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On the Projection onto a Finitely Generated Cone

Miklós Ujvári∗

Abstract

In the paper we study the properties of the projection onto a finitely
generated cone. We show that this map is made up of finitely many linear
parts with a structure resembling the facial structure of the finitely generated
cone. An economical (regarding storage) algorithm is also presented for cal-
culating the projection of a fixed vector, based on Lemke’s algorithm to solve
a linear complementarity problem. Some remarks on the conical inverse (a
generalization of the Moore-Penrose generalized inverse) conclude the paper.
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1 Introduction

A standard way to generalize concepts in convex analysis is to replace subspaces
with polyhedral cones, polyhedral cones with closed convex cones, closed convex
cones with closed convex sets, and closed convex sets with closed convex functions.
In this paper we make the first step on this way in the case of the concept of the
projection onto a subspace, and examine the properties of the projection onto a
finitely generated cone. (For higher levels of generality and applications – such as
positive linear approximation problems and robotics –, see [3], [5], [6], [12], [13].
For recent results on the projection problem and related algorithms, see [2], [4].)

Let A be an m by n real matrix. Let ImA resp. KerA denote the range space
(that is the image space) and the null space (that is the kernel) of the matrix A. It
is well-known that (ImA)⊥ = Ker (AT ) and (KerA)⊥ = Im (AT ) where T denotes
transpose and ⊥ denotes orthogonal complement (see [11]).

The projection map pImA onto the subspace ImA can be defined as follows: for
every vector y ∈ Rm, pImA(y) is the unique vector Ax∗ ∈ Rm such that

||y −Ax∗|| = min
x∈Rn

||y −Ax||, x∗ ∈ Rn.

It is well-known that pImA : Rm → Rm is a linear map: there exists a unique
matrix PImA ∈ Rm×m such that

pImA(y) = PImAy (y ∈ Rm).
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The matrix PImA is symmetric (that is PT
ImA = PImA), idempotent (that is

P 2
ImA = PImA), consequently positive semidefinite (that is yTPImAy ≥ 0 for every
y ∈ Rm). Also the equalities

PImA · PImB = 0, PImA + PImB = I

hold for any matrix B such that Ker (AT ) = ImB (see [11]). (Here I denotes the
identity matrix.)

Analogous results hold also in the case of the projection onto a finitely generated
cone. Before stating the corresponding theorem we fix some further notation.

Let Im+A resp. Ker+A denote the so-called finitely generated cone

Im+A := {Ax ∈ Rm : 0 ≤ x ∈ Rn}

and the polyhedral cone

Ker+A := {x ∈ Rn : Ax ≥ 0}.

A reformulation of the Farkas’ lemma (see [9], [12] or [13]) claims that (Im+A)∗ =
Ker+(AT ) and (Ker+A)∗ = Im+(AT ), where K∗ denotes dual cone (or positive
polar) of K, that is

K∗ :=
{
a ∈ Rd : aT z ≥ 0 (z ∈ K)

}
,

for a convex cone K ⊆ Rd. Thus polyhedral cones are the duals of the finitely
generated cones, and vice versa. Furthermore, by the Farkas-Weyl-Minkowski the-
orem (see [9], [12] or [13]), for every matrix A there exists a matrix B such that
Im+A = Ker+ (BT ), or, dually, Ker+ (AT ) = Im+B. In other words, the finitely
generated cones are polyhedral cones, and vice versa.

The projection map onto Im+A can be defined similarly as in the case of ImA:
for y ∈ Rm let pIm+ A(y) be the unique vector Ax∗ ∈ Rm such that

||y −Ax∗|| = min
0≤x∈Rn

||y −Ax||, 0 ≤ x∗ ∈ Rn.

For finitely generated cones which are not subspaces this map is not linear anymore,
but is made up of linear parts, and these parts have the properties described already
in the case of the projection onto a subspace. To state these facts precisely, the
definitions of the faces, complementary faces and polyhedral partition are needed.

Let C be a convex set in Rd. A convex set F ⊆ C is called an extremal subset
(or shortly a face) of the set C, if F does not contain an inner point of a line
segment from C without containing the endpoints of the line segment, that is

c1, c2 ∈ C, 0 < ε < 1, εc1 + (1− ε)c2 ∈ F implies c1, c2 ∈ F.

We will denote by F / C the fact that F is a face of C.
If K is the finitely generated cone Im+A, then its faces are finitely generated

cones also, and there are only finitely many of them. The faces of (the finitely
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generated cone) K∗ are exactly the complementary faces F4 of the faces F of K,
defined as

F4 := F⊥ ∩ (K∗) (F / K).

The complementary face F4 can be alternatively defined as

F4 = {f0}⊥ ∩ (K∗)

where f0 is an arbitrary element of riF , the relative interior of the face F . Also
(F4)4 = F holds for every face F of K (see [10] or [13], Theorem 7.27).

