
variate empirical process; the generalizations of the results required in that paper can
be found in EINMAHL [8] (p. 2) and PYKE [13] (p. 340) respectively.
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We note in passing that the analogue for rectangles of Proposition 2.1 in -
O’'RrLLY [11] can be obtained using some of the ideas in the proof of Theorem 3.1:
Let deN and q€2*. Then we have

(3.26) lim sup |[U{R}|/q(IR) =0 as.
940 |R|=s

if and only if gc2,.

For any y€(0, «), define U, ,, a process indexed by rectangles, by
(3.27) Un,y{R} = U,,{R} l[ylogn/n,I](IRI)a ReZ.
Combining Theorem 3.1 and (3.26) yields

Corollary 3.1. Let F(t)=|t|, t€[0,1]%, deN and q€32*. For any fixed
1€(0, =) we have

(3.28) sup |U...,{R}y — U{R}|/g(iR}) +,0, as n —co,

if and only if q€2,.
Theorem 3.2. Let F(t)=|t|, t€[0,1)%, deN and §c2*. Then we have
(3:29) ossllllzllaﬂ[U,,{R}——U{R}I/q“(l—|R|)—»p0, as n--eo,

if and only if §c2,.

Proof. (<) To avoid difficulties with notations and technicalities we restrict
ourselves to the case d=2. Without any mathematical problems the proof can be
extended to arbitrary d. (See also the proof of Theorem 2.2.)

Let us first remark that for 0<éd<1
(3.30) sup_|U,{R}—U{R}|/g(1-IR)) =

0=s|R|=

= sup ltf,{R}—U{R}I/q(6)+l_5ssulngI1Un{R}—U{R}|/q*(1—|R|).

0=([R|=1

The first term of the last expression causes no problems, so we focus on the second
term. Let us choose R with |R|=1—4 and angular points a,, a,, as, g, starting at the
upper vertex and moving clockwise. Remark that |a,|=1—3 and |ay|, |aJ, |a,|<4.
Using the inequality :

(3.31) |U.{R}— U(R}|/g(1 ~|R]) = .=241 {Un(a)) = Ufapl/g(1 - |R)

we see that we only have to handle sup |U,(a)—U(a)l/G(1—|R|) for
1-J4=(R|=1

i=1,2,3,4. Using §(1—|R|)=4(1—|a,]) we can apply Theorem 2.2 to handle the
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case i=1. With the same technique as used in the proof of this theorem we can also

treat the cases i=2,3, 4.
(=) Theorem 2.2 together with the remark that (3.29) implies (2.30) yields this

part of the proof.
Combining Theorem 3.1, Theorem 3.2 and Corollary 3.1 yields

Corollary 3.2. Let F(t)=|t|, t€[0,1)%, deN and gq,Gc2*. For any fixed
y€(0, «) the following three statements are equivalent:

(3.32) sup |U{R}—U{R}|/g(IR)§(1~|R|) ~,0, as n-es,
, vlogn/n=|R|=1

(3.33) sup |Us, (R} — U{R}|/g(RDI(1~ IR ~, 0, as n o,
(3.39) ., ge2, and §c9,.

Acknowledgement. We are grateful to Wim Vervaat for some helpful re-
marks concerning the tied-down Brownian sheet.
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Large deviations of the empirical characteristic function

HEINZ-DIETER KELLER

1. Introduction. Let X,, X;,... be a sequence of independent identically
distributed (i.i.d.) random variables defined on a probability space (, U, P) and
taking values in R with common distribution function F(x), x€R, and charac-
teristic function

c(®) = fei”‘ dF(x), t€R.
R

The n'™ empirical characteristic function (e.c.f.) of the sequence is
ca(t) = (In) 3 €% = [e**dF,(x), R,
Jj=1 R

where F,(x), x€R, denotes the empirical distribution function (e.d.f.) of X}, ..., X,.

CsORG6 [2], [3] and Marcus [8] gave necessary and sufficient conditions for the weak

convergence of the empirical characteristic process }n(c,(t)—c(?)) in the space of

continuous complex-valued functions on a compact interval. CsorG6 and Totik

[4] solved the problem of consistency. The present investigation deals with the problem

of large deviations of the e.c.f.. More precisely,let SCR and T,= sgg le,(8)—c(2)],
t

neN. We shall derive asymptotic expressions for the limit

'}im (I/n)log P{T, = ¢}, €=>0.

Theorems on probabilities of large deviations for related statistics are contained
in the work of GROENEBOOM (see ¢.g. [6]) and many other authors, a powerful theory
being available now. But such results only yield first order terms in an expansion of
logarithms of large deviation probabilities, whereas our representation immediately
gives higher order terms and can be used for the computation of the (relative) asymp-
totic Bahadur efficiency. Although some doubt exists as to the value of the concept
of Bahadur efficiency, the present work was partly motivated by it (cf. [7]).

Received November 23, 1984.
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2. Results. If p€[0, + <), €€(0, 1), let J(0, &)=+ oo, J(1 —¢,8)= —log (1 —¢),
J(p, &) =
3 {(p+8) log((p+e)p)+(1—p—e)log((1-p—e)(1-p)) if O<p<1-¢
T4 if 1-e<p.
Lemma 1. Suppose &€(0,1). Then
im (1/n) log P{sup |F,(x)— F(x)| = ¢} = —min{J(p,&): 0 <p = 1—¢g}.
A= oo x€R
Proof. Let Uy, U,, ... be a sequence of i.i.d. U(0, 1) random variables defined
on a probability space (Q*, A*, P*). Denote the e.d.f. of the sample U, ..., U, by

G,. If u€[0,1] let F'(w)=inf{x: F(x)=u}. Then F~*u)=x if and only if
u=F(x). X; and F~Y(U,) are identically distributed. Hence we get A

P{ilelg |F(x)—F(x)| = ¢} = P*{Js‘gg G (F(x))—F(x)| =z ¢} =

= P* {oiligl IGa(x) — x| = &}.

This completes our proof since

lim (1/n) log P* { sup [G,(x)—x| =&} = —min{J(p,&): 0 <p = 1—¢}
Liadhed 0=x=1

(cf. [6], Example 1.3.1, p. 21).

Before stating our main theorem let us introduce the random vector Y;()=
=(cos (tX;)—Re ¢(t), sin (1X;)—Imc(z)) with its Laplace transform M,(0)=
= [exp ({0, Y1(1)))dP, 6<R?, for (€R, jEN. If (€R, e>0, 6€R?, let hy(e, 6)=
=inf {exp (—re)M,(r6): r=0} and if t€R, &>0, let i(e)=log(sup {h,(c, 0):
0cRe, [|0)=1}). Let C(S) be the space of continuous functions on S, AP the space
of alil almost periodic functions.

Now the following theorem holds:

Theorem 2. Let the subset S be compact and let i(s)=sup {i,(): t€ S} for
each e>0. Then Jini (1/n) log P{T,=e}=i(e).
Proof. If t€S, we get by Theorem 7 of SETHURAMAN [10] that
i(s) = ,}EE. (1/n)log P{ic,()—c(t)| = & = lim (1/n)log P{T, = ¢}.

Hence i(e)=lim (1/n) log P{T, =¢}.

n—+oco

Now let k€N be arbitrary, and let us cover the set S by a finite number of
open balls B(k;, 1/k) with center k;€S and radius 1/k, 1=j=k,. Writing

en() — () — (e (1) —c()|: 1, 148, lt—1*| < 1k},

S,k = sup{
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we have

T, = ,max lea(k;)—c(k;)|+ S, foreach neN.
=j=kx

Let §€(0, &) be given. Then

Iim (1/n)log P{T, = ¢} =
= Im (1/m) log [P{ max |e,(k))~c(k)|+Spx = 2,6 = Spu}+
+P{ max e,(ky—ck))+ S = & Spp = 8}] =
= lim (1/n) log [P{max lea(k))—c(kp)| = e~ 8} +P{S,. = 8}] =

= Eﬁm (1/n)log [2 - max {P{1r§n,a§§ lea(k)— c(kp)| = e— 8}, P{Sa i = 8}}] =

= max {}‘@ (1/n) log P{lrénjaé)%* lea(kp)—c(ky)| = -6}, Enz (1/n)log P{S, ; = 6}}.

Looking for a bound for the first lim in this expression, we get

E (1/n)log P{lgljaé)i* lealkp)—c(ky) = e— 0} =

S lim (1/n) log 5 P{lc,(kj)—c(k)l = e— 6} =  max i,(e—9) = i(e—9).
n-»co j=1 = j=Kky

The second [im requires some computations concerning S, .. Let 7, r*¢ S, [1—1¥|<

<1/k and A=0 be given, where 1 is a continuity point of F such that 6/16>
>1—-F(A)+ F(—4). Then we get

[ea(t) = e ()= (ea(t)— c(t")] =
= I n ]f 3 (ei'x - eit.*x) d(E,(x) —F (x))l + I f (e"‘" - eit*x) d( F,(x)—F (x))l ‘

{Ix|=4}
Now

’ I (e — ") d(F, (x)~ F (x))l =
(=>4}

=

j' Ieitx__eit*xl dF, (x)+ f Ieitx_eit*xl dF(x) =
{ix|=2} {Ix]=4}

= 2|, () —F)|+ 2|F(— D) — F(= Ml +4(1 - F(A) + F(—4)).

209
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Let K=max {|7|: t€S} and 2*=2(1+K2)2. Using integration by parts,

+i
| [ (=™ d(Ex) - F)| =

—a

= |(e" — e M) (F(h—)— F(A=))— ("~ D — e D) F(— 1)~ F(—~ 2))—
+4
—i [ (F(0)—F®))(te™—1*e") dx| =
-2

= 2|R(A-)—FDI+2|1E(- ) - F(= )|+ If—f*li*'il;g |E.(x)—F(x)| =
= 2|1F,(A—)~F()I+2|1E (=)= F(= A+ (2*/k) sup |Fa(x)— F(x)].
Summing up
Sni = 2R (A~ F(DI+2|1E(A - )~ FQA)|+4|F(- ) —F(- DI+
+4(1-F()+ F( —_/1))+ (A*/k) sup |Fa(x) — F(x)].
Hence Tim 1/nlog P{T,=¢} is bounded by the maximum of i(z—34),
Iim (1/m)log P{|F,()—F(2)| = 8/16}, Tim (1/n)log P{|F,(A~)—F(3)| = 6/8},
E (1/n)log P{|F,(— A)— F(—2)| = 6/16} and
'@ (1/n)log P{ilelg |5 (x)— F(x)| = (k/A*)(6/4—4(1 — F(A)+ F(— ,1)))}.
If we let first & and then A tend to infinity, we get
Tim (1/n) log PAT, = &} = i(s—9).
This can be seen from the equality
Lim (1/n) log P{|F,(x)— F(x) = &} =

= —min{J(F(x), €), J(1— F(x),¢)}, x€R, &> 0,

and Lemma | or directly.
Finally, 6€(0,&) was arbitrary. Hence 7 is continuous from the left by [10]
Theorem 7 (£=C(S)) and [10] Lemma 3. This gives the result.

Example 3. If L(X,)=B(l,p), ie. P{X;=0}=p and P(X,=1}=1-p=q,
some straightforward computations lead to the equality

max {—J(p, e/a), —J(q, a/a,)} if e<a,
— oo ' otherwise,

i(g) =.{
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where a,=(2(1—cos #))"/2. Hence i(s)=max {—J(p,¢&/a), —J(q,¢/a)}, if T=0,
S=[-T, +T] and a=max {a,: t€S}>e.

That T, converges to zero almost surely even in the case S=R when F is purely
discrete was pointed out by FEUERVERGER and MUREIKA [5]. We are now able to
derive the corresponding large deviation generalization of Theorem 2.

Theorem 4. Let F be purely discrete. If S=R and i(e)=sup {i,(¢): t€S}>
>—oco for each &>0, then }Lrg (/n)log P{T,=¢e}=i(e).

Proof. With the same conclusion as in the proof of Theorem 2 we get i(e)=
=lim (1/n) log P{T,=¢}. Now F is purely discrete. Hence there exist NENU {+ «},

n—»oo

=0 and pairwise distinct g,£R with P{X,=a,}=p;, k€N, 1=k<N-+1, and
N ’ .

2 i=1. Let 6€(0,¢), méN, m<N+1, and y=0 be given and let f denote the

k=1

m .
function f(r)= > |1—e"*|2, t€R. Since f is almost periodic, there exists an
k=1

L=L(y®)=>0 such that every interval of the real axis of length not smaller than L
contains at least one e-almost period, i.e. a number < satisfying |f(t+17)—f(¢)|<y?
for all t¢R. Hence, if t€R is fixed now, we can choose an g-almost period from the
open interval (—¢, —¢t+L). Then we get

lea() —e(D] = lea(t+ 1)~ c(t+ 1) +|e, (D — (D= (ca(t+ D) —c(t+ )| =
= sup lea() = (Dl + |en() — () = (ealt + 1) — c(t + 7).

It follows from Theorem 2 that
lim (1/n) log P{ sup |c,(1)—c(?)] = &— 6} = i(e—9).
[ ke t€(0, L)

Next we study the second term which is a.s.

n N

|(1 /n) j;; ) ;; ((eitak — eit+aa)( I(X,=ak) - pk))l =

n N X .

= (l/n) 2' 2’ Ieuak _ el(t+r)ak| . II(X,=ak} —pk| =

j=1k=1
n m N
= (l/n) jz; [kz; Ieitak — el(l+‘t)ak| . II(xj=ﬂk) _pkl +2 an;J II(X,=ak) —pkl] =
n m 12 N
=) 2@ 3 Ux=ap—Pl"+2 3 ix,=ay—nil] =
j=1 k=1 k=m41 X

n m N n
=(In) Z (3 Hxmap =2l '+ 2 5 ix,=ap—pd] = (/) 3 Z;,
j=1 k=1 k=m+41 ji=1

144
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where
m N )
Z;= )’(kg; 'I(X,=ak}_pk|2)l,2+2 k—Z-'{—l Mix,=a3 — Pal>

1=j=n. It follows from Theorem 3.1 of BAHADUR [1] that
Tim (1/n)log P{(1/n) 3 Z; = 6} = inf {[log [¢ZdP)—ré: r = O}.
T 1/ tog P{(1jn) 3 7, = 8} = int {(10g f e dF) —r6: r = 0}

But now, since t¢R was arbitrary, the preceding inequalities lead to

Tim (1/n) log P{sup|c,()—c(t) = &} =
n-—-o teER

= max {i(s—é), (logfe'zl dP)—r&} forall r=0.
If we let first y converge to zero, then m tend to N, and finally r go to 4 -, we get
'@ (1/n)log P{T, = ¢} = i(e—~9).
The closing step in the proof of Theorem 2 yields the desired result (¥ c AP!).

Having Theorems 2 and 4, we are finally interested in an expansion of the limits
of the logarithmic large deviation probabilities.

Lemma 5. Let 1€R, A,=Ecos(tXy), B,=Esin(1X;), C,=E cos?(tX)),
D,=E (sin tX, - cos tX;), E,=F sin?(tX;) and

i = (1/U(C,— AD) + (B~ B+ [(1/H(Ci— 4D — (E: — B +(D,— A, B )]
Then o?=sup {Var {0, Y,(1)): 0cR? |0|=1} and
| i(e) = —&*26%+0(e¥) as &l0:
Proof. For 6=(9,, 8,)¢R? we have
Var {0, Y, (1)) = E((8,(cos (tXy)— Re c(1))+ 0,(sin (tX,)—Im c(¢)))?).

Defining a= E(cos (tX,)— Re c(1))2, b=E((cos (1X;1)— Re c(#))(sin (tX,)—Im c(2))),
c=E(sin (tX;)~Im ¢(¢))® and

_fa b
a=(3 2),

we get Var (0, Y,(¢))=0240". Hence sup {Var {8, Y,(1)): O¢cR?, |8|=1} is the
greatest eigenvalue of 4, which is equal to
(1/2)(a+c) +[(1/4)(a— c)* + b7~

This proves the first part of our lemma, since a=C,—A4%, b=D,—A4,B, and
¢=F,—B?. The remaining expansion follows from Lemma 2.2 of JAMMALAMADAKA
Rao [9].
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Now Lemma 5 immediately yields expansions for the functions i appearing in
our Theorems 2 and 4.

Theorem 6. Let SCR be arbitrary, i(e)=sup {i,(e): t€S} and ot:=
=sup {o?: 1€S}, where O<o®<+ . Then i(e)=—¢%262+0(?) as ¢&l0.

Proof. Let (g,),cn be a sequence of positive real numbers converging to zero.
Then Lemma 5 yields

~ 1262 = k.rg i(e,)/et = 31%0 i(e,)/e2 for all t€S.
This implies ~1/26*=lim i(e,)/e}. Now
| i\(e) = log (sﬁp {ggg exp (;rs) [eer® ap: 0eR?, 0] = 1}) =
= sup {inf{-re+log e @ ® dP: r = 0}: 0cR% 6] = 1} =

sup {~(¢/0%)e+log [ exp ((e/0°)(6, Ti(1)) dP: B€R?, |6] = 1}

for all e=0. _

A

Let # be chosen large enough such that we have g, < &2/4. Then

[ exp ((ea/0®)(8, ¥i(1))) dP = |
= 14 (e2/26*) Var (6, ¥;()) + vg _vl.'_ (e,/0%) f(((),' Y, (1)) dP =

= 148262+ 2%(28,,/62)" = 146226 +863/0%, if OcR?, |0| = 1.
v=3 V-

Since
i\(e,) = —e2/o® +1og (14 &%/20% + 8e3/6%) = -- €2/20% + 8¢3/0®,

we have
Iim i,(e,)/e? = —1/26%.
Combining this result with the first inequality we get the desired expansion.

Note added in proof. Theorem 2 can also be derived from [10] Theorem 2 by tak-
ing the setfunctions f; ¢(x)=0, cos (tx)+ 0, sin (1x), 1€S, 0=(6,, 0)€R?, 0] =1, x€R.
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Ralph H. Abraham—Christopher D. Shaw, Dynamics — The Geometry of Behavior, Part 3:
Global Behavior (The Visual Mathematics Library, 3), XI+ 123 pages, Aerial Press, Inc., Santa Cruz,
California.

At the defence of a Ph. D. thesis on topological dynamics one of the referees criticized the author
not presenting figures enough in his work. A sharp debate broke out about the question whether or
not figures are necessary in articles or books on dynamics. Some people said “no” arguing that every
drawing takes us in to some extent, it is in the way of the abstraction oversimplifying the circum-
stances. By the way, in his original work, Mécanique analitique Lagrange used no diagrams. Other
people (including the reviewer) said that the geometrical ideas having been appeared in dynamics
nowadays should be visualized in some way. Abraham’s and Shaw’s book shows that this purpose
can be realized on a very high level. Their pictures do not restrict the abstraction, quite the contrary,
they help the reader imagine and assimilate very abstract concepts and phenomena.

In talking among themselves mathematicians universally use the so called “dynamic picture
technique”: a picture is drawn slowly, line-by-line, along with a spoken narrative. The coordination
between the phases of the picture and the narrative is very important in the process of comprehension.
The book preserves the dynamics of the live presentation. If the final picture is sophisticated, the
reader can find its intermediate phases with appropriate comments. A typical example is the section
on the famous and mysterious Lorenz attractor, which is not so mysterious after having read and
watched the section. Yes, the book has to be read and looked at alternately, and the interaction of
reading and watching results a deep and quick understanding.

The book contains chapters and sections on attractors, separatrices, generic properties, structur-
al stability, heteroclinic and homoclinic tangles, horseshoes and nontrivial recurrence. As an ex-
cellent supplement to the standard monographs in the field, it should be on the bookshelf of each
student, user of mathematics or mathematician studying or teaching dynamics.

Ldszlé Hatvani (Szeged)

A. N. Andrianov, Quadratic Forms and Hecke Operators (Grundlehren der mathematischen
Wissenschaften, 286), XTI+ 374 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—
Paris—Tokyo, 1987.

In the classical theory of quadratic forms remarkable multiplicative properties of the number of
integral representations of integers by positive definite integral quadratic forms were discovered. To
explain these properties, E. Hecke had introduced operators in 1973, which were named later after
him. Hecke operators are classically linear operators acting on the space of modular forms of one
variable. This concept may be generalized in a natural way to multivariate modular forms. Using this
idea, many interesting multiplicative properties of the number of integral representations of quad-
ratic forms of more than one variable by quadratic forms were discovered in the last 50 years.
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The purpose of this book — as the author writes in the preface — is to present in the form of a
self-contained text-book the contemporary state of the theory of Hecke operators on the spaces of
holomorphic modular forms of integral weight (the Siegel modular forms) for congruence sub-
groups of integral symplectic groups.

The book is divided into five chapters. Three short appendices with the required knowledge
about symmetric matrices, about quadratic spaces and about modules in quadratic fields make it
complete.

The content of the book is briefly as follows. In Chapter 1 theta-series of positive definite quadrat-
ic forms are introduced and their automorphic properties are studied. Looking at all functions which
satisfy similar transformations as the theta-series, the space of modular forms is defined in Chapter 2.
This way makes it possible to study a lot of properties of theta-series using the nice analytic expan-
‘sions of modular forms. Chapter 3 deals with Hecke rings. This concept is defined first abstractly,
for pairs (I, S), where § is a multiplicative semigroup and I is a suitable subgroup of S. The special
properties of the most interesting Hecke rings of the general linear groups, of the symplectic groups
and of the triangular subgroup of the symplectic groups are studied in detail. Chapter 4 is devoted
to the study of the multiplicative properties of the Fourier coefficients of modular forms. The most
important tools to get such relations are Hecke operators, introduced also here. The last chapter
deals with the action of Hecke operators on theta-series. Here, there are not proved final, general
results on the multiplicative properties of the Fourier coefficients of theta-series but rather a possible
way is shown to study this problem. So this book does not have a happy end, but I think, it will
inspire further research on this topic.

This book is written in a clear, well readable style. I want to emphasize the few mtroductory
sentences explaining the goal and methods before each section. I find the exercises another valuable
component of the book.

.This volume is designed for graduate students and researchers who w:sh to work in the arith-
metic theory of automorphic forms. )
Attila Pethé (Debrecen)

M. Berger, Geometry I—II, (Universitext), XIII+-428 pages, X+ 406 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

There are a lot of books on geometry but only few of them include all part of geometry and
also written clearly, using modern terminology but do not lose in the labirinth of formalism. Here
is an excellent book which certainly satisfies these conditions. Itis the translation of the French book
“Géométrie” originally published in five volumes. The book contains the detailed discussion of classi-
cal geometries and beside this it is a unified reference source for all the subfields of geometry. The
author’s aim was threefold as he writes: “to emphasize the visual, or ‘artistic’ aspect of geometry,

" by using figures in abundance; to accompany each new notion with as interesting a result as possible,
preferably one with a simple statement but a non-trivial proof;; finally, to show that this simple-look-
ing mathematics does not belong in a museum, that it is an everyday tool in advanded mathematical
research, and that occasionally one encounters unsolved problems at even the most elementary lével”.

It is hopeless to give even a short summary of the material discussed, so let us mention only
some of the most delicate parts which usually omitted from textbooks : the classification of crystal-
lographic groups, the classification of regular polytopes in arbitrary dimension, Cauchy’s theorem
on the rigidity of convex polyhedra, the discussion of polygonal billiards, Poncelet’s theorem on

- polygons inscribed in a conic, the Villarceau circles on the torus, Clifford parallelism, the isoperi-

“metric inequality in arbitrary dimension, the simplicity of the orthogonal group,.the theorem:of
Witt and Cartan-Dieudonné. :
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In each chapter there are a great number of exercises which are usually more difficult than
those in comparable books. The solutions of the most difficult ones and other exercises can be found
in the companion volume “Problems in Geometry”.

This book can be used in different ways. Teachers and students can use it for introductory
course and some parts of it for higher-level course. It also serves as a handbook for researchers in
geometry.

’ J. Kincses (Szeged)

T. Beth—D. Jungnickel—H. Lenz, Design Theory, 688 pages, Cambridge University Press,
London—New York—New Rochelle—Melbourne—Sydney, 1986.

The main concepts and ideas of modern Design Theory are presented in this book.

Chapter 1 is a general introduction to the different topics of Design Theory. This part of the book
provides those algebraic, geometric and parametric properties of certain incidence structures which
are important for an advanced study of them. The second chapter is concerned with the techniques
of deriving necessary parametric conditions which have to be fulfilled by an incidence structure of a
given type. (Some titles from this chapter: Fisher’s inequality for pairwise balanced designs, symmet-
ric designs, generalizations for Fisher’s inequality.) Since it is sometimes heplful to use the group of
automorphisms of a design, the Chapter III deals with the connections between groups and designs.
_ Separated chapter is devoted to Witt designs, which have been constructed with special Steiner
systems and the Mathieu groups. (These are the only known finite ¢-transitive permutation groups
with ¢=>3, except for the symmetric and alternating groups.) For those readers who are familiar
with non-elementary groups theory Chapter 5 is a nice application with the higly transitive groups.
Further two chapters present the difference sets and the regular symmetric designs. Chapter 8 deals
with various direct constructions of designs. In Chapter 9 some important recursive reconstruction
methods are developed which will be applied to mutually orthogonal Latin squares and pairwise
balanced designs. The next part provides more advanced existence and non-existence results for
transversal designs. Separated chapter is devoted for the proof of Wilson’s main theorem concern-
ing the existénce of an S5 (2, K, v). In the last chapter after returning to the discussion of automor-
phism groups an extensive literature is presented on characterisation problems.

- An extensive blbhography of about 500 titles — all quoted in the previous sections — has been
included. : - :

The reader is expected to be familiar only with basic algebra but otherwise the work is self-
contained. It is suitable for advanced courses and a reference book for private study, too. The proofs
of several fundamental theorems have been simplified and many, advanced results are presented.
Last we notice that the book achived its aim: “to provide some of the necessary mathematical back-
ground for.anyone working in Communication Engineering, Optimization, Statistical Planning,
Computer Science and Signal Processing”.

G. Galambos (Szeged)

Béla Bollobas, Combinatorics (Set systems, hypergraphs, families of vectors, and combinatorical
probability), XII+ 180 pages, Cambridge Umversny Press Cambndge—London—New York—New
Rochelle—Melbourne——Sldney, 1986

Béla Bollobas has published formerly “Graph Theory”, an introductory text, and two research
monographs, “Extremal Graph Theory” and “Random Graphs”. “Combinatorics” is a book whose
main theme is the study of subsets of finite sets.
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This book is an expanded aceount of a first-year graduate course in combinatorics but it con-
tains considerably more material than one could reasonably hope to cover in a one semester course,
this gives the lecturer ample freedom to slant the lectures to his taste.
The contents of the book (the list of section headings) present the topics very well:
1. Notation, 2. Representing Sets, 3. Sperner Systems, 4. The Littlewood — Offord Problem, 5. Shad-
ows, 6. Random Sets, 7. Intersecting Hypergraphs, 8. The Turan Problem, 9. Saturated Hyper-
graphs, 10. Well-Separated Systems, 11. Helly Families, 12. Hypergraphs with a given number of
Disjoint Edges, 13. Intersecting Families, 14. Factorizing Complete Hypergraphs, 15. Weakly Sat-
urated Hypergraphs, 16. Isoperimetric Problems, 17. The Trace of a Set System, 18. Partitioning Sets
of Vectors, 19. The Four Functions Theorem, 20. Infinite Ramsey Theorem.

Generally an initial combinatorics textbook contains very little for these topics, but ones are as
worthy of consideration as any, in view of their fundamental nature and elementary structure.

The sections are short summaries of the topics, with their main theorems and with elegant and
beautiful proofs, those which may be called the gems of the theory.

The reader can consolidate his understanding of the material by tackling over one hundred
exercises. If a researcher wants to know more about a special topic, he (or she) finds many articles
on the basis of references.

Zoltdn Bldzsik (Szeged)

Detection of changes in random processes (Edited by L. Telksnys) Optimization Software, Inc, .
Publications Division, New York, 1986.

Changepoint problems have originally arisen in the context of quality control, where one typi-
cally investigates the output of a production line and would wish tosignal deviation from an accept-
able average output level while investigating the data. Such situations can usually be modelled by
saying that we have a random process {X(¢),0=¢=T} and we wish to detect whether the prob-
abilistic behaviour of {X(¢), 0=r=1t} and {X(¢), 7=t= T} is the same. Not surprisingly, changepoint
‘problems have been studied by many researchers from theoretical as well as applied points of view.

The book under review is a new addition to the literature on this subject. It contains 25 papers
on detection of changes in random processes. The papers give a nice summary on recent progress in
the Soviet Union on these problems. The references reflect intensive activity in this field. The authors
of the volume cite a lot of papers on changepoint problems published in the Soviet Union. However,
they do not seem to be aware of results which have appeared in Western journals.

The translation of this collection makes results of researchers working in the Soviet Union read-
ily available for a wider audience. This translation series of Optimization Software Inc. is a great
service for the mathematical community.

Lajos Horvdth (Ottawa, Canada)

Dietrich Braess, Nonlinear Approximation Theory (Springer Series in Computational Mathemat-
ics), XIV+290 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo,
1986.

The monograph is based on the lectures given by the author to fourth year students at German
universities. The material of these lectures is widened by additional one so that the book is a useful
text not only for students but for researchers interested in approximation theory, too.

The prerequisites consist essentially of a good basic knowledge of analysis and functional
analysis.
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The book has been organized so that the sections recommended mostly for researchers (so as
rational approximations, exponential sums, spline functions with free nodes) are independent of
each other.

Let us give a short detail of the chapters pointing out just the main topic of them.

Chapter I is a review of well-known results from the linear theory. Chapter II contains the
functional analytic approach (properties of Chebyshev sets; Kolmogorov criterion for suns). Chap-
ter IIL is devoted to the methods of local analysis (critical points; nonlinear approximation in Hil-
bert spaces; Gauss—Newton method). Chapter 1V is consisting of the methods of global analysis
(the uniqueness theorem for Haar manifolds; concepts of the classification of critical points). In
Chapter V the rational approximation is included (existence of best approximation; Chebyshev
approximation by rational functions; rational interpolation; Padé approximation and moment
problems; degree of rational approximation; the computation of best rational approximation).
Chapter VI is devoted to the approximation by exponential sums (existence of best approximation;
interpolation). Chapter VII contains Chebyshev approximation by y-polynomials (Descartes family;
approximation by proper y-polynomials and by extended y-polynomials; local best approximation).
An finally Chapter VIII is dealing with the approximation by spline functions with free nodes (spline
functions; Chebyshev approximation by spline functions; monosplines of least L,, L, and L,
norms).

The book is pretty well organized, its style is clear. Hopefully it can certainly be a very useful
text for both researchers and students.

Jozsef Németh (Szeged)

Walter Dittrich—Martin Reuter, Selected Topics in Gauge Theories (Lecture Notes in Physics,
244), 315 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986.

This volume contains a collection of lectures and seminar talks given by the authors at Tiibin-
gen University and elsewhere. The material is organized into 16 chapters which are devoted to
various aspects of chiral anomalies, topological objects like instantons and skyrmions, effective
actions, background field methods and other topics of current interest in gauge theories. The materiat
is presented in an unorthodox way: standard explanations (which can be found in textbooks) are
omitted to a large extent, whereas computational details are completely given. The only general pre-
requisite is some grounding in quantum field theory, however, to get better acquainted with the back-
ground of the topics presented here, the reader should first consult some of the references cited at the
end of each chapter.

The book is particularly recommended to those who are looking for a good introduction to
topological aspects and chiral anomalies in gauge theories. The manner of presentation makes it
ideally suited to the needs of graduate students.

L. Gy. Fehér (Szeged)

Beno Eckmann Selecta, Edited by M. A. Knus, G. Mislin and U. Stammbach, XII+ 835 pages,
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987.

The edition of 65 selected papers of Beno Eckmann is in honor of his work on the occasion of
his seventieth birthday. The volume contains the representatives of his research papers. Some of his
survey articles have also been included, which are exceptionalin their art of presenting mathematical
ideas to non-specialists. Professor Eckmann writes in his Biographical notes: “Under the wonderful
guidance of Heinz Hopf I then got my doctoral thesis work. It was characteristic of Hopf’s views
on our science that this meant not only learning algebraic topology — then a very young field — but
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also getting acquainted with group theory, differential geometry, and algebra in the ‘abstract’ sense
of the Emmy Noether school. The combination of these fields, considered at that time to be largely
separated from each other, remained a constant challange during all my later work.” Really, it is
the characteristic feature of the fundamental results and all scientific activity of Beno Eckmann that
the mentioned fields represent a unified, organically connected subject in mathematics. The most
competent classification of the directions of his research can be formulated by the titles of his com-
ments to the selected papers: Homotopy groups and fiber spaces; Continuous solutions of linear
equations; Cohomology of groups; Homological algebra, transfer; Duality in homotopy theory;
Duality groups, Poincaré duality. ‘
Péter T. Nagy (Szeged)

A. T. Fomenko—D. B. Fuchs—V. L. Gutemacher, Homotopic Topology, 310 pages, Akadémiai
Kiad6, Budapest, 1986.

This book is a translation of the Russian original which based on the lectures held at the Mos-
Cow University. The authors’ main aim “was to dig a tunnel for the ignorant from the basic terms to
the ‘height of heights’ — the Adams spectral sequence, and it was a lucky chance that this tunnel led
through a few reefs of gold”. This aim is completely fulfilled.

The first chapter contains the basic ideas of homotopy theory. First the general constructions
are presented: natural group structures on the sets n(X, Y), homotopy groups, covering spaces,
fibratons and homotopy sequences and then the homotopy of CW-complexes are studied in details.
The second chapter introduces the general homology theory. This is started with singular homology
and cohomology of topological spaces, especially the computation of the homology groups of
CW-complexes and then the connections between homology and homotopy groups are studied,
namely Hurwitz’s theorems are proved. The chapter ends with the obstruction theory. The third
chapter deals with the construction of the spectral sequences of filtered spaces and with their applica-
tions to the calculation of homology groups. The subject of the fourth chapter is the discussion of
cohomology operations. After the general constructions some particular but very important cases are
presented namely the Steenrod squares and Steenrod algebras. Finally the fifth chapter is fully devoted
to the Adams spectral sequence and to its applications.

The presentation of the material is clear, the proofs, even of the most abstract theorems, are as
geometric as possible. The book is fully illustrated by A. Fomenko’s pictures which are organic
part of it. Each of them gives an intuitive insight into a complicated construction or shows the main
point of a proof. The book contains also a great number of exercises which help to understand the
main concepts and extend the theory.

The book is recommended to everybody interested in homotopy theory but it can be useful for
researchers in topology and related fields.

J. Kincses (Szeged)

George K. Francis, A Topological Picturebook, XV + 194 pages, Springer-Verlag, New York—
Berlin—Heidelberg—L ondon—Paris—Tokyo, 1987.

This book is about how to draw mathematical pictures. Many mathematicians and teachers
would like to draw pictures, but they belive that they can not do it. No this book teaches everybody
to draw, but gives some method how one can-imagine and draw some figures in mathematics.

The author believes that: “There are some rules, based on differential geometry, which can be
distilled into practical routines for ‘calculating’ how to draw a picture.” He proves his idea using
many examples from different objects of mathematics.
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Itis noteworthy that each chapter is a “picture story”, i.e. tells a topological story matching the
picture. '
This very nice book with 87 illustrations is warmly recommended to all teachers of mathematics
and mathematicians who would like to illustrate their lectures.
Arpad Kurusa (Szeged)

Felix R. Gantmacher, Matrizentheorie, 654 pages, Springer-Verlag, Berlin—Heidelberg—New
York—Tokyo, 1986.

This book is the German translation of the Russian original edition appeared in 1966.

The text is divided into two parts, the fist of which (chapters 1—10) deals with general theory of
matrices and the second one is devoted to special questions and applications. Chapters 1-—8 give the
theory of matrices in general finite dimensional vector spaces. Chapters 9 and 10 investigate special
matrices, linear operators, quadratic and Hermitian forms in inner product spaces. Chapters 11—14
deal with complex symmetric, antisymmetric and orthogonal matrices, matrices with non-negative
elements, regularity criteria and localization of characteristic roots. Chapter 15 presents applications
of the theory of matrices for systems of linear differential equations. The last chapter is devoted to
Routh—Hurwitz problem and joined questions. .

The book is recommended not only to mathematicians but to every specialist interested in

application of mathematics.
Ldszlo Gehér (Szeged)

M. B. Green—J. H. Schwarz—E. Witten, Superstring Theory, Volume 1: Introduction, X+ 469
pages; Volume 2: Loop Amplitudes, Anomalies and Phenomenology, X1+ 596 pages, Cambridge Uni-
versity Press, Cambridge—London—New York—New Rochelle—Melbourne—Sydney, 1987.

Recently there has been an enormous and even growing interest in superstring theory. No won-
der, superstring theory is the most promising candidate to reconcile general relativity with quantum
mechanics and to unify the fundamental interactions. There is a widely felt need for a systematic
exposition of the subject. This two volume text written by outstanding experts on string theory is
intended to meet this need. )

Volurhe 1 is a self-contained introduction to string theory. It starts off with an introductory
chapter in which the authors explain what string theory is, present its historical background and
general philosophy concentrating on bosonic strings. The next two chapters develop the theory of a
free bosonic string in detail. All the four approaches (covariant, light cone, path integral and BRST)
of quantization are presented here. Chapters 4 and 5 are devoted to questions concerning world-
sheet and space-time supersymmetry in string theory, i.e. the fermionic degrees of freedom are in-
troduced. In Chapter 6 the authors describe how gauge symmetries can be introduced in string theory.
This is essential to make the link with the real world. Finally, this volume contains a detailed discus-
sion of the evaluation of scattering amplitudes in the tree approximation.

Volume 2 contains a number of topics from current research papers. Chapters 8 and 9 deal with
one-loop amplitudes in bosonic string and in superstring theory respectively. A large amount of
space is given to questions concerning anomalies in effective field theory. The authors investigate the
emergence of effective field theory and possible mechanisms of compactification of extra dimensions.
The necessary differential and algebraic geometric background material is presented in cosiderable
detail in separate chapters. In the final, 16t0 chapter the authors illustrate how the machinery of al-
gebraic geometry can be used to understand the properties of four dimensional models obtained from



222 Bibliographie

D=10 effective field theory via compactification. They discuss how topological formulae can fix
the number of generations, the couplings and symmetries of elementary particle interactions.

The authors write in the preface: “We hope that these two volumes will be useful for a wide
range of readers, ranging from those who are motivated mainly by curiosity to those who actually
wish to do research on string theory.” Thereis no doubt that this excellent book will become astand-
ard reference on string theory. It is a need for everybody interested in this very exciting subject.

Ldszlo Gy. Fehér (Szegedy

E. Hairer—S. P. Norsett—G. Wanner, Solving Ordinary Differential Equations 1. Nonstiff
Problems (Springer Series in Computational Mathematics, 8), XIII+ 480 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

Nowadays many mathematicians dealing with pure mathematics also have a personal computer
of big capacity and efficiency on their desks. So dealing with differential equations one is strongly
tempted to get or firm conjectures via computer experiments. (The most exciting problem of the last
decade in the theory of dynamical systems, the chaotic behavior has been discovered by such an ex-
periment.) This activity needs precise and fast numerical methods of solving differential equations, so
thereis a great interest in them among mathematicians and users of mathematics. The present mono-
graph will satisfy these demands.

The first chapter gives a survey of the “Classical Mathematical Theory” of differential equations
from Newton and Leibniz to limit cycles and strange attractors. Fortunately, it does not repeat the
standard way of recalling the basic theorems, it is written markedly by numerical analysts. The reader
can find existence theorems using iteration methods and Taylor series, and the very first proof of the
convergence of Euler’s method due to Cauchy, which has recently been discovered on fragmentary
notes and was never published in Cauchy’s lifetime.

The second chapter contains the one step methods, i.e. the Runge—Kutta and extrapolation
methods. Besides the classical ones, the modern procedures with practical error estimation and
stepsize control are presented such as Dormand and Prince formulae, the embedded Runge—Kutta
methods, the newest Nystrom type methods for the second order equations, etc. Special section is
devoted to delay differential equations and their applications (infectious disease modelling, enzyme
kinetics, population dynamics, etc.).

The third chapter is concerned with the multistep methods and general linear methods. The
order, stability and convergence properties are studied. The various available codes are compared
by using numerical examples. ¢

The book is concluded by an appendix containing the FORTRAN codes of some very new
effective procedures treated in the book. They can be obtained from the Authors also on IBM diskette
on payment of 15 Swiss Franks.

LdszIlo Hatvani (Szeged)

Arthur Jones—Alistair Gray—Robert Hutton, Manifolds and Mechanics (Australian Mathemati-
cal Society Lecture Series, 2), IV+ 166 pages, Cambridge University Press, Cambridge—London—
New York—New Rochelle—Melbourne—Sydney, 1987.

We learned from the classical texts of mechanics (see e.g. P. E. Appel’s and E. T. Whittaker’s
books) that the motions of a holonomic system with n degrees of freedom could be described by the
Lagrange equation of second kind, in which the Lagrangian function is defined and differentiable on
an open set in the configuration space R”. However, it may often happen that a single equation de-
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fined on an open set describes the motions only locally. For example, in the case of the double plain
pendulum the configuration space is a two dimensional torus, which cannot be mapped by any single
one-to-one function onto an open set in R2. But we can find an “atlas” for the entire torus with
“charts” giving coordinates only for some parts of the torus. In the other words, wanting to study
the motions globally one needs the differentiable manifold technique. But the text-books based upon
this approach (e.g. R. Abraham’s and J. E. Marsden’s or V. I. Arnold’s books) demands essentially
more than the standard undergraduate advanced calculus texts give. This gap has been bridged by
the present excellent lecture notes.

The first part is an easy mathematical introduction, in which the reader can get acquainted with
such concepts as differentiable manifold, tangent space, tangent boundle, double tangent, etc. In the
second part the authors show how the theory can be used for the development of the theory of
Lagrangian mechanics directly from Newton’s law, and give some applications (the spherical pen-
dulum, rigid bodies).

This well-written book is highly recommended to students, applied mathematicians and theo-
retical physicists as well as to mathematicians interested in applications of the modern mathematicss

Ldszlé Hatvani (Szeged)

Hiiseyin Kocak, Differential and Difference Equations through Computer Experiments (With
Disketts Containing PHASER : An Animator/Simulator for Dynamical Systems for IBM Personal
Computers), XV +224 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986.

Nowadays the “strange attractor” is a key word of both theoretical and applied dynamical
systems. It is an attracting set of the phase space that is more complicated than an equilibrium point
or alimit cycle studied by classics. And this kind of attractors has been discovered by using numerical
integration of a “simple” polynomial differential equation. E. Lorenz, a mathematician-meteorolog-
ist was investigating the motion of a layer heated from below. Using a routine numerical algorithm
he got a strange attractor and noticed that the solutions behaved at almost random. Despite the
strong efforts of many mathematicians, most of the properties noticed have not been proved yet
theoretically. So it can be understood that computer experiment is becoming a very important tool
in the theory of dynamical systems, in other words, the computer is becoming the mathematician’s
laboratory. Kocak’s book makes this tool available also for those scholars not having any program-
ming knowledge.

The first part gives a synopsis of the facts from the theory of differential equations, difference
equations and numerical methods that are prerequisite for the book. The second part is a handbook
of PHASER. It should be noted here that the program is a masterpiece. Let us cite the author to
describe how it works and what it does : “It is an extremely versatile and easy-to-use program, incor-
porating state-of-the-art software technology (menus, windows, etc.) in its user interface. The user
first creats, with the help of a menuy, a suitable window configuration for displayinga combination of
views-phase portraits, text of equations, Poincaré sections, etc. Next, the user can specify, from an-
other menu, various choices in preparation for numerical computations. He or she can choose, for
instance, to study from a library of many dozen equations, and then compute solutions of these
equations with different initial conditions or step sizes, while interactively changing parameters in
the equations. From yet another menu, these solutions can be manipulated graphically. For example,
the user can rotate the images, take sections, etc. During simulations, the solutions can be saved in
various ways: as a hardcopy image of the screen, as a printed list, or in a form that can be reloaded
into PHASER at a later time for demonstrations for further work.”
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The third part briefly describes the over sixty differential and difference equations stored in the
permanent library of PHASER, among them the Lorenz equation, van der Pol’s oscillator, Lotka—
Volterra equation, Mathieu’s equation, the restricted problem of three bodies on the plane. One can
meet with different kinds of bifurcations, strange attractors, homoclinic orbits etc. Moreover,
phaser provides a menu entry for adding new equations to the library without any programming
knowledge so that each user can easily enlarge the library according to personal needs.

Summing up, this unusual book with the diskettes gives an invaluable help for using computers
in teaching, research and application of differential equations.

Ldszlé Hatvani—Jdnos Karsai (Szeged)

J. L. Koszul, Lectures on Fibre Bundles and Differential Geometry, (Tata Institute of Funda-
mental Research, Lectures on Mathematics and Physics, 20) IV+ 127 pages, Springer-Verlag, Berlin—
Heidelberg—New York—Tokyo, 1986.

The first edition in 1960 of these Lectures was one of the first explanations of the general con-
nection theory making a significant influence on the further development of both differential geo-
metry and the applications in mathematical physics. In the present time the wide-ranging interest of
fibre bundle technique and of the notion of connections on principal and vector bundles has increased
considerably and the present “classical” treatment of this modern theory can serve as a very good
introduction to the differential geometric methods used in the mathematical manifold and Lie group
theory and in their applications in Yang—Mills theory and in the related fields. The first two Chap-
ters are devoted to the coordinate free differential calculus on manifolds and to the notion of dif-
ferentiable bundles. In Chapters III and IV there is given the explanation of the notion of connec-
tions on principal bundles and holonomy groups. In Chapters V and VI the attention is focused on
derivation laws on the associated vector bundles determined by the connection on principal bundle
and to the applications in holomorphic connection theory.

Péter T. Nagy (Szeged)

J. P. LaSalle, The Stability and Control of Discrete Processes (Applied Mathematical Sciences,
62), V4150 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo,
1986. .

The book is concerned with systems whose development in time can be described by difference
equations. The system is observed at any integer point of time, and it is assumed that the state of the
systemn at time n+1 is completely determined by its state at time ». This means, that x(n+1)=
=T(x(n)), where x€R™ is the state variable and the function 7: R™—R™ is given. Therefore, if
the initial state x(0) is known, then the future of the system can be computed. However, not only
computing problems arise. For example, if % is a periodic point or equilibrium (i.e. T(#)=%) then
itis important to know whether or not it is stable. This means that x(#) remains arbitrarily close to
for all nif x(0) is sufficiently close to £. As is known, the stability theory for the continuous processes
(for the differential equations) has been developed by A. M. Lyapunov. LaSalle has established the
corresponding theory for difference equations. During this extension a great number of deep questions
were to be solved, and the new theory is interesting and useful not only for those dealing with discrete
processes but also for mathematicians interested in differential equations.

The second part of the book is devoted to the control system (x(n+ 1) =Ax(n)+f(n)), where the
matrix 4 is given, fis the control function. This model often appears in controlling vehicles, economy,
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illnesses, epidemics, populations, floods, crime, manufacturing processes, etc. The book is concluded
by the stabilization by feedback. -

The book was published posthumously with the assistance of Kenneth Meyer, one of the stu-
dents of LaSalle. '

Anyway, this monograph also has the characteristic feature of every LaSalle’s book and paper:
it gives a very clear and plastic presentation of a sophisticated theory, which is enjoyable and useful
equally for students, users of mathematics and mathematicians.

Ldszlo Hatvani (Szeged)

Tamas Matolcsi, A Concept of Mathematical Physics (Models in Mechanics), 335 pages, Aka-
démiai Kiado, Budapest, 1986.

This is a continuation of the author’s monograph “A Concept of Mathematical Physics, Mod-
els for Space-Time” published in 1984. The notations and results of that monograph are used and
referred to throughout this volume.

The author sets forward his program in the introduction: “The modelling of some sort of
physical phenomena means a construction of a category. The objects of the category are the models
and we require that there be no morphisms between the models of different physical phenomena,
there be morphisms between models of similar phenomena and two models be isomorphic if and only
if the modelled phenomena are physically identical.”

In this book he presents mathematical models of mechanical phenomena. The models of classi-
cal and quantum mechanics (nonrelativistic and special relativistic) presented here are based on a
consistent application of the basic prirciples of covariance and relativity. The construction of mech-
anical models takes up the first half of the book, the second half is devoted to mathematical tools.
Among the topics touched upon in the second part of the book are the following: probability theory
on subset lattices and Hilbert lattices, star algebras, elements from functional analysis and from the
theory of group representations, representations of space-time groups, basic notions concerning sym-
plectic manifolds and Poisson brackets.

In this monograph the material is treated from a uniform viewpoint of principle. This book is
not an easy reading but it is well worth studying for everybody interested in its subject.

L. Gy. Fehér (Szeged)

Kazuo Murota, Systems Analysis by Graphs and Matroids, Structural Solvability and Control-
lability, (Algorithms and Combinatorics, Volume 3), 281 pages, Springer-Verlag, Berlin—Heidel-
berg—New York—London—Paris—Tokyo, 1987.

This monograph is devoted to the study of the structural analysis of a system of linear/nonlinear
equations and the structural controllability of a linear time-invariant dynamical system. The outline
of the contents of this book is as follows:

In the first Chapter mathematical preliminaries are given. Basic results in graph theory and
matroid theory are mentioned and some useful relevant theorems as the Dulmage—Mendelsobn
decomposition of bipartite graphs are shown. This chapter presents some results on the submodular
functions as well.

Chapter two is devoted to a graph-theoretic method for the structural analysis of a system of
equations. First the structural solvability ofa system of equations is formulated. The L-decomposition
and the M-decomposition of graphs are introduced in connection with Menger-type linkings, to-

15



226 Bibliographie

gether with their applications to the hierarchial decomposition of a system of equations into
smaller subsystems. ®

Chapter 3 presents graph-theoreticconditions to the structural controllability of a linear dynam-
ical system expressed in the descriptor: F-dx/dt=Ax4 Bu. Some known results on controllability
condition of a descriptor system are mentioned, too. Various descriptions of a dynamical system are
compared from the viewpoint of structural analysis.

Physical observations are made for providing the physical basis for the more elaborate and
faithful mathematical models adapted in the second half of the book. It is explained in Chapter 4
that two different kinds are to be distinguished among the nonvanishing numbers characterizing
real-word systems. Algebraic implications motivate the introduction of “mixed matrix” and “physi-
cal matrix”.

In Chapter 5 a matroid-theoretic method is developed for the structural analysis of a system of
equations. The rank of a mixed matrix is characterized, and an efficient algorithm for computing is
described. Matroidal conditions are given to the structural solvability under the refined formulation.

In the last Chapter a structural controllability of a dynamical system is investigated. The
dynamical degree is characterized in connection with the independent-flow problem. Relations to
other works are mentioned.

G. Galambos (Szeged)

Stefan Pokorski, Gauge Field Theories (Cambridge Monographs on Mathematical Physics),
XIV 4 394 pages, Cambridge University Press, Cambridge—I ondon—New York—New Rochelle—
Melbourne—Sydney, 1987.

This new volume in the authorative series Cambridge Monographs on Mathematical Physics
deals with physical and technical aspects of gauge theories.

The author first presents an overview of the standard SU(3)XSU(2)X U(1) model, then he
gives a short introduction to (path integral formulation of) perturbative quantum field theory and
Feynman rules for Yang—Mills theories. In the following there is a careful discussion of the renor-
malization program. Separate chapters are devoted to quantum electrodynamics, renormalization
group techniques and quantum chromodynamics. The book contains a detailed examination of global
and gauge symmetries and their breaking schemes. The important topics of chiral symmetry, its
breaking and chiral anomalies are also treated in detail. A fair amount of space is given to questions
concerning scale invariance and low energy effective Lagrangians. The last chapter contains a dis-
cussion of basic elements of supersymmetric field theory.

The author presented here an extraordinarily wealthy material on theoretical methods and com-
putational techniques of gauge field theories underlying our present understanding of elementary
particle phenomena. The book is clearly written and practically self-contained, the reader is only
assumed to have some familiarity with standard quantum field theory in its canonical formulation.
Consequently, this book is warmly recommended to every research worker and graduate student
interested in modern developments of gauge theories.

L. Gy. Fehér (Szeged)

George Pélya, The Polya Picture Album: Encounters of a Mathematician, Edited by G. L. Alex-
anderson, 160 pages, Birkhduser, Boston—Basel, 1987.

Imagine Albert Einstein, “young and good looking, not the Einstein we usually see”, and young
Lisi Hurwitz, whom you don’t know, playing the violin as a duet and Adolf Hurwitz whom of course
you know playfully conducting with a drumstick. This is the cover photo of this most enjoyable
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selected personal picture album. Then picture yourself to be conducted and guided through his al-
bum by Uncle George Polya himself, at his best humour, describing the people or the occasion you
see, relating the pictures to each other, and telling stories and anecdotes most charmingly, with in-
telligence and wit, and with obvious fondness towards all these people even if the story has a mild
edge. This is exactly what you get in this book, a guided tour through the Pdlya album by the late
Professor Pélya, a nice afternoon in Palo Alto, California. His words were taped and transcribed.
Therefore, the advanture is very intimate. Most, but not all, of the stories from P6lya’s famous lecture
“Some mathematicians 1 have known” [Amer. Math. Monthly 76(1969), 746—753] are told again,
some of them almost verbatim (he must have told themn many times), but there are quite a number of
new ones, new at least to the reviewer, like the one about the absent-mindedness of Paul Lévy, or
Pringsheim’s remark that “Rosenthal was just a special case of Blumenthal”.

Of necessity, the book is rather Magyar. The editor’s care in using proper Hungarian first
names and especially in accenting without an error deserves special mention. All the more so that
such a care, an elementary courtesy, seems to have died out with the generations of the Polyas.

The nicest things are of course the pictures themselves. One notices that quite a few of the photos
in the illustrated history of the International Mathematical Congresses by D. A. Albers, G. L. Alex-
anderson and C. Reid [Springer-Verlag, New York, 1987; a review of which is in these Acta 51
(1987), p. 503] were in fact taken from Poélya’s album. The present book has an introduction (pp:
7—8), a really intelligent biographical sketch of Pélya by the editor (pp. 9—22), and the photos
with Pdlya’s accompanying remarks take the pages 23—155. A useful index of names completes
the album. Any decent mathematics library will want to have a copy of it. It would still be better
just to leave a copy in the coffee lounge or mail room of the Department of Mathematics.

Slips of the memory make narratives more authentic. The following nice little contradiction
(or is it really a contradiction ?) was left without remark by the editor. Probably this was intentional,
and if so, then rightly so. On page 78 P6lya says: “And here are the Nevanlinnas and myself. These
pictures were taken in Switzerland the year Nevanlinna came to take Weyl’s place at the ETH, when
Weyl went to Princeton to the Institute.” On the other hand, on page 131 he says: “Ernst Vollm,
myself, and Heinz Hopf in Switzerland, 1949. Hopf had replaced Weyl at the ETH when Weyl went
to the Institute at Princeton.” Was Nevanlinna declined in Ziirich? Did he just go there to take the
place but did not like it? Or, who took Weyl’s place?

Sdndor Csirgd (Szeged)

Lothar Sachs, A Guide to Statistical Methods and to the Pertinent Literature. Literatur zur
Angewandten Statistik, XI+212 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo, 1986.

About 5500 statistical key words and phrases are arranged in alphabetical order, a smaller
portion of which is in German. To each entry reference numbers are assigned which represent 1449
papers and books from the statistical literature listed also in alphabetical order. The orientation is
very much toward applications. Although the book cannot compete with recent encyclopedic works,
it may prove to be useful to practicing applied statisticians and to research workers from many
fields who use statistical methods as a quick and handy guide.

Sdndor Csirgd (Szeged)

15¢
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Robert 1. Soare, Recursive Enumerable Sets and Degrees (Perspectives in Mathematical Logic),
XVIII+437 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo,
1987.

The study of computable functions and computably generated (or recursively enumerable)
sets of numbers goes back to the 1930’s when Gdel proved his Incompleteness Theorem and Church,
Godel, Kleene, Post and Turing formulated several versions of computability. Since then recursion
theory has become one of the basic parts of mathematical logic.

A classical topic, initiated by Post, deals with the classification of sets of integers into “degrees”
on the basis of how difficult it is to compute them. Two sets are said to belong to the same class
called degree or degree of unsolvability if they are “equally difficult to compute” and degrees are
partially ordered by the relation “is more difficult to compute than“. Degree theory studies this
structure.

This book mainly deals with the degree theory of r.e. degrees, i.e. degrees that contain an r.e.
set (and is complemented by M. Lerman: Degrees of Unsolvability (1983), also in the Omega
Series).

Part A contains an introduction to recursion theory (computable functions, r.e. sets, reducibi-
lities, complete and creative sets, the recursion theorem, the jump operator, the arithmetical hjer-
archy, etc.).

The latter parts contain more advanced results.

Part B describes Post’s initial problem (are there more than two r.e. degrees?), the initial results
of Post and Kleene—Post, simple, hypersimple, hyperhypersimple sets and the solution of Fried-
berg and Muchnik to Post’s problem explaining the fundamental finite injury priority method.

Part C explains the infinite injury priority method and gives deeper results about the upper
semi-lattice of r.e. degrees such as the Density Theorem of Sacks, the theorem of Lachlan and
Yates about the existence of minimal pairs, a theorem of Lachlan about nonbranching degrees and
many others. It also discusses another important structure on r.e. sets: the lattice of r.e. sets formed
under inclusion, proving e.g. splitting theorems and the existence of maximal sets. The relationship
between the two structures is also considered (e.g. the connections between high degrees and maximal
sets). The final chapter deals with index sets, e.g. the Index Set Theorem of Yates. '

Part D contains more recent results which already lead toward current research. The topics
include promptly simple degrees, priority arguments even more powerful (and more complicated)
than the previous ones (leading to a proof of Zachlan’s Nonbounding Theorem) and Soare’s theorem
about the automorphisms of the lattice of r.e. sets. The last chapter contains most recent work such
as the unsolvability results of Herrmann, Harrington and Shelah (without proofs) and a valuable
collection of open problems.

The book, written by one of the main researchers of the field, gives a complete account of the
theory of r.e. degrees. Without requiring any preliminaries, the author set up and realized the aim to
“bring the reader to the frontiers of current research” which is even more to be appreciated consid-
ering the high stage of development of the field. The definitions, results and proofs are always
clearly motivated and explained before the formal presentation; the proofs are described with
remarkable clarity and conciseness.

The book is highly recommended to everyone interested in logic. It also provides a useful
background to computer scientists, in particular to theoretical computer scientists. Reading the book,
one can agree with the author who points out similarities between the beauty of this field of mathe-
matics and the art of the Renaissance. It can be added that his book reflects this beauty.

Zoltdn Filop—Gydrgy Turdn (Szeged)
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Richard J. Trudeau, The Non-Euclidean Revolution, XIII+269 pages with 257 Illustrations,
Birkhiuser, Boston—Basel—Stuttgart, 1987.

There is a more than 2000-year-old controversy whether the Euclidean geometry is the true
description of the physical world. This philosophical and mathematical debate climaxed in the first
half of the last century with the invention of the non-Euclidean geometry. As a result of this “new”
geometry, from the second half of the 19th century mathematicians and scientists changed the way
they viewed their subject. This was a real scientific revolution. R. J. Trudeau considers it as signifi-
cant as the Copernican revolution in astronomy, the Newtonian revolution in physics or as the Dar-
winian revolution in biology.

According to the author’s aim this book proceeds on three levels. On the first this is a book on
plane geometry (both Euclidean and hyperbolic) with extra material on history and philosophy. On
the second this is a book on a scientific revolution, and on the third level this book is about the pos-
sibility of significant, absolute certain knowledge about the world.

To read this very interesting and enjoyable book only a sound knowledge of high school (sec-
ondary school) geometry is needed. In the first chapter we can read on the origin of the deductive
geometry, and on introduction to the axiomatic method. The second chapter deals with Euclidean
geometry. The short Chapter 3, entitled Geometry and the Diamond Theory of Truth contains phi-
losophical material. In Chapter 4 we can read about the attempts to prove or disprove Postulate 5 of
Euclid. The next two chapters deal with the possibility of the non-Euclidean geometry and the
hyperbolic geometry. In Chapter 7 we can read about consistency questions. The last chapter deals
with the question of truth. Almost every chapter ends with exercises and notes.

This well organized material is warmly recommended to the wide mathematical community,
especially to the teachers of mathematics. We share Felix Klein’s view on the non-Euclidean geo-
metry (it can be read in the Introduction written by H. S. M. Coxeter), who described it as “one of
the few parts of mathematics which is talked about in wide circles, so that any teacher may be asked
about it at any moment.”

Lajos Klukovits (Szeged)

J. Wloka, Partial Differential Equations, XI+ 518 pages, Cambridge University Press, Cam-
bridge—London—New York—New Rochelle—Melbourne—Sydney, 1987.

This is the English translation of the successful textbook in German on the abstract theory of
partial differential equations. A modern approach to this theory needs many sophisticated concepts
and methods, so it is the cardinal problem of writing a self-contained text on it to find a good pro-
portion of the cited and detailed prerequisites from the functional analysis. The book establishes a
good balance in this respect. The reader should be familiar with the language and basic theorems of
functional analysis relevant for analysis, but the less familiar material, such as the theory of Fredholm
operators, Gelfand triples, abstract Green solution operators, the Schauder fixed point theorem and
Bochner integral are thoroughly considered in separate sections.

The first chapter is an excellent introduction to the theory of distribution and Sobolev spaces
working with the Fourier transformation. The second and third chapters give the principal part of
the book. In the second chapter the Lopatinskii—Sapiro condition and theorems on the index of
ellipticboundary value problems are treated. Itis a good choice that the L. §. condition is formulated
as an initial value problem for ordinary differential equations and not algebraically as a “covering
condition™. The third chapter is devoted to the strongly elliptic differential operators and the method
of variations. In the fourth and fifth chapter those parabolic and hyperbolic equations are considered,
respectively, for which the right-hand side, i.e. the derivatives with respect to the spatial variables is



230 Bibliographie

an elliptic differential operator. The sixth chapter gives a brief account on the difference method for
the numerical solution of the elliptic equations and the wave equation.
This well-written book is recommended to graduate students, physicists and mathematicians
interested in differential equations and mathematical physics.
LdszIlé Hatvani (Szeged)

H. P. Yap, Some Topics in Graph Theory (London Mathematical Society Lecture Note Series,
108) 230 pages, Cambridge University Press, Cambridge—London—New York—New Rochelle—
Melbourne—Sydney, 1986.

The author of this book gave an-optional course on Graph Theory to Fourth Year Honours
students of the Department of Mathematics, National University of Singapore in the academic
year 1982/83. This book has grown out from these lectures. It is not only suitable for using as a
supplement to a course text at advanced undergraduate or postgraduate level but very useful to
researchers in Graph Theory, too. The book consists of five chapters. )

Each main part gives an up-to-date account of a particular topic in Graph Theory which is
very active in current research. After the introduction and basic terminology the four main topics
are Edge-colourings of Graphs (Chapter 2), Symmetries in Graphs (Chapter 3), Packing of Graphs
(Chapter 4) and Computational Complexity of Graph Properties (Chapter 5).

In Chapter 2 after a few basic and important theorems for chromatic index Dr. Yap gives
several properties of “so-called critical graphs”. The author produces several methods for construct-
ihg critical graphs and counterexamples to the Critical Graph Conjecture. The main results of this
chapter have been proved by Vizing, Fiorini, Yap, Gol’dberg and others.

“The investigation of symmetries of a given mathematical structure has always yield the most
powerful results” wrote E. Artin. Chapter 3 studies various general properties of vertex — or
edge — transitiv graphs and their automorphism groups. The author write Weiss’ elegant proof of
Tutte’s famous theorem on S-transitiv cubic graphs. There are several theorems for Cayley graphs,
and the author discusses some progress made towards the resolution of Lovasz’ question which asks
whether or not every connected Cayley graph is Hamiltonian.

Packing of graphs is a NP-hard problem for arbitrary graphs, but for trees there exist poly-
nomial time algorithms. The author presents several results for trees and small size graphs. The proof
or disproof of Tree Packing Conjecture, Ringel’s, Erd3s and S6s’, Bollobas and Eldridge’s Conjec-
ture wait for research workers.

A graph property is “elusive” if it cannot be found without all information of a hypothetical
graph. . :

The connectedness and planarity are elusive properties. The main object of last chapter is to
introduce a Two Person Game to tackle the problem whether or not a graph property is elusive.

Each chapter contains numerous examples, exercises and open problems for the reader.

Zoltan Bldzsik (Szeged)
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