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Congruence lattices on a regular semigroup associated
with certain operators

FRANCIS PASTIIN and MARIO PETRICH

1. Introduction and summary .

To each congruence ¢ on a regular semigroup § we may associate a number
of congruences on S according to the following scheme. If @ is a complete N-con-
gruence on the congruence lattice €(S) of S, then the ®-class of ¢ has a least ele-
ment g, and we may consider an operator on ¥(S) whose effect is: g-—-g,. For
@ we may take the congruences 7}, 7;, T, U, ¥V and some of théir variants, and the
M-congruence K, studied in the authors’ papers [7] and [9]. Recall, for example
that 7; stands for having the same left trace, T for having the same trace, K for
having the same kernel; the congruences U and ¥ have similar interpretations.
We call the sublattice of 4(S) generated by the set {or, 07 . 0k, 0y} the lattice
associated with o. As we shall see, this lattice is always finite. We shall determine
the lattice associated with the congruences w, o, v, y and 4 on a regular semigroup
S. Here » denotes the universal congruence and o, v, y and 4 the least group, Clifford,
inverse and semilattice congruences, respectively.

In the case of an inverse semigroup S, the sublattice of ¥ (S) obtained from w
by successively applying the operators sub T and sub K was investigated and
dubbed the min-network of S by PeTRICH and REILLY in [13]. In contradistinction
to this procedure, we apply our operators only once and then form the sublattice of
%(S) generated by the congruences so obtained. In this sense, our scope is narrower
than that in [13). However, it is also wider in two different directions: we start with
various congruences, not just with o, and study the lattice generated by ¢, , or,»
¢k and gy, not just by ¢ and gg. Note that the notation g, and @™ is used in
[13] for o and g, respectively.

We now summarize the contents of the various sections of the paper. Section 2
contains only some terminology and notation, the rest being relegated to the per-
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230 Francis Pastijn and Mario Petrich

tinent literature, as well as some preliminary results. The result in Section 3 relates
the effect of applying some of our operators to minimal congruences in terms of
Malcev products. The lattice associated with a congruence on a regular semigroup
is described in Section 4 in terms of an MN-sublattice of the lattice of congruences.
The description of the lattices associated with w and ¢ forms the content of Sec-
tion 5, that of v and y of Section 6 and that of 5 of Section 7.

2. Preliminaries

Throughout the paper, S stands for an arbitrary regular semigroup and E for its
set of idempotents, unless stated otherwise.

We use the following notation on S:

o — the universal relation,

¢ — the least group congruence,

v — the least Clifford congruence,

y — the least inverse semigroup congruence,

n — the least semilattice congruence,

¢ — the equality relation (also denoted by 7).

For any semigroup 7, we denote by E(T) the set of its idempotents, and for
acT, by V(a) the set of inverses of a. For any relation 6 on S, 6* is the congruence
generated by 6.

We shall consider classes € of regular semigroups which satisfy the conditions

(i) all isomorphic copies of members of ¥ belong to %,

(i) € is closed for the formation of subdirect products within the class of regular
semigroups.

Remark that a class € which satisfies the conditions (i) and (ii) is never empty
because it contains the trivial semigroup, which is the direct product of the empty
system of semigroups from €. The classes ¥ which satisfy the conditions (i) and
(ii) form a lattice L under inclusion. If & and 2 are classes of regular semigroups
satisfying the above conditions (i) and (ii), then the meet of & and £ in L is simply
o NA whereas the join VA of & and Z in L consists of all isomorphic copies
of regular semigroups which are subdirect product of members of ‘o and of mem-
bers of &.

Let € be a class of regular semigroups satisfying the above conditions (i) and
(i). Then there exists a least congruence ¢ on S such that S/g€%. (See [1], exer-
cise 2 of § 11.6.) This congruence will be denoted by 8. In order to simplify our
statements, when we write g=0,, we tacitly imply that ¢¢L. The mapping

L~ %), ¢-0,
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is an antitone mapping of L into €(S) such that for «, #¢L,
Ouva = 0,M0g, 0 4na 2 0.,V0s.

If &, #€L and if & and # are closed for taking homomorphic images, then
04ne="0,V04. We shall apply these results without further notice. '

We now list some of the classes of regular semigroups which belong to L. The
abbreviations we introduce here will be used freely throughout the paper. For
some of them the defining identities can be found in [12}.

g — trivial semigroups,
LPF — left zero semigroups,
RZ — right zero semigroups,
RB — rectangular bands,

PRB — left regular bands,
RARIB — right regular bands,
RB — regular bands,
% — bands,
. ¢ — groups,
L9 — left groups,
AY — right groups,
Re¥ — rvectangular groups,
&% — Clifford semigroups,
PRBY — left regular bands of groups,
RRAY - right regular bands of groups,
ROBY — regular orthodox bands of groups,
UBY -~ E-unitary bands of groups,
0#B% — orthodox bands of groups,
%9 — completely simple semigroups,
LPUBY — locally E-unitary bands of groups,
#% — bands of groups,

LAOYG — left regular orthogroups,

RARO% — right regular orthogroups,
LEROY — left compatible regular orthogroups,
REROY — right compatible regular orthogroups,

R0% — regular orthogroups,
0% — orthogroups,
¢% — completely regular semigroups,

# — inverse semigroups,

ZLRO — left regular orthodox semigroups,
RRO — right regular orthodox semigroups,

1
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RO — regular orthodox semigroups,
¢ — orthodox semigroups,

20 — quasiorthodox semigroups,
4% — E-unitary regular semigroups,
# — E-reflexive regular semigroups.

In lieu of a complete explanation of these terms, we offer here only a few basic
hints; for the rest we refer to the literature on regular semigroups.

““Left regular” refers to idempotents forming a left regular band (i.¢. satisfying
the identity ax=axa); ‘‘right regular” has the corresponding meaning; “‘regular”
means that the idempotents form a regular band (i.e. satisfy the identity axya=
=axaya). ‘‘E-unitary” means that idempotents form a unitary subset. “Locally 2"
denotes that all subsemigroups of the form eSe, where e€E, have property 2.
“Left compatible” stands for % being a congruence; ‘“‘right compatible” for 2
being a congruence. “Orthodox” refers to idempotents forming a subsemigroup;
if also the semigroup is completely regular, it is an ““orthogroup”. Finally ‘“quasi-
orthodox” stands for the semigroup generated by the idempotents being completely
regular. ““E-reflexive regular” means a semilattice of E-unitary regular semigroups.

We now establish some auxiliary statements leading to the lattice of certain
quasivarieties of completely regular semigroups which will be useful for later con-
siderations.

Lemma 1. A regular semigroup S is in UBY if and only if S is a subdirect
product of a band and a group.

Proof. Let Se##%. By ([6], Corollary 6.40), S is a subdirect product of a
fundamental regular semigroup T and a group G. Since T is a homomorphic image
of S, it must be a band of groups and hence a band.

The converse follows immediately.

Lemma 2. A regular semigroup S is in LUBY if and only if S is a subdirect
product of a band and a completely simple semigroup.

Proof. Let S€ 2%#%. By ([2], Corollary 5.5(ii)), S is a subdirect product of a
band B and a normal band of groups N. According to ([11], IV.4.3), N is a strong
semilattice of completely simple semigroups, in notation N=[Y; S,, ¢, 4]. Define
a relation ¢ on N by: for acS,. b Sy,

apbh = ap, , = bp, , for some. y = af.

Straightforward verification shows that g is a congruence and that. §/¢ is completely
simple.
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Now let as#’(Ngb. Then q,bcS, for some €Y and ap, ,=by,,, for some
y=a. Letting eCE(H,) and f=eq, ,, we get

(@b~ f = (ab™)g,,, = (30,,,)(be,,,) " = f.
There exits u, v¢B such that (u, ab™?), (v, f)€S. It 1s easy to see that (u, ab=') X
X (u, ab*)"1=(u, €) in the band of groups S. Hence (uvu,f)=/(u, e)(v, (4, e)
and (4, ab™') both be]ong to (u,e)S(u, e) and

(u, ab™ 1)(uvu )= (uvu .

Since (v, €)S(u, e) is E-unitary, the above implies that (u, ab—*) is an idempotent.
Consequently ab~'=e and a=b. Therefore N is a subdirect product of a normal
band and a completely simple semlgroup Thus’ S itself is a subdirect product of
a band and a completely simple semlgroup

Any band and any completely simple semigroup is in ¥ %% and thus so is any
subdirect product of these since a quaswarxety is closed under direct products and
subalgebras.

Lemma 3. Diagram 1 with vertices labelled with script letters depicts the
lattice of quasivarieties of completely regular semigroups generated by the set
(LY, RG, B, €S }. :

Proof. That the meets of any two of these quasivarieties agree with those in the
diagram is obvious. The joins BV Y=UB% and BVES =L URBY follow from
Lemma 1 and Lemma 2, respectively; the-remaining joins are consequences of well-
known properties of these semigroups. The assertion of the lemma now follows by
simple inspection.

If ¢€L, then we say that the congruence ¢ on S is over € if the idempotent
o-classes belong to %. :
We can introduce the relations 7;, T, U, K on the congruence lattice €(S) in the
following way. For ¢,, 0,€%(S) we say that ¢y and ¢, are 7;—[T,—, U—, K—]
related if ¢,/(0;MNgy) and gy/(0, N g.) are over L Y(RY, €S, #]. If we put

T=TNT, V=UNK, K, = ,NK, K, = T.NK,

then we obviously have that g, and g, are T—[V—, K;—, K,—] related if and
only if g,/(e:Neg>) and g,/(¢,Ng,) are over ¥[ReB, L%, R¥]. We also see that
I=T(K is the equahty relation on 4 (S). These relations

M ' -'IZ,TLUKTVK“K,,I

were introduced and 1nvest1gated in [7] and [9] A survey of the prmmpal results
can be found in [5]. :
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LuBgG

Diagram 1

In [7] and [9] it is proved that all of the relations in (1) except K are complete
congruences on %(S). The relation K is a complete (-congruence but not neces-
sarily a V-congruence. If 9€%(S) and & is any of the relations in (1), then the
d-class of ¢ contains a smallest element which we denote by g,. The sublattice
of 4(S) generated by the set {or, or,, 0y, 0k} Will be called the lattice associated
with g. :

We shall frequently use the following elementary result, the proof of which will
be omitted.

Lemma 4. Let C be a complete lattice and ®,, @, complete congruences over
C. For any x€C denote by xg[Xe,> X000 Xovay the least element in the
&, —[P;—, (D,N By)—, (D,V D;)—] class of x. Then

Xonoy = Xo,V X0,5 X0,V (P1V P2) Xo, N Xo,.
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We remark that
ISKETLEU ICTETLEU, ISKEVEK
and their (left-right) duals hold. From this we already have that
ngévgex,g&:é’, evEon,SoerSor=o QT,gQK,a
kS WSk Se=0

and their duals hold. From this we find that ¢, Ugg,» erTie, ¢, T ¢ and so
on. Moreover, '

Lemma 5. Let gc¥4(S) andlet ®,, @, be any two of the relations in (1). Then
00,10, = %0,V 0o,

Proof. If neither &, nor &, is K, then we can apply Lemma 4. Let us now
consider the case where one of the @; equals XK.

We have o, g=0y20yV 0x- Since gy SoyVog S0, we have that o/(oyV og)
is over €% and since pxSoyV ox S 0. we have that of(oyV 0g) is over 4. There-
fore of(eyV 0k) is over Ze# and we have ¢, S,V ox- Consequently the equality
gy=0yV 0x prevails.

The remaining cases involving K can be resolved in a similar way.

From the above we have K,=T;,NK=T,NV and thus ¢g=orVex=erVey
for every 0€¥%(S). Also

I=TNK=TNT,NK=TNTNV=KNK,
gives
e =erVeg = er,Ver,Ver = er,Ver,Ver = 0x,Vex,
for every €% (S).
The results concerning the relations (1) mentioned here wiil be used without
further ado.

3. Malcev products

A class of semigroups is an isomorphism class if it is closed for taking isomorphic
images. Let & and % be isomorphism classes of regular semigroups. The Malcev
product of & and ¥ (within the class of all regular semigroups) is the class of regular
semigroups

Zo% = {S|there is a congruence ¢ on § over ¥ such that S/p€%}.

We are interested here in the case where Z is a variety of completely simple semi-
groups or a variety of bands and #€L.
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For the notation and conventions incorporated in the next result, consult the
preceding section. .
We now define the following mapping

\ _72.@’.%.9’@(3@?2@92@’@%9)
& **\t K, X V T T T K U)

Note that y follows the labelling in Diagram 1. Let
3) I'={9, %%  RZ, ReB, %, LY, %Y, B, €S},
(4) A= {I,Kla ]\,,,KZT;,T;K, U})

both ordered by inclusion. Using the information concerning the elements of A
listed in the preceding section, we see that 4 is an ()-semilattice. Obviously I' is
also an (-semilattice and y is an ()-isomorphism of I' onto 4.

Theorem 1. If €L and P€I', then Po%<CL and (04)p,=04, -

Proof. If %, %ck, then routine verification shows that Zo#¢L. In partic-
ular, if #¢I' and <L we have that 20o%<L and 0, , exists.

For =9 we have (0,),=0,=0,,, and the formula holds.

We consider next the case #=¢%. We must show that 6;=04,, where 8=0,.
To prove that 6;20,.,, we must show that 6, is a Yo%-congruence. By the
definition of T we know that 6/8; is over 4. Further, (§/0,)/(0/0;)=S/0¢%¥ and
therefore S/0:€ %0%. Thus indeed 84,,56;. In order to establish the op-
posite inclusion, we consider an arbitrary %o%-congruence ¢ on S. There exists
a congruence 4 on S/g such that (S/g)/A€¥ and such that all idempotent A-classes
are groups. Lifting A to S we obtain a congruence 7 for which 1/¢=A1. Since t/¢
is over %, we have that ¢T7. Since S/t=2:(S/0)/(t/0)¢% we have that §S1. Hence
0rE1r=07S0 and we conclude that 0,:50,, .

We bave proved that the above formula holds for #=¢. For the remaining
cases we may follow the above argument step by step.

Corollary. For any 2, 2¢I' and 4<L, we have
e(ms)‘o%’. = (ee)hnﬂx 2 (Hg)ng(Bg)gz, = oaofevezo@-

Proof. This follows immediately from the above theorem using the fact that y
is an -isomorphism.
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" 4, The lattice associated with a congruence

The main result here describes the lattice associated with any congruence ¢
on a regular semigroup S as the finite (-sublattice of the congruence lattice of S
generated by eight congruences derived from ¢ by the operations introduced earlier.

In the proof of the following theorem we freely use the fact that the relations in
(1) different from K are congruences on 4(S), and that for every 0€%(S),

(3) evVok, Vo Vo,
and :
(6) ‘ er,liox, TiorTro

hold. The validity of (5) and (6) follows immediately from the definitions of the
relations (1).

A glance at Diagram 2 may help visualize the heuristics behind the proof of the
following theorem.

r

PK, Px,

P, Npxe,

P, Pr AV pr PpRe N

pv NprT,

Y. pr, NpvDpT,

PU

Diagram 2
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Theorem 2. Let ¢ be any congruence on a regular semigroup S. Then the sub-
lattice of the congruence lattice €(S) generated by {or,.0r . 0v. o¢} is the finite
N-subsemilattice of €(S) generated by the set
0] {0, 0x,» 0, . 07, 01,5 01, @V, U}

Proof. Taking into account that

QUEQT,QQK,QQ: QT,EQTEQ: QU%QV.—C:QK,

and their duals hold, it is easy to see that Diagram 2 gives the (-semilattice L
generated by the set (1). We shall now verify that L is a sublattice of €(S).
Obviously

ox,Vek, = 0, er,Vor, = o1, or,Voy = ex,» or,Vov = ox,
in #(S) and therefore also
3 or = QT,V(QTHQK,.) = QT,V(QK,DQT) = (-QK, mQT)V(QTﬂQK,.)'

In the following we use the fact that 7,, T, and V are congruences, that TNV N7,
is the equality on ¢(S), and that (5), (6) and the dual of (6) hold. From

(ex,Ner)V(ok,Nox,) T(ek,Ne)V(ex,Nek) = ek,
(ex,Neor)V(ek,Nek)V(eNor)Ve = oVex,

and

it follows that
) ok, mQT)V(QK, an,) = @k,
From

QT,V(QK, NeorN QK,)I;QT N @k,»

or,Vieg,NerNex)T,or,Viex,NarNe) = ex,Ner
or,Vieg,NerNex)Ver,V(eNer) = eNerVex,Ner,

it follows that
(10) QT;V(QK,OQTnQK,) = QK,OQT‘

and

From .
(er,Nek,)Viex,Ner)TieNex)V(eNer) =
=0k, = ¢ NegN ok, 110k, NeorN 2k,»
the dual _
d (QT,nQK,)V(QK,nQT,.)T;-QK,nQTmQK,.
an

(or,Nog)V(ex,Ner)Vier,Ne)V(eNer,) =

= or = 0NgrNeVeg,NerNex,,
it follows that

(1Y) (Qr,an,)V(Qx,nQr,) = ex,ﬂerﬂax,.
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From

(er,Nev)VierNer)TieNev)VievrNer) = ev = eNevTierNey,

the dual
(er, Ney)V(eyN or, )T or Noy

(er,Nev)V(eyNer)V(er,Ne)V(eNer) = er = erNeVerNey,

it follows that

(12) (or,Nev)VierNeor) = erNoy.

From
(er,Ner)Vier,Nov)Ti(eNer )V (eNay) = ek, = 0Nk Tior,Nex,»
(er,Ner)Vier,Nev)T(er,N@)V(er,Nev) = or, = er,NeT0r,Nex,
(er,Ner)Vier,Nev)¥(er,Ner)V(er,Ne) = or, = er,NeVer,Nex,,

it follows that

and

and

(13) (QT,nQT,.)V(QT, Noy) = QT,ﬂQK,.-
From
(QT, N QT,)V evTi(eN QT,)V Qv =0k, = 0 N ok, ok, N @k, »
the dual .
(or, nQT,)VQVTrQK, an,,
and

_ (er,Ner)Ver¥(er,Ner)Ve = oVox, Mok,
it follows that

(14) (or, N QT,)VQV = @k, N 2k,

The remaining cases now follow easily from the above equalities (8)—(14) and their
duals.

Depending on the special nature of S and g, some of the elements of the lattice
L occurring in Diagram 2 may coincide. Therefore, we have the following resuit.

Corollary. Let g be a congruence on the regular semigroup S. Then the sublat-
tice of €(S) generated by {QTI, 0r,» v, Qu} is a homomorphic image of the lattice
of Diagram 2.

In the following we shall show that the lattice in Diagram 2 can be the lattice
generated by {QT!, o1, 0y, 0y} for a suitable o. For this we shall consider o=#.
Therefore we can say that, in general, Diagram 2 depicts the lattice generated by
{QT,’ 2r,> Qv ou}-
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5. The lattices associated with @ and ¢

As we shall see, the situation here is very simple.

Theorem 3. Diagrams 3a and.3b depict the latiices associated with the universal
relation w and the least group congruence o, respectively.

Proof. All the equalities in Diagram 3a follow from Theorem 1 since for any
class 2 of regular semigroups we have 207 =2 and .9 y=1I. As in the proof of
Lemma 3, the only assertions about meets and joins which are not well-known are
0yM05=0,4, and 0,,M0;=0,44,. These follow directly from Lemmal and
Lemma 2, respectively. ‘ '

. The equalities at the vertices of Diagram 3b follow from Theorem 1 in view of
the equalities
Y6G =9, LYY =LZY = XY,

RGoY = RFoG = RG, BoG =N, €S 0G = CS.

91— = wy

=6
WK‘. £z . .0712 =WK'

wr, = bcg Org = wr,

Sung

Ocung

Diagram 3a
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g =oy=o0or

ox, = 0K, =026 brg = or, =0,

ox =0y bes = oy

buNfcs

" Diagram 3b

s

Here #o%=% follows from ([6], Theorem 6.37); the remaining equalities can
be easily verified. Joins and meets follow from well-known characterizations of
semigroups in the respective classes.
The above proof also indicates that Diagram 3a is just the inverted Diagram 1.

To see that the meets in Diagram 3a are the correct ones, we observe that the. joins
in Diagram | for quasivarieties amount to taking subdirect products which corre-
sponds to taking intersection of minimal congruences 8, in Diagram 1. We leave
the structural description of #V#% open. 2

6. The lattices associated with v and y
Recall that Clifford semigroup is a synonym for semilattice of groups The
situation here is somewhat more complex.

Theorem 4. Diagrams 4a and 4b depict the lattices associated with the least
Clifford congruence v. and the least inverse congruence vy, respectively.
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8s¢ =vi=vr

vr, = vk, = crog brrog = vy, = vg,

609 = vy

vy = 072 GCR = yy

drNOcr

Diagram 4a

Proof. The equalities at the vertices of Diagrams 4a and 4b will follow from
Theorem 1 if we establish the corresponding statements about Malcev products,
which we proceed to do. .

1. 40 P9=9%. Let Sc¥%o0%% so thatthereexists a congruence  on S such
that 0 is over ¥ and S/8cSF%. Hence S/0 is a semilattice ¥ of groups G,. For
each a€Y, let S,=G,0 sothat Sis a semilattice Y of semigroups S,. But S,€%0%
whence S,€%. Thus S is a semilattice of groups S, whence S€%%. Therefore
GoPY LY, the oppositive inclusion is trivial.

2 PXoSEG=LG0SG=LROY. Trvially X cSF4EL%0S%. Next let
S€ LY905% so that there exists a congruence 8 on S such that 8 is over % and
S/0cS%. Let acS and beV(a). Then bOeV(af) so (af)(b0)=(b8)(ab) since
S/0c¢S%. Thus abOba and (ab)c. ¥ % so there exists x€S such that ab=xba
whence a=aba=xba*. 1t follows that acaSa® for every a¢S and thus Sc¥Z%
by ([11], IV. 1.6). Now let e, f¢E. Then ef 0 fe and (ef)0=(eb)(f6)€ E(S/B) since
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bz =s
17 = 1%, = 8RO Orro = 1T, = 1K,
fro
> 8o = v = 7K
[
foo =
Diagram 4b

S/0cF%. Hence (ef )0 LY and there exists x¢(ef)0 such that ef=xfe. It follows
that efe=ef which proves that S¢ L20%.

We now let S¢L20%. Then ([6], Theorem 6.20) gives the structure of S
in terms of L=(Y; L)EFLRB, T=(Y;G)eFY and R=YEcRARA. We identify S
with the construction in the above reference. Let ¢: S—T be the homomorphism
(i, g, A)—~g. Let e fEE(T) be such that (i,e, )o=(j,f, ). Then e=f and
thus A=p which implies that (e, )=(, e, 1)(J, e, 1). Therefore 0 is over L Z
and S/0c¢¥% and thus SELZ oSY.

3. ReBoF%=0%. Let SCRBoFY so that there exists a congruence 6 on §
such that 0 is over Z¢# and S/0¢S%. Let acS and beV(a). Then (ab)f=
=(ba)0c E(S/6) and so ab=abbaab since 0 is over #c%. Therefore

a = aba = abbaaba = abba®c aSa®

which in view of ([11], IV. 1.6) gives that S€¢%%. Nextlet e, fc E. We have (ef)0=
=(e0)(fOECE(S/B) since S/0cF%. Since 0 is over R4, it follows that efEE.
Therefore S€0%. :

Conversely, let S€0%. Then the relation y defined by

ayb = V(a) = V(b)
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is the least inverse congruence on S, see ([3], VI. 1.12). Hence S/y€#¥. Let ecE
and aye. Then ecV(e)=V(a) so that acV(e). By ([14], Lemma 1.3), we must
have a€E. In addition a=aea and since ¢ and a are arbitrary y-related elements,
we conclude that y is over Z¢4. Consequently S€ZeBoSY.

4. BoSY=%A. This forms a part of ([4], Theorem 2 and .[6], Theorem 6.43).

5. 6L 0LYG=6R. Let S€€F 0S¥ so that there exists a congruence 0 on §
such that 0 is over ¥& and S/()E.?g Then S/0 is a semilattice ¥ of groups G,,
say. Letting S,=G,0 for every «€Y, we get that S is a semilattice ¥ of semigroups
S,, where S,€4%0%. It follows easily that 4¥ 09 =%%. Hence S is a semilattice
of completely simple semigroups and therefore S€¥Z. Thus €L oS Y SER; the
opposite inclusion follows from €S 0¥ =%4%.

That 0,205 2205 =020s follows directly from ([15], Theorem 3).

6. PHoF=LYGoI=LRO. The aroument here amounts to a simplification of
that in part 2 above. :

7. ReBoS=RBoSI=0. Trivially ReBoFSBoS. Let ScHoSf so that there
exists a congruence 6 on S such that 8 is over # and S/0c#. Let e,fcE. Then
ef0fe since S/0c# and hence ef 0 fe 0 efef. It follows that (ef)0 is an idem-
potent f-class so that (ef)0<#. But then efc E which proves that S€@. The
argument for 0 & ReBoSf is virtually ‘identical to the proof of the comverse of
Part 2 above.

8. €% 0.#=20. This is the content of ([17], Theorem 7.1).

The relation 6,5, 0z2,=05, follows directly from ({15], Theorem 3).

7. The lattice associated with 5

In order to treat this case, we need some preparation.

Lemma 6. A regular semigroup is in LRABY if and only if it is a subdirect
product of a Clifford semigroup and a left regular band. .

- Proof. Let SC¥LRBY. By ([10], Theorem 3.2), S is a subdirect product of
S/0,, and S/0,. Since SELRHAY, we have that 0,=0,,, so that 6,,MN
NBg,as=¢ and the assertion follows. The converse is trivial.

Lemma 7. A regular semigroup is in SER0% if and only if it is a subdirect
product of a left regular orthogroup and a right regular band.

Proof. Let S be in #E20%. By ([16], Theorem 2), we have y=(Z|p)*V (25",
the least inverse congruence. The argument in Part 3 of the proof of Theorem 5
shows that y is over #4. Since (Z|g)* Sy, it follows that ker (#|g)*Skery=E
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and equality prevails so that
¢)) ker ((2lg)* N £*) = ker (#|p)* Nker £* = E.

By ([16], Theorem 2), (ZLIp)*N(%lg)*=04, and since SCLEROY, we get
(ZIe)*N(#|g)*=¢, the equality relation on S. Hence no distinct #-related idem-
potents of S can be (%|g)*-related and we conclude that tr'(%|g)*=%|. Since
SELEROY, we also have that £ =%* so that tr £*=¢|; which gives

@ 1r(@|)* N L*) = r(Bl)* O trL* = RNL|g =&,

the equality relation on E. It is well-known that relations (1) and (2) imply that
(Z1p*NZ*=e. It now follows from ([16], Theorem 2) and ([8], Theorem 1(i)),
that 0g,0N0gge=¢ Whence 0gz0504,5=¢ and thus § is a subdirect product
of a left regular orthogroup and a right regular band.

Conversely, let S be a subdirect product of a left regular orthogroup T and a
right regular band B. Then § is a regular orthogroup since Z0% is closed under
direct products and regular subsemigroups. Since . is a congruence in both T and
B, it follows easily that the same holds for TXB and hence also for S. Therefore
SCLECR0Y.

Theorem 5. Diagram 5 depicts the lattice associated with the least semilattice
congruence 1.

Proof. Equalities at the vertices of Diagram 5 follow directly from Theorem 1
in view of the well-known equalities:

LFoS = LRB, oS =LY, $b0F = LROY, 6F oY = YA,

RBoS = BoS' =R
and their duals.
The relation 0g5,N04=0434, follows from Lemma 6 and 0,4,,\0422=
=0geg0s from Lemma 7. The relations

e.smmn osmea = e.qm’ osaxgneaaag = eewmsm esawn gaaag = 0309

follow easily from ([15], Theorem 3). Also, the relation 6,5N0g=0,44 follows
from ([10], Theorem 3.4). '

One can convine oneself on examples of regular semigroups that the classes
ORYG, LROGN B, RROYGN B, ROYV B and ¥Z are distinct. Hence the lower right
part of Diagram 5 does not collapse in general. The assertion of tlié theorem now
follows by Theorem 2, see Diagram 2.

We leave the structural description of the semigroups in X 20%Y &, ZROYGN B
and 209V # open.

2
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Os =1y

e = fcn ¢ e Orrs = Nk,
Ocrac }
0 =i = v

{fcrog =11,

£ fcroc N g ° rrog NOp

ﬂnog Néy

fer = nu

'Diagram' 5
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Arithmetical functions satisfying some relations

IMRE KATAI*)

1. Let A(A*) be the set of additive (completely additive) functions, M(M*)
be the set of multiplicative (completely multiplicative) functions. |x||= }‘121%1 |x—k].

Let L,(n):=fo(n)+fi(n+a)+...+fi(n+a), where f,cA* and a,,...,q, are
mutually distinct natural numbers. It is probable that || L (n)]| -0 (n— <) implies
that f;(n)=t;logn+u;(n) (mod 1), with some 7;¢R such that 74+...4+7,=0
and L,(n):=uy(n)+u,(n+1)+...+u.(n+a,) satisfies L,(n):=0 (mod 1) for every
n=1. This question was raised by the author and solved by E. Wirsing in the
special case k=1.

Furthermore we guess that

(1.1) L(n)=0 (mod1) (n=1,2..)

implies that u;(n)=0 (mod 1) for every n€N and for every j. This was proved for
k=3, a,=1, a,=2, a,=3 1in [2]. Marijke van Rossum investigated the solutions of
the relation

(12)  go@)+er(@+ D) +g:(2+2)+25@+3)=0 (mod ) (VacG),

where g, ..., g3 are completely additive functions defined on the set of G of Gaus-
sian integers. She found that (1.2) has only trivial solutions.
The simple idea to prove that a recursion

(1.3) L) = fo(M+A@+ D+ ... +fi(n+k), Lyn)=0 (mod 1)

has only trivial solution, is the following one:

1) Initial step: by taking L (n)=0 (mod 1) for n=1,2, ..., N with a large N,
solving a linear equation system without multiplication and divisions, one con-
clude that f;(n)=0 (mod 1) holds true for all # up to N,.

*) This work has been done while the author had a visiting professorship at Temple Uni-
versity, Philadelphia. The work was financially supported by the Hungarian Research Fund No. 907,

Received June 16, 1989.
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2) Induction step: If (1.3) holds and f;(n)=0 (mod 1) holds for k=1,2,...,n,
then it is true for k=n41 as well, assuming that n=N,, where N;=N,.
The initial step can be handled by using computer for a moderate size of k. The
induction could be deduced simply from the following.

Conjecture. For every integer k=1 there exists a constant Cy(k) such that
pmin  max max{P(jQ+)), P(j@—D} < Q
hold for every prime Q=C,(k). Here P(n) denotes the largest prime divisor of n.
This is clearly true, if £=1, by choosing j=1. The conjecture is open for
k=2, and even in the case k=1 if we exclude j=1.
In Section 2 we shall prove the following

Theorem 1. Let a, § be positive integers, f,, fz, f2€ A* such that L(n):=f,(n—a)+
+/£2(n) +f3(n+8) satisfies the relation

14 L(n)=0 (mod 1),

for every integer n=a+1. Assume furthermore that f;(n)=0 (mod 1) for j=1,2,3
and for all n=max (3, a+4). Then f;(n)=0 (mod 1) (j=1,2,3) for all ncN and
j=1,2,3.

Hence immediately follows
Theorem 2. If fi,fs,f:€4* and
(1.5) fin—a)+foi(n)+f3(n+b) =0

holds for all n=a+ 1, then for every prime p=max (3, a+b) the values f,(p), f2(p),
f3(p) are determined by the collection of the values f,(q), f:(q), fs(q) taken on at
primes q=max (3, a+b). Thus the set of solutions (fi, [z, fs) of (1.5) forms a
finite dimensional space.

Let E denote the operator Ex,=x,,; in the linear space of infinite sequences,
and for an arbitrary polynomial P(z)=a,+a,z+...+a,z* let P(E)x,=a,x,+
Fa,x,41+... +a,x, 1, A. SARKOZY [4] determined all fe M which satisfy a linear
recurrence. From his theorem one can deduce immediately the following

Lemma 1. Let B=1 beaninteger, f¢M for which f(n+B)=f(n)(n=1,2,...)
holds. Then either f(n)=0 for all neN, or f(n)=yxa(n) for all n coprime to B,
where xg(n) is a character mod B. Let B=B,B,, (B,, By)=1, B,=p}...p%", where
f(pi)=0 (j=1, ...,r), By=g}...q%, where f(qf")=0. The cases B,=1 or B,=1
areincluded. Let &, be the largest exponent (6,=0) for which f(q?)=0. Then 0=6,<
<B,'(I=1,...,8). Let D=gP%.. . qfs=% Then yg(n)=yxp(n) for (n,B)=1, ¥p
is acharacter mod D. Furthermore f(p")=f(p%) xe(p'™) holds for all p*|B and y=>a.
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All the functions with the above conditions are periodic mod B.

In Section 3 we give all the solutions of V(n+k)=U(n) (n=1,2,...) for
U,VeM under the condition U(n)#0 if (n, k)=1. This equation for completely
multiplicative functions was solved earlier in [1]. We present it now as

Lemma 2. Let G(n+k)=F(n) hold for all neN, F,GeEM*, F(n) be non-
identically zero, F(n)=0 if (n,k)>1. Then

a) F(m)=Gn)=yx,(n) is a solution for an arbitrary nudtiplicative character
1 (mod K),

b) there is no other solution if 4|K or if (2 K)=1,
¢) if K=2R,(R,2)=1, then all further solutions have the form

F(n) = x(n, 8)yYr(n), G(n) = x(n, 4)F(n),
where g(n) is an arbitrary character mod R, x(n,4) is the nonprincipal character
mod 4, and y(n, 8) is the character mod 8 defined by the relations.
1 n=+1 (mod 8)
w={_, -
1 n=43 (mod 8)
1 n=43 (mod 8)
*s(n) = {—1 n=35,7 (mod 8)

if R=1 (mod 4),

if R=—1 (mod 4).

The equation G(n+k)=F(n), F(1)#0 implies that F(n)G(n)=0 for (n, k)=1,
assuming that F and G are completely multiplicative. This is not true if we assume
only that F, GeM.

In Section4 we solve the equation G(n+1)=F(n) for F,Ge¢M without any
additional conditions.

2. Proof of Theorem 1. The case a=b=1 has been proved in [2]. We may
assume that (a, b)=1. Indeed, by substituting #8 into the place of n, observing
that f;(6)=0 (mod 1), we have

H(n—a)+f(m)+fs(n+a) =0 (mod n) (¥n),

and f;(n)=0 (mod 1) (j=1, 2, 3) for every n=max (3, a+b), a=da,, b=5b,.

Let A4, denote the event that f;(n)Z0 (mod 1) holds for at least one j. We
shall prove that under the condition of the theorem there exists no such an integer.
If such an n exists, then n=k+1, furthermore the smallest n for which 4, is true
has to be a prime number P,

Now we distinguish three cases according to the parity of g and b. Let k=a-+b.

Case I: a-and b are odd numbers. Since P is the smallest integer n fbr which 4,
is true, therefore f3(P)=0 (mod1) cannot occur, since f,(P—a)=0 (mod 1),
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b<P.

ﬁ(P—k)EO (mod 1). Similarly, f,(P)=0 (mod 1), since 2|P+b, and

P+a<R

Thus f;(P)=a (£0) (mod 1). Since L(P+a)=0 (mod 1), apd 2lP+a,
Jf2(P+a)=0 (mod 1), therefore f3(P+k)=—e (mod 1).

. k
Let now Olk, 6>1. Since L(P+a)=0 (mod 1), L (P-i-———-b]EO (mod 1),
therefore . B

2.1) £(OP)+ 6P+ a)+f,(6P+k) = 0 (mod 1)

(2.2) f,(P+§+k)+f2(1’+-§—b]+ﬁ,[P+—§-) = 0 mod 1),

fi [P+§—k]§0 (mod 1). If f3(P+k/6)Eﬁ;¢_Q (mod 1), then k/§ is an even
number, since in the opposite case 2|P+k/8, and from %(P+k/6)<P it would
follow f,(-)=0 (mod 1). But then f,(P+k/6—b)=—p#0 (mod 1), P+%—b is
an even number and %[P +—§-—b)<P. This cannot be occur. Thus f(6P+ k)=
=/,(5)+/s [P+§]Eo (mod 1). So we have

2.3) f2(6P+a) = —a (mod 1) whenever dlk, 6 > 1.

Assume first that 3|k. Then, from (2.3) we have f,(3P+a)=—a (mod 1).
Since 2|3P+a, therefore 3P+a=2Q, where Q is a prime number, P<Q<2P,
Since f1(Q@Q—a)+f2(Q)+/3(Q+b)=0 (mod 1), 2|Q—a, 2|Q+b, Q—a<2P, Q+b<
<2(P+k), therefore f,(Q—a)=0 (mod 1), f5(Q+b)=0 (mod 1), and so f,(Q)=
=0 (mod 1), «=0 (mod 1). It remains the case 3{k. Since f;(P+k)=Z0 (mod 1),
and from (2.3), f,(2P+a)#0 (mod 1), thus P, P+k, 2P+a ‘are prime numbers.

Assume first that 3{a. Since P=3, therefore either 3|2P+a or 3|4P+a.
Since f,(2P+a)#0 (mod 1), therefore 3{2P+a, so 3|4P+a. Let us consider now

(2.4) £i(8P)+fo(4P+a) +fo(4P+k) = 0 (mod 1).

We shall prove that f,(4P+a)=0 (mod 1). Since 4P+a=30Q, it is true, if Q is
a composite number. If it is a prime, then we may consider

H@—a)+fo(D+/f:(2+b) = 0 (mod 1),

which by 2|0-+b, 2|Q—a, Q<2P gives that £,(Q)=0 (mod1). So, from (2.4)
we infer fy(4P+k)=—o (mod1). If 4|k, then it cannot be occur, since P+k
is the smallest integer n for which f;(n)20 (mod 1). If k=2l (/,2)=1, then
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f:RQP+D)=—a (mod 1). If k=2I, (/,2)=1, then f3(2P+1)§—a (mod 1). But
(2.5) fHQRP-D+f,2P—1+a)+f;(2P+]) = 0 (mod 1).

Since 2la—I, 2{2P—I+a<2P+a, therefore f,(2P—I14+a)=0 (mod1), and so
f1(2P—1)=a (mod 1).

Since 2P—1, (2P—1)+1=2P, 2P+1 cover all the residue classes mod 3, 3{2P;
thus 3|2P+/ or 3|2—/. Both of these cases imply that «=0 (mod 1).

It remains the case 3la and 3{k. Then k=b (mod 3). Let Q:=P-+k. Then
f:(@)=—a (mod 1). Let us consider f,(20—k)+/:(20—b)+/3(20)=0 (mod 1).
Since 20—-k=20Q—-b (mod 3), 3]20—b, and 2Q—-b<3(P+a), would imply
(20 —b)=0 (mod 1), /,(20—k)=0 (mod 1), thus we may assume that 312Q —b.
But'then P, P+k, 2P+k, are coprime to 3. Since 3k, 3{P, therefore either
P=k (mod 3) or P=—k (mod 3). In both cases, at least one of P, P+k,2P+k
is a multiple of 3. This is a contradiction.

By this the proof of Case I is completed.

Case 1I: a is odd, b is even. Let n=P be the smallest integer for which 4,
holds true. Then n is a prime, P>3, P>k. We can see, similarly as earlier, that
fo(P)=0z20 (mod 1) with some «, f,(P)=0, f,(P)=0 (mod 1). Observe that
Js(m)=0 (mod 1) if n<P+b, and that fy(P+b)=—a (mod 1), which immediately
follows from L(P)=0 (mod 1). Furthermore, we can get that f,(nr)=0 (mod 1),
if n<2P—a. Itis enough to prove this for odd, even for prime number integer n=0Q.
Since L(Q+a)=0 (mod 1), 2|Q+a, 2|Q+k, Q-+a<2P, therefore f,(Q+a)=
=0 (mod 1), f;(0+k)=0 (mod 1), and so f;(Q)=0 (mod 1) as well. Then, for
olb, 6=1, we get that f;(6P+b)=0 (mod 1), and by L({P)=0 (mod 1), that

(2.6) fioP—a)=—a (mod 1) if 46lb and 6= 1.

Let us consider the equation L(3P)=0 (mod 1).

Since 2|3P—a, 3P—a=20Q, Q<2P—a, therefore f,(3P—a)=0 (mod 1). This
implies that either =0 (mod 1), or 31b, furthermore in the second case that
fs(3P+b)=—a (mod 1). Thus 3P+b is a prime number since if it would be
composite then its prime factors would be smaller than P+b. So P, P+b, 3P+b
are prime numbers greater than 3, thus P=b (mod 3).

Since 2|b, thus from (2.6) it follows that 2P ~a is a prime, and so that 312b—a.
1f 4]b, then by (2.6) we get that 4P—a is a prime, and f,(4P—a)=—o (mod 1).
Assume that 2)|b, b=2b, . Since P=b (mod 3), P=2b, (mod 3), from L(2P+b,—b)=
=0 (mod 1), by 2|2P+b,—k<P, 3|12P+b,—b we deduce that f,(2P+b,—k)=
=0 (mod 1), f/,(2P+b,~b)=0 (mod 1), and so that f,(2P+b,)=0 (mod 1). But
then, from L(4P)=0 (mod 1) we have

f1(4P—a)+f2(4P) +f3(2(2P+ b)) = 0 (mod 1),
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and so that f;(4P—a)=—a (mod1). Thus 4P—a is a prime, since in the case
4P-a=30, Q<2P—a would imply f,(4P—a)=0 (mod 1). So P, P+b,2P—a,
4P—a are all prime numbers which can be occur only if 3|a.

It remained to consider the case 3ja, P=b (miod 3). Furthermore f,(4P—a)=
= —a(mod 1). Since 3|2(P+b)—b, 3|12(P+b)—b—a, and L(2(P+b)—b)=0(mod 1),
therefore f,(2(P+b)—b)=0 (mod 1), f,(2(P+b)—b—a)=0 (mod 1), consequently
/£:(2(P+b))=0 (mod 1), which implies a=0 (mod 1).

The proof of Case II is completed.

Case III: a is even, b is odd. Then we have f,(P)=«(z0) (mod 1), fo(P+a)=
= —o (mod 1, P+a is a prime number, Furthermore, f;(#)=0 (mod 1) if n<P+a.
Now we observe that f3(n)=0 (mod 1) for all n<2P+k. Since f,(2)=0 (mod 1),
therefore enough to prove this for odd prime Q. Let Q<2P+k.If f,(Q)Z0 (mod 1),
then by L(Q—b)=0 (mod 1) we have that f,(Q—k)+/,(Q—b)Z0 (mod 1). But
2|0—b, 2{Q—k, and Q—k<2P, Q—b<2(P+a). Consequently f3;(Q)=0 (mod 1).

Let éla and 6>1. By f;(P+4a/6)=0 (mod 1), and L(6P+a)=0 (mod 1)
we deduce that

@7  fGP+k)=—a (mod 1) if 6>1 and dla
k

Let ulk. Since L{uP+a)=0 (mod1) and ﬁ,[uP+u-—]EO (mod 1), therefore
n

2.8) fi(uP+a)y=—a (mod 1) if plk.

Assume now that u>1. Then L(2uP+a)=0 (mod 1), 2uP+k= (u2P+k/u),
2P+ klu<2P+k, f;(2uP+k)=0 (mod 1), and so

2.9) f2QQuP+a)=-—-o (mod 1) if ulk and pu=>1.
So P, P+a,2P+k are prime numbers.

3P+k
Since 2|3P+k, —-—5—-— <2P+k, therefore f;(3P+k)=0 (mod 1), and so, by

L(3P+a)=0 (mod 1) we have f,(3P+a)=—a (mod 1). This implies that either
=0 (mod 1) or 3Ya. Assume that 3{a. Since P, P+a are primes larger than 3,
therefore P=a (mod 3). If 4|a, then f;(4P+k)=—a (mod3) and 3 cannot be
a divisor of 4P+k if a#0 (mod3), consequently 4P+k is a prime number.
If 2|a, a=2a,, then by

fHi@P)+£,(22P+a))+ f5(4P+k) = 0 (mod 1)
fiRP—a)+fa(2P+a)+ fs(2P+a,+b) = 0 (mod 1)

and by taking into account that 3|12P—a,, 2|a,+b, first we deduce that f,(2P—a))=
=0 (mod 1), f3(2P+a,+b)=0 (mod 1) and so that f;(2P+a,)=0 (mod 1), we
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have f;(4P+k)=—o (mod 1). This implies that 4P+k is a prime number. Since
0, 2P, 2.2P are incongruent residues mod 3, therefore so are k, 2P+k,4P+k,
consequently one of them is a multiple of 3. Since 2P+k, 4P+k are primes larger
than 3, only the case 3|k can be occur. Assume that 3|k. Then a=—b (mod 3).
From
f12P+a)+f5(2P+2a) + f3(2P+2a+b) = 0 (mod 1)
we have 3|2P+a, 3|2P+2a+b, which implies that f,(2P+a)=0 (mod 1),
f:(2P+2a+b)=0 (mod 1), and so that f,(P+a)=0 (mod 1), which can be occur
only if a=0 (mod 1).
This completes the proof of Case IlI. The theorem is proved.

3. Let us consider now the equation
3.D Vin+K)=Umn) @©m=12..),

where U, V are multiplicative functions, K is a fixed positive integer. We are in-
terested in to give all the solutions under the condition

(3.2 ' U(n) 0 whenever (n,K) =1

The same equation for completely multiplicative functions was considered in our
earlier paper [1]. We solved (3.1) for K=1 assuming (3.2) in [1]. The case K=1 is
more complicated. Assume that (3.1) and (3.2) hold.

Let
3.3) H(n):=

be defined on the set of integers s, coprime to K. Let furthermore

(3.4) 8,(m) = H(p) H(m) H(m+k) ... H(m+(p—2)K).
If (p,n(n+K))=1, then
_ Vlp(n+k) 1
(3) HO) = —Gomy = Hon+ B B+ (p-DEK)’
ie.
3.6) 0 (pn+K)y=1 if (p,n(n+K))=1

Let p>q,r=p—q+1. Then
8,(m) = H(p)[Hm)H(m+K) ... Hm+(g—2)K)] x
X[H(m+(g—-DK) ... Hm+(p—2)K)] =

Sym) 8,(m+@—1K)
H(q) H(r) ’

= H(p)
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and so
H(@H(r)  9,(m)-6,(m+(@—-1K)~
We should like to give some conditions which imply that the right hand jsigie
equals 1. This holds true if all the next relations are satisfied, with a suitable in-

teger m:

(3.8) m = K(modp); m = K(mod q); m+(q—2)K=0 (modr),
—-K ~DK - -DK

(3.9) (”’p -m+(’;) ) ,p]=1;[qu-m+(‘fI ) ,q]=1, '

(3.10) (’"+("r_2)K- m+(g- l)rK—K“L’K ,r) =1; (pgr,K)=1.

Let
K* = { K if K iseven,
2K if K is odd.

Assume that r is given, (r,K)=1. Let 1 be an integer which will be chosen
later, n:=AK™*. Let p and ¢ by defined by
p=1+mr, g=nr+1
If (3.8), (3.9), (3.10) hold with some m, then

(3.11) H(p) = H(1+AK*)H(r)

is valid.

We shall search m in the form m=pgv+K. The conditions m=K (mod p),
m=K (mod q), m+(q—-2)K=pgv+(g—1K=0 (mod r) are satisfied clearly, the
condition (pgr, K)=1 is equivalent to (r(1+n((yr+1),K)=1 which is true since
(r, K)=1 was assumed.

We have
m;K_ m+(1;— HK ) m;K ) m+(c;—- DK
m+(g—2)K = pgv+(g~ 1)K = [(1+n)qv+1K]r,
m+(g—2)K+rK=[(1+n)gv+ @+ 1)K]r = (1+n)r(qv+K).
So, to satisfy (3.9), (3.10) we have to find such v, for which

(3.12) (gv(gv+K),p) =1, (pv(pv+K),q) =1
(3.13) (((M+ngv+nK)-A+n)(gv+K),r) =1

simultaneously hold.

= pv(pv +K),
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The condition (p, g)=1 will be guaranteed by restricting r to satisfy the re-
lation

(3.19) (rr=1,1+n) =1

Since n is an even number, there exists such an r. Now we prove that (3.14)
implies that (p,q)=1. Assume the contraty. Let §|(p, g), d be a prime number.
Since p=(1+n)r, g=yr+1, therefore &fr, and so é[{1+n. But g=(n+1)r+
+(1—r), whence d]1—r. This case was excluded by (3.14).

Now our conditions can be rewritten in the form

1) (v(pv+K), q) = 1
) (W(gv+K),p) =1
(3) ((T+mgv+nK,r) =1
@ v+ Kr)=1.

Since (2) implies (4), therefore (4) can be omitted. Since p=(1+#)r, then we
may substitute them with

(A) (v(pv+K)q) =1
(B) (v(gv+K),r)=1
© (vi@v+K), (1 +m) =1
(D) (A+mgv+nK,r)=1.

- . Since (p, q)=1, therefore (g,r)=1, consequently ¢, r, 1+n are pairwise
coprime integers. To prove that (A), (B), (C), (D) hold simultaneously with a suit-
able v, it is enough to show that there is a solution of (B) and (D), furthermore that
of (A), and of (C).

Since ¢ and 1+4# are both odd numbers, therefore (A) and (C) can be solved.

Assume that there exist no v for which (B) and (D) would hold simultaneously.
Then there exists a prime divisor Q of r such that for every integer v, either
(v(gv+K), Q)=Q or ((1+n)gv+nK, Q)=0. Let us observe that it can be occur
only if @=3, ie.if 3jr.

If 3jr, then 3K, g=1 (mod 3), thus we have v(gv+K)=v(v+K) (mod 3),
(A+n)gv+nK=(1+n)v+yK (mod 3). If 3|, then the last congruence can be
reduced to =v (mod 3). In this case (B) and (D) can be solved as well.

" We shall exclude the case when 3|r and 31y, i.e. the case: 3|r and n=1 (mod3.)

Since H(p)=H(q)H(r), by (3.9) we have

(3.15) H(1+2K*) = H(1 +ArK*)
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if

(3.16) (rr=1),14+iK*) =1 (r,K)=1
and in the case 3|r, the relation 53 1(3) holds.

‘Lemma 3. If (A, K)=1, (u,K)—I and in the case 31K, IK*#1 (mod3),
uK*#1 (mod 3), then ,

3.17) ' H(1+AK*) = H(1+uK*)
Proof. We can find positive integers r and s such that

(3.18) rd = sp

and

(3.19) (rc—1),1+1K*) =1

(3.20) (s(s—1), 14+ pK*) = 1.

Indeed, if 86=(4, p), A=564;, p=du,, then r=yt, s=At is a solution of
(3.18) for every positive integer 7. Assume that (¢, K)=1. Then (r,K)=(s,K)=1
holds true. Since K is coprime to both of the integers 1+iK*, 14+ pK*, we have
to consider only the solvability of (3.19) and that of (3.20). Both of them have
solutions.

Assume that there exists no ¢ for which (3.19) and (3.20) would be satisfied.
Then there would exist a prime divisor Q@ of (1+2K™* 1+uK*) such that
ity t—1)- A, (A4 t—1)=0 (mod Q) holds for every integer 1.

We have (A u,, Q)=1. Furthermore Q(A—pw)K*, (Q,K*)=1, therefore
Ql6(A4,— ;). Ql6 cannot be occur, thus A, —pu, =0 (mod Q). Consequently our
congruence can be reduced to the form #(4;z—1)=0 (mod Q). But it has at most
two solutions mod Q, consequently there is a ¢ for which both of (3.19), (3.20) holds.
By this we proved our Lemma 3.

Lemma 4. If A=B (mod K*K) and (4, K*)=1, then
(3.21)  H(4) = H(B).

Proof. Let 31K. Assume first that 314 and 3{B or 3|(4, B). In the former
case let 4,=3A4, B,=3B, in the second case A=A,,- B=B,. In both cases
A,=B, (mod 3).

If @ is such an integer for which 4,80=1+K* (mod K*K) holds, then
B,@=1+K* (mod K*K) is satisfied as well. Writing 4,0=14+1K*, B,@=1+
+uK*, AK*#1, puK*#1 obvxously hold. Since the solutions @ give a whole residue
class (mod K*K), which is reduced to the module, we can choose © to be a large
prime. By Lemma 3 we have H(4,@)=H(B,0), which implies that H(A4,)=H(B,),
and so that H(4A)=H(B).
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. If 3|4, 31 B, then the general solution of the congruence BO =1+ K* (mod K*K)
can be written as @=0*+hK*K (h=0, 1,2, :..) ‘where ©* is a particular solu-
tion. Since BO=BO*+hBK*K (mod 3), 3 BK*K, therefore BO® =1 (mod 3) "holds
if h is falling into the appropriate residue class mod 3. Then A4©=0 (mod 3).
We may choose © to be a large prime, and by Lemma 2, H(480)=H(B®) we con-
clude that H(A)=H(B).

In the case 3|K we get the lemma similarly, but without taking care of the
requirements AK*#1, uK*#1 (mod 3).

Let y, be the principal character mod K*K. Since the conditions of Lemma 1
are satisfied for the function f(n):=y,(n)H (n), B=K*K, therefore there exists a
character yg.x such that

(3.22) H(n) = yg+x(n) whenever (n, K*K)= 1.

We distinguish two cases according to the parity of k.
Case K=even. For every m, n integers coprime to X, let

. U@mn)
A0 Gy Oy
1 m
S(m, n) = X(TK—)IQ x(mn+lK),

where y is the character given in (3.22). Since y is periodic mod K2, fherefore
S(m,n) is periodic mod K? in both of its variables m and n. Furthermore,
A(m,n)=1 if m and » are coprimes.
Since

Un)y=Vn+K)=Hn+K)Un+K) = y(n+K)YU(n+K),
consequently
U(nm) = x(mn+K) y(mn+2K) ... x(mn+mK) U(m(n+ K)) = S(m, n)U(m(n + K))-
ie. -
(3.23) A(m,n) = S(m, n)
holds under the condition (mn, K)=1, (myn+K)=1.

Let p be an arbitrary prime, (p, K) 1. Then p is an odd integer. Take m=p°*,
U

upyue’
A(p*, pv) = S(p*, pv)-
Since S(p°% pv) S(p pv+K3)= A(p pv+K¥H=1, we deduced that

U(p**Y) = U(p*)U(p)

n=pv, where (v,p)=1. Then A(p* pv)=

Since (n+K,m)=1
clearly holds, therefore ‘



260 Imre Kitai

valid for all prime pover p* coprime to K. This shows that U is completely multi-
plicative on the set (n, K)=1. Since V'=H-U, and H is completely multiplicativé
on the set (n, K)=1, so is ¥, Therefore, we may apply Lemma 2 for the charac-
terization of the solution (U, V) at least on the set (n, K)=1.

Case K=o0dd. Let n=2v, y=1 and (v, K)=1. Then

_V@v+K)  VPY42K)  UQYH U@

'=—0aw ~oeea)  vouET - vaue TR
Thus we proved that
(3.24) HQ"*'v+K) = D,, forevery (v,2K)=1,
where
(3.25) D, = %% =1

Similarly, we can prove that

(3.26) H2"*'v—K)=E, forevery (v,2K)=1,
UQvQr
(3.27) E., = T(zﬁ_T) y=1

From (3.22) we know that H(n)=x(n) for (n,2K)=1, where y is a character
mod 2K? For odd K we can prove more, namely that H is periodic mod 2K. The
worst case is the case 3{K. Assume that 3{K.

If K*=1 (mod 3), then, by Lemma 2,
H(1+3K*) = H(1+4K*); (A=3,p=4),
if K*= —1 (mod 3), then

HA+2K*)=H(1+3K*) (A =2, pu=23),
consequently, by

H(1+vK*) = fors(1+VK*) = yop:(1+K*)" = H(1+K*)",

we get that H(1+K*)=y(14+K)=1. If 3|K, then we have H(1+K*)=
H(1+2K*), and conclude to the same result. But then H(1+vK*)=yax:(14+vK*)=1
holds for every integer v. If A=B (mod K*) such that (4, K*)=1, then one can
choose a large prime @ such that A@=1 (mod K*), which implies that BO=1
(mod K*), and H(4A®)=H(B®), whence by (A4, ©®)=(B, @)=1, H(©)=0, we
infer H(A)=H(B). So we proved that H is periodic mod 2K; consequently, by
Lemma 1,

(3.28) H@n) = yoe(n) if (n,2K) = 1.
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Let wus consider now (3.24). Observe that if vy, v,; ..., v,, S=@(2K) is a com-
plete reduced residue system mod 2K, then so is 2"*'w;4-K (j=1, ..., §). Indeed,
these numbers are coprime to 2K, and if 2'*'y,+K=2"*'v;+K (mod 2K), for
some suitable i=j, then K|(v,—v,). Since v;, v, are odd numbers, itherefore
2[(vi—v;), so v;=v; (mod 2K), which cannot be occur. It implies that the left-
hand side does not change its value if v run over a reduced residue set, whence we
have that H(n)=1 for every (n, 2K)=1, furthermore that D,=1 and s1m11arly
that E,=1 for every y=1. From the relation D,E,=1 we obtam that

y _ H(2) -
H2*) = D) =1,
which implies that H(22)=1. We shall show that there exists such an integer I
for which H(2")=H(2"+"), which will imply that H(2)=1, and so that H(2")=1
for every y=1.
To do this, let us consider the product

AGs,my = [] H(sm+IK)
=1

defined for positive integers s, n such that (sn, K)=1. Observing that for
(s,n+K)=1 we have

U(sn) = H(sn+K) ... Hsn+sK)U(s(n+ K)) = 4(s, ) U(s) U(n),
consequently, if additionally (s,n)=1, then
A(s,m) = 1.
Assume that the conditions
(3.29) =1 (@G.n+K)=1, (5 K)=0nK)=1

hold for some pairs of integers s, n. They imply that A(s,n)=1. Let us change n
by N=n+RsK, where R is an arbitrary positive integer. Since the conditions
(3.29) will be held replacing n by N, therefore A(s, N)=1 holds for all R=1.
Let A4;=sn+IK, then A4, <A,<...<A,_;. Let I} be so large that 4,_,— A4, <20,
Let us choose R=R, such that 27| 4,+s*R,K. Let by, ..., b,_, be defined as the
exponents of 2, such that 2”1]]A, +52R K (j=2,...,5—1). Itisclear that max b;<I;.
Now we choose an R, such that 27+ 4,+s2R,K. For this choice of R the ex-
ponents of 2in A4;4+s*Ryk (j=2, ...,5—1) are unchanged, 2%|A4;+s*R,K. Thus
we have

s—1 s—i
1 = A(s,n+ R, sK) = HQT) [T H2%) = HQ™Y ] HQ2b%) = A(s, n+ RysK).
1=2 =2
whence we have H(2")=H(2'*!).

3
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So we proved that U(m)=V(n) on the set (n, K)=1. By taking f(n)=
.=xo(n)U(n), where y,(n) is the principal character mod K,- we have f(n+K)=
=f(n) for all (n,K)=1. From Lemma 1 we get that .U(n)=V(n)=yx(n) on the
‘set (n, K)=1. Hence, by Lemma 3, after a simple discussion we shall deduce our

. Theorem 3. Let K=1 be an integer, F, GEM such that G(n+K)=F(n)
holds for every nt¢N, furthermore that F(n)=0 if (n,K)=1. Then the following
assertions hold: 4

(A) F(n)=G(n)=yx(n; K) on the set n,(n, K)= 1',
or '
(B) in the case K=2R, (R,2)=1, .
G(n) = x(n; HF(n); F(n) = x(n; 8)x(n; R),
Jor every n, (n,K)=1, where yx(n;4) is the nonprincipal character mod4; by

) -1 n=+1(mod8)
X(n’S)z{ 1 n=+3(mod?y) ¥ R=1(modd),

1 n=13(mod8)
1(n; 8) = {_1 n = 5,7(mod 8) if R =—1(mod4).

(C) If 6=1 and p**|\K, then F(p®)=0 holds if and only if G(p®)=0 is
satisfied. In the case (A), if p is odd and F(p®)#0 then G(p*)=F(p®) and y(n;K)
is periodic with the period K/p®. In the case (A), if p=2 and F(p®)>0, then y(n;K)
is periodic with the period K/2°~* and G(p®)=y(1+(K/2%); K)F(p®). In the case (B),
if p is odd, then G(p®)=x(p’; DF(p®), and F(p®)s20 implies that y(n;R) is
periodic mod R/p®.

(D) In the case (B), F(2")=G(2)=0 for every y=1.

(E) If p°IK, then F(p*)=0 is true if and only if G(p*})=0 for every Y=o
Jurthermore G(p*)=0 if and only if F(p")=0 is satisfied for every y=>u. If p>2,
then the statement G(p)=0, F(p)=0 are equivalent.

) (F) If p°IK and F(p®)=0 or G(p*)#0, then y(n; K) isinduced by y(n;K,),
‘K=p°K, in case (A), and y(n;R) is induced by y(n;R,), R=p*R, in case (B).

(G) In case (A) let K=B,B,, (B,, B,)=1, where B, is the product of those
‘prime powers p*, p°|K, for which at least one of G(p*)#0, F(p*)=0 holds. Then
x(n; K) is induced by some character y(n; B,), and

G _ F() o
2 By~ By Jreery=9
Fo) G

= or ever x),
By - 2o By =9
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moreover for p#2,
F(p%) = G(p%)
hold.
(H) In the case (B) let R=D,-D,, (D,, D,)=1, where D, is the product of the
prime powers p°, p*|R, for which F(p*)>0, then y(n; R) isinduced by a character
x(n; D,). Then ' .

o) F(p?) .
a(pi 7)== x(P7 8)x(p”;s D) a(ps @)
G(p?)

< )= = b(p:
b(p; y)_ x(p7; 8) x(p"; D») (7:7)

hold for every y=uw, furthermore

G(p") = X(p*; D E(p")
for every y=a.
If F and G is such a pair of functions for which the above conditions hold, then
the relation G(n+K)=F(n) (n€N) is satisfied.

Proof. We shall prove only the necessity of the conditions, the sufficiency
part can be verified easily. (A) and (B) were proved earlier. To prove (E) take n=p?v,
where y=uo, (v, K)=1, and consider only the equations G(p’v+K)=F(p'),
F(p'v—K)=G(p"v). Since p’vEK=p*"(p"~*vtK,), K=p°K,, and (p"~*v£K,, K)=
=1, F(p?*v—K)=0, G(p"*v+K,)=0, and since the same is true if y=0o, p=>2,
for v, (v(v—K,), K)=1, we obtain (E).

Now we prove (C). The assertion that F(p®)=0 iff G(p?)=0 is clear. Con-
sider first the case (A). Assume that F(p®)=0. Let n=p®v, K=p*K,, p°IK, é<u.
Then G(p?)G(v+p*—2K,)=F(p®)F(v), whence

G 2(v; K) .
3.30 a:= = if (v,K)=1.
39 Fo) a0 kn By R
If we write this equation replacing v by v+s p*~'K;, and multiply the equations
for 5=0, ..., v—1, we get that
2= x(v; K)
1 +vp*°Ky; K)°

whence we obtain, that
a’ = I
~ x(1+p* K, K)

is true for every v, (v, K)=1. The right hand side does not depend on v. If 2{/K
we can choose v=1, v=2 and conclude that a=1. If 2|K, then we take v=K—1,

3%
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v=K+1, and deduce that a*=1. In both cases we have

' X(v+2p"°K,, K) = x(v; K) if (v K) =1,
which implies that x(v, K) is periodic with period Zp"’,Kl, and so it is periodic
with (2p*—°K,, K). This implies condition (C) for the case (A).

Now we shall consider case (B). Observe that for the characters given in (B),
the product
x(u;8)
3.31 T, = = -
@3 R0 TR 81 B
for every odd u and for R=+1 (mod 4).

Assume that p=2, p’|R, R=p*R,, p*|R, 6<a. By choosing n=p%ax, starting
from the relation G(p®)G(v+2p*~2R,)=F(p®)F(v), substituting the values for
F(v) and G(v+2p*~®R,) given in (B), after some calculation we obtain

G(»%) _ 5. 5 2(v; R)
F(pa) - —Z(p P} 4)TR(p V) x(v+2p¢_6Rl; R) s
whence, by (3.32) we have that
b= G(pa) _ x(v; R)

(P HEP) T (v +2" R R
for every v, (v,2R)=1. Arguing as at the former case we deduce that b*=1, and
so that x(-,R) is periodic mod4p*~°R,, and so mod (4p" %R, R)=p*~°R,.
But then b=1, G(p®)=yx(p’; 4) F(p®). This proves condition (C).

The next step is to prove (D). Assume that G(2)=0, choose n=2"v, y=2.
Then

GR)G2'"'v+R) = F(2")F(v)

and by using the explicit form of F and G, after some cancellation, we have
(332) G WH+R; )y W+R; )x(27; R) = F(2") x(v; 8).

If y=4, then the left-hand side does not depend on v, while y(v;8) does. It im-
plies that F(2")=0 for y=4, and so G(2)=0. We can prove impossibility of
the case F(2)0 similarly. By (C) the proof of (D) is completed.

Let us prove now (G). By choosing n=p'v, (v, K)=1, y>u, p*|K, K=K,p,
under conditions (A), we have

G _ x(v; K)
333 Fp) - 2K K

which is valid if G(p*)#0. Assume G(p*)#0. Then F(p’)0 holds for y=>a,
and the right-hand side does not depend on v. Let y=2x. Then the denominator
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is periodic modK,, which implies that y(v+K;;K)=x(v;K), consequently
2(v; K)=x(v; K;) with some character mod'K;, and so- the right-hand side is
x(p"~%; K,). This assertion hold for every y=>a, and in the case p><2 even for
y=a. The case F(p")>0- is.similar. Doing this for all p°, p%|B,, we getthat x(n; K)
is periodic mod B,, and this leads to the equations given in (G). We proved the
first part of (F), as well.

Let us finally consider (H). Let G(p*)=0. Let R=p°R,, y>a, n= p'v, (v, K)=1.
Then p=2. From G(p*)G(p"~*v+2R))=F(p’)F(v), we deduce that

Gr) 2% 8) _ 10, B) )
Fo) 1054 22k, B R

which by (3.31) and by choosing y=2a, gives that X(-, R) is periodic mod 2R
and so. mod R. Furthermore the right-hand side equals x(p"~*; R)), for every
y=a. We can deduce a similar formula assuming F(p*)>0. Doing this for every p7,
P°llD,, we can finish the proof rapidly.

By this the proof of our theorem is completed.

4. Let A4,GeM be connected by the equation G(n+1)=F(n). This was
solved in Section 3 under the additional condition F(n)#0 (n=1,2,...). It was
found that F(n)=G(n)=1 identically.

Let now & be such an exponent for which 2*—1=P, where P is a prime power,
P=Q#, allowing thecase f=1. Let G,, F,c M asfollow: F(1)=G(1)=1,G,(2)=1,
G,(2*)=F,(P)=arbitrary nonzero value, E,(n)=0 if n>=1, P; G,(n)=0if n1, 2, 2%
It is clear that F, and G, will be multiplicative functions, and the equation
G, (n+1)=E,®n) (n=1,2, ...). will be true.

It is an open question, whether 2*—1 can be a prime power for infinitely many
a or not. The list of a=2, 3,5 shows that such o values exist.

We shall prove the next ’

Theorem 4. If F,GEM and G(n+1)=F(n) holds for every ncN, then
either F(n)=G(n) are identically zero, or identically one, or there exists an integer
a=2 such that 2*—1=prime power=P, such that G(Q}=F()=G(1)=1, G(29)=
=F(P) and F(n)=0, G(n)=0 holds for all other n€N.

Proof. Let & be the set of those prime powers P for which F(P)=0, and
2 be the set of those powers @ for which G(Q)=0. Let 2, # denote the comple-
ment sets with respect to the whole set of prime powers. If 2 or 2 are empty sets,
then so are # and 2, and these lead to the equation F(n)=G(n) as it was proved in
Section 3. Thus, we' may assume that 2’ and' % are non-empty proper subsets of the
whole set of the prime powers.
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It is well known that all solutions of the Diophantine equation 3*—-2"=1]
are, x=y=1, and x=2, y=3 while 2*—3 =1 implies that x=2, y=1.

Lemma 5. Let P be the smallest integer n, for which F(n)G(n)=0. Then
P=prime power, furthermore P=2,4 or 8; F(P)=0 and G(P)O0.

Proof. It is clear that the smallest integer n for which F(n)G(n)=0 holds,
has to be a prime power P, and G(n)=F(n—1)>20. Thus F(P)=0.

Assume first that P is even, and P>2. Then P=2°. We have G(P+1)=0,
G(2P+2)=F(2P+1)=0. From the minimality of P we have that both of P+1
and 2P+1 are prime powers. Since at least one of them is a multiple of 3, there-
fore either 2°+1=3" or 2°+'4+1=3% which implies that P=4 or P=S8.

Assume that P is an odd number. Then G(P+1)=0, and we can get rapidly
that P+1=2°. If 3|P, then P=3° 2°-3°=1, whence s=2, a=1, ie. P=3
follows. In this case F(2)=0, F(3)=0. But F(2)=0, =G (3)#0, G(6)=F(5)=0,
F(10)=0, G(11)=0, =G (22)=0, =F21)=FQB)F(7)=0, =F(3)>20. This leads to
a contradiction. If 3|P, the 2P+1=0(3), G(2P+1)=0, and we deduce that
2P+1=3%, whence 25t1—3%=1, and so s=1, P=1 follows. This cannot occur.

We finished the proof of our lemma.

Lemma 6. In the notations of Lemma 5, P=4 or P=8 cannot be occur.

Proof.I.Thecase P=8. Then {2,3, 22,5, 7}¢2, {2, 3, 22, 5, 7, 2°}¢ &, whence
G(5-3.-7)=G(105)0, F(104)=F(23)-(13)=0, F(2*)»0, and this is a contra-
diction.

II. The case P=4. Then {2,3}c2, {2,3,22}¢2, and so

7=2-3+1€R, G(71:3) =GR21)=F(20) = F(5-4) =0, ie. F@4) =0,
contrary to our assumption.

Lemma 7. If & contains at least one odd prime powers, then F(n) and G(n)
are nowhere zero.

Proof. Assume that x is the smallest odd prime power in £. »*=3 would
imply that F(2)#0, and this case was treated earlier. Assume that x>3. Then
»—1 is a power of 2, since in the opposite case, x—1=2°4, 4>1 would imply
that F(2°)#0, G(2°+1)#0, and 2°+1<x. Thus x—1=2°€2. Since G(2)=0,
therefore 0#G(2x)=F(2x—1). If 3|x, then %=3% and from the equation 3°—
—2°=1 we deduce that either x=3 (b=1), or x=32 (b=2). If #=3 then 2¢2,
which was considered earlier. If %¥=32%, then

{2,3%}€2, 2%¢2, G(18) # 0, 17€2, F(136) F(8 17) # 0,
137¢®, G(1233) = G(9-137) # 0, F(1232) = F(2*-7-11) = 0, 11¢4,
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G(12)=G(4-3)=0, 3¢ &, which is a contradiction. Assume that 3{x. Then 3|2x—1,

F(2x—1)=0. If 2x—1 is not a power of 3, then 2x—1=3°B, where B>1, 3{B,

consequently B=5, 3°¢P, F(B)=G(B+1)=0, and the odd parts of both.of 3°+1,

B+1 have to be 1, taking into account the minimality of x. But then ¥r1=2

whence b=1, B=2'~1,d=3, and 2(2°+1)—1=3.(2/-1), ie. 2+'-3.29= 4,

which is impossible, since s+1=d=3. '
We finished the proof of our lemma.

Lemma 8. If 2 contains at least two distinct odd prime powers, then & contains
at least one odd number.

Proof. Let Q), 0,¢# be odd numbers. Assume first that (Q,, Q;)=1." If
the lemma fails to hold, then G(Q,+1)#0, G(Q,+1)0, G(Q,Q,+1)%0, and
so Q,+1=2% Q,+1=2° Q,0,+1=2° a=b=2. Then (2°—1)=(2*-1)(2°-1)
and the two sides of this equation are incongruent mod 2°.

It remains the case when Q,=Q", @,=0" with some odd prime Q.Let Q,+1=
=2% Q,+1=2%, a>b=2. Hence we get that Q,=—1 (mod4), ie. that Q=—
—1 (mod4), u, v are both odd numbers. First we observe that Q°+1|0"+1.
But then v»|w, which can be proved easily. Assume that u=kv+r, where O0=r<v, If
k is an even number, k=2h,

Q'+1 = (@™~ 1)+ 0 +1,

which by Q“+1|0* —1 implies that Q°+1|Q"+1, and this cannot occur: If k
is an odd number, then Q“+1=Q"(Q*+1)+(1-Q"), and by Q°+1|Q0*+1,
Q°+1|Q"—1, which implies that r=0.

So we have, u=kv, k is odd. In the same way, starting from Q°|Q", we deduce
that bla, a=bt. So we have

0°+1=2 QF+1=2% t=2f
Then
21 = (1) = —1+(1%.2° (mod 2°+1)

which is impossible for odd k.
The proof of our lemma is completed. By this we proved our theorem.

Remark. The general case G(n+K)=F(n) can be treated similarly, at least
for small fixed values of K, but it involves the knowledge of all solutions of Dio-
phantine equations like a*—b”’=h for some values of a, b, h.
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A problem of Kaitai on sums of additive functions

ROBERT STYER

1. Introduction b

KATA1[4] bas shown the following result about completely additive functions:

Theorem. Let Fy, F;, F;, F; be completely additive functions on the positive
integers. Assume that
E(n)+FK{n+ 1)+ FKn+2)+FR@n+3)

is an integer for every positive integer n. Then Fi(n), j=1, 2, 3,4, is an:integer for
every positive integer n.

The theorem can be extended to Gaussian integers, as was done by VAN Ros-
SUM-WnSMULLER [9] for four functions and recently has been extended to six func-
tions by KATAr and vAN RossumM-WIISMULLER [6].

K AT1al[5] has shown the analogy of his theorem holds for two additive functions
by using properties of multiplicative functions. This reference to Katai’s paper
may not seem relevant at first glance. But if F and G are additive functions, then
f(n)=exp (2niF(n)) and g(n)=exp (2niG(n)) are mulitiplicative functions; now
{5, II, Theorem 2, p. 105] gives the explicit form for f and g and one can then deduce
the resuit.

We wish to extend this to three additive functions. Of course K4tai’s theorem
as stated is not true for three additive functions. For instance, one can let F,{2)=r,
E(@=s for all b=1, F(2)=t, FE(2®=s—t, for all b=>1, F,2)=s5s—r, for all
b>1, F;(3%)=—s, j=1,2,3, for all b=1, and F;(g)=0, j=1,2,3, for all prime
powers g relatively prime to 6. No matter what real numbers r, s, ¢ one chooses,
Em)+F,(n+1)+F,(n+2)=0. We will show, however, that this counterexample is
the only way that a sum of three additive functions can be integral without the
functions being integral.

More generally, Katai (personal communication) believes that the following
might be true.

Received April 19, 1989.
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Conjecture. Let F,, F, ..., F,_, be k additive functions. Assume that
(%) FEM+Hn+D)+...+F_(n+k—1)=0 (mod 1)

for all n>1. Then each F;, j=0, 1, ..., k—1, has finite support.

Here we will say F;(n)=0 (mod 1) whenever F;(n) is an integer. The hypo-
thesis () probably need only Hold for » sufficiently large. We define finite support
to mean.

Definition. An additive function F is of finite support mod I if F(p°)=
=0 (mod 1), a=1,2,3, ..., is true for all but finitely many primes p.

This paper has two parts. In the first part- we assume Katai’s conjecture and
then investigate which primes are within the finite support of the F; for a fixed arbi-
trary number of additive functions. The proof is essentially the Chinese remainder
theorem. We will see that for k£ additive functions, only primes p with p=k are
in the set of finite support. Indeed, we will explicitly give all the relationships be-
tween the nonzero values of the additive functions at these exceptional primes.

The second half of this paper will prove Kdtai’s conjecture when we have three
additive functions. This proof follows closely the proof of Kitai’s theorem in [4].
We will, however, find several exponential Diophantine equations arising in our,
modification of his proof.

2. Primes in the set of finite support

We now begin to investigate the structure of the primes in the set of finite
support, assuming K4tai’s conjecture. To prepare for this, let £ be the number of
additive functions. For a prime p, define a=a(p) to be the integer such that p*>
>kzp*L.

First Main Theorem. Let F, R, ..., F,_, be k additive functions on the posi-
tive integers. Assume that

(%) Fy(m)+F(n+1)+ ... + Fo_y(n+k—1) = 0 (mod 1)

for all n>N, some integer N. Also assume that each F; is of finite support mod 1.
Then Fy(g)=0 (mod 1), j=0,1,...,k—1, for every prime power q=p® with
drime p=k.

Now consider only prime powers q=p° for any prime p=k. The number of
Fy(q) which may be assigned arbitrary real values is

-1+ 2 d(p)

primes p=k
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where
4 {(a—l)k—P’“‘H if p*—k=pY
(p) = ak—p*+1 if p—k=p1

One can explicitly find the relationship of the remaining F;(q) in terms of the ones
assigned arbitrary real values.

Proof. We will establish a series of lemmas: the first will remove from con-
sideration all prime powers where the prime exceeds k, the second will show the
relationship of Fj(pb) and F;(p*) for b=a. Finally, we will see that the rest of
the small prime powers lead to a simple linear algebra problem. The proof of each
lemma will depend on an application of the Chinese remainder theorem.

The author wishes to thank Professor Katai for suggesting this problem, and
also notes that Professor K4tai independently proved this result.

Lemma 1. Assume that Fy, F,, ..., F,., are additive functions of finite support,
satisfying (). Let p be a prime with p>k. Then F;(g)=0 (mod 1),;=0,1, ...,k—1
for all prime powers q=p".

Notation. Number the primes p,<p,<p;<...<p, where p, is the largest
prime within the finite support. Number the prime powers of these primes by ¢, <
<gy=<.... We say that a prime power g|n if g=p°® and p’|n but p**n.

Define F to be the infinite vector

F = (Fy(q0), B (q1)s ---» Fe—1(q0)s Fo(q2)s ---» Fi—1(q2)s Fo(ga)s -.-)-
For a positive integer n, define R(n) by
R(n) = (50,1, 61,1, eey 6,‘_1,1, 60,2, 61'2, ceey 6,‘_1,2, 60‘3, ),
where
5 {1 if qln+J;
i 710 otherwise.

R(n) is an infinite sequence of 0 or 1 values. We note that the inner product
R(n)-F= F(m)+KEn+D)+... +K_oy(n+k—1).

Thus, the assumption (%) can be written R(n)- F=0 (mod 1) for all n=>N.

Proof of Lemma 1. Fix j. We let p be any prime with p,=zp=>k. Let
g=p°. Recall that we defined o, for prime p; by the condition p%=>k=p%~!. By
the Chinese remainder theorem, we may choose n, and n, greater than N such that

n=1 (modpH), i=12, ..,5
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and
n=1modpf), i=12,..5 p;=p;

n, = —j (mod p?);
n, # —j (mod p?*Y).

In other words, n, and n, (and the next k—1 pairs of values) are the same modulo Di
for all the: p; except p. In: fact, one can see that

[R(n) — R(m)]- F = F;(p")
and so by, (%), F;(p")=0 (mod 1). This proves this lemma.

We now. may- assume without loss of generality that the primes in the finite
support of our additive functions all satisfy p=k.

Lemma 2. Assume that F,, F,, ..., F,_, are additive functions with finite sup-
port satisfying (%). Let p be a prime, and « defined as above. Then F;(p**®)—
~F;(p*)=0 (mod 1), j=0, 1, ..., k—1, for all integers b=1.

Proof. Again we merely apply the Chinese remainder theorem. Fix p, b and j.
Choose n, and n, greater than N such that
=1 (modpf), i=1,2,..,5 p;*=Pp;
n = —j (mod p%);
ny # —j (mod p**7),

and
n, = 1 (modp?‘), i= 1,2,...,5’, P #D;

ny = —j (mod p**?);
ny # —j (mod p*+2+7),

Then one can see that
[R(n2) — R(m))- F = F;(p**?) — F;(p%).

This proves the lemma.

We now only have a finite number of prime powers to consider, since any large
power will give the same values as a power “close to k. Fix a prime p=k, and
let r be chosen so.that r+k=0. (modp*~'). The r simply shifts some columns so
that we will get an upper triangular matrix.

Define-a vector
F(p) = (R(p*), B(P%), ..., Bi1(P%),

B0, Foas(*7s ooy Beea (P70 Bo(0* ™), B0 Ema (0",
F(‘)(pa—2), Fi(pa—z)a ey Ec—l(pa_z)a e E](’p)’ Fl(p)’ reey Ec—l(p))
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Also define
R(n’p) = 6:1.0’ 5!,1’ ceey 6a,k—1,

6u—l,r: 6a—l,r+1’ very 6a—1,k—17 51—1.01 6u-—l,la veey 6a—l,r-1y

5,_2_0,5,_2‘1, ---»5a—2,k—1’ cery 61.0, 51,11 eery 51,’:—1
where
1 if a<a and p°|n+j;

8a; =11 if a=a and p‘|n+j;
0 otherwise.
‘We note that F(p) and R(n, p) are vectors of length ak. We also note that R(n) - F=
= > R(n, p;)- F(p;) and that R(n,, p)=R(n,, p) whenever n,=n, (mod p%).
i=1

Lemma 3. Assume that F,, F, ..., F,_, are additive functions of finite support

satisfying (% ). Let p be any prime with p=k. Then
R(ny, p)- F(P) = R(ny, p)- F(p) (mod 1)

for any positive integers n, and n.

Proof. Again we use the Chinese remainder theorem. Choose integers n; and
n, greater than N such that

ng = ny (mod p*);

ng 1 (mOdp‘l'!‘)) i= l’ 21 ey S, Di ¢p,

and
n, = n, (mod p%);
n, = 1 (modp?’), i= 1,2,...,5, pi¢p’

Then one can see that R(n,, p)- F(p)—R(n,, p)- F(p)=R(ny, p)- F(p)—R(ns, p) X
X F(p)=R(ny) - F—R(ny)- F=0 (mod 1). This proves the lemma.

We now prove the first main theorem.

By Lemma 3, we know that for every prime p there is some real number b
such that for every n we have R(n, p)- F(p)=b (mod 1). For each prime p=k,
choose an arbitrary real number b=b(p). Fix a prime p and choose any n with
n=1 (mod p**!). Now define a matrix with p* rows and ¢k columns by

R(n+p% p)
R(n +Pa - 1’ P)
4= :
R(n+1,p)

R(n,p)

One can verify (because of the way we chose r) that if p*—k=p*~! then A is of
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ol o+
A=(01_

If p°—k=p*~! then A is of the form

the form

* %
* ¥
[ —

N
I
o o~
)
ok
* *
* *

0 * % %

Here I, is the identity matrix of size m. If we consider this last matrix as having
three divisions of the rows, then one can see that every row of the third d1v151on is
‘identical to one of the rows of the second division. =

Now we note that the matrix equation AF(p)=b(p)(1, 1, ..., 1) (mod 1) has
either ak—p* or ak—k—p*~! free variables. We also have the free variable b(p)
and so this gives us the expression for d(p) stated in the theorem. But now we note

that the b(p) are not really free—indeed, since Zs’b(p)=25' R(n,p)- F(p)=
i=1 i=1 -

=R(r)- F=0 (mod 1), we have one linear relation among the b(p). This explains.
the —1 in the theorem. (The Chinese remainder theorem again implies that the
b(p) have no other relations.) One also sees explicitly in the matrix 4 the rela-
tions between the F(p") for any -given prime p=k. This proves the first main
theorem.

3. Sums of three additive functions

We now will embark on a proof that when k=3, Katai’s conjecture about.
finite support is indeed true. We will follow the broad outlines of the proof of his.
theorem quoted at the beginning of this paper. His proof begins by showing that.
the theorem holds for small prime 7, and then he uses induction (with many subcases)
to complete the proof. When we attempt to modify his proof, however, we will
encounter dozens of exponential Diophantine equations. Fortunately, most of these:
equations have been studied previously.

Theorem. Let F, F,, F; be additive functions. Assume that
(%) FE®W+Fn+1)+Fn+2)=0 (modl), n > 1.

Then F,, F, and F; have finite support.

Indeed, if r, s and ¢ are arbitrary real numbers, and if F(2)=r, F,(2)=s and
F,(2)=t (mod 1), then E(2%)=s—1, for all b>1, F(2)=s forall b>1, £2")=
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=s—r, for all b=>1, F;(3)=-s, j=1,2,3, for all b, and F;(g)=0 (mod 1),
j=1,2,3, for all prime powers ¢ relatlvely prime to 2 and 3.

By our work above, we already know the structure of the nonzero solutions
must be the ones stated in the second half of this theorem. Because we could sub-
tract two solutions with F,(2)=r, F,(2)=s and F;(2)=¢ (mod 1), we may assume
these values are all zero mod 1. We are then proving

Second Main Theorem. Let F, F, and F; be additive functions on the positive
integers. Assume that

(%) F(n)+F(n+1)+F(n+2) = 0 (mod 1)

for all n=1. Also assume that F,(2), F,(2) and F;(2) are =0 (mod 1). Then
F;(n)=0 (mod 1) for every n, j=1,2,3.

Proof. We first show that our theorem’s conclusion holds for small prime
powers n, then that it holds for all powers of a few small primes, and finally use
induction to show the theorem for general n. As in Katai’s proof, we will have
many cases depending on the prime power mod low primes. Unlike Kétai’s case,
however, we find a multitude of exponential Diophantine equations arising.

We first show that the F;(n)=0 (mod 1) for small n.

Lemma 4. Assume that F,, F,, and F, are additive functions of the positive
integers. Assume that

(%)  EM+En+1)+Em+2) =0 (mod 1)

for all }_1>1. Then Fy(n)=0 (mod 1) for all n<38, j=1,2,3.

Before proving the case of three additive functions, we will illustrate the idea
with the case of two additive functions satisfying the analog of (%), namely, F,(n)+
+Fy(n+1)=0 (mod 1). Consider the set of prime powers {2,3,4,5,7,8,9,11}.
Consider the sixteen values 7n=2,3,4,5,6,7,8,9, 10, 11, 14, 20, 21, 35, 44, 55.
These sixteen n give rise to sixteen equations F (n)+FE,(r+1)=0 (mod 1) which
can be expressed in terms of the prime powers in {2,3,4,5,7,8,9,11}. For in-
stance, n=55 gives rise to the equation F(5)+F (11)+F(7)+F(8)=0 (mod 1).
We therefore have 16 equations in the 16 variables Fi(g) with j=1,2 and
q€{2,3,4,5,7,8,9, 11}. One may set up a matrix equatlon to represent these, say
AF=0 (mod 1), where

= (R(2), E(2), E(3), K@3), ..., B(11), F(11)),



276 ‘Robert Styer

and
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O == O

Amazingly, this matrix 4 hasdeterminant —1. Thus we may conclude ‘that it has
an inverse with integer entries and therefore that the vector F must have
each component =0 (mod 1). In other words, Fi(n) and F,(n) are integers for
n=2,3,4,517,38,9,11.

Indeed, we need not assume that the above matrix A4 is square; even if 4 were
overdetermined one would “row reduce” with the proviso that one may not divide
by integer factors. If one only switches rows or adds integral multiples of one row
to another, then one hopes to reduce the matrix 4 to a diagonal matrix with diagonal
entries equal to 1 or —1. If this is possible, then every variable F;(g)=0 (mod 1).

We will follow the same ideas when we have three additive functions. One sets
up the matrix equation 4AF=0 (mod 1) where the vector -F contains the variables
Fi(q), j=1,2,3, for the nineteen prime powers g equal to

2,3,4,5,7,8,9,11,13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37.

Recall that we have hypothesized that F;(2)=0 (mod 1), j=1,2,3. This hypo-
thesis :eliminates three variables, so we actually have 54 variables. The rows of A4
come from expanding F(n)+FE(n+1)+F;(n+2) for the fifty-four values of »

2,3, ...., 36, 37, 38, 44, 50, 54, 55,56, 68, 74, 75, 76, 90, 91,110, 115, 143, 152, 154, 713.

One can verify that the prime factorizations of these fifty-four triples n, n+1 and
n+2 have only prime powers in the set of nineteen powers listed above. Therefore,
we get the matrix .4 to be a 54 by 54 matrix of zeros and ones.
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Amazingly, :the determinant of. 4 is +1 (depending on the ordering of -the
columns). We conclude that 4 canbe.inverted with integerrent-ries and therefore-each
F;(g)=0 (mod 1) for the g listed.

One -can change the hypothems Instead of F;(2)=0 (mod 1), 7=1,2,3, one
may assume F;(4)=0 (mod 1), j=1,2,3, or F;(8)=0 (mod1), j=1,2,3, or
EF(2)=0 (mod 1), F;(3)=0 (mod 1), F,(4)=0 (mod 1) or any combination that
would lead to r=s5=¢=0 (mod 1) .in our counterexample.

Also, one need not start the hypothesis on F(n)+F,(n+1)+F;(n+2) with
n=2. It seems that one might be able to start at any value of n as long as one has
enough rows. For instance, if we begin with n=17, -(adding 15 new values n to
replace the ones we have eliminated) we get a matrix which row reduces to give all
the F;(g)=0 (mod 1).

At any rate, we have taken care of small values of prime powers q. We must
now take care of the case when ¢ is an arbitrary power of 2 or 3. So suppose ¢ is a
power of 2. '

Lemma 2. Let a>35. Assume that F;(n)=0 (mod 1) for all n less than 2°-3,
J=1,2,3. Then F(2°), K(2°+1), F(2°-1), F(2°), F;(2°+1), F(2° 1), and F,(2°)
are all =0 (mod 1).

Remark. The condition n<2°—3 could be replaced by n<7.2°"3 but we
only need 2°—3 (in Case 18).

Proof. We give a case by case analysis depending on what the power a is
modulo 12. Each case will state the result obtained, the assumption on a, the excep-
tions to the proof (invariably Diophantine equations which will be dealt with later),
and the synopsis of the proof for the case.

Case 1. F(2°)=0 (mod 1) for a odd,

unless: 2°4-1=3% for some positive integer b.

20, 3221 2141y,

This last line will be our abbreviated notation for
K@)+ EQ2°+1)+F(2°4+2) =0 (mod 1)

and the fact that some power of 3 divides 2°+1 as well as that 2 divides 2°+2.
Using the fact that 3 divides 2°+1 when a is odd, we have

K@)+ EF(39) +F2((2“+ l)/3°) +F3(2)+F3(2°7'+1) = 0 (mod 1)
for some positive integer ¢ such that 3¢ divides 2741 but 3°*! does not. We ex-

4
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clude the case when 2°+1=3" for some positive integer b so we may assume that
3°<2°-2, (Fortunately, we will see that this exponential Diophantine equation has
no solutions with a>35.) By our inductive hypothesis, F;(3%), F((2°+ 1)/3°), F(2),
and F;(2°-1+1) are all =0 (mod 1). We therefore conclude that F (2°)=0 (mod 1).

~ Case 2. F(29=0 (mod 1) and F,(2°+1)=0 (mod 1) for a=0 (mod 4),

unless: 2°+'4+1=3" for some positive integer b, or 2°+'+3=5" for some
positive integer b.
29,294 1; 2(29-1 4 1),

2441 204143
3 5 ’

These lists are shortland for the following argument: starting with the last line of
our proof list,

3 5 2(2°+1); 5

a+1_) . a+1 .
3 [32—311—]+5(2(2"+1))+F3 (5—2—511) =0 (mod 1)
or thus
at+ly 1 a+l 4 3
re+A ()1 E@+R@ 0+ EG)+E(EGE) = 0 (moa)

for some ¢ and d with 3¢ the highest power dividing 2°+'+1 and 5% the highest
power dividing 2°++3.

With the inductive hypothesis, noting our exceptions, we have that K (39),

20+ 41 204143
1?1(_3_) E(2), B(59, lg(—s—;—J are all =0 (mod 1). Thus, Fy(2*+1)=
=0 (mod 1).

The first line of our proof list says

FQY)+E(2°+ 1)+ F(22° '+ 1)) = 0 (mod 1)
which says
Q)+ R+ D+ FEQ)+F(2°'+1) = 0 (mod 1).

Using the inductive hypothesis, we have F(2°)+F;(2°4+1)=0 (mod 1). Then
-F(2)=0 (mod 1). A

As before, the exceptions are exponential- Diophantiné equations which for-
tunately will have no solutions with a=>5.

We will now only give the results without filling in the details.

Case 3. F(2)=0 ’(inod 1) for a=2 (mod4),
unless: 2°+1=5" for some positive integer b.

2. 5 3:—1 2251+ 1).
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Case 4. F,(2)=0 '(mod 1) and F;(2°4+1)=0 (mod 1) for a=0 (mod 12),

unless: 2°—1=3% for some positive integer b, or 2°+*41=3% for some posi-
tive integer b, or 2°+24+3="7" for some positive integer b.

2°—1 a. 9a
320 25 204,

a1 a+2
62 3“ . 72 7+3; 4(2°+1).

Case 5. F;(2°—1)=0 (mod 1) and F,(2°)=0 (mod 1) for a=1 (mod 4),

unless: 2°4+1=3 for some positive integer b, or 2°+*'—1=3% for some posi-
tive integer b, or 2°+2~3=5" for some positive integer b.

a . I 2a+1

2-1; 2% 35—,
. 20423 ge+l_]
42— 1); 55—, 6—5—.

A minor note: the Diophantine equation 2*—3=35* has a rather large solu-
tion, namely 2°—3=253, We are fortunate that «a=7 corresponds to a=35.

Case 6.. F,(2°)=0 (mod 1) for a=2 (mod 4),

unless: 2°—1=3" for some positive integer b, or 2°+1=5" for some positive
integer b.
21

279+ 1
37 )

3 5

2% 5

Case 7. F,(2°—1)=0 (mod 1) and F(2)=0 (mod 1) for a=3 (mod 4),

unless: 2°+1=3% for some positive integer b, or 2°—1=7" for some positive
integer b, or 7.2°-'—3=5" for some positive integer b, or 7.2°—5=3" for some
positive integer b, or 7.2°—11=5.3" for some positive integer b, or 7.2°—11=
=3.5% for some positive integer b.

o 1 me 2201
2°-1; 2% 355,
- a—l-— - a-—
7ee—1); 23 47 23 5

5

G121l 7.2 7.2°—5

5 83 3

4+
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Case 8.-F,(2°)=0 (mod 1) and F;(2°+1)=0 (mod 1) for a=4 (mod 12),

unless: 2°—1=3% for some positive integer b, or 3.2°41=7" for some posi-
tive integer b, or 3.2°-'4+1=5" for some positive integer b.

2°—1
3

3 ; 2% 2941,

. Da i . 9Dae—1
.3 27+1; 103 25 1. 300 41),

Case 9. F,(2°)=0 (mod 1) and F,(2°+1)=0 (mod 1) for a=8 (mod 12),

unless: 2°—1=3" for some positive integer b, or 13.2°+11=3.7" for some
positive integer b, or 13.2°+11=7.3" for some positive integer b, or 13.2°-2+3=
=5 for some positive integer b, or 2°+4+1=13" for some positive integer b.

2 2°=1 . "o, Na
3—T, 20,294+ 1,

.Da L 9a-2
13-20411 0 13-2°7%43

21 21 ’ 5

s 1325+ 1).

Case 10. F;(2°)=0 (mod 1) for a even,

unless: 2°—1=3% for some positive integer b.

2(2°-1); 32—;1_; 22,

Case 11. F,(2°—1)=0 (mod 1) and F;(2°)=0 (mod 1) for a=1:(mod 4),

unless: 11-2°-2—3=5% for some positive integer b, or 2°—1=11® for some
positive integer b, or 11.2°-'—5=3" for some positive integer b, or 2°~*—1=3.11°
for some positive integer b.
2(25-1-1); 2~1; 29,

.0a=-2 __ 11.28-1_
o1l 25 3. ey 61 23 5

2
‘Aa—1--1 . 11.9a=4-_-1 91 .9a~1_-
I DN LB o W VB et S

U= 8§ ——— —

Case 12; F,(2°—1)=0 (mod 1) and E,(2")‘_—:0- (mod 1) for a=3 (mod 4),
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unless: 22—1=7" for some positive integer b, or 7-2°-'-3=5" for some
positive integer b. : '
2(2" 1— 1) 29—1; 29,

7.20-1_3
.

We also need to consider all powers of three. Fortunately, the powers of 3 are
much easier.

' 8(7'-'2“—3'—1);“_7‘(2"—1); 10

Lemma 6. Let a=3. Assume that F;(n)=0 (mod 1) for all n less than 3°-2,
j=1,2,3. Then F,(3°), F,(3°+2), F,(3%, F(3°-2), and F;(3°) are all =0 (mod 1).

Remark. The condition n<3"—2 could be replaced by n<2(3*-*+1) but
we only need the stated condition (for Case 16).

Proof. As with the powers of 2, we will do a case analysis, only this time each
case will have arbitrary powers a. We will again find several exponential Diophantine
equations which we deal with in a later section.

Case 13. F;(3)=0 (mod 1) and F;(3°+2)=0 (mod 1),
unless: 3°+1=2" for some positive integer b.

3¢ 23—;’1 3942,

3941
2

Case 14. F,(3")=0 (mod 1),

4 5 3(2-3%141); 2(3°+2).

unless: 3°+1=2> for some positive integer b, or 3°—1=2" for some positive
integer b. '

3 -1 ., . 39+1
2 ;3% 25—

2
Case 15. F(3*-2)=0 (mod 1) and F;(3*)=0 (mod 1),

unless: 3°—1=2" for some positive integer b.

31

>

23 -2); 3@-3-1); 4 2L

Now we can do the general prime power g case.
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Lemma 7. Let q>37 be a prime power. Assume that F;(n)=0 (mod 1) for
all n less than q, j=1,2,3. Then F,(q), Fy(q), and F;(q) are all =0 (mod 1).

Proof. Suppose g is even; then g is a power of 2 which we have already com-
pleted above in the fifth lemma. If g is divisible by 3, we see that the sixth lemma
completed the proof. Therefore, we may assume ¢ is not divisible by 2 or 3.

Since F(q—2)+Fi(g—1)+F(q)=0 (mod 1), the induction hypothesis imme-
diately gives that F,(¢)=0 (mod 1).

Case 16. F,(¢)=0 (mod 1) for g=1 (mod 3),

unless: q+1=2> for some positive integer b, or g+2=3° for some positive
integer b.
g4+, 3qT+2,

Fortunately, if g=2°—1, then we have already shown that F(g)=0 (mod 1)
(Cases 5 and 7 above). If g=3"—2 then F,(q)=0 (mod 1) from Case 15.

When g=2 (mod 3), we will give two different ways to achieve the desired
result.

Case 17. F,(g)=0 (mod 1) for g=2 (mod 3),
unless: 4q+1=3" for some positive integer b, or 29—1=3" for some positive

integer b, or g+1=2" for some integer b.

4q; 3 4q+1

s 2(29+1),

291 49+1 q+1
2 3 3 ’4-3

3 2"3" ;245 24+1,

g-1. . ,49+1
2 5 q; 2 7
Fortunately, g+1=2" has already been covered by Lemma 5.
Case 18. F(¢)=0 (mod 1) for ¢g=2 (mod 3),

unless: q+1=2° for some positive integer b,
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4g+7=3" for some positive integer b, or 2g+5=3" for some positive integer
b, or g+3=2" for some positive integer b.

S q+1

45 2—5— ——; q+2,

4q+7

2(29+3); 3 ; 4(g+2),

29+43; 2(¢9+2); 3 2q3+5

2‘”1 g+2: 2‘”2”3

g+1_ 49+7 _ , 2q+5
e L

Fortunately, when ¢=2°—3, Lemma 5 tells us that F,(2°—1)=0 (mod 1) and.
F,(2%)=0 (mod 1) so the fourth line of this proof list is still valid even when g+3=2°
We therefore only have two exceptions to consider.

Cases 17 and 18 give us a choice; we will choose the one which avoids the ex-
ceptions-listed whenever possible. In particular, we can avoid the exceptions listed
unless we have one of the following:

44+ 1=3" for some positive integer b and 4g+ 7=3° for some positive integer c,
4g+ 1=3" for some positive integer b and 2+ 5=3° for some positive integer c,
2g—1=13" for some positive integer b and 4q+ 7=3¢ for some positive integer c,
2g—1=3" for some positive integer b and 2g+ 5=3¢ for some positive integer c.

These give rise to the exponential Diophantine equations:
6=23-3, 9=2.3-3" 9=3-2.3, and 6= 3°-3%

Of course, these are rather tr1v1al and one sees that these have no solutions with
c or d exceeding 3.

Putting Lemmas 4—7 together, we find an inductive proof for our main theorem
provided that we can remove the exceptions from each case. In other words, we
have reduced the entire problem to solving several two variable exponential Diophan-
tine equations. Most of these have been solved (in much greater generality) by
TrYGVE NAGELL [8] and later TosHiRo HADANO [3]. Nagell solved all equations of
the form a@*+b”=c* for distinct @, b and ¢ primes less than or equal to seven. Ha-
dano extended this to a, b and ¢ primes up to seventeen. In particular, their results
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take care of . .

2°+1 = 3%,

204141 = 3,
.2n+1+3‘= Sb, .

2941 =5,

221 =3,

204243 =7,

S a1l = 3B,

22+2_3 = 5%,

2°=1="1
. 2 +1=13,
SRR T R 1)

D. H. LenMer [7] solved a host of exponential Diophantine equations of the
form S+1=T where S and T have prime factors in some small set. His calcula-
tions take care of our equations

3.2¢41 =75
3.2l 1 =55
20711 = 3. 11,

-Leo ALex[l], when looking at possible indices for simple groups, has solved
equations of the form x+y=z whefe x, y, and z are of thé form 2 35574, His
work takes care of the equations” : :

| 7.2851_3 = 5%,
7.20-5 =3,

The rest of the exponential Diophantine equations are
7.20—11= 5.3,
7-22—11=3.5

13.22411 = 3.7,

C13.22411 =73,
13274243 = 5b,
1F.2-2 -3 =5b,
11-20-7=5 = 3,



A problem of Katai 285

We are only interested in solutions when a=35; indeed, one can easily com-
pute that these have no solutions for =6 so we may certainly view these equations.
modulo 16. Fortunately, the equations 7-2°—11=3.5%, 13.2°+11=3.7%, 13.2°+
+11=7-3% and 13.2°-243=5% are all impossible modulo:16.

11.2°-*-3=5" and 11.2°~*-5=3" are impossible modulo 11.

This leaves 7-2°—-11=5.3" which bhas a solution 7.28—11=5.32 Then
7.23(2*—1)=5-32(3*~1). Viewing this modulo 16 gives =2y with y odd, unless
B=0. Now 3% divides 2°—1 and one can verify that this implies a=0 (mod 6)
Then 7=23-1 divides 2°—1, so 72 divides 3#—1. One verifies that this gives
B=0 (mod 42). Then 1093 divides 3°—1 which divides 3/—1, so 1093 must
divide 2*—1. One can verify that this implies a=0 (mod 364). Then 113 divides
2+1 which divides 2°—1, so 113 divides 3#—1. One verifies that this implies
p=0 (mod 112). But then 4 divides B, a contradiction, unless =0, that is, un-
less 7.-2°—11=5.32% is the largest solution to this exponential Diophantine equa-
tion.

The procedure used to solve this last equation is exactly the same that Guy,
LACAMPAGNE, and SELFRIDGE [2] use to solve equations such as 5=2—3%,

This finishes the solution to all of the Diophantine equations, which removes
the exceptions from the cases analyzed above, and so one can now use the lemmas
to prove the main theorem by induction.

Similar ideas surely work when one considers the analogy of () with four
additive functions. One can easily find a matrix A4 involving all prime powers up to
89 which will give the analogy of Lemma 1 for the small prime powers. Instead
of dealing with powers of 2 and 3, one must now deal with all powers of 2, 3, 5, 7,
and 13. One can then find the necessary cases to deal with the general prime power.
But by now one has over a hundred cases, each with many exceptions. Even the
task of listing all of the relevant Diophantine equations would be formidable. To
attempt this approach with five additive functions seems untenable. Qur method
is clearly not appropriate for large numbers of additive functions, and we hope
that someone will find a better approach which proves the problem in its deserved
generality.
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Number systems in integral domains, especially in orders
of algebraic number fields

B. KOVACS!) and A. PETH(?)

1. Introduction

Let R be an integral domain, a€R, A ={n,, n,, ..., n,}CZ, where Z denotes
the ring of integers. {o, 4"} is called a number system in R if any y€R has a unique
representation

(L1) 9= cotCrot...+cpo; ;€N (i =0,1,...,h), ¢y %0, if hs=0,

If /¥=A;={0,1,...,m} for some m=1, then {«, A} is called canonical number
system. In the sequel « will be called the base and A" the set of digits of the number
system,

If the characteristic of R is p, then we may identify any n€Z with m€R,
where O=wm,<p and 1 is the identity element of R. Hence, in this case we may
assume without loss of generality that 4" &{0, ..., p—1}.

This concept is a natural generalization of negative base number systems in
Z considered by several authors. For an extensive literature we refer to KNUTH
{10, 4.1]. The canonical number systems in the ring of integers of quadratic number
fields were completely described by KATAr and Szasé [7], KAtar and KovAcs [5], [6]-

Kovics [8] gave a necessary and sufficient condition for the existence of can-
onical number systems in R. In [9) we proved that for any ¢¢Z, g<—1 there
exist infinitely many A cZ such that {gq, #°} is a number system.

In this paper we first characterize all those integral domains which have num-
ber systems. If the characteristic of R is a prime, then we are able to establish all
number systems in R. This problem is more difficult if the characteristic of R is 0.

1) Research supported in part by Grant 273 and 400 from the Hungarian National Founda-
tion for Scientific Research.
) %) Research supported in part by Hungarian National Foundation for Scientific Research
Grant 273/86. i . : )
Received May 5, 1989 and in revised form February 21, 1990.
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It is considered for orders @ of algebraic number fields. In Theorem 3 and 4 we
give necessary and sufficient conditions for {a, #} to be a number system in 0.
Theorem 5 effectively characterizes the bases of all canonical number systems of @.
This solves a problem of GILBERT [3]. Combining results of GAAL and SHULTE [2].
and the enumeration technique of FINCKE and POHST[1] with our Theorems we
computed the representatives of all but one classes of basis of canonical number
systems in rings of integers of totally real cubic fields with discriminant =564.

2. Results

In the sequel R will denote an integral domain, Z the ring of integers, Q the
field of rational numbers, K an algebraic number field of degree n, with ring of
integers Zy. If « is algebraic over Q, Z[«] denotes the smallest ring of Q(a) con-
taining Z and a. Finally F, denotes the finite field with p elements, where p is a
prime. With this notations we have

Theorem 1. There exists a number system in R if and only if
(i) R=Z[a] for an a, algebraic over Q, if char R=0,.
(ii) R=F,[x], where x is transcendental over ¥,, if char R=p, p is a prime.

This theorem generalizes a result of KovAcs [8], where integral domains with
canonical number systems were characterized.
If char R=p, then R=F,[x] and we can describe all number systems.

Theorem 2. {a, &} is a number system in F,[x] if and only if a=a,+a,x,
where ay, aler, a,#0 and -/V=./V(')={0, 1, ...,p—1}.

From now on we are dealing with integral domains R with char R=0. If R
has a number system, then there exists an a€R, algebraic over Q, such that R=Z[a].
Let K=Q(«) be of degree n, and denote by y=7", ...,y the conjugates of a
y€K. If {8, #} is a number system in Z[a], then. Q(x)=Q(B), hence the dis-
criminant of B, D(B)=0. In the following two theorems we give necessary and
sufficient conditions for {8, #°} to be a number system in Z[x], where « is an
algebraic integer over Q.

Theorem 3. Let o be an algebraic integer over Q. Let BcZ[a], #'CZ and
put A= max lal. {B, ¥} is a number system in Z[o] if and only if

@) 1B9|>1 for j=1,2,...,n,
(ii) A is a complete residue system mod |Ng,o(B)| containing 0,

(iii) € Z[],
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(iv) all yeZ[a] with
. A )
(2.1) Y| = Fo=1° G=1..,n)

have a representation (1.1) in {f, #°}.

This theorem is well applicable in practice, because there exist only finitely
many y€Z[«] with (2.1). The disadvantage of condition (iv) is that it is not clear,
if the representability of y€Z[a] can be decided in finitely many steps. Therefore
we give another characterization.

Theorem 4. Let the notation be the same as in Theorem 3. {f, A} is a num-
ber system in Zla] if and only if (i), (ii), (iii) and

k—1 s
\ 2 a;f :
Z
v (ﬁk ) —— 4 Z[B]
hold for any ac A, (i=0,...,k—1), a,-#O Jor at least one O0=j=k—1 and
- 2HHA+1) i log{d+1)
O<k=c ‘[ s | 2 (Iﬂ‘”l i) s ”’2] 12 Tog (BN

where t denotes the number of non-real conjugates of K, and

|Bl = max |V,

1=j=n
For an algebraic integer « let Ag(a)={0, 1, ..., [Ng,o(®)|—1}.

Theorem 5. Let O be an order in the -algebraic number field K. There exist
oy ey 4€0; 0y, ..., mE€ZL, Ny, ..., N, finite subsets of Z, which are all effectively
computable, such that {a, #5(2)} is a canonical number system in 0, if and only if
a=o;—h for some integers i, h with 1=i=t and either h=n; or hEN;.

3. Number systems in integral domains

To prove Theorem 1 we need two Lemmas.
Lemma 1. If {&, 4} is.a number system in the integral domain R, then 0€N".
Proof. Assume that 0¢.#". Then there exist b,c.A", (i=0, ..., k), such that
3y 0 =by+bia+t..+bo*, b =0.
Let O=y€R, then there exist ¢;€A4", (i=0, ..., h) with
3.2 y = CotCra+ ... +caf ¢y #0.
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From (3.1) and (3.2) it follows easily that O=ya***¢R has at least two different
representations. Thus Lemma 1 is proved.

Lemma 2. Let {a, &} be a number system in R with char R=p. Then
N =H(p)={0,1, ..., p—1}.

Proof. We may assume by char R=p, that O=a<p holds for all ac A"
Obviously 0c.#~ by Lemma 1. Assume now that there exists an O<a<p with
aé¢ A. Then there exist ¢, N, i=0, ..., k, 20 with

33 a=cy+cot... +cak.

This implies that a is algebraic over F,. Hence RCF,[a] is finite. But the number
of different representations (1.1) in {x, #’} is infinite. Hence there exists y€R
with infinitely many different representations. This contradiction proves Lemma 2.

Proof of Theorem 1. First let char R=0. Assume that there exists a num-
ber system {«, #'} in R. Let N= max |aj+1.Then N=1, because R {0}. Since

NeR, there exist k=0, ¢ ¥, i=0, ...,k with N=cy+c,a+...+c,o*. We have
k=0 because (N—cy)=0. Therefore « is algebraic over Q. All y¢R have representa-
tions (1.1), whence R=Z[«].

On the other hand, by [8, Theorem 1] there exists 2 canonical number system
in Z{a], which proves the first assertion of Theorem 1.

Let now char R=p, where p is a prime, and let {«, 4"} be a number system
in R. Then by Lemma 2, # =g, ie. {&, A7} is a canonical number system in R.
This implies by [8, Theorem 2] that R=F,[x]. On the other hand there exists a num-
ber system in this ring.

Proof of Theorem 2. Let {«, #} be a number system in F,[x]. Then by
Lemma 2, #'={0,1,...,p—1}. Let a=P(x)cF,[x], then the degree of P in x
is at least 1. On the other hand there exist k=1, g€ 4", 0=i=k, a,20 with x=a,+
+a,(P(x))+...+a(P(x))*. This implies that P(x)|(x—a,), hence deg P(x)=1.
Combining the inequalities for deg P(x) we conciude a=gy+a,x with a,>0.
Thus the condition is necessary.

Let now a=ay+a,x, a;%0. From x=a;'(a—ay) it follows that all elements
of F,[x] is representable in {x, #"}. Theorem 2 is proved.
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4. Number systems in Z[«]
The main purpose of this section is to prove Theorems 3, and 4. We shall use
the notation introduced in Section 2.

Lemma 3. Let a be algebraic over Q, of degree n. If {B, A’} is a number system
in Z{a), then |fP\z1 for all j=1,...,n.

Proof. Assume that there exists a j, 1=j=n with IBU)|<1. Suppose that
7€Z[a] has the representation y=a,+a,+...+a,8* in {8, #'}. Then

L
=189

where A= max lal. But this is impossible because Z[a"’] has elements with ab-

h’(j)| < A

solute value larger than Lemma 3 is proved.

A
- g9
From now on « will denote an algebraic integer of degree n over Q. Let K=Q ()
and denote Zy its ring of integers.

Lemma 4. Let BcZy be of degree n, such that [fD\=>1, j=1,...,n; and
N CZ a complete residue system mod |Ngo(B)l. Put A= max la|. Then for
any yCZ[B] and k€Z, k=1 there exist ay, ..., a,_1€ N and y€Z[P) such that

k=1 .
4.1 Y= Zo a;pi+y B
and
P o 4 .
@.2) Iy < GO U= 1.

Proof. Let x"+b,_,x" " '+...+b, be the defining polynomial of f. Then
[bol = | Ngjo(B)l. Let y€Z[B]. The assertion is trivially true for k=1. Assume that
it holds for a k=1, i.e.

43 - v= 3 afrn
where a6 A", i=0,1,...,k—1 and y,€Z[f]. Z[f] is an order in K, hence there
exist ¢;, ..., C,—1€Z with
Vi = Co+c1 B+ ... +c L
Let ac A with ¢y=a (mod |byf) and h=(c,—a)/b,. Then
Ve = Y= hbo+ BB+ ... +b, 1" +B7) =
=a+(c;—hb)B+ ... +(Coor—hb,_ ) B 1—hB" = a+ Byrsq-
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Inserting this into (4.3), we get (4.1) for k+1, which.proves (4.1) for any ycZ[B]
and k=0.
Taking conjugates :in (4.1) we obtain

k—1
-y(l) = "—Z’o a; (B(J))z_*_y'(l)(ﬂ(n)k
for any j=1, ..., n. This implies

oo = W91 ;
h’ (J)l = Iﬂ(])lk + IB(”lk Z la l IB(”l
from which (4.2) follows immediately. Lemma 4 is proved.

Proof of Theorem 3. First we prove the necessity of the conditions. Let
{B, A’} be a number system in Z[x]. Then BcZ[a] and so BEZg. By Lemma 1,
0¢ .4, and by [3], 4 is a complete residue system mod |Ng,o(B)]. This proves (ii).

By Lemma 3 we have |BP|=1, j=1,...,n. [fP|=1, j=1,...,n is not pos-
sible, because in this case [Ng,o(f)I=1 and so 4" may contain only one integer.
Hence-there exists 1=j=n with [f¥|=1. Ifforan/ (1=/=n) we have {f®|=1,
then B is not real. Taking L=Q(f*+8), then L is real and we -have [K©’: L]=2,
hence B is a relative unit-in K, but then fis a unit and so thereexists a h (1=h=n)
with |f®|<1, which is impossible by Lemma 3.

(iii) and (iv) are obviously necessary for {B, .#"} to be a number system in Z[a].

We proceed now to the proof of sufficiency. Let y€Z[a]. By (iii) Z[aj<Z[f]
and so y€Z[B]. There exists by (i) for any ¢=>0 an integer k=k(g) with

YOl < elpP, j=1,..,n
It is possible to find by Lemma 4 a,£.4, i=0, ...,k—1 and v€Z[B] such that .

k—

4.4) y = Z a; B+ B*
and
y2 A 4 ;
)< T BOT= =&+ FO—1 1= 1 ...,n

This inequality has only finitely many solutions for e=1. This means, that we can
choose ¢ such that for the corresponding k '(2.1) holds. By (iv) and (4 4) we get the
desired representation of y. Theorem 3 is proved.

Proof of Theorem 4. In the proof of Theorem 3 we-have seen that (i), (ii)
and (iii) are necessary.conditions for {8, #’} to be a number system in Z[«]. As-



NumbBer'systes ih integral-domains - - 253

sume now that there exist a .0<k and ag,eu, i=0, ..., %=1 -such ‘that.

k—l

) 0 # T? = (ﬂk ) EZ[ﬁ],
then .
@3 » oy = St

But ycZ[B] implies the representability of y in the form
@e y=otaBt . +oB el 1=sish

Inserting (4.6) into the right-hand side of (4.5) we get a sécond finite fepresentation
of yin {8, #°} which is not allowed. Hence assumption (v) is necessary. _
To prove the sufficiency of (v), it is enough to show that any pcZ[«] with

. A+1 .
@7 ‘ . o §W, j=L..,n

have a representation (1.1) in {8, 4"}. o
Let KO, .., K® be the real, K®*Y, ..., K¢** the non-real conjugates of K;
s+2t=n. Then (4.7) implies
A¥1 .
|Ym| = Tﬂ—m—l_—l, J=1 ..,
(4.8)

IRC 7(S+J)l |Im y(s+])| |ﬂ _;-1 J = 1, R £

Write y=co+¢,8+...+¢,_1 "} with ¢€Z, i=0, ...,n—1. The number of
solutions of (4.8) in ¢, ..., ¢,—;, andso, the number of y€Z[a] satisfying (4.7) is
bounded above by

244 +1) /2] o=

Let ycZ[a] satisfying (4.'7). Choose k so that

[yP| _ A+1 1
BOF = BOF@P=1) = BO-1

holds for any j=1, ..., n, ie. let
k —

ax Jog(d+ D
12725 og B0
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Then by Lemma. 4, there exist ‘ay, ...; gy_,€A4 and y,€Z[a] such that - - - :

k-1

v=Z af+np

and y, satisfies (4.7). Repeating the application of Lemma 4 to y, instead of y we get
a sequence 7, 7;,ys, ... of elements of Z[«] with (4.7). This procedure either ter-
minates with y,=0 or will be periodic. If it is periodic, then we may assume that it'is
purely periodic, i.e.

4.9) Y =Gt af+...+a 1 f 7+ 9B

holds with a;¢ 4" and h=c. At least one of a;0, because otherwise f would
be a root of unity. (4.9) implies that

=y =(@taf+ .. +ap ’)/(ﬁ” DeZ[a),

which contradlcts the assumptron Theorem 4 is proved

5. Canonical number systems in orders of algebraic number fields

In the sequel we set Ag(a)={0, 1, ..., |a,| -1} for an algebraic number a. Let
the defining polynomial of « in Z[x] be a,x"+..+ajx+a,.

Theorem 6. Let o and B be algebraic integers over Q such that Z[ez] Z[ﬂ]
Assume that the coefficients of the defining polynomial PRy b x+b€Z[x] of ﬂ

satisfy _
(5.1) 0<b"_1§ e §bo, -boéz.

Then {B, Ao(B)} is a canon_ical number system in Z[a].
" Proof. See the proof of Theorem 1 in [8).

Corollary. Let o be an algebraic integer over Q. There exists an Ny €Z such
that {a— N, A5(a—N)} is a canonical number system in Zla] for all N=N,.

Proof. Let the defining polynomial of « over Z[x] be P(x)=a,x"+...+a,x+
+a,. We may assume that a,>0. Let N>0 and P(x+ N)=b,(N)x"+...+b,(N)x+
+by(N), then b;(N)’s (i=0,1,...,n) are polynomials of degree n—i in N with
positive leading coefficients. Hence for all sufficiently large N, the b,(N) satisfy
(5.1). Therefore by Theorem 6 {a— N, A;(x— N)} are canonical number systems
in Z[a].

Lemma 5. Let a be an algebraic integer over Q. There exists an MOEZ such
that {o+M, Ay(a+M)} is not a canonical number system in Z[a) for all M=M,.
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Proof:. Let P(x)be-asin the proof of the Corollary: Let M =0 and: P(x—M)=
=C,(M)x"+...+c;(M)x+co(M). Then co(M)=P(—M), hence there exists an
M ¢Z such that ‘c;(M) is strictly decreasing (strictly increasing if n is even) for
M >M0 This means that |c,(M)|€Ap(a+M+1). We have further

\Co(M)l : ICo(M)l

GrM+D=T = at+M 2%

and so {a+M+1, Aj(a+M+1)} is not a number system in Z[a] by Theorem 4

Lemma 6. Let « be an algebraic integer over Q. If d?=—1 holds for some
real conjugate of «, then {a, Ng(®)} is not a canonical number system in Z[a).

Proof. Let o be a real conjugate of . If {a, #;(x)} is a number system,
then we have |0®|=1 by Lemma 3. «?=—1 -is obviously impossible. If a®=1
and a;€ M(@), then ag+aya®+...+a(«P)'=0, ie. the negative integers are not
representable in {a®, A;(2?)}. Lemma 6 is proved. : :

Proof of Theorem 5. By the assumption @ is an integral domain of char-
acteristic 0, so if thére exists a canonical number system {o, A#5(«)} in O, then
0=2Z[«], ie. 1,a,...,a" ' is a power basis in @, by Theorem 1 GYORY [4] proved
that there exist ﬁmte]y many effectively computable element B, B;, ..., B, in @
such that 1,a,...,«" ! is a power basis in 0, if and only if a=g;+H, for some
integers H, lizét.

Let 1=i=¢ be fixed. By Lemma 5, one can find an integer M; such that
{B:+ M, A5(Bi+ M)} is not a number system in O for all M>M,. On the other
hand, by the Corollary there exists an mi€Z such that {B;+m, #;(8;+m)} is
a number system in 0, for all m=m,. Finally by Theorem 4 it is possible to decide
for every m;<m=M; whether {f;4+-m, A;(f;+m)} is a number system in @. Taking

N; = {mlm,- -m=M,, {ﬂ; +m,./Vo(ﬁ,-'+m)} is number system in 0}

and n;=—m;, they satisfy the assertion of Theorem 5, which completes the proof.

6. Computational results

Let K be an algebraic number field of degree n. Let K&, ..., K® the real and
KCe+D, | KG6+9, KG+D KOG+, the non-real conjugates of K, n=s+2¢. Let
O'be an order in K. For the maximal orders of Q and for the quadratic extensions
of Q all-canonical huinber systems are known of [10], [5], [6]. For higher degree
fields the problem is more difficult. '

5
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Based ‘on Theorem 5.we can give the.following algorithm to determine the: "
canonical number .systems in @:. o ,
. 1. Compute aj,...,2,¢0 such that 1,a, ...,az"'“ is ‘a power- basis .in 0, if
and only if a=a;+H for some .1=i=<h and HeZ. _
2. If s>0, then find the minimal n;, (i=1, ..., k) such that for any m>n, :

a?-m<—-1 (=1,..,5) and la,"”’—ml>l, i=1 ..t

Otherwise, compute the minimal ; such that P,(—x) is strictly increasing for x=n,, -
where P,(x) denotes the defining polynomial of a; over Z. ‘

3. Calculate M; (i=1, ..., h) such that for all m=>M, the eoeﬁiments of the :
deﬁnmg polynomials of «;—m satisfy (5 1).

4. Decide for every m with nyj<m=M, whether {a,——m, Ap(a;—m)} is num-
ber system in 0.

The hardest problem in this algorlthm is step 1. GYGRY [4] proved that Ayy .0y 0l
are effectively computable by giving éxplicit upper bounds for theitr heights. His
result is based on A. Baker’s theorem on linear forms in the logarithms of algebraic
numbers, hence in practice it is not applicable at this time. For totally real cubic
fields with discriminant =3137 GaAL and ScHULTE [2] computed such completé
systems, using the Baker—Davenport reduction method. .

.Using their results we computed — in the sense of Theorem 5 — all but one
canonical number systems in the maximal orders of totally real cubic fields with
discriminant =564.

Steps 2 and 3 are easy to perform. For the computation of M; we remark
that it is the smallest value of meZ such that the coefficients of the defining poly-
nomial of a;—m satisfy (5.1). Of course assume that

(6.1) l=aq =a =aq

and the roots B,, B., B; of the polynomial P(x)=x%+a,;x*+a,x+a, are real with
B;<—1(i=1,2,3). This implies a,=4. Since both roots of P'(x)=3x*+2a,x+a, -
are real and are less then —1 we get

6.2) 8, =2a,—-3 = a, +2.
On the other hand P(x+1)=x3+(a,+3)x*+(a+2a,+3)x+(a; +a,+a, +1).
Using (6.1) and (6.2) we get
a3+az+al+1 = 2a1+a2+3
hence: the coefficients of x in P(x+ 1) satisfy (5.1) too.
To- perform Step 4 we have to enumerate all y€Zy with (2.1) and then to

check whether they are representable in the corresponding number system. For the .
enumeration we used the method of FINCKE and Pomsr [1].
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In the table we listed the discriminants D of all totally real cubic fields K with
D=564, which have power basis. In the column (x,y) we displayed ‘the solu-
tions.— computed by GAAL and SCHULTE [2] — of the index form equation of K,
corresponding to an-integral basis 1, w;, w, of Zg. Then in the columns P, (x),
(P-(x)) you find the coefficients — starting with the.leading coefficient 1 — of
the defining polynomial of f=a+ xw,+yw,, (B=b—xw,—yw,) (a, b€Z) such that
{o, A5(@)} is.a number system in Zg if and only if a=f—h with some integer
h=0. We did not find sporadic cases, i.e. the finite sets N; defined in Theorem 5
were always empty.

The computer program was developed in FORTRAN and was executed on an
IBM PC—AT compatible computer. If the sequence of the coefficients of P, (x)
(P-(x)) is not monotonic, then the execution time depends on the number of solu-
tions of (2.1), which was between 600 and 18 000. The computer tested. about 40
solutions of (2.1)/seconds.

For the field with D=229; (x, y)=(508, 273) we were not able to compute
all solutions of (2.1) because of the large number of solutions. _

Let 1, o, o be a power integral basis of a totally real cubic field. Our computa-
tion suggests that «®<—1.(i=1,2,3) is a sufficient condition for {, #5(«)} to
be a number system in ZK

D (x, % Py T PL(x)

9 (-1,-1 :
©,1) } 1 10 31 29 1 8 19 13
(1,0) '

(=2, =1 : . .
a, -n } 1 09 - 20 13 1 15 68 83
(1,2 '

(-5, -9 :

(—4,5) } 1 - 46 563 769 1 26 83 71
(CA)] :

81 - (-3, =2
1,3 } 1. 12 27 © 17 1 21 126 159
2 -1 ‘

(-1, -1
0,1 } 1 09 24 19 1 9 24 17
(1,0) C

148  (-31,14) 1 305 23 515 39 349 1 154 412 278
(—5, =3), 18 50 38 1 . 30 242 250!
(-1, =1 1 11 . 37 37 1 - 10 30, 26
(1,0) 1 9 23 17 - 1 12 44, 46

(1,2 .1 11, 27 . 19 1 16 72 . 62

169 (-2, -1) K -

(1, 0). } 1 10 . 29 25° 1.1 36 - 31
(1, 1) N N .- "..v
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229 (-2, 1) 1 22 134 139 1 14 . . 38 . 29
o, 1) 1 10 28 23 1 1 .35 26
1,0 1 9 23 16 1 12 44 47
a, 4 1 19 43 26 1 35 331 424
@1 1 19 - 105 134 1° 11 25 16
(508, 273) 1 3492 3050996 4329199 (1 1749 5975 5108)?
257 (—11,-6) 1 36 121 107 1 66 1141 . 1695
(-1, —1) 1 10 29 21 1 11 36 35
1,0) 1 09 22 15 1 12 43 41
6,2 1 32 93 71 1 58 873 919
(-2, -3) 1 21 202 259 1 15 34 21
@en 1 17 86 111 1 10 23 15
316 (1,0) 1 10 29 22 1 11 36 34
1,2 1 13 32 22 1 23 152 218
324 (1,0) 1 10 : 29 © 23 1 11 36 33
(-1, -1 1 14 59 67 1 10 27 21
364 (-1,1)
©, —1) } 1 13 50 49 1 11 34 31
(—7v —2)
(-2,9 } 1 40 109 77 1 77 1552 2653
©, -7
404 (1,0 1. 10 28 b) 1 11 35 27
aQn 1 11 33 29 1 13 49 43
469 (1,0) 1 10 26 19 1 14 58 61
(-2, -1 1 13 51 56 1 11 35 32
473 (=2, -1 1 13 34 25 1 20 111 107
O, 1) 1 11 32 27 1 13 48 37
{4, 5) 1 28 63 37 1 53 738 935
a, -3 1 39 124 103 1 72 1345 1747
1,0 1. 12 43 45 1 12 43 43
564 (-3, -7 1 77 1541 2239 1 40 98 62
(-3, -1 1 17 49 39 1 28 214 . 246
(-3,2 1 41 455 697 1 22 56 38
(1,0) 1 13 51 57 1 11 35 31
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‘Note on multiplicative functions satisfying a congruence property

1. JOO

1. An arithmetical function f(n)z0. is said to, be multlphcatlve if (n,m)=1
implies

S(nm)i= f(n)f(m)

and it is called completely multiplicative if the above equation holds for all pairs
of positive integers n and m. In the following let-# and .#* denote the set of integer-~
valued multiplicative and completely multiplicative functions, respectively.

In 1966 M. V. SuBBARAO [3] proved that if fc# and f satisfies the; relation:

M f(n+m) = f(m) (modn)

for every positive integers #» and m, then, f(n)-is a power of » with non-negative
integer exponent. In 1972 A. IvANyI[1] showed that if f€.#* and (1) holds for a
fixed, m and,every-n, then f(n).also has.the same form. Recently, B. M. PHONG and
J. FenER [2] extended the results of Subbarao and:Ivanyi. ment1oned above, proving:
that if fe.# and (1) holds for a fixed m with f(m)=£0 and for every positive 1nteger
n, then there is a non-negative integer a such:that

f(n) =n* (n= l" 2’ .-“)'

In this paper we shall give a characterization of those: elementé, Je# which
satisfy
fpn+M) = f(M) (modn)

for every positive integer n, where p is a fixed prime, M is a fixed positive integer
with the conditions (p, M)=1 and f(M);éO
We prove the following

Theorem. Let p be a prime, M be a positive integer for which (p, M)=1.
Moreover let fc M with f(M)=0. If f satisfies the relation

@ F(pn+M) = (M) (modr)

Received August 11, 1989 and in revised form:January.30, 1990.
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for every positive integer n, then either

3) f(n)=n°
or
0) s = (2):me

o . : n
for all posmve integers n which are prime to p, where a=0 is an integer and[ ]
denotes the Legendre symbol. p

Example. All solutions fe.# of the following congruence

fGn+1)=1 (modn) (n=1,2,..)
are '
f(@m) =n* forall n prime to 5
or
{ n* if n=41 (mod 5)

n @ _
f(n)=[?)n Tl if n=+£2 (mod 3),

where a is a non-negative integer.

2. I.emmas

Lemma 1. Assume that p, M and f satisfy the conditions of Theorem and (2)
holds for every positive integer n. If Q is a prime for which (Q, pM)=1, then

®) A@H =) (k=12..)

Proof. Let Q be a prime with (Q, pM)=1. We prove (5) by induction on k.
It is obvious that (5) holds for k=1. Assume that (5) is true for k and prove
it for k+1, and (5) will be proved.
Let g be a prime for which

©) g = OMIf(M))
Then there exist positive integers x and y such that
Qx=1+pgy and (x,0M)=1.
Applying (2) with n=qyM, we get
F@F (M) = £(@xM) = f(M+pgyM) = f(M) (modg),

which with (6) implies
M f(@Yf(x) =1 (modg).
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- . .On the other hand, using the fact (QM, pxq)=1 we can choose positive integers
v and v such that

Qu=M+pxqv. and (»,Q)=1.
S@ ) f(xu) = f(QF+ xu) = f1Q*x)(Qu)] =
= f1@*x(M + pxqu)] = fIMQ*x +px*qvQ*] =
= f(M+pq(My +x*vQ")) = f(M) (modgq)

Then, we have

émd . '
J(Q)f (xu) = f(Qxu) = f¥(M +pxqu)] = f(x)f(M +pxqu) = fx)f(M) (mod g).

These give
FQYf(x)f (M) = f(Q)f (M) (mod g)

which, using (6), implies
®) f@*Hf(x) = f(Q) (modg).

From (7) we get that f(x) =0 (mod ¢g), and so (7) and (8) imply that
@) = f(@")f(Q) (mod g).

£ = F(GN(Q) = F(Q)+,

since there are infinitely many primes g satisfying (6). Thus (5) is proved for k+1.
Lemma 1 is proved.

This shows that

Lemma 2. Assume that p, M and f satisfy the conditions of Theorem and (2)
holds for every positive integer n. Then there exists a non-negative integer a such that

©® /()] = n®

Jor all positive integers n which are prime to p.

Proof. We first prove that there exists a non-negative integer a such that

(10) If@) =n* if (n,pM)=1.
In order to prove (10) it is enough to show that
11 Q) =+0@

for each prime Q coprime to pM, where a(Q)=0 is an integer, furthermore if P, Q
are distinct primes with (PQ, pM)=1, then

(12) a(P) = a(Q).

Let Q be a prime for which (Q, pM)=1. Assume that there is a prime g=Q
and ¢|f(Q). Then, by Lemma 1, we have

(13) IOy =) (=12, ..)
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For each positive integers s there are positive integers t=t(s) and h= h(s)
such that
Ot = M4pgh, (0,1) = 1.

Then we get from (2) and (13), that

0 = (@) () = f(Q°1) = f(M+pg’h) = f(M) (mod ¢°),
holds for every s, which.implies f{M:)=0. This is a contradiction and so (11) holds.
Now let P, Q be distinct primes for which (PQ, pM)=1. Then, by using (ll)
we have
f(P) =+ PP, f(Q)=+0"?. ,
Assume that a(P)=a(Q) and let d=a(P)—a(@). Since p is a prime and (PQ, p)=1,
we have
(PEP*P-V =1 (modp) (s=1,2,..)
and so we get from (2) that

(M) = fI(PQY - M) = F(PY*=D £(Q)*~) £ (M) =

— Pzd(p—l)( st)z(p—l)n(Q) f(M) = pre-1) f(M) mod (LQSYZ;I)__I)

holds for every positive integer s, consequently
PHe-Df(M) = f(M)

ThlS shows that d=a(P)—a(Q)=0, which 1mp11es (12). From (ll) and (12) it fol-
lows that (10) holds.

Now we prove (9).

By using (10), in order to prove (9) it is enough to show that .

14). - If(@) =g (k=12..) .
holds for all prime divisors q of M, where a is a non-negative integer determined
in (10).
Let m be a positive integer for which
(15) (m,pM) = 1.

Then we have (pm+M, pM)=1 and so from (2) and (10) we get
S(M) = f(M+pm) = +(M+pmy’ = £ M°® (mod m),

which, as. m—o wjth (m, M)=1, implies. that

(16) Lf(M) = M,

where a is an integer given in ¢10). '



On multiplicative functions - 305 -

Let ¢ be a prime divisor of M and q“vllM Let kSko Then: there exist infinitely -
many positive integers m such that

(pm +4-'£k£, pM) = 1.

For these m using (2) :and (10), we have

F(M) = f(pgm+M) =f(i1")f(Pm+q—A{) = ‘i'f-(q‘k)[pm+%{‘)a-

+/@)(3c) (modm)
which implies :

an ‘ f(M)= ££(q") 1; :

Thus, by (16) and (17), it follows that (14) holds for k=k,.
Now let k=>k,. Then there exists a prime -Q,=Q,(k) -such that

18) ¢~°Q =1 (modp), (Qu,PM)=1.
From (2), (10) and (18) we get that
S(M) = flg 7G5 TV M) = f(Qo)+ PV (g M) =

k- k.,Q1+(p—1)r_1 )
p

— ng(l-f'(P—l)')f(qk_koM) (mod q

holds for every positive integer f. Thus, we have

f@ M) = £ R f(M),
‘which, using the fact that (14) holds for every positive integer ksko, implies that

(g = 2“0 f(g") = g™

It follows that (14) holds for every positive integer k>k,, and this completes the
proof of Lemma 2.

Lemma 3. Assume p, M and f satisfy the conditions of Theorem and (2) holds
Jor every positive integer n. Then we have

Sf(nM) = n°f(M)

Jfor each quadratic reszdue n (mod p), i.e. for (—]: 1, where a is the same .integer
as in Lemma 2.
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" Proof. NAssunieT‘ that (n, p)=1 anhd (—ri]=-l, ie. the quaarétic cdngrugn_cc
P 1

?=n (modp)
is solvable. It is clear that there exists a prime Q,=Q,(n) such that
(19) nQi=1 (modp) and *(Qy,pM) ='1.
Let s()= 1+(p 1)¢. Then, from (2) and (19) we get that
@0) 1) = 74 (moa "2=1)

holds for every positive 1nteger 1. Smce (Q,,pM)=1, from Lemmas 1 and 2
we have

f(an’(‘) M) — f(Q 1)25(') f(n M) — Q§as(r) f(n M)

which with (19) implies that _ :
nQ2s(1)
(M) = 1 G0 f M) (mod )

holds for every positive integer 7. The last congruence shows that

 f(nM) = n°f(M)

since nQ® —1-co as t—os, Thus, Lemma 3 is proved.

3. Proqf of Theorem

Assume that p, M and f satisfy the conditions of Theorem and (2) holds for
every posmve integer n. At first we obtain from Lemma 2 that

(21 C fy=4n if (p) =1,
where a=0 is an integer and from Lemma 3 that
2) fy=n* if (n,pM) =1, (g] = 1.

First we shall prove that our theorem holds for all n coprime to pM. Assume
that f(n)=n® on the set of integers n with (n, pM)=1. We prove that

(23) fn) = (g] n if (m,pM) = 1.

If is obvious that (23) follows from .(22) in the case (i)=l. Since f(n)#n" on
P
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the set of integers n coprime to pM, hence there exists a positive integer n, such that

(24) Sf(ng) = —nrg and (ny, pM) = 1.
1t follows from (22) and (24) that (ﬁ)= -1
p

If (n,pM)=1 and (%)=—l, then (—’Z;l]=l and so from (22), (24), and
Lemma 1 we obtain

—n5f(n) = f(ng) f(n) = f(nng) = (nny)".
This shows that
a __ E a
f(n)=—n"= (p)n A
Thus, (23) is proved.

Using (23) and the method which was used in the proof of Lemma 2 (see the
proof of (14)), one can deduce that if g|M then

f(qk) = qka (k = 1,2, )

in the case when f(n)=n® for all n coprime to pM and
n _ [9°) ka -
1) = 2k k=12,..)

n
in the case when f(n)=(—) n® for all n coprime to pM.
p

The theorem is proved.
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Strong limit theorems for quasi-orthogonal random fields. IT
F. MORICZ
1. Introduction. Let {X: i, k=1} be a random field (in abbreviation: r.f.).
We say that {X;,} is quasi-orthogonal if
(1-1) EX,zk = a'?k <

and there exists a double sequence {o(m, n): m,n=0} of nonnegative numbers
such that

(1.2) |EXy Xpl = @(li—Jjl, lk=ID ooy (4, k,1=1)
and
(13 g; _oe(m, n) < eo.

In the sp:cial case whan g(m, n)=0 except m=n=0, we say that {X,} is
an orthogonal r.f.

2. Main results. We will study the almost sure (in abbreviation: a.s.) behavior
of the Cesaro type means

(2'1) Cmn =

as m+n-—co,

5 30-290-5% ens

Theorem 1. If {X,} is a quasi-orthogonal r.f. and

2.2 S S0k _.,

' S S PER ’
then
2.3) lim {,,=0 a.s.

Received March 31, 1989.
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It is instructive to compare Theorem 1 with the corresponding result in [4, Theo-
rem 1} according to which

(2.4)

.'I.Ms

g‘ '2k2 [log (1 + 1)]2[10g (k + 1)]2 - oo

is a sufficient (and in the monotomc case, necessary) condmon for the followmg
strong law of large numbers: - Slee T ce T e :
2.5 lim — = S.
( ) min—o MN izl' kZ th 0 a.

The surprising fact is that the logarithmic factors are missing in condition (2.2).
We note that the logarithms are to the base 2 in this -paper. '

We will prove Theorem 1 in a more general setting which provides information
on the rate of convergence in (2.3). In the sequel, p and ¢ denote nonnegative in-
tegers.

Proposition 1. If the conditions of Theorem 1 are satisfied and >0, then

1 2» ga 1 22 = g2
.6 P =0 {——— 2 e —ik
(26) [xflzlzpv ns:z;: el = £} = OC1) 22p2% i=21’ kg]'. out 280 i=21' k=22‘1’+1 k® +
Pl
2%, _FhaiS it oS k=te 1PK2)

Applying the well-known Kronecker lemma (see, e.g. [5, p. 35]), Proposition 1
implies Theorem 1.

We note that a result analogous to Proposmon 1 was proved in [3, Theorem 4]
for sequences of random variables (in abbreviation: r.v.’s).

We also consider other ‘Cesdro type means defined by
27 Tom = ——= 2 Z’(l— L;—l] Xy (mnz=1).
Clearly, the t,,, are intermediate between the rectangular arithmetic means occurring
in (2.5) and the means (2.1).

Theorem 2. If {X,} is a quasi-orthogonal r.f. and

(2.8) i_zl’ 'g' '2k2 [log k+ 1)]2 < oo,
then
2.9) lxmw 1,,,,, =0 a.s.

A more general statement giving mformanon on the convergence rate in (2.9)
reads as follows. :
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Proposition 2. If the conditions of Theorem?2 are satisfied and >0, then

1 9P 924 .
210) P5up 50p ! = & = O | g 5 S bt
b5 5 Chlogka iy 3 5%y
22" 8 k=t & P R

+ 2 3 g% b flog (k + 1)]2}.

Condition (2.8) lies between (2.2) and (2.4) (cf. conclusions (2.3), (2.5), and
(2.9)). ‘

We guess that the logarithmic factor in condition (2.8) is exact.

Conjecture. If {0,=0} isa double sequence such that

g; g; .
_i = ik+1 (l,k = 1)

k = k+1
and
2.11) =Z" 2 2k2 [log k+1DP =

with r=1, then there exists an orthogonal r.f. {X;} such that

EX,’]‘ = O EX,k = a',k (l k= )
and
limsup |7, =~ as.

m-n->co
If condition (2.11) is satisfied with any r=1, then we can state

lim sup it,,| =~ a.s.

3. Proof of Proposition 1. We begin with a known result [2].

Lemma-1. If {X,} satisfies conditions (1.1)—(1.3), and {a;} is any sequence
of numbers, then

m

(€B)) E[ Z’ ax Xy]® = 0(1) Z’ 2 ato%, (@b=0;mn=1).

i=a+1 k=b+ i=a+1k=b

We emphasize that in the proofs of Propositions 1 and 2 the condition that
{X4} is a quasi-orthogonal r.f. is used only to the extent that this 1mp11es the moment
inequality (3.1).

&*
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Now we turn to the proof of Proposition 1. We start with the inequality

(3:2) P[sup sup|{n| > €] = > ZP[ |Emal > €]

m=2P n=2 r=ps—q 2’smsz'*‘ 2’Sn52‘"

Let 2?=m=2"*! and 2°=n=2*'. Since
(3.3) L = Corost+(Cmoe —Lor,20) + Cor,n— Car20) + (Con— Cimy 20 — Lo + Lor, 29)

we can estimate as follows

(3.4) P[2rslplnlg§rn 2as,,sg-n IC""" = 6] = P[[ICZ' 2" = —] + 2 ng)’
where
B = o, max st = 2],
. .
I)'SZ) =P 2l<nszl+lIC2' _C2' 2: > 4]

PO = P| max w3 =Gt Ll > =]

| 2r<m=2r+1 2'<n§2‘“
By the Chebyshev inequality and (3.1),
0(1) 2" 2-'

i=1 k=

(3.5) P[ICzr os| > —-] ECzr 2 =

By the Cauchy inequality,

ar+1
(3.6) [2,_<mg.§'“ Cmer—ConolP = 3 m[lmar—{m-r ol
m= m=2"+1

An elementary calculation shows that

{mar—Cm-1,00 = Zm,' gask(m, s) Xik
i=1 k=1

where

1 @i- 1)(2'” D
. ay(m, 5) = > (1 - 2 ] m*(m—1¢  m(m— 1)] )
Clearly,

1
|an(m, 5)| = mEm—DZF

Hepce, by the Chebyshev inequality and (3.1),

3.7y Pﬂ>§l6- S mEn g —lniar= 2D 5 5 S gk

e m=9" 41 &? mew 41 i1 ko1 m(m— 1)22?3
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The symmetric counterpart of (3.7)is
oy 23 % 2 ok
& Faiaé n(n— 1)222' N

(3.8) ., B® =

Finally, by the Cauchy inequality,
‘ |Cmn'_Cm 2'_52' n+c2' 2'”

max
2T <mz=s2r+1 2=<nsz-+ 1
21'# 1 zl+ 1

) '§ 2 2 "‘m[zmn_Cm—l,n_Cm,n—l""Cm—l,n'-l]2
i m= 2"+1n =27+1 . ) C

and by an elementary ca]cu]atlon

Cmn_Cm—l,n"Cm,n—l'!'C -1n-1 = =2"1"hé1’ bik(m’ n)Xl'k

where

o (i'—‘l')(2m:..— 15 B (k—1@2n-1)
bi(m, 1) = [ mim—1)¢  m(m— l)] [ n(n—17%  n@n-1) ]
Clearly, . ‘
[ 1
m(m—1Dnn-1)"

|bix(m, n)| =

Hence, by the Cauchy:inequality and (3.1),
16 2;+l 2301

(39) Bga) = ? 2 Z mnE[Cmn_CM—I,n—Cm,n—-l_i'gm—l,n—l]z =

m=2r+1 n=2°+1

_ 0(1) Lor+1 2541 m?’ZI a?k
G R S dm(m—1)2n(n—1)*"

Next, we combine the above estimates in four parts.

Part 1. By (3.2) and (3.5), while decomposing the inner doub]e sum and inter-
changing the order of summations, we get that

3.10) ' 2 2 P[ICZ' 2| > —] owm Z 2 22r22s 5555 X
r=p s=4q r=ps=q
2P 94 2P 28 -or 29 2r 2%
NE2Z2+2 2+ 2 2+ > 2 Yoh=
= W == U IO S LAY = B R AR Y T TR
ol 1 £E, 12 = a
1 3 29 01‘2](‘ oo o al?k}
+ 24 ,-=§+1 k‘=z; i# +i=2"+1 k=S711 I2k?
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Part 2. By (3.2) and (3.7), we obtain in a similar way that

oo

@.11) S3Ev=01) 3

r=ps=q m=2F+1 g=q i=1 k=1 k=29+1
1 oo 29 0'.& - oo o.?k
ol 5 Z%y 3 3 il
2% 7S KB it = kR

Part 3. By (3.2) and (3.8),

(3.12) géggzeoa){%z S %y 3 S ,3"‘}

Part 4. By (3.2) and (3.9),

oo oo oo 2P 29 2p n ”m 29
313 I IEP =00 > > (> 2+2 >+ > 3+
r=ps=q m=2P41 a=20+1 V=1 k=1 =1 k=241 i=2F41k=1
m n o'?k - { 1 ar 24 1 2P oo a?k
+i=§+1k=§+1} mn® o) 2%r% £ 2 2",."‘-{_22" 2 _22«;17?2'*'
} 1 < Ll alk < < a.l?k }
+ 2%, 2§+1 kZ =374 1 k=241 I2Kk®

Collecting (3.2) and (3.10)—(3.13) yields (2.6) to be proved.

4. Proof of Proposition 2. This proof is essentially a combination of the tech-
niques of Section 3 and the proof of [4, Proposition 1]. Therefore, we do not go
into full details.

The next lemma is a version of the well-known Rademacher—Menshov in-
equality (see, e.g. [1, Theorem 2)).

Lemma 2. If {X;} satisfies conditions (1.1)—(1.3), and {a;} is any sequence
of numbers, then
a+tm a+m b+n

@)  E[max 2 G Xl = Oflog2af 3 3 aol,

sisn; S0 1% i=a+1k=b+1

(a,b=0;mn=1).

To start the proof of Proposition 2, assume that 2’=m=2"*! and 2=p=2+!
with nonnegative integers r and s. Obviously, it is enough to prove (2.10) for the
slightly modified means

m n i—1 )
Tmn = m2* '=Z' 2{1— m ‘Xik

1k=1
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in the place of r,,,. We use a decomposition analogous to (3.3), according to which
we can write

@.2) P[_ max [t > ] = p[m, o >_]+ 3 o

2rsm=2r+l 2'Su52'“

(cf. (3.4)), where

-

1)y -
(045 2r<r,£lsgr+l [T, 2¢ = Tar, 2] > ]
o
QD = PL,S}SZ,H |73, n = Tar, 2-| = —]
. [ 8
(3) k ok % * - 2
R i |

Imitating the corresponding steps in the proof of Proposition 1, it is easy to
verify that

@3 Plics, ol > 2] = 20 Zuz
and .

0(1) or+1 m a8 a’?k
1) _— [
44 - O r mer+1i=1 k=1 m(m— 1)22%

(cf. (3.5) and (3.7), respectively).
The following two estimates are different from (3.8) and (3.9). By the Chebyshev
inequality and (4.1),

- @ _ O() Mog 2P % =5t () i-1}

& 22 S -

- 0Q) 1 15 ] Tk [log T

2
€ A k=T

«. Then

To estimate we set f,,=

*
rs’ Tonn —Tmz

Nown —Ner,n = Tmn - T::l,2' - T;",n + T;", 25 -
Similarly to the reasoning in (3.6) we estimate as follows

. i * 2 =
[2'§r£g§'+l 2=§T§2=+1|T'"" Tm, 22 12""+12"2’|] -

or+t

= m=§+1 " [2’<"52’“

Inmn 'lm 1, nl]

A simple computation shows that

j Cie(m, n) Xy,

k=2%+1

Iz

”m—”m—l,n =
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where , . .
_ 1 fE=-H@2m-1) ]
) = S w1 mm=Dl’
Clearly, i
1
lea(m, n)| = mm—1)2
‘Thus, by the Chebyshev inequality and.(4.1),
s 0(1) or+1 12 m 2841 2 2
(4.6) 5;’ = —3 2 m[log 2°+1] Z 2 ci(m,nma} =
& m=2"41 . i=1 k=241 :
0(1) or+1 m 25+1 0’;2;; . 0(1) or+1 28+1 02 "
g2 m=2+1 .'=21' k=2o41 m(m— 1)2225 [log 2k} = i=1 k—?.z" 1 22'k2 [log 2k]

Now to complete the proof on the basis of (4.2)—(4.6) we have to go.along
the same lines as in the proof of Proposition 1 (cf. Parts 1—4 there).
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General results bn strong approximation by orthogonal series

L. LEINDLER and A. MEIR

1. Introduction. Let {¢,(x)} denote an orthonormal system on a finite interval
(a, b). In this paper we shall consider real orthogonal series

(1.1 Ze'oc,,tp,,(x) with 2°’°c,2,<oo.
n=0 n=0

It is well known that the partial sums s,(x) of any such series converge in the L2
norm to a function f(x)cL2(a, b). o
The following theorem, proved in [6], provides a quantitative estimate for the
pontwise approximation of f(x) by the arithmetic means of s,(x):
Let O<y<l1. If

(1.2)

then

Mg

Cg n¥ <eo,

i
o

n

= 2 8(0)-1() = 0,17

almost everywhere (a.e.) in (a,b).

This result was extended by G. SunoucHI [17] to strong approximation. Earlier
G. ArLexits, who was first to propose the problem of strong approximation, in -
cooperation with his coauthors established various results pertaining to Fourier
series [2], [3]. As far as we know it was SUNoUCHT’s result the first to deal with strong
approximation by general orthogonal series. His result reads as follows:

Let 0<y<1 and »=0. If (1.2) holds and O<py<]1, then

n 1/p
B 2 ats@-ror) = oo

k=0

a.e. in (a, b), where A::[n_’t"] .

Received April 13, 1989,



318 ] o L. Leindler and A. Meir

After several articles of the first author have dealt with strong approximation
9], [10], [11], the following two general results (the first for Cesaro means, the second
for Riesz means) were established by the first author and H. SCHWINN [14]:

Theorem A. Let y=0, %x>0. If (1.2) holds and O<py<]1, then

n 1/p
A3 o, Gl pvin)i= [y S Aitlsn(-10P} = 0xa7),

a.e. in (a,b) for any increasing sequence v:={v.} of positive integers.

Theorem B. Let y=0, $=0. If (1.2) holds and O<py<p, then

. n . 1/p - . . .
A9 R0 v D= {4 ) 3 et 1 —1P) = 0,7

a.e. in (a, b) for any increasing sequence v:={v.} of positive integers.

L. REMPULSKA [15] investigated the approximation properties of generalized
Abel means of orthogonal series. One of her resuits, relevant to our present interest,
is as follows:. ] ‘

Let q be a non-negative integer and y=>0. If (1.2) holds, then

. ox((1-17) i g1,
(-t 3 (TF5) )1 = o (- ¥ log (10l if g+1 =1,
k=0 0. ((1—11+Y) if g+1 <y,

ae.in (a,b), as t—1-.
This result was extended to strong Abel means, by the first author, in [8]:

Theorem C. Let q be a non-negative integer and y=0. If (1.2) holds and
O<py<1, then

: . 1p
05 4., v D:={a -0 3 (TEH) eis 0 —r0or} = o0

Sfurthermore if py=1 and p=2, then

o ((1—1y) if q+1=py,
Q(fiq,p,v; t) =30 ((1-0) llog(1 =)["/?). if gq+1 =py,
Ox((l—-t)(‘”"l)/") lf q+ 1 < py,

hold ae. in (a,b), as t—1~, for any increasing sequence v:={v,} of positive in-
tegers.

An investigation, pertaining to the Riesz means dealing with a question similar
to the special case when g+1=py in Theorem C, was started in [10]. These results
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are often referred to as “limit case” theorems, since the restrictions,.concerning
the parameters, py<1 and py<p are replaced by py=1 and py=4$, respectively.

Theorem D. Let x and p be positive numbers. If

3 C,2| n2/’ oo,
PN
then
C..(ﬁ *, P, V; X) = 0y (n-w (log n)'/?)

a.e. in (a, b) for any increasing sequence vi={v} of posmve mtegers

This corresponds to the case y=1/p:

Theorem E. Let B and p be positive numbers. If

FnPlP < oo,

R

]
-

R.(f, B, p, v; x) = o, (n~PI"(log n)'/P)

ae. in (a,b) for any increasing sequence v:={v.} of positive integers.

then

This corresponds to the case y=pf/p.

The aim of our present paper is to extend these results of strong approximation
to certain more general classes of strong summation methods. These methods will
include, as we shall show, a large family of Hausdorff transformations and [J, f]-
transformations. We hope that the forthcoming result will throw addltlonal light
on the common kernel of the previously established results.

2. The main result. Let a:={x,(w)}, k=0, 1, ... denote a sequence of non-
negative functions defined for 0=w <<, satisfying ' '

o

z oy (w) =

k=0

‘We shall assume that the linear transformation of real sequences x:={x,} given by

4,(9i= 3 n@)x, @~

is regular [4; p. 49]. Let y:=7y(¢) and g(¢) denote non-decreasing positive functions
defined for 0=t<<, furthermore let p:={u,}, m=0, 1, ... denote a fixed, in-
creasing sequence of integers with u,=0. We shall assume throughout this paper
that the following conditions are satisfied:
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There exist positive integers N and 4 so that

@ pon = Nep,, m=1,2, ...
22 Ymt)) = N-y(a), m=1,2, ...
(23) 7(.um+h) = 2?(#11:)’ m= la 2: eee e

For r>1, >0 and m=0,1, ... we define"

1 Pmai-1 ir
24 om(w, 1) := {m 15 (az,(w))’} .

In terms of the quantities introduced above we are ready to state our main
result.

Theorem 1. Let p=0. Suppose that there exist r=1 and a constant K(r, g, ¥)
such that for any =0

@.5) j B 0@, Y ()" = K(r, 1, 7)(2(@)3 (@))P.
if

@.6) | 2’ c2y(n)? <o,

then -

QN Aulfrvi 0= { Z (@l )~ PP = 0, (g(@)y(@)

ae. in (a,b) for any increasing sequence v:={v;} of positii;e integers.
If, in addition, for every fixed m,

(2.8) en(@, 1) = o(E(@H(@)), as oo,

then the O, in (2.7) can be repl;zced by o,.
We mention that the most important special case of Theorem 1 is when both
(2.5) and (2.8) are satisfied with g(w)=1. In this case we get that

(2.9) Ao(f,p,v; x) = 0, (y(@)7")
holds a.e. in (a, b).

3. Lemmas. In order to prove Theorem 1 and for its applications we need a
pumber of results; some were proved earlier, others will be proven here. In what
follows K will denote absolute constants and K(.) constants depending only on
those parameters as indicated.

Lemma 1. [13). If {a,} is a sequence of non-negative numbers, then

2 an=Ka, n=12,..

m=1
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hold if and only if there exist positive integers N and s so that
dpiy =Na, and g =2a,, m=12, ...

Lemma 2. [7]. Let {1,} be an increasing sequence of positive integers, let {yn}
be a non-decreasing sequence of positive numbers so that

3.1) 2N, =K, n=12, ...
I ’ "
(3.2) 2 eyl <o,

" then =
3.3) 5:,(X)=f(x) = o.(yz;}
ae.in (a,b).

Lemma 3. [10]. Let 6>0 and {3,} an arbitrary sequence of positive numbers.
Suppose that for any orthonormal system the condition

2511(2612: P <oo
n=1 k=n

implies that the sequence {s,(x)} possesses a property P, then any subsequence {s, ()}
also possesses property P.

k
Lemma 4. Let o (x):=(k+ 1) 3 s5:(x), k=0,1, ... If
i=0

g cﬁ < oo,
then =
oa b oo

(3.4) >n [ (oa(x)—Opr(W)Pdx = K 3 c&;

n=1 4 n=0
and for every p=0

b n o0

(3.5) S sup (147 3 ) — (9l rPrax = K(p) 3 -

Inequality (3.4) can be found in [1] and (3.5) was proved in [16].
. Lemma 5. Let p>0 and M<N positive integers. Let
0, if n=M,

(3.6) 5. =D 2 @)—su(x), f M<n=N,
N

e+ 5 () —su(®), if n=N.
k=M+1
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Then
3.7 Z’N f n(Gn(x)—6,-1(x))2dx = K ZN' c2,
n=M+1g . n=M+1
b N . 2/p- N
6y f T 2 me—su@-amr} =Ko > &
Proof. Let

- {Ck, lf M - k = N,
= 0, otherwise.

It is easy to see that for the corresponding partial sums 5,(x) of (1.1) we have

0, if n=M,
5() =M —su(), if M<n=h,
sy(x)—su(x), if N<n,

and therefore the (C, 1)-means &,(x) of {5,(x)} are given by (3.6). The applica-
tion of (3.4) to {;} clearly implies (3.7), the application of (3.5) to {¢,} implies (3.8).

Lemma 6. Let p=0 and let o,(x) be defined by

L 3 () =5,.()

* e p* . —
(3'9) On (X)— On (”, x) T n+1 il

for p,=n<p,.1, m=0,1,.... If (2.6) holds, then

1 Hmar—l . 1/p
3 @) =5t} = 0, () )

m+1 k=p,,

(3.10) A4,(x):= {u
ae.in (a,b).

Proof. We set M=y, and N=py,,.,—1 with m=6, 1, ... successively into
(3.8) and observe that for u,=n<p,,;, o5 (x) equals &,(x) of (3.6). Multiplying
by y(u,)? and summing over m, we get

= r o - I
3 [ 1l ah @ dx = K@) 3 90 3

The sum on the right-hand side is finite on account of (2.2) and (2.6). This implies
the required result.

Lemma 7. Let 6}(x) be as defined by (3.9). If (2.6) holds, then
() = 0.(y(m™)

a.e. in (a,b).
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Proof. Since o} (x)=0 for every m, we have

(3.11) , Jnax .Iaf(x)|2§ max ( }_"j“ lo} (x)—oF_1())? =

B =h<fip, 4y ji=n
<( Z' |6 D —aj_ (M)’ = K] Z' JIG ()= o710,
Jj= Byt =Hm+

where the last inequality is the consequence -of the Schwarz inequality and (2.1).
To the last expression we may apply (3.7) with M=y, and N=p,,,—1, since
in the required range ¢7(x)=a,(x). Thus we obtain from (3.11)

b -1

(3.12) max la,‘()c)l2 dx =K Z’ 3.

”m§k< i= I‘m+1

It follows now from'(3.12) that

g b Bmya—1
S [, max (e @Pdr =K 3 g "2 S K 3 ki <o,

i=py,+1

on account of (2.2) and (2.6). The last inequality implies the required result
using (2.2) once again.

Lemma 8.[4]. Let {,(n)}, the coefficients of a regular Hausdorff transforma-
tion, be given by

(3.13) o (n) = f [’,:) *(1— % $(f) at,

0
where ¢(t)€L’(0,1) for some r=>1. Then

3.14) g’ (A" = K(r)(n+ 1.

Lemma 9. Let {0 (w)}, the coefficients of a regular [J, f]-transformation, be
given by

. k
(3:15) : (@) = —k— f 12 (log (1/0)* ¢ () dt,
where ¢(t)€L’(0, 1) for some r=1. Then for 'l='0, 1.

(3.16) é (@) = K(r) (1 + @)~ te=tnvay=1, .
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Proof. Denote A (w, t)=(k!)"*(log(1/¢))'® and let r—'+s~1=1. By Hol-
der’s inequality we get from (3.15)

1 1
(.17) @) = ([ (@, def - [ du(o, b)) ar.
[} 0
Now, we find by an easy calculation that for k=0, 1, ...
1
(3.18) S (@, dt = o*(1+ @)1 = (14 @) temHr+e
1]
and that

S Ao, 1) = 1.
k=0
Inequality (3.16) is therefore a consequence of (3.17) and (3.18).

4. Proof of Theorem 1. First we carry out the proof when v,=k. Using ele-
mentary considerations we see that

@.1) {3 0@ 5@ -fOP} = KO (S1+ Sa+ o)

where

© Byss—l
Zi={2 2 a@ls0)-s, -,

o Bmer—1
“4.2) S = {,..;Zo . 5 % () [, (¥) —f (x)|P} e,

5={3 2 & (@) lar ()P}

Let r—'+s-'=1. By Holder’s inequality, using (2.2) and (3.10) with ps in place
of p, we get

o I‘m+1"\1 B 411
@3 2is= mé;{hzy' o (@) ""{k=2“'m |5k (%) = 5, (%) — GE ()PP =

o 1 Bye1—1 1/s
=& 3 pnta@.) =2 In -5, 0 -cir} =

= K 5 haoa(@1)- 04007,

a.e. in (a, b).
In order to estimate X', we use (3.3) with i,=p, and y,:=y(n), observing
that (3.1) is satisfied due to our assumptions (2.2) and (2.3) and Lemma 1. By Hol-
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der’s inequality

l‘mu

@4 g{ @ (7 b -y =

=‘4m

L

Z EmQm(@, 1) 0, (Y(ttm)~?),

takmg (2.1) and (2 2) into account
For estimating '3 we use Lemma 7. By Holder’s inequality

@4.5)
hied By ey—1 /s
2= 5 men@-[2"5 2or) " 2 & 3 patnnnostr )

= m k=y,

Collecting these estimations and taking account of assumption (2.5) we 1mmed1ately
get the required result (2.7) when v,=k.

If (2.8) is also satisfied, then the proof runs as follows. By (4.1)—(4.5) we have,
when v,=k, that

(4.6) Ao(fip,v; X =K Z UmQm (@, ’)Ox()’(llm)"’)
holds a.e, in (a, b). ‘

Let now &£=>0 be given. If x is a point where (4.6) holds, then let M (x)be a
positive integer such that for m=>M(x) the inequality o0,(y(¢m)~7)<€"y(Um)~? is
valid. For such x we get from (4.6) that

(@@ Aol 2,7 3 = KOS nn(@, D7 ()P} (@5 @) +

co

+Ke?(y(@)lg(@))? 3 tm@m(®, P)y(m) "
m=M(x)+1

=(x

When @—<, the first sum on the right converges to zero by (2.8); and the
second sum remains O((g(w)/7(w))?), by (2.5).
Hence, for v,=k,

@.7) A,(f,p, v; x) = o.(g(@)y(®)), as © —oo

clearly follows. Since (4.6) holds a.e. in (a, b), it follows that (4.7) also holds a.e:
in (a, b). This completes the proof when v,=k.

The statements of Theorem 1 in their generality — for arbitrary v:={v,} —
follow from the results just proved and (2.6) using Lemma 3 with =1 and

Opi=y(n)2—y(n—1)>%

5. Applications. First we treat those results which can be derived from Theo-
rem 1 in the special case when g(w)=1 and both (2.5) and (2.8) are satisfied.

7
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G) If
(5.1) Pu(l) = (Z)t‘(l—t)““, k=0,1,..,mn=12, ..

and ¢(2)c L1(0, 1) is a non-negative function with [|¢||,=1, then the matrix {o,(n)}
defined by

(5.2) a(n) = fp,,.(z)qb(t)d:, k=0,1,..,nn=12,..
0

yields the coefficients of a regular HausdorfT transformation. For these transforma-
tions we have the following resuit.

Theorem 2. Let y=0.. Suppose that .{a,,(ﬁ)} is giz;én by (5.2), where ¢p(2)e L' (0,1)
with some r>1. If (1.2) holds and

(5.3) O<py<1-—r1,

then
(5.4) {2 2 (1) 15y, (x) — f(R)PIP = o0, (n~)

a.e. in (a,b) for any increasing sequence {v.} of positive integers.

Corollary 2.1. If {u,(n)} is the matrix of a Cesaro (C, ») or a Hilder (H, x)
transformation, then (5.4) holds whenever 0<py<min (1, %).

Remark. Although Theorem 2 does not include Theorem A for arbitrary =0,
if we take into acoount the special properties of the (C, ») transformation matrix,
we find easily that Theorem 1 is applicable. For, in this case, (2.5) withg(d)=1
and y(¢)=¢ will be satisfied if we choose r(=1) so that x=>1—r-1,

Proof of Theorem 2. We wish to show that conditions (2.5) and (2.8) of
Theorem 1 are satisfied if [w]=n, y(r)=7#" and g(w)=1. From (3.14) we get

Om(@, N)Y(W) = K()u; V" @M1+,

whence (2.8) follows by (5.3). Now we observe that in this case g,(w, r)=0 if
U,>. Hence, again from (3.14),

3 lintal@, YY) 7 = KaO0=1 3 iz i0-o,

where the summation on the right is for yu,,=w. Because of the assumptions made
on the sequence {u,}, this last sum is O(w'~®"-7?), This proves (2.5). The
conclusion of Theorem 2 now follows from Theorem 1.
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Proof of Corollary 2.1. Both the (C, x) and (H, x) transforms are Haus-
dorff transforms with ¢,(2)=x(1—2)*=* and ¢,(¢t)=I'(x)"*(log 1/t)*~, respec-
tively. If x=1, then ¢;(r)€L"(0,1), for arbitrary large r, hence (5.3) will hold
whenever O<py<1 and r is large enough. If O<x<1, then ¢;(z)€L"(0,1) if

1
r~'>1-x, hence in this case (5.3) holds whenever O<py<]——<z.
r
(i) If

k
(5.5) I, 1) i"ili’%g’l)—z% k=0,1,..

and ¢ () L*(0, 1) is a non-negative function with ||¢||1—1 then the function-
sequence {x(w)} defined by

(5.6) o (w) = f/lk(w, Heo)dt, k=0,1, ..

yields the coefficients of a regular [J, f]-transformation. For this transformation
we have the following result.

Theorem 3. Let y=0. Suppose that {a,(w)} is given by (5.6), where ¢ (t)e L’ (0, 1)
with some r=1. If (1.2) holds and

.

5.7 » O<py<1-rt
then :
59 {3 %@)lsn (0~ @I = 0,(@~)

ae. in (a,b) for any increasing sequence {v,} of positive integers.

Corollary 3.1. If {4 (w)} is the coefficient-sequence of the Abel transforma-
tion, then (5.8) holds whenever O<py<1.

Proof of Theorem 3. We shall show that the conditions (2.5) and (2.8) of
Theorem 1 are satisfied in this case with y(z)=¢" and g(w)=1. From (3.16) we

_obtain
0, V(@Y = K()p¥r =10,

whence (2.8) follows by (5.7). Also from (3.16)

K(r '
(5.9 Z‘ UmOm(@, P P7 = _(_1_-*_7()_)%__1_/'__.”25'(0 ”}"—(1#)—” = K(nw ",

Bp=© m
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due to the assumptions concerning {u,,}. Finally, again from (3.16),

- | W sy
(510) ) - Z umgm(w,r)u,;”élK(r): Z (—h!zo—] e 14‘"’. ! ')ll;p’é

B> Bpy>® 1+

= K@) 2 w7 =Ko 7,
P> ®
due to the fact that xe™*<1 for x>0 and the properties of {u,}.
Inequalities (5.9) and (5.10) prove (2.5), hence Theorem 3 is a consequence of
Theorem 1.

Proof of Corollary 3.1. If $(¢1)=1, then oi(w)=o*/(1+o)* for k=
=0, 1,..., which yield the classical Abel transformation. In this case, clearly,
¢()eL™(0,1) for any r=0, hence the result follows from Theorem 3.

(iii) If the function ¢(¢) in (5.2) satisfies
0= (1) =K@,
with B=0, then it is easy to see that
(5.11) a(n) = K(B)

for 0=k=n, n=1,2,.... Using (5.11) one can establish by easy estimations that
in these cases (2.5) and (2.8) hold whenever y(#)=¢, g(t)=1 and O<py<p. For
example if ¢(¢)=pr#"1, then

(+ 11
(n+1)f

n! rk+p)
rn+p+1) k' 7

o(n) =B k=0,1,...,n,

which yield, essentially, the Riesz transformation of order f. Hence Theorem B
follows from Theorem 1.

(iv) If the function ¢(¢) in (5.6) satisfies

1 q
0= ¢(n = K(q) [log—t-)
with ¢=0, then easy calculations yield that

(k+1) [ w )"

(5.12) %(@) = K@) e (o1

for k=0,1,.... Using (5.12) it is not difficult to show that in these cases (2.5)

11\4
log—'] B

1
and (2.8) hold whenever O<py<g+1. For example, if ¢ (¢ =————-(
(2.8) pr<q p $(1) TaiD -
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g=0, then

(@) = (@+ 1)-4-1["29)-{0%1)*, k=01, ..

which yields the generalized Abel transforms of order g+ 1, g=0. Hence the first
statement of Theorem C with the relaxed condition O<py<g+1 follows from
Theorem 1 for all ¢=0. ,

It seems worthwhile mentioning that Theorem 1 with suitable choices of y(z)
and {u,,} can also be applied to strong approximation by certain Nérlund and Riesz
means having the form

n— : 1/p
Nitipi = {7 5 (=R = 2= k= ) s )~/ (P}
and -
1 m-1 1p
R ps 0= {7 2 (4 D= 20) )7 )

where A={A(n)} denotes an increasing unbounded sequence of positive numbers
satisfying
Am@)=cn® or Am)—A(n—1) = A(n)n—°

with ¢>0 and &=0, respectively.

Furthermore, the function y(¢) chosen as ¢’ in Theorems 2 and 3 could be
replaced by functions of the form y(z)=¢"(log ¢)f.

Next, without proof, we mention some further applications of Theorem 1
with g(w):=(log (1+w))"?. The proofs would run as in the previous cases. These
special cases of Theorem 1 include certain parts of the so-called limit-case theo-
rems. For example Theorems D and E, moreover the second part of Theorem C
quoted in this paper, belong to these cases. '

(v) Let {x,(n)} denote the coefficient matrix of a regular Hausdorff transforma-
tion with ¢(#)eL*(0, 1) for some r=1.

Theorem 2*. If (1.2) holds and py=1—r~2, then
{3 axmls, () —f P = o,((lognytien=7)
k=0

a.e. in (a,b) for any increasing sequence {v,} of positive integers.

This result (r=-o0) includes the special case x=1 of Theorem D. Similarly
it includes the special case f=1 of Theorem E.

(vi) Let {a,(w)} denote the function-sequence of coefficients of a regular [7, f]-
transformation with ¢(¢#)€L7(0, 1) for some r=1.
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Theorem 3*. If (1.2) holds and py=1—r~1, then

{kg ak((l)) Isvk(X) —f(x)ll’}l/? —_ 0;((10g(1 +(U))l/pa)—7)

a.e. in (a,b) for any increasing sequence {v;} of positive integers.

Theorems 2* and 3*, because of their generality, do not yield the limit-cases
included in Theorems C and E. However, if we take into account the special prop-
erties of the coefficients of the Riesz and the generalized Abel summation methods,
as appear under (5.11) and (5.12), then our main result, Theorem 1, yields the results
for the above mentioned cases as well.
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On the central limit theorem for series with respect
to periodical multiplicative systems. I

S. V. LEVIZOV*)

Introduction. It is well known that many important properties of independent
random variables are transfered on broad classes of various orthonormal systems.
The questions concerning the statistical properties of lacunary subsystems of ortho-
normal systems have been studied by many authors. For the trigonometric systems:
the first result in this direction is due to SALEM and ZYGMUND.

N
Theorem ([13]). Let SN(t)=k2 a, cos 2nm (t+w,), where {n} is an infinite
=1

Mgy
ny
(so-called Hadamard’s lacunarity); furthermore let {a,} be a sequence of real numbers

such that

sequence of positive integers satisfying the condition

=i for certain A>1

N
AN = {kg;. a’2‘}1/2 — oo, aN = O(AN) as N — oo,

and {0} be an arbitrary sequence of real numbers. Then for any set EC[0,1] of
positive measure and for any x€R we have

N-+eco

- 1 1 x 2
fm g7l €8 5,0 = x4} = o= [ewn(-5) e

where |E| denotes the Lebesgue measure of E.

This result is called central limit theorem (abbrev. CLT for lacunary trig-
onometric series and it has been generalized by many ways ([1], [15]—{16]).

For Walsh—Paley’s system {/¥(x)} the first analogous result was achieved in
[12] and afterwards it was extended in [2]—[3], [7].

*) This paper was written during the stay of the author at Bolyai Institute (Szeged, Hungary)-
in the academic year 1989/90.
Received November 16, 1989.
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Theorem ([3]). Let us assume that a sequence {n,} satisfies the conditions

Meyy < - -y l _ .
(1) n—k'_—_l'f'ka, c 0, 0:(!:2, k—1,2,...,
and {a;} has the properties
N
) Ay = {3 ai}'* -, ay = o(dy- N,

Then for any xcR we have
. y 1 4 22

In {7] it was remarked that under hypothesis (1) the second condition of (2) is
necessary for the validity of (3).

The purpose of the present work is to study the CLT for weakly lacunary series
with respect to the generalized Walsh’s functions, i.e. for so-called periodical multi-
plicative orthonormal systems (abbrev. PMONS).

We recall the definition of PMONS following the survey paper [6].

A sequence of functions X={y,(x)}>, is called multiplicative system if the
following conditions are fulfilled:

a) if x.(x), y(x)€X then the product x.(x)-x(x)=yx(k, !, x) also belongs
to X;

b) if x(x)€X then {y.(x)}~* belongs to X, too.

The system X is called periodical if for every n=0, 1, ... there exists an integer
k, such that {y,(x)}*»=1.

We shall define a periodical, multiplicative and orthonormal system X which
will be considered later on the interval [0, 1]. This system can be numerated in the
following way (see [6]): there exist integers

0=m_1<1=m0<m1<m2...

mn+1

and functions y,(x)=1, xm°(x), xml(x), ... such that the quotients =Pus1

n
are prime numbers *) and every functions y,(x) of the system X has the represen-

tation

x(x) = ]Io {Am; ()},

i=

*) We remark that p, has not to be a prime number necessarily.
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provided that k is expressed in the from
k = j:)a,-m,, where 0 =oa; <p;4., k=0.
j=
The choice of {xm"(x)} may be also ambiguous, but we suppose that it is made
by certain determined manner.

We shall study the properties of the series having the form f @ ¥a, (x), where
k=1

{m} is a sequence of positive integers such that
@ %; 1+w(k) for k=12, ..,
k

and {w(k)} is a non-negative, non-increasing sequence such that
) k*-w(k)te for some o, 0 <a < 1.

Finally we assume that the sequence of the coefficients {a,} satisfies the con-
dition

© Ay = {3 atye e
k=1

We shall consider the following sum

™ Ty ()= Aiz" )

Further on the sequence of the complex-valued functions 7 (x) will be under-
stood as a sequence of two-dimensional random vectors. These vectors are defined
on the probability space (Q, &, P), where Q is the square [0, 11X[0, 1], & is
the o-field of all Borel-measurable sets on © and P is the Lebesgue measure on &,
The components of the vector Ty(x) are the real part and the imaginary part of
the function Ty(x). If it will be necessary, we shall represent the vector Ty(x) in
the form

Ty(x) = (& (%), SR (%)),
&v(x) = Re{Ty(x)}, &R(x) = Im {Ty(x)}-

In the case of the trigonometric system (or the Walsh’s system) the CLT was
proved by a direct proof showing the convergence of the sequence {Ty(x)} to the
normal distributions. But in our case the corresponding distributions have two-
dimensional character and it requires a special approach.

We shall require some informations from the theory of probability. The ter-
minology and the facts are taken from [14].

where



336 S. V. Levizov

Definition 1. A random vector ¢=(&y, &, ..., &,) is called normally dis-
tributed (Gaussian) if its characteristic function ¢,(¢) has the form

Pe(t) = exp{i- {t, m)——;—(Rt, t)},

where m=(my, m,, ..., m), Im)<oo; R=|ryll is a symmetrical, positive semi-
definite matrix, the dimension of which is equal to nXn; (.,.) denotes a scalar
product. For brevity we shall use the notation &~ A" (m, R).

In this connection m is a vector of mean value, i.e.

m,=M¢ for k=1,2,..,n;
and R is a covariance matrix, i.c.
ra = M{(&—ME)- (E—ME)} = cov (&, &); k,1=1,2,...,n
| Here the symbol M¢ denotes the mathematical expectation of random variable

¢ and ry; are the elements of R.

Definition 2. If there exists a two-dimensional Gaussian vector T(x)=
=(£(x), €2(x)) such that the sequence of random vectors T (x) weakly converges
to T'(x) as N- <o (in distribution) then the subsystem {a, In, (x)} is called the subject
to CLT. We denote these facts as follows:

Ty(x) 2> T(x) and {ayx, (x)}  CLT,

where the symbol —¢» means the weak convergence.
In other words, there exist a vector m=(m;, m,) and a covariance matrix
R=|rylt; k, I=1, 2; such that

Ty(x) 2> #(m,R) as N —oo.

1. The main theorem. Let the PMONS X= {y,(x)},—, be defined by means of
the sequence {p,}. As earlier, we assume that my=1, m, ;=m,-p,11; n=1,2,....
The functions y,, (x) are used as ““basis” elements in the system X. The set of the
functions y,(x) having the index-number from m, to m,,,—1 (inclusively) will
be called the “n-th block of X’ and denoted by [m,, m,,). Also let us define the
operations of addition and subtraction on the group of non-negative integers ac-
cording to the following rules:

m=k+l if pu(x) = 0(x) 0(x);
m=kel, if 10 = 00) 60D

where yx,(x)={x;(x)}~! denotes the complex conjugate function of y;(x).
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To formulate the further results we shall introduce some additional concepts.
Let y,(x)€X. The number s is called conjugate to the number k, if s4k=0 (ie.
1s(®)=1x(x)). The coefficients at the conjugate functions Xa, (¥) and g, Yo (%) (if such
pair there will be in our subsystem {x,, (0} will be denote by a, and &,, respec-
tively. :
Furthermore let the numbers q, r be given such that m,=gq, r<m,,, for
some n. Suppose that g+r0 and let /=min {i: 0<gq+r<m;.,} (/ can be equal
to 0,1, ...,n). In this case we shall call the numbers ¢ and 7'(/, n)-adjoint. ’
If a sequence {n} is given, then, in general, there exist both conjugate and
(l, n)-adjoint numbers in {}. The quantity of the conjugate pairs (n,, n,), wheré
=g, r<m,,, will be denoted by 4, (in addition, we suppose that the pairs (n,, n,)
and (n,,n,) are distinct if gsr). The value 1.(g) will be defined as quantity of
the numbers n, being (/, n)-adjoint with n, for a fixed g.
Finally, for given sequences {n,} and {a,} we put

f(0)=0, f(k)=max{i:n,<m}, k=12, ..

f(k+1)

(1.1) 4i(x) = > 8ixn(X); By = Asuinys k=01, ..
i=fk)+1

b, = max {la;|: f(k)+1 =< f(k+1)}; 6, = f(k+1)—f(k).
Remark 1.1. If for some k f(k)=f(k+1), then we assume that A4,(x)=0;

By=By_y; 6,=b=0.
Now we can formulate the main statement of our work.

Theorem A. Suppose that for a given system X the corresponding sequence
{p.} is bounded. We also assume that the sequences {n.}, {w(k)} and {a;} satisfy
conditions (4)—(6), respectively. Additionally if

a)
b) there exists a real number n, 0=n=1 such that
1 rorn
(1.3) hnc}oB_?v ? (aj‘ aj) =1,

where the summation is taken for all conjugate numbers being not greater than

Sf(N+1);
C) there exists a constant C>1 (independent of q,7) such that for any fixed q
and for any j, 0=j=k—1

(1.4) H@)-o(f(k) =07 as k—+o
holds, then the subsystem {ax, (x)} is the subject to CLT.
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It is easy to see that Theorem A will be proved if we can show the existence
of a vector m=(m,, my) and a matrix R={r,l; k,/=1,2; such that

(1.5) Th(x)L H#(mR) as N —eoo.

2. Lemmas. First we shall recall some further facts of the probability.

Definition 3 ([14], pp. 467—474). Let {l,} be a certain sequence of indices
and {X,;; n=0,1,...; 0=i=]} be an array of random variables on the prob-
ability space (2, #, P). Let {%, ;; n=0,1,...; 0=i=I]} be any triangular array
of sub o-fields of & such that

FioiCF,, forall n=0,1,...; 1=i=l,.

Then we shall call the array {X, ;} a martingale difference array (briefly MDA) with
respect to {%, ;} if X, ; is &, ;-measurable and M {|X, |}<e, M{X, |Z, ;-,}=0
almost everywhere (a.e.) for all n and i=1 (the definition of the conditional expecta-
tion with respect to o-field can be found in [14], p. 227).

Definition 4 ([14], p. 204). The class of random variables is called uniformly
integrable if
sup M{|Cl - Ig 1> = 0 as ¢ o

Now we shall prove some auxiliary assertions.

Lemma 2.1. On the probability space (2, F,P) let the sequences {T.} and
{&.} of random variables be given such that

a) {T,} is uniformly integrable;
b) {50 as n—o;
c) {T,- &} is uniformly integrable.

Then T,-&,-2-0 (here -2~ and -L:> denote the convergence with respect to prob-
ability and L,-metric, respectively).

Proof. Let ¢=>0 be fixed. By virtue of condition c¢) there exists 6(¢)=0 such
that for any néN and AcC % we have

1) ST &ldP=e
A
if P(A)<é(e).
Furthermore, by condition b) there exists N such that for all n=>N

22) P{iE,| > €} = 6(c).
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From (2.1) and (2.2) we conclude that for n>N

|7, &0l dP = &.
{I¢al>2}
Therefore by n=N
2.3)

[Im&ldP= [ + [ = [ |L&ldPre- [IT|dP<s+e [(T,|dP
-2 Gal=2}  {I4nl=¢} HIMESH Q 2

Since {7;} is uniformly integrable, therefore

sup [IT;|dP<e
2

(see [14], p. 206). Hence, taking into account (2.3), we obtain the assertion of
Lemma 2.1.

Now let X, ;=(uy, j; Vs, j); n=0,1,...; 0=j=n be the set of random vectors
on the probability space (2, #, P); &, ; be the set of sub g-fields of # such that
foralln,j (n=0, 1, ...; 0=j=n) the variables X,, ;are &, ;-measurableand %, ;_,C
C&, ;-

Put

@4 Ti= [[ (14K X,,),

where symbol i denotes the imaginary unit, f=(t,,1,) is any vector, and (., .)
denotes scalar product.

Lemma 2.2. Let the sequence {X, ;} satisfy the following conditions:
a) max |X, ;| £-0 as n-—eoo;
J=n

b) there exist constants u, v, &, such that
2 (n, 2 s 3 (v, ) F> v;
j=o0 Jj=0 :

Z (ﬂn,j 'vn,j)L’ é’
Jj=0
c) for any vector t=(t,t,) the sequence {T,} is uniformly integrable and
M{T}~1.

Then S,= 3 X, ;% N(0,R), where R=[irk,]|=(g f]
j=o
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Proof. We use the relation

exp (ix) = (1 +ix) (exp {—§+r(x)}] L. where |r(x)] = |x®

for all |x|<1.
Let

Voi=exp {i-(1, Swy}

and

= exp{ -5 30 X+ Zr(c %)

We have
¥, = exp {'-<f’ X)) = exp{i- <’ Xo. 0} =

= T-ep{-7 émnWﬂgwan

‘_. T, exp {—— {t, Rt)}+T [ —exp {—‘— <t Rt)}]

By virtue of a theorem about the connection between the pointwise convergence
and the convergence of corresponding distributions (see [14], p. 343) for the proof
of Lemma 2.2 it will be sufficient to show that for any ¢=(4, %)

{2.5) M{|V.I} - exp {——;— {, Rt)}.

Since M{T,}—1 thus we have to verify only that

(2.6) T, [U,,—exp {—% {, Rt)}] Lo
First we show that
Q.7 U, —exp {--;- {, Rt)} 2. 0.

According to b)
3 X P2 (R,

Furthermore

[ 3 r(t X, )| = 1P 21X, ;1 = 11° - max | X, |- 3 |X, [*2-0,
=) i=0 - J=n =0 "

50 long as

N

I
©

ot = 30 ) 2 ey
1=

J
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and max [X,, ;-2~0 by condition a). This implies that

U, - exp {—-—21- {, Rt)},
re. (2.7) is valid. . -
Since {T;} and {¥;} are uniformly integrable (the uniform integrability of
{V;} follows from M {|¥V,|?}=1), -thus the sequence of values

Nn:=V,—T,-exp {—-;—- (, Rt)} =T, [U,,—exp {— (t Rt)})

is also uniformly integrable as a convex set of uniformly integrable sequences (e.g.
see t1: 3 27).

By condition c), relation (2.7) and the uniform integrability of {i,} we can

1
see that for the sequences {T;} and {U,,—exp {_E {, Rt}}} all of the conditions

1
of Lemma 2.1 are fulfilled. (F.or it is sufficient to put &,= U,,—exp{—i (, Rt}} )

Applying Lemma 2.1 we obtain (2.6) and moreover (2.5). Consequently the proof is
complete.
The next lemma is basic for the proof of Theorem A.

Lemma 2.3. Let {X, ;; %, ;} be an MDA satisfying the conditions:

a) max|X, ;| is uniformly bounded (in Ly,-norm);
j=n
b) max|X, ;| & 0;
J=n
c) there exist constants u,v, & such that
n n n
2 (ﬂn,j)gi’ B Z (Vn,j)2L Vs Z (ﬂn,}' V,,J)L ¢
j=0 j=o j=0

where 1, ;; v, ; are the components of random vector X,,. Then

- S 4, _fr &
S,,—]g;X,,,, A(0,R) where R_(é '1).

Proof. Let us define the sequence {Z, ;} in the following way: -

Jj—1
Zn.]::: Xn,.i .I(k;(; IXn,kI2 = 2([1-{-1’)),

where 1(A) denotes the characteristic function of A.

8
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It is clear that {Z, ;; %, ;} also represents an MDA and

2.8) P{Z,;* X, for some j=n} = P{3 |X, I* > 2(u+v)} ~ O,
: P

since |X, ;|2=(u,, ))*+ (v,,;)*, and according to c)

_Z; |‘Xn,j|2"L> l‘ +v-
J=

Therefore {Z, ;} also satisfies the conditions a), b), c) of Lemma 2.3. Now for any
1=(4, t,) we.put

T,:= Q)(l+i'<” Z,. )

Then M{T,}=1 for all n, because {Z, ;; %, ;} is an MDA.
Put

J n
min{j=n: 3l = 2] 3 sl = 200+
= K=

n, otherwise.

We have
MUTEY = MU (10 20} = M{emp [P S 1%, ]

X[+t X, 501} = exp {2042 (u+v)- [1+ 112 - M{| X, ;. 13]}-

The right side of the last inequality is uniformly bounded (by condition a)).
Therefore the set {7} is uniformly integrable (see [14], p. 207). Taking into account
b) and c), we can see that for {Z, ;} all of the conditions of Lemma 2.2 are fulfilled.
Therefore

> Z, ;4 #(O,R),
0 .

j=

whence, by means of (2.8), we obtain

Sn = Z Xn,ji"/V(O: R):
j=o
which completes our proof.

Remark 2.1 (see [10]). Lemma 2.3 is the two-dimensional extension of
Mc. Leish’s theorem.

3. Preparation to the proof of Theorem A. We shall suppose that the sequence
{p.} is bounded. Using notations (1.1), we can select for any N a number k such that

3.1 flk) < N=fk+]).
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Then
T, 1 3 By 4; S
n =7 Ay ln =0 x)+— m X, \X)-
() Ayx m=a T (%) Ay Bk 1 ;;; () AN m—f(2)+ Xom (%)
Put
. %
3.2 Xy i= é(_xl’ Si= Xy k=0,1,...;i=0,1, ...,k
B, i=0
We rewrite Ty (x) in the following form:
B,_ 1 N
TN(X) = 2 Xk 1, it—— 2 aanm(x) =
Ay iSo Ay m=f®+1
B,_, 1 N
= S + m n X}
A k—1 AN m=fH+1 X m( )

Hence, in order to prove Theorem A, it is enough to show that
(3.3) there exist a vector m=(m;, m,) and a symmetrical positive semi-definite
matrix R=|ry,ll; k, /=1, 2; such that

S, 2 N (m, R);
By—1 )
(34) Ay L as N — oo,
l N
(3.5) —_ Oy X, (X) = O.
Ay m=f@+1

Assertions (3.4) and (3.5) follow from conditions (4)—(6) and (1.2). Now we
show our assertions.

Lemma 3.1 ([8]). Let sequences {n} and {w(k)} satisfy the conditions (4) and
(5), respectively. Then

1
(3.6) 6 =0 {m},
3.7 Fle+ D~ f(R), as ke
3.8) co(f(k)) = O{m(k+ 1))}.
Further, using (3.1), we have
Bk-l By,
1= 4= 1";“ = 0.

In order to verify (3.4) it is sufficient to prove that

By,

B, - 1.

(3.9)

8
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By (1.2) and (3.3) we get

S(k+1)

B, -1 1
1—[—2) 32(32 B y=— 3 ag,gB—

Ial <O) =
B, B m=fi 11 " }

{f(k)<m5f(k +1)

1 B} - (o(fK))F) _ _
~ 50 {_W} = ofw(F ()} = o(1),

consequently (3.9) and (3.4) are proved.
Furthermore (1.2) and (3.9) imply that

1 - X 1 S+1) 1
— 2 anta, )| = . (@l = = {b- [f(k+ 1) —f(R)]} =
Ay m=fG 1 By 1 m=fio+1 -1

1 1 1
= —B—k_—l-o{Bk-w.(f(k))}-O {w(f(k)) } =B co(By) = o(l), as k —oo,

and by the previous reason (3.5) is proved.

Since the functions y,(x) are two-dimensional random variables, defined on
(2, #, P), we shall denote by &, ; (k=0,1,...; 0=i=k) the sub o-field of #
generated by random variables {xm’(x): O0=s=i}. In this case the values X, ;(x),
defined by (3.2), are % ;-measurable, %, ;.,C% ; and M{X, % ;-,.}=0 ae.
for all k,i (1=i=k). These evidently follow from the properties of our system.

In addition, we remark that

¥ i — X i X = __ b X = a.; dx =
k, 3 k, B i=f@)+1 !

égrwa=%;d&m0@%{wﬂm}t%i]om:mk»w

Therefore M {|X, |}<< for all k, i. Thus, the sequence {X; ;;%.;} represents
an MDA and in order to prove (3.4) it is sufficient to verify the validity of the con-
ditions of Lemma 2.3 for the sequence {X; ;}.

Using the multiplicative property and the orthogonality of the system X, we get

1 K
M{ max |X; ;| } 5 f Jnax [4;(x)|2dx =
k =i{=

0=i=k
1 1 5 . B
s o= [ Jlditde = Tzfumzf¢;h
Bk o =0

which means that condition a) is satisfied.
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Furthermore,
1 1
= . . = e . =
ax | X, .I "B, 2 4:(x)] = B, 2%, SUp [4i(x)} =
1 FG+1) 1
= —. max la,| = — - max ml - 03} =

m
B, os:sk,,,_}z(’:)_,_l " By Oéiék{f(z)<msf(:+1)

1 1
-5 olglax{ (B;- o (f())- o(w( f(l)))} B, % 0B} = o), as koo,

and this proves b). _
For the direct proof of condition c) we require some lemmas.

Lemma 3.2. Let the sequences {n}, {w(k)} and {a} satisfy conditions (4)—(6),
(1.2), respectively. Then

1 N 2
—= > |A(x)|*=1] dx =0(l) as N .
N K=o

f 1
0 B2
The proof of this lemma can be found in [8] (replacing only the symbol O by o),

Lemma 3.3. Let the sequences {n}, {w(k)} and {a.} fulfil conditions (4)—(6)
(1.2)—(1.4), respectively. Then

fIBz ((Ak(X))2—l1) dx=0(1) as N —oco.

. Proof. The next equalities are evident

(3.10)

f

2 (o] ax / {2 (40 —nBR}{ 3 (B —nBy} i =

1 1 N 9 N _ 2 . N . N _ . R
— [ g2 @0 5@ —nBh- (3 B0+ 3 (B)+o°BA] | d =

1 1 N 1 N _
= 5 J1Z @0 ax—ni [ 140+ @) dx -+ B4},

since

N N
D)= S and 7=n.
K=0 k=0
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Let us evaluate the values in the brace. We have
1 N N N~ 1 _
(3.11) [13 @dx = 3 3 [ (43 8pax.
o k=0 k=0 j=0g

1
The terms of the type f (43 - 4%) dx, in turn, consist of the summands containing
; .

the expressions of the species
1
(3.12) I Otng A, * Ty * o)
. 0

(with corresponding coefficients), where

JEK) <gqr=fk+1); f(D<hi=fG+1); 0=kj=N.

Each of the integrals is equal to zero or one (by virtue of the multiplicative
property and the orthogonality of the system X). We have to estimate the quantity
of the non-zero summands. Let k=j (the case k<j can be treated similarly).
Arguing the same way as in the proof of Lemma 2.4 in {8], we conclude that the
functions y,(x)= Xn, (x) - %, (x) belong to a block, number of which is not larger
than j (otherwise the mtegral (3.12) will become zero). Therefore the numbers n,
and n, have to be conjugate or (/, k)-adjoint (moreover 0=/=j).

Now we rewrite the previous equality in the form

1 N N 1 N 1
[1Z@ypdx = 3 [ (4-3)dx+ 37 [ (43 D}y,
g k=0 kj=0§ © kJj=04 :

where the symbol > denotes the set of that summands, for which the numbers
n, and n, are conjugate in the fourfold product n,* X, * Xn, " Xn, and the symbol 3"
denotes the set of all other summands.

In the sum 3" we have to consider only the summands, for which n,4»,=0
and n,4n,=0 simultaneously; other summands, are equal to zero, because for
them the equality

an * Xn, 'in,. ° in.- =1
does not fulfil.
Therefore,
S(N+1) f(N+1) S(N+1)
2 f(A2 j)dx = %' 2 (ak’ﬁk)'(aj'dj) = { %' '(ak'dk)}z-

k}Oo‘ F]

Using (1.3) we get

N 1 a
(3.13) > [ (43-Adx = n*- By +o(BY) as N —eo.
kj=0 ¢
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In the sum 2” we select theé summands for the cases k=j, k>_] and k<j

]00

2, — 2, L4 2
(3;1«.4) f(A Hdx- z j(a t)dx+k2(') zf(a A)dx+

z_' f (83-Ap dx = L(‘)+L(2)+L(3)

Now we have

(3.15) LY = 2” f (4% Bpdx = 2' f 143) dx = 2 f (14,1 dx.

k=04
Since
Sk+1) ) flk+1) . Sk+1) Sk+1) .
4= 3 e, 2 da= 2 af > atn-In}
q=f(K)+1 r=f(k)+1 q=f{k}+1 r=f(!€)+1

therefore, applying Minkowski’s inequality, we obtain

([ aarradn= 7S 0 {1 7S

;an N Zn,.l2 dx}ll2 =

q= I(k)+1 r= I(k
f(k+1) ! f(+) ye  T&sD
=  arn f dx ? = |ag) azjue,
q= f(k)+1 {f lr =f@)+ ' } q=/%+l) {r =f)+1 o}
Hence,
(3.16)
Sk+1) N fk+1)
zf(lAkr")de—Z{ laf}? "5 als SBid)X > & =
=0 g=7(k)+1 r=f(F)+1 K=0 r=f®+1
Sloweavin ol - 50w = Sowm:- S
= w R a', D ar =
k=0 d o(f(k)) =B K=o r=f(E+1)
N f(k+1)
=o(BY)- > > at=o(BY)-By=o(BY) as N-—o
k=0r=f(k)+1 : .

{(we used relations (1.2) and (3.3)).
Passing on to the estimation of L in (3.14), we remark that

Slkt1) S+t

1 1
J@raar= [ (75 an (3 ot ds

g=s(k)+1 h=f(+1

FH+1) Fk+1) G+ fG+y
@17 f( S Gt D Gt (D Gdm D Gifn)dx =
a=f(k)+1 r=f{k)+1 h=£()+1 i=fG)+1
Jk+1) FU+1) S(k+1) I(H—l) I

= 2 aq Z ay 2 -4, a; f (anx",Xn;.XR;)dx
a=f(k)+1 b= (G)+1 r=f(k)+1 —-f(J)+1 0
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- As it was mentioned above, for any non-zero term .of > ‘there should exist
an (/, k)-adjoint of the numbers n, and n,. Therefore the total quantlty of the ap-
propr;ate pairs (n,, n,) is not-more than M 1(g). :

Under fixéd mdlces g, h and for any selected number n, , theré exists not more
than one number n; such that

an'Xn,'in).‘in; =1
Thus, by (3.17), we get the estimation
Y S C e SO (2=
(3.18) [ 3-Adx=by- 3 lal-M(@)-b; 5 lal.
¢ g=f®)+1 h=fD+1
By Cauchy—Bunjakowski’s inequality and by (1.2) and (3.3):
S+

b > la,) = o(By- CD(f(k))){ 2 05}"2‘(5::)"2.:

q=S(k)+1

= o(Be- (7 (k) -0 e Y f(k))} { [ 14 )lzdx}w

-~

.= o(By- Yo (k) { f ',IAk(x)I"’dx}m as K —oo.
0
This implies that under the realization of (1.4) the next relation holds

[ @ 3dx = o(B- Vo FI0) - { [ 1400 dx}¥*x

Xo( (f(k») o(B; VoGO -{f 14,2 dxf” as - k ~os.
Hence, ’

1p = 25 o V() 0 (;,%@] o8, VST

! 2 1 12 V2 — | 1
A f o e —aony 3 5 0

><{0f IA,‘lzvdx-of|Aj|2dx-co(f(j))}m as N —oo.

Let us show that [P =0(B%) as N-<. It is sufficient to show that

1

S oL ([ \ardx. [ 1a,0d V2 OB}
22 Vw(f(k)) {f| 2 dx. f| Adx-o(fGN} = O(BR).
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k-1 )
Consider the sum 2 C'~*.w(f())). Since k-w(k)te, thus for any natural

1=2 we have

vow =[5 ol(54) = 35054

from which
(3.19) [["‘D 2“’(") =12 ..,
{the symbol [x] denotes the integral part of x).

(3.20) Sfk+1) <

By (3.7) there exists a number M such that if k>M then
[IC+1

[S5Ls w].

Relations (3.19) and (3.20) imply that if t=[C+1]=2 and k=M, then

o(f(k+1)) > ([ [C+1] f(k)]) _ (k) _ 20(fK)

[Cc+11 - C+1 °
ie. w(f(k))<—c%-w((f+l)) as k=M.
Therefore
oro) = (S " ey it k= m,
* and thus
3.21)

i . K (C+H1Y
S ora(fi)< 3 (_2C )

ji=

o(fk) = Ofo(f()} as k —~co.
On the other hand
écj—k‘“’(f(j)) =0(C% as k —oo.

At the same time, by (3.20), we have
k&) <C-flk—=D) <..<CM-1.f(M+1) if k>M+1,

hence

JM+1) 1

=T T =0{f(k)} 0 {o(f()}

since f(k)- o(fU)= as k- oo
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So

(3.22) “*. o(f(j)) = 0{o(f(k)} as k~m.

Mz
()

I
-]

J

By (3.21) and (3:22) we obtain that
(3.23) ,-2.,1 Ci=*-o(f(j)) = O{o(f(k)} as k —o.

Applying Cauchy—Bunjakowski’s inequality, by (3.23),

j_k'— ol 2d
k;l'.jg:) ¢ l/w(f(k)) {f |4i* dx - f |4;1* dx - w(f(!))}

||[\42

Z{o(rw) - {f 4 (5 Ot o (F)
L= Cos 12 N Ry ‘1 Y e N2
X{é’) Ci -f|Aj| dx} =0{k§;(f|4k| dx] (é’) Poli 'flAjl dx] }=
- oG ) 1ara (Z 3 o f i) -

N-1 1
= O((B3)":- 4,12dx)'"®) = O(B%).
(B (goaflkl x)'"*) = O(B%)
Thus, the relation L’=0(B%) is proved. The proof of LY=0(B%) runs

similarly.
Using these relations, by (3.15) and (3.16), we get
3.29) " f (4;-3%dx = o(BY) as N ~eo.
k, j=0 o

By (3.13) and (3.24) we have

(3.25)

W} dx = nBY + o(BY) as N oo,

Now let us consider the value
1 N _ » N 1 1 _
[ p+ap)ax = S{f @orde+ [ @D dx}.
0 k=0 k=0 "g 0
1
The terms of the type f (4,)*dx consist of the summands of the species
(1]

1
[ (@48, ,) dx,
0
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where the functions g, and: Xn, belong to. the k-th block. The quantity of non-zero
summands of this species depends on the number of conjugate pairs (n,, n,) in the
k-th block. Therefore, using (1.3), we have

N 1 S(N+1) :
(32600 3 [(Mrdx="3 (a-d&)=nBi+o(Bi) as N oo
k=0 k .

Analogously
N

3.27) 2’ f(Ak)dx =yBy+0(B}) as N —oo,

Finally, substituting estimations (3.25)—(3.27) into (3.10), we‘ receive that

1

/

1 X :
BT 2, (40| dx = —{'12 Bl o(BY) B - (20B% +o (B, ))+Biy -} =

= ?14; (1 BY—2n2BY + 1By +0o(BY)} = o(1) as N —oo.

Thus Lemma 3.3 is proved.

4. The proof of Theorem A. Lemmas 3.2 and 3.3 imply that if the conditions of
‘Theorem A are fulfilled then

— ZlA,\z—l 2,0 and — Z(A,)z—n——().
B B

Regarding the definitions (3.2), we obtain
k k
‘(4'1) _2:)|Xk,j|2L 1 al’ld .Z(;(Xk’j)z L" '1.
J= Jj=

Now we show that (4.1) implies the realization of conditioﬁ c;) of Lemma 2.3
(for the sequence {x, ;; % ;})-
Let X, ;=Qu, ;> v, ); k=0,1, ...; 0=j=k, where

I'lk,j = Re {Xk,J}; vk,j = Im {Xk,j}‘
1 X, 12 =, ;)2 + (0, )%
(Xe, 3 = {(ua, 2 — i 1)} + 20 (i, 5+ Vi, )

«(here i denotes the imaginary unit).
Substituting it into (4.1), we get

“Then

{4.2) . ,é:) {Gu, 1)2 + (Vk,j)z} .1

(43) jé; {(;u'k,j)2 — (vk,j)z} + 2y, ;o vi ) 2 1
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Adding and subtracting equalities (4.2) and (4.3) we conclude that

k .
> n, 2 5L
k 1 — "
(44) Z (Vk J)Z £, —2— N
Jj=0

Relations (4.4) show that Lemma 2.3 is appllcab]e for the sequence X &)
It implies the validity of (3.6). Thus we have

\ ,
Si= 2 X, ;2 ¥ (m,R),
~

_ 1 (1479 0]
where m=(0, 0), R_E( 0 1-n)

Finally, taking into account the definition of the value Ty(x) and relations

(3.4)—(3.6), we obtain that
Tn(x) 2~ A (m, R),

1 1
where m=(0,0), R={r,l, "n=‘2—(1+"7), rip=run=0, "zz=3 (1—n).

Herewith Theorem A is proved completely.

Remark 4.1. The foregoing proof implies that if our system X={y,(x)}7.,
is real-valued then 4,(x)=4,(x) and the assertions of Lemmas3.2 and 3.3 co-
incide, therefore we have n=1 (because ¥,(x)=y,(x) for all n). Then, in the
case of Walsh—Paley’s system, the realization of condition (1.2) already is suffi-
cient. Condition (1.3) is fulfilled automatically (y=1)}, and condition (1.4) is furnished
by conditions (4)—(6) and (1.2) (see, e.g., the proof of Lemma 2.4 in [8]). The co-
variant matrix in this case is the following:

®=(0 o)

(it conforms to the normal distribution of a vector such that one of its components
— the imaginary part in our case — equals zero identically).

Remark 4.2. Since the divergence of the series Zc’oaf implies the divergence
k=1
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- : . . -
of the series 2’7';-, thus the sequence {w(k)} in Theorem A must satisfy the
k=1 Ag

condition: f (0 (k))2=c-.
k=1

As a sample example realizing the conditions of Theorem A for complex-valued
PMONS we bring the next one.
Let us consider the Chrestenson—Levy’s system generated by p,=3. Then

me=1,m=3, ...,m=3%k=1,2,...; the functions x,,,k(x) are ““basis” in the blocks
[mys my ). Put my=my, ny=2m,, .., 0y, =my, nyu=2m;; i=1,2,.... Let g=1
Meey 3

for all k. So, for our sequence {n} ;—2—, k=1,2,... hold, and we can put

Ny
[/ k)= .

Then the conditions of Theorem 1 are fulfilled trivially. Indeed, A4,=Vk for
all k. It is also clear that M=(xmk(x))2= Xem, (). Consequently the quantity
of the conjugate pairs is equal to 2 in each block (we remind that the pairs (n,, n,)
and (n,,n,) are considered as distinct if gs<r).

At the same time Bi=f(k+1)=2k. Thus,

" S+ . i 2N )
TS g @l =gy =t
The validity of (1.4) follows from the fact that there are no (/, k)-adjoint num-
bers in our sequence {n.}, i.e. A (q)=0 for all k,I,q (0=I=k). Therefore, the
constructed subsystem x,,k(x) is a subject to CLT with the covariant matrix
- 10
r=[g |-
We also note that taking the subsystem {x,,k (%)} such that n,=m, (i.e. {n, ()}
consists of the “basis” functions), then all of the conditions of Theorem A are
fulfilled and we evidently have n=0 in this case. So the covariant matrix is

R=[l(l)2 1(/)2] (as before we put ak:Vl for all k)-

5. The sharpness of conditions of Theorem A. The following theorem shows
that conditions (1.2)—(1.4) in Theorem A cannot be weakened, generally.

Theorem B. There exist sequences {a,}, {n.} and {w(k)}, satisfying conditions
(4)—(6) and there exists a PMONS {y, (x)} such that if even any of conditions
(1.2)—(1.4) is broken then the subsystem {a, Xn, (X)} is not the subject to CLT.

In the proof of Theorem B we shall use the following fact (see e.g. [9], pp.
195—198): '
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Let the sequence {¢,} of random vectors be given, where &,=(&%, &2, ..., &)
weakly converges to some random vector E=(&, &2, ..., &). Also let u and m(”
denote the r-th absolute moment and the v-th (v=(v,, v, ..., v)) mixed moment
of random variable &,, respectively; i.e.

M =MLl and m( = M{(E)™- D)™ ... €)™}

where v;=0, i=1,2, ..., k.
In this case, if the sequence {u*¥} is bounded for some 6=0, then the se-
quences {u{”} and {m{"} of the moments converge to the corresponding moments
k

of the distribution of vector ¢ for all r, [v|=r, (here |v|= 3 v;), ie.

i=1
.1) p® — O, m® = m{e O as p e,

Moreover, the mentioned limits are finite.

The direct proof of Theorem B requires constructions of counterexamples, that
are showing the necessity of conditions (1.2)—(1.4), by turns. First we notice that
the necessity of (1.2) was shown in [7].

6. Counterexamples. Passing to the proof of the necessity of (1.3), let us choose
the Chrestenson—Levy’s system generated by p,=3. Put g,=1 for all k. The
sequence {n,} is constructed in the following way:

Hy=my, Hy=2my, Hy_y=Hm (mk=3k,k= L2,..)
6.1) 2m,—1, if 10¥ <k = 10%+1;
-]

2my, Ui 107+ < ko= 108+ =01, ..

Thus there exists one pair of the terms of {x,,k(x)} in every block [my, m,)?
The terms of n, can be conjugate if ny,=2ny,_,. Let us check the fulfilment of the
conditions of Theorem A for {n}.

3 . 1
Since n,,ﬂzz n, for all k, it is clear that we can put w(k)z;. Further,

A, =Vk e and a,=1=0(4,w(k)) as k— . For these reasons conditions (4)—(6)
and (1.2) are fulfilled.
The verification of condition (1.4) is trivial, because 1i(g)=0 for all ¢, k and
0=j=k—1 and A(g)=1 for g=2k, 10¥+1=k=10"*"
In the same time the value
1 FON+D i
Cv =5 ; (a;-4;)
has no limit, since
2-10% 1

CIO’I+I<W=ﬁ for I=O, 1,...,
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but
' 2.9.10%+1
2 R 1021+2

So, (1.3) is failed. Now we shall show that CLT for {, (x)} does not hold.
Let us estimate the absolute moment of the 4-th power of the random variable

Clozl +2 =

9
=0 for 1=0,1, ...

1 N
Ty(x) = — n .
| V) = S 2 )
We have
1 1 1 o
(6.2) w = [y =gz 5 [ Olaglln, T n) 9.
0 =Lj,pe=Nyg

The summands in the right side of (6.2) are distinct from zero if and only if

(63) an ° an ° Zn, * an =1
Arguing the same way as in the proof of Lemma 2.4 in [8], we conclude that (6.3)

holds only if the fourfold product Xn Xin Xin in, has a decomposition of two pairs
such that each of the pairs belongs to certain block [m,,m,,), perhaps, to the

N
same. ‘Since the number of the blocks is not more than [E]-l- 1, thus the number
of the non-zero summands in the right side of (6.2) does not exceed the value

N 2
4 ([—2—]+ 1) . Consequently,

u® = Wlf4! ([%]"‘1]2 = 0().

Thus, the sequence {u} is bounded.

Now let us use relations (5.1). If the sequence {Ty(x)} weakly converged to
some (Gaussian) random variable T'(x)=(£'(x), £2(x)), then the following limits
would exist:

Jim m@9 = lim M{(E )%} = lim M{(Re (Ty(x))},
Jim mf®® = lim M{(3(x))*} = lim M{(Im(T(x)))*},

Jim m® = lim m {(E4(0) - (3 ()} = lim M {(Re(Ty(x))(Im (T (x)))}-

N—~oo

These relations imply that under the assumption Ty(x)—2~T(x) there exists a
finite limit of the value

M {Re?(Ty(x)) — Im? (T (x)) + 2i - Re (T (x)) - Im (Ty(x))}

(where i denotes the imaginary unit).
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In other words, the limit ought to exist

P L !
(6.4) Jim M{(Ty())} = lim of (Tw(x))*dx = lim T iaDan of (Xn, - n,) A%

N-+oco

The quantity of the non-zero summands of f (tn, x,,l)dx is given by the num-
0

ber of the conjugate pairs (n;, n;) in our sequence {n;}. By (6.1) it is easy to see that

f () dx = = 1o
182 9
f (Téoo(x)) dx = 200 > T6;

and so on, generally,
(6.5) f (Tpr0m-1(x))2dx = — 10 f (hagu(x))dx > o forall I=1,2, ...

Inequalities (6.5) show that limit (6.4) for the subsystem {x,,k(x)} does not
exist. Therefore, the sequence {Ty(x)} cannot converge (with respect to distribu-
tion) to any random variable T'(x). This contradiction proves that CLT does not
hold for the subsystem {y, (x)}, and this completes the proof. ’

Furthermore, for the proof of the necessity of (1.4), let us take the Chrestenson—
Levy’s system generated by p,=5. As before we put a,=1 for all k. The sequence
{n,} will be defined in the following way:

n1 = 2m1, ny = 4m1, n2k_1 = 2mk (mk = Sk, k = 1, 2, ...)

(6.6) 3m+1, 102 < k = 108+
o = {

4amy, 108+ < k = 10%+2 1=0,1, ...

5
Let us verify the fulfilment of Theorem A. We have n,,HEZ n, for all k,

consequently we can put w(k)=1/4. Conditions (4)—(6) and (1.2) in this case
are also fulfilled evidently. Condition (1.3) is fulfilled because there are no con-
jugate numbers in our sequence {1} and by the same reason the limit in (1.3) is
equal to zero.

But condition (1.4) does not fulfil. Indeed, the numbers 2m, and 3m,+1 are
(0, k)-adjoint, therefore

N =1 for g=2k and 10¥+1 =k = 102+,
hence S

VC =1 2k)-C*=0(l) = k ~co.

{m( fl(k))-} as
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Let us show that CLT for {, (x)} also does not hold. Now we consider the
6-th absolute moment of the random variable T, (x). We have

g?) f ITN(x)lsdx = N3 S0, h .t SN § f (xn,anx»l,.x:u.x";x-y) dx.
Arguing as in the proof of the previous counterexample of the boundedness
of 4y, we can see that the sequence {u{} is bounded. Now if we assume that {7} (x)}
weakly converges to some Gaussian random variable 7'(x) then (5.1) implies that
the limit of the sequence {u{¥} exists. So ' we get .

©7) up = f Tl dx = 3 f Ctoy g T ) 5

ip.q=N
The definition of {n} (sec (6.6)) shows that the summands of the type
f (x,, n Jn X, )dx differ from zero if the fourfold product X Xin X Tin, either

cons1sts of the factors belonging to the same block or this product decomposes
into two pairs of the factors such that each of the pairs belong to different block.
Therefore, if N=2M then we can rewrite (6.7) in the following form:

©8)  up =L fl{|§ak|2}2dx _ _l_fl{g A 3 A dx =
am* J WS 4M? § =1 =T

- i, 5} ﬁ{f (lAklz-|Z,-|2+<Ak)2-(2,-)2)dx} =

2 > j (4l 13,%) dx + 53 2 2 j‘(A2 Adx = LP+LY.

M? S =1j=1¢ 1j=1¢
By a direct calculation it is possible to see that

1A222d {4, if &k sj,
J 1130 de =16 e k=J.

0
Hence

©) =gl f - @ 55 f |44+ 13 dx} =

1 M(M—l))_l 1
= (6M+4'——z—— =3t

So,if M-~ (i.e. as N—)

. 1
(6.9) lim Lip = 5.
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At the same time we have

(6.10)
6, if k=j;
1
. . . 1021 <k = 1021+1. .
2. )2 = - >
J@r-@yde=q4, it {102'" < =107 Lm=0,1,..; 1% m:
0, othervise

Therefore
: 1 B X 4.9.9 81
2) = 2 _
L‘°_400k§§f(‘j"“d 400 100 °
1 231 3
2 _
L% = 25080 (6 100+4-9-9) = 5600 = T00°
and so on, generally,
(6.11)
102t +1 102t +1 4 . (9 . 102')2 81
(2)1., =14 . 4l+2)— 2 2
Lo = (4- 104477 wzum %Hoj(a B dx = =P = o
102l+l 102141 1
(6.12) L& = 4—11)“_’.—4 (6 f (Az'é-lf)dx+6- 102+2) =

k= 10"+1; 10"+10

6-(10%+2410%+%) 12 Jou+2 3
= 4.107+¢ =4.10%t7 T 100

for all /=0,1,2, ....

Inequalities (6.11)—(6.12) show that the value LY has no limit if M-es,
and'so if N—eco. Comparing it with (6.9) and (6.10) we can conclude that the se-
quence {u{} also diverges as N---. The obtained contradiction (with assumption
about the weak convergence of {Ty(x)}) implies that the subsystem {x,,k (x)} is not
subjected to CLT as desired.

Theorem B is proved completely.

Remark 6.1. Theorems A and B demonstrate that the known results on CLT
with respect to.real-valued orthonormal systems (for example, trigonometric system
or Walsh’s system) have no direct analogues in the case of general PMONS. Namely,
in order to prove the validity of CLT in our case, it is not sufficient to know the
ratio of the lacunarity of {} and the magnitude of the coefficients {a;} but we
have to know certain facts about the existence and the regularity of the conjugate
and the (J, k)-adjoint numbers in the sequence {n,}. We also mention that in our
case it can occur, despite a very good lacunarity of {n,}, that conditions (1.3) and
(1.4) are not fulfilled independently of each other.
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It should be noted that some problems, closely connected with them here,
were studied in [4]—[5], but they were formulated in a different way; in addition,
for the sequences {n,} there were assumed certain “arithmetical” conditions.

Acknowledgement. The author is grateful to L. A. Balashov and V. F. Ga-
poshkin for useful discussions regarding this work. The author also thanks Professor
L. Leindler for his valuable remarks during the preparation of this paper.
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3ampikanne B onepaToproii o01acTh

3. JI. IEKAPEB

IIycts $ — cenapabenbHoe THALOEPTOBO HPOCTPaHCTBO, #=2%(H) — coBO-
KyMHOCTh BCEX JINHEHHBIX OIPAHHYECHHEIX ONEPATOPOB, AEHCTBYIOIIMX B $, £, =
=2, (9H) — noamuoxecTBo #(9H), cocToflee A3 HEOTPHLATEILHBIX OMEPATOPOB.
ITIo amanmormm co CKajJsApHHIM CiydaeM ONEepaTOpHBIM cermeHToM [O, R), rue
RE€EZ, Ha3z0BeM MHOXKECTBO, ONpeAesIieMOe PaBEHCTROM

[0, R] = {Xc#|0 = X =R},

a COBOKYITHOCTB €T0 KpailHuX Todek o6o3HauuM vepe3 ex [O, R].
B Hacrosiieii 3aMeTKe paccMaTpPHBAETCK TONOJIOTHA MHoxecTBa R=ran R'%,

B KOTOPO# CHMCTEMAa 3aMKHYTHIX NOAUpocTpancTB ecth {ran X' X¢ex [0, R]}.
OxapaxTepu3oBaH knacc {y,9} obnacteil 3HaYeHHI 0NepaTOPOB, IPUHAIEKALTAX
cyeTHo-HopMmupoBanHoMy uaeany Hiatrena y, (1=p<oc). Ommcama cTpykTypa
3aMKHYTEIX OTIEpaTOPOB, ONpEAETeHHEIX Ha obnactax u3 {y,H} (1=p<<o).

HanmoMmanmMm, 9to ecnu #(C H) — omepaTopHas 06:1acTs (To ects obiacts 3Ha-
4eHHH omepaTopa H3 %), TO cBepTka R, omepatopa R€%,.(H) Ba £ — aro
omepartop v
(1) R, = RV PR,

rae P,y — OPTONPOEKTOp HAa ToANpocTparcTBo M=(R™Y?%¥)~. Omnmcanme M=HO-
xectBa €X [0, R] u CBOHCTB CBEpPTKH MOXHO HaliTH B CTaThix [3, 8] m maTHpO-
BaHHOW B HHX JIATepaType. B 9acTHOCTH, OTMETHM HCIOJIb3yeMOE B IaJIbHEHIIEM
PaBEHCTBO

#)) ex[O0, R] = {R¢|.# — omeparopnas o6nacte B3 ran R%%}.

Yepes €(9H1, H2) o06o3BagaeTcs COBOKYDHOCTb BCEX JIHHEHHBIX 3aMKHYTBHIX
OIepaTOpOB, NEHCTBYIOIMX B3 H; B Hy, B IpH H,=H,=9H mnonaraercs ¥ (H)=

=%(9, 9)-

Homynn;lo 5S-oro HOAOpa 1989,
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1. lycte RE€#, m R=ran RY¥®. Cornacio [9] na R MoXHO ompenennTsh

HOBy1o HopMy | -[|” Tak, uto6er R'=(R,||-||) sBasgnocs runpGeproBHIM HpOC-
TPaHCTBOM M AJIA HCXOMHOH HOPMSBL | -|| BBHUIOJHAIOCH COOTHOUWICHAE
(3) A =11 (VfeER).

O6paTHO, eclia Ha HEKOTOPOM JiaHeane RC $H onpeaenena Takas HopMa | - |,
aro R’'=(R, || - [|") — ransGepTOBO HpOCTpaHCTBO M cupasegnEso (3), To, cienys
{1], paccmoTpum unbekmuio S: R'—H

Sf=f (VfER) .

| ec conpskeHAbIH onepatop ST: $—R’. ITonoxus R=SST, Tak 4uto 0=R=],
OJIYHHAM
ran RY? = ran (§S+)"2 = ran S = R.

TIpu stom m3 pasenctBa (Ru, v)=(S*u, STv) (v, v€$H) Nerko BLITEKAET HpencTaB-
JIeHHE '
“) (fog) = (R2f,Rg) (V[ g€R),

rae (ogHO3HauHBL) omepaTop R™Y? meitcrByer m3 R B R-.

ScHo, uto omepatop R€[O,I], ran R¥?*=9R, ycnosmem (4) ompenensercs
eQAACTBEHHBIM 06pa3oM. DTOT ONepaToOp HA30BEM METPHYECKHM JUIS IHIbGepTOBa
npoctpanctsa R’ =(R, || - [|). OueBraso, MuOKeCTBO A (R)={REA, |ran R =R}
BHINYKIIO, eX 4 (R)=0.

W3 TeopeMbl o 3aMKHyTroM rpaduke cieayer, 4To ecid Ha R 3amaHpl aBe
HopMEI || - [['(=|-1) =7 | -1”(=}-]l), oTHOCHTENBHO KOTOPBIX R CTAaHOBATCS T'HIIb-
GepTOBBIM NPOCTPAHCTBOM, TO 3TH HOPMBI JKBHBAJEHTHBI. 3HAUMT, Al JF060OTO
MHOXecTBa FCR ero 3amelkaEds B mOpocTpaHcTBax R'=(R,[|-|) 71 R’'=
=(R, || -]|”) coBmamatoT; 3TO 3aMBIKaHHE 0603Ha4aeTcs depe3 [F]y.

Onpenenenne. R-3aMpikaaneM MHOXecTBa £ (CR) B R HasbBaeTCst MHO-
xecTBO [F]g.

OTtMeTHEM TpocTeiimne cBoiicTBa R-3aMbIKaHUA JHHeaNoB L CR [7]:
1) Pc|Llac £ D [Fla=%" oL cR;
IR =R=[La=ZL".

Jlerxo BHOeTh, uTo ecnum REA,, ran RY*=R, 10 omepatop RY? B3ammHO
ONHO3HAYHO M HelpepHBHO oToOpaxaer R~ Ha R’ H, cienoBaTensHO,

®) [#]s = RAR-2Z)". "

Kpome Toro, fcHO, 9T0 NAHean FCR sABIAETCH OHepaTOpPHOM 0OMACTHIO B $
TOYHO TOTZa, Korga £ — oneparopHas o6iacts B R ]
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Jlemma 1 ([7]). Ecau RE€B, u ran R"*=R, mo 0aa mwboii onepamoproit
obaacmu ¥ R cnpasedauso pagencmso ran RY*=[%],.

Hoka3aTeabcTBO BHTeKkaeT HenocpencrBenno u3 (1) m (5):
ran RY? = ran (RY? B, RY?'2 = ran R'?B; = R} (R~V* %)~ = [¥]x.
3ameyanue. U3 (1) m (5) BeITeKaeT, OYEBHAHO, YTO Rngmw, XOTA Kak
6bim0 oTMedeHo B [6, 8], BooOite roBopst R, =R, _.

CnenctBue. Ecau R — mempuueckuii onepamop 0412 R’, mo 0aa moboii one-
pamoproii  obracmu F CR ee opmozonasvnoe OdonosHenue ¢ R’ coenadaem
¢ ran (R—R,)'2

JelicTBATENBHO, cUATasA Ge3 orpaHA4YeHHS OOmEOCTH ¥ =[]y, paccMOTpEM
BriTekaroume u3 (1) mpescrasieHus
R_g’ — Rl/zPRllz, R-—-Rg — R1/2QR1/2,
rae P u Q — oprompoektopst Ha (R™Y2%#)~ u R~ S(R™Y2¥)~ cooTmeTCTBEHHO.
O6o3naums M=ran (R—R,)"?; nony4um, OYEBHIHO, YTO
Z+M =R,
necnn fEZ, gcM, 1o f=RY?*Pu, g=R"*>Qv npm BEKOTOPHIX u, vER~, TaK 9TO
(f,g)y = (R7Y2f, R™V%g) = (Pu, Qv) = 0.

ITycte R — MeTpuueckuil omepaTop AI1 THILOEpTOBa TpOCTpaHCTBA R'=
=(R, | -1"), ynopaeTBoparOWIEro yenosuio (3), u & — oneparopuas obnacts u3 R.
Ecmn &'=(Z, | -|") sBnsgeTcst rums6epTOBBIM IPOCTPAHCTBOM, TO ecTh & =[%];,
TO ero MeTpHIECKHii olepaTop 0603HaYAM depe3 X(Z’); COBOKYyNHOCTE BCEX TAKHX
MeTpHHECKHX oNepaTopoB o6o3maymmM depes X (R') (= {X (L)L =[L]x))-

TeopeMma 1. Z(R)=ex[O, R].

HoxkazatenbcTBo. CornacHo (2), ex[O, R] cOCTOHT H3 CBEepTOK OmEpaTopa
R Ha BCeBO3MOXHEBIE omepaTopHbie objacTd FCR, Tak YTo BBHAY 3aMedYaHHA

X Jemme 1 umeeMm:
CX[O, R] = {Rglg_—' [g]g‘}-

C ngpyrod cropoHBI, ecam X=X(%') —MeTpmueckmii omepaTop s £’
(Z=[<]p, 1O .

(X-l/zf, X—l/?.g) —_ (R_1I2f; R—l/zg) (vf’geg)
3HaynT, 008 JOOBIX u, v€EL T,

(u, v) = (R™Y2 X2y, R-12 X1 2y),
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B omepatop w=R-V2XV?(cB) wn3omerpmueckm orobpaxaer Z~—~R7 V¥ a
o (90 £)={0}. MostoMy P=ww* — OPTONPOEKTOP Ha HOANPOCTPaHCTBO R-12 %
H, CIef0BATENLHO,

—_— -1/2 * P1/2 __ 1/2 1/2 __
X = R™V2@w*RY? = RY2PRY* = R,.
Joxa3aTeapCTBO 3aKOHEYHO.

Cnencteue 1. Ecau R, u R, — mempuueckue onepamopbt 041 2uabbepmosvlx
npocmpancme R; u R, coomeemcmeento, npuuem Ry =R,, mo Z(R)cF(R)
mozoa u moavko mozoa, Kozda

©6) ran (R,— R,)/*Nran RY* = {0}.

B camoM pesnte, B cuny mokasaHHOM TeopeMsl HyXHO yOenHThCH, 9TO0 eX [0, Rj]jc
cex [0, R,] TouHO TOrma, KOTa MMeeT MecTo papencTBo (6). Ho cormacmo [3, 8]
BHIIOJNIHEHAE (6) PaBHOCHJIBHO TOMY, 4TO0 R;€ex [0, R,], a 3To B cBOIO odepeldb
3KBHBAJIEHTHO BKJIIOYEHHIO e€X [0, R]Cex [0, R,] (em. [8], 3ameuamme k Teo-
peme 3.2).

Cnenctsue 2. B ycaosuax caedcmeus 1, R, asasemca nodnpocmpancmeom
R, mouno mozoa, xozda evinoanaemcs pasencmso (6).

3amevanme. Ecma Re4,, R=ran R T0
ex ([0, RIN A(R)) = {R}.

HeﬁCTBHTenLHO, cuatas Ge3 orpaHmYeHHs OOMHOCTH, YTo R~ =9, HonyYyuM
TpeCTaBJICHAE
[0, RN A(R) = |J RY*4I, I1RY?,
0<d<l

B CHIy KOTOPOTo Ui Kaxioro omepatopa RY2K,R'cex ([0, RN .# R)
(6/=K,=1I) mmeer mecTo BKmoueHAne K Cex [61, I] (0<d=4,). Ho cormacuo [8]
(dopmyma (3.8))

ex[61, 1] = {K€B,|K = (1—8)P+5I, P* = P* = P},

OTKyJia JIETKO BHITEKaeT, uTo (| ex[8L, I]={I}. Taxum o6pasom, ex ([0, RN
- 0<é=0

N A (R))<{R}; TpOTHBONONOKHOE BKIIOYEHAE OYEBH/IHO.

Bocmonb3yemcs emle OgHOH XapaKTepHCTHKOH omepaTopHOi 061acTH, mpHBe-
nerro¥ B [9]: JImrean R sApaseTcs onepaTtopHOit 061aCThIO TOTAAa H TOJILKO TOLAA,
KOF[a CYLUECTBYET HMOCIEAOBATeNbHOCTh {R,},., B3aHMHO OPTOTOHAJIBHBIX HOM-
OpocTpaHcTBa $ H yObIBarOmIas 4YHCI0Bass NOCHEJOBATEMBHOCTD {it,},=0 (U40)
Takde, 9T0

M R={ 2D Z Wl <=}
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B atoM cnygae, ecntu R= D 4, Q,, roe Q,— oproupoekrop Ha Q, (n=0), To
n=0
ran R?=9R.
PaccMOTpHM IIBE HOC/IENOBATENBHOCTH OPTONPOEKTOPOB {P,},=0 B {Q.},=0
Takue, yTo PP=0, Q;Q;=0 (i#j) u Nonoxum
® L= 3 4B, R= 3 p;0,
n=0

n=0

IZle YACTIOBBIE MOCHEeRoBATENbHOCTH {4, )20 B {#ts},=0 MOHOTOHHO yObIBas CTpeM-
aTca K Bymo. O6o3naum % =ran L2, R=ran R/* 3amernm [2], uto ecnu L=R,
T0 FCR.

Teopema 2. Hycms onepamopvt L u R us (8) — mempuveckue 01 2unvbep-
mosvix npocmparcme £ u R” coomeemcmesenno, npuyem L=R. Toz0a ¥’ —
nodnpocmparcmeo R” mouto ¢ mom cayuae, ecau cyujecmsyem nocAed06ame bHOCMb
opmonpoexkmopos {n;};-, Y0061emeopAIowas ycaosuam

rant; C R- (j=0), m;ym =0 (F+#k),

b e Qim; O = A3Q: R0 (i,), k = 0),
HoxazaTtenscrso. JomycteM cmepa, 4T0 ¥’ — moanpoctpaHcTso R7.

Torna, sBAMY TeopeMsl 1 u ee cnenctsmid, ecmd Mc.¥ 1 [M],=M, T0 Ly=
=Rg;. B gactrocTH, IpH M;=P; H (j=0) monyyaem:

(10) Ly, = Rm, = RV2m;RY2,

®

rzie B cooTeTcTBAN C (1) 7; — OPTONPOEKTOp HAa MOANpPOCTpaHcTBO RN, R~
TToxaxeM, 9TO MOCNENOBATENLHOCTD {7;};», YAOBNETBOPSET yciopuaM (9). Helict-
BHTeJbHO, H3 (8) u (1) BHITEKaeT, YTO

Ly, = 3P, Loy yam, = MNP+ B (k#J))
Tak 4ro coriacHo (10)
11 AP, = RYV*m;R'®, J3P,+ AR = RV (n;+m) R (k ¢ j).

Ho mockonexy [I;+T],=M;+M, = ran(n;+m)CR™, T0 7;+7m, — OpTO-
TPOEKTOP, @ 3TO BO3MOXHO TOJBKO ecimd 7;7, =0 (j=k). Hakomen, JoMHOXHB
00e gacta mepBoro u3 pasencTs (11) cieBa ma Q; u cinpasa Ha (;, HOJIyYHM C yde-
ToM (8), 4TO '

}'?Qil?iQk =mumQin; Q0 (,j, k = 0).

TaxuM 06pa3oM, BHIOIHEHH Bce ycaoBus (9).
O6paTHO, U3 (9) BHITEKAIOT paBEeHCTBA

O:LQ, = pi Qi POy (L, k = 0),
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rae P= 3 n; — oproupoektop, PHCR™~. Otcrona, yaaTeiBas BIrodeHaAs ran LC
j=0
C¥CR ™ =ran D Q;, Jnerko mnony4nrs paBeHcTBO L=R,, o3Hadatoilee, 4TO
=0

&’ — moanpocTpaHcTBO R”.

3ameqanue. Boobuie roBopa, He BcAkuid onepatop RE(R) npeacrasum
B Base (8). Omuako, ecnia R — obnacTh 3HaYeHHIT HEKOPOPOrO BHOOJIHE HENpEphIB-
HOTO olepaTopa, TO R TaxkkKe BHOJIHE HENpephIBEH H, CJAENOBATEILHO, JTOMYyCKAeT
npenctapiieane (8), mpadem dim Q,H << (n=0). ScHo, yTo Torga s a060ro
onepatopa L¢€[O, R] cnpasennuso pasnoxenue (8), rae dim B, § <o (n=0).

2. HanomuumMm [9], 4to suHean RC$H sABnseTcs onepaTopHOH obacTeio Toraa
¥ TOIbKO TOTJA, KOTAa CylllecTByeT omiepaTop T€¥(H) ¢ obnacteio ompenene-
mast 3(T)=R. Bsemem runpbeptroBo npoctpanctBo (R, | -ll;), rae

1715 = LARHITAI® (feR).

u 06o3nauuM vepe3 R(T) COOTBETCTBYIOLINN METPHIECKHIA OIEPATOD.

Ecmm 3(T)~ %9, To paccmarpmBas omepaTop 7' Kak 37eMEHT MHOXECTBA
%(3(T)~, H), obo3saumm ero compsxeHabii depes T*(€¥(9H, 9(T)7)), a abeo-
I0THYIO Betuunay — uepes |T|=(T*T)** [7].

Jlemma 2. Ecau TE4 (D) u 3(T)=R, mo
(12) IT| = (/- R R(T)™*, R(T)=I+T*T) g
HoxazatenscrBo. Iockonbky (f, g€R)
(f,8)+(Tf. Tg) = (R(T)7*f, R(T)~g),
(Tf, Te) = (I~ R R@) S, (I-R(DYFR(T) ),

u nepsoe u3 paseHcts (12) copaseamueo, tak kak (I—R(T))/*R(T)~** — camo-
CONpSIKEHHBI HEOTPHUATE/BHEI omepaTop B R~. CopaBemMBOCT BTOPOTO pa-
BEHCTBA CTOJIb XK€ OYeBHIHA.

CrnenctBue 1. £ (R)={R(D)Tc¥(9), I(T)=R}.

TO

CnenctBue 2. Ecau T -— camoconpajycenHslit HeompuyamensHslii  onepamop

8 9, mo
T=(I-R@)PRT), RT) = I+TH7

Cnenctsue 3. Ecau TEG(H) u ran T*CI(T), mo ¥(T)=%(T)~ u T o--
Danuuen.

HeiicTauTeNBHO, B 3TOM ciydae cornacHo (12) (R=R(T))

(I-R*R- =ranT* c R = RV:R~,
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TaKk yTo ([-R)R-C RN~ wu, ciaegoBatensHo, R~ =R, uro m TpeboBanocs HO-
Ka3aTh.

3amevanue. ITo cyujecTsy, mpembinyliiee YTBEpXkIeHHE, BNIOJHE 3JEMEHTap-
Hoe,.GBII0 OTMeYeHO paHee B [5].

PaccmoTpum onepatop T€%(9) c obnacreio onpenenenus I(T)=R u mpo-
M3BONIBHBIN JiuHean FCR. ScHo, 9To cyxenHe T1.% — 3aMBIKaeMBblif OmepaTop,
Tr[;.?]g‘— ero 3aMblKaHHe H, 3HaYuT, TILEF(H) TouHo Torma, xorma & =[%];.
OTMmeTHM, YTO coriacHo Teopeme 1 ans nroboit M-zamxHyTolt omepaTopHOH 06-
JacTH & COOTBETCTBYIOLHIT MeTpu4eckuit onepatop R(T}¥) coaep HUTCS BO MHO-
xecTBe ex [0, R]. 3uaqumr, B cuny (2) u (1) cupaBeaTHBO paBEeHCTBO

(13) R(I'Z) = R(T)e-
W3 (12) u (13) BeITEKAET, YTO
(14) Il = (I-Ry)'PRZY?, Ry = (I+T'T) e,

rae monoxeHo R=R(T), T,=T1%, |T;| — abcomoTHas BenHYHHA omepaTtopa T,
Kax aneMmenra €(£ -, 9H).

OuesnnHo, ecnu T€ A, (H), To u3 (12) Britekaer, uto T B R umeror obuue
HEBapHaHTHBIE TMOANpOCTpaHcTBa. B ciydae camoconpsokenHoro T€%($H) cmpa-
BeIUTMBO CIEAYIOLLEe YTBEPXKICHHUE.

Teopema 3. Ilyemov T — camoconparscennslii HeompuyameAbHblii onepamop 6 9,
$(D)=R, a L(CR)— R-zamxuymas onepamopHas obaacms. Toz0a nodnpocmpan-
cmeo L~ ungapuanmuo omuocumenvo T u onepamop T,=T+¥ camoconpascen
¢ ¥~ mouno 6 mom cayuae, ecau P ungapuanmmuo ommocumesbHo R=R(T)
(R¥ ).

HokazatenbcTBo. Ouenano, R¥C.¥ To4yHO TOrAa, KOrjaa MOaNpoCTpaH-
ctBo P=R"Y2.L(CR~) unBapuaHTHO OTHOCUTENBHO R, # Tak kak R,=R'*PR'?,
roe P — opromnpoexkTop Ha P, TO

Ry f= RVEPRVEf = Rf (Vfc2).

OT1croaa HAa OCHOBaHHH MepBhix paBeHCTB B (12°) m (14) 3akmiovaem, uro ecid &
WHBAPUAHTHO OTHOCHTENHHO R, TO

Tf = Llf (Vfe£). ’ ’,. S

A T CBINSEN ow

[
Lo

Ocraercs 3aMeTHTD, 9To |T;] caMocoupsiked B ¥~ u L=3(1NNZL~.
O6paTtHo, nycTh ¥~ HHBapAaHTHO OTHOCHTENLEO T B 1; caMocompsiked B & 7.
Obo3Haums Zp=ran R, TONy9EM BBHJY BTOporo paBencTBa B (14), 4T0

I+T) % =(I+TH & =
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CrnenoBaTtenpHo, B CHIIy BTOporo paseHcTsa B (12), RZCR¥-C¥~, H Tak KaK
P NR=L"NYT)=¥, To R¥CP, uTo K TpeboBanoch JOKa3aTb.

3aMevaHne. Ecny B ycnoBasax TeopeMbnl R =9, To Jierko npEBeCTM NpHAMEp
wioTHo#t B § R-3aMKkHyTON omepaTopHoit obnactn Z(CR), He WHBapHAHTHOMH
oTHOCETENBHO R; mMenHo L =R'*(HO{e}), rae e4R.

3. PaccMOTpAM MHOXECTBO ONepaTOpHBIX obnacteil ruabbeproBa mpocTpaH-
cTBa $, onpegeiseMoe caeayoOWHM obpasom:

{y9} = {RIR = ran 4, A¢y},

rae y — HEKOTOPHI ABYCTOpOHHHUH Haean B B. OTMETHM, YTO eCIH 1an 4A=ran B,
rne A€y, BcA, 1o cornacno [2] B=AC npu mekotopom CE€ZH H, ClIeIOBATENLHO,
Bcy. B wactHocTH, ecim R¢[0,I] m R=ran R'?, 10 Re{y,H} TouHo ToOra,
korma R'Y?€y, (1=p<ee), OTcloma BHITEKaET, urto ecmn Re{y,H} (I=p<<), TO
u mobas onepatopHast obnacte ¥ (CR) npunamnexur {y,H}. OveBHABO Takxe,
gro BKmoyerne Re {y,9} (1 =p <o) paBHOCAILHO CYLIECTBOBAHHIO IIPEACTABICHAS
(7), B xoTOpOM :
dimQ, <o (m=z=0), FuZdimQ, <e.
nz90

BribpaB B $ OPTOHOPMHPOBAHHYIO CHCTEMY BeKTOpoB &={e,}r , W HEBO3pacTalo-
LIyFO IOCNEeIOBATEILEOCT HOJOKUTERBHBIX Yncen M= {u,}<_, (v =), onpeaenum
onepaTopryto obnacte R(e, M) paseHcTBOM

()] () 2
(15) Re, M) = {Zanenlz Zn <°°}.
n=0 n=0 ﬂn

SAcno, yto R(e, M)E{y_ 9}, mpmiem R, M)e{y,H} (I=p<<) TOrma u
TONBKO Torma, korma M= {u,},=0€/, (ecim w<-eo, TO NpH n>w nonaraem u,=0).
M3 npenplAylinx pacCyXcHAUI JerkKo BBITEKAET CIeAyIOIIas

Jdemma 3. Jaa mozo umober RE{y,H} (1=p<oc), Heobxodumo umobvr das
A060il u docmamoyro, Umobsl 044 Kakol-1ubo opmoHopmuposantoii cucmemsol £ R
Cywecmeoeana Hego3pacmaiowan nocae006ameabHOCHy HeompUyamenbHblx Huces
Met, maxas, umo R=R(e, M).

3aMeuanme. HenocpeacrseHHo u3 onpeneiennst (15) Buaro, 4TO ecnmm M=
={u. ) o m A={4,}2,, TO R(e, A)TR(e, M) TouHO Toraa, koraa {A,u,; '} (€4 w.
B vacroctn, pasenctBo R(e, M)=R(s, 4) HAMeeT MecTO TOYHO B TOM Ciydae,
ecr A, X p, (10 ectb {A,p') B {27 1)L 0€0).

Teopema 4. ITyemb T — camoconpadcennslii HeompuyameAsHuiii onepamop 8 £
¢ obaacmyio onpedesenun $(T) u Ker T={0}. Tozoa $(I)E{y,H} (I1=p<eco)
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6 mom u moasko mom cayuae, ecau I(T)=R(e, M), 20e e={e,}:>, — opmonop-

MUupoeannslii 6azuc npocmpancmea $, cocmoAwuil u3 coBCMEEHHBIX 8eKMOpPO8 one-

pamopa T, npuuem coomsemcmsyiowue cobemeennsle yucaa t, (n=0) maxosst, umo
2y—1/2 ’

{(1+tn) ! }elp

HoxazatenbcrBo. [eidcTBUTENLHO, ecmu 9(T)e{y, 9}, Ker T={0}, 1o one-
parop R=R(T) npeacraBum B BHOe (8), rae
2 Qn - I dlm Qn - 1 (n = O)! {”n}n;OE(p'

. nz=0

Ecmn €,€0,9, llel=1 (n=0), 1o BBHAY Teopemni 3 Te,=t,e, (n1=0), npuieM
cormacio (12) p,=(1+)" V2 (n=0). O6paTHoe yTBepkKAeHHE TaKXKe OYEBHIHO.

. Cnencrtsue 1. Ec/tuT T*=0, KerT;={0} u Te,=t;,e, (i=1,2; n= =0),
20e {e,},=0 — opmonopmupoeannsyi 6asuc ¢ H, {(1 + )‘1’2}6{ »» mo $(T)=9%(Ty)
mozda u moasvko mozod, Koz0a t <1, ,.

Cnencreue 2. Ecau Tc4(9) u 3(T)c{y, 9}, mo cywecmeyiom marue op-
monopmuposannsie cucmemsl {e,)o_, u {g,}°_, (w=<), nosnsie ¢ npocmpancm-
eax HT)~ u (ran T)"=ran T coomsemcmsenro, umo Te,=t,g, (0=n=w), npu-
uem {(1+37, €L, |

B camom gene, mockombky I(|T)=3(T), To NmpuMeHHB OOKA3AHHYIO TE€O-
peMy k omepatopy |I'| B mpocrpanctse 3(T)~, Haitmem mnonuaywo B 3(7)~ opro-
HODMHPOBAHHYIO CHCTeMy BeKTOpoB &= {e,}*_, (w =), gna kotopoit |T|e,=t,e,
O=n=w0), {(14+3)7)},2¢¢¢,. Ecau e T=U|T| — nonspHoe NpeacTaBieHHE
omnepaTtopa T, To monoxus g,=Ue, (0=n=<), nonayyum:

Tenztngn (0§n§w)‘
ITpu stoMm cormnacHo (15)
w «©
IT) = { 3 anes| 3 (1 +B)lasl? < =}
n=0 n=0

H, CJIeI0BATENILHO,
o (]
ranT = { Z(') a,,t,,g,,| Z;(l + e, ? < oo}.
n= n—=

B cany mocnenHero paBeHCTBa, oYeBUAHO, (ran T)~ =ran T.

3ameyaHHe. IlockonbKy omepaTtopHas obmacts knacca {y. $H} He comepxmt
3aMKHYTHIX OeckoHeuHOMepHbIX moanpocTpancTB [9] (Teopema 2.5), 1O npH
dim 3(T)~" =< B ycrnoBusix npeapaywowero cieactsus ran Td (7). Ognako,
ectn $(1N)=9,66, rae 9,€{y.9}, 6=909,, a T3,c6 u T6G={0}, To,
oueBHaHO, HMeeT MecTo Bimodende ran T 3(T) (cp. [5], nmpamep 3.1).



370 3. J1. Nexapep: 3aMbIKkaHue B onepaTOpEON oOnacrd
JInTeparypa

[1] L. pE Brances, Nodal Hilbert spaces of analytic functions, J. Math. Aral. Appl., 108.(1985),
447—465. ,

[2] R. G. DoucGLAS, On majorization, factorization and range inclution of operators in Hilbert
spaces, Proc. Amer. Math. Soc., 17 (1966), 413—416.

[3] S.-L. ErikssoN and H. LEUTWILER, A potennal-thcoretxk approach to parallel addition, Math
Ann., 274 (1986), 301—317.

[4] T. Kato, Teopus eozmyuenuii auneiimblx onepamapoe Mup (Mocksa, 1972).

[5} S. O7A, Closed linear operators with domain containing their range, Proc. Edinburgh Math.
Soc., 27 (1984), 229—233.

{6] O. JI. Tlexapes, O cBepTKe HA ONEPATOPHYIO OOMACTH, PYHKYUOHAAbHBIE aHAAU3 U €20 Nnpu-
aoxcenun, 12 (1978), 84—85.

[7) 2. J1. MIexapeB, O nepeHOPMHBPOBKE onepaToOpubX oGnacreif, B ku: VIII Bcecoiosnan nayunan
Kkonepenyus no cospemernuvim npoosemam oufepenyuanvuoii 2eomempuu. Onecca, 1984,
OT'Y (Onecca, 1984), c. 119.

{8] E. L. PERAREV, Skorts of operators and some extremal problems, preprint (Odessa, 1989, in
Russian). English translation by T. Ando (Sapporo, 1989).

[9] P. A. FILLMORE and J. P. WiLLIaMS, On operator ranges, Advances Math., 7 (1971), 254—281.

CCCP, 270039,

I'. OIECCA, VJI. CBEPJUJIOBA, 112,

OINECCKMHA TEXHOJIOTMYECKU A MHC’I'MTYT

MNHIEBOY IPOMBINIIEHHOCTH UM, M. B. IOMOHOCOBA



Acta Sci. Math., 55 (1991), 371—398

Models for operators with trivial residual space

BRIAN W. McENNIS

1. Introduction

As part of their study of contractions [12], Sz.-NAGY and Foiag derive a func-
tional model for an arbitrary completely non-unitary contraction 7, in terms of its
characteristic function @r. Also, given an arbitrary purely contractive analytic
operator-valued function ©(1): 2—~2,, where 2 and 2, are Hilbert spaces, they
are able to construct a model for a completely non-unitary operator whose charac-
teristic function coincides with @. The Sz.-Nagy and Foias model provides, in fact,
a model for the unitary dilation of the contraction, with the model for the contrac-
tion itself being obtained by a compression.

In an extension of the dilation theory of Sz.-Nagy and F01a§, Davis [4] has
constructed a unitary dilation of an arbitrary operator, with the dilation space
being a Krein space, and the dilation preserving the indefinite inner product. In a
subsequent paper, Davis and Foias [5] showed how the characteristic function of a
noncontraction could be given a geometric interpretation on the dilation space
analogous to that used by Sz.-Nagy and Foias in their modelling of contractions.

Models have been developed for noncontractions ([1], [3], [8]), which are given
in terms of their characteristic functions, but which are along the lines of the
DE BRANGES—ROVNYAK model for a contraction [6], providing no model for the
dilation. In [10], a model theory is given which does model the dilation space and
uses the geometric interpretation of the characteristic function, in a manner anal-
ogous to the theory of Sz.-Nagy and Foias. As in [5], however, it is necessary in [10]
to assume the boundedness-of the characteristic function in order to be able to con-
struct this model.

The boundedness of the characteristic function is used in [5]) and [10] to en-
sure the boundedness of the Fourier representations, which map certain subspaces
of the dilation space onto L? spaces, and to ensure that the characteristic func-

Received November 2, 1989.
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tion acts as a bounded operator between these spaces. In this paper, we adopt the
approach that L? spaces are not necessarily the natural ones to be used in modelling
noncontractions, and design the function spaces to fit the operator and its charac-
teristic function. Under these circumstances, it is not necessary to assume
the boundedness of the characteristic function. Although the model obtained is
based on the Sz.-Nagy and Foias model of a contraction, the function spaces in-
volved can be: defined from the’ characteristic function in terms of reproducing
kernels, and are similar to those considered by de Branges and Rovnyak.

Let T be a bounded operator on a Hilbert space 5#. Following [12], we write
TeC,, if T*™h—0 for all hes#. When T has bounded characteristic function
this condition is equivalent to a condition on the geometry of the dilation space,
namely that the residual space be trivial (see- [12], [9]). When the characteristic
function is not bounded, the condition T¢C,, implies that the residual space is
trivial, but it is possible for an operator not in C., to have a trivial residual space.

In this paper, we concentrate on operators with trivial residual space, as the
description of the function spaces needed for the model is simplest in this case.
The model is also described in terms of an operator valued analytic function @,
for which we have assumed properties that guarantee that it is the characteristic
function of an operator with trivial residual space. The properties assumed for ©
are valid for the characteristic function of an arbitrary C,, operator; it is not known
if only C,, operators have characteristic functions with these properties.

2. The dilation

In this section, we give a brief déscription of the Davis dilation of a bounded
operator [4].
Using the selfadjoint functional calculus, we can define the operators

Jr=sgn(I-T*T), Qr=|I-T*T|'?,

Jre = sgn(I-TT*), Qr« = [[-TT*V2
We have (see [4])
JrQ% = I-T*T, Jp+ Q7 = I-TT*,

TIy = JpT, TQr = QpsT, T*Jpe = JpT*, T*Qpv = Q7T
We equip the spaces
Dy =Jr# and Dy = Jp ¥
with the respective indefinite inner products

[x,y] = (JTx!y) x,yE@T
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and
[x’y] = (JT"‘x: y) X, YED =,

where (.,.) denotes the inner product on #. Then, with the topology inherited
from s, @y and P, become Krein spaces, with fundamental symmetries J; and
I+ (see [2]). :

" The Davis dilation of T is a bounded operator U, which acts on a Krein space
A 2, with Hilbert space inner product (., .) and indefinite inner product [.,.]
linked by a fundamental symmetry J:

) =1xy] [x,y]=(x,y) forall x,yex.

U is boundedly invertible, and the following properties hold:
() (Ux,y)=(T"x,y) for all x, ycs#;

(i) [Ux, Uy]=[x,y] for all x, yc";

(iti) Jx=x for all x€s#;

(iv) V{U"H#: —o<n<oo}=H.

Consider the subspaces

P=U—D# £* =0 -TYH#, %, = UL* = (I-UT")#.

(Here, and in the sequel, adjoints are assumed to be taken in the indefinite inner
product [.,.] of ") In the Davis dilation, ¥ and #* are isomorphic to 2; and
D, respectively, in the sense of both the Hilbert space and Krein space structures.
There is an operator ¢, mapping % onto 9y, and preserving both the Hilbert space
and indefinite inner products, such that

2.1) @e(U—-T)Yh = Qrh for every hes#.

As in {12], it is more convenient to work with &£, than with #*. We consider
an operator ¢, , mapping %, onto Zp«, such that U*¢, preserves both the Hilbert
space and indefinite inner products, and such that

0, (I-UT*)h = Jr+Qp+h for every hesf.

Because of property (ii) above, ¢, also preserves the indefinite inner product.

As in [12], Zand £* are each orthogonal to s, with respect to both the Hil-
bert space and the indefinite inner product on A". Consequently, &, =U%* | UK,
where we are using “1” here, and in the sequel, to denote orthogonality with
respect to the indefinite inner product. Also, both . and %, are wandering for U,
1. UYL LU and UYL, 1L U"Y, for m=n (see (7).

10
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We define
Ay =VN{U"#:n = 0},

M, (&) =V{U"Z:n= 0},
M, (&L)=NV{U"¥%,:n= 0}

In the Davis dilation, the spaces # and M, (%) are mutually orthogonal, in both
‘the Hilbert space an.d indefinite inner products, and we have

Hy = HOM (ZL).
We also have #* ] ¢, , and thus
2.2) £, LUM, ().
The residual space & is defined as the space of all vectors in ¢, which are
orthogonal to M, (%£,) in the indefinite inner product:
R=K,NM_ (L) .
Theorem 2.1. If T€C.y, then Z={0}, ie., M (%)=H.

Proof. See [9], Theorem 5.5.

Let O denote the orthogonal: projection onto .#; in the Davis dilation, this
projection is sclfadjoint in both inner products. For any k€M (%), the Fourier
coefficients of k in M (%) are defined by

I, =0U*k, n=0.

The vector k is uniquely determined by its sequence of Fourier coefficients in M +(&).
(See [7].) In the Davis dilation we have, for k¢ M, (£),

@3) IiF = 3 lohl® and (k] = 3 [l ol

The Fourier representation of k in M, (£) is the operator @ mapping k€ M (%)
to the function $k=u, where

u®) = 3 7ol,

and {,} is the sequence of Fourier coefficients of k in M, (%). The function u
takes its values in & and, because of (2.3), is defined in a neighborhood of zero
which includes the open unit disc.
Similarly, for any k€M, (%,), the Fourier coefficients of k in M, (¥,) are
defined by .
. l,=PU*k, n=0,

.where P is the orthogonal projection onto %, : P is selfadjoint in the indefinite
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inner product, and U* PU (the orthogonal projection onto £*) is selfadjoint in
both inner products. The structure of M, (£,) can be much more complicated
than that described by (2.3) for M (%); this will be investigated in subsequent
sections. In particular, it is possible to have a vector k€M, (Z,) with the prop-
erty that [k, m]=0 for all meM  (%,) (we then call M, (&,) degenerate); such
a vector k has all of its Fourier coefficients in M, (£,) equal to zero. We will, how-
ever, be considering only the case where M, (£,) is nondegenerate, and then any
vector in M, (%,) is uniquely determined by its Fourier coefficients. (See [7).)

The Fourier representation of k in M, (Z,) is the operator @, mapping
keM, (¥#,) to the function @, k=v, where

U(/l) = ;(')A"go*l*”

and {/,,} is the sequence of Fourier coefficients of k in M, (Z,). The function v
takes its values in 2. and is defined in some neighborhood of zero.

Note that, when M, (&,) is nondegenerate, the Fourier representations ¢ and
&, are injective, since the Fourier coefficients of a vector k in M, (&) orin M, (¥,)
uniquely determine k.

3. The space H(T)

Throughout this section we will be assuming that T has spectrum in the closed
unit disc. By an application of the principle of uniform boundedness and the spectral
radius formula, it follows that the results of this section apply to operators in C_,.

Let us first condider the Kerin space H?2(2;) of functions analytic in the open
unit disc, with values in %, and with square summable Taylor coefficients. If

¢ u(d) = S’A"u,, and () = S’l"v,,
n=0 n=0

are two functions in H2(%y), then their indefinite and Hilbert space inner products
are given by

[u’ ’U] = j [um vn] and (u’ U) = 2’ (uns vn)'

A fundamental symmetry J on H2(%y) is given by the formula
Ju)(A) = Jru(a).

The space H%*(Pr+) can be defined in a similar manner.

It follows immediately from (2.3) that the Fourier representation @ is a unitary
operator from M, (%) onto HZ(QZT) preserving both the indefinite and the Hilbert
space inner products.

10*
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When T has bounded characteristic function, every k€M, (%,) has square
summable Fourier coefficients in M (£,) [5], but for an arbitrary operator, this is
not always the case. (See Example 3.1 below, which demonstrates this for a C ,
operator.) Consequently, the Fourier representation &, does not necessarily have
its range in the space H2(2.). We will use the notation H(T) to describe the range
ofd_,ie.,

H(T) = o.M (£).

We will assume, for the remainder of this section, that #={0}. We will de-
scribe H(T) for such an operator; by Theorem 2.1, we are including the case T€C,,.
The assumption 2= {0} is equivalent to M (¥,)=5,; since X, is nondegen-
erate, it follows that the Fourier representation @, is defined and injective on %7 .
Every k€2, has a unique representation of the form k=h+m, where he#
and meM . (%); thus, since @, is injective, every function in H(T) has a unique
representation of the form

&,k = d h+d,m,

where h€s# and meM  (&).
We can define a Krein space structure on H(T') by requiring that ¢_ be unitary
with respect to both inner products; we define, for k, K€M, (Z,),

3.1 [Pik, Puk') = [k, k']
and
(3.2) (@,k, DK') = (k, k).

H(T) is then a Krein 'space, with a fundamental symmetry (also denoted by J)
given by
Jb Kk = &, Jk.

We begin our study of the structure of H(T) by considering first the subspace
¢, #. For he#, define a function Fh by
(3.3) [FRI(A) = 3 I QpsT*h = JpaQpe(I— AT*)~1h.
n=0

If we apply [9], Corollary 8.2, to the our situation, in which #={0}, we obtain
&, h = Fh

for all h€s#. Fh is not necessarily in H?(Pr), since the sequence {Jr+ QT *"h},=o
need not be square summable, even for T€C, ,:

Example 3.1. Let {a,}.=1 be the sequence of pos1t1ve numbers given by
a@=1-1/m?, and let T,, be an operator on a two d1mens1onal Hilbert space Hns
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given by the matrix
a, 1
n=(5 o) |
Let 5 be the Hilbert space of square summable sequences x={x,}.=,, with
Xn€H, for m=1, and define T on # by Tx={T,,x,},=1- Since 0=a,<1, for

each m=1, it is easily verified that both T and its adjoint are C,, operators.
We have Jpu QnT*"x={y,m}m=z1, Where

+1
Vom = [;7:_1"1;' g] X, when n=>0
and
6 %)
Yom = 0 1 X »
1f
. = (llm)
" 0
then we have, for every M=0,
©o M o
(34) 2 WpOnT"x|?= 5 m™*(a+ 3 (@5 +an?) =
n=9 m=1 n=1

M M
= S m(1-ai) " (1+a}) = 3 (1+8})
m=1 m=1

as M. Therefore, the sequence {J+«QpT*"x},=, is not square summable. It
also follows, from the observation made earlier, that T does not have a bounded

characteristic function.
As in [12], [5], [9], and [10), the space & M , (&) can be studied by introducing
the characteristic function @ of T, defined by

(3.5) Or(A) = [ TIp+ M+ Qre(I = AT*) 1T Q7| D1

©:(2) is defined for those complex numbers A for which I—AT* is boundedly
invertible, and takes values which are bounded operators from 2, to 9@r+. Since
the spectrum of T is in the closed unit disc, it follows that @, (1) is defined for A
in the open unit disc. We can write, for |i|<1,

oo

(3.6) or(h) =2 ro,,
n=0

where

3.7 Oy =-TJr

and

(3.3) 0, = Jn QO T* Yr Oy

for n=1.
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The characteristic function @ is purely contractive, i.e., if [A|<1, then

{©r(D)a, Or(D)d] <[a,a] for acPy, a0,
and
[@+(A) b, Or(A)b] < [b,b] for bEDy«, b =0

As usual, we are using [.,.] to denote the indefinite inner products on 2, and
D, and Or(2)* denotes the adjoint of @, (i) with respect to these inner
products.

When T<C,,, we also have, in the strong operator topology, the telescoping
series

oo

39 3050, = KT T+ 3 QT (I-TTHT* 11y Qr =
n=1

n=90

= T* T+ QT(I—‘ l_i.m T"T*")JTQT = I.

Suppose u€ H2(%;), and consider the function Oru, defined for |A|<1 by
[O@ru}(D)=0r(A)u(l). If O is uniformly bounded on the open unit disc, then
Oru€ H*(P7.) and the Fourier representation @, maps M, (%,) onto H?(Dr4); if,
in addition, 2=1{0}, then we have, for mcM (&),

(3.10) Ordm =P m
(see [3]).

- We have already noted that Example 3.1 gives an example of a C,, operator
whose characteristic function is not bounded. Indeed @ru¢ H2(D.+) for the oper-
ator T of Example 3.1 and for u(%) equal to the constant function whose range is
the vector x of Example 3.1. We can still, nevertheless, generalise (3.10) to an arbi-
trary operator having #={0}:

Theorem 3.1. If #={0}, then ® ,m=0;Pm for all mcM (ZL).

Proof. Since the proof in [5] relies on @, being a bounded operator into
H?(Z+), it can not be used here. The proof given here does not require that the
dilation be the one constructed by Davis, but only that the operators ¢: &£ —~9¢
and ¢, : %, —~%+, defined in Section 2 above, be bounded.

Let us denote by P the projection onto £, which is selfadjoint with respect to
the indefinite inner product, and, as usual, let “ 1> denote orthogonality with
respect to the indefinite inner product.

Suppose h€s#, and let m=(U—T)h€ ¥, sothat om=Qh. Since &£, L UK,
and since we have

m=U-T)h=—([-UT*)Th+U(I—T*T)he Z,+ U,
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we can conclude that B : S
Pm = —(I-UT*)Th. BT Ceitew
Consequently, .
(3.11) @, Pm = —JpQpsTh = =TIy Qrh = —~TJrom

for a set of vectors m which are dense in .#. (3.11) extends by continuity to be valid
for all me #.

We also have, for all n>0 and for m=(U—T)h (hes#), the telescoping
series
(3.12) ' U*m = U(U~T)h =

n—1 ' ’ »
= —U™(I—UT*Th+ 3 U*-'"*(I—UT*T*(I—T*T)h+UT*(I-T*T)h. -
k=0 . .

Since %, is wandering for U, and U# | %,, all except one of the terms in (3.12)
are orthogonal to %, (in the indefinite inner product), and we can conclude that

PU*m = (I-UT*)T*"~Y(I-T*T)h.
Consequently,

313) @, PU*m = JpQpT** MU —T*T)h = Jpu Qs T* 1T Qrom
x

for all n=0 and for a set of vectors m which are dense in .. Again, (3.13) extends
by continuity to be valid for all m¢e #.

If we use the representation (3.6) of ©@;(2), then (3.11) and (3. 13) can be re-
written
(3.14) @, PU"m = @,pm,
for all me¥ and n=0.

Now suppose méM (&), and let {/ },=o be the sequence of Fourier coeffi-
cients of m in M (). Then we have, for each n=0,

m— 3 UMeU™ M, (£)
k=0
(see [7]), and thus

(3.15) Urm— 3 Un=*[,cUM , (&),
k=0

We have UM (&)L %, (see (2.2)), and thus (3.15) and (3.14) imply that
(3.16) 0 PU*"m = Z"' @ PU* ] = Zn' O, -x0l..
k=0 k=0

Since we are assuming that %= {0}, the vector m is in M, (%,), and the left side
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of (3.16) is the coefficient of 1" in the Taylor expansion of ®_m. The right side of
(3.16) is the coefficient of A" in thé Taylor expansion of @1 ®m. Therefore we have
&, m=0O;Pm, and the theorem is proved. :

Corollary 3.3. If #={0}, then OrucH(T) for all uc H*(Zy).

4. Some properties of H(T)

In this section, we derive some properties of H(T) that will be useful in con-
structing a model for T in terms of its characteristic function. As before, we will
be assuming throughout this section that T has spectrum in the closed unit disc
and that #={0}, but some results will be proved only for C,, operators.

It follows from the results of the preceding section that, if 2={0}, then the
range of the Fourier répresentation &, is of the form

H(T) = Fs#+ O H%(%y).

If a vector ke, is written in the form k=h+m, with h€s# and meM (%),
then we have
(4.1 &,k = Fh+ Oqu,

whére u=®m. The fepresentation (4.1) of a function in H(T) is unique, since @
and @, are injective. The inner products on H(T) have a simple formulation in
terms of the répresentation (4.1):

Proposition 4.1, If v=Fh+Oru and vV=Fh'+Oru’ are two functions in
H(T), then

4.2) [v, '} = (h, K'Y +[u, ']
and :
(4.3) (v, v) = (h, B)+(u, u).

Proof. Let v=¢&_k and v'=® k', where k=h+m and K'=W+m’. It fol-
lows immediately from (4.1) and the definitions of the inner products (3.1) and (3.2)
on H(T) and on ¢ (see [4]) that .

[v’ v’] = [k’ k'] = (hs h,)+[m: m’] = (h’ h,) +[u, u’],

since @ is a unitary opérator. The formula for (v, v) is proved similarly.
It is important for a later application to note that uniqueness of the representa-
tion (4.1) in fact implies the condition %= {0}.

Theorem 4.2. Suppose T is an operator with spectrum in the closed unit disc.
Define the: operator-valued functions F and ©p by (3.3) and (3.5), respectively. If
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& {0}, then there exists a vector h€ ¥ and a funcnon ucH 2(@T) not both zero,
such that Fh+ @ru=0.

Proof. If #{0}, then there is a nonzero vector k€%, i.e., k€, and
k1M, (£,). We can write k in the form k=h+m, where hé # and mcM (&),
and we will-take u= ®mc H%(D;). Since k>0, h and u are not both zero. If {I,},=0
is the sequénce of Fourier coefficients of m in M (&), then we have, for the nth’
coefficient in the Taylor series expansion of u,

4.4) u, = ¢@l,.

Since k€%, we can apply [9], Theorem 4.2, and assert the existence of a se-
quence {h,},=o of vectors in s such that

4.5 hy = h,

4.6) Th,,y =h, forall n=0, and
- (4.7 l,=@U-T)h,,, forall n=0.

Combining (4.4) with (4.7) and (2.1) gives us

(4.8) u,= Qrh,y; forall n=0.

The nth coefficient v, in the Taylor series expansion of v=Fh+@;u can now
be calculated. From the definitions of F and @, we obtain

vy =Jp O T*h+ B Ouu,_, =
m=0

= I QT hog = TIr Qrhasr+ 5 Jre QT (I =T*T) By
m=1

by (4.5) and (4.8). The second term of the above line can be writtenas —J 0 Qs Th, 41,
and iterating (4.6) gives us h,_,.,=T"h,., (1=m=n+1). Thus we have

vy = Jps Qs (T*" T — T+ 3 T (I ~T*T)T") by oy = 0,
m=1

since the series telescopes. Thus =0, and the theorem is proved.
We will denote by U the operator of multiplication by the independent variable
on H(T) or H3(2y):
[Uu](2) = 2u(d)

for uc¢H(T) or uc H*(Z;). It is obvious that H%*(92,) is invariant for U, and
that U preserves both the Hilbert space and the indefinite inner products of H2(Z;).
The adjoint U* of U, in both inner products of H2(%,), is given by the formula

4.9) [U*u)(2) = A7 (u(2) —u(0)).
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H(T) is the range of the Fourier representation &, and the inner products
on H(T) were defined so as to make @, unitary. It follows easily from the definition

of ¢_ that
o U=Uo,

where U is the Davis dilation of 7, and so H(T) is invariant for U. Since U is
-bounded and preserves the indefinite inner product of %", we can conclude that U
is bounded and preserves the indefinite inner product of H(T). The formula (4.9)
for the adjoint U* of U, in the indefinite inner product, is also valid in H(T), since
U* acts as the backward shift on the Fourier coefficients of a vector in M, (Z,).
It is possible to give explicitly the action of U and U* on H(T') in terms of the rep-
resentation (4.1):

Proposition 4.3. Suppose v H(T), with v=Fh+©Oru for some hc# and
u¢€ H*(2;). Then

4.10) Uy = FTh+4O(Qrh+Uu)
and
{4.11) U*s = F(T*h+J7Qr u(O))+(-)T(U*u).

Proof. It follows immediately from (3.5) that
Or()Qr = I Qr(I—-AT*)~'(A-T)
(cf. [12], p. 237). Therefore, if v=Fh+@yu, we have
20(1) = ATpeQpe(I— AT*) " h+ 20 p (A u(2) =
= JpeOpe(I— AT*)"Th+ 01 (2) Qrh + 201 (1) u().

Formula (4.10) follows.
If o/=Fh+0.u, for some he¢# and «'cH2(D;), then, using (4.10) and
Proposition 4.1, we have

4.12) [U*v, 0] = [v, Uv'} = (h, TK')+[u, QW + U] = 7

= (T*h, h')+[u(0), Q1 ']+ [U*u, u).
Note that
[u(0), Q'] = (Jru(0), Qrh') = (JrQru(0), i),

so that (4.11) follows from (4.12) and Proposition 4.1.

The fact that U preserves the indefinite inner product of H(7T) can be verified
directly by observing that (4.10) and (4.11) imply that U*U=1.

The inner products (3.1) and (3.2) have been defined on the function space
H(T) by making reference to the underlying Krein space 2#". The indefinite inner
product (3.1) can also be given, on a dense subset of H(T), directly in terms of the
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functions involved. In this section, we will prove that, for v¢H(T) and for u be-
longing to a dense subset of H(T), with

u(z) = S’fi"u,, and v(4) = S’l"v,,,
n=0 n=0

the indefinite inner product (3.1) is also given by

(4.13) [, o]y = S [t 2a]-

The formula (4.13) is identical to the one that applies in H%(%2), but the Hilbert
space structure on these two-spaces can be quite different. -

The dense subset of H(T) on which (4.13) is valid includes the polynomials
and a space of functions obtained from a reproducing kernel for the indefinite
inner product. When T€C_,, (4.13) is also valid for any functions «# and v which
.are finite linear combinations of functions of the form U"Fh (h€ #,n=0), and
for any u and v of the form Fh+@.p, where h€s# and p is a polynomial in
HY@p).

Example 5.9 of [9] shows that (4.13) can not be expected, in general, to provide
the indefinite inner product on all of H(T). In this example, we have %= {0}, but
T4¢C,,. It is a consequence of Proposition 4.6 below that [Fh, Fh'}ys¢(h, h’) for
some h, We#, and thus (4.13) does not give the inner product on all of H(T). It
is not known whether or not (4.13) is valid on all of H(T) when T€C, ,.

The space H(T) contains the constant functions with values in 9. (they are
the functions of the form @& _m for m<%,), and hence contains all polynomials
'with values in 9. The operator mapping a vector in %y« to the corresponding
-constant function is continuous and preserves the indefinite inner product, because
-of the corresponding properties of the operator ¢, considered in Section 2. More-
over, the definition of M, (%,) and the wandering property of #_imply that the
polynomials are dense in H(T') and that the indefinite inner product of a polynomial
‘with an arbitrary function in H(T) is given by the formula (4.13). These properties
-of the polynomials can be verified directly in terms of the representation (4.1) of
functions in H(T), given for polynomials in the following proposition. The operators
O, in (4.15) are those given by (3.7) and (3.8), and their adjoints are taken in the
‘indefinite inner product.

Proposition 4.4, If acDr., then the constant function with range a in H(T)
is of the form

(4.14) | a = F(Qp+a)+ O(~ J;T*a).
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We also have, for all n=0,

(4.15) U'a = F(T" Q)+ ©4( 3 U"6?_,,a).
m=0

If v¢H(T) and if p is a polynomial in H(T), then

(416) [pa U] = [P, 2}];;.
Proof. From the definitions of F and @, we obtain
(F(@ra)+Or(~JrT*a)(2) =
= I Qp(I~ AT 1 Qpa+TT*a—2J s Qre(I—AT*) ' T*Qra =
= JpQp(I-AT* " Y(I-AT*)Qra+TT*a = a,
since Jp+ Q%.=I—TT*. Thus, (4.14) is proved, and (4.15) follows by iterating (4.10)
and using the definitions (3.7) and (3.8) of ©,. )
For an -arbitrary v=Fh+Oruc¢H(T) we have, from (4.15) and Proposi-
tion 4.1,

(4.17)  [Una, 5] = (T"Opa, B+ g’ (0% ,.a,u,],

where u, is the mth coefficient in the Taylor series expansion of u. Rewriting
each of the terms on the right side of (4.17) in.the indefinite inner product of @
gives us

[U"a, v} = [a, J+ O+ T*h+ 3 O,_,u,] = [a,v,],
m=0

where v, is the nth coefficient in the Taylor series expansion of . Formula (4.16)
then follows from the definition (4.13) of [.,.]s.and the linearity of the inner
product. .
Consider the function

k(p, 2) = (1=2j)7,
defined for A and u in the open unit disc, and the associated family {k,} of functions
of a single variable, defined by

k(D) = k(u, 2).

For any a€2; and |u|<]1, the function k,ais in H%(%;) and has the reproducing
properties:

(4.18) [, k,a] = [u(u), d]
and
4.19) (v, k,a) = (u(p), a)

for every u¢ H*(2y). The inner products on the left sides of (4.18) and (4.19) are
the indefinite and Hilbert space inner products, respectively, of H?2(2;), whereas
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the inner products on the right sides are the respective inner products of 2. We

say that k(u, 1) is a reproducing kernel for each of the inner products on H?2(Z;).
It is not obvious that the functions k,a (a€Dr«, |ul<1) arein H(T); we show

in Theorem 4.5 that this is in fact the case. Moreover, k(u, 1) is a reproducing

kernel for the indefinite inner product of H(T):

(4.20) [v, kya] = [v(n), a]

for every ve H(T), ac 2, and for |u}<1. It is a consequence of (4.20) that the
space of all finite linear combinations of functions of the form k,a (a€ 2+, |ul<1)
is dense in H(T). We also show in Theorem 4.5 that the inner product in H(T) on
the left side of (4.20) coincides with the inner product [., .];.

In Section 5, we will find a reproducing kernel for the Hilbert space inner
product of H(T), i.e., a kernel k’ such that

(@, kya) = (v(w), @)
for every v€ H(T), ac @7«; and for |uj<].

Theorem 4.5. The function k(u, \)=(1—-Ai)~' is a reproducing kernel for
the indefinite inner product on H(T). If a€Dy and |pul<1, then we have

4.21) k,a = F(I—iT)"'Qr«a+ Ok, 0 (1) a.

If u is a finite linear combination of functions of the form k,a, where acP«
and |u|<1, then
4.22) [v, u] = [v, uls,
for all v€H(T).

Proof. From (3.5) we can derive the formula
1—01(A)O0r(0)" = (1 —A) Jp« Qpe(I — 2T*) "' (I — AT)~* Oy,

where A and yu are in the open unit disc, and the adjoint @,(u)* is computed in the
indefinite inner products of &, and Pr. (cf. [12], p. 238, and [8], Sec 4). Thus, for all
ac 9D, we have

(1—2p)"*a = I Qpe(I = AT*) "I — AT) ' Qrea+ Or(A)(1 = AB) ' O1(n)* a,

and thus (4.21) is verified. Since k,Or(w)*ac H*(2y), we have k,acH(T).
If we take v=Fh+0Oyuc H(T), then we obtain, using (4.21) and (4.2),

[‘l), kua] = (hs (I_ﬁT)_lQT*a)-I'[u’ ku@T(ﬂ)*a] =
= (Qr+(I—puT*)"*h, a)+[u(u), Or(p)*al,

using the reproducing property (4.18) in H?2(9r). Rewriting the inner products in
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terms of the indefinite inner product of 2., we obtain
[v, kual = Ups Qr- (I — pT*) "' h+ O () u(p), a] = [v(n), a],

proving the reproducing property (4.20) for H(T).
Finally, we note that, if

v(d) = 2” o,
n=0

then

oo

[0, kyal; = 3 [v, i"d] = §°° (10, a] = [p(), @] = [, k,a].

n=90

Equation (4.22) then follows by linearity.

Although the indefinite inner product is given by [.,.]r on the dense subsets
of H(T) identified in Proposition 4.4 and Theorem 4.5, it does not necessarily apply
on the whole space. As was noted above, it is possible to have 2= {0} with T¢C ,;
the following proposition shows that, in such a case, the inner product is not given
by {.,.]z on the subspace Fs# of H(T).

Proposition 4.6. On the subspace F3# of H(T), the mdeﬁmte inner products
[.,.) and [.,.]s coincide if and only if T€C .

Proof. Using (3.3) and (4.13), and the property J;+Q%,=1—TT*, we obtain

(_4;23) [Fh, Fk]; = 2 [Jpe O T* b, Jps Qs T k] =

= 3 (T"I-TT*)T*h k) = (h, k)— lim (T*"h, T*"k)
n=0 A~ co

whenever the limit exists. On the other hand, Proposition 4.1 gives [Fh, Fk]=(h, k)
for the inner product on H(T). Thus, if T€C, 4, the two inner products coincide.
Conversely, if the inner products coincide, then, by putting k=h in (4.23), we
obtain T**h—~0 for every hes#, ie., TeC,,.

If we restrict ourselves to functions of the form Fh+ @ u, where hcs# and
u is a polynomial with values in 9;, then we can show that, for T€C,,, the two
indefinite inner products, given by (4.2) and (4.13), coincide. It follows immediately
from the definition of H(T) that the linear manifold of such functions is dense
in H(T).

" Theorem 4.7. Suppose T<C.,. Then the indefinite inner products |[.,.] and
[.,.)s coincide on the dense linear manifold of H(T) consisting of functions of the form
Fh-+Oru, with h¢ ¥ and u a polynomial with values in 9y.
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Proof. Consider a function w of the form w=Fh+ @ ru, where hcs# and

N .
u(d) = 2 Yu,,
n=0

for some N=0 and u,£9, (0=n=N). By the polarization identity, we can es-
tablish equality for the two inner products by showing that [w, wly;=[w, w], i.e.,
by showing that

. N
(4.24) [w, wls = [AlI"+[u, u] = llhllz+"§; [#s5 s]-

We have already shown, in Proposition 4.6, that (4.24) is valid when u=0. Thus,
to establish (4.24) it suffices to show that, if h€#, and if u(A)=A"a and v(1)=A"b,
for a,b¢P; and 0=m<n, then

(4.25) [Fh,®rul; =0,
(4.26) [@Tu, 01‘”]2 = O,
and

(4.27) [@7u, Orul; = [a, d].

The definitions (3.3) and (3.5) of Fh and ©;(4), together with the definition
(4.13) of the inner product, give us

[Fh, Opuly = 3 [Jr+ QpeT*"**h, Oya] =

k=0

== —[JT*@T*T*nh, TJTa]+ 2 [JT*QT*T*n+kh, JT* QT*T*"_IJTQT(I] =
k=1

= (3 Or T h, a)+ 3 (Jp QrT*=1(I—TT*T*+*h, a) =
k=1

= - lim(T*"+k+1h, T*kJTQTa) = 0,

k—+co

since T¢C, ,. This proves (4.25); to prove (4.26), note that we have, for m<n,

oo

[Oru, Orv]y = ké; [Oka, Oy y-pb] =
= —[TJra, Jpx QpsT*" "1 Jr Qr b +
+ S U QT Qra, Jpx Qe T+ —"=1 1. O r b] =
k=1
= —(T"""JrQra, JrQrb) + S' (T*+=m=Y(I-TTHT*~1J; Qra, JrQrb) =
=1

— _"IEE(T*I:JTQTQ’ T*k+"_mJTQ1‘b) = 0.
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The remaining identity (4.27) foilows immediately from (3.9).

Corollary 4.8. Suppose T€C,,. Then the indefinite inner products |.,.] and
[.,.]s coincide on the dense linear manifold of H(T) consisting of finite linear com-
binations of functions of the form U" Fh, where h€# and n=0.

Proof. We can obtain from (4.10) the formula
n—1
(4.28) U'Fh = FT"h+ @7 J U*Q;T"*~'h,
. k=0

showing that Theorem 4.7 applies to functions in the manifold consisting of all
linear combinations of functions of the form U” Fh. The fact that this manifold is
dense in H(T) can easily be proved by noting that only the zero function in H(T)
can be orthogonal to all functions of the form (4.28).

5. Reproducing kernels

We assume, as in previous sections, that 7 is an operator with spectrum in the
closed unit disc and with trivial residual space. In Section 3, we represented the
range of the Fourier representation @, in the form

H(T) = F#+ OrH*(9y),

and the operator T was used explicitly in the construction of this space. By con-
trast, when the characteristic function is bounded, we have H(T)=H?2(2r+) ([12],[5]),
and thus a knowledge of only the space 2. suffices to construct H(T'). In this sec-
tion, we show how H(T) can be described in terms of the characteristic function @,
without explicit reference to 7T, and use this in the following sections to obtain a
functional model in terms of @ . '

The space @rH?2(ZP;) already has a description in terms of @1 alone, since
a knowledge of 2y, the domain space of &, is all that is required to describe the
space H2%(Z;). However, the description of F# in terms of @, is not so imme-
diate.

By Theorem 4.5, the space H(T') contains all functions of the form k,a, where

k@) = k(u, Da = (1—4B)~'a, €Dy, |l <1,

and k(u, 2) is a reproducing kernel for the indefinite inner product of H(T). If we
consider the orthogonal projection of k,a onto Fs#, we should obtain a reproducing
kernel for the indefinite inner product of F3#. In Theorem 5.1 below, we show that
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the kernel so obtained is

(¢.1) K(u, 2) = 1 =245~ (I— O () O¢ (1))
We prove the following reproducing property: if
(5.2) (K.a](4) = K(u, 4)a
for ac9r« and |u|<1, then K,acF# and
(5-3) [Fh, K, a) = [(F)(#), ]
for all hes#.
We also show in Theorem 5.1 that the function
G4 K(u, 2) = K(u, 1) Jye

is a reproducing kernel for the Hilbert space inner product on F#: if
(5) [K:al(2) = K (. a
for ac2r« and |u|<1, then K acFs# and

(Fh, K, a) = ([Fh)(n), a)

for all h€s#. Note that the indefinite and Hilbert space inner products coincide
on Fs#; the only reason that separate kernels are needed for the two inner products
is that they don’t coincide on Zr..

Theorem 5.1. The subspace F3# of H(T) is the closed linear span of functions
of the form K,a (defined by (5.2)), where a¢ Py« and |u|<1. The functions K(u, 1)
and K’(u, ), defined by (5.1) and (5.4), are reproducing kernels for the indefinite
and the Hilbert space inner products, respectively, on F# .

Proof. From the representation of the function k,a given by (4.21), we obtain
[FUI—AT)*Qreal() = (1 =21) ' (I-O1(4) O1(n)*)a = [K,a)(4),

showing that the functions K,a are in Fs#. By Proposition 4.1, the inner products

on F3# are given by
[Fh, FW'] = (Fh, Fi’) = (h, i),

for all h, h’¢ 2#. For the functions given by (5.2) and (5.5), we therefore have, for
all hes#, i

[Fh’ Kua] = (h’ (I'—ﬁT)—lQT*a) = [JT* QT‘(I—”T*)-Ihs a] = [(Fh)([l), a]
and

(Fh, Kja) = (h,(I— GT) " QqeJyea) = (Jp+ Qpe({ — uT*)~*h, @) = ((Fh](n), a)-

11
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Therefore, K(u,A) and K’(u, 1) are reproducing kernels for the two inner
products. Since the indefinite inner product of 2. is nondegenerate, (5.3) also
shows that only the zero function Fh is orthogonal to every function K,a, with
ac P and |p|<1, and thus the space of linear combinations of such functions
is dense in Fi#.

The inner products on @rH2(2;) can also be given in terms of reproducing
kernels. Recall that @,(u)* denotes the adjoint of @(u) with respect to the in-
definite inner products on 2, and 2,+. We will denote by @ (u)™® the adjoint of
©1(u) with respect to the Hilbert space inner products on 2, and Zr..

Theorem 5.2. The function _
L(u, ) = (1=~ 0r(1) Or(n)*
is reproducing for the indefinite inner product, and the function
L', 2) = (1— A2 (1) O ()™
is reproducing for the Hilbert spdce inner product on @1 H?*(2y).
Proof. If L,a and L a are defined for a¢ @« and [u|<1 by [L,a](A)=L(u, H)a
and [L,al(A)=L'(u, Ya, then, clearly, L,acO;H*(Zr) and L,acOrH*(Zy).
For every u¢ H2(2y) we have, using (4.2) for the indefinite inner product on
©1H%*(Z;), and the reproducing property (4.18) of k(u, 1) on H*(Zy),
[Oru, L,a] = [u, k, Or(p)*al = [u(p), Or(n)*a] = [Or(W)u(u), al,
proving the reproducing property for the indefinite inner product. Similarly,
(Oru, L,a) = (Or()u(p), a),

proving the reproducing property for the Hilbert space inner product.

Note that the reproducing kernel k(u, A} for the indefinite inner product of
H(T) can.be obtained as the sum of K(u, i) and L(u,2). We can obtain a re-
producing kernel for the Hilbert space inner product of H(T) by considering

(3-6) k', 2) = K'(u, A) + L (, 2).

Theorem 5.3, The Sfunction k'(u, ), defined by (5.6), is a reproducing kernel
for the Hilbert space inner product of H(T). '

Proof. This follows immediately from Theorems 5.1 and 5.2, and the fact that
the spaces Fs# and ©;H?%(2;) are orthogonal complements in the Hilbert space
inner product of H(T).
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6. The space H(T)

" 1In the ‘preceding sections, the space H(T) was described for an arbitrary ‘oper-
ator with trivial residual space. In this section, we obtain a description of a space
H(O), for an operator valued analytic function @. The function @ will be assumed
to satisfy conditions that are known to be valid for the characteristic function of a
C., operator. These assumptions will be sufficient to guarantee that @ is the charac-
teristic function .of a completely non-unitary operator T with trivial residual space,
and we will then have H (@)= H(T). . ,

Throughout this section, we suppose that @ is an operator valued analytlc
function, defined on the open unit disc, and taking values that are operators from a
Krein space 2 to a Krein space 2, . For |/1|<1 we can wrxte

(6.1) I : 90~)= Zﬂ"@n,
n=0

where, for each n=0, O, is a bounded operator from 2 to 2, .

We assume that @ is fundamentally reducible, i.e., that there are fundamental
symmetries on 2 and &, commuting with ©(0)*@(0) and ©(0)©(0)*, respec-
tively (see [8]). We also assume that @ is purely contractive, i.e. if |i]<1, then

[©@(A)a, ©@(A)a] < [a,a] for acP, a %0,
and
[@() b, O(A)*b] < [b, 6] for b€D,, b 0.
As usual, we are using [.,.] to denote the indefinite inner products on 2 and 9,
and O(4)* denotes the adjoint of @ (1) with respect to these inner products.
It follows from the above hypotheses that @ is the characteristic function of
a uniquely determined completely non-unitary operator T and, conversely, the
characteristic function of any completely non-unitary operator satisfies these hypoth-
eses (see [8], [1]). Since O is analytic in the open unit disc, it also follows from [1]
that T has spectrum in the closed unit disc. We will also be assuming that @ satisfies
the additional condition

M3

(6.2) ero, =1,

i
=3

n

in the strong operator topology, where the operators @, are given by (6.1). It was
shown previously, in (3.9), that @ satisfies (6.2) if it is the characteristic function
of a C,, operator. It is not known if T is necessarily in C , when @ satis-
fies (6.2).

In this paper, we will be constructing a different functional model for T than
that given by BALL in [1], but we will be appealing to Ball’s model to be able to assert
that ©=0; for some completely non-unitary operator T acting on a Hilbert space

11+
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. The assumption (6.2) on © implies the condition of trivial residual space for
T, which we considered earlier. The proof of this, in Theorem 6.1 below, closely
resembles the proof, in [9], Theorems 4.2 and 5.5, of the fact that 2={0} fora C.,
operator.

We use the same notation below as we have used previously. In particular, F
is the function given by (3.3).

Theorem 6.1. Suppose @ is a fundamentally reducible, purely contractive ana-
Iptic function, satisfying the condition (6.2), and let T be the completely non-unitary
operator such that @=0y. If Fh+Oru=0 for some hc# and ucH*(2), then
h=0 and u=0. T has trivial residual space: #={0}.

Proof. By Theorem 4.2, it suffices to prove the first part: if Fh+©,u=0 for
he# and uc H*(2;), then h=0 and u=0.

If we assume that Fh+@ru=0, then we obtain, from the nth coeflicient in
the Taylor series expansion of Fh+@gu,

(6.3) T QnT*h+ 3 Optty_y = 0,
where =
u(d) = 3 M.
k=0
Define a sequence {h,},=o in 5# by

h, = T*"h+ 2"' T 1T Qrtty sy
k=1

for n=0. Then we have
(6.4) ho = h,
and, for each n=0,

hy—Thysy = (I—TT*)T**h — TJy Oru, +k§"1 (I~TTHT* I Qru,_, =
- QT* [JT* QT* T*"h - TJTu,. + k;;. JT* QT‘ T*k_IJT Qrun_k] =

= QT*[JT*QT*T*nh'*'kg;@kun—k] =0
by (6.3). Thus, for all n=0, we have
(65) Thn+l = hn’
and by induction we obtain, for 0=n=N,
(6.6) TN-"h, = h,.
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We also have, for all n=0,

n+1
6.7) hyy1 = T*"+1h+k§ T Qrttyyy_y =

=T*"*h4 T*kJTQTu - = T"hy+Jr Qrusy.
k=0

Thus, using (6.7) and (6.5), we get

JrQruy = Byyy =T hy = (I=T*T) by 1 = J7 Qr(Qrhnsy)-
Since J,Qy is injective on 9y, it follows that
(6.8) U, = Qrhy 4y

for all n=0.
Since u€ H*(9;), we can write for the indefinite inner product (using (6.8))

[u’ u] = "5:) [una un] = ]32730 21 [QThn+1$ QThn+1] =

n=0

N N
= ]31_{1; g[QThns Orh,] = 131_210 ;;[QTTN_"hNa OrTN-"hy),

by (6.6). Thus we obtain the telescoping series
N
6.9) [u, u] = 1\1,1.52 Zl' (T*N-"(I-T*T)T""hy, hy) =

= Tim (il = IT hl®) = Tim Y]~ ol

by (6.6) again. It follows, from the existence of the limit in (6.9), that the sequence
{h,},=0 must be bounded.
The condition (6.2) on @ is equivalent to

lim QTT"T*nJTQT = 0,

in the strong operator topology (cf. (3.9)). Therefore, for every kco#, we have
|T*" Qrk|® = (QrT"T*"Jr Q1 (Jrk), k) -0 as n-—eo.

Using the boundedness of the sequence {h,},=o and property (6.6), we can con-
qlude that .
(k, Qrhyy = (Qrk, P¥"hy) = (T*"~"Qrk,hy) -0 as N —»co.

Consequently, Qrh,=0 for each n=0; By (6.8) and (6.4), this implies that u=0
and that QO h=0.
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From (6.4) and (6.6) we can also conclude that, for each k€s# and n=0,
(k, QrT"H) = (k, QrT"*Nhy) = (T*"*NQrk, hy) =0 as N —co,

and thus '
(6.10) Q:T"h =0 forall n=0.

Since u-—:O, we have Fh=0, and this implies that
(6.11) OnT*h=0 forall n=0."

We complete the proof by showing that the two conditions (6.10) and (6.11)
together imply that h=0. The subspace #, of all vectors h¢# satisfying (6.10)
and (6.11) is invariant for T'; this follows from the relations QTh=TQ;h and

OpT*"Th = QpT*"~Y(T*Th) = Qp:T*~'h (n = 1)

when Qph=0. By symmetry, 5 is invariant for T* as well. The relations Qrh=0
and Qp«h=0 imply that 5 reduces 7 to a unitary operator; since T is assumed
to be completely non-unitary, we have = {0}.

The space Fi# will be modelled by following the representation given in Theo-
rem 5.1. We define, as before,

K, ) = (1= 20 (I- 0 () Owy)
K,(2) = K, .

and

Consider the space H,, of all finite linear combinations of functions of the form K, a,
where ac9, and |uj<1. We impose on H, an inner product [.,.] by means of
the formula (5.3): '

[u, Kya] = [u(n), 4},

for all ucH, and for all a2, and |u|<1. Part of the proof of Theorem 1 of [8]
shows that this inner product is positive definite. If H denotes the completion of
the space H, to a Hilbert space, then standard reproducing kernel arguments can
be used to show that H can be identified with a space of functions analytic in the
open unit disc. Since #={0}, Theorem 5.1 shows that H=F#.

We define the space H(@) as

H(0) = H+ OH*(2).

Since H can’ be identified with F2, Theorem 6.1 implies that every function in
H(O) has a unique representation in the form h+@u, with h¢H and uc H2(D).
Suppose v=h+@u and »'=h+6O« are two functions in H(O); we can define
indefinite and Hilbert space inner products on H(@) by

(6.12) [0, '] = (b, &)+, ']
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and
(6.13) (v, ") = (h, K) +(u, ).

The first of the inner products on the right sides of (6.12) and (6.13) is the inner-
product on the Hilbert space H; the second of the inner products is the indefinite
inner product (in (6.12)) and the Hilbert space inner product (in (6.13)) on H%(2).
With these inner products, H(®) is a Krein space, with fundamental symmetry J
given by

J(h+Ou) = h+0O(Ju) (h€H, uc H*(9D)).

A comparison of the constructions of the spaces H(®) and H(T) shows that
H(@)=H(T).

Note that we have constructed H(@) in terms of @ alone; we needed to use
the fact that @=0O1 for some operator T only to prove some properties of H(@)
from the assumptions on @. It would be more desirable to be able to construct the
space H(O) without any reference to the underlying operator; the stumbling block
is finding a direct product of the uniqueness of the representation A+ @u for heH
and uc H*(9).

7. Functional model for an operator

In the first part of this section, we assume that T is an operator with spectrum
in the closed unit disc and with trivial residual space. Such an operator is auto-
matically completely non-unitary, since a subspace of # which reduces T to a unitary
operator is in the residual space (see [9], Theorem 3.1). We present here a model
for this operator, based on the function space H(T) constructed earlier. We will
finish the section by presenting a model in terms of an operator valued analytic
function 6.

Let K,=H(T), and let U denote multiplication by the independent variable,
as in Section 4. Then the Fourier representation @, is a unitary map from
onto K, preserving both the indefinite and the Hilbert space inner products. The
subspace # of A, is identified with the subspace H of K, , defined as the ortho-
gonal complement of @;H?*(Zy) in K, : ,

(1.1) H = K, N[0 HYDD] .

The representation of H(T) in the form F#+6O;H2(2?;), and the forms (4.2)
and (4.3) of the inner products on H(T), show that either of the two inner products
could be used for the orthogonal complement in (7.1), and that &, maps #
onto H. . :
If we define U,=Ul|A,, then we have

T* = U*|o#
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(cf. [12)). It follows immediately that, if we define

T* = U*H,
then we have
' &, Th = Td, h
for all heJ?.

The following theorem summarizes the main properties of the model, which
is based on the Sz.-Nagy and Foias model (see [12] and [10]) of an operator. We
present a model only for the part of the dilation on £, ; the remainder of the space
could be modelled very simply: by including functions of the form

v(d) = 2’1 Ao,
with square summable coefficients v,€ 2+, but notatienal convenience would be
sacrificed.
We use the function space H(T) in place of the space H2(Z) of the Sz.-Nagy
and Foias model. The model is simplified by the fact that we are working with
operators for which %= {0}.

Theorem 7.1. The Fourier representation @, of M, (%,) is a unitary operator
from A, onto K., preserving both the indefinite and the Hilbert space inner
products. If U is the Davis dilation of T, restricted to the subspace X, then
o U=U9,.

The subspace 3# of A, is mapped by @ onto the subspace H of K, , defined by
(7.1), and the indefinite and Hilbert space inner products coincide on H. If T is the oper-
ator on H whose adjoint is defined by

T*u = U*uy,
Jor ucH, then we have, for all h¢ o/, & . Th=T®_h.

When the characteristic function @ is vniformly bounded on the open unit
disc, the space H*(%;+) can be used as the range of @, [5]. In that case P, is bounded,
with bounded inverse, but does not preserve the Hilbert space inner products.
Since the shift on H%(2p) is an isometry, in the Hilbert space inner product, the
analogue of Theorem 7.1 gives the result that, when &1 is bounded, U is similar
to a unitary operator on a Hilbert space ([11], and [9], Theorem 7.2).

When H(T) is used as the range of @, , Theorem 7.1 above shows that the
Hilbert space inner product is preserved by &, . We lose, however, the property
that the shift is an isometry in the Hilbert space inner product: the operator U
on H(T) is a shift in the Kreins space sense, preserving the indefinite inner product,
but not necessarily the Hilbert space inner product. Indeed, U need not be power
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bounded when T¢C 4, and hencz need not be similar to a unitary operator on a
Hilbert space.

, Example 7.2. Let T be the adjoint of the operator defined in Example 3.1, so:
that T¢C,,. Suppose u=FxcH(T), for the vector xcs# used in Example 3.1.
Then, by (4.28), we have

(U u](4) = A"u(4) = [FT"x}(A)+ Or(4) "Z_l Ak, Thx
k=0
and thus

n—1
(1.2) U ulj® = IIT"XII2+"§0 Qr T* x|,

1

Since we are working with the adjoint of the operator in Example 3.1, (3.4)
shows that the sequence {J7Q;T*x};= is not square summable. Since J; is unitary,
the sequence {QrT*x},=o is not square summable, and so, by (7.2), U is not power
bounded.

"We finish the section by assuming that ©@(1): 2—~9, is a fundamentally
reducible, purely contractive analytic function, which satisfies condition (6.2), We:
present here a model for an operator having @ as its characteristic function, based
on the function space H(®) constructed in the preceding section. We know, from
the previous section, that @ is the characteristic function- of a unique completely
non-unitary operator 7, acting on a Hilbert space #, with spectrum in the closed
unit disc, and with trivial residual space. Thus, we can describe the model directly,
using the above results and the fact that H(T)=H(®). Note that the space H,
defined by (7.1), is the same as the space H defined in Section 6.

Theorem 7.3. Suppose ©(1): D—~2D, is afundamentally reducible, purely con-
tractive analytic function, which satisfies condition (6.2), Define K, =H(®), and

H = K, N[OH}(D))+,

where the orthogonal complement is taken in either of the two inner products of H(@).
Then H is a Hilbert space, and the operator T on H, defined by

T*u = U*y,
Jor ucH, has characteristic function which coincides with ©.
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Hyponormal composition operators on weighted Hardy spaces

NINA ZORBOSKA

ﬂn-*l—l
-

Let B={f.};>, be a sequence of positive numbers with f,=1 and 1

as n—oo. The set H2(B) of formal complex power series f(z)= f a,z" such that
n=0
1A = ZO la,|?Be <o

is a Hilbert space of functions analytic in the unit disc with the inner product

(f &) = § a,5,

for f as above and g(z)= f b,z". For details see [9].
n=0

If ¢ is an analytic function mapping the unit disc D into itself, we define the
composition operator C, on the space H%(f) by C,f=foe. The operators C,
are not necessarily defined on all of H2(f). They are everywhere defined in some spe-
cial cases: on the classical Hardy space H? (the case when §,=1 for all n) — see for
example [7], and on a general space H2(f) if the function ¢ is analytic on some open
set containing the closed unit disc having supremum norm strictly smaller than one
(see[11]). There are a lot of other known properties of composition operators, on
the classical Hardy space H?2 (see for example [1], [6] and [7]), and on more general
space H2(B) (see [4], [5], [8], [10] and [11]).

In this article we are interested in the hyponormality of composition operators
and their adjoints. The inspiration for this work was COWEN’s and KRIETE’s article [2]
in which, among the other results, they get a nice correlation between hyponormality
of composition operators on H? and the Denjoy—WOolff point of the inducing map.
Their proofs use some properties of the spectrum and spectral radius of a com-
position operator on H? which are still not known in the case of general spaces

Received January 16, 1989.
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H%(B). Nevertheless, taking a different approach, we can get some results on spaces
HE(B).
We say that the operator 4 on a Hilbert space s is hyponormal if 4*4—
— AA*=0, or equivalently if |A*f||=||A4f] for all fin .
For a sequence B as above and a point w in D, let
kﬁ — s 1 n
0(2) = 2 o5 (@2)".

n=0 Pp

Then the function k£ is a point evaluation for H2(B); i.e., for fin H2(p),

(f: ka)p = f(@).

Note that k=1 (the function identically equal to 1), and that Cikf=kE .

Theorem 1. If C, is hyponormal on the space H*(B), then ¢(0)=0.

Proof. Let C, be hyponormal on H?*(), and k5 be point evaluation at O.
Then ||C}, fllz=IC,flls for all fin H?(B), and if f=k5 we have

ol |
ICkEIE = Ikiwlls = Z(Jggkp(o)lz” = [ICokgl5 = [IklE = 1,

which implies, since f,=1, that ¢(0)=0.

Theorem 1.5 in [2] states that if C} is hyponormal on H?, then ¢ is univalent
in D; the proof also applies to a general space H?2(f). Also, by Theorem 1.4 in [2],
if C7; is hyponormal and not normal on H? then the Denjoy—Wolff « of ¢ (for
definition and properties see [1}) is such that |¢|=1 and ¢’(x)<1. This result is
not true in all spaces H2(f), as we can see from the following. Note that the spaces
we are going to work with are “the small spaces H2(8)” which consist of functions
continuous on the closed unit disc. These spaces provide examples of some other in-
teresting composition operators (for example, compact ones with no fixed point in
the unit disc (see [8] and [10])).

First we need the following lemma.

Lemma 1. (Lemma 4.3 from [3].) If A is hyponormal on 3, then for all f#0
in #, and for all n=0,

npp = A" fll"

Lemma 2. Let the sequence B be such that 2— <eoo and let C; be hypo-
normal on H2(B). Then ¢(0)=0. o b
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Proof. By Lemma 1, for any n=0 we have

wppye o ICokEIF
“(C ) k uﬂ = ”kg"?g("—l) *
But
ICSKEN = Ikbolls = 2 5= ,,z le(0)1* =
and
' . =1
|1(C;)"k.€‘||§ — "ki(n)(())” = k;; Bz w(n)({))lzk - Z‘ .__ = Cz

where ¢™(0) is the n-th iteration of ¢ at 0.
We have that [|k§];=1, and so

C: = I(Corkbls = ICokElF = CF-

If C,=>1, then C]—~<, which is a contradiction with the previous inequality, and
so Cy,=1; te., @0)=0.

Lemma 3. If Cj is hyponormal on H*(B) and ¢(0)=0, then ¢(z)=az where
lal=1.

Proof. We use the idea of the proof of Theorem 2.4 in [7]. Let ¢(z)=a,z+

z*
+ayz2+a,z*+... and fk=7g—. Then {f.}>, is an orthonormal basis for H*()
k

and ()= 3 a,p,f,. Now
n=1

oo

ICs flll,s = Z |(C S = 2 I(f1> (vfk“? 2 ﬁz I(f1, k)iz = "B‘z"‘alﬁliz'
Also

ICaAllE = B lols = ﬂz Zla..lzﬁ2

The operator C% is hyponormal; i.e., for any fin H3(B), [C, fl3 =IC% fII3. If f=f,,
‘we get that

2 Zlanl ﬁu = 53 Ialﬂll2
ﬁ
‘which implies that 0=a,=a;=... .

1
Theorem 2. Let the sequence B be such that D> —B?< oo, and C, be hyponormal

on H¥(B). Then ¢(z)=az, where |a|=1.

n

Proof. The proof follows immediately from Lemma 2 and Lemma 3.
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ScHwARTZ proved in [7] that a composition operator C,, is normal on H? if
and only if ¢(z)=az where |a|=1. Using the above results we can easily prove that
the same statement holds for all spaces H2(B).

Theorem 3. The operator C, is normal on H2(p) if and only if ¢(z)=az
with |a|=1.

Proof. It is trivial that if @(z)=az, |a|=1, then C, is normal on H?2().

Conversely, if C, is normal, then C,, is hyponormal and, by Theorem 1, ¢ (0)=0.
But we also ‘have C* hyponormal, and by Lemma 3, ¢(z)=az with laj=1.

As a consequence of Theorem 2 and Theorem 3, we get an interesting example
of family of spaces H*®(B), where the only cohyponormal composmon operators
are the ones which are normal.

Corollary. If > 1/,32<oo and C* is hyponmmal on H*(B), then C% is normal
on H*(B).
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Essentially normal composition operators on L*

THOMAS HOOVER and ALAN LAMBERT

1. Preliminaries. Let (X, Z, m) be a complete, sigma-finite measure space and
let T be a Z-measurable mapping (T ~1Xc X) of X into X. The composition operator
C induced by T on the set of complex valued, measurable functions on X is defined
by Cf=foT. Throughout this article I2=L2(X, X, m). For S¢Z, L2(S) is the
L2 space of functions on S, with the appropriate restrictions of Z and m. We will
regard this space as the subspace of L? consisting of those functions with support
in S. In general the support of the function fwill be denoted S, . For fin L=, M, will
denote the operator of multiplication by f on L2. We will be concerned with those
composition operators C which are bounded linear operators on L% A detailed
description of the general properties of such operators is given in [3]. In particular,
it is shown that C is a bounded operator on L2 if and only if

(i) moT 1 is absolutely continuous with respect to m, and

. dmoT™? '

(i) ———c L=,

) dm
Conditions (i) and (ii) are assumed to hold throughout. We set

dmoT 1

h=

We will make use of the following notation. For f in L? or measurable and non-
negative, E(f) is the conditional expectation E(f|T~'X). For fcL?% E(f)is the
orthogonal projection of f onto L*(X, T 'X,m). Verifications of the following
properties are found in [1], [2], and [5].

@) [CE=|hl.,.

(iv) For each f there is a function F such that E(f)=FoT. If E(f)=GoT
as well, then F=G on S,. In particular the function h-[E(f)JoT ! is well defined
even if T is not invertible. In fact, C*f=h-[E(f)]oT %, C*Cf=hf, and CC*f=
=hoTE(f).

Received February 10, 1989.
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(v) For measurable f and g, E((foT)-g)=(foT)Eg. For fecL™ this equa-
tion has the operator theoretic form M, E=EM,, .

2. Essential normality. In {5] R. WHITLEY proved that C is normal if and only
if T is invertible and bi-measurable, and h=hoT. Recall that an operator A is
.essentially normal if its image in the Calkin algebra is a normal element. Equiva-
lently A is essentially normal if and only if 4*4— 44* is compact. R. K. SINGH and
T. VELUCHAMY ([4]) have examined the question of essential normality for certain
.composition operators. Their result in this regard is stated below.

Theorem. If (X, Z, m) is completely nonatomic, and if C is essentially normal
‘with dense range, then C is normal.

In this article we will develop characterizations of essentially normal composi-
tion operators. It will be shown that the dense range hypothesis in the above result is
unnecessary. We first note that in the atomic case it is possible to have a non-normal,
«essentially normal composition operator.

2.1. Example. Let X=N={1,2, ...} and let m be the counting measure. Set
T(1)=1 and T(n+1)=n. Then C is a rank oné perturbation of the unilateral
shift. In particular, it is an essentially normal operator with index —1, and so is
not normal. '

For convenience, let D=C*C—-CC*=M,— M, E. We will examine D with
tespect to the orthogonal decomposition of L2 as EL2@(I—E)L%. We note that
EL? consists of those L2 functions which are 7~'X measurable. The range of C is
dense in EL? ([1]). Also, (I—E)L? consists of those L* functions f for which

f fdm=0 for every Z-set A.

T-14

2.2, Lemma. D is compact if and only if both M,(1—-E) and M,_,.+E are
compact.

Proof. D is compact if and only if both DE and D(I—E) are compact. But
D=M,—M, ,E, so

DE = (M,—M.rE)E = My_)o1E,
and
D(I—E) = M,(I-E).

23. Co roll.ary. Suppose that D is compact. Then M, (,,_ .1y is compact.
Proof. M,(1-E) and M,_,,E are compact. But
My(My_po1E) +(My(I—E) My _por = MyEM,,_yo7+M,(I—E)M,_4or =
= MM, por = Mu.(h—ho)-
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Write X=X_U{a;: icJ) where m is completely nonatomic on X, and {g;: icJ)
consists of the atoms for m. Let A=T"'X, and 4;=T 'a;, i¢J. These sets are
pairwise disjoint, so that the corresponding subspaces of L? are orthogonal. Note
that for any measurable set §, L*(T~1S) is a reducing subspace for D, because if
S§;,cT'S, then ‘

hf— hoTEf = hf—hoTE(fyr-is) = hf —hoT(Ef)yr-1s =0 off T-'S.
We have established the following result.

24. Theorem. Cis esséntially normal if and only if D\;s,y and Dlps,, (i€J)
are compact, and
Jim [[Dlezapl = O

This result is strengthened somewhat by Lemma 2.6 below. Its proof depends on.
the following fact.

2.5. Lemma. If § is a subset of X, with O<m(S)< <o, then there is a subset A
of S with

%m(S) < m(4) < %m(S).

Proof. Suppose no such set 4 exists. Then for every measurable subset E of
S, either m(E)<—i—m(S) or m(E)>% m(S). Let é’:{ECS: m(E)>%m(S)}.~
If E and F are in &, then
m(ENF) = m(E)+m(F)—m(EUF) > %m(S).

Thus ENFe8. Let a=inf {m(E): E€&}, and let {E,} be a decreasing sequence
3
of sets in & whose measures converge to a. Let G=NE,. Then m(G)=oc§Z m(S).

Now, there is a measurable subset B of G with 0<m(B)<m(G). But then neither
B nor G—B arein &. It then follows that both B and G—B must have measures

3 1
less than -Zm(S-), which implies that the measure of G is less than Em(S ). This
contradicts the location of G in &.
2.6. Lemma. If D, is compact then it is 0.

Proof. Assume Dy=D|,, is compact. Since D is selfadjoint and reduced
by L3(A), D, is selfadjoint. In particular, if D, is not 0 then it has a nonzero eigen-
value r. Let &, be the corresponding finite dimensional eigenspace, and let ¢ be any
L~ function with S,cX.. Then S,,=T"'S,CA4. Now, M, L*(4A)cL?*(4)

‘12
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and for any fin L2(X),

Mgyor Df = (9oT)(hf—hoTEf) = (h)-(¢poT)-f—(hoT)- E((¢oT)-f) = DM,orf.

1t follows that M, r leaves &, invariant. But &, is finite dimensional and so there is a
function f€é&, other than O, and a scalar A such that (@oT)f=Af a.e. dm. In parti-
cular,” 9oT=A ona set of positive measure. This shows that every L=(X,) func-
tion is constant on a set of positive measure. But by definition X, is completely non-
atomic. Let S be a set of finite, positive measure in X,. Via Lemma 2.5 we partition
S into two measurable sets, each of measure no more than 3/4 that of S. Define
the function f; to take the values 1/2, 1respectively on the sets. Repeat this procedure
by replacing S by each of the sets of constancy of f; and defining f, to take the value
of f; on one part of each of the original two subsets and to be 1/4, 3/4 respectively
on the remaining two sets. Continuation of this procedure gives rise to a mono-
tonically decreasing sequence of functions whose pointwise limit is bounded and not
constant on any set of positive measure in X,. Indeed, we have for each x,

1 .
0= fo(x)—fos21(x) = T T 2
so that

1
LH()—f(x) = >
Thus, for any =0 and any positive integer n,
1
{x: fx) =1} c {x: r=f(x)= r+7},

But this latter set contains at most two sets of constancy for f,, so

m{x: rfi(x)sr+ 21,,}§ 2-[%)"m(S).

It then follows that f#r a.e. dm. This contradiction completes the proof of the
lemma.

Note that the result of Singh and Veluchamy as stated in Section 1 of this.
paper follows as a special case of Lemma 2.6, for in the completely nonatomic case
A=X. But then D=0, ie. C is normal. It is interesting to see that one basic prop-
erty from Whitley’s characterization of normality carries over to the general essen-
tially normal setting. '

2.17. Corollary. If C is essentially normal then h=hoT a.e.on T7'X,.
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Proof. Assume that C is essentially normal. Then D|;xy-1x,=0. Let ¥ be
a subset of X, of finite measure. Since h€L* we have m(T‘lY)=f hdm<eo
Y

and in particular y;..y€L%(T~1X,). But then we see that
0= DXT—ly =h- ZT—ly—(hOT)'E(lT—ly) = (h—hOT)XT-ly.

It then follows that h=hoT a.e. on X,.

We will conclude this paper with an example establishing the existence of an
essentially normal composition operator for which h=0 a.e. and for which there
is an atom a with 7 ~a infinite. First we investigate the structure of the sets T"la,-,
icJ, when C is essentially normal. Let @ be an atom for m and let B=T7"'a. Then
D], 25 is compact. Let f¢L*(B). Since m is sigma-finite and 4 is essentially bound-
ed, B is a set of finite measure. Noting that Efis constant on B=T "4, we see that

[fam = [ fam = [h-(EfyoT~*dm = m(a)h(a)(Ef)oT~(a) =
B T-1a a

= m(@ 2D (Bf)oT=(@) = mBYEN)T (@)
It then follows that Ef:-ﬁ f fdm on B.
Also, for x in B, hoT(x)=h(a )—% In particular (M,,OTE)IU(B) is the

1 .
rank one operator f-»—(-— f fdm. But then the compactness of D)., implies
m(a) g

M);2p is compact. This in turn shows that

BNS, = {b;: k€K}
where each b, is an atom.

2.8. Example. Let O be the origin in the plane and let X={0}U(NXN).
Define m by m(0)=1; m(i,j)=1/2". Finally, define T on X by

TO) =0; T{,1)=0; T@G,j)=(>(,j—1) for j=>1.

Then
T-1(0) = {0} U(Nx{1}),
and
woy= 280 — 14 3(3) -2
while

o m(T7GH))  m@j+l) | 2-ED
h(l’.]) = m(i,]) = m(l,}) = 2—ij = 2%

12*
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For f supported on 7710, Df=hf~2 [ fdm. Since lim h(n, 1)=0, D|yr-10,
10 n—oo
is compact. On the other hand,

(DAY, j+1) =27 (L j+ 1) =27 (i, j+1) = 0.

Thus C is essentially normal.
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electrostatistics, magnetostatistics, Maxwell-equations, classical thermodynamics.

The subject not only covers a course but it is suitable for individual studying: all the important
topics are encountered, furthermore the volumes are self-contained. The reader finds detailed dem-
onstrations, with well-motivated arguments at each step. Numerous figures are nice and clear,
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important statements and conclusion are conspicuous by logical emphasis, and typographical way,
as well.
~ This new volume is an interesting reading for a mathematician, as well, who wants to strengthen
or broaden his or her familiarity with physics.

J. Kozma (Szeged)

N. Bourbaki, Efements of Mathematics, Algebra II, Chapters 4—7, VIII 4436 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990.

This is a new and expanded (English) version of Bourbaki’s Algebra Chapters 4—7 (translated
from the French by P. M. Cohn and J. Howie). The English translation of the first three chapters
of the Algebra was published in 1989 by Springer (see our review in the same Acta vol. 54, p. 410).

Chapter 4 deals with polynomials, rational fractions and power series over commutative
rings. New sections on symmetric tensors, polynomial mappings and symmetric functions have
been added. The completely rewritten Chapter 5 is devoted to commutative fields and field extensions:
After the Galois theory (with an application to finite fields) the transcendental extensions are studied
(e.g. p-bases, separability criterions, regular extensions), which are not usual parts of textbooks.
In Chapter 6 one can read on ordered groups and fields. The last, Chapter 7 deals with modules
over principal ideal domains. New sections on semi-simple endomorphisms and Jordan decom-
position have been inserted.

As usual in the volumes of the “Les structures fondamentales de 'analyse™ each chapter ends
with exercises and most of them also with historical remarks.

As a closing remark we repeat the last two sentences from our previous review on N. Bourbaki’s
Algebra I and Commutative Algebra: “The works of N. Bourbaki are not easy peaces of reading,
but everybody can enjoy them, who likes the strict axiomatic treatment. In my opinion, these master-
pieces must have places in every good mathematical library™.

Lajos Klukovits (Szeged)

Victor Bryant, Yet another introduction to analysis, VIIT-+290 pages, Cambridge University
Press, Cambride—New York—Port Chester—Melbourne—Sydney, 1990.

Analysis is notoriously one of the most difficult subjects to present in the classroom. Suppose
you have a definite conception on the introduction of analysis and you wish to find books having
characteristic features similar to your conception. Although everyone believes that “a new introduc-
tion to analysis springs up every other day”, the probability to find appropriate books is a sur-
prisingly small positive number. The subject-matter is many-sided. Your task is not only to make
clear some notions but at the same time to take preliminary steps towards deeper topics. Who
has right to present a new introduction? In my opinion every experienced teacher having an original
idea has right to write such an introduction. This in not a hopeless case because the theme is similar
to classical music, e.g. Beethoven’s Violin concerto, there exist several different but authentic per-
formances. (However, sometimes you can hear really bad ones as well.)

1 think that the author of this book has several greater and smaller ideas. (I liked his articles
in Math. Gazette very much.) The most characteristic feature of the work is that the new notions
are unsophisticated, the proofs are not only clear, but in several cases first you have a water proof,
a sketch, then a water-tight proof. (You cannot find even the shadow of ““deus ex machina’’.) Let us
have only one characteristic example: After examples one obtains a guess, that any sequence will
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have either an increasing subsequence or a decreasing subsequence (or possibly both). The author
declares the theorem, then he gives a water proof. The keystone of this proof is that the points (», x,)
(where we assume that x,.>0) represent people on the roots of their hotels on the Costa Bom,
and each hotel with a sea-view will have a special symbol. Then we find an exact water-tight proof.
The style is fresh and imaginative.

If you are going to enumerate the titles of the paragraphs you find questions only, e.g. in
the fourth chapter (Calculus at last): How do we work out gradients? How does that lead to dif-
ferentiation? How does that help us to find averages and approximations? Finally, the reviewer’s
question: Why do not you try this interesting ““Introduction™? Surely you will have some answers.

L. Pintér (Szeged)

Category Theory and Computer Science, Edited by D. H. Pitt, D. E. Rydeheard, P. Dybjer,
A. M. Pitts and A. Poigné (Lecture Notes in Computer Science, 389), Springer-Verlag, Berlin—
Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989.

This volume is the collection of 21 papers presented at the third conference on Category Theory
and Computer Science held in Manchester, UK, September 5-—8, 1989. The proceedings of the
preceding two conferences in the series were published as volumes 240 and 283 of Springer LNCS.
The following lines are from the introduction. _

“One of the key ideas is the representation of programming languages as categories. This is
particularly appropriate for languages based upon typed lambda calculi where the types become
objects in a category and lambda terms (programs) become arrows. Conversions between programs
are treated as equality, or alternatively, making the conversions explicit, as 2-cells. Composition
is substitution of programs for free variables. Multiple variables are handled by admitting categories
with finite products. This treatment enforces a stratification based upon the types of variables and
expressions. For example, languages with type variables lead to indexed (or fibered) categories.
Constructs in programming languages correspond to structure within categories, and categories
with sufficient structure delimit the semantics of a language.”

The volume can be recommended to theoretical computer scientists and graduate students
with interest in semantics of programming languages or in foundational issues of computer science.

Z. Esik (Szeged)

John B. Conway, A Course in Functional Analysis (Graduate Texts in Mathematics, 96) XVI +
399 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong
Kong, 1990.

The text is divided into eleven chapters, and at the end of the book three Appendices can be
found. The first two chapters introduce the basic concepts of Hilbert spaces and Hilbert space
operators and develop the main theorems. Here the complete spectral theory of compact normal
operators is 'worked out. Chapter 3 defines Banach spaces and presents the basic theorems, such
as the Hahn—Banach theorem and the open mapping and closed graph theorems, Chapter 4 sum-
marizes the essentials of the theory of locally convex spaces. The main objects of the study in Chap-
ter 5 are the weak topology on a Banach space and the weak-star topology on its dual. Chapter 6
is devoted to the general theory of linear operators on a Banach space. Chapter 7 gives a glimpse
into the theory of Banach algebras and spectral theory and applies this to the study of operators
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on a Banach space. In Chapter 8 the notion of a C*-algebra is explored which is intimately con-
pected with the theory of operators on a Hilbert space. It turns out that any C*-algebra is isomor-
phic to a subalgebra of the algebra of bounded operators on a Hilbert space. Chapter 9 develops
the spectral theory of bounded normal operators on a Hilbert space as an application of the repre-
sentation theory of Abelian C*-algebras. Chapter 10 generalizes the spectral theory for unbounded
operators. Chapter 11 studies certain .properties of operators on a Hilbert space, that are invariant
under compact perturbations, and proves the basic properties of the Fredholm index. The appendices
shortly summarize the notions of linear spaces and topology and determine the dual spaces of L”
and C,(x) spaces. There are, at the end of every sections, several exercises of varying degrees of
difficulty with different purpose in mind.
The book is a pearl of the mathematical literature, and it is highly recommended to anybody
interested in functional analysis.
L. Gehér (Szeged)

Robert Dautray—Jacques-Louis Lions, Mathematical Analysis and Numericﬁl Methods for
Science and Technology (Vol. 4 Integral Equations and Numerical Methods), X +465 pages, Sprin-
ger-Verlag, Berlin~—Heidelberg—New York—I ondon—Paris—Tokyo—Hong Kong, 1990.

This is the fourth volume of the planned six volumes. The enumeration of the titles gives some
information on the topics: Mixed Problems and the Tricomi Equation; Integral Equations: Part A.
Solution Methods Using Analytic Functions and Sectionally Analytic Functions, Part B. Integral
Equations Associated with Elliptic Boundary Value Problems in Domains in R®; Numerical Methods
for Stationary Problems; Approximation of Integral Equations by Finite Elements. Error Analysis;
Appendix ‘‘Singular Integrals”.

In general the discussion begins with physical introduction (or hypotheses), this is a clear
treatment with references, if necessary. Then comes the equation with the corresponding conditions,
and after this the various methods of solutions. The reader has a well-organized book with serious
mathematical notions and procedures which are in the closest connection with important applica-
tions. The fascinating thing is that the investigation of this book goes “without tears”. The methods
seem to be natural and easy to understand. This reminds me of one of G. B. Shaw’s play (Cashel
Byron’s Profession (not the best among the Shaw’s works)) in which Cashel says that the real artistic
work does not show any struggle with the theme (free interpretation). Such a natural lightness
(which covers difficult problems) is the main characteristic feature of this work.

For a reader who has not seen the former volumes we cite their titles: Vol. 1: Physical Origins
and Classical Methods, Vol. 2: Functxonal and Variational Methods, Vol. 3: Spectral Theory and
Applications.

L. Pintér (Szeged)

B. A. Davey—H. A. Priestley, Introduction to Lattices and Order, VIII + 248 pages, Cambridge
University Press, Cambridge—New York—Port Chester—Melbourne—Sydney, 1990.

From the preface: ““This is the first textbook devoted to ordered sets and lattices and to their
contemporary applications. It acknowledges the increasingly major role order theory is playing
on the mathematical stage and is aimed at students of mathematics and at professionals in adjacent
areas, including logic, discrete mathematics and computer science.”

I recommend this book to all mentioned above.



Bibliographie . 413

.The treatment of Scott’s information systems as algebraic semilattices, fixpoint theory with
pointing out its role in computer science, Boolean algebras applied to a fragment of propositional
calculus, and Priestley’s duality theory between distributive:lattices and certain topological spaces
are some of the interesting parts of the book.

For those intending to apply the theory of lattices and ordered sets the most interesting chap-
ter-is perhaps the last one entitled “Formal Concept Analysis”. Formal concept analysis was in-
troduced by R. Wille, and the fast development of this recent field is mostly due to R. Wille and
other members of his Darmstadt group. The starting point of concept analysis is so ‘natural that
it has applications not only in lattice theory but in many other sciences distinct from mathematics
as well.

G. Czédli (Szeged)

The Dilworth Theorems (Selected Papers of Robert P. Dilworth), Edited by K. Bogart, R. Freese,
J. Kung, XXVI+465 pages, Birkhduser, Boston—Basel—Berlin, 1990.

&
This excellent book gives the reader much more than an almost complete collection of Dil-

worth’s contributions to lattice theory, universal algebra and combinatorics. The book is organized
into chapters, including Chain Partitions in Ordered Sets, Complementation, Decomposition Theory,
Modular and Distributive Lattices, Geometric and Semimodular Lattices, and Multiplicative
Lattices. .

Besides Dilworth’s reprinted papers these chapters contain related articles by leading experts
of the field. Further, Dilworth himself has written backgrounds to each chapter. Thus each chapter
not only shows how the present stage of a given research field includes and has developed Dilworth’s
ideas but it contains an up-to-date survay of the fieid.

The book is recommended to those interested in the theory of lattices and ordered sets. It
gives an introduction t0 many fields of these theories, and it is useful to experts as well.

G. Czédli (Szeged)

Brian F. Doolin—Clyde F. Martin, Introduction to differential geometry for engineers, (Pure
and applied mathematics, 136), XII+163 pages, Marcel Dekker, Inc., New York—Basel—Hong
Kong, 1990.

This is a carefully written real introductory book for differential geometry. It is written mainly
for the engineers and therefore it does not suppose a well prepared mathematical knowledge for the
readers.

Its aim, to introduce the reader to this field of mathematics, is reached, in fact, through a very
detailed and concrete treatment. Just this fact is why I recommend it not only to the engineers,
who will certainly be grateful for this book, but also to the mathematician students who are just
studying differential geometry. Although the book is short, all the really basic concepts of the topic
are included.

The authors have no doubt about the book’s purpose and in spite of the very much details
they do not lose their way: only the necessary and important objects are enlightened in details. To
collect only the essential concepts of the subject is really a good way for an introductory book. It
makes the topic very natural and easily understandable.

: In sum, we recommend this book to all who are interested in a basic introduction to the founda-
tion of differential geometry.
A. Kurusa (Szeged)
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B. A. Dubrovin—A. T. Fomenko—S. P. Novikov, Modern geometry — Methods and applica-
tions. Part I1I. Introduction to homology theory, (Graduate texts in mathematics, 124), IX 1416
pages, Springer-Verlag, New York—Berlin—Heidelbers—London—Paris—Tokyo—Hong Kong—
Barcelona, 1989.

All the people, mathematicians, physicists and students, who read the first two volumes of
the Modern geometry (Part L.: GTM 93; Part II.: GTM 104) know what a great experience were to
read them. Therefore, it is not surprise that there were big expectations for the third volume, that is
published now after five years in highly accessible language.

Nevertheless, all the expectations are now satisfied and the mathematician’s and physicist’s
community has now a very valuable reference and text in the homology theory. This volume is
written just as clearly as the first two were and also their style are the same. A lot of concrete ex-
amples and the descriptiveness characterize this book.

Since the abstract notions can easily cover up the real ideas in such an abstract topic like the
homology theory, it is an advantage to use the abstract terminology only in the case it is necessary.
In this way, the reader, by my opinion, can understand the ideas behind the abstractions more easily
and the abstract notions appear more naturally. The authors chose successfully this heavier way
and the book became marvellous.

For a short sum of the topics treated in the book here are the main titles: Homology and
cohomology; Computational recipes; Critical points of smooth functions and homology theory;
and finally Cobordisms and smooth structures.

In sum, this book must be on the shelf of all the students, mathematicians and physicists who
have any interest in the homology theory.

A. Kurusa (Szeged)

Ciprian Foias—Arthur E. Frazho, The Commutant Lifting Approach to Interpolation Problems
(Operator Theory: Advances and Applications, 44), XIII+632 pages, Birkhduser Verlag, Basel—
Boston—Berlin, 1990.

In 1967 D. Sarason introduced an ingenious new method for solving classical interpolation
problems. Actually, he proved that for every operator A in the commutant of the compression
T=_P, S|M of the simple unilateral shift S (to a semi-invariant subspace M) there exists a bounded
analytic function ¢ on the unit disc such that A=9(7) and [l4ll=ll¢ll.. Then he pointed
out the way how the interpolation theorems due to Carathéodory and Nevanlinna—Pick can be
derived from this description of the commutant. Shortly afterwards, in 1968 B. Sz.-Nagy and
C. Foias extended Saranson’s result proving that every operator A intertwining the arbitrarily
chosen Hilbert space contractions 7 and T’ can be lifted, in a norm-preserving manner, to an ope-
rator B intertwining the minimal isometric dilations ¥, and ¥, . This is the so-called Commutant
Lifting Theorem which has been proved a powerful tool in handling different problems in mathe-
matics. _

The purpose of this monograph is “to present a unified approach, based on the geometric
framework of the commutant lifting theorem, to solve many classical and modern interpolation
problems arising in mathematics, engineering and geophysics”. The subjects treated include, among
others, the block versions of the Carathéodory, Nevanlinna—Pick, Hermite—Fejér interpolation
problems in both their classical and tangential forms, the Adamjan—Arov—Krein representation
of Hankel operators, the characterization of left and right inverses of Toeplitz operators, and a
general Schur type fractional representation of the solutions in the commutant lifting theorem.
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Explicit formulas and algorithms are provided. Several proofs are given for the fundamental com-
mutant lifting theorem iluminating the different faces of this theorem. Separate chapters are devoted
to 'the applications in H™ control theory and in connection with the layered medium model in
geophysics. '

The book is essentially self-contained, only some knowledge of elementary real, compiex
and functional analysis is assumed. A chart helps the reader showing the connection between the
different chapters (which are also written as self-contained as possible).

This monograph can be warmly recommended to graduate students who want to get acquainted
with this exciting, rich field of mathematics. At the same time it will certainly be an indispensable
handbook for specialists in operator theory, interpolation theory, coantrol theory and signal pro-
cessing.

L. Kérchy (Szeged)

Bernard R. Gelbaum—John M. H. Olmsted, Theorems and Counterexamples in Mathematics
(Problem Books in Mathematics), XXXIV + 305 pages, Springer-Verlag, New York—Berlin—Hei-
delberg—IL ondon—Paris—Tokyo—Hong Kong, 1990.

In my younger years the authors’ former book: Counterexamples in Analysis was one of my
favourites. T have good reason to be thankful for its clear and ingenious way of enlightening ideas
in analysis. Even now 1 have a copy of this work on my bookself and sometimes in my hands.

In the last thirty years the number of mathematical branches increases in great steps. (See
e.g. the Subject Index of the MR.) One can survey only a small part of the new results. Some of
the notions which were not “elementary™ thirty years ago have become “elementary” by now.
‘See for example the elementary problems in The American Mathematical Monthly. In the Preface
the authors say: “The object of the body of the text is more to enhance what the reader already
knows than to review definitions and notations that have become part of every mathematician’s
working context”. In my opinion in this book one finds several interesting examples, results also
in branches which are relatively unknown to the reader. Therefore he/she will inquire about these
themes, too. For example Dantzig’s simplex algorithm was not unknown for me. Moreover I have
read L. Lovasz’s article: A new linear programming algorithm—better or worse than the simplex
method? (The Math. Intelligencer vol. 2, no. 3, 1980), but the remarks on Smale’s and Karman-
kar’s work in this book were new for me and I would like to know more about them.

Naturally it is impossible to enumerate the examples which were interesting for me, but let
us mention some of them. The first one is the Kakeya problem: “A unit line segment can be rotated
through 360° within an arbitrarily small polygonal area.” The presentation of this astonishing
problem with the remarks is interesting in case you have heard about the Besicovitch’s solution
and about the Perron trees, too. The short history of the Bieberbach conjecture makes the reader
eager to know more about this famous problem and the proof of the conjecture given by de Branges
in 1985. (Perhaps Korevaar’s and Pommerenke’s refering articles could have been suggested to the
reader.) Another famous conjecture can be found in paragraph “Exotica in differential topology™
the Poincaré’s conjecture. The results of Smale and Freedman are mentioned. ’

The book is warmly recommended 10 the general mathematical public. (Maybe it is because
of prejudice on the part of the reviewer but he thinks that the Analysis is the best chapter of the
work.)

L. Pintér (Szeged)



416 Bibliographie

Geometry and Robotics, Workshop, Toulouse, France, May 1988, Proceedings, Edited by
J.-D. Boissonat—J.-P. Laumond (Lecture Notes in Computer Science, 391), VI+413 pages, Sprin-
ger-Verlag, Berlin—Heidelberg—New York—L ondon—Paris—Tokvo—Hong Kong, 1989.

A lot of relatively distant fields of geometry enter into relation via their connection with ro-
‘botics. Theory of curves, computational geometry, projective geometry, algebraic topology give
rise of several questions in computer science especially in robotics. Furthermore they play a peculiar

- role in solving problems in recent times.

A workshop was held at Toulouse in 1988, scientific program of which was the base of this
volume. It contains 20 contrubutions by French authors. The understanding of the papers do not
presume any deeper preliminary knowledges of computer science or geometry, so it can be a useful
reading for everyone interested in current topics of robotics.

J. Kozma (Szeged)

D. H. Greene—D. E. Knuth, Mathematics for the analysis of algorithms (Progress in Computer
Science and Applied Logic, 1), VIIT-+ 132 pages, Birkhduser, Boston—Basel—Berlin, 1990.

This book contains some fundamental mathematical techniques which are necessary for the
analysis of algorithms.

Chapter 1 starts with binomial identities and afterwards inverse relations and the hypergeo-
metric series are treated. Chapter 2 is devoted mainly to linear and nonlinear recurrence relations.
Chapter 3 deals with operator method by means of which one can obtain such characteristics as
expected values or variances from probability generating functions. The last chapter considers asym-
ptotic analysis which is very useful tool especially for to average case analysis of algorithms (in
detail the following methods and theorems are treated: Abelian theorem, Tauberian theorems,
Stieltjes integration and asymptotics, Euler’s summation formula, Darboux’s method, residue
calculus, the saddle point method).

For specialists the rich bibliography increases the value of the book, and both teachers and
students will evaluate the appendices containing exam problems from which in this third edition
further new ones are added).

The book is warmly recommended to all researchers, teachers, students interested in analysis
of algorithms.

J. Németh—A. Varga (Szeged)

Grosse Augenblick aus der Geschichte der Mathematik, herausgegeben von Robert Freud,
263 Seiten, Akadémiai Kiado, Budapest, 1990.

Das ist die deutsche Ubersetzung der ungarischen Originalausgabe von 1681. Mit diesem
Buch laden die Leser die Autoren zu einer abenteuerlichen Reise in der Welt der Mathematik ein.
Dieser Band entsteht aus acht unabhéngigen Kapitel, die sind die Folgenden:
Schon die alten Griechen haben das gewuBt (von Janos Suranyi).
Sind Gleichnungen losbar (von Rébert Freud).
Wie ist die mathematische Analysis entstanden (von Akos Csaszar).
»Aus dem Nichts habe ich eine neue, andere Welt erschaften.” Was ist die Bolyai—L obatschews-
kische Geometrie (von Gyorgy Bizam).
5. Ideale Zahlen und die Fermatsche Vermutung (von Edit Gyarmati).

bl i
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6. Wie sah Hilbert die Zukunft der. Mathematik? (von Akos Cséaszar.)
7. Ein sonderbarer Lebensweg, Ramanujan (von Pal Turan).
8. Im Reich des Zufalls herrscht nicht mehr der Zufall (von Istvan Vincze).
Jedes Kapitel endet mit Aufgaben, dessen Ldsung kann am Ende des Bandes gefunden werden.

Fiir dieses Buch soll nur eine geringe Vorbildung gehabt werden, die Mathematik, die in
Ober- (Mittel)- schulen gelernt wird, ist ganz geniigend.

Ich hoffe, daf} jeder diese Abenteuer genieBen wird, der die Mathematik fiir einen Teil der
allgemeinen menschlichen Kultur hilt. :
Lajos Klukovits (Szeged

Niccolo Guicciardini, The Development of Newtonian Calculus in Britain 1700—1800, XII+
228 pages, Cambridge University Press, Cambridge—New York—Port Chester—Melbourne—
Sydney, 1989.

Newton was one of the investors of differentiation and integration. It is very interesting that
the development of the calculus in Britain and in other countries in Europe remained separated for
over a century. This book is dealing with both the research and teaching of this calculus called the
calculus of “fluxions™, over the whole period. The book begins with an overture which contains
the fundamental elements of Newton’s calculus presenting Newton’s published work on the calculus
of fluxions. The first three chapters are devoted to the early diffusion of the calculus of fluxions
from 1700 to 1730 and to the research in pure mathematics done by early Newtonians (Roger Cotes,
James Stirling, Brook Taylor, Colin Maclaurin) and furthermore to the controversy on foundations
of the calculus originated by Berkeley’s Analyst (1734). The next three chapters deal with the middle
period of the fluxional school from 1736 to 1785, considering the production of new treatises and
improvements in applications of the calculus of fluxions and the attempts made by some British
mathematicians to develop new techniques in the calculus. The last three chapters are devoted to
the reform of the calculus from 1775 to 1820. This part of the book is based on completely unknown
material.

The chapters are followed by six Appendices containing important information (textbooks,
chairs of mathematics, military academies, subject index, manuscript sources) and finally the book
ends with a rich bibliography containing more than 600 references.

I am sure that this book is very useful for science historians and philosophers studying this
period, but it is recommended to any student or teacher of mathematics, too.

J. Németh (Szeged)

Domingo A. Herrero, Approximation of Hilbert space operators, Volume 1, Second edition
(Pitman Research Notes in Mathematics Series, 224), 332 pages, Longman Scientific & Technical,
England, 1990.

The approximation theory of Hilbert space operators is a rapidly developing field of the op-
erator theory. This book gives a systematic study of approximation problems (in operator norm)
related with operator classes which are invariant under similarity. More precisely, the problems
considered here are to characterize the closure of such classes and to give exact formulas or at
least estimates for the distance of operators from such classes. After giving an “apéritif” in finite
dimension and developing the necessary technical means the cases of nilpotent, algebraic and poly-
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nomially compact operators are treated. Disregarding from the proofs of some fundamental theo-
rems connected with C*-algebras the book is self-contained.

The theory elaborated here is completed in the second volume by C. Apostol, L. A. Fialkow,
D. A. Herrero and D. Voiculescu. The progress has been made since the publication of the second
volume in 1984 is described in this second edition of the first volume in the form of additional Notes
and Remarks at the end of the corresponding chapters and in an Appendix. This Appendix con-
tains, among others, a metatheorem which asserts that the closure of a similarity invariant class of
operators with ‘‘sufficient structure” can be described in terms of the different parts of the spectra
of the operators.

This book can serve as an excellent introduction for beginners as well as a good reference for
the experts in the operator theory.

L. Kérchy (Szeged)

R. W. Hockney—J. W. Eastweod, Computer Simulation using Particles, XX11+ 540 pages,
Adam Hilger, Bristol and Philadelphia, 1988.

The combination of coniputer experiment, and theory proves much more effective in obtaining
physically useful results than any one approach or pair of approaches. To obtain results, theory
uses mathematical analysis and numerical evaluation, physical experiment uses apparatus and data
analysis, and the computer experiment uses computer plus simulation program.

Covering all aspects of particle techniques of simulation — from mathematical models to
simulation programs — this book presents case study examples in astrophysics, plasmas, semi-
conductors and condensed matter physics. The unifying aspects of the diversity of phenomena
are similarities of the mathematical models of the physical systems and similarities of the »umerical
schemes used.

The secret of success in computer experiments is to devise the appropriate model. The best
choice of model depends on the relevant physical length and timescales. There is a clear one-to-one
correspondence between the physical and computer model particles in the molecular dynamics
simulation. At the other extreme, the identity of the atomic building blocks in the vortex fluid
simulation model is completely lost. A third type of particle model lies between the two extremes:
dilute plasmas, galaxy, and microscopic semiconductor device simulations fall into this category.

Each steps of a computer experiment introduces constraints: Simplifying assumptions in the
development of the mathematic description of physical phenomena in one hand and discretization of
the continuous differential or integral equations of the mathematical model in order to allow solu-
tion on computers in the other hand.

The book is divided into the following chapters: Computer experiments using particle models;
A one-dimensional plasma model; The simulation program; Time integration schemes; The particle-
mesh force calculation; The solution of the field equations; Callisionless particle models; Particle-
particle-particle-mesh (P3M ) algorithms; Plasma simulation; Semiconductor device simulation;
Astrophysics; Solids, liquids, and phase changes.

This book was originally written as a textbook for a final-year undergraduate course in scientific
computing at Reading University. The material is of wider interest, and the book can be recom-
mended equally to graduate students and computational scientists and engineers.

1. K. Gyémdnt (Szeged)
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Roger A. Horn—Charles R. Johrsen, Matrix Analysis, XII1+ 561 pages, Cambridge University
Press, Cambridge—London—New Y ork—New Rochelle—Melbourne—Sydney, 1990.

This book is reprinted and corrected edition of its first published edition in 1987. It contains
nine chapters and an appendix. Two views of matrix analysis are reflected in the choice and method
of topics in this book. One of them is pure algebraic, and the other one prefers those topics in linear
algebra that are important for the applications in mathematical analysis, such as differential equa-
tions, optimization and approximation theory. The text starts with an usual introductory part
defining and discussing the basic concepts and results of linear algebra, including determinants,
eigenvalues and eigenvectors, the characteristic polynomial, similarity, unitary equivalence and
canonical forms of matrices. Then Hermitian matrices are introduced. Here variational methods
for investigating eigenvalues of Hermitian matrices are emphasized. In normed vectorspaces the
algebraic, geometric and analytic properties of matrix norms are discussed. The perturbation theory
of Hermitian matrices in some detail is treated. Positive definite matrices and the polar and singular
value decompositions and their applications to matrix approximation problems are considered.
The last chapter discusses componente-wise nonnegative and positive matrices which arise in many
applications in probability theory, economics, engineering etc. At the end of the text an Appendix
can be found presenting some basic theorems which are used in the book. A lot of exercises and
problems are given in the book. The problems are listed at the end of every sections, they are of
various difficulties and types.

The text can be easily understood for students, too, and is highly recommended to anyone

having some background in linear algebra and mathematical analysis. ,
L. Gehér (Szeged)

Taqdir Husain, Orthogonal Schauder Bases, (Monographs and Textbooks in Pure and Applied
Mathematics, 143), XVII--283 pages, Marcel Dekker, Inc., New York—Basel—Hong Kong, 1991.

The general theory of Schauder bases in topological vector spaces particularly in Banach
spaces is very well-known. The basic importance of this theory is originated in representation of
certain functions by Fourier series.

It is well known fact that each separable Hilbert space has a Schauder basis, but it is true
that a separable Banach space need not have a Schauder basis, furthermore it can be proved that
a Banach space with Schauder basis is reflexive iff its basis is shrinking and boundedly complete.
The author of this monograph and some of his colleagues were motivated by questions arisen in
the bases theory in topological algebras. From this direction of research a lot of very interesting
results have been developed in the theory of Schauder bases. '

The main goal of this monograph is to give complete overview on the research done so far
on this subject during the last several years. Most of the results presented here are already published
but new material also can be found.

The chapter headings are: Rudiments of Topological Vector Spaces; Elements of Topological
Algebras; Orthogonal Bases in Topological Algebras; Unconditional Orthogonal Bases; Con-
tinuity of Homomorphisms and Functionals; Orthogonal M-Bases; Multipliers of Topological
Algebras.

At the end of the book an Appendix containing introductory material of set theory, abstract
algebra and topology can be found; furthermore complete bibliography with 85 references enriches
the monograph. The style of the book is clear, the theorems-and proofs are presented in easily
understable manner.

This monograph is highly recommended to functional and mathematical analysts, algebraists,

and applied mathematicians and graduate students, too. )
i J. Németh (Szeged)
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Inequalities (fifty years on from Hardy, Littlewood and.Pélya), Edited by W. Norrie Everitt
(Lecture Notes in Pure and Applied Mathematics, 129), IX +-283 pages, Marcel Dekker,- Inc., New
York—Basel—Hong Kong, 1991.

London Mathematical Society organised an Intematlonal Conference on Inequalities in
July 13—17, 1987, at the University of Birmingham, England. The aim of the Society was not only
to encourage the study of inequalities in mathematics but also to express the indebtedness of the
subject to the work of G. H. Hardy, J. E. Littlewood and G. Pdlya in writing the book Inequalities,
which was first published by the Cambridge University Press in 1934. Of the 14 plenary lectures
given to the Conference, 13 are presented in this volume and listed below:

Variational Inequalities (Calvin D. Ahlbrandt); The Grunsky Inequalities (J. M. Anderson);
Hardy—Littlewood Integral Inequalities (William Desmond Evans and W. Norrie Everitt); In-
equalities in Mathematical Physics (Jack Gunson); Inequalities and Growth Lemmas in Function
Theory (Walter K. Hayman); Norm Inequalities for Derivatives and Differences (Man Kam Kwong
and Anton Zettl); Bounds on Schrodinger Operators and Generalized Sobolev-Type Inequalities
with Applications in Mathematics and Physics (Elliott H. Lieb); Inequalities Related to Carleman’s
Inequality (E. Russell Love); Some Comments on the Past Fifty Years of Isoperimetric Inequalities
(Lawrence E. Payne); Operator Inequalities and Applications (Johann Schrider); Rearrangements
and Partial Differential Equations (Giorgio G. Talenti); Inequalities in the Theory of Function
Spaces: A Tribute to Hardy, Littlewood and Pdélya (Hans Triebel); Differential Inequalities (Wolf-

gang Walter). J. Németh (Szeged)

I. M. James, Introduction to Uniform Spaces, (London Mathematical Society Lecture Note
Series, 144), IV + 148 pages, Cambridge University Press, Cambridge—New York—Port Chester—
Melbourne—Sydney, 1990.

The book essentially consists of two parts. The first unit includes classical approach with basic
results: uniform structure uniform spaces, induced and coinduced uniform structures, uniform
topology, completeness and completion. :

Chapter 5 is devoted to the notion of topological groups. It leads through theories, discussed in
the second unit (Chapter 6—8) which covers the theory of uniform transformation groups, uniform
spaces over a base, uniform covering spaces.

As regards such kind of treatment, the author meditates on it, as follows: “Although it has
been recognized from the start that topological groups can be regarded as uniform spaces, I do
not believe it has been fully appreciated that it is possible to develop a theory of uniform trans-
formation groups.”’ And we have to agree with him.

This arrangement of the subject may be hardly supported by the fact that (in the presented
form) the material can properly cover a (one-semester) course on uniform spaces.

Above mentioned intrinsic demand appears in three other aspects, each of them is perfectly
realized. Firstly, exercises can be found at the end of the book which help the reader to conceive
the subject. Secondly, the author explains and refers some new results (e.g. theory of uniform spaces
over a topological base space, the fiberwise uniform spaces, uniform spreads). Thirdly, the author
confines himself to present a brief and coherent treatment, which is the main merit of the volume at
the same time. 4

The notion of uniform space is presented without the need of any topological background
in Chapters 1—2. It makes possible to observe basic concepts and results of the theory in a self-
contained way: taking uniform space out of the standard material of general topology. The only
anecessary rudiments are concepts in connect with filters, which can be found in the Appendices.

J. Kozma (Szeged)

H
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K. Jinich, Analysis fiir Physiker und Ingenieure (Springer Lebrbuch), 2. Auflage, X1+419
pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong—
Barcelona, 1990. '

This is a book for science and engineering students. It consists of three main parts: Function
théory (complex analysis), ordinary differential equations and special functions of mathematical
physics. ,

The basic ideas and methods are explained slowly in various forms just as in the best lectures.
Taking into account the students one of the problems of the authors of similar works is to find
the adequate phase of mathematical rigor. Whether this corresponds to your taste you can decide

_after reading the presentation of Cauchy’s integral theorem.

Clear and careful exposition characterizes the whole work. Every chapter (we have fourteen
ones) ends with a test containing ten examples. The right answers can be found at the end of the
book. Well chosen exercises (with hints) help the student. The number of figures are unusually great
and they are of first class.

This work is a great step for students in engineering and physics and makes them interested
in further mathematical studies which are necessary to their profession.

L. Pintér (Szeged)

Klaus Jinich, Topologie (dritte Auflage), IX+215 pages, Springer-Verlag, Berlin—Heidel-
berg—New York—London—Paris—Tokyo—Hong Kong—Barcelona, 1990.

The main purpose of this book is. to give a glance into the methods of general topology to
anyone who can use topology in his special study or research. The text is divided into ten chapters.
The first three chapters discuss the basic concepts and theorems concerning topological spaces,
topological vectorspaces and quotient topology. The fourth chapter is devoted to metric spaces,
the embedding theorem for metric spaces into complete metric spaces is worked out both in cases
of general metric spaces and normed linear spaces. Chapter 5 introduces the concepts of homotopy,
category and functors. Chapter 6 gives the two countability axioms and investigates their rules in
special theorems. In Chapter 7 simplicial complexes, cell complexes and CH-complexes are ex-
amined, Chapter 8 is devoted to the classical extension theorems for continuous functions and parti-
tion of unity on paracompact spaces. In Chapter 9 covering spaces and fundamental group are
treated. In the last chapter the Tychonoff théorem and its applications can be found. At the end
of the text a short glimpse into set theory is given. :

S ' L. Gehér (Szeged)

H. F. Jones, Groups, Representations and Physics, XIV 207 pages, Adam Hilger, Bristol and
New York, 1990.

This is an introductory text on groups and their linear representations intented primarily for
advanced undergraduates and postgraduates in solid state atomic and elementary particle physics.

The first four chapters deal with the basic concepts of groups and representations, such as,
for example, subgroups, conjugacy classes, cosets, characters, ‘Schut’s lemmas and properties of
irreducible representations. The notions and proofs are illustrated on a number of examples, using
finite groups. This first part of the book is completed by a chapter treating some important physical
applications of finite groups in solid state and molecular physics. _

The second part of the book is devoted to continuous (Lie) groups, concentrating on aspects
important in physical applications. The rotation group SO(3) and angular momentum theory, the

13



422 Bibliographie

special unitary groups SU(N) and their use in describing elementary particles and their interactions,
the fundamental role of the Poincare group ‘and its representations in relativistic physics are among
the subjects dealt with by the author here. Additional topics, for example Dirac’s notation in-quan-
tum mechanics and the invariant measure for SO(3), are treated in the five appendices.

The bodk is self-contamed and clearly wntten Iis main text is complemented by a list of
problems added at the end of each chapter, with solutions sketchéd at the end of the book. It should
provrde the interested student of physics or mathematlcs w1th a ﬁrm groundmg in the basxcs of
group theory and its physxcal applrcatrons ]

i La'szlo’ Fehér (Szeged)

. Wilbur Knorr, Textual Studies in Anclent and Medleval Geometrle, XVII-+ 852 pages, Blrkhauser,
Boston—Basel—Berlm, 1989 . . P .

* This'is an important study in'the documentary hrstory of ‘ancient and early medieval techmcal
texts and the first attempt to give a complete survey of the existing evidence from aiitiquity on
three special problems: the cube duplrcatron, ‘the angle trisection and the circle quadrature

At each problem W. Knorr crmcally exainines the extant manuscripts to determine ‘those
that appear the most trustworthy (not necessarily the earliest). Through their collation one seeks
to construct a text that is the closest possible approximation to the original form, but, where the
evidence is-questionable, .to identify among the variants those most lrkely to,be- candrdates for the
original reading. : Y

In this book he traces out the transmrssrons and development of a specrﬁc set-of anc1ent math-
ematical works connected to these three problems.” Among the works by ancient Greek commu-
tators: of partlcular interest in this- study ‘are the following: Hero, Menelaus, Pappus, Theon ‘and
Hypatia -(all) of Alexandna, Proclus; Eutocrus of Askalan, John- Philoponus and Sunphcms

- Parts'T and III are based’on these commentaries and usé some Hebrew traditions and transla-
tions, -too. The complete Part III 1s devoted toa smgle work Drmensxon of the Clrcle by Archx-
medes. SEo

Part II deals with Arabic geometric texts and their ancient sources connected with cube du-
plication and angle trisection due to Aba Bakr al—Haravr, Ahmed 1bn Mﬁsa, Thabxt ibn Qurra,
al-Srjzr, Abu Sahl al-Quhi and Abu Ja“far. : :

" - " There are several texts in Greek -and Arablc in the book, some of them m facsnmle (these later
"are Arabic).”
We recommend this volume to those who aré interested fot only in the history of science
{(ancient and early medieval geometrie) but can enjoy a careful philological examination of the
ancient texts.
) !,ajos Klukovits (Szeged)

~ D. Konig, Theory of Flmte and Inﬁmte Graphs, 426 pages, Brrkhauser, Boston—Basel—Ber-
lm 1990.

In the ﬁrst chapter the author introduces the basxs concepts. . He is deahng wrth the connected
graphs; walks, components in details.. The second chapter is an overview on the Euler trails and
Hamiltonian cycles. Examining the problem for finite, undirected ‘graphs Konig :makes a transi-

-tion to directed and infinite graphs as well. The next part .of the book gives drﬂ'erent solutions (Wie-
ner’s, Tremiaux’, Tarry’s) for the Labirinth Problem.-‘Acyclic' Graphs are considered in Chapter 4.
" The inquiring reader .can find-more: details about -the centers of .trees:in the next chapter. Basis
-congcepts. of :the~infinite. graphs-and-the' directed. graphs have :been: introduced -in Cfiapters 6—1.
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Logic, theory of games and group theoretical applications of the directed graphs.are mentioned in
Chapter 8. Directed and undirected cycles and stars are considered-with ‘their compositions in the
subsequent two chapters. Factorizations are examined in the remammg part of the book for dxf-
ferent type of graphs (regular finite and infinite graphs). S

Commentaries-of W. T. Tutte and a ‘“‘Biographical Sketch” of T. Gallax complete the book
It is a special pride that a lot of professors are mentioned by Konig from Szeged (L. Fejér, T. Grun-
wald, A. Haar, L. Kalmar) who discussed the content of this book by D. Konig. :

Gdbor Galambos (Szeged)

K Konigsberger, Analysrsl (Sprmger-Lehrbuch) X+ 360 pages, Sprmger-Verlag, Berlm——
Heldelberg—New York—London—Pans—Tokyo—Hong Kong-—Barcelona, 1990 )

This textbook is a very good introduction to real analysis. The -material presented here much
more than the subject of a usual “calculus book™. Its building and-style is very clear. Every-chapter
contains in necessary measure fundamental facts, ‘definitions, statements, proofs and-beautiful ap-
plications and finally each chapter ends with rich collection of examples.

After the foundations of numbers (real and complex) the concept of functions, sequences,
series are treated. Later the theory of continuous functions and its applxcatron for the, exponentlal
function is developed ‘The next chapter (dxﬂ'erentlal calculus) is followed by mtroductxon of trig-
onometric functions and linear differential equations with constant coefficients. The second part
of differential equations is treated after the integration of functions. The last four chapters deal with
such very important subjects of analysis as local and global approximation of finctions (Taylor
polynomials, Bernoulli-polynomials, approximation theorem of Weierstrass) Fourier series’ (point~
‘wise convergence, Bessel approxrmatlon 12 convergence) and the mv&stlgatlon of the gamma
function. - .

This excellent book is warmly recommended to teachers, who can ﬁnd in it a lot of 1deas,
'beautlful proofs and examples andto students who will surely ﬁnd the enjoy of discovery in this book.

- J. Nemeth (Szeged)

Mathematlcs and Cognition: A Research Synthesls by the Internatlonal Group for the Psychology
of Mathematics Educatlon, Edited by P. Nesher—J., Kllpatnck (ICMI Study Senes), 180 pages,
Cambudge Umversrty Press, Cambridge—New York—Port Chester—Melbourne——Sydney, 1990

Arc there any significant difference with respect their efficiency between verbal interaction
and reading mathematics texts? What can a teacher do in order to eliminate the dlﬁicultles or to
make a best of advantages and, after all, to make a synthesis of these methods?

All the mathematics teachers and educators have to face the problem of cognition durmg his

-or her every-day educational-work. Such problems in the process. of teachmg and learmng call the
attention to scientific analysis.of mathematics and cognition.

This-book is not purely a collection of interesting studies, but is a real “Rmearch Synthesls”
as the subheading promises it. Indeed, the reader finds a homogeneous presentation. of different
aspects of the problem indicated in the title. +

The introductionary essay (by E. Fischbein) gives a brief survey of the hlstory of researches
devoted to psychological aspects of mathematlcs and educatlon Self-evident fact is that: thls is

.the hrstory of the Intemauonal Comission for Mathematics Instruction: (ICMI) and the Interna—
t1onal Group for the Psychology of Mathematics Education (PME).

-The seven studies are written on thé same uniformly high level:- Epistemology and Psychology
of Mathematics Education (G. Vergnaud), Psychological Aspects of Learning Early " Arithmetic

13+
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(3. C. Bergeron and N. Herscovics), Language and Mathematics (Colette Laborde), Psychological
Aspects of Learning Geometry (R. Hershkowitz), Cognitive Processes Involved in Learning School
Algebra (C. Kiernan), Advanced Mathematical Thinking (T. Dreyfus), Future perspectives for
Research in the Psychology of Mathematics Education (N: Balacheff). =

Each of them besides the author(s) has some contributors. They all belong to a group which
had started the work on selected topics in Montreal (1987), and contained it in Veszprém, Hungary
(1988). That’s why the mindful reader gets familiar with theoretical and practical aspects, the classical
and new results of the respective topics at the same time. An example: Euclidean geometry plays
an important role in mathematics education in two respects as well. It is the science of the sur-
rounding space on one hand, and a tool which is especially suitable to demonstrate mathematical
structures, on the other hand. A lot of problems of mathematical imagination are presented via
concrete geometric concepts, and ramifying theories respond to the practical questions of teaching
geometry (e.g. visualization, deductive proofs).

This volume should be a pleasure for mathematicians and mathematics teachers interested in
these exciting problems of education of high level.

J. Kozma (Szeged)

Neville de Mestre, The Mathematics of Projectiles in Sport (Australian Mathematical Society
Lecture Series 6), XI+175 pages, Cambridge University Press, Cambridge—New York—Port
Chester—Melbourne—Sydney, 1990.

When I was about 15 years old football and table-tennis were my favourite sports. Especially
in’ ’ table-tennis we had problems without solutions (then). We knew from experience how to shot
a low ball if we'wish it to bounce on the opponent’s side of the table. (The success was not complete
m every case.) The trajectories of the shots were sometimes unexpected. Several sxmxlar problems
on the motion of projectiles take its origin in various games. A representative collection of them
is'contained in Chapter 8. Some of them: Shot-put and hammer throw; Basketball; Tennis, table-
tennis and squash; Badminton; Golf; Cricket; Baseball; Soccer; Discus, frisbeee and flying ring;
Long jump, high jump and ski jump; Boomerangs.

The first seven chapters contain the basic principles in mechanics and dynamics and the nec-
essary mathematical techniques. Chapter headings are: Motion under gravity alone; Motion in a
linear resisting medium; Motion in a non-linear resisting medium; The basic equations and their
numerical solution; Small drag or small gravity; Corrections due to other effects; Spin effects;
Projectiles in sport and recreation.

The concept of mathematical modelling of real problems is attractive in every case but especially
here because the sports are “near” to the students. This is a book for almost everyone because
only basic knowledge of classical dynamics, calculus, differential equations and their numerical
solution is assumed. The problems in the text are presented in such a way that arouses the reader’s
interest. I found that, like most good texts, those topics which appeared difficult to grasp at the
beginning of the book had become easy by the time I had reached the end. It is a pity that this book
did not exist forty years ago.

L. Pintér (Szeged)

P. J. Nicholls, The Ergodic Theory of Discrete Groups (L.M.S. Lectures Note Series, 143)
XI+221 pages, Cambridge University Press, New York—Port Chater'——Melboume—Sydnéy, 1989,

Denote by B the unit ball in R® and by S the unit sphere. A point £€S is a limit. point for a.
discrete group I" of Mobijus transforms- preserving B if for every point x€B the orbit I'(x)=
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{r(x): y€I' accumulates at £}. The subset A(I") of S of limit.points is the limit sét- of I. This book
presents an introduction to the theory.of measures on the limit set of discrete:groups which has
recently been developed by S. J. Patterson, D. Sullivan and others and which has emerged as one
of the most powerful tools in the. theory of discrete groups. The book assumes a working knowl-
edge of graduate level analysis and topology;.the particular results of ergodic theory needed for
applications are fully developed from the classical ergodic theorems. The chapter headings are:
Preliminaries; The Limit Set; A Measure on the Limit Set; Conformal Densities; Hyperbolically
Harmonic Functions; The Sphere at Infinity; Elementary Ergodxc Theory, The Geodesic Flow,
Geometrically Finite Groups; Fuchsxan Groups. .

© o - : L. I. Szabo (Szeged)

Alfredo M. Ozorio de Almeida, Hamiltonian Systems, Chaos and Quantization (Cambridge
Monographs on Mathematical Physics), IX + 238 pages, Cambridge Umver51ty Press, Cambndge—
New York—New Rochelle—Melbourne —Sydney, 1988.

The theory of classical dynamical s_ystems has undergone a rapid development'i'n the last few
decades. Out of the several branches of this field the author deals only with conservative systems.
The preservation of volume in phase space — though it might seem a great simplification in the
description of the qualitative behaviour of the solutions — does not ‘make the problem much easier.
A lot of beautiful and very deep mathematical results have been achxeved concerning only Hamil-
tonian systems. The first part of the book provides a simple and nontechnical introduction to the
fundamental notions of chaotic motion: structural stability, normal forms and KAM theory. Its
language is rather the one of theoretical physics, but the important theorems of Hartman and Grob-
man, Peixoto, Smale, Birkhoff, Moser, Kolmogorov and Arnold are outlined and their proofs are
explained in simple terms. : : - -

The second part of the book is devoted to the question of chaos in semiclassical quantum
mechanics. While classical Hamiltonian dynamics is well developed, its quantum counterpart
is still in its “physical period”. The results are formulated in less rlgorous terms, conjectures based
on empirical results from computer calculations are not rare. The deeper structure of this part
of the theory is much less understood, compared with the classical case. Nevertheless there are
many interesting achievements in this field as well, mainly due to M. V. Berry and the Bristol group.
Having been published in the physical literature, the quantum mechanical results are much less
known to mathematicians. The systematic elaboration’ of these problems is in a somewhat chaotic
phase, and it is a great merit of the second part of this book, that it provides an order in this many
sided topic. According to the reviewer’s opinion, this is the more valuable part of the volume, be-
cause there are a number of excellent books on classical systems, while — as far as I know — com-
prehenswe monographs on quantum chaos have not been pubhshed so far. :

M. G. Benedtct (Szeged)

Remlmscences about a Great Physwlst Paul Adnen Maurice Dirac, deted by B. N. Kursu-
noglu and E. P. ngner, XVIII + 297 pages, Cambridge Umver51ty Press Cambrldge—New York—-
Port Chester—Melbourne——Sydney, 1990

No doubt, Paul Dirac was one of the greatest physicists of the céntury and all times. The first
formulation of the structure of quantum mechanics, the quantum theory of radiation, the relativistic
theory of the electron, the prediction of antimatter, the theory of magnetic monopoles, the stat-
istics of half integer spin particles known as Fermi—Dirac statistics, are the most celebrated
results of him. His book on the principles of quantum mechanics has been the fundamental text-
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book for generations of physicists. The principal features of the Hilbert space structure of quan-
tum mechanics were laid down first in this book (without mentioning the name of this concept;
of course). It was then criticised by von Neumann for its incorrect use of ‘“‘continuous bases
and it has been proposed that the spectral decomposition theorem had to be used instead. This
latter variant, however, has never become popular among physicists. It is well-known, that to
the contrary, it was the Dirac formulation, that gave rise to L. Schwartz’s theory ‘of distribu-
tions. Interestingly enough, a more recent development of functional analysis, the introduction
of the notion of the rigged Hilbert space by I. M. Gelfand and others, presents itself essentially
the rigorous mathematical variant of the original Dirac method of quantum mechanics. Inhis
equation for the relativistic electron Dirac used a special Clifford algebra and introduced spinors.
The theory of the magnetic monopole is a construction of a nontrivial fibre bundle etc. Thus it
is difficult to exaggerate the influence of Dirac on XX-th century mathematics.

The book contains personal reminiscences of ‘colleagues, friends and pupils of Dirac, his wife,
Margit Wigner, Eugene Wigner, R. Peierls, F. Hoyle, N. Mott, A. Salam, W. Lamb are among
the authors. The book is very enjoyable, with several anecdotes about the man with a reputation
of silence. It is recommended to everybody who is interested in the personahty of an ‘extraordinary
great man, and in the history and development of physics and science of our century Let us close
this review with one of Dirac’s famous sentences: “It is the &ssemlal mathematical beauty of the
physical theory, which I feel is the real reason for believing in it.”

M. G. Benedict (Szeged)

Reinhold Remmert, Theory of Complex Functions (Graduate Texts in Mathematics, 122),
XIX+453 pages, Springer-Verlag, New York—Bcrlm—Heldelbcrg—London—Pans——Tokyo—
Hong Kong, 1990. )

This book is a translation of the second edition of Funktionentheorie I, Grundwissen Mathe-
matik 5, Springer-Verlag 1989, but it should be noted that several valuable improvements are made.

The book is consisting of three parts. The main topic of the first one is an introduction to the
theory of complex variable (complex numbers, continuous functions, differential calculus, -holo-
morphy and conformality, modes of convergence in function theory, power series, transcendental
functions). The title of the second part is: *The Cauchy Theory” and the complex integral calculus,
the integral theorem, integral formula, power series development are treated. The Cauchy—Weier-
strass—Riemann theory is the main topic of the last part including for example the fundamental
theorems about holomorphic functions, the fundamental theorem of algebra, Schwarz’ lemma,
isolated singularities, meromorphic functions, Laurent series and Fourier series and finally the
residue calculus and its applications. At the end of the book short blographles of Abel, Cauchy,
Eisenstein, Euler, Riemann and Welerstrass can be found. The book includes many examples and
practice exercises.

Very useful parts of the book are the discussions of the historical evolution of the theory,
biographical sketches of important contributors and citations (original language together with
. English translation) from their classical works. -

I am sure that any teacher and student will enjoy reading this book because they will find in
it not only very interesting historical remarks but many beautiful ideas and examples, too.

j . Németh (Szeged)
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Konrad Schmiidgen, Unbounded Operator Algebras and Representation Theory (Operator
Theory:” Advances and Applications, 37), 380 pages, Birkhiduser Verlag, Basel——Boston—Ber-
lin, 1990. .

Thrs monograph provrdes a thorough treatment of *-algebras of unbounded operators, and
that of *-representations of general *-algebras. The main discussion is divided into two quite in-
dependent parts, consisting of Chapters 2—7 and 8—12, respectively. Chapter 1 is of introductory
nature. ) )

The main topics discussed in Part T are ‘0*-algeb'rasva'nd related topologies. An O*-algebra is
— roughly speaking — a *-algebra of unbounded operators acting on a dense common domain
9 in a Hilbert space, provided that this algebra contains the identity and each element leaves &
invariant. The related topologies are considered on 9 or on the algebra itself, or even on space
of ‘associated sesquxlmear forms. Among others, generalised Calkin algebra and one more. special
type of *-algebras are discussed in detail. The first part is finished by studymg commutants of O*-ai-
gebras.

. Part1l deals w1th *-representatrons of *-algebras by. unbounded operators in a Hllbert space.
After detalled discussion of general *-representations, some.particular cases are con51dered Specral
attention is paid to infinitesimal representation associated with unitary repr&sentatron of a Lie
group. The last chapter is devoted to the decompositions of closed operators and *-reprmen_tations.

- This book is a monograph of a theory having been rapidly developed in the last two decades.
Besides the essential contribution to this developement by research papers, the author often im-
proves the original proofs and results in this book. He introduces new concepts, unifies the ter-
minology and the notation, and enlights the general theory from several points of views by ‘giving
examples and counter-examples. The theme of this comprehensive treatment is connected also thh
physics (e.g. quantum field theory).

The book is written in concise, lucid style. *“Symbol Index” and *““Key Index” help the reader
to orient himself in the material. Each chapter ends with “Notes”, where hlstoncal and bibliogra-
phical comments are presented.

The reader is often referred to textbooks, monographs lecture notes and research’ papers
listed in the rich *“Bibliography”. He/she has to be familiar with functional analysis (applymg some
topology) and operator theory. At any rate, one who wants to study (by learning or by doing re-
search’ work) any branchms of the theme indicated in the title, hardly can do without this book

E. Durszt (Szeged)

TAPSOFT ’89. Proceedings of the International Joint Conference on Theory and Practice of
Software Development, Barcelona, Spain, March 1988 (LNCS, 351), Edited by J. Diaz and F. Orejas)
X +383 pages, Spnnger—Verlag, Berhn——Heldelberg—New York—Tokyo, 1989.

TAPSOFT '89 consisted of three parts: Advanced Seminar on Foundatrons of Innovative
Software Development; CAAP (Colloquium on Trees in Algebra and Programming); CCIPL
(Colloquium on Current Issues in Programming Languages).

The current Volume 1 of the Proceedings includes the four most theoretlcal mvned papers of
the Seminar plus the 20 CAAP contributions.

The invited talks were given by C.A.R. Hoare (The Varieties of Programming Language),
J. L. Lassez and K. McAlloon (Independence of Negative Constraints), P. Lescanne (Completion
Procedures” as- Transition Rules+ Control), M. ersmg, M. Broy (A Modular Framework for
Specification and Information). : : :
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- The CAAP papers can be grouped according to the following four major topics: Logic Pro-
gramming, Prolog and its derivatives; Term Rewriting Systems; Graph Grammars; Algebraxc
Specifications. :

This book may be a useful tool both for software experts with a stronger theoretical interest
and computer screntlsts worklng on related fields. _

J. Virdgh (Szeged)

. Toeplitz Operators and Spectral Function Theory. Essays from the Leningrad Seminar on
Operator Theory. Edited by N. K. Nikolskii (Operator Theory: Advances and Applications, 42),
425 pages, Birkhauser Verlag, Basel—Boston—Berlin, 1989.. .

As the editor remarks in the Preface: “the volumé contains selected papers on the Spectral
Function Theory Seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are
mostly devoted to the theory of Toeplitz and model operators.”

The first article consists of an introductory and the first chapters of N. K. Nikolskii’s pub]ica-
tion to be published elsewhere. The present part is a survey of general properties of multiplicities and
maxi-formulae, A max1-formula is a formula of type u(M)= sup (WX where A is a subal-

gebra of, L(X ), X =span {X;: k=1} and the X;’s are mvarrant subspaces for or. .

The investigation on multiplicities is continued by B. M. Solomyak and A. L. Volberg in
two joint papers. The first one contains the computation of the multiplicity of a Toeplitz operator
with, symbol analytic in the closed unit disc. The obtained formula is generalised for matrix sym-
bol case in the second paper.

Usmg the Sz.-Nagy—Foias model theory, V. I. Vasyunin computes the multiplicity of a con-
traction with finite defect indices.

V V. Peller discusses the following question: Under what condmons belongs the operator
ST —Tyop tothe Schatten——von Neumann class S, or, in particular, to the trace class? .

D. V. Yakubovich deals also with Toeplitz operators. Applying Riemann surfaces, he con-
struts a similarity model for certain Toeplitz operators.

S. R. Treil’ presents some recent results concerning the spectral theory. of vector valued
functions. :

~ The reader holds in his hands a new outlet of the known workshop, where operator theory

and complex analysis have been handled in a fruitful unit. This collection provides a good survey of
the .discussed-area, presents new results and lists a great number of references. One, whose field
of interest meets Toeplitz operators and/or multiplicity theory, surely is going to have a look at
this work And then, he/she will certamly read (at least the majorlty of) the artxcles

E. Durszt (Szeged)

V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups (Cambridge
sludlm in advanced mathematics, 16), X+316 pages, Cambridge Umversrty Press Cambndge——-
New York—Port Ch&ster—Melbourne—Sydney, 1989.

: The well-known author, V. S. Varadarajan, of this book gives a very nice introduction to the
sub_;ect of harmonic analysis on semisimple Lie groups. The: book is intended to advanced under-
graduat&s and to beginning graduate. studénts.

- Therefore it deals mainly- with the simplest nontrivial semisimple Lie group SL(2, R)."In
this way, the author can keep the requirements minimal -contrary 'to a general treatment of the
subject when a deep level algebra, geometry etc. would be needed. Since all the major themes come
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naturally up in the case of SL(2, R) the reader can understand then easily the general statements
and their proofs also.

Well, one could think now that this book is a variant of S. Lang’s well-known book but only
the approach is the same. A number of topics are included in this book that is not treated in Lang’s
book such as the Schwartz space, wave packets and so on.

It is worth noting that the book begins with a brilliant introductory chapter. Reading this
chapter the reader will have a great mind to learn all of this subject. We note also that appendices
on functional analysis and Lie groups are included offering the reader some basic definitions and
results of the indicated subject. .

In sum, we warmly recommend this book to all who want to learn the basics of harmonic

_ analysis on semisimple Lie groups and especially to students interested in this subject.

A. Kurusa (Szeged)

E. B. Vinberg, Linear Representations of Groups (Basler Lehrbiicher, A Series of Advanced
Tgxtbogks in Mathematics, Vol. 2), (translated from Russian by A. Iacob), VII+ 146 pages, Birk-
hiuser:Verlag, Basel—Boston—Berlin, 1989.

" This nice book is an excellent introductory work into the linear representation of groups.

. The treatment is in good accordance with the intrinsic structure of the topic. It is divided into

four chapters and (0-+)11 sections. In the preliminary (Oth) section with the aid of examples basic

concepts of representation theory are introduced: exponential function, matrix representation and
linear representation, action of a group.

Chapter I is devoted to the simplest results of the theory: from invariant representations to
the complexification. :

Chapter II and III deal with the representation of finite and compact groups, while Chapter IV
is about representation of Lie groups.

The book satisfies all the requirements of a university textbook. As a consequence of its con-
ciseness the reader can concentrate the logical treatment. Most important cases and examples are
especially stressed (e.g. ““A very important example’). Proofs take a prominent part of the material.
They are presented not only for completeness reasons. Passing them, one loses a lot of niceties
which play significant role in the explanation.

Problems and questions which do not need immediate presentation and solution are gathered
at the end of each section. However, it is worth dealing with them in order to obtain a wider knowl-
edge of the topic (answers and hints are also given).

Four appendices contain important technical details: presentation of groups by means of
generators and relations, tensor products, the convex hull of a compact set, conjugate elements
in groups.

The book is recommended to mathematics students of undergraduate as well as graduate

courses.
J. Kozma (Szeged)
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