It is not difficult to verify using a standard separation argument that if Rd is the
finite union of closed convex sets Ci with nonempty and pairwise disjoint interiors
then the sets Ci are necessarily polyhedrons. In this case we call the set {Ci} a
polyhedral partition of Rd.

Now, we can state our main result,

Theorem 1.1. Let A be an m by n real matrix. Let K denote the finitely generated
cone Im+A. Then, the following statements hold:

a) The cones {F − F4 : F / K} form a polyhedral partition of Rm. The map pK
is linear restricted to the members of this partition, that is for every F / K there
exists a unique matrix PF ∈ Rm×m such that

pK(f − g) = PF · (f − g) (f ∈ F, g ∈ F4).

b) For every F / K, and every basis B of F , PF = PImB. Specially, the matrices
PF (F / K) are symmetric, idempotent, and positive semidefinite.

c) The map P. is a bijection between the sets {F : F / K} and {PF : F / K}; and
it preserves the usual partial ordering on these sets, that is F1 ⊆ F2 if and only if
PF2
− PF1

is positive semidefinite.

d) For every face F of K,

PF · P ∗F4 = 0, PF + P ∗F4 = I.

(Here P ∗F4 denotes the matrices defined by pK∗ obtained via replacing K with K∗,
and F / K with F4 / K∗ in statement a).)

In Section 2 we will prove Theorem 1.1. In Section 3 we describe an algorithm
for calculating the projection pIm+ A(y) for a fixed vector y ∈ Rm. The method is
based on Lemke’s algorithm to solve a linear complementarity problem LCP (see
[1]). After writing the problem as an LCP, using the structure of the problem
our algorithm calculates with r(A) by 2r(A) matrices instead of n by 2n matrices
(r(A) denotes rank of the matrix A). Finally, in Section 4 we describe a concept
closely related to the projection pIm+ A: the conical inverse A<. Theoretical and
algorithmical properties of the conical inverse are largely unexplored and need
further research.
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2 Proof of the main theorem

In this section we will prove Theorem 1.1. First we state three lemmas and propo-
sitions that will be used in the proof of statement a) in Theorem 1.1.

The first lemma describes a well-known characterization of the projection of a
vector onto a closed convex cone, now specialized to the case of a finitely generated
cone K = Im+A, A ∈ Rm×n (see [3], Proposition 3.2.3).

Lemma 2.1. For every vector y ∈ Rm there exists a unique vector k ∈ Rm such
that

k ∈ K, k − y ∈ K∗, kT (k − y) = 0. (1)

This vector k equals pK(y) then.

As an immediate consequence, we obtain

Proposition 2.1. Let F be a face of K. Let CF denote the set of vectors y such
that pK(y) ∈ riF . Then,

CF = (riF )− F4 (2)

holds.

Proof. Let C denote the set on the right hand side of (2). First, we will show that
CF ⊆ C. Let y be an element of CF , and let k denote the vector pK(y). Then
k ∈ riF ; and, by (1), k − y ∈ {k}⊥ ∩ K∗, that is k − y ∈ F4. We can see that
y = k − (k − y) is an element of C, and the inclusion CF ⊆ C is proved.

Conversely, if k ∈ riF and k − y ∈ F4, then (1) holds, so k = pK(y), and we
can see that y ∈ CF . This way we have proved the inclusion C ⊆ CF as well.

The closure of the set CF defined in Proposition 2.1 is

clCF = F − F4. (3)

The next lemma states that this finitely generated cone is full-dimensional (or
equivalently has nonempty interior).

Lemma 2.2. The linear hull of the set F − F4 is Rm, for every face F of K.

Proof. Let B be a matrix such that K = Ker+ (BT ). It is well-known (see [9] or
[13], Theorem 7.3) that then there exists a partition (B1, B2) of the columns of B
such that

F = {y : BT
1 y ≥ 0, BT

2 y = 0},
linF = {y : BT

2 y = 0},
riF = {y : BT

1 y > 0, BT
2 y = 0}.

(Here lin denotes linear hull.) Let f0 ∈ riF . Then F4 = {f0}⊥ ∩ K∗, and the
latter set can easily be seen to be equal to Im+B2. Thus the linear hull of F4 is
ImB2, the orthogonal complement of the linear hull of F . The linear hull of the
set F − F4, being the sum of these two subspaces, is Rm.
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It is well-known that relative interiors of the faces of a convex set form a partition
of the convex set (see [7], Theorem 18.2): they are pairwise disjoint, and their union
is the whole convex set. From this observation easily follows that the sets CF are
pairwise disjoint, and their union is the whole space. Consequently their closures,
the sets clCF (F / K), have pairwise disjoint interiors (as the interior of clCF

equals the interior of the convex CF ), cover the whole space, and (by Lemma 2.2)
are full-dimensional. We obtained a proof of

Proposition 2.2. The sets F − F4 (F / K) form a polyhedral partition of Rm.

We call a set C ⊆ Rm,

• positively homogeneous if 0 < λ ∈ R, y ∈ C implies λy ∈ C;

• additive if y1, y2 ∈ C implies y1 + y2 ∈ C.

Similarly, we call a map p : C → Rm, defined on a positively homogeneous,
additive set C,

• positively homogeneous if 0 < λ ∈ R, y ∈ C implies p(λy) = λp(y);

• additive if y1, y2 ∈ C implies p(y1 + y2) = p(y1) + p(y2).

Proposition 2.3. The sets CF defined in Proposition 2.1 are positively homoge-
neous, additive sets; and the map pK restricted to CF is a positively homogeneous,
additive map.

Proof. The first half of the statement follows from Proposition 2.1: the sets (riF )−
F4 are obviously positively homogeneous, additive sets.

To prove the remaining part of the statement, let y ∈ CF . Then by Proposition
2.1 there exist f0 ∈ riF , g ∈ F4 such that y = f0 − g. Also, for 0 < λ ∈ R,
λy ∈ CF . Again, by Proposition 2.1 there exist f0(λ) ∈ riF , g(λ) ∈ F4 such that
λy = f0(λ)− g(λ). Necessarily,

λpK(y) = λf0 = f0(λ) = pK(λy),

and we have proved the positive homogeneity of the map pK restricted to the set
CF . Additivity can be similarly verified, so the proof is finished.

We can see that the sets CF are full-dimensional, positively homogeneous, ad-
ditive sets, and the map pK restricted to the set CF is a positively homogeneous,
additive map. Such maps have a unique linear extension as the following lemma
states.

Lemma 2.3. Let C be a positively homogeneous, additive set in Rm such that the
linear hull of the set C is the whole space Rm. Let p : C → Rm be a positively
homogeneous, additive map. Then there exists a unique linear map ` : Rm → Rm

such that `(y) = p(y) for every y ∈ C.
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Proof. Let us choose a basis {y1, . . . , ym} from the set C, and let us define the map
` as follows:

`

(
m∑
i=1

λiyi

)
:=

m∑
i=1

λip(yi) (λ1, . . . , λm ∈ R).

We will show that the restriction of this linear map ` to the set C is the map p. Let
C0 denote the set of the linear combinations of the vectors y1, . . . , ym with positive
coefficients. Then C0 is an open set, and p(y) = `(y) for every y ∈ C0. Fix y0 ∈ C0,
and let y be an arbitrary element from the set C. Then there exists a constant
0 < ε < 1 such that the vector yε := εy + (1 − ε)y0 is in the set C0. By positive
homogeneity and additivity of the map p,

p(yε) = εp(y) + (1− ε)p(y0).

On the other hand, by linearity of the map `,

`(yε) = ε`(y) + (1− ε)`(y0).

Here `(yε) = p(yε) and `(y0) = p(y0), so we have `(y) = p(y); the map ` meets the
requirements.

Finally, uniqueness of the map ` is trivial, as ` must have fixed values for the
elements of the full-dimensional set C.

Now, we can describe the proof of Theorem 1.1.

Proof of part a) in Theorem 1.1: By Proposition 2.3 and Lemma 2.3 existence and
uniqueness of matrices PF follow such that

pK(y) = PF y (y ∈ CF ).

It is well-known (see Proposition 3.1.3 in [3]), that the map pK is continuous, so
we have actually

pK(y) = PF y (y ∈ clCF ).

We have seen already (see Proposition 2.2) that the sets clCF = F − F4 (F / K)
form a polyhedral partition of Rm, thus the proof of statement a) in Theorem 1.1
is complete.

Proof of part b) in Theorem 1.1: Let F be a face of the cone K. Let B be a basis
of the face F , and let B4 be a basis of the complementary face F4. Then every
vector y ∈ Rm can be written in the form

y = Bv +B4w, v ∈ RdimF , w ∈ RdimF4 .

Multiplying this equality from the left with the matrices PF and BT , respectively,
we obtain the equalities

PF y = Bv, BT y = BTBv.
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These equalities imply

PF y = Bv = B(BTB)−1BT y = PImBy.

We have PF = PImB , and the proof of statement b) in Theorem 1.1 is finished also.

Proof of part c) in Theorem 1.1: First, notice that the map P. is trivially a bijection
between the sets {F : F /K} and {PF : F /K}. (Injectivity follows from the obvious
fact that if F1 6= F2, for example there exists y ∈ F1 \ F2, then PF1

= PF2
would

imply PF2y = PF1y = y, and thus y ∈ F2, which is a contradiction.)
Hence, we have to verify only that F1, F2 / K, F1 ⊆ F2 implies that PF2 − PF1

is positive semidefinite. Let B1 be a basis of the face F1, and let B2 be a basis of
the face F2 such that B1 ⊆ B2. Then for every y ∈ Rm, by the definition of the
projection map,

||y − PImB1
y||2 ≥ ||y − PImB2

y||2.

This inequality, by part b) in Theorem 1.1 implies that

yTPF2y ≥ yTPