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ANNOUNCEMENT T O EVERYONE CONCERNED ! 

Dear Reader, 

The editorial staff regrets to announce the last issue of this Acta. Therefore, from 
now on, Acta copies for other journals can not be exchanged. The editorial staff and the 
¿ditor—in—Chief acknowledge and highly appreciate the cooperation of exchange partners 
for so many years. 

After 36 years of serving the scientific publication needs of physicists and chemists 
at the University of Szeged (JATE), this is —to our knowledge— the only Acta, among the 
many university Actae, which is ceasing to exist. However, the wider editorial board, 
leading physicists and chemists of JATE, decided that their continuously decreasing 
financial funds would be spent in the future for more useful and prosperous purposes and so 
they sealed the fate of this Acta. 

In spite of the fact that the effort to publish this Acta, home made in camera ready 
form, and still in higher standards and quality for always reducing costs was an 
unrewarding role to play and have not ever been appreciated, the select editorial staff is yet 
sorry for closing down the Acta Physica et Chemica Szeged. 





STABILITY OF DISTRIBUTED FEEDBACK D Y E LASER 
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FOR. EXCIMER LASER PUMPING, THREE POSSIBLE REASONS FOR THE FLUCTUATION IN THE DFDL 
OUTPUT PULSE ENERGY WERE STUDIED: THE FLUCTUATION IN THE VISIBILITY OF THE AMPLITUDE— 
—PHASE GRATING IN THE DYE SOLUTION, THE CHANGE IN THE PUMP PULSE SHAPE ON THE 1 0 0 pS — 
4 n s TIME SCALE, AND THE CHANGE IN THE PUMP BEAM INTENSITY DISTRIBUTION ALONG THE E X C I -
TED VOLUME. 

Introduction 

Distributed feedback dye lasers (DFDLs) are simple sources of transform—limited 

picosecond pulses [1]. Both the pulse duration and the stability of the output pulse 

energy are relevant properties of DFDLs. The stability of a DFDL pumped by a l o w -

pressure N2 or an excimer laser has been measured and calculated [2,3]. The f luctua-

tion in the exciting beam intensity was presumed to cause the fluctuation in the 

DFDL pulse energy. This energy fluctuation was determined from the fluctuation in 

the pumping laser energy and the slope of the calculated output—input energy charac-

teristic of the DFDL. For low-pressure N2 laser pumping, the calculations gave good 

agreement with the measurements [2]. However, for both TEA N2 and excimer laser 

pumping, the measured fluctuation in the output energy was significantly larger than 
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the calculated one. TEA N2 and excimer lasers differ from low—pressure N2 lasers in 

many properties: 

a) The bandwidths of TEA N2 lasers and excimer lasers are much larger than 

those of low—pressure N2 lasers. The spatial coherences of T E A N2 and excimer lasers 

are small. These two differences can cause a significant fluctuation in the visibility of 

the amplitude-phase grating in the DFDL. 

b ) There are a few streaks on the cross—section of the T E A N2 laser beam, so the 

intensity of the pumping varies along the excited volume of the DFDL, and therefore 

the amplification is modulated in space. The positions of the streaks change from shot 

to shot. Such a streaky structure can not be seen in the beam of a low—pressure N2 

laser. 

c ) Exciting pulses from excimer lasers usually have a modulation in time [3], some 

peaks can be observed in the pulse shape. The phase of this modulation can change 

from shot to shot without changing the pulse energy. 

The effects of these properties on the stability of the DFDL are studied in this 

paper by using a time—space—dependent differential equation system to describe the 

lasing of the DFDL. 

Theoretical model 

The behaviour of the DFDL can be described by the following system of equations 

[4]: 

" + c ^ ^ = 2 V ^ 1 ) ~ (1) 

¿ S ^ t ) + = 1 ^ n ( x t ) g ^ t j + ^ t ) _ ^ S ( x , t ) 
(2) 
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pv ' ' p 
N—n(x,t) nix.t) a r eA 

r hrj |R|2+|S|2 n(x,t). (3) 

The meanings of the symbols axe as follows: 

x: the distance along the excited volume [cm] 

N: the total concentration of dye molecules [9-1018 cm"3] 

n(x,t): the concentration of molecules in the Si excited state [cm"3] 

r. the fluorescence lifetime of the Si state [4 ns] 

77: the refractive index of the dye solution [1.32] 

c: the speed of light in vacuum [3 • 108 m.s"1] 

V: the visibility of the amplitude—phase grating in the excited volume [0.4] 

the absorption cross-section of the dye molecules at the 308 nm 

pump wavelength [1.15-10"'7 cm2] 

<re: the emission cross—section of the dye molecules at the DFDL 

wavelength [1.1 -lO"«« cm2] 

R(x,t): the electric field of the DFDL light propagating in the —x direction 

[V.m"1] 

S(x,t): the electric field of the DFDL light propagating in the + x direction 

[V.m"'] 

the permittivity of the dye solution [jf 8.854-10"'2 AsV"'m"i] 

the wavelength of the DFDL [555 nm] 

the height of the excited volume [0.25 mm] 

Planck's constant [6.616 • 10"3« Js] 

L: the length of the pumped volume [3 mm] 

p. the non-saturable loss of DFDL energy in the excited volume [si cm"'] 
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= ^N <7pj \ is the penetration depth of the pump light into the dye solution 

[a 0.1 mm] 

Ro = So = xi c • > describes the spontaneous emission. 

The system of equations ( l ) - ( 3 ) was solved on an IBM AT computer, using a 

numerical method. Typical excimer laser parameters were used for the calculations. 

The output energy of the DFDL was calculated from the formula: 

E = ^ | R ( L , t ) | 2 d t (4) 

Results of calculations 

a) The exciting beam is split into two beams by a holographic grating in the 

DFDL arrangement. These two beams are reflected on the surfaces of a quartz 

parallelepiped. After reflection, these two beams interact in the dye solution, creating 

an amplitude—phase grating. In this pattern, the surfaces of the constant phase and 

amplitude are planes. These are perpendicular to the surface of the dye cell. For the 

ideal case, the visibility of the interference pattern is 1 everywhere in the excited 

volume. In reality, the visibility is smaller than 1. The reason for this, the bandwidth 

and the divergence of the excimer laser beam are not infinitely small. Therefore, the 

time and spatial coherence length of the exciting laser are small: 

where AA ¡s 0.3 nm and 0 s 0.01 for the excimer laser. The depth of the excited 
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Lt ime » M * 3 0 0 

^spatial = F ~ 3 0 I™ 

(5) 

(6) 

volume is « 100 //m, which is significantly larger than the spatial coherence length. 

Therefore, the visibility is smaller than 1 and it can differ from point to point in the 

excited volume. A visibility value of z 0.4 was estimated from the measurement of the 

amplified spontaneous emission background of the excimer laser pumped DFDL [5]. 

The visibility of the amplitude—phase grating can also change from shot to shot. 

As an about ±10% fluctuation of the visibility seems realistic, the calculations 

were carried out with visibility values between 0.36 and 0.44. The results of ca l cu -

lations are shown in Figures 1 and 2. The output energy of the DFDL is represented 

as a function of pump intensity in Fig. 1. This Figure indicates that the threshold 

pump intensity for V = 0.4 is I p = 3.29-1023 c m - V . For an 8% higher intensity of 

this threshold, the output energy is represented as a function of the visibility (see Fig. 

2). (According to Fig. 3 in [5], the DFDL creates a single pulse only if the pump 

intensity does not exceed the threshold intensity by more than 8%.) As it can be seen 

in Fig.2 a±10% fluctuation of the visibility results a±14.3% fluctuation in the DFDL 

pulse energy. Therefore, the fluctuation in the visibility can be the reason for the 

fluctuation in the DFDL output energy. 

b) The cross-section of the TEA N2 laser beam has a streaked structure; the 

intensity of the beam is modulated in space. This beam is focused by a cylindrical 

lens into a line. Because of the streaked structure of the beam, the intensity changes 

along the line and therefore the amplification is modulated in space. To investigate 

the effect of this, we described the pump intensity as a function of and time variables 

with the following formula: 

9 



J. SEH.ES, J. HEBLING and ZS. BOH. 

Figure 1: Single—pulse energy of the DFDL as a function of the pump intensity 
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Figure £ Single-pulse energy of the DFDL as a function of the visibility 
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I p (x , t ) = I 0 [ l + u s i n p j a x + ^ ] ] e x p [ - 4 ln(2) p f ^ ] * ] (7) 

where 

tp : the position in time of the maximum of the exciting pulse 

T: the duration of the exciting pulse [9 ns] 

u: the depth of the spatial modulation [0.5] 

u = (8) Imax+lmin 
n: the number of streaks in the excited volume. 

Usually, a small part of the focused beam is used to illuminate the dye cell, and 

therefore there are only a few streaks in the excited volume. The cases n = 1 and 

n = 2 were studied in our calculations. The results of the calculations are shown in 

Figures 3 and 4. The output energy is seen to depend only slightly on the spatial 

modulation of the pump intensity. This dependence is more significant for larger 

losses. 

c ) The exciting pulse may have a modulation in time. Such an exciting pulse was 

described as 

Ip (x,t) = Io [ l + u s i n [ ^ t + , ] ] e x p [ - 4 l n ( 2 ) [ ^ ] 2 (9) 

where T^ is the period of the modulation. 

We chose u = 0.5. The calculations (see Fig. 5) revealed that the output energy 

depends on the phase; of the modulation. This phase was changed by <p. The exciting 

intensity was chosen to be 8% higher than the threshold intensity. The measured flue— 
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Figure 5i Single—pulse energy of the DFDL as a function of the pump intensity 

for different <p. The number of streaks is 1 

tuation in the exciting pulse intensity was ±1%. This value was used in the ca lcula -

tions. For Th = 400 ps, the results of the calculations are depicted in Fig. 5 for a few 

values of the phase of the modulation. It can be seen from this Figure that there is a 

situation (for the used parameter-set at p=90°) such that the energy of the DFDL 

fluctuates to a larger extent than ¿8%, even if the phase of the modulation of the 

pump pulse is constant and the fluctuation in the pump intensity is only ±1%. This 
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Figure 4- - Single—pulse energy of the DFDL as a function of the pump intensity 

; for different <p. The number of streaks is 2. 

Figure 5: : Fluctuation in the single—pulse energy of the DFDL at different 

phase ip. 
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sensitivity for the fluctuation in the pump intensity is about twice as large as in the 

case of unmodulated pumping. On the other hand, with constant pump intensity, the 

DFDL energy can change considerably if the phase of the modulation of the pump 

intensity changes from shot to shot. 

Figure 6 shows the dependence of the DFDL energy fluctuation on the value ofthe 

modulation period. It can be seen that the fluctuation is significant if Th is larger 

than 300 ps. The fluctuation is larger than 25% for Th values between 1.4 and 2 ns. 

For a period time (Th) of the modulation larger than 1 ns, the fluctuation does not 

decrease below 15%. Therefore, the calculations indicate that the time modulation of 

the pump pulse can be the reason for the fluctuation in the output energy. 

Figure 6: DFDL pulse energy fluctuation as a function of the period of the pump 

pulse modulation in time. 
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Conclusion 

For TEA N2 and excimer laser pumping, we have studied the reasons for the 

fluctuation in the output energy of a DFDL by using a simple model. The calculations 

showed that the fluctuation in the exciting pulse in time and the fluctuation in the 

visibility can explain the measured fluctuation. However, the fluctuation in the spatial 

distribution of the exciting intensity does not cause a significant fluctuation, at least 

for a non—saturable loss value p = 1 cm'1. 
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INVESTIGATION OF THE STABILITY OF DRUG-CONTAINING 

(MULPLE-PHASE) EMULSIONS 

I. ERŐS', J. BALÁZS2 , I. CSÓKA' and SZ. MUSZTAFA' 

'Department of Pharmaceutical Technology 

A. Szent—Györgyi Medical University, Szeged, Hungary 

2Depaitment of Colloid Chemistry 

Attila József University, Szeged, Hungary 

THE AUTORS HAVE STRIVEN TO PREVENT THE DECREASE OF MULTIPLE—PHASE CHARACTER IN 
w / o / w EMULSIONS BY DIFFERENT TECHNOLOGICAL METHODS. PARTLY THE INTERNAL WATER PHASE 
OF MULTIPLE-PHASE EMULSIONS WAS GELLED BY GELATINE AND PARTLY THE VISCOSITY OF OIL 
PHASE WAS INCREASED BY SOLID EMULSIFIERS OF LOW HLB VALUE. THE GELATINE CONCENTRATION 
REQUIRED FOR STABILIZATION AND THE OPTIMAL CONCENTRATION OF SOLID EMULSIFIERS HAVE BEEN 
DETERMINED. 

Introduction 

Multiple—phase emulsions belong to the controlled drug delivery systems. The 

active ingredient dissolved or suspended in the internal water phase releases with an 

appropriate rate determined by the technologist. The following factors can be used for 

regulation of this rate: 

— modification of drop size and surface of the internal water 

— structure and compactness of emulsor film surrounding the internal wateer phase 

— permeability of oil layer separating the enternal and external water phases [1]. 

Publications about the application of antigenic substances [2], antitumoür 

medicines [3] and insulin [4] in w / o / w emulsions report on animal and clinical tests of 

promising results and good therapeutical benefit, too. 
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More widespreading practical use is prevented by the fact that the multiple—phase 

emulsions, among these w / o / w systems, are not stable. By splitting of the oil layer 

the external and internal water unite, hereby the multiple—phase character decreases 

and the multiple—phase emulsions is transformed gradually into a simple o / w 

emulsion. Many attempts (5-8] have been made to stabilize the multiple—phase 

character but this problem can't be considered as a completely solved one yet. 

In our previous investigations [9] we have explained that the formation of the 

multiple—phase emulsion is facilitated by optimal concentration of emulsifier 1, 

optimal volume ratio of w / o emulsion in w / o / w emulsion, increase of viscosity of the 

oil and that of the external water phase and the relatively short mixing time in the 

second step of preparation as well. 

Our further aim was to increase the stability of multiple—phase emulsions by 

means of: 

1. Gelling the internal water phase in order to prevent the uniting of external and 

internal water phases. 

2. Increasing the resistance and elasticity of oil layer separating the two water 

phases. For realizing the first step of emulsificalion such solid enmlsifiers of relatively 

low HLB value were chosen which considerably increase the viscosity of oil and gel 

the oil as well. 

Materials and methods 

The oil phase of w / o / w emulsions was liquid petrolatum (Paraffinum liqnidum of 

quality of Ph.Hg.VII). 

For the preparation of w / o / w emulsions the following emulsifiers were used in the 

first step of emulsification: Span 20, 40, 60, 80 (Atlas GmbH, GFR) , Imwitor 780 K 
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(Dynamit Nobel AG, GFR), Tegin (Goldschmidt AG, GFR), cetyl stearil alcohol, g l y -

cerol monostrearate, lanalcol (Ph.Hg.VII). 

The concentration of emulsifiers was changed in the range of 10—12 g/100 w / o 

emulsion. Aqueous solution of 1% of Tween 20 was used in the second step of emul— 

sification to form w / o / w emulsion. 

The preparation of w / o emulsion, — the first step of emulsification — was perfor-

med as follows: Solid emulsifiers together with the oil phase were heated over the 

melting point in water bath. The water phase of the same temperature was emulsified 

in the melt under constant conditions. The w / o emulsion was stirred mechanically 

until cooling down. The second step of emulsification was performed at room tempe-

rature. Emulsions stabilized by gelatine were prepared in the above—mentioned 

manner. 

As indicator substance ephedrine hydrochloride of 1 % wt was dissolved in the 

water phase of w /o emulsion for controlling the efficiency of formation and stability. 

The amount of chloride ion appearing in the external water phase was measured by a 

OP-CI-0711 P chloride selective membrane electrode, using a calibration curve. From 

the amount of chloride ion measured immediately after preparation the amount of 

formed w / o / w emulsion was determined. From the values measured after given storage 

time the decrease of the amount of multiple—phase emulsions and their stability we 

estimated. 

Viscosity or emulsions were measured by Rheotest—2 rotary viscosimeter at 

298 i 1 K. Besides observation and measurement of spontaneous separation, the 

stability of the emulsion was determined by centrifuging for 10 minutes at a rate of 

3000 rpm in centrfuge of Janetzki K—23 type. 
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Results and discussion 

1.) The effecL.of geling by geletine on the properties and stability of w / o / w emulsions. 

Our concept related to gelling of the internal water phase was to avoid the 

decrease and transformation of the multiple — phase character by preventing the 

uniting of the internal and external waters. 

E= cj 

1 0 0 r 

8 0 

e • 

60 

40 

2 0 

Emulsifier 1 

SPA N80 

I 
I . 

» 
I 

1 
I 

I 

Emulsifier 1 

IMWITOR 780 K 

I 

after j afferl 
preparation hour 

offer IU 
hours 

! 
m 

i I 
after i after 1 ¡ after 2U \ 

prepara hor> hour hours 

Figure 1: Stability of w / o / w emulsion without gelatine | | and with 

gelatine of 3 %. 

Our hypothesis has been proved correct by Fig.l. Gelatine considerably increased 

the efficiency of formation of the multiple—phase emulsion and stabilized suitably the 

formed emulsion. 
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Many emulsifier of low HLB value were tested in our previous experiments to 

work out the first step of emulsification. The effect of the best two emulsifiers (Span 

80 and Imwitor 780 K ) are compared in Fig.l. Emulsifying features of Span 80 have 

been already known from the literature [5,6]. The excellent emulsifying capabvility of 

Imwitor 780 K (partial glyceride of isostearic acid, with a HLB value of 3,7) and its 

stabilizing effect exceeding that of Span 80 have been testified by OUT investigations. 

Gelatine solutions of 1, 3, 4, 5 and 6 % wt were used as water phase in w / o / w 

emulsion to determine the optimal concentration of 1 % wt was a viscous sol, while 

the other systems became gelatinous ones after cooling, (it was found that gelatine 

concentration of 3 % wt was sufficient to stabilize effectively the multiple—phase 

character. In the case of systems with 4, 5 and 6 % wt gelatine concentration neither 

the efficiency of emulsification nor the stability of emulsions were greater (Fig.2). 

Viscosity of emulsions was increased by gelatine to such an extent that the nearly 

ideal—viscous systems of low viscosity were transformed into structure—viscous ones 

(Table I). 

Only data of emulsions of 24 hours are shown in Figs. .1 and 2. Investigation of 

multiple-phase character by means of ion—selective membrane was performed for a 

longer period (48 hours, 1 and 2 weeks and 1 month). Data relating to these 

experiments have not been published because of the instability of systems after 48 

hours or 1 week. This instability became visible as separation and creaming of 

emulsions, respectively. This phenomenon was scarcely distinguishable but it became 

significant after 1 month. The multiple—phase emulsion separated into a concentrated 

multiple—phase emulsion (in which the multiple—phase character slightly decreased 

compared to the value after preparation) and water. Our investigations on the 

stability of distribution and the rate of separation have already been published 

20 



I. EEOS, J. BALAZS, I. CSOKA and SZ . MTJSZTAFA 

Table I 

Rheological character and equilibrium viscosity of multiple—phase 
emulsion stabilized by gelatine 

Emulsifying agent Gelatine % Rheological Equilibrium 
Character viscosity (mPa.s) 

0 idealviscous 4,3 
3 structurviscous 11,5 

Span 80 4 structurviscous 18,5 Span 80 
5 structurviscous 34,9 
6 structurviscous 40,8 

0 idealviscous 5,7 
3 structurviscous 19,5 

Imwitor 780 K 4 structurviscous 16,4 
5 structurviscous 12,5 
6 structurviscous 13,5 

Emulsif ier 1 

SPAN 80 

£ 100 
o 

'l/) 
I 80 
OJ 

. o 
5 

60 

m 

7 
oV* 

g . 20 
o 
E 
a 

i -

2 4 6 
g e l a t i ne ,% 

Emulsif ier 1 

IMWITOR 780 K 

60 

n / / 
P C 

f — 

t » 
< 

o with 
gelatine 

• without" 
gelatine 

g e l a t i n e , % 

Figure è. Effect of gelatine on the formation and stability of multiple—phase 

emulsion 
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elsewhere [10]. 

It can be concluded that the gelling of water phase ensures the stability of the 

multiple—phase character but not that of the distribution. 

2.) The increase of viscosity of the oil phase by solid emulsifiers of low HLB value. 

Our other effort for stabilization was the use of solid, gel forming emulsifiers in 

the first step of emulsification. In the basis of our previous experiments of centri— 

fuging, cetyl stearil alcohol, glycerol monostearate, Span 40 and 60 were chosen (Table 

II). 

Table II 

Macroscopic changes after centrifuging 

Solid emulsifier g/lOOg emulsion 10 12 14 16 18 20 

Cetyl stearyl alcohol Oo Oo Oo Oo • • 

Cetyl stearyl alcohol + Span 20 Ooo Oo Oo Oo Oo • 

Glycerol monostearate Ooo Oo Oo Oo • • 

Glycerol monostearate + Span 20 Ooo Oo Oo • • • 

Lanalcol Ooo Ooo Ooo Oo Oo Oo 

Lanalcol + Span 20 Oo Oo Oo Oo Oo Oo 

Span 40 + Span 20 Oo Oo Oo Oo Oo • 

Span 60 Oo Oo Oo Oo • • 

Span 60 + Span 20 Oo Oo Oo Oo • • 

TEGIN ; Ooo Ooo Oo Oo Oo • 

Ooo — three layers Oo — two layers • — it remained stable 
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From the point of view of rheology these systems were thixotrope ones with yield 

point. Their equilibrium viscosity increases considerably with the amount of gel 

forming emulsifier (Fig. 3). 

Cetyl-stearyl- alcohol 

TEGIN 

o SPAN 60 

n S P A N 40 

o / , 
Glycerol -
-rnonostearate 

20 % Emulsifier 1. 

Figure 3: Connection between emulsifier concentration and equilibrium viscosity 

in w / o / w emulsion 

Fig. 4. proves that multiple—phase emulsions can be effectively stabilized by solid 

emulsifiers mentioned above. Their multiple—phase character didn't change considera-

bly after 72 hours. Where as in emulsions containing Span 80 this character decreased 

significantly during 72 hours, macroscopically these systems were stable, water or oil 

separation couldn't be observed even after several months following the preparation. 

Since solid emulsifier of 20 % gave the character of fairly viscous or even high 

consistency to the system in several cases, it was abvisable to use these emulsifiers 

together with Span 20 liquid emulsifier in a concentration of 10—10 %. 
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5> 
C 100—1 
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tA 
Z3 
E 8 0-QJ 8 0-

* — 

O •—. 60-
> _ 
o 40-
c _ 
o 
E . 20-

< _ 
0-

Figure fy. Effect of gel forming emulsifier 1 on the stability of multiple phase 

emulsions ( j | immediately after preparation, ||||[|/|J|| after 72 hours) 

C control (Span 80), 1 cetyl stearyl alcohol, 2 glycerol monostearate, 

3 Span 40, 4 Span 60 

Investigation of the formation of multiple—phase emulsions showed (Fig. 5) that 

almost each combination approached the efficiency of Span 20 — Span 80 combination. 

After 72 hours the multiple—phase character was unchanged in the case of cetyl 

stearyl alcohol — Span 20, Span 40 — Span 20 and glycerin monstearate — Span 20 

systems, therefore these emulsifier mixtures have good proper stabiliziing effect. On 

the other hand, considerable decrease of multiple—phase character was observed in the 

case of Span 60 — Span 20 and Span 80 — Span 20 combinations. Explanation for this 

and for stabiliziing effect of different extent requires further investigations and 

24 



I. EEOS, J. BALAZS, I. CSOKA a n d SZ. MTJSZTAFA 

ditailed study of interfacial tenside film. 

I 
1 0 0 1 C ! 1 . 2 3 ! U O I I I I 

Figure 5: Conjugate effect of gel forming emulsifier and Span 20 on the stability 

of w / o / w emulsions (| ] immediately after preparation, QQQDO a i t e r 

72 hours) C control (Span 80), 1 cetyi stearyl alcohol, 2 glycerol 

monostearate, 3 Span 40, 4 Span 60 
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THE PC COMPUTER PROGRAM HIHIMIX HAS BEE» CONSTRUCTED IN BASIC AND FORTRAN P R O G -
RAMING LANGUAGE FOR THE CALCULATION OF STABILITY CONSTANTS AND HOLAR ABSORPTIVITIES OF 
THE MqLpL'p, TYPE MIXED OR THE MIXTURE OF MqLp AND M q , L p , COMPLEXES FROM S P E C T R O P H O T O -
METRIC MEASUREMENTS. BY THE FORTRAN VERSION OF THIS PROGRAM THE EQUILIBRIA OF THE 
MqLpLp , H r PROTONATED/DEPROTONATED COMPLEXES CAN ALSO BE TREATED. 

Introduction 

In our previous papers we published desk computer programs for 16 Kbyte c o m -

puters to evaluate stability constants from potentiometric [1] and spectrophotometric 

[2] measurements. In the present paper we introduce a more complex program which 

is capable of calculating the optimum value of stability constants and molar absorp— 

* 
Present permanent address: Department of Chemistry, Janus Pannonius University, H—7624 Pécs, 
Ifjúság u. 6., Hungary 
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tivities of mixed ligand complexes of type M^LpL^, from spectrophotometric m e a s u -

rements. The program also applies to mixtures of complexes such as M^L^ and 

M , but it cannot be used for metals bound to only a single ligand 

alone). The present program MINIMIX written in BASIC programming language 

differs from the previous ones not only in the problem to be solved, but in its 

capability of evaluating measurements at any number of wavelengths. By the 

FORTRAN version of this program, which is available upon request, the equilibria of 

mixed ligand complexes of type M L Lp,H r , ie., protonated ( + r ) or hydroxo (—r) 

complexes, can be treated too. 

Fundamentals 

For the formation of mixed ligand complexes the following equilibria can be 

written (the charges on the components are omitted for simplicity): 

q M + p L + p ' L ' MqLpLp, or 

q M + p L + p ' L ' + r H ' ^ M L L \ H . M v v q p p' r 

For these equilibria the following cumulative formation constant can be written and 

are used in this program: 

0 = [ M q L p I / , H r ] • [ M p • [ L P ? • [L<]-pl • [ H + r ^ 

In the present BASIC program the last term is not included. 

Assuming the validity of BEER's law, the absorbance ( A ) of a solution in 1 cm 

path length can be written as the sum of the absorbances of each component: 

A = e M • [M] + e L • [L] + £L, • [L1] + s f j • C j , 
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where Cj = /fr • [M]^j • [LJ^j • [L']P j • If we assume the composition of 

complexes (q, p, p', and r values) formed in the system studied and their stability 

constants (fi values), we can calculate the concentration of free species ([M], [L] and 

[L'] by solving the mass balance equations written for the toted concentrations of 

components (Tj^j, T ^ and T^, ) [3], and having these values we can calculate the c o n -

centration of the individual c- complexes. If we assume molar absorptivities for each of 

the absorbing species too, we can calculate the absorbance ( A c ) and compare it with 

the measured one ( A m ) for each solution. If the agreement is not satisfactory, the 

program adjusts the assumed parameters (/? and e values) until satisfactory agreement 

is reached, or a completely new calculation with another model (with new q, p, p' and 

r values) is required. Consequently the steps of the evaluation with a model are as 

follows: First, we assume the stoichiometric coefficients of the complexes formed; 

second, P and e values are estimated. Third, the program calculates the concentration 

of the free species and complexes, and from these then calculates the absorbancies. 

To calculate the optimum values of the parameters resulting in the minimum sum 

of the unweighted squares of residuals in absorbances, the same method is used in this 

program as in MINISPEF [2]. 

The program 

With the exception of renumbering and a few changes detailed later, the portions 

of the program (lines 260-295) were kept identical with that of MINISPEF [2]. The 

names of variables and arrays have been kept, only a few new ones had to be 

introduced. To make the usage of the program easier, we reduced the number of input 

variables to the minimum, based on our experiences. In order to help user in exten-

ding or modifying the program, the arrays and their dimensions have been summarized 
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in Table I. 

In the main program, the following substantial changes have been made: 

— It is capable of treating data from measurements made at a maximum of four 

wavelengths. 

— The error in the individual parameters are saved and may be printed out. 

— The values of the elements of correction vector appear on the screen. This 

facilitates following the refinement cycles and the "behavior" of each parameter 

during refinements. 

— On the basis of our systematic examination, we have found it necessary to modify 

automatically the value of individual increments after each refinement cycle. As 

an optimum value for the increment, half of the error in each parameter was 

found. In spite of this modification, it is advisable to try different starting values 

for increments, if the interaction between the reactants is weak or there are 

parameters which have only a slight effect on the sum of the square of residuals. 

Leaving out the T (J ) = U7/2 statement in the line 680, no modification of increments 

is made. 

. . The. function of subroutines EQUSOL and PRINT has not been changed, but the 

former one has been extended to solve equation systems with three unknowns. It 

seemed to be expedient to locate them in a separate subroutine (CPXES) for the 

calculation of the concentration of complexes. 

Instructions for the use of the program 

The percentage distribution of complexes is calculated by the formula 

q j * C i j * 1 0 0 
% = ^ , where: 
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Table 1 

Name of Array Chemical notation Identifier in Dimension of the 
or Reference the Program Array 

Total concentrations 

Concentration of free species 
Measured and calculated absor-
bances 
Stoichiometric coefficients of 
complexes 
Parameters 
Increments of parameters 
Errors in parameters 

Complexes 
Serial No. parameters to be 
refined 
Serial No. of wavelength 
involved into refinement 

Transposed of gradient matrix 
Product of the gradient matrix 
and its transposition 

Inverse of C 
Error vector 

Absorbances calculated by the 
starting values of parameters 

Product of transposed gradient 
matrix and error vector 

Correction vector 
Cumulative stability constans 
Molar absorptivites 

T M> T L ' T L l 

[ M U L ] , [L'] 
AM , AC 

q. p, p' 

log ß, e 

o{log/?), ^ e ) 
MqLpL£, 

G T * 
T * 

C = G 1 x G 

n - 1 * 

y i - y i 

7 ? 
m * 

G 1 x d 

h 
ß 
e 

M, L, CZ 

A , B, Z 
E, El 

Q l , P I , R I 

P 
T 
E R 

C l 
SI 

SW 

G 

C 

C5 
D 
F 

G l 

G2 
E2 
E3 

M P 

M P 
M P x N W 

NC 

NP 
NP 
NP 

M P x N C 
• P F 

N W 

P F x ( N W x M P ) 

P F x PF 

PF x PF 

N W x M P 

N W x M P 

PF 

PF 
NC 

N W x ( N C + 3) 

Abbreviations: NC: No. of complexes; NP: No. of parameters ( = NC + N W * (NC + 3) ) 
N W : No. of wavelengths; MP: No. of measured points; PF: No. of parameters to be refined. 
*) Ref. 3. 
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if N % = 1 then T. - T O T M, if N % = 2 then T = T O T L, if N % = 3 then T = T O T L'. 

Divisors ( X I , X2, X3). To make easier the typing of T O T concentrations of reactants, 

their multiplied values can be input; e.g., if the concentrations are in mM, 

then the divisor X I = 1000, etc. (see line 85). 

Factors generating initial values of free species are necessary for solving mass balance 

equations by iterative methods. These initial values are calculated in the 

following way: 

- [M] = T M * FM, [L] = T L * FL and [L1] = T^, * FZ. (line 840 and 1015). 

The input of parameters into the array P must be made in the following order: 

first by fts, then the respective molar absorptivity of complexes, then e ^ , e^ and e^, 

., for the first, second, etc.. wavelength. The serial number of parameters.obtained in 

this way is used in the refinement or search procedure. 

Experimental points involved in the calculations: there are options to use only one 

part of the experimental points, such as with only every second, third, etc. points. 

Task: The program can execute three tasks: 

1.) Optimizing simultaneously a maximum of 4 parameters given by 

their serial numbers. 

2.) Search for the value of one of the parameters between input limits 

and by input step. 

3.) Search for the value of one of the parameters between limits and 

steps generated by the actual value of parameter to be searched 

for. E.g., if the value of the parameter searched for is P and the 

value of T3 is given for the lower limit of the search, the actual 

starting value will be T3 * P, etc., for T4 and T5 (line 335). 
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Note: 1.) The search is carried out only into the direction of higher values. 

2.) If the value of the parameter to be searched for is negative, the step— 

—factor T4 must be negative, too. 

Print: For uneven numbers the output appears only on the screen. 

For even numbers it is sent to the printer also. 

Printout options: Depending upon the number chosen, various printing options are 

allowed: 

if R% = 1 or 2: Refined parameters and their errors, square of residuals and 

standard deviation are shown, 

if R% = 3 or 4: All the parameters and their errors, square of residuals and 

standard deviation are shown, 

if R% = 5 or 6: The measured and calculated absorbances and the difference 

between them for the wavelengths involved into the 

calculations and the percentage distribution of complexes, 

that of free metal and free ligand are shown. 

Wavelength(s) involved into refinements must be given by their input serial number. 

Control number ( V I ) : After execution of a task, it is possible to continue the 

calculations at different points of the programs (see lines 375 and 695). Options: 

if V I = 1 

if V I = 2 

if V I = 3 

if V I = 4 

if V I = 5 

if VI = 6 

Calculation with new experimental data (from line 20) 

New model (new Q, P, P ' , R values, from line 120) 

Calculations with another points (from line 175) 

New task (from line 265) 

New refinement cycle (from line 385) 

End of calculations. 
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0 REM MINIMIX-MW4 
5 DIM A(50),B(50),C(4,4),CI(50,8),C5(4,4),CZ(50),D(200),E(50,8),El(50,8) 
10 DIM E2(8),E3(4,11),ER(52),F(200),G(4,200),G1(4),G2(4),L(50),M(50),P(52) 
15 DIM PI(8),Q1(8),R1(8),S1(4),SW(4),T(52),Z(50):ZI=L0G(10):TI=1/ZI:E5=1000 
20 PRINT "? # OF MSD POINTS":INPUT N1:PRINT "? # OF PARAMETERS":INPUT N2 
25 PRINT "? '# OF CPXES":INPUT N3:PRINT "? PERCENTAGE DISTRIBUTION RELATED TO 

1: TOT M, 2: TOT L, 3: TOT L' - SEE INSTRUCTIONS":INPUT N4% 
30 PRINT "PRINTING OF MSD. DATA ? - NO: 0, YES: 1":INPUT R% 
35 PRINT "? DIVISOR OF TOT M TO BE INPUT":INPUT XI 
40 PRINT "? DIVISOR OF TOT L TO BE INPUT":INPUT X2 
45 PRINT "? DIVISOR OF TOT L

1

 TO BE INPUT":INPUT X3 
50 PRINT "? FACTOR GENERATING [M] FROM TOT M":INPUT FM 
55 PRINT "•?. FACTOR GENERATING [L] FROM TOT L":INPUT FL 
60 PRINT "? FACTOR GENERATING [L

1

] FROM TOT L'":INPUT FZ 
65 PRINT "? # OF WAVELENGTHS"-.INPUT NW 
70 FOR 1=1 TO N1:PRINT "? TOT M";I:READ M(I):PRINT "? TOT L";I:READ L(I) 
75 PRINT "? TOT L

1

";I:READ CZ(I) 
80 FOR J=1 TO NW:PRINT "? ABSORBANCE FOR WAVELENGTH #";J:READ E(I,J):NEXT J 
85 M(I)=M(I)/X1:L(I)=L(I)/X2:CZ(I)=CZ(I)/X3:V2=E5 
90 NEXT I 
95 IF R%=0 THEN 105 
100 LPRINT " MEASURED DATA, CONCNS IN MMOL, AND ABSORBANCES":LPRINT 
105 PRINT " MEASURED DATA, CONCNS IN MMOL, AND ABSORBANCES":PRINT 
110 FOR 1=1 TO N1:PRINT USING "####.### ";I,M(I)*V2,L(I)*V2,CZ(I)*V2,E(I,1),E(I 
2),E(I,3),E(I,4):NEXT I:IF R%=0 THEN 120

 :

 ' 
115 FOR 1=1 TO N1:LPRINT USING "####.### ";I,M(I)*V2,L(I)*V2,CZ(I)*V2

)
E(I,1),E( 

,2),E(I,3),E(I,4):NEXT I 
120 FOR 1=1 TO N3:PRINT "? Q FOR CPX #*";I:INPUT Q1(I> 
125 PRINT "? P FOR CPX #";I:INPUT P1(I):PRINT "? P" FOR CPX #";I:INPUT R1(I) 
130 NEXT I 
135 FOR 1=1 TO N3-.PRINT "? LOG BETA OF CPX #";I:INPUT P(I): 

PRINT "? ITS INCREMENT":INPUT T(I):NEXT I 
140 I=N3+1:FOR J=1 TO NW:PRINT "WAVELENGTH #";J:FOR Jl=l TO N3 
145 PRINT "? MOLAR ABSORPTIVITY OF CPX #";J1:INPUT P(I): ; . 

PRINT "? ITS INCREMENT": INPUT T(I) :I=I+1 :NEXT J1 
150 PRINT "? MOLAR ABSORPTIVITY OF METAL": INPUT P(I): 

PRINT "? ITS INCREMENT":INPUT T(I):I=I+1 
155 PRINT "? MOLAR ABSORPTIVITY OF THE FIRST LIGAND" 
160 INPUT P(I)-.PRINT "? ITS INCREMENT"-.INPUT T(I):I=I+1 
165 PRINT "? MOLAR ABSORPTIVITY OF THE SECOND LIGAND":INPUT P(I) 
170 PRINT "? ITS INCREMENT":INPUT T(I):I=I+1:NEXT J 
175 PRINT "? SERIAL # OF THE FIRST EXPT. POINT TO BE EVALUATED":INPUT K 
180 PRINT "? SERIAL # OF THE LAST EXPT. POINT TO BE EVALUATED":INPUT V 
185 PRINT "? STEP BETWEEN THE EXPT. POINTS":INPUT N:T1=1:V2=1:MK=1 
260 REM 
265 PRINT "? TASK; OPTIONS: 0: REFINEMENT; 1: SEARCH WITH INPUT DATA; 

2: SEARCH WITH GENERATED DATA":INPUT F 
270 PRINT "? PRINT FORMAT; OPTIONS 0-6, SEE INSTRUCTIONS":INPUT R% 
275 PRINT "? # OF WAVELENGTHS TO BE INVOLVED INTO CALCULATIONS":INPUT NWF 
280 FOR LW=1 TO NWF.-PRINT "? SERIAL # OF WAVELENGTH #";LW;"INVOLVED INTO CALCULA 
TIONS":INPUT SW(LW):NEXT LW 
285 GOSUB 830:GOSUB 1280:U1=U:IF F=0 THEN 385 



290'REM'4** SEARCH PROCEDURE FOR PARAMETER VALUE *********************** 
295 PRINT' "? STARTING VALUE OR FACTOR OF PARAMETER TO BE SEARCHED FOR":INPUT T3 
300 PRINT'"? STEP VALUE OR FACTOR OF PARAMETER TO BE SEARCHED FOR":INPUT T4 
.305 PRINT."? UPPER LIMIT OR FACTOR OF PARAMETER TO BE SEARCHED FOR":INPUT T5 
310 PRINT "? SERIAL # OF PARAM. TO BE SEARCHED FOR":INPUT T6 
315 PRINT "? PRINT FORMAT, OPTIONS 0-6, SEE INSTRUCTIONS":INPUT R% 
320 PRINT "? # OF STEPS AFTER U-MINIMUM":INPUT T7 
325 PRINT "? WHERE TO GO AFTER EXECUTION THIS TASK; OPTIONS 1-6, SEE INSTRUCTION 
S":INPUT VI 
330 IF F=1 THEN 340 
335 T3=P(T6)*T3:T4=P(T6)*T4:T5=P(TG)*T5 
340 P(T6)=T3:V2=T6:GOSUB 830:GOSUB 1280:T8=H:T9=P(T6):GOTO 360 
345 V2=T6:GOSUB 830:G0SUB 1280:IF H>T8 THEN 355 
350 T8=H:T9=P(T6):GOTO 360 
355 T7=T7-1:IF T7=0 THEN 365 
360 P(T6)=P(T6)+T4:IF P(T6)<=T5 THEN 345 
365 P(T6)=T9:PRINT USING "THE OPTIMUM VALUE OF PARAMETER : -########.######";T9 
370 PRINT USING "THE SERIAL NUMBER OF PARAMETER : ###";T6:V2=T6 
375 ON VI GOTO 20,120,175,265,385:END:REM ****************************** 
380 REM *** REFINEMENT PROCEDURE FOR PARAMETER VALUES ****************** 
385 PRINT REFINEMENT FOLLOWS !***" 
390 PRINT "? # OF PARAMETERS TO BE REFINED": INPUT F1:F2=1 . 
395 PRINT "? WHERE TO GO AFTER EXECUTION THIS TASK; OPTIONS 1-6, SEE INSTRUCTION 
S":INPUT VI 
400 PRINT "PRINT FORMAT; OPTIONS 0-6, SEE INSTRUCTIONS":INPUT R% 
405 FOR 3=1 TO Fl: C(F1,F1)=0:C5(F1,F1)=0:NEXT 3 
410 FOR 3=1 TO Fl: PRINT "? SERIAL # OF PARAMETER #";3;"T0 BE REFINED":INPUT Sl(3 
):NEXT 3 
415 REM ERROR VECTOR, D *** 
420;KW=O:FOR NN=1 TO NWF:LW=SW(NN)-.FOR I=K TO V STEP N:KW=KW+1:D(KW)=E(I,LW)-E1( 
I,LW):F(KW)=E1(I,LW):NEXT I:NEXT NN 
425 REM *** G MATRIX *** 
430 FOR K-l=l TO Fl:3=S1(K1):P(3)=P(3)+T(3):T6=J:V2=3:GOSUB 830:KW=O:F0R NN=1 TO 
NWF:LW=SW(NN) 
435 FOR I=K TO V STEP N:KW=KW+1:G(K1,KW)=(E1(I,LW)-F(KW))/T(3):NEXT I:NEXT NN 
440 P(3)=P(J)-T(3):V2=l:NEXT K1 
445 REM *** С MATRIX *** 
450 FOR Kl=l TO Fl:FOR K2=l TO Fl:C(K1,K2)=0:F0R 1=1 TO KW 
455•C(K1,K2)=C(K1,K2)+G(K1,I)*G(K2,I): NEXT I 
460 C(K2,K1)=C(K1,K2):NEXT K2:NEXT K1 
465 REM *** INVERSION OF MATRIX С INTO C5 *** 
470 FOR 1=1 TO Fl: FOR Kl=l TO F1:C5(I,K1)=0:C5(K1,I)=0:NEXT K1:C5(I,I)=1 
475 NEXT I:C5(Fl,Fl)=1: FOR Kl=l TO Fl:V3=C(K1,K1):FOR 1=1 TO Fl 
480 C(K1,I)=C(K1,I)/V3:C5(K1,I)=C5(K1,I)/V3:NEXT I:FOR L=1 TO Fl 
485 IF L-K1=0 THEN 500 
490 V3=C(L,K1):FOR 1=1 TO Fl 
495 C(L,I)=C(L,I)-V3*C(K1,I):C5(L

I
I)=C5(L,I)-V3*C5(K1,I):NEXT I 

500 NEXT L:NEXT K1 
505 REM *** MULTIPL. OF ERROR VECT. AND G-TRANSP. *** 
510 FOR 1=1 TO Fl:S=0:F0R 3=1 TO V STEP N:S=S+G(I,3)*D(3):NEXT 3:G1(I)=S:NEXT I 



515 REM *** CORRECTION VECTOR, G2 *** 
520 FOR 1=1 TO Fl:S=0:FOR J=1 TO F1 
525 S=S+C5(I,J)*G1(J):NEXT J:G2(I)=S:NEXT I:A6=1:I6=1 
530 FOR K1 = 1 TO Fl:J=S1(K1):IF J<=N3 THEN 550 
535 F3=P(J)+G2(K1) 
540 IF F3>0 THEN 550 
545 G2(K1)=-P(J) 
550 NEXT K1 
555 IF F2=0 THEN 570 
560 PRINT "U1=",U1 
565 K6%=R%:R%=0:16=0:K7=l:A6=.5:GOTO 575 
570 PRINT "REFINED PARAMETERS:":PRINT 
575 FOR Kl=l TO Fl:J=S1(K1):P(J)=P(J)+G2(K1)*A6:NEXT K1 
580 IF I6<1 THEN 610 
585 FOR Kl=l TO F1:J=S1(K1) 
590 IF J<=N3 THEN 605 
595 IF P(J)>0 THEN 605 
600 P(J)=0 
605 NEXT K1 
610 V2=S1(F1):GOSUB 830 
615 IF I6>0 THEN 680 
620 IF K7=0 THEN 635 
625 U2=U:PRINT "U2=",U2 
630 K7=0:G0T0 575 
635 U3=U:PRINT "U3=",U3:R%=K6%:U4=U1-2*U2+U3:IF U4>0 THEN 655 
640 A6=1:IF U3>U1 THEN 650 
645 A6=1:G0T0 660 
650 A6=0:PRINT "CONCAVE ALFA, IS MADE EQUAL WITH",A6:GOTO 665 
655 U4=(U1-U3)/(4*U4):A6=.5+U4 
660 PRINT "ALFA=",A6 
665 A6=l-A6:16=1:IF ABS(A6)<3 THEN 675 
670 A6=2 
675 A6=-A6:GOTO 570 
680 U1=U:F0R 1=1 TO F1:J=S1(I):U7=SQR(ABS(C5(I,I)))*H:ER(J)=U7:T(J)=U7/2 
685 NEXT I:GOSUB 1280 
690 PRINT "CORR. VECTOR:":FOR J=1 TO F1:PRINT USING" +##.##### ";G2(J),J:NEXT J 
695 ON VI GOTO 20,120,175,265,385:END:REM 
830 REM EQUSOLV 
835 FOR 1=1 TO N3:E2(I)=EXP(ZI*P(I)):NEXT I:IK=N3:F0R JJ=1 TO NW-.FOR 11=1 TO N3+ 
3:IK=IK+1:E3(JJ,II)=P(IK):NEXT II:NEXT JJ:U=0:S2=0:T0L=.002 
840 MK=MK-1:A=L(К)*FL:B=M(К)*FM:Z=CZ(К)*FZ 
845 FOR I=K TO V STEP N:IF V2>N3 GOTO 985

 4 

850 KK=0:MKK=0:IX=0:ITT=0:CA=L(I):CB=M(I) :CZ=CZ(I):AT=CA*TOL:BT=CB*TOL:ZT=CZ*TOL 
:TYA=AT/1000:TYB=BT/1000:TYZ=ZT/1ООО:ITER=0 
855 IF MK<0 THEN GOTO 870 
860 IF (MK >=0) AND (I=K) THEN GOTO 1000 
865 IF (MK>=0) AND (I>K) THEN GOTO 875 
870 A=A(I):B=B(I):Z=Z(I) 
875 MKK=MKK+1:IF MKK>30 THEN GOTO 1000 
880 NRM=1:GOSUB 1165 
885 YA=CASZ-CA:YB=CBSZ-CB:YZ=CZSZ-CZ:AYA=ABS(YA):AYB=ABS(YB):AYZ=ABS(YZ) 
890 IF (AYA>AT) THEN GOTO 905 
895 IF (AYB>BT) THEN GOTO 905 



900 IF AYZ<=ZT THEN GOTO 980 
905 IF AYACTYA THEN YA=0 
910 IF AYB<TYB THEN YB=0 
915 IF AYZ<TYZ THEN YZ=0 
920 AY=0-YA:BY=0-YB:ZY=0-YZ 
925 DET=DA*DB*DZ+DBA*DZB*DAZ+DZA*DAB*DBZ-DZA*DB*DAZ-DZB*DBZ*DA-DZ*DBA*DAB 
930 DTl=AY*DB*DZ+BY*DZB*DAZ+ZY*DAB

>

i'DBZ-ZY«
,

nB*DAZ-DZB'!
c

DBZ'
!t

AY-DZ*BY*DAn 
935 DT2=DA*BY*DZ+DBA*ZY*DAZ+DZA*AY*DBZ-DZA*BY*DAZ-ZY*DBZ*DA-DZ*DBA*AY 
940 DT3=DA*DB*ZY+DBA*DZB*AY+DZA*DAB*BY-DZA*DB*AY-DZB*BY*DA-ZY*DBA*DAB 
945 A=A+DT1/DET:IF A<0 THEN GOTO 1000 
950 IF A>CA THEN GOTO 1000 
955 B=B+DT2/DET:IF B<0 THEN GOTO 1000 
960 IF B>CB THEN GOTO 1000 
965 Z=Z+DT3/DET:IF Z<0 THEN GOTO 1000 
970 IF Z > CZ THEN GOTO 1000 
975 GOTO 875 
980 A(I)=A:B(I)=B:Z(I)=Z 
985 FOR NN=1 TO NWF:LW=SW(NN):El(I,LW)=B(I)*E3(LW,N3+l)+A(I)*E3(LW,N3+2)+Z(I)*E3 
(LW.N3+3) 
990 FOR LC=1 TO N3:E1(I,LW)=E1(I,LW)+C1(I,LC)*E3(LW,LC):NEXT LC 
995 DE=E(I,LW)-El(I,LW):S2=S2+1:U=U+DE

A

 2:NEXT NN:GOTO 1155 
1000 AT=10*AT/(ITER+1):BT=10*BT/(ITER+1):ZT=10*ZT/(ITER+1):A=A(I):B=B(I):Z=Z(I) 
1005 IF ITER=1 THEN GOTO 1020 
1010 IF MK<0 THEN GOTO 1020 
1015 A=CA*FL:B=CB*FM:Z=CZ*FZ 
1020 ITER=ITER+1:DIA=A:DIB=B:DIZ=Z 
1025 GA=2:GB=2:GZ=2:NRM=0 
1030 GOSUB 1165 
1035 ITT=ITT+1:IF ITT>500 THEN GOTO 1150 
1040 DE=CA-CASZ:ADE=ABS(DE):IF ADE<=AT THEN GOTO 1070 
1045 IF DE<=0 THEN GOTO 1055 
1050 DIA=GA*DIA:A=A+DIA:GOTO 1060 
1055 GA=.5:DIA=GA*DIA:A=A-DIA 
1060 DLA=A/1000:IF DIA>DLA THEN GOTO 1030 
1065 GA=2:DIA=A:GOTO 1025 
1070 DE=CB-CBSZ:ADE=ABS(DE):IF ADE<=BT THEN GOTO 1100 
1075 IF DE<=0 THEN GOTO 1085 
1080 DIB=GB*DIB:B=B+DIB:GOTO 1090 
1085 GB=.5:DIB=GB*DIB:B=B-DIB 
1090 DLB=B/1000:IF DIB>DLB THEN GOTO 1025 
1095 GB=2:DIB=B:GOTO 1025 
1100 DE=CZ-CZSZ:ADE=ABS(DE):IF ADE<=ZT THEN GOTO 1140 
1105 IF DE<=0 THEN GOTO 1115 
1110 DIZ=GZ*DIZ:Z=Z+DIZ:GOTO 1125 
1115 GZ=.5:DIZ=GZ*DIZ:Z=Z-DIZ 
1120 IF Dli<0 THEN GOTO 1025 
1125 DLZ=Z/1000:IF DIZ>DLZ THEN GOTO 1025 
1130 GZ=2:DIZ=Z:GOTO 1030 
1135 GOTO 980 
1140 IF ITER=2 THEN GOTO 980 
1145 AT=ITER

!i!

AT/10:BT=ITER*BT/10:ZT=ITER*ZT/10:A(I)=A:B(I)=B:Z(I)=Z:ITT=0:MKK=0: 
GOTO 875 
1150 PRINT "UNSUCCESSFUL ITERATION!":GOTO 1140 
1155 NEXT I:RETURN 
1160 RETURN - • 



1165 REM CPXES FOR MIXED LIGAND CPXES ******#**********************#**** 
1170 CASZ=A:CBSZ=B:CZSZ=Z:IF NRM=0 THEN GOTO 1180 
1175 DA=1:DB=1:DZ=1:DAB=0:DAZ=0:DBZ=0 
1180 FOR L=1 TO N3:JP=P1(L):JQ=Q1(L):JZ=R1(L) 
1185 ,C1(I,L)=E2(L)*Z

A

JZ*B
A

JQ*A"JP:CPX=C1(I,L) 
1190 CASZ=CASZ+JP*CPX:CBSZ=CBSZ+JQ*CPX:CZSZ=CZSZ+JZ*CPX:IF NRM=0 GOTO 1205 
1195 DA=DA+(СРХ/A)*JP*JP:DB=DB+(CPX/B)*JQ*JQ:DZ=DZ+(CPX/Z)*JZ*JZ 
1200 DAB=DAB+JP*JQ*CPX:DBZ=DBZ+JQ*JS*CPX:DAZ=DAZ+JP*JS*CPX:NEXT L 
1205 IF NRM=0 THEN GOTO 1215 
1210 DBA=DAB/A:DAB=DAB/B:DZB=DBZ/B:DBZ=DBZ/Z:DZA=DAZ/A:DAZ=DAZ/Z 
1215 RETURN 
1280 REM PRINT 
1290 IF R%=0 THEN GOTO 1680 
1300 IF F>0 THEN PRINT "VALUE OF PARAM. SEARCHED FOR: ";P(T6) 
1310 IF F>0 AND R%>=2 THEN LPRINT "VALUE OF PARAM. SEARCHED FOR: ";P(T6) 
1320 IF F>0 THEN GOTO 1430 
1330 IF R%>2 THEN GOTO 1380 
1340 IF F1>0 THEN PRINT "REFINED PARAMETERS AND THEIR ERRORS:" 
1350 FOR 1=1 TO Fl:J=S1(I):PRINT J,P(J),ER(J):NEXT I:IF R%=1 THEN GOTO 1430 
1360 IF Fl >0 THEN LPRINT "REFINED PARAMETERS AND THEIR ERRORS:":LPRINT 
1370 FOR 1=1 TO F1:J=S1 (I)-.LPRINT J,P(J),ER(J)-.NEXT I-.GOTO 1430 
1380 PRINT "PARAMETERS AND THEIR ERRORS:" 
1390 FOR 1=1 TO N2:PRINT USING " ####.#### ";I,P(I),ER(I):NEXT I 
1400 IF R%=3 OR R%=5 THEN GOTO 1430 
1410 LPRINT" ":LPRINT "PARAMETERS AND THEIR ERRORS:" 
1420 FOR 1=1 TO N2:LPRINT USING " ####.#### ";I,P(I),ER(I):NEXT I 
1430 PRINT USING"SQUARE OF RESIDUALS: .###### ";U 
1440 IF R%=2 OR R%=4 THEN LPRINT USING"SQUARE OF RESIDUALS: .###### ";U 
1450 IF R%=6 THEN LPRINT USING"SQUARE OF RESIDUALS: .###### ";U 
1460 H=SQR(U/(S2-F1-1)):PRINT USING"STANDARD DEVIATION: .###### ";H:PRINT 
1470 IF R%=2 OR R%=4 THEN LPRINT " ":LPRINT USING"STANDARD DEVIATION: .###### 
";H:LPRINT 
1480 IF R%=6 THEN LPRINT :LPRINT USING"STANDARD DEVIATION: .###### ";H:LPRINT 
1490 IF R%<5 THEN GOTO 1680 
1500 FOR JJ=1 TO NWF:J=SW(JJ):PRINT " WAVELENGTH # ",J:PRINT:FOR I=K TO V STEP N 
:PRINT USING " +##.### ";E(I,J),E1(I,J),E(I,J)-E1(I,J),I:NEXT I:NEXT JJ 
1510 IF R%=5 THEN GOTO 1540 
1520 FOR JJ=1 TO NWF:J=SW(JJ):LPRINT " WAVELENGTH # ", J: LPRINT: FOR I=K TO V STEP 
N:LPRINT USING " +##.### ";E(I,J),E1(I,J),E(I,J)-E1(I,J),I:NEXT I:NEXT JJ 
1530 ON N4% GOTO 1540,1590,1640 
1540 PRINT "PERCENTAGE DISTRIBUTION OF TOT M IN CPXES AND FREE M" 
1550 IF R%=6 THEN LPRINT "PERCENTAGE DISTRIBUTION OF TOT M IN CPXES AND FREE M" 
1560 FOR I=K TO V STEP N:PRINT USING " ###.## ";C1(I,1)*100/M(I),C1(I,2)*100/M 
(I),C1(I,3)*100/M(I),B(I)*100/M(I),I:NEXT I 
1570 IF R%=5 THEN GOTO 1680 
1580 FOR I=K TO V STEP N:LPRINT USING " ###.## ";C1(I,1)*100/M(I),C1(I,2)*100/ 
M(I),C1(I,3)*100/M(I),B(I)*100/M(I),I:NEXT I:GOTO 1680 
1590 PRINT "PERCENTAGE DISTRIBUTION OF TOT L IN CPXES" 
1600 IF R%=6 THEN LPRINT "PERCENTAGE DISTRIBUTION OF TOT L IN CPXES" 
1610 FOR I=K TO V STEP N:PRINT USING " ###.## ";C1(I,1)*100/L(I),C1(I,2)*100/L 
(I),A(I)*100/L(I),I:NEXT I 



1620 IF R%=5 THEN GOTO 1680 
1630 FOR I=K TO V STEP NiLPRINT USING " ###.## ";C1(I,1)*100/L(I),C1(I,2)*100/ 
L(I),A(I)*100/L(I),I:NEXT I:GOTO 1680 
1640 PRINT "PERCENTAGE DISTRIBUTION OF TOT I,' TN CPXF.S" 
1650 IK R%=6 THEN PRINT "PERCENTAGE DISTRIBUTION OF TOT L' IN CPXliS" 
1660 FOR I=K TO V STEP N:PRINT USING " ###.## ";C1(I,1)*100/CZ(I),C1(I,2)*100/ 
CZ(I),Z(I)*100/CZ(I),I:NEXT I:IF R%=5 THEN GOTO 1680 
1670 FOR I=K TO V STEP N:LPRINT USING " ###.## ";C1(I,1)*100/CZ(I),C1(I,2)*100 
/CZ(I),Z(I)*100/CZ(I),I:NEXT I 
1680 RETURN 
3000 REM DATA FOR MINIMIX-MW4 
3010 REM DATA 24, 22, 2, 1 * 1, 1000,1000,1000, .9,. 9,.9, 4 
3020 DATA 53.095, 95.115 9 1404 .88, .261 .214, .160, .148 
3030 DATA 53.095, 190.23, 13.09 .77, .289 .237, .195, .162 
3040 DATA 53.095, 285.34, 1214 .66, .292 .252, .210, .171 
3050 DATA 53.095, 380.46, 1119 .54, .305 .265, .211, .179 
3060 DATA 53.095, 475.56, 1024 • 44, .318 .281, .234, .190 
3070 DATA 53.095, 570.69, 923 .31, .329 .295, .259, .201 
3080 DATA 53.095, 665.8, 834 .20, .337 .304, .253, .205 
3090 DATA 53.095, 760.93, 739 .07, .335 .309, .260, .211 
3100 DATA 53.095, 856.03, 643 .97, .350 .321, .269, .220 
3110 DATA 53.095, 951.16, 548 .84, .355 .331, .281, .229 
3120 DATA 53.095, 1046.30, 453 .70, .358 .335, .282, .230 
3130 DATA 53.095, 1141.40, 558 .60, .361 .338, .285, .232 
3140 DATA 109.48, 95.115 9 1404 .88, .523 .370, .305, .255 
3150 DATA 109.48, 190.23, 1309 .77, .557 .441, .354, .284 
3160 DATA 109.38, 285.34, 1214 .66, .582 .485, .384, .307 
3170 DATA 109.38, 380.46, 1119 .54, .604 .521, .420, .335 
3180 DATA 109.38, 475.56, 1024 .44, .620 .547, .440, .346 
3190 DATA 105.57, 643, 923 .31, .625 .561, .454, .363 
3200 DATA 109.48, 665.8, 834 .20, .667 .593, .484, .384 
3210 DATA 109.48, 760.93, 739 .07, .675 .617, .509, .409 
3220 DATA 109.48, 856.03, 857 .00, .687 .631, .520, .415 
3230 DATA 109.48, 951.16, 548 .84, .695 .641, .525, .424 
3240 DATA 109.48, 1046.30, 453 .70, .711 .659, .552, .441 
3250 DATA 109.48, 1141.40, 358 .60, .719 .671, .564, .454 
3260 REM DATA -1>1 ,0, 1,0,1 9 .17, .12, -1-3, .2 -
3270 REM DATA 5, .25, 5, . 25 , 5, .25, 0, .1 0, .1 
3280 REM DATA 5, .25, 5, . 25 , 5, .25, 0, .1 0, .1 
3290 REM DATA 5, .25, 5, . 25 , 5, .25, 0, .1 0, .1 
3300 REM DATA 5, .25, 5, . 25 , 5, .25, 0, .1 0, .1 
3310 REM DATA 1, 24, 1 
3320 REM DATA 1,1, 1,1, 0,2,20, 3,2,2,4 
3330 REM DATA 2,1, 1,1, .9, .01, 1.2, 3,2,2,4 
3340 REM DATA 0,1, 1,1, 3,5,2, 3,4,5, 3,4,2, 3,4,5 
3350 REM DATA 0,1, 1,2, 3,5,2, 8,9,10, 3,4,2, 8,9,10 
3360 REM DATA 0,1, 1,3, 3,5,2, 13,14,15, 3,4,2, 13,14,15 
3370 DATA 0,1, 1,4, 3,5,2, 18,19,20, 3,4,2, 18,19,20 
3380 DATA 1,4, 4, 1,2,3,4, -1.00, 1, -0.99, 2,1,1,4 
3390 DATA 0,1, 1,1, 3,5,2, 3,4,5, 3,4,2, 3,4,5 
3400 DATA 0,1, 1,2, 3,5,2, 8,9,10, 3,4,2, 8,9,10 
3410 DATA 0,1, 1,3, 3,5,2, 13,14,15, 3,4,2, 13,14,15 
3420 DATA 0,1, 1,4, 3,5,2, 18,19,20, 3,4,2, 18,19,20 
3430 DATA 0,4, 4, 1,2,3,4, 2,6,6, 1,2 
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THE IMPORTANCE OF CONSIDERING RELATIVISTIC EFFECTS, BEING IN CLOSE CONNECTIONS 
WITH THE ELECTRON SPIN, IN UNDERSTANDING OF BONDING PROPERTIES IN MOLECULES IS 
EMPHASIZED, ILLUSTRATED BY CHEMICAL EXAMPLES AND SHOWN HOW THESE EFFECTS CAN BE 
TREATED QUALITATIVELY BY GROUP THEORETICAL TOOLS, ESPECIALLY THOSE CALLED 
DOUBLE GROUPS. 

The theory of relativity is essential to our understanding of bonding in molecules. 

Electron spin is a relativistic phenomenon and is relevant to the simplest system. 

Elementary lectures refer to the fact, sooner or later, we must use the quantum 

number j (=l+s) rather than I and s sepaxately. We are aware that the (relativistic) 

phenomenon of spin—orbit coupling exists and that the use of j is linked to the 

importance of spin-orbit coupling. Yet it is usual, to assume that all this can be 

forgotten even when discussing the bonding in compounds of the heavier elements. Of 

course, relativity is a "difficult" topic but this does not make its neglect a valid 

approximation. Indeed, it does not take much of a literature survey to point out 

theneed to take relativistic phenomena on board. For instance, down the series Co, 

Rhand Ir the spin—orbit coupling constants for the 4+ ions (ions for which data are 

* Permanent address: School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, 
ENGLAND, U.K. 
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available for all three elements) are 650, 1570 and 5000 cm"' respectively — an order 

of-Hiiagnitude change, moving from an energy typical of a vibration to one typical of a 

low—energy electronic excitation. Perhaps more obvious is a comparison of the relative 

energies of the Pb—Pb single bond (l.OeV) and the corresponding spin—orbit coupling 

energy —1.32eV. How can one hope to correctly describe the Pb—Pb bond unless the 

importance of spin—orbit coupling is considered, even if it is subsequently dismissed? 

Similarly, a recent approximate study of the bonding in an equilateral triangular array 

of Pt atoms concluded that the bonding energy is 7.12 k'J.mol"1 on a non—relativistic 

basis but is 36.43 kj.mol"1 on a relativistic basis [1]. Therefore, we must surely 

conclude that we must make a serious attempt to include relativistic phenomena in 

our qualitative description of heavy—metal clusters. Of course, relativistic calculations 

are much more difficult to do than non—relativistic ones and, in particular, it becomes 

much more difficult to include the effects of electron—electron repulsion. So, detailed 

calculations are limited to simple systems but still we can learn a great deal from 

them. So, as one relevant example, it seems cleax that although Ag—H and Au—H are 

very similar at the non—relativistic level, they become very different when relativistic 

effects are included (see the energy level diagram in Fig. l ) . This not only accounts for 

the different colours of silver and gold (a transition in metallic silver moves to much 

lower energy in gold) but, almost certainly, for the very different chemistries of the 

two elements. Further manifes— tations of relativistic phenomena are the low melting 

point of mercury, the inert pair effect (both manifestations is from the fact that a pair 

of s electrons have become a bit similar to those in He) and a contribution to the 

lanthanide contraction. 

Relativistic atomic orbitals differ in one major way from their non—relativistic 
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counterparts. They are a superposition of four "bits". Each "b i t " is quite like one of 

the familiar atomic orbitals but the fact the orbitals are superpositions means that the 
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Figure 1: Energy level diagrams of AgH and AuH 

nodal pattern inherent; in one "b i t " will not normally coincide with those of the other 

"bits". So, overall, there are no nodes. All of this makes it difficult to draw relati-

vists orbitals and they tend to be pictured as electron densities. Even this is not 

really satisfactory because relativistic orbitals have intrinsic angular momentum which 

cannot be "cancelled—out" (such cancelling—out is the way that the standing waves p^ 

and p^ are obtained from the angular momentum containing functions Pj and p_ j ) . 

The result is that the subject is -made yet more difficult by half—true statements, 
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intended to help saying: "both the functions s ^ a n £ l P j a r e spherically symmetr i -

cal" or " P j ^ c o n s i s t s of a f bonding component and a r antibonding component". 

Although a proper description of bonding in heavy—element compounds must surely 

use such orbitals there is a half—way house. This is to use functions appropriate to j*, 

to use spin—orbit functions. Again, however, these functions are shrouded in mystery 

and no—one seems to attempt to draw them. Yet the group—theory associated with 

them is well—developed — it is the theory of the so—called "double groups". These are 

usually introduced as a mathematical trick but, in fact, a reality can be attached to 

them.In Pig. 2 is given the character table of the C ^ double group, usually denoted 

C*v , together with the nodal patterns associated with each of its irreducible repre -

sentations. 

Ej. 2 -2 0 0 0 
2 

Figure 2. Character table and nodal patterns of the C* (double) group 
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It will be noticed that it is possible to give standing—wave pictures of the (two) spin 

= ± 1 /2 functions (these are the components of the E^^ basis). 

As an example I now give a double—group description of the metal—metal bonding 

in the Pt3(CO)6 cluster. It will help to take a result from the reference cited earlier, 

that in a Pt3 cluster there is a "hole" of 0.768 electrons in the d—shell [1]. This hole 

is a result of an enhanced occupation of the 6s—shell (relativistic effects lower the 

energies of s—electrons, a phenomenon which is manifest in mercury being a liquid and 

in the inert-pair effect). For the moment, for simplicity, we take the d-electron hole 

as unity. Regarding the Pt as square—planar (three CO groups and the Pt2 unit f o r -

ming the square plane) then simple crystal field theory places the hole in the dX2-y2 

orbital. The electron is therefore in an E^^ orbital of the C^v group, that shown 

earlier. Now, because electrons in P t - C O bonding orbitals spend part of their time on 

the CO ligands, where relativistic effects are small, the consequences of relativistic 

effects will be most important for the Pt—Pt bonding. The symmetry of the Pt3(CO)« 

unit is D ^ and so we work in the D*^ (double) group. It is a simple matter to show 

that the E ^ 2 functions of CJ^ form a basis for the E^^ + E , ^ + Egy2 irreducible 

representations of D*^. We do not know the relative ordering of these levels; it 

depends on the relative importance of spin—orbit coupling and bonding (although, in 

the event, our conclusions will depend only on the relative position of E ^ and this 

probably does not depend on the winner ). Let us take bonding to be the winner, so 

that the (node—dependent) energy sequence is that given above. If the first two spin— 

—orbitals are filled then the d—orbital hole is 0.667 electrons, not too far from the 

result of calculations [1] on Ptj . A double—group picture of the E ^ ^ functions is given 

in Fig. 3. To get the electron density associated with these functions we simply have 

to square them, whereupon the phase pattern which forced the use of a rotation of 
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720° as the identity changes to one compatible with the real—world identification of 

360° as identity. Occupancy of E.y2 as the HOMO corresponds to bumps of high 

electron density by every 60°, so that we would expect that if two Pt3(CO)o units 

stack together, free from crystal environment constraints, that they would be rotated 

30° relative to each other. 

540 

540 

Figure Double—group picture of the E ^ functions 

It is therefore interesting to note [2] that the central Pt 3 (CO)s unit in [ P t 3 ( C O ) 6 ] F is 

rotated relative to the adjacent units by 27.2° and 28.6°. Of course, this argument 

requires that the Pt—Pt bonding between adjacent layers is rather insensitive to the 

angle of rotation between them. The variability of this angle offers some evidence in 

support of such a speculation, as does the generally lower geometry-sensitivity of 
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relativistic orbitals: "Pjy2 ' s spherically symmetrical". 
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THE CONDENSATIONS OF ALLYL ALCOHOL AND ALLYL ACETATE WITH CH2O WERE STUDIED. THE 
MAIN REACTION PRODUCTS DEPARTED FROM THE USUAL MAIN PRODUCTS OF PRINS REACTIONS. 

Introduction 

The condensations of allyl alcohol and allyl acetate with formaldehyde in the 

presence of an acid catalyst were studied.1 The main reaction products were found to 

be linear formals of allyl alcohol, trans—1,4—diacetoxybutene—2 from allyl acetate and, 

as a result of secondary reactions, 1,2,4—triacetoxy—3—acetoxymethylbutane. The 

addition products of formaldehyde to the double bonds of allyl alcohol were formed in 

negligible amounts. Attention was paid to the effects of the reaction conditions 

(temperature, catalyst concentration, reagent ratio, reaction time) on the yield and 

product distribution in the reaction of allyl acetate with CH2O. 

Experimental 

GLC analysis was performed on an LHM—8MD instrument fitted with a 2m-3mm 

column of 5% SE—301 on Chromatone N—AW—HMDS and with a flame ionization 

detector. The column temperature was 373,K or was programmed in the interval 
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323-423 K, with helium as carrier gas (30 ml/rnin). *H—NMR spectra were 

measured in CCI4 with a Tesla—BS—487 C spectrometer, and are reported in ppm (8) 

relative to internal HMDS. IR spectra were run on a Microlab—620MH spectrometer in 

neat film. GC/MS spectra were recorded on a Finnigan—4021 instrument (EI 68— 

—70 eV) with a 50 m x 0.32 mm glass capillary column coated with SE—54SIL, 

temperature—programmed from 50 K to 493 K with helium as carrier gas. 

Reaction of allvl alcohol (I) and formalin: A mixture of 238 ml (3.4 mole) I, 290 ml 

(3.5 mole) 30 % formalin and 8.4 ml cc. H2SO4 was heated and stirred at 358—360 K 

for 2.5 hours. After cooling, the acid was neutralized, the unreacted formaldehyde was 

bound with gaseous ammonia, and the mixture was extracted with 3x100 ml ether. 

The organic layer was dried, the solvent was distilled off, and the residue was 

fractionated on a 15 cm column, to yield 35 g III and 176 g II. The formaldehyde 

conversion, determined by the sulphite method, was 88—89 %. 

Synthesis of IV: A mixture of 46.9 g (1.56 mole) paraformaldehyde, 82 ml water, 13.9 

ml cc. H2SO4, 144 ml (1.56 mole) butanol—1 and 88.5 g (1.3 mole) I was stirred at 

353 K for 9 hours. After the standard working—up, the residue was fractionated, to 

yield 89 g IV and 37 g dibutylformal. 

Reaction of I and formalin in the presence of HOAc: A mixture of 191 ml (1.91 mole) 

30 % formalin, 65 ml (0.95 mole) I, 109 ml HOAc and 10.2 ml cc. H 2 S0 4 was stirred 

at 348 K for 4 hours. After cooling, neutralizing and working—up the residue was d i s -

tilled and separated to yield 62.5 g VIII. This compound was termally unstable above 

413 K. 

Reaction of I and paraformaldehyde in the presence of AlCla: T o a mixture of 63 ml 

CHCI3, 10.5 g AICI3 and 11.8 g (0.39 mole) paraformaldehyde at 273 K 27 ml (0.39 

mole) I was added in small portions and the mixture was then stirred at 353 K for 

3.5 hours. After the working—up and distilling—off of unreacted I, the residue was 
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fractionated leading to separation of a fraction with b.p. 343—393 K/3,99 kPa (mainly 

II) and another one with b.p. 398—423 K/0,799 kPa (a mixture of compounds resul-

ting from the addition of HC1 to II). 

Reaction of I and paraformaldehyde in the presence of HC1: A mixture of 53.6 g (1.79 

mole) paraformaldehyde, 101 ml (1.49 mole) I, 94 ml water and 126 ml cc. HC1 was 

stirred at 343 K for 2 hours. After the working—up and the distilling—off unreacted I 

(32 g), the residue was fractionated. TLC analysis (on alumina, benzene—EtOH = 

=10:1, R p = 0.28) and the 'H—NMR spectrum indicated, that the first fraction (8.6 

g) was IX, while the second fraction (16 g, b.p. 429-473 K/1,86 kPa) was a mixture 

(3:1) of IX and an unknown compound ( R p = 0.63). The total yield of IX was 27 %; 

the conversion of I was 63 %. 

Reaction of I and paraformaldehyde in HOAc: A mixture of 70 g (2.34 mole) 

paraformaldehyde, 159 ml (2.34 mole) I, 134 ml HOAc and 12.4 ml cc. H2SO4 was 

stirred at 353 K for 6.5 hours. After the working—up and the distilling—off the light 

fractions (unreacted I, formals II and VIII and allyl acetate), the residue was f r a c -

tionated. The'main fraction (34 g), with b.p. 371—463 K/1,73 kPa was separated by 

column chromatography (on silicagel, benzene—EtOH = 10:1) into two fractions. The 
20 

first fraction ( R p = 0.48, n ^ = 1.4516, 5.4 g) was identified as a mixture (5:1) of 

dioxacyclanes X and XI; the second fraction ( R p = 0.53) was XII. 

Reaction of X f l l and paraformaldehyde in HOAc: To a mixture of 27 g (0.9 mole) 

paraformaldehyde, 128 ml HOAc and 16 ml cc. H2SO4, 160 ml (1.5 mole) XIII was 

added dropwise and the mixture was then stirred at 363 K for: 3.5 hours. After 

working—up, the residue was fractionated. In the first fraction (b.p. 346—383 K/3,99 

kPa, after redistillation, XVI and 1,2—diacetoxypropane were identified. The second 

fraction was XVII. 
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Examination of product distribntion (Table III): A sealed ampoule, containing the 

calculated reagent quantities, was placed into a thermostated bath supplied with a 

shaker. After the given reaction time, the ampoule was cooled, the mixture was 

neutralized by Na2C0a and the contents were monitored with GC by the internal 

standard method. 

Discussion 

It is known [1,2] that unsaturated alcohols react with formaldehyde to produce 

compounds with tetrahydrofuran and tetrahydropyran skeletons. Ally 1 alcohol (I) 

reacts another way, although there are two directions to produce tetrahydrofurans 

(Scheme 1). 

A more detailed investigation of the reaction showed that the condensation of I 

and formalin (stabilized by 10—15% MeOH) in the presence of H2SO4 produces mainly 

(stabilized by 10—15 % MeOH) in the presence of H2SO4 produces mainly diallylformal 

II (yield about 40 %) and allylmethylformal III (about 20 %). GC/MS analysis of the 

reaction mixture showed the presence of 

CH2=CHCH 2 (0CH2)40CH 2 CH=CH2 and CH2=CHCH2 (0CH2 )40CH3 in traces. 

Moreover, the GC/MS data demonstrating the presence of V, VI and VII in small 

quantities in the product mixture support the reality of the reaction pathway shown 

in Scheme 1. When MeOH was replaced by the more nucleophilic butanol—1, identified 

products in the reaction mixture included allylbutylformal IV (yield about 50 %) and 

dibutylformal (about 15 %). Thus the hydroxyl group of I reacts mainly with 

formaldehyde in aqueous medium, and the structure and ratio of the linear formals 

formed are determined by the nucleophilicity of the alcohol present. 
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CHA = CH - CH2OH + CH20 /H2O/H"1 

I 

CH2 = CH(CH20)2H 
[ H + / - H 2 0 

CH2 = CHCH2OCH2] 

j R - O H / - H + 

CH2 = CH(CH20)2 R 

CH2OH H 2O/_H+ 
HO(CH2}2 CH(OH)' HO(CH2)2CHCH2OH 

JOK 0 
I H + / - H 2 0 

V I I 
J H 2 0 / - H + 

0 * 

+ 
i H C 

| i/ -H H 

HO(CH2)2CHOCH2CH=CH2 

AH 2 OH 
V 

} H + / - H 2 0 
^OCH2CH = CH2 

Q VI 

II : R = CH2 = CHCH2 
III: R = CH3 
IV : R = (CH2)3CH3 

Scheme I 



Table I 

Physical and analytical data oí the compounds 

Boiling point Caled. % Pound % 

Compounds K / k P a n 2 0 
D Formula C ; H C H 

II 415-429/101,3 1.4266 C7H12O2 65.61 9.44 66.01 9.12 
III 377-382/101,3 1.4066 C5H10O2 58.80 9.87 60.09 9.76 
IV 323-328/1,19 1.4161 C8H16O2 66.63 11.18 67.06 10.86 
VIII 384-486/101,3 . 1.4138 C7H12O4 — — — — 

IX — — C11H21CIO4 52.28 8.38 51.66 8.59 
X + XI — 1.4516 C7H12O4 52.49 7.55 53.01 7.18 
V o • 
XII 1.4642 C8H14O3 60.74 8.92 61.02 8.49 
XVI 328-333/0,13 1.4376 C8H12O4 60.02 7.56 59.91 8.17 
XVII 412-414/0,19 1.4425 C13H20O8 51.32 6.58 51.12 7.32 



Table II 

Spectral data of the compounds 

Compounds H - N M R ( ¿ , p p m ) MS ( m / 2 ) 

II 

III 

IV 

VIII 

I X 

X I 

X I I 

X V I 

xvn 

3.9 m (4H, CH2CH); 4.5 m ( 2 H, OCHz) ; 
4 . 9 - 5 . 3 m (4H, C H = C H 2 ) ; 5.8 m (2H, C H = C H 2 ) 
as above and 3.2s (3H, OCH3) 

0.9t (3II ,CH 3 ) , 1.4 m (4H, CH.2CH.2; 
3.4 m (2H, C H 2 0 ) ; 3.9 m (2H, CHCH2O) ; 
4.5 q (2H, O C H 2 O ) ; 5.1 m (2H, C H 2 = C H ) ; 
5.7 m (1H, C H 2 = C H ) 
1.5 s (3H, C H 3 ) ; 3.5 m (2H, C & O ) 
4.2 m (4H, O C H 2 O ) ; 4.6 m (2H, C H 2 = C H ) ; 
5.3 m (1H, C H 2 = C H ) 
1 . 3 - 2 . 0 m (7H, CH 3 ) C H j ) ; 3.2 s (1H, O H ) ; 
3 . 3 - 4 . 1 m (8H, CHC1, CHbO, C H O H , C H C H 2 O ) ; 
4.6 m (2H, O C H 2 O ) ; 5.0 m (2H, C H 2 C H ) ; 
5.8 m (1H, C H 2 C H ) 
1 . 4 - 2 . 0 m (2H.CH2); 2.0 s (3H, CH 3 ) ; 

3 . 4 - 3 . 9 m ( 5 H , C H A C H O ) ; 4.7 q ( 2 H , O C H 2 O ) 

as above 

1 .4 -1 .9 m (2H, CH2) ; 3 . (M.0C7H,CH2O, C H O ) ; 
4.7 q (2H, O C H A ^ 5.1 m (2H, CHJ, C H ) ; 
5.7 m (1H, C H 2 C H ) 
2.0 s (6H, C O O C H 3 ) ; 3.8 m (4H, C H î O ) ; 
5.2 m (2H, CHCH5 
2.0 s (12H, C O O C H 3 ) ; 1 . 9 - 2 . 0 m (1H, C H ) ; 
4.0 m ( 6 H , C H 2 O ) ; 5.1 m (1H, C H O ) 

M - H + (0 .07) (100) . 
M + (0 .01 ) , M—H+(0.35), 
57(100) 

M - H + ( 0 . 4 ) , 100(17.2), . 
87(55.5), 
73(5.3), 72(7.0), 57(16.6), 
45(24.4) , 43(100) , 42(13.5), 
45(6.1) 
M—H+(1.4), 87(4.7) , 73(23.8), 
71(10.1), 70(59.7), 54(7.6) , 
45(16.3) , 44(51.1), 43(100), 
42(14.4) , 41(6.6) 

70(39.1), 43(100) 

159(8.1), 117(13.7), 99(11.7) , 
70(11.4) , 43(100) 



Table III 

The dependence of the product distribution on the conditions in the reaction 

: of allylacetate (XIII) and formaldehyde3. 

Reaction Yield ( % ) 

No Temp.(K) Time (h) H2SO<b [Xni ] : [CH 2 0] XIV X V X V I 

1. 323 0.5 0.5 : 1 4 16.5 16.9 36.3 
2. 323 0.5 10.0 : 1 4 1.2 — 4.9 
3. 323 0.5 10.0 4 1 1.1 — 2.1 
4. 323 3.5 : 0.5 . 4 1 1.6 14.2 27.9 
5. 323 3.5 10.0 1 4 — 3.7 
6. 323 3.5 10.0 4 1 0.6 3.2 6.8 
7. 363 0.5 0.5 ; : 1 4 25.1 7.6 — 

8. 363 0.5 10.0 ; 1 4 0.3 2.9 8.9 
9. 363 3.5 0.5 •1 4 2.4 34.0 38.0 

10. 363 3.5 10.0 1 4 — 4.6 2.0 
11. 363 13.5 10.0 4 1 2.8 — 

12. 343 2.0 5.3 1 1 — 5.2 8.7 
13. 343 2.5 5.8 1 2 1.2 8.4 12.0 
14. 343 3.0 6.3 1 3 10.2 22.8 38.1 
15. 343 3.5 6.8 i l 4 25.8 43.0 26.9 
16. 343 3.5 7.3 1 4 14.8 37.1 20.4 
17. 343 3.5 7.8 1 4 4.7 10.8 5.2 
18. 343 3.5 8.3 1 4 11.0 18.8 13.2 

a [HO Ac] : [CH 2 0] = 2 : 1 
b Mass % to HOAc 



PR1NS REACTIONS OF ALLYL ALCOHOL AND ALLYL ACETATE 

The reaction of I and formaldehyde in aqueous HOAc results in the formation of 

VIII: 

I + C H 2 0 + HOAc CH2 = CHCH2(OHCH2)2 OAc 
2 vm 

The condensation in CHCI3 in the presence of AICI3 resulted in II, and the 

GC/MS spectra also revealed; a by-product (about 4 %) resulting from the addition of 

HC1 to II: 

I + ( C H 2 0 ) x H + CH2 = CH(CH20)2CH2CHC1CH3 

The reaction in HC1 solution resulted the formation of IX: 

I + CH 2 0 - i i II CH3CHC1CH2(0CH2)2CH = CH2 

H + I CH 2 0 

CH3CHClCH2(OCH2)2CHCH2CH2OH 

I I - H + 

CH3CHC1CH2(0CH2)2 CHOCH2CH = CH2 

I 
IX (CH2)2OH 

The main products of the condensation in anhydrous HOAc were the linear 

formals II and VIII, and allyl acetate. X, XI and XII were identified in negligible 

quantities. These are formed according to the following scheme ( R = H or Ac): 

It is known [3,4] that the main products of the reaction between allyl acetate 

(XIII) and formaldehyde in HOAc are 4-^acetoxymethyl—1,3-dioxane (X) , the 
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HOAc ) h * ' R-OCH2CH2ÔHCH2OR ^ g ^ Ç L R o ( C H a ) r - C H - CH 2OR 

ACH2 

C H 2 ° A C ^ " ( C H 2 ) 2 O A C 

O-—'0 + O 
U X XI 

+ „ + / V CH2OCH2CH = CH2 

X I I 
1 - H ? 0 ' ( C H 2 = C H C H 2 ) 2 0 C H , 0 ' ( J 

triacetate of 1,2,4—butanetriole (XIV) and 3—acetoxytetrahydrofuran (XV) . In the 

product of our experiments we identified large quantities of trans—1,4—diacetoxy— 

butene—2 (XVI) [1], 1,2,4—triacetoxy—3-acetoxymethylbutane (XVII ) and 1,2-diacet— 

oxybutane as an addition product of HOAc to the double bond of XIII (Scheme 2). It 

has been found [5] that, in the Prins reaction, the presence of an aqueous organic 

medium facilitates the formation of 1,3—diols and 1,3—dioxanes, where as anhydrous 

organic solvents, such as HOAc, facilitate the formation of unsaturated alcohols. In an 

attempt to increase the yield of XVI, we changed the reaction conditions (Table III), 

but failed to achieve a selective formation of XVI. This is clearly connected with the 

fact that the energy barrier of the réaction between allyl acetate and formaldehyde is 

higher that of a secondary Prins reaction between XVI and CH 2 0. It was earlier 

reported [6] that the presence of more strongly electrondonating substituents facilitates 

the reaction between a double bound and formaldehyde. 
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ACOCH 2 CH=CHCH 2 OAC 

X V I J C H 2 0 / H 0 A C / H + 

A C O C H 2 C H - C H C H 2 O A C 

ACA AH 2 OAC 

XVII 

X V 

Scheme II 
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THE VISIBLE SPECTRA OF ACETYL ACETON ATE COMPLEX OF V 0 2 + , V 0 ( A A ) 2 , WERE HEASURED IN 
THIRTY ORGANIC SOLVENTS. THE CORRELATIONS, BETWEEN THE SPECTRAL AND STRUCTURAL 
CHARACTERISTICS AND THE TAFT—KAMLET SOLVENT PARAMETERS, **, a AND /?, ARE DISCUSSED. 

Introduction 

The ion V 0 2 + with the electronic structure 3d1 forms coordination compounds 

with coordination numbers 5 and 6. The complex V O ( A A ) 2 ( A A : acetylacetonate) can 

be easily prepared [1]; the compound is monomeric in benzene solution1 [2a] and 

paramagnetic (16.044 10"24 A m 2 [3]), with a dipole moment 14.341 10"3° C m [4]. A 

strong a—bond forms between the (2p z + 2s) hybrid of the oxygen and the (3d z 2 + 

+ 4s) hybrid of the V 4 + , while the 2p x and 2py orbitals on the oxygen 7r—bond with 

the 3d x z , 3d y z orbitals on the metal ion, so that the high stability of V 0 2 + is obvious. 

The (3d 2 + 4s) hybrid and the orbitals 3d 2 _ 2 and 4p , 4p , 4p are capable of five z x y x y z 
<7—bonds [5] directed in a tetragonal pyramid (the overall molecular symmetry is C2v); 

* KAWATE et al. [2b] have demonstrated the formation of a dimer of VO(AA)^ in toluene—benzene 

solution at 77 K. 
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the V4* is located at the centre of gravity of the five oxygen atoms [6]. 

BALLHAUSEN and G R A Y [3] have pointed out that in vanadyl complexes the 

ground orbited, the b2 level, is an almost pure vanadium 3dXy orbital, and that in 

their spectra, as in that of V 0 ( A A ) 2 , three crystal field bands are obtained, due to 
* * * 

the transitions e^ <— b2 ( - 3 D s + 5Dt): i/|, bi <— b2 (lODq): and ai <— b2 

(lODq — 4Ds — 5Dt): v3. The sixth position, trans to the vanadyl oxygen, is open and 

may be coordinated by ligand or solvent molecules, producing a roughly octahedral 

structure. Thus, changes in the solvent may be expected to perturb the axially 

oriented MO's, which is manifested in the magnetic, optical and other behaviour [4,7]. 

We have examined the visible spectra of V O ( A A ) 2 in 30 pure solvents; the 

maximum data and the caculated parameters are listed in Table I. This permits a 

discussion of the correlations between the band position and the TAFT—KAMLET [8] 
* 

solvent parameters t , a and /?. 

Experimental 

The complexes were prepared according to a literature procedure [1]. The spectra 

were measured on a SPECORD M—40 instrument in spectroscopically pure solvents, in 

1.0 and 0.1 cm quartz cells. 

Conclusions 

From the data in Table I, the following conclusions can be drawn. 

1.) The frequency of u\ reflects the difference between the in—plane and axial 

ligand(solvent)—to—vanadium bonding. A strong axial perturbation reduces the V—0 
* 

interaction, thereby lowering the e^ level with respect to b2; v\ shifts to bathochro— 

micallly approximately 4000 cm'1 on change of the solvent from C12CCC12 to water. A 
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plot of i/\ vs. x* results in two separate linear correlations (Fig. 1A); for non-alcoholic 

solvents: 

i/i/cm-i = 18296 - 5422 j* (r = 0.982) 

The alcohols cause a smaller change in the band position: 

. i/i/cm-' = 14449 - 2431 jt* (r = 0.807) 

i/| is also linearly correlated with a (hydrogen donor ability of solvent molecules): 

i/i/cm-i = 15200 - 2611 a (r = 0.978) 

These relations reveal that, the higher the polarizability and hydrogen—bond—forming 

ability of the solvent, the larger is the bathochromic shift of v\. 

2.) The value of lODq is obtained directly from the transition bi V— b2. The p o -

sition of this band should be dependent on both the a—donor and donor strength of 

the in—plane ligands. The latter quantity does not vary to a large extent, so i/j should 

be directly related to the in—plane field strength. 1/2 varies in only a very narrow i n -

terval; it is not sensitive to change in the solvent. A more sensitive parameter is U2-1 

[9] (changes from 1000 to 5500 cm"1) which shows a spread nearly four times as large 

that of lODq in the series studied. The plots of 7/2-1 vs. v* (Fig. IB) results in linear 

correlations for non-alcohols: 

ii-i/cm-1 = -2650 + 7247 ** (r = 0.989) 

and for alcohols: 

v2-1/cm"1 = 2115 + 4062 j* (r = 0.937) 

The plot of i/2-\ vs. or. 

i/2-i/cm-' = 1211 - 3852 o (r = 0.946) 

result in linear correlations with positive slopes, while the correlation between P2-1 and 

f) is also linear, but has a negative slope: 

1/2-,/cnr' = 5793 - 1822 0 (r = 0.964) 
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Figure 1: A ) Plot of f i /cra ' 1 vs. B) plot of i/2-i/cm"1 vs. X* 

3.) Ds [ = ( f i + 1/3 — i*) /7] and Dt [=(//[ — 3Ds)/5] are measures of the tetragonal 

distortion of the molecule [3]. Both parameters are relatively large, indicating a very 

considerable distortion. The plots of Ds vs. v* (Fig. 2) for non—alcohols: 

- Ds/cm- ' = - 3967 + 993 x* (r = 0.942) 

and for alcohols: 

- Ds/cm'1 = - 3430 + 782 v* (r = 0.936) 

show that an increase in the polarizability of the solvent results in a decrease in the 

distortion; in other words [9] the stronger the sixth ligand (solvent), the weaker is the 

total axial perturbation due to both the vanadyl oxygen and the sixth ligand. Similar 

high Ds and Dt are obtained for other vanadyl complexes; for example, for 

VO(HaO)i*, Ds = - 4570 and Dt = 143 cm"' [3]. 
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4.) The parameter p [=(1—7Dt)/4Dq], the ratio of the effective axial charge and 

the effective equatorial charge, can be calculated on the basis of ligand field theory in 

the knowledge of all three band positions [9]. The increase in p on going from 

V 0 ( S 0 4 ) ( -0 .440) to VO(AA) 2 (+0.041) is consistent with the decrease in the V = 0 

double bond distance [5]. Also, the increase observed in p when VO(AA ) 2 is dissolved 

in a more polar solvent is what on might expect from the consideration that there is 

an empty axial position which can be occupied by coordinating solvent [10]. Unfortu-

nately, the exact location of 1/3 is problematic because the band appears very close to 

the intraligand spin—forbidden ** <— k band; thus the calculated p values are 

uncertain. In spite of this uncertainty, the values in Table I show a similar trend to 

that of IT*. 

5.) The ESR g values { g ± = 2 [ l - ( c t 2 A)/i/,J; g„ = 2[l-(c*2 X)/u2] should be 
* 

calculated from the optical absorption data (A = 135 cm -1, while ci is 0.907 and 0.946 

for the first and second transitions, respectively [11]). The calculated isotropic < g > 

values (Table I) agree well with the published data [12]. It is obvious that the average 

values of g are close to the free electron (g g = 2.0023) value. The < g > values repor -

ted for the vanadyl complexes in the literature are approximately the same for m e a -

surements on crystals, powder and solution [3]. Within experimental error, the publis-

hed < g > values do not vary; the small trend in our data is due to the simplified f o r -

mulae used for the calculations. 

6.) It has been observed [13] that, if there is a ligand—V02+ interaction in the 

axial direction, the differences (g — < g > ) and (gg — < g > ) vary approximately inver-

sely to u\ and t/2, respectively. We did not obtain a similar correlation. Our calculated 

differences are very small (0.0135 - 0.0121 and 0.0300 - 0.0330, respectively), ind i -

cating that the solvent—V02+ interaction is weaker than the ligand—V02+ interaction; 
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Table I 
T h e measured spectral data and calculated parameters on V O ( A A ) 2 

No Solvent 
* 

f i 
* 

1/2 
* * 

I/J-I 
* 

- D s + D t * P < g > 
* * 

< g > a 2 

1 C12CCC12 16420 17850 26250 1430 3546 1156 - 0 . 1 3 1.9730 0.45 
2 p—Xylene 15800 16400 26400 600 3686 948 - 0 . 0 1 2 1.9710 0.44 
3 CC14 15790 16860 25970 1070 3557 1024 - 0 . 0 6 3 1.9715 0.44 
4 Dioxane 15540 16650 25750 1110 3520 996 —0.047 1.9711 0.45 
5 Benzene 15220 17000 25500 1780 3389 1011 - 0 . 0 4 1 1.9713 1.970 0.45 
6 c—Hexanone 15150 17500 25580 2350 3319 1039 0.039 1.9718 0.46 
7 CS 2 15080 16660 ? ? 7 ? ? 1.9709 1.968 0.45 
8 CHCI3 15080 16820 25800 1740 3437 954 0.007 1.9710 1.970 0.45 
9 T H F 15000 16600 25800 1600 3457 926 0.024 1.9707 1.969 0.45 

10 CH3NO2 14570 17770 25370 3200 3167 1014 0.001 1.9717 0.47 
11 Reflectance 14500 16700 24500 2200 3186 988 - 0 . 0 3 5 1.9705 0.46 
12 Acetone 14450 16900 25000 2450 3221 957 +0 .009 1.9707 1.968 0.46 
13 01—Benzene 14400 17000 25800 2600 3314 892 0.082 1.9708 0.46 
14 c—Hexane 14300 16900 25050 2600 3207 936 0.031 1.9706 0.46 
15 C H j C N 14200 17000 25800 2800 3286 868 0.106 1.9706 1.969 0.46 
16 o—Cl2—Benzene 13900 17100 25500 3200 3186 868 0.112 1.9705 0.47 
17 CH2CI2 13800 16900 25900 3100 3257 806 0.165 1.9702 0.47 
18 Octylalc. 13600 17150 25600 3550 3150 830 0.153 1.9703 0.47 
19 c—Hexanol 13520 17550 25660 4030 3090 850 0.152 1.9707 0.48 
20 Hexylalc. 13480 17180 25500 3700 3114 828 0.157 1.9702 0.47 
21 Pyridine 13340 17040 24800 3700 3014 860 0.117 1.9700 1.970 0.47 
22 Amylalc . 13320 17080 25200 3760 3063 826 0.154 1.9700 0.47 
23 Butylalc. 13220 17360 25400 4140 3037 822 0.171 1.9702 0.48 
24 Propylalc . 13200 17450 25620 4250 3053 808 0.190 1.9703 0.48 
25 Methanol 13040 17620 25200 4580 2946 840 0.166 1.9704 1.968 0.48 
26 Benzylalc. 13030 17250 24950 4220 2961 829 0.159 1.9700 0.48 
27 D M F A 13030 16970 25120 3940 3026 790 0.185 1.9700 1.968 0.47 
28 Ethanol 13000 17280 25300 4280 3003 798 0.192 1.9700 0.48 
29 D M S O 12850 17350 24990 4500 2927 814 0.179 1.9699 0.48 
30 Water 12330 17820 25500 5490 2859 751 0.262 1.9699 0.50 

* in cm*' ; ** [13] p. 111. 



CORRELATIONS BETWEEN THE VISIBLE SPECTRA 

Figure £ Dependence of Ds/cm"1 on it* 

consequently, the field strength does not vary considerably either in—plane axially. 

7.) The method of evaluation of the mixing coefficient cr {= [ i / 2 (2—<g>) } /8A} 

[11,14] depends on the fact that the orbital magnetic moment of an unpaired electron 

is reduced if the magnetic electron is spread in a MO over the entire molecule, op- = 1 

for pure ionic binding and a2 = 0.5 for pure covalent binding. In our case, o 2 varies 

between 0.46 and 0.50, indicating an almost pure covalent character of the bonds; the 

somewhat lower values are due to the uncertainty in the optical data. 

8.) Several authors have modified the TAFT—KAMLET parameter For n o n -

—associating solvents, ABE [15] has introduced two polarity parameters, tc\ , i 

using the optical data on non—polar and weakly polarized molecules such as 

naphtalene, chlorbenzene and ^-carotene. On the other hand, BEKAREK [16] has 

found that the modified T A F T - K A M L E T parameter, * [= / / ( n 2 - l ) / ( 2 n 2 + l ) ] gives 

a better fit to the experimental optical data than the original parameter. The 

correlations between these new parameters and our data are very poor; the original 
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x [8], bases on the spectral data on the strongly polar N,N—diethyl—4—nltroaniline, 

etc., is more useful in our case. 
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T H E F O R H A T I O N A N D T H E S P E C T R A L B E H A V I O U R O F C H A R G E - T R A N S F E R C O H P L E X E S O F P R I M A R Y 

A L I P H A T I C ( H E X A D E C Y L A H I N E , D O D E C Y L A H I N E , O C T Y L A H I N E ) A N D A R O M A T I C A M I N E S ( A N I L I N E , p — 

— T O L U I D I N E , p - C L - A N I L I N E ) W I T H I O D I N E W E R E S T U D I E D IN S I X C H L O R I N E - C O N T A I N I N G S O L V E N T S . 

T H E F O R H A T I O N C O N S T A N T S , K f , O F T H E C O M P L E X E S W E R E D E T E R M I N E D A N D C A L C U L A T I O N S W E R E 

H A D E ON T H E E N E R G E T I C A L R E L A T I O N S O F T H E C O M P L E X M O L E C U L E S . 

Introduction 

Several authors (e.g. [ i ] ) have reported that an increase in the solvating power of 

a medium for a charge—transfer (CT) complex shifts the CT band to lower energy, 

but it is often found that an increase in solvent polarity results in a shift in the 

opposite direction [2]. A specific interaction between the CT complex and the 

surrounding solvent causing this blue shift should therefore also be considered to be 

significant in these systems [3]. We earlier [4] discussed the CT complex—forming 

ability of severed aromatic secondary amines with iodine. 

As a continuation of this work, we have now studied the formation and the 

spectral behaviour of molecular complexes of aliphatic [hexadecylamine (HAD), 

dodecylamine ( D D A ) and octylamine (OA)] and aromatic [aniline (An), p—toluidine 
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(pTol ) and p—CI—An (pClAn)] primary amines with iodine in chlorine—containing 

aliphatic solvents (CC14) CHCI3, CH2C12) (C1-CH 2 ) 2 , (C1 2 =CH) 2 and (C1 2 =C) 2 , and 

we present the results in this paper. 

Experimental 

The chemicals were BDH products of p.a. purity, while the solvents were 

spectroscopically pure; they were used without further purification. The experimental 

methods have been described elsewhere [4]. For determination of the stoichiometry, 

stock solutions (1.2-10"2 mo l /dm 3 ) of the donors (D) and acceptor ( A ) were prepared. 

In every case, 1:1 complex formation was found. In determinations of the formation 

constants, K^ , the concentration of iodine was 1.2-10"3 mol /dm 3 , while those of the 

donors ranged from 5.10"4 to 5.10"2 mol /dm 3 . The Kf values were calculated by the 

least squares method, using the BENESI—HILDEBRAND [5] equation. Because of the 

absorption of the solvents, we made measurements only in the spectral range above 

250 nm. The optical method used yields values of Kf and eC T which are often 

concentration—dependent; l / e C T and 1 /K^.eC T are obtained from the plot, and 

therefore the evaluated Kf values are very sensitive to eC T . However, the extinction 

coefficient is also concentration—dependent, a deviation from the BEER'S law can be 

obtained, and thus the BENESI—HILDEBRAND plot does not give strictly true values 

of K j and eC T . The calculated values must therefore be treated carefully. 

Results and Discussion 

Both the n—alkyl and the aromatic amines studied form molecular complexes as 

n—donors through the lone pair electron(s) on the nitrogen atom, while iodine acts as 

{?—acceptor; their complexes can be classified as ntr complexes. 

67 



FORMATION AND VISIBLE SPECTRA OF SOME MOLECULAR COMPLEXES 

The behaviour of the imt complexes is completely different from that of the other 

types; for example, their energy of formation is very high, the bonds are strongly 

localized, the self—absorption of the components varies considerably, etc. 

When the solutions of the alkylamines studied as donors and iodine as acceptor 

are mixed, a new band develops in the visible range, between 330 and 430 nm. 

Figure 1 shows the absorption spectra of OA, iodine and their mixtures in CCU ( A ) 

and CHCI3 (B) solutions. 

1 1 1—1 1 1 1 1—1—1—1—• 1 1 1 > 1 1 1 1—1 1 < 1 1 1—1—>—1—• 1 1 > • • 1 
350 ¿00 500 600 à/nm 350 ¿00 500 600 

Figure 1: Absorption spectra of iodine (1), OA (2) and their mixtures in CCI4 

(A ) and CHCI3 (B) solution. [IJ=1.2-10"» moI /dnR [OA] = (A ) : (3) 

1.89-10-«, (4): 4.72-10-", (5): 7.55-10"«, (6): 9.44-lO"", (7): 1.89-10-3, 

(8): 2.36-10-3; (B) : (3): 1.97-10"*, (4): 4.93-10"«, (5): 7.88-10"«, (6): 

9.85-10-4, (7): 1.48 -10"», (8): 1.97-10"» mol/dm». d=1.0 cm, T = 2 9 5 K. 
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Besides the new band, an isosbestic point appears at about 480 nm, indicating 

equilibrium systems (Figure 2). 

Figure 2. BENESI—HILDEBRAND plot on HDA - iodine systems, 

a.) in CC14 (r = 0.992) b.) in CHC13 (r = 0-994) 

Since the self-^absorption of anilines is not negligible in the region of importance, 

we find only an inflection at around 340—370 nm. We therefore used the donor at the 

same concentration as in the mixtures as a blank; in this case the isosbestic point is 

also observed. 

We attribute the new band to the formation of a C T complex. In quantum 

mechanical terms [16], the wa;ve functions for the ground and excited states are 

= aV-0(D , A) + b ^ ( D + - A") and = a+V'^D* - A") - b*^ o (D , A ) 

respectively, with a ~ a*, b ~ b* and a2 » b2. 
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Thus, when light is absorbed, an intermolecular C T occurs, and the transition take 

place from the structure Vo(A,D) ("no—bond" function) to the structure ^>i(A~ — D+) 

( "dat ive" function), i.e. it is an intermolecular C T transition involving a one—electron 

jump from D to A. 

It is just possible, however, that this new band corresponds to the hypsochro— 

mically shifted visible band of iodine [6,7], and the true C T band lies in the shorter 

wavelength region. This blue shift of the iodine band is attributed by MULLIKEN [8] 

to a greater exchange repulsion between the c excited M O of iodine and the adjacent 

donor, and an isosbestic point may be observed between the free and complexed iodine 

bands [9]. On the other hand, the I3 ion also exhibits an absorption maximum at 

around 365 nm [10]. Thus, in the wavelength region mentioned, absorptions of 

different origins are present and the exact position of the C T band is very difficult to 

establish. The B E N E S I - H I L D E B R A N D [5] method is still applicable here, in spite of 

the fact that the absorption is a superposition of the C T band and the shifted iodine 

band, because both arise from the complex; the appropriate plot in every case gives a 

straight line with reasonable agreement, indicating the formation of 1:1 complexes. 

With regard to the effects of the solvents used on the spectral structure of both 

the iodine and the amine-iodine systems, we can divide the solvent molecules into 

three groups: 

a.) In solutions in the inert CCI4, the interaction is probably due to van der 

Waals forces only; the values measured in the vapour phase [ 1 1 ] and in CCI4 

solution differ only slightly (A : 520 and 516 nm). 

b.) In solutions in CHCI3 , CH 2 Cl2, (C1-CH 2 ) 2 and (C1 2 =CH) 2 , there are attractive 

forces due to polarization of the iodine molecule and other species by the electrical 

field of the solvent molecules [12], and X is somewhat lower (498—510 nm). 

70 



J. CSASZAB. and N. H. BIZONY 

c.) In the case of solutions in (Cl2=C)2, the spectrum of iodine changes 

completely, and there is no evaluable change in the presence of aniline donors. 

It seems likely that (C l2=C) 2 forms a CT complex with iodine that is more stable 

than the aniline—iodine complexes. In accordance with literature data [20], we 

measured the CT band of the tetrachloroethylene—iodine system in n—hexane solution 

at 279 nm (4.44 eV), eCT = 15950, from which an ionization potential of ID = 9.27 eV 

may be calculated. 

The tendency is observed that, the higher the relative permittivity of the solvent 

molecule, the greater is the hypsochromic shift of the visible band of iodine; the data 

on (Cl2=CH)2 and (Cl2=C)2 deviate strongly from the linear ^ m a x vs• £ correlation 

(Figure 3). 

Figure 3. Plot of A /nm of the iodine band measured in different sol— max' 
vent vs. the relative permittivities of solvent molecules. 
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In the case of anilines, the equilibrium measurements show that the para—X 

substituent plays an important role in the complex formation. If X = H, it is easy to 

follow the spectral change when the blank also contains the aniline in appropriate 

concentration; a similar set of curves may be measured as presented in Fig. 1. The 

CT band shifts bathochromically as compared with those for the alkylamine 

complexes. If an electron—withdrawing substituent is present in the para position, the 

spectral change is much smaller than in the An—iodine system, suggesting that the 

complex formation under otherwise the same experimental circumstances and at the 

same D/A ratios, is limited. It appears that an electron—withdrawing substituent 

decreases the charge density in the aromatic ring and also on the nitrogen atom to 

such an extent that the probability of CT is reduced. On the other hand, in the 

presence of an electron-donating substituent (X = OCH3), similarly as in the An.l2 

system, a well—defined spectral change is measurable; the determined formation 

constants are higher than those of An.I2 (Table I). 

The intensity of the CT bands, eCT , does not vary in a systematic way with Kf, 

which has usually been ascribed to contact CT during molecular collisions, where the 

internuclear distance is too great for complex formation to contribute to the intensity 

of the CT band. 

The v values do not show a correlation either with the T A F T - K A M L E T [13] 

parameters or with the McRAE [14] and other [15] equations; only the plot of v vs. 

the acceptor number, AN, of the solvents results in a linear correlation. For the 

HDA.I2 and An.I2 systems, the empirical equations axe = 128.AN + 23820 

(r = 0.989) and 1/ = 61.AN + 27250 (r = 0.916), respectively; t.e. with higher AN, 0/J. 
the CT bands shift hypsochromically. 

There is no strict correlation between the formation constants and the solvent 
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Table I 

Measured and calculated characteristics on the iodine complexes studied 

Donor Si S
2 

s
3 

s, S
6 

S
6 

H D A Aj-jip/nm s^Ol 374 378 380 361 362 

/•EN 3.01 4.94 3.11 4.04 5.71 
» * 

lD 7.69 7.97 7.93 7.91 8.13 8.11 
* * * 

K

f 310 200 620 525 75 
* * • » 

e

CT 1890 5070 2020 3400 6800 

D D A A
C T
/ n m 365,401 385 378 380 361 365 

''EN 5.25 2.90 4.60 4.79 6.32 

8.08,7.69 7.86 7.93 7.91 8.19 8.08 
K

f 130 645 450 530 62 
e

CT 5760 1760 4420 4800 8330 

OA A
C T
/ n m 360,410 390 377 373 360 365 

^ N 4.71 3.09 4.29 5.85 599 
J

D 8.13,7.60 7.80 7.94 8.06 8.13 8.08 
K

f 100 650 880 470 95 
e

CT 4630 2000 3850 7140 7500 

pTol A
C T
/ n m 357 356 358 360 355 354 

'•EN 1.33 1.58 1.52 2.02 1.76 
T

D • 
8.16 8.18 8.17 8.13 8.19 

K

i 225 240 245 210 185 
e

CT 370 520 480 850 650 

An Aj-j/p/nm 360 348 350 352 350 =340 

1.64 2.03 1.97 2.14 1.37 

lD 8.13 8.27 8.25 8.23 8.25 
K

f 200 140 200 180 130 
f

CT 560 860 810 950 390 

pClAn A^ip/nm 380 350 362 362 358 «350 

^ N 1.83 1.68 2.18 2.01 1.26 
!

D 7.91 8.25 8.16 8.11 8.16 S8.25 
K

f 40 60 1010 744 310 
e

CT 700 590 990 840 330 

Si:CCI
4
, S

2
:CHC1

3)
 S

3
:CH,C1

2
, S^ClCHjCHsCl, S

6
:C1

2
CHCHC1

2)
 S

6
:C1

2
CCC1

2
; 

*[22] p.63, **[22] p. 76, *** dmimol-',**** from BENESI-HILDEBRAND plot, d
m
3mol-icm-i 
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parameters, but certain tendencies are recognizable. With an increase in the solvent 

polarity (JT*) or acceptor number, the K| value also increases. In the case oi 

chloroform, the values differ, which may be due to both the hydrogen—bond and the 

iodine—complex—forming abilities of the solvent. It seems that K j increases with the 

lengthening of the alkyl chain. The formation constants of the complexes of the 

anilines are generally lower than those of the n—alkylamine complexes. 

It is known that the lower the ionization potential of the donor, ID, the smallei 

the transition energies of the C T bands [16,17]. It has been proposed [18] that v is 

related to and the electron affinity of the acceptor, E^ (for iodine, 1.8 eV [16]): 

h v = I — E — A (a) 
C T D A V ' 

where A is the stabilization energy of the ion pair. Several other correlations can alsc 

be found in the literature, for example 

h j / C T = I D - D +
 2

 W
B

-
D

) W 

where /5 is the exchange integral between electron—donating and electron—accepto 

orbitals [19]. The experimental and calculated values agree well if it is assumed that j 

and D are 1.3 and 6.0 eV, respectively. The binding energy is given by the formula 

_ D ) [19-21]. BRIEGLEB [22] has applied the equation 

h ^CT = r D " C ' + ^ / ^ D - to 

where for iodine complexes CI (Ea - E c + W Q ) = 5.2 and C2(/?* + = 1.5 eV; (b 

and (c) are analogous. Several empirical equations can also be found, for example 

I D = 2.90 + 1.89-10-3 • *>CT (d) 

reported by ALOISI and P I G N A T A R O [23]. 

The ID values (Table I) calculated via ( c ) and (d ) agree well; ID(An) is betweei 

the values published: ID (An) = 7.70 [24], 7.85 [25], 7.95 [26], and 8.23 [27] eV. Th 

anilines possess higher I values than the n—alkylamines (7.60^-8.00 and 8.10-8.40 eV, 
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respectively). The difference is probable due to the fact that the anilines cannot be 

classified as either n— or JT—donors, as a consequence of the resonance between the 

amino group and the benzene ring; n?r mixed orbitals form. It has been concluded [28] 

that the CT in the complex between N,N—Me2An and iodine occurs mainly from the 

lone pair electrons of the nitrogen atom. On the other hand, in An, the ionizing 

electron may possibly be due to one of the non—bonding electrons [27]. In the primary 

alkylamines studied, there is no such resonance possibility; a "pure" n—orbital is the 

donor orbital. The data presented in Table I demonstrate that the I values do not 

change considerably with the solvent. As regards our data and those previously p u b -

lished [29], it seems that, with lengthening of the alkyl chains, I decreases; for 

example, for CH3NH2, CH3CH2NH2 and n-CH 3CH 2CH 2CH 2NH 2 , I is 8.97, 8.86 and 

8.71 eV, respectively [29]. A plot of AH against the ionization potential of structurally 

related donors shows a regular relationship; with increasing ID, AH decreases s o m e -

what. 

Using the spectral data discussed above, it is possible to calculate the energy 

levels of the complexes as described in [22]. The calculated energies (W K : energy of 

the ground state, W q : van der Waals energy in the ground state, R^: resonance energy 

in the ground state, E c : Coulombic energy acting between the ions, W : energy of the 

excited state, R : resonance energy in the excited state) are listed in Table II, while 
E) 

the energy level diagrams for HDA.I2 and An.I2 are presented in Figure 4. The 

calculations give only very approximate results, but these are suitable for a qualitative 

comparison of the changes and of the behaviour. Let us suppose that the maximum 

value of the dipole moment of the molecular complex, /ii , after the electron transition 

D —. A, if the distance is dDA = 3.2-lO"10 m [22], is 51.03 -10"30 C - m . In the k n o w -

ledge of m and the transition moment, a [22], and if the overlap integral is small (S 
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6-1 

ë? J 
OJ 
c 

2-

£ 

M, tT 

RnWq 

Wc 

W, 

".w. 
•wN 

HDA-lj " An-I2 

c c i t ci.ch2ch2ci CC1A ci.ch2ch2ci 
p/D'O p/D=1.86 

Figure If. Energy level diagrams oi HDA.I2 (A) and An.l2 (B) complexes, 

calculated with spectral data obtained in CCI4 and (CI—CH2)2 solutions; 

the energy values are summarized in Table II. 

= 0.1), it is possible to look for the optimum values of the coefficients a,a*, b,b* and 

so calculate the parameters listed in Table II. 

Thus, it seems that, for the complexes studied, the solvent effect is not parti-

cularly considerable. W Q — W^ and W-̂  — W E are the resonance energies, and it 

generally holds that Wi — W E > W Q - WH- For our complexes, these energies lie in 

the ranges 24—40 and 10—14 kJ/mol, respectively; the energy values for the aniline 

complexes are somewhat higher. Since WH = AH [22], ie. the heats of formation for 

HDA.I2 and An.I2 (solvents: CC14, /*= 0 C-m, and (C1-CH2)2 , //=6.20-lO"30 C - m ) are 
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31.0, 54.6 and 10.9, 16.4 kJ/mol, respectively, the solvent dependence in the cases of 

the alkylamine complexes are more definite. 

B H A T T A C H A R Y A and BASU [30] have estimated the stabilization energy of the 

ion pair D* — A" for a series of iodine complexes of polynuclear aromatic hydrocarbons 

from i'CT, by using equation (a) and E^ = 1.80 eV for iodine. The fact that their A 

value (3.256 eV) is higher than the electrostatic energy between two charges separated 

by 3—4-10"10 m is offered as evidence that polarization and/or covalent forces make 

some contribution to the binding energy between D and A in the activated state, but 

the effect of the solvent cannot be excluded. Our A values lie in the interval 2.8—3.0 

eV; (the effect of the solvent is not determined and the change is not unambiguous. 

The calculated binding energies ED (Table II) are 0.2-0.4 and 0.08-0.10 eV for e 

two complexes, respectively [E0 = ( / £ + /T()/(ID - D), D = 6.0 eV [19]]. The 

published E values [e.g. 19, 20], and presumably also our own data, are generally 

higher than the actual energy, because the two molecules forming the complex have 

been pulled together against no—bond state repulsive forces. The calculated E for 

published values [e.g. 19, 20], and presumably also our own data, are generally 

higher than the actual energy, because the two molecules forming the complex have 

been pulled together against no—bond state repulsive forces. The calculated E for 

b e n z e n e . a n d dioxane.I2, for example, are 0.5 and 0.36 eV [19], while the 

experimental ones are 0.06 [21] and 0.15 eV [20], respectively. Our values agree well 

with the van der Waals energy W Q in the ground state (Table II). The data show 

that the resonance energy in the ground state is arc. 20—30 and 10—20 per cent, 

respectively, of the heat of formation AH, which is in accordance with other 

<)i)Hi!rv;ilioilH [sec e.g. 22]. 

The quotient 100 b 2 / (a 2 + b2) is a measure of the participation of the ionic 
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structure in the ground state. For the discussed two complexes, 2.3, 4.9 and 0.4, 0.8 

can be calculated. The low values for the complex An.l2 are noteworthy similar low 

values have also been published for the complexes of styrene, diphenylbutadiene, etc. 

with s—trinitrobenzene, for example [22]. With increase in the dipole moment of the 

solvent, the probability of the presence of the ionic structure also increases. It is 

interesting that the presence of the ionic structure in the excited state of the two 

complexes discussed, relative to their ground states, decreases and increases, 

respectively (see Table II). 

Table II 

Calculated energetical parameters (eV) on the HDA-I2 and An-l2 complexes 

HDA-Ij 
CCU C1CH2CH2C1 

An - h 
CC1, CICHjCHjCI 

3.09 3.26 
7.69 7.91 
3.01 4.04 
0.970 0.970 
0.985 0.985 
0.150 0.220 
0.120 0.180 

-0.071 -0.155 
0.178 0.250 

-2.80 -2.85 
3.09 3.26 
3.27 3.51 

-0.250 -0.410 
-0.321 -0.565 
-0.20 -0.40 
31.0 54.6 
2.3 5.1 
1.5 3.3 

3.44 3.52 
8.13 8.25 

a 

*N 
"E 1.* 

b 
b* 

B 
AH/kJ/mol 
100bJ/(ai+b2) 
100*V(a*J+b") 

1.64 2.14 
0.980 0.980 
0.990 0.990 
0.060 0.090 
0.100 0.110 

-0.013 -0.030 
0.088 0.108 

-2.89 -2.93 
3.44 3.52 
3.53 3.63 

-0.100 -0.140 
-0.113 -0.170 
-0.08 -0.11 
10.9 16.4 
0.4 0.8 
1.0 1.2 
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In connection with the shape of the CT bands, it is interesting to observe the 

effects of solvents on it. While the measured CT bands always show asymmetry on 

the shorter wavelength side in CHCI3, CH2CI2, etc. solutions, in CCI4 solution the 

bands are extremely broad and their complexity is obvious. Gaussian analysis results 

in two sub—bands at 365 and 401 nm; the distance between the two maxima is 2500 

cm"1. The relative intensities of the bands depend 011 the ratio D / A ; the intensity of 

the 365 nm band, fgg^i increases more rapidly than that of the e ^ ^ band, and the 

plot of the ratio ^QJ /^R^ vs- log[alkylamine] gives a linear correlation (Figure 5). 

120-

1.10-

1.00-

0.90-

0.80-

0.70-1 . 1 
0.5-4 1.0 logtDDAl 1.5 

Figure 5: Plot of intensity ratios C4Q1^£365 v s ' '°fi[DDA]. Solvent: CCI4 

There may be many reasons for this band splitting. We consider it likely that, as a 

consequence of splitting of the ground state of the donor cation, the donor component 

has two ionization energies with close lying values; this supposition, however, requires 

further theoretical consideration. The complexity of the band is still more obvious 
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with shortening of the alkyl chain. A similar complexity of the CT bands has been 

described for several CT complexes [21-33]. 
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(Short communication) 

J. CSÁSZÁR and L. KISS 

Institute of Physical Chemistry, Attila József University, 

P.O.Box 105, H-6701 Szeged, Hungary 

(Received November 16, 1990) 

The vanadate ion reacts with 8—hydroxyquinoline in aqueous solution at pH z 6 

to give a stable complex compound, I - H [1] (Structure 1). BIELIG and B A Y E R [2] 

confirmed the presence of the OH group via the IR spectrum; this result, together 

with the analytical data, leads to the formula (CgHgON^VO.OH. This complex 

dissolves in alcohols to give hydrated esters, I1—R (Structure 2) in the first step; in an 

excess of boiling aliphatic alcohols I1—R next gives intense red solutions [3], from 

which red crystals of the anhydrous esters, I—R (Structure 3), separate out on cooling. 

0 O-HOH 0 
0, If N 

l - H 

OH O-R 

f - R I - R 

O - R 

Structure 1 Structure 2 Structure 3 
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I—H deposits slowly from concentrated solution of I—Ft; the solubility of I—Ft and its 

tendency to undergo decomposition increase with increasing C atom number in Ft. 

We have prepared the compounds I—H, I'—Ft and I—R ( R = methyl, ethyl, propyl, 

butyl, amyl, hexyl and octyl) and measured their visible and UV spectra in the 

corresponding parent n—alcohols and pyridine (py). The spectra were obtained on 

BECKMAN DU, SPECORD U V - V I S instruments, using spectroscopically pure s o l -

vents. 

The central V5 + ion is a 3d 0 species, and the complex I—H is diamagnetic [2b]; no 

d—d bands are expected, and none are observed. The complexes I—H and I—R all give 

five bands of high intensities (Table I). The bands in the range 240-370 nm are 

modified bands of 8—hydroxyquinoline due to it* <— r transitions, while the visible 

band ( s 490 nm) may be assigned to ligajid—to—metal charge—transfer transitions from 

the phenolate oxygens to the empty d-orbitals of the vanadium (Fig. 1) [4]. Such 

¿1 

loge 

> 

i\ 

Figure 1: 

Absorption spectra of I—C2H5 

in ethanol(l) and pyridine(2) 

c = 3.10-" mol /dm 3 , 

d = 0.1 cm. 

300 400 * / n m S00 

transitions are generally characteristic of phenolate coordination to easily reducible 

meted ions [5]. 
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It has been reported [6] that the reactions between I—H and aliphatic alcohols 

result in hydrated esters, I'—Ft, containing a molecule of water attached by h y d -

rogen—bonding. In excess of boiling alcohol, which may well act as a mild dehydrating 

agent, the compounds I1—R axe transformed to anhydrous esters I—R.as final products. 

In the I R spectra of I—Ft, no hydroxyl frequencies are observed [6]. For a discussion of 

the mechanism of ester formation, see e.g. [6]. The absorption spectra of the hydrated 

and the anhydrous compounds are practically the same. Table I shows that the s p e c t -

ra of the red products dissolved in the parent alcohols vary slightly as group R 

changes from CH3 to CgHiz; the visible band shifts somewhat hypsochromically and 

the intensities increase in the sequence CH3 —* CsHi7. 

Table I 

Spectral data on the compounds I—R measured in the parent alcohols 
R O H and pyridine 

R = in a l c o h o 
/ n m and ( l o g t ) 

in p y r i d i n e 

C H 3 

C 2 H 6 
C 3 H 7 
C 4 H 9 
C S H I I 
C « H 13 
C 8H 1 7 

490(2.95 1 

485(3 .35 ' 
485 (3 .49 ' 
480 (3 .44 ' 
480 (3 .52 ' 
480 (3 .58 ' 
478 (3 .60 ' 

367 (3 .58 ] 
366 (3 .56 

' 6 ( 3 . 6 6 
3 7 0 ( 3 . 6 3 
372 (3 .69 
3 7 2 ( 3 . 6 5 

3 1 5 ( 3 . 7 1 ' 
3 1 0 ( 3 . 7 3 ' 
3 1 2 ( 3 . 7 6 
3 1 0 ( 3 . 7 5 
3 1 0 ( 3 . 7 8 
3 1 2 ( 3 . 8 0 

2 5 6 ( 4 . 4 4 
2 5 6 ( 4 . 3 6 
2 6 0 ( 4 . 3 0 ' 
2 6 0 ( 4 . 3 4 ' 
2 6 0 ( 4 . 3 5 ' 
2 6 0 ( 4 - 3 2 

1240(4.72) 
(242(4 .72 
243 (4 .76 
242 (4 .68 
242 (4 .71 
242 (4 .68 

3 8 8 ( 3 . 5 0 ' 
3 9 0 ( 3 . 4 9 
3 8 7 ( 3 . 4 9 ' 
3 9 2 ( 3 . 5 1 
3 9 6 ( 3 . 4 8 
3 9 2 ( 3 . 4 5 

3 7 4 ( 3 . 7 0 ) 3 1 2 ( 3 . 7 8 ) 2 6 2 ( 4 . 3 0 ) 2 4 2 ( 4 . 7 0 

3 1 0 ( 3 . 7 3 ) 
3 1 0 ( 3 . 7 2 ) 
3 1 0 ( 3 . 7 1 ) 
315 3 . 7 4 ) 
1315(3.72) 
1313(3.72) 

3 9 2 ( 3 . 4 8 ) 3 1 2 ( 3 . 7 2 

When I—CH3 is dissolved in propanol, for example, and I—C3H7 in methanol, we 

obtain the same spectra as when I—CsH? is dissolved in propanol or I—CH3 in 

methanol; consequently, in the presence of a large excess of the other alcohol, a 

transesterification takes place. When the complexes I—CH3 — I—CgHi7 are dissolved 
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in mixtures of two different alcohols, an equilibrium system forms; the calculated 

equilibrium constants are between 2.10*2 and 9.10"2, and A H varies between 8.5 and 

17.5 k j mol- ' [7]. 

Dissolution of the hydrated esters, I1—R, in py results in yellow solutions. The 

final spectra are the same for all the complexes, with two characteristic bands at 

390 nm (log £ = 3.50) and 310 nm (log e = 3.72). The red —• yellow transformation 

of the solutions may be followed well spectrophotometrically. From py solutions, 

yellow crystals can be isolated, the analytical data on which suggest the presence of 

two py molecules; on heating, two py molecules are released. The IR spectra of the 

yellow final products contain PV=0 and J/OH frequencies at 948 and 3440 cm"1, r e s -

pectively. The compounds I—H and I'—R yield the same final products. 

The spectrophotometric measurements indicate that in py solution, where the py 

is both a solvent and a reactant, a pseudo—first—order reaction takes place. The rate 

constants and the calculated thermodynamic parameters are presented in Table II. 

Table II 

The pseudo—first—order rate constants and the 
calculated thermodynamic parameters on the reaction of I1—R and pyridine 

R = k ' / 1 0 s -1 E a A H * - A S * R = 
298 K 308 K 318 K kJ m o P i k j • m o l " i J - K ' m o l " 1 

C H 3 5 . 2 2 1 1 . 3 1 2 1 . 4 8 55. 7 9 53 . 2 3 129 . 0 0 
C 2 H 5 3 .91 8 . 1 9 1 7 . 1 6 58. 3 0 55 . 74 123 . 1 6 
C 3 H 7 1 . 9 0 4 . 8 4 1 1 . 2 4 70. 0 3 67 . 4 7 8 9 . 6 8 
C 4 H 9 1.98 4 . 8 9 1 0 . 3 4 65. 1 7 62 . 6 1 105 . 5 5 
C 5 H I I 1 .75 4 . 6 1 9 . 7 4 67. 7 2 65 . 16 9 7 . 9 4 
C 6H 13 1 .72 4 . 5 3 9 . 3 9 66. 9 8 64 . 4 2 100 5 4 
C 8H 1 7 1 .67 4 . 5 3 9 . 1 5 67. 11 64 . 5 5 100 2 7 
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The data show that the rate constants decrease in the sequence Ci —> C5; for higher 

alcohols, no further significant change in the reaction rate is observed. The 

ARRHENIUS activation energy, E a , and the enthalpy of activation, AH*, increase 

from I—CH3 to i—C5HH. The parameters for I—C3H7 differ strongly from the expected 

ones. The high negative values of the activation entropy, AS*, are noteworthy. The 

activation parameters vary with the number of carbon atoms, n, according to a 

zig-zag shape, similarly to the changes in other parameters in the homologous series. 

On the other hand, a plot of AH* vs. AS* results in a linear correlation (r = 0.997). 

The mechanism of the reaction is problematic. We consider the following 

mechanism to be possible. On dissolution in py, the HOH molecule and thé R group 

split off to result in I—H. Then, one of the V—0 bonds opens and one py molecule, 

which has a high coordinating ability, is coordinated directly to the central V5 + via its 

lone pair electrons. This step is very fast and results in a positive charge on the 

central ion. The intermediate reacts with a further py molecule more slowly, because 

the charge on the central ion makes further V—0 bond—breaking more difficult. This 

second step takes place with measurable rate, according to the equation 

rate = k[I'-R][py]. 

Since [py] in py solution is about 12.573 mol dm - 3 , which is much higher than 

[I1—R], the reaction takes place as a pseudo—first—order reaction, and we may use the 

equation 

rate = k'[I'—R]. 

Table II presents the k' = k/12.573 values. If we consider that the charged activated 

complex is formed from two molecules (I1—R and one py molecule), that the final 

product has a still higher charge, and that the py molecules have a high polarization 

effect, the highly negative activation entropy values are obvious [8]. 
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THEORETICAL STUDY OF THE ADSORPTION OF CO MOLECULES 

ON STEPPED SINGLE CRYSTAL PT SURFACES 

(Preliminary communication) 

J. GARDI and M.I. BAN* 
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BY EMPLOYING THE SEMIEMPIRICAL QUANTUM CHEMICAL ASED-MO METHOD, ADSORPTION OF 
CARBON MONOXIDE MOLECULES ON STEPPED PT SURFACES BASED ON ( i l l ) TERRACES OF FCC (775), 
( 7 5 5 ) AND ( 5 3 3 ) STRUCTURES HAS BEEN INVESTIGATED AND, ON BASIS OF THE CALCULATED 
ELECTRONIC DATA, FAVOURABLE SITES OF ADSORPTION HAVE BEEN PREDICTED. 

To understand the elementary steps of heterogeneous catalysis it is important to 

investigate the chemisorption of small molecules on single crystal surfaces of metals. 

Theoretical studies promote such investigations and support the explanations of expe -

rimental observations. The adsorption of carbon monoxide on a Pt surface is one of 

the best model both for experimental [1—5] and theoretical [6—10] examinations. Most 

of the studies are concerned with smooth surfaces, and only a limited number of theo -

retical works has been dealing with surfaces having terraces, steps, kinks, etc. on 

them. By the present paper, our aim is to calculate the electronic properties of carbon 

monoxide molecules chemisorbed on stepped P t ( l l l ) surfaces so being able to predict 

the most favourable adsorption sites and orientations for CO molecules. Another aim 

Author to whom all correspondence should be addressed. 
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of our work is to determine the minimum size of the substrate—adsorbate system and 

especially that of the metal cluster which should be used for such model calculations. 

Three relatively simple types of stepped surfaces, based on (111) terraces, have 

been chosen. One of them has step faces of (111) orientation, as with fcc(775), and the 

other two have step faces of (100) orientation, as with fcc(755) and fcc(533). The bulk 

cubic Pt lattice parameter of 392.39 pm (nearest—neighbour distance of 277.46 pm) 

has been used [11] in all the electronic structure calculations by employing the atom 

superposition and electron derealization (ASED—MO) method [12] with its modified 

parameter sets [13]. One—fold top-site positions have been assumed for the CO 

molecules, preferentially chemisorbed with a constant Pt—C bond length of 198 pm 

from the surface (carbon end down), with a frozen C—0 distance of 115 pm, being 

based on a structure determination by LEED of CO on P t ( l l l ) [14]. The geometries 

of the system composed of the substrate and the adsorption overlayer were determined 

by the computer program PSD [15]. Predictions based on electronic properties could 

be compared and checked with experimental data available so far only for the 

orientation of CO molecules on stepped Pt(533) surface, obtained by a NEXAFS study 

[16]. However, it should be mentioned that the surface structures and so the electronic 

structures of fcc(533) and fcc(755) are similar therefore it is expected that the 

corresponding experimental observations would be nearly the same for fcc(755). 

By the program PSD, first a metal cluster was separated from the appropriate 

crystal lattice having the chara£teristic features: terraces and steps. The size of the 

cluster was chosen so that it could easily- he handled by the ASED—MO method, not 

consuming too much computing time. In the starting compulations a maximum of 45 

Pt atoms in three layers (beneath each other) and 6 CO molecules in predetermined 

axrays were included. Then the numbers of Pt atoms and CO molecules were reduced 
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systematically to the point when relative values of electronic properties (net charges, 

overlap populations, sum of one—electron energies, etc.), and trends in them, began to 

change substantially. The determination of the smallest possible cluster size to be used 

in the calculations, employing the same model, allows us the later use of more sophis-

ticated quantum chemical (e.g. "ab initio") methods. When doing calculations on any 

of the three stepped surfaces it was found [17] that a cluster composed of 15 Pt atoms 

(three Pt atoms in rows) placed in one layer and 3 CO molecules on top of the Pt 

atoms in a row supplied the same overall electronic picture (relative values and 

trends) as the much larger system. Therefore the detailed calculations were carried out 

with the reduced size metal cluster having the characteristic features of the fcc(775), 

fcc(755) and fcc(533) structures, respectively. The 3 CO molecules with collinear Pt— 

- C — 0 axis were placed on one row of Pt atoms parallel to the step edges in different 

specified positions (on terrace atoms, or at the outside and inside step sites, respec-

tively), and the differences in total electronic energies (the sums of one—electron 

energies) of the whole substrate—adsorbate system and that of the metal cluster and 

the 3 COs separately were considered and compared. The dependence of the electronic 

data on the tilting angle of the CO molecules (the collinear Pt—C—0 axis) to the 

terrace normal has also been investigated, by gradually tilting the CO molecules by 

the same polar angle at zero azimuth (parallel and zig-zag or fish—bone tilting 

regarded). 

It has been found [17] that layers lying deeper beneath the top layer Pt atoms do 

not modify significantly the overall electronic picture of the system in any of the three 

stepped structures, at the approximation level used. In other cases — e.g. when c a l -

culating fcc( l lO) crystal lattice [10]— even the presence of third layer atoms in addi— 
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tion to the top layer ones are quite important for the CO orientation. CO bonding to 

the surfaces is predominantly a result of 5<r stabilization due to mixing with the metal 

orbitals having s and d character and back-donation to the CO n* orbitals from the 

metal d-orbitals. Our calculations give the orientation of adsorbed CO at both step 

and terrace sites on stepped Pt(533) surface in accordance with the experimental study 

of SOMERS et al. [16]. The angular dependence of both the 2r intensity and the cr/2k 

intensity ratio indicates that the terrace CO is bonded essentially normal to the 

terrace and that the step CO is tilted away by only a few degrees towaxds the m a c -

roscopic surface normal. A dramatically large angle of tilt for CO on stepkink sites as 

observed in the system CO/Pt(321) [18] was not found. The energy of the <r—resonan-

ce is identical for both step and terrace CO indicating that there is lilile change in 

the C—0 overlap population (bond order) even though temperature programed desorp— 

tion shows that the step species is more strongly bond by ~ 20 kJ m o H (~ 0.2 eV 

molecule -1) than terrace COs. This means that the carbon—to—metal bond strength is 

~ 20 kJ mol"1 higher for CO adsorbed at the steps than at terrace sites. 

The lowest total energies in any of the three stepped substrate—adsorbate systems 

investigated are related always with COs in "outside" step (i.e. step—edge) positions, 

at any angles. In "inside" step (step—bottom) positions a tilting angle of 45 degree (off 

the step) is favoured. Almost exactly the same energies have been found in positions 

at the ends of the metal cluster. The terrace COs are bonded essentially normal to the 

terrace. Except "outside1! and "inside" step sites the energies are at maximum when 

the tilting angle is nearly 30°. The lowest energies can always be attributed to the 

fish—bone (zig-zag) tilting of COs, in any location of them, on the surface. At tilting 

angles between 60—70 degrees the energy of the system has been found to be almost 

exactly the same whatever are the positions of COs and it approached the minimum. 
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When the three CO molecules have been placed at random on the surface the total 

energy is always larger than at row positions. In accordance with those discussed 

above, in view of heterogeneous catalysis the adsorption sites on step edges (at any 

angles) and any sites on terraces of the structures examined (at tilting angles 60—70° 

to the terrace normal) are favoured and preferred to other sites and angles. 

Geometry data, numerical results and details of the calculations are available on 

request. 
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THE SELF-COMBINATION OF THE íert—BUTYL RADICALS ( c 3 v ) WAS STUDIED THEORETICALLY AT 
THE LEVEL OF SEHIEHPIRICAL QUANTUM CHEMICAL METHODS, BY MEANS OF UHF—MINDO/3 AND UHF— 
- A M I , WITH COHPLETE GEOMETRICAL OPTIMIZATION. THE MINIHUH ENERGY REACTION PATH (MERP) , 
AND THE STRUCTURE AND ENERGY OF THE TRANSITION STATE WERE DETERMINED. INCORRECT A C T I -
VATION AND BOND DISSOCIATION ENERGIES, COHPARED WITH THE EXPERIMENTAL RESULTS, WERE O B -
TAINED BY MEANS OF UHF APPROXIMATIONS. UHF APPROXIMATION IS NOT ACCEPTABLE TO DESCRIBE 
THE COMBINATION OF LARGE RADICALS WITH HIGH SYHHETRY. 

Introduction 

The kinetic and thermochemical characteristics of the tert-butyl radical have 

attracted much attention during the past twenty years. The structure of the radical 

was studied at the level of ab initio quantum chemical calculations by P A C A N S K Y et 

al. [1]. A structure with C J v symmetry was found to be the most stable. The IR 

spectrum of the radical was also consistent with C ^ symmetry [2]. Thus, the 

structure and the thermochemistry of the radical are well established [3—7]. 

The recombination reaction has been studied experimentally in different 

laboratories and the logarithm of the preexponential factor was found to be between 

8.4 and 12.38 [8—11]. In the evaluation of the kinetic results in a 400 K temperature 

interval, McMILLEN and GOLDEN [3] concluded, that the self-combination has zero 

activation energy. TSANG [12] came to the same conclusion. Laser Induced Fluoro— 
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escence experimental results were published recently by ANASTASI and A R T H U R 

[13,14]. A small negative activation energy ( E ^ = — 0.5 k j mol"1) was found. 

The self—combination reaction of the methyl radical lias been studied in detail at 

the ab initio level [15,16] and by semiempirical S C P - M O methods ( U H F - M 1 N D O / 3 , 

UHF-MNDO, M N D O - C I , UHF—AMI and AM1/CI ) (e.0.[17,18]). The minimum e n e r -

gy reaction path ( M E R P ) calculated by means of U H F - M I N D O / 3 and UHF—AMI 

[19, 20] has no barrier, but the bond dissociation energies (BDEs) were found to be 

less than the experimental ones. DANNENBERG et al. [18] proposed the method of 

MNDO including configuration interaction (CI 3x3 — open shell excited singlet) and 

an extended CI (9x9, 27x27, 57x57) method for the combination of radicals containing 

heteroatoms with lone electron—pairs to model the combination of small alkyl radicals. 

By the UHF approximation of MNDO and AMI the combination reactions of large 

alkyl radicals has not so far been studied. It is of interest to examine whether 

semiempirical quantum chemical methods with UHF approximation predict acceptable 

results for the combination of larger radical(s) with high symmetry. The combination 

of ieri-butyl radicals was studied in detail and some results are presented here. 

Results and Discussion 

Our U H F - M N D O and UHF—AMI calculations on the geometry of the dissociating 

ethane molecule predict two independent methyl structures at a distance of circ. 230 

pm on the MERP. From this distance the energy decreases by less than 0.4 k j mol"1 

at every 10 pm. The self—combination of the tert— butyl radical can be regarded as 

that of a substituted methyl radical. The effect of the methyl groups on the 

self—combination was investigated at the level of semiempirical quantum chemical 

methods, by means of U H F - M I N D O / 3 and UHF-AM1 of A M P A C [19]. The MERPs 
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were investigated in the reverse (bond cleavage) direction, starting from the optimal 

geometry of 2,2,3,3—tetramethylbutane with the symmetry of D ^ (see Fig.l) . The 

calculation of the MERP in the bond forming direction was not successful because of 

SCF-convergency problems (at around 500 pm) and spin—separation problems (at 

around 300 pm). 

H21 H 2 2 H 2 3 

Figure 1: The structure of the reactant in the decomposition reaction of 

2,2,3,3—tetramethylbutane ( D 3 h ) 

The calculated MERPs are depicted in Figure 2. The MERP of A - T S - B was 

calculated by UHF-MINDO/3 , and A ' - T S ' - B 1 by UHF-AM1. The geometry of the 

transition state (TS) was established by means of the M c I V E R - K O M O R N I C K I 

method [20] with the keyword of SIGMA [19]. 

The energies of the reactant (tert—butyl radical), the transition state and the 

product (2,2,3,3—tetramethyl—butane) calculated via UHF-MINDO/3 and UHF—AMI, 

together with the experimentally determined [21] and thermochemically calculated data 

[22], are included in Table I. The activation energies of the self-combination 

calculated by U H F - M I N D O / 3 and UHF—AMI are 168.2 and 46.5 k j mol"', respecti-

H31 

H3 

D 
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Figure £ The MERPs of the recombination reaction of iert-butyl radicals. 

A - T S - B was calculated by U H F - M I N D O / 3 and A ' - T S ' - B 1 by 

UIIF—AMI 

vely. The former method gives an unrealistically high value which can be due to the 

number of electron repulsion integrals being reduced greatly by using the core 

approximation [23]. The calculated energies of the molecules containing crowded 

(tert—butyl) groups are inadequately described by M I N D O / 3 calculations [23,24]. The 

activation energies of the C—C bond cleavage reaction are 91.2 kJ mol"1 (UHF— 

—MINDO/3) which is evidently an underestimation of the C—C bond strength. UHF— 

- A M I predicts BDEtieri-C-iHg-ieri-CiHg) = 163.9 kJ mol ' ' which is an acceptable 
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result related to the experimental one (158.8 kJ mol"' [21,22]). 

The geometries in the TS calculated by means of UHF-MINDO/3 and U H F - A M 1 

are summarized in Table II. The central bond distances (C 'C 5 ) in the TS calculated 

by U H F - M I N D O / 3 and UHF—AMI differ by 10.8 pm. The spin contamination in the 

direction of the TS is increased, the spin separation begins at circ. 200 pm. 

AM1/CI 3x3 (open shell excited singlet) method predicts good MERPs (BDEs and 

activation energies) for the combination of small and medium size alkyl and alkenyl 

radicals [25]. Further calculations are in progress by means of this method. 

Table I 

Heats of formation of the reactant (tert—butyl radical), the TS and the 
product (2,2,3,3—tetramethylbutane) calculated by UHF-MINDO/3 and U H F - A M 1 

Heats of formation/kJ mol"' UHF-MINDO/3 UHF-AM1 Exp.[20,21] 

¿erf—butyl radical -22 .1 -26 .7 48.6 
transition state 124.0 - 6 . 9 — 
2,2,3,3—tetramethylbutane 32.8 -170.8 -61 .6 

Conclusion 

The calculated distance between the developing radical centres in the TS is 

approximately of 230 pm which is close to the C—C bond distance at nearly full spin 

separation in the decomposition of ethane. Both the activation energy of the bond 

formation and breaking are much greater and less, respectively, than those of the 

experimental results at UHF—MINDO/3 approximation for the combination of radicals 

with tertiary carbon radical centre. UHF—AMI predicts a good BDE, but an unrealis-

tically high activation energy. 
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Table 11 

Geometry of the TS of ieri—butyl radical recombination 
(see Figure 1) 

Geometry U H F - M I N D O / 3 UHF—AMI 

C 'C 5 / pm 220.3 231.7 
C 'C 2 / pm 150.7 147.9 
C ' C 3 / p m 150.7 147.9 
C ' C V p m 150.7 147.9 
C 2 H 2 ' / pm 111.4 112.1 
C 2H 2 2 /pm 111.1 111.7 
C 2 H 2 3 /pm 111.1 111.7 
9 (C 2 C'C5) 105.5 109.6 
e(C3C'C5) 105.5 111.2 
e (C 4 C'C5) 105.5 111.2 
6(C2C'C5C«) 179.7 179.5 
ÄC3CC8C«) 60.3 60.3 
¿(C4C'C5C«) 59.7 61.2 
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THE HEATS OF FORMATION AND THE FULLY—OPTIMIZED GEOKETRIES OF 1—METHYLALLYL ( l f t ) , 
1—HETHYL-1—AZAALLYL ( 2 R 1 ) , 1—METHYL—2—AZAALLYL ( 2 R 1 ) AND 1—METHYL—1,2—DIAZAALLYL 
( 3 R ) RADICALS WERE CALCULATED AT THE SEMIEMPIRICAL QUANTUM CHEMICAL LEVEL (MINDO/3— 
—UHF, MNDO—HE AND AMI—HE). THE RESONANCE ENERGIES OF THE RADICALS WERE CALCULATED 
USING THE HEATS OF FORMATION OF THEIR PARENT COMPOUNDS (2—BUTENE ( l ) , N—ETHYLIDENE— 
—METI1YLAMINE ( 2 ) AND AZOHETHANE (3)). THE RESONANCE ENERGIES OK 2R AND 3 R WERE FOUND TO 
BE LESS THAN THOSE OF 1R, 2R 1 . ROTATIONAL AND INVERSIONAL MECHANISM OF THE ISOHERIZATION 
OF THE MOLECULES AND ALLYL—TYPE RADICALS CONTAINING ESSENTIAL DOUBLE BONDS AND P A R T I -
AL CC, CN AND NN DOUBLE BONDS WERE STUDIED. THE CALCULATED BARRIER HEIGHTS PREDICT TOO 
L O W A C T I V A T I O N E N E R G I E S F O R T H E R O T A T I O N . T H E R E A S O N O F T H E L O W B A R R I E R S C A L C U L A T E D I S 

T H E U N D E R E S T I M A T I O N O F T H E L O N E — P A I R A N D T H E D O U B L E L O N E - P A I R R E P U L S I O N IN T H E N D D O 

F O R M A L I S M . I S O H E R I Z A T I O N A T C C , NN A N D C N D O U B L E B O N D S A N D P A R T I A L D O U B L E B O N D S B Y 

I N V E R S I O N I S U N L I K E L Y . 

Introduction 

The thermal decomposition of cis- and trans-diazenes can be described by c o m p -

lex reaction schemes [1] involving the synchronous (a ) ' o r asynchronous (b ) d e c o m p o -

sition of these compounds. Much effort has been devoted to decide between mecha -

nisms (a) and (b ) [2]. Symmetrical dialkyldiazenes cleave by mechanism (a), whereas 

diazenes with different alkyl (or aryl) substituents do so by mechanism (b) [3,4]. 

MNDO calculations [5] on the thermal decompositions of trans— and cis—diethyldia— 

zene predict stepwise decomposition via synchronous bond fission and suggest a transi -

tion state through cis isomers. Experimentally, the ci.f-diazenes are thermally less 
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stable than the trans isomers [1]. The role of the cis conformer in the photochemical 

deazatization of trans—1,3—dialkyl—1,2—diazenes has been confirmed experimentally 

[1,6]. In the thermolyses of tran&- and cty-di(2—propyl)—diazene, FOGEL et al. [7] 

showed that the decomposition does not occur via the labile cis conformer, and 

suggested that the isomerization of the cis conformer proceeds with inversion. 

For the cis—trans isomerization of alkyl—1,2—diazenes, three possible mechanisms 

have been suggested: rotation [2], inversion and dissociation/combination [8]. The 

electron configuration (n_)2(*)2(n+)2 for the trans ground (T,T*) state correlates with a 

doubly excited configuration of the cis isomer; rotation is symmetry—forbidden [9]. The 

rotation around the N=N bond is highly hindered (247—361.8 k j mol"1) [10], and the 

rotational barrier is significantly higher than those in the olefins [11]. A detailed 

INDO—SCF calculation, followed by CI calculations [10a] for the isomerization of 

azomethane in the ground and some low—lying excited states, showed that rotation of 

the methyl groups around the N=N double bond was more feasible than inversion. 

The calculated relative stability of the trans and cis isomers, A A j H 0 = A^H°( trans) — 

AjH0(cis), was found to be 14.2 kJ mol"1, in contrast with the experimental data [12]. 

As products of radical H—abstractions from 2—butene, N—ethylidenemethylamine and 

azomethane (Reaction 1), resonance—stabilized allyl—type radicals are formed: 

where X = CH, N. 

Results on the reactions of 1—azaallyl and 2,3—diazaallyl radicals are scarce. The 

last reaction has been studied in the decompositions of dialkyldiazenes [13] and in the 

radical—initiated gas—phase reactions of dialkyl—diazenes [14]. In further reactions, the 

irans-CHj—X=X—CH3 + R — E - C H 3 - X = X - C H 2 + RH 

E - C H 3 - X = X - C H 2 ^ Z - C H 3 - X = X - C H 2 

(1) 

(2,-2) 
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radical can also isomerize (Reaction 2), similarly to the allyl radicals, and take part 

mostly in radical disproportionation and combination reactions forming stable p r o -

ducts. 

There is an equilibrium between the E and the Z isomer of 1—methylallyl radical 

at the temperature range 399-^439 K [15]. 

Calculations for the compounds 1, 2 and 3 and the radicals 1R—3R were carried 

out by means of semiempirical quantum chemical methods ( M I N D O / 3 [16], 

M I N D 0 / 3 - U H F [17], MNDO—HE [18], A M I - H E [19,20] and A M 1 - U H F [21]). 

Calculations 

The heats of formation and the geometries of the molecules and radicals in the ground 

state were calculated with full geometrical optimization. In the calculations of the 

torsional profiles, the twist angle was fixed at different values as the reaction 

coordinate ( 0 = 0", 15°, 30", 450, 600, 750, 900, 1050, 120®, 135°, 150°, 165° and 180°), 

and an optimization was applied for the remainder geometrical parameters. In the 

calculation of the inversion profile (AMI—HE), the twist angle of 0(C—N—N—C) was 

kept unchanged ( 0 = 180° and 0°) and the bending—angle was kept fixed (<j> = 110°, 

120°, 130°, 140°, 150°, 160°, 170°, 180° and 360° - <f>) values as reaction coordinates. 

The resonance energies (RE) were defined similarly to the allyl resonance energies 

( A R E ) [21] ( A R E = BDE(CHr-H) - BDE((R j rCH2—H)), using the calculated data for 

dialkyl—diazenes, methane and methyl radical [19]. 

The stabilization energies (SE) were calculated by the method of LEROY [22]: 

SE = AH - £ N.E. a 1 1 

where AH is the atomization energy and N. the number of bond i. 
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The necessary bond terms to determine the atomizalion heals of radicals were 

unknown. By using the experimental and calculated heats of formation of 

dialkyldiazenes with low strain [23] (n—alkyl group substituted diazenes), for the bond 

energy terms (E) [22] E ( C - N = N - C ) = 1105.5 ± 0.8 kJ m o H was obtained [24]. The 

( E ( C - H ) p N and E ( C - H ) g N were supposed to be equal to E ( C - H ) p C _ N = N _ C and 

E ( C - H ) g C _ N = N _ C , respectively. 

Results and Discussion 

Resonance arid stabilization energies of radicals 1R—SR 

The heats of formation of compounds 1—3 calculated by means of MINDO/3 , 

MNDO and AMI , are summarized and compared with the experiments in Table I—II. 

The best agreement with the experimental values was obtained by AMI. A dramatic 

improvement was observed at the N—containing compounds with changing the 

core-core repulsion function (CRF) in MNDO to result A M I [19]. Table III contains 

the heats of formation of ally I—type radicals formed in reaction (1). Used the 

calculated data, the resonance energies were also calculated (Table IV) for the isomers 

of 1—3. The heats of formation for cis (Z ) isomers of N—containing molecules suggest 

higher thermodynamic stability than for the trans ones in contradiction with the 

experimental results available in the literature [23]. (The only exception among the 

diazenes, the difluorodiimide, is more stable in the cis configuration [30].) M I N D O / 3 

predicts an unrealistically small heats of formation for 1—3, because this method 

reduce the number of electron integrals to be considered using core approximation 

[25,18]. The lone—pair and double lone—pair interactions are underestimated not only 

in MINDO/3 [16], but in MNDO [18] and A M I [25], too. An improvement was found 

for these compounds in MNDO which is probably due to the inclusion of directional 
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Table I 

Calculated heats of formation of 2—butene and N—ethylidene— 
methylamine 

Method 

CIS 

A|H°/kJ mo!"« 

trans CIS trans 

MINDO/3 
MINDO 
A M I 
exp.b 

- 23 .9 [25" 
-16 .7 26' 
- 9 . 2 
- 8 . 0 

-26.4 
-21.4 
-14.0 
-12.6 

47.6 
31.2 
33.6 

40.2 
27.5 
42.7 

a The methyl groups have a staggered—staggered conformation in cis—1 and cis—2. 
b , See in [27] 

Table II 

Calculated heats of formation of azomethane 

A { H ° / k J m o I - ' 

Method 
CIS trans 

MINDO/3 
MNDO 
A M I 
exp. 

39.8 
107.2 
126.5 

86.2 [28a] 
96.3 
146.3 
134.5 ± 3.8 
148.8 ± 5.2 
149.1 ± 6.2 

23a] 
23bj 
23c| 

a The methyl groups have a staggered—staggered conformation in cis—dimethyldiazene; this 
was demonstrated by ab initio calculations to be the most stable geometry with C2v [29a] 
symmetry. 
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effects in the two-center electron—electron repulsions and core—electron attractions 

[18b]. The further improvement in A M I calculations is due to the modified CRP [19a]. 

Similar observation was made for the radicals 2R, 2R' and 3R~ K A O et al. [31] 

completed by ab initio methods this effect with the strain among the large alkyl 

groups. The attraction between the alkyl H—atom and the lone—pair of electrons on 

N—atom can not be negligible either [30]. None of the methods applied in the 

calculations give good relative stability for the isomers of N—containing molecules. 

The resonance energies in the radicals 1R and 3R are practically equal. In radicals 2 R 

and 2R' the resonance energies axe very different. In the radical, where the N—atom is 

in symmetrical position in the delocalized system, the stabilization through 

derealization is greater than in the radicals 1R, 2R and 3R [35]. An N-a tom in 

unsymmetrical position has an even lower derealization effect. The stabilization 

energies of 1R and 3R calculated by L E R O Y [22] differ by circ. 10 kJ moN. The 

UHP approximation [32b,33] ( U H F - M I N D O / 3 and UHF—AMI) overestimates the 

thermodynamic stability of the radicals in each case considering the experimental data 

available in the literature and the half-electron (HE) approximation [34]. 

By means of the calculated heats of formation for dialkyl-diazenes the group 

increments of A { H ° [ C - ( N A ) ( H ) 2 ] = 90.4 kJ m o H and A { H 0 [ C - ( N A ) ( C ) ( H ) ] = 94.8 

kJ mol"1 [24] were estimated using the group values for groups in molecules proposed 

by SCHERER et al. [23gJ. 

The calculated geometries for 3 and 3R are summarized in Table V — VI. The 

difference between MINDO/3 and A M I results is significant. As it can be seen in 

Table V, the geometry calculated by means of AMI shows the best agreement with 

the experimental result. A similar observation was made for the allyl radicals [32]. 

The net atomic charges (q^, = Z ^ — £ X p , where Z ^ is the core charge of 
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Table III 

Calculated heats of formation of resonance stabilized radicals 1R—3R 

A , H ° / k J mol"' 
Radical 

MINDO/3—UHF MNDO—HE A M I - H E A M 1 - U H F 

Í R E 88.8 103.0 116.8 81.0 
Z 91.8 105.5 119.5 84.0 

2R E 163.9 166.9 196.4 161.2 
Z 173.7 155.5 189.4 173.3 

2 R ' E 139.7 132.9 147.1 120.3 
Z 145.6 138.2 141.2 115.1 

3R E 115.1 [28a] 214.4 275.4 245.4 
Z 144.0 238.6 264.4 235.9 

a The heats of formation of the radicals axe calculated for the E and Z conformers. 

Table IV 

Calculated resonance (RE) and stabilization (SE) energies of radicals 1R—3R 

- Radical RE/kJ mol-•a SE/kJ mol-' 

Í R E 41.7 77.3 
Z 34.2 75.1 

2R E 14.0 
Z 11.9 

2R' E 63.3 
Z 60.1 

3 E 38.6 65.7 
Z 29.8 

a The resonance energies are calculated by means of the following expression: RE = 
(A f H°(CH 4 ) - A f H°(CH 3 ) ) - (A fH°(diazcnes) - A {H°(l,2-<liazaallyls)) [21], supposed 
that 1R—3R to be carbon centered radicals. 
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atom X, P is a diagonal element of the bond order matrix) on the radicals in 

position 1 and 3 change slightly. The electron densities on the C— and N—atoms are 

very similar, while substantial deviation was found at the reactive centres (C— or/and 

N—atom). The ir-spin density correlates with the reactivity of the radicals in 

combination reactions [17,36] and with the coupling constants of ESR measurements 

[37b]. A reactivity difference was proposed for the C— and N—atoms in radical 3 R by 

means of UHF—AMI and AM1/C1 3x3 calculations [24]. 

In radical combinations, the SOMOs (Singly Occupied MOs) interact with each 

other and correlate with the reactivity of the radicals [36]. The calculated SOMO 

energies show, that the nucleophilicity of alkyl radicals increases with the alky]— 

substitution [28b,32]. In radicals 1R—3R, the nucleophilicity increases when one of the 

alkyl C -a toms is substituted for N in the order 2R '>2R>1 R>3R. 

Rotational and inversional barriers of 1—3 and 1R—SR 

The (AMI—HE) calculated rotational profiles of 1 and radical 1R (around the 

C = C and C - C bonds), those of 2 and radical 2R and 2R ' (around the C = N and C - N 

bonds) and those of 3 and radical 3R (around the N = N and N—N bonds) are depicted 

in Figs. 1—3. The characters of the rotation profiles of molecules are similar. The 

maxima of the rotational barriers are at 0 = 90° in 1 and at 0 = 105° in 3. The 

profile of 2 has a plateau in the range of 75—125°. This departure is due to lone—pair 

repulsions in molecules [I8I>]. 

The calculated height of the barrier of rotation around the N=N bond (182.3 kJ 

rnol"1) is considerably higher than those around the C = C bond (136.3 kJ mol"1) in 

butene—2 (AMI—HE) and around the C = N bond (105.0 kJ mol"1). A recent exper i -

mental value for 2-butene is 271.7 ± 8.8 kJ moM [11a]. The calculated ( A M I - H E ) 
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Table V 

The calculated and experimental geometries of trans— and cis—azomethane 

MINDO/3 MNDO A M I D exp. 

r ( N = N ) / p m 119.2 122.2 122.5 124.7 [29a] r ( N = N ) / p m 
(116.2) (120.8) (120.6) (125.4) 729b] 

r(C—N)/pm 140.0 147.5 145.5 148.2 [29a] r(C—N)/pm 
(143.4) (147.8) (145.5) (148.0) J29b] 

< CNN/degree 127.6 116.6 119.5 112.0 [29a] < CNN/degree 
(138.9) (127.3) (126.9) (119.3) [29b] 

* 

a The geometrical parameters of the cis isomer are in parenthesis. 
^ The symmetries of the most stable trans and cis isomers are C0 , and C„ [29], 

respectively. 

Table VI 

The calculated geometries of 1— methyl—1,2—diazaallyl radical3, 

C ' H j - N i - N 2 - C 2 H 2 

MINDO/3 -UHP MNDO—IIE A M I - I I E AM1-UHF 

r(N'—N2)/pm E 118.0 126.5 126.8 r(N'—N2)/pm 
Z (124.2) (124.5) (124.8) 

r(C'—N')/pm E 127.0 135.5 134.0 
(124.8) 

r(C'—N')/pm 
Z (136.3) (134.9) (135.6) 

r(C2—N2)/pm E 138.9 145.9 144.6 r(C2—N2)/pm 
Z (146.7) (143.7) (144.8) 

c C ' N ' N 2 / E 151.3 115.6 120.0 
(144.8) 

degree 
< C 2 N 2 N ' / 

Z (126.0) (128.2) (127.8) degree 
< C 2 N 2 N ' / E 133.1 117.3 118.0 

(127.8) 

degree Z (128.8) (126.4) (125.6) 

a The geometries of the B conformcrs are in parenthesis. 

rotational barrier is significantly lower for the rotation around the N = N bonds than 

the barrier heights determined by other theoretical methods (ab initio with different 
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Figure J: Rotational barriers of the 2—butene and the 1—methylallyl radical, 

calculated by means of AMI—HE: 1: rotation around the C = C bond, 

2' rotation around (lie 0—0 bond. 

basis sets, MNDO CI, etc.: 247.0-351.8 kJ mol"') [10], too. 

The character of the rotational profiles of the radicals is similar: all have a valley — 

a local minima at 0 = 90°, which is the less stable allenic form of the radical. The 

heights of the barriers of radical 1ft and 3R are 26.3 and 10.7 kJ mol"1, respectively. 

The barrier height around the N—N a—bond in hydrazines, determined by means of 

ESR—techniques, is 24 kJ mol"1 [38] (which is higher than the barrier for rotation 

around the C—C c— bond by circ. 4 kJ mol"'). The allyl radical derealization energies 

(ADE) [37b] were calculated from the barrier heights of allyl—type radicals (determi— 
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Figure 2. Rotational barriers of N—ethylideneniethylamine around N=N double 

bond (1), 1—methyl—1—azaallyl (2R) around C - N (2) and l - m e t h y l - 2 -

—azaallyl (2R1) radicals around C—N bonds (3), calculated by means 

of A M I - H E . 

ned by ESR—technique) and from that of the a— bond. The calculated ADE for the 

allyl radical was found to be circ. 48 kJ mol -1 [37b]. Since the calculated values of the 

barrier heights are significantly lower than expected on the basis of the experimental 

data (for allyl—type radicals (see e.g.[37])), only a qualitative approximation can be 

made for the derealization energy of 3R. (MNDO and AMI underestimate the rotat i -

onal barrier heights [20].) The rotational barrier in 3R is less than that in 1R. 

Thus,for ADE a smaller value is predicted than for thé allyl—type radicals, considering 

the greater rotational barrier for the N—N a— bond [38] than that for the C—C <r—bond. 
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The barrier heights of the radicals 2R and 2R' are also different — 2R' has a 

greater barrier (35 k j mol"1). We have found that 2R' is a more stable radical than 

IR, 2R and 3R (see Table IV). On tin: l>;isis of the calculations a qualitative c onc lu -

sion was drawn to explain the possible uierli;t.nisin of llir i.someri/.atinn and the 

experimental results [14b]. The barrier height of inversion in azoinethane (Fig. 4) was 

found to be lower than the rotation barrier, 134.7 and 182.3 kJ mol"1 (related to the 

cis isomer), respectively. The situation in radical 3 is reversed (Fig.4). The barrier 

height for inversion and rotation are 112.8 and 12.7 kJ mol"1. Isomerization is 

preferable by a rotational mechanism. The rotational and inversional barriers at 

compound 2 are almost the same (Fig.5). At radical 2R and 2R' the rotation is more 

favourable than the inversion. 

Under the experimental conditions (around 400 K ) [14b], for which the reactions 

of alkyl— substituted 1,2-diazaallyl radicals were studied, an equilibrium is expected 

between Z and E radicals. The lack of cis—products can be attributed to the lower 

reactivity of Z than E radicals and the uustability of the products of Z radicals. 

Conclusions 

The AMI method predicts greater stability for the cis and syn isomers of the 

compounds 2—3 and the radicals 2R, 2R' and 3R. The nucleophilicity increases in the 

order 2R' > 2R > 1R > 3R while the thermodynamic stability (RE and SE) decreases 

in the order 2R' > 1R > 3R > 2 R On the basis of the height of the barrier of r o t a -

tion around the N—N and C—C bonds, the derealization energy is lower in radical 3 

than in 1 R On the basis of relative barrier heights of the rotation and inversion, an 

equilibrium was proposed between the E and Z conformers of the radicals at 400 K. 

The absolute values of the barrier heights are not acceptable because the semiempi— 
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Figure Si Rotational barriers of dimethyldiazene and the 1—methyl—1,2—diazaallyl 

radical, calculated by means of AMI—HE: 1: rotation around the N = N 

bond, 2: rotation around the N—N bond. 

Figure 4' MEPs of inversion of the 1—methyl—1,2—diazaallyl radical (1) and 

azomethane (2), calculated by means of AMI—HE. 
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Figure 5: Inversional barriers o{ the N—ethylidene—methylamine and 1—methyl— 

—1—azaallyl and 1—methyl—3—azaallyl radical, calculated by 

means of A M I - H E . 2: 1; 2R: 2; 2R': 3. 

rical quantum chemical methods applied for the calculations handle the interactions of 

lone—pair and double lone—pairs of electrons with error. 
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B U L K S U P E R C O N D U C T O R S Y B A 2 C U 3 0 7 - X W I T H Z E R O R E S I S T A N C E A T 9 0 K A N D N A R R O W T C T R A N S I -

T I O N S ( 3 — 4 K ) W E R E S Y N T H E S I Z E D . T H E E F F E C T S O F T H E P R O C E S S P A R A M E T E R S , T H E O P T I M U M O F 

T H E S I N T E R C Y C L E A N D T H E T E M P E R A T U R E D E P E N D E N C E O F T H E R E S I S T A N C E O F Y B A 2 C U 3 0 7 - ; ( S A M P -

L E S W E R E I N V E S T I G A T E D . 

Introduction 

The discovery of superconducting compounds in the system La—Ba—Cu—0 by 

BEDNORZ and MULLER [1] stimulated activity on high—temperature superconduc-

tivity, most of the work concentrating on the compound Y B a 2 C u 3 0 7 _ x since it has a 

high transition temperature, T^ = 90 K [2]. The discovery of superconducting 

compounds with even higher transition temperatures (up to 125 K) in the systems 

Bi—Sr—Ca—Cu—0 [3] and Tl—Ba—Ca—Cu—0 [4] shows that recent developments in the 

field of superconducting oxides are very promising. 

Most ceramic YBa 2 CujO^_ x samples are prepared by powder—ceramic techniques, 

generally involving three main steps: powder preparation and calcining, sintering, and 

adjustment of the oxygen content [5]. The reactions can be written as 

Y 2 0 3 + 6 CuO + 4 B a C 0 3 . 2 Y B a 2 C u 3 0 6 5 + 4 C 0 2 (1173 K ) 

and 
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4 YBa^CugOgj + 1/4 0 2 4 Y B a ^ C y (1193-1203 K ) 

The microstructure is directly affected by the annealing parameters used to obtain 

the desired oxygen content. Hence, the conditions are of decisive importance as concerns 

the ultimate mechanical and superconducting properties of the material. The various 

stages of YBa^CUjO^_x production are dealt with below, and their effects on the 

superconducting properties are discussed. 

Experimental 

Powder preparation 

The starting compounds were Y 2 0 3 (Fluka, 99.9 % ) , B a C O j (Reanal, p.a.) and 

CuO (Merck, p.a.). The morphology of the powders was established with the B E T 

method. The YjO^ and BaCOg powders consisted of paxticles with a mean size of 2—4 

/¿m, and the CuO powder of particles 5—10 (im in size (agglomerates). The starting 

Y 2 OJ , BaCOj and CuO were mixed in a molar ratio of 1:4:6. The simplest kind of 

powder preparation, manual dry mixing in a mortar, yielded very inhomogeneous s a m p -

les. By contrast, very homogeneous powder mixtures (mean particle size approximately 

0.7 fan) were obtained by trituration for 2 hours in isopropanol with agate grinding 

balls (10 mm in diameter). Mixing in an agate mill avoids contamination by the g r i n -

ding media. The powder mixtures were annealed in air, oxygen and nitrogen atmosphere 

at 1173 K for 12—24 hours and then cooled to room temperature at 3 K/min. The p r o -

duct was a compact black mass. It was remilled to less than 20 fan grain size. The 

course of reaction and the formation of Y B a ^ C u j O ^ were studied by X - ray d i f f ra c -

tion analysis (Philips—3100) with monochromatized Cu—K radiation. 
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Compacting and sintering 

Cylindrical compacts 4 mm thick and 10—12 mm in diameter were prepared for use 

in the sintering experiments by powder—pressing at 60 MPa. The samples were sintered 

at 1193 K for 8—10 hours in electric oven (Fig.l ) , followed by cooling to room in air 

and oxygen. The sintering properties were investigated by thermal analysis [7,8]. The 

samples were heat-treated up to 1373 K in a derivatograph (Erdey—Paulik, G—425). 

Figure J: Sintering experiments on specimens in a programmable electrical furnace 

The effects of the sintering temperature on the structure and the thermal expansion 

were studied at 1173 K with an electronic dilatometer (Netzsch), at a heating rate of 5 

K/min in air [9]. The microstructure was investigated by means of optical and scanning 

electron microscopy (JEOL—JSM) with an electron beam—microanalyser to examine 

several points of the samples. 

Lr 
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Superconductivity was first tested via the MEISSNER—effect. The transition t e m -

perature (T^) was determined by the resistive four—point method in the temperature 

range 80—260 К at 0,133 Pa. Thin copper wires were attached to the specimens with 

conductive silver paint, as power leads and voltage taps. The specimen temperature was 

measured with a chromel—alumel thermocouple. Resistivity was measured at 10 mA. 

The four—point voltage was registered with a digital multimeter. For data analysis, a 

personal computer (ZX—Spectrum) and home—made software were used. This system 

can measure resistance of samples in vacuum or in any gas atmosphere in the tempera -

ture range 77-900 К (Fig.2). 

ILqujd-Ni 

Figure A computer—controlled system for measurement of superconducting 

samples in vacuum or a gas atmosphere in the temperature range 77— 

- 9 9 0 K. 
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Results and discussion 

Х-ч:ау phase analysis of the powder calcined at 1173 K, indicated the formation of 

YBa„Cu ,0_ . After calcination for 2 hours, CuO and Y 0 , reflection were no longer 
м i$ X * v 

observed. The relative intensities of the BaCOg reflections gradually diminished with 

increasing time of reaction. The Y B a ^ C U g O , ^ phase reflections were observed after 3 

hours and the phase formation was almost complete within 4 hours. After compacting, 

on sintering at 1193 К for 10 hours the reflections of YBa 2 CugO T _ x very slowly incre -

ased in intensity (Fig.3). 

The results of derivatographic measurements axe shown in Fig.4. Y j O g and CuO 

did not undergo any change up to 1373 К (Fig.4/1,2). The well—known polymorphic 

changes of BaCOg were observed at 1093-1103 К and around 1243 К (Fig.4/3) . A s i g -

nificant weight loss and a small endothermic peak were observed in the 1:5 mixture of 

Y „ 0 , and CuO (Fig.4/4). This weight change may be caused by the reduction of CuO. 

X = Y B Q 2 C U 3 ° 7 - X 

° : Y 2 B Q C U 0 5 

v/:witherit 

0 Ю 20 30 

Figure 3: X—ray analysis of superconducting YBa.Cu.O. 

The 1:4 mixture of Y . O , and BaCO, revealed only the polymorphism of BaCO» (Fig. 
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4/5) . The 4:6 mixture of CuO and B a C O j exhibited a chemical reaction at 1263 K 

(Fig.4/6) . The 1:4:6 mixture of Y 2 0 3 , CuO, and BaCOg displayed several new endo— 

thermic effects (Fig.4/7) . The peak at 1133 K is attributed to the perovskite structure 

transition and the peaks at around 1273 K decomposition. 

Figure 4Simultaneous T G and D T A measurements on the starting oxides and 

their mixtures. 

The mixture of the base materials after a 12—24 hours annealing at 1173 K and those 
i 

compacting and sintering at 1193 K during 4—6 hours exhibit similar decompositions in 
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the derivatograph oven (Fig.4/8,9). 

The different changes in weight during the first two steps in the interval 

673—943 K are important. The superconducting properties of the material can change in 

this temperature range due to oxygen desorption and adsorption and a phase transition 

from the orthorhombic to the tetragonal state. 

Figure 5: SEM micrographs of a superconducting specimen sintered at 1193 К 

(M=1050 X and M=13000 X) 

The SEM investigations confirmed the results of X—ray diffractometric and thermo— 

gravimetric analyses. After calcining for 3 hours sinter-necks appear and pronounced 

grain sets grow (Fig.5). 

The sintering conditions exerted marked influence on the microstructure and 

superconductivity. Specimens sintered at 1173 К displayed a sharp drop in resistance, 

beginning at about 100 К and reaching zero at 90—85 K. Specimens heat—treated at 

1183-1203 К had transition points at 90-92 К (Fig.6/6,7). Samples sintered at 1213 К 

or higher did not become superconducting. The change in superconductivity at elevated 
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temperatures can be seen in connection with the formation of liquid phase that 

separates the superconductive particles. 

Figure 6: Resistivity as a function of temperature of YBa 0 Cu.O_ specimens 
£• li I—X 

sintered at 1173-1213 K. 

Dilatometric measurements on the sintered material indicated the existence of a 

liquid phase. Beginning at 1093 K such specimens showed a rapid increase in shrinkage 

that could not be attributed to solid—phase sintering. There was an enormous difference 

in dilation behaviour within a small temperature range (Fig.7). Since the composition of 

Y B a ^ C u j O ^ is situated very close to the melting zone, even a slight local s to i ch io -

metric deviation in Y „ 0 , deficit suffices to cause the formation of a liquid phase. 
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Heat treatment makes the high—temperature grain boundary phase crystallize 

extensively into Y B a j C u g O ^ thereby restoring the integrity between the superconduc-

ting particles and hence converting the specimens into superconductors. 

Porosity examination (by water absorption) of the specimens revealed a porosity of 

18—25 % caused in part by the formation of carbon dioxide during sintering. The 

porosity could be reduced by optimizing the calcining conditions. 

Figure 7: Thermal expansion of superconducting Y B a ^ C u g O , ^ 

SEM and dilatometric measurement demonstrated the phase states which are 

important for the preparation of superconducting ceramics. The thermal expansivity was 

also sensitive to temperature change (Fig.7). 

Single—phase specimens were obtained only within a narrow temperature range 
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(1173—1203 K). The broad resistance transitions of specimens sintered below 1183 К 

indicated the presence of nonsuperconducting volume fractions in such samples 

(Fig.6/2). 

Summary 

Reproducible single—phase superconducting ceramic material was obtained by 

optimizing the various preparation steps. Each individual preparation step exerted a 

substantial influence on the structural formation and hence on the conducting 

properties. A homogeneous powder mixture is an important prerequisite for rapid and 

complete reaction. Investigation of the reaction during calcining revealed the relative 

rapid formation of a superconducting phase. A single—phase was obtained only within a 

narrow temperature range. The liquid phase appearing at approximately 1203 К 

contributed substantially to specimen densification. Slow cooling of the samples after 

sintering led to the uptake of oxygen and the formation of a superconducting structure. 
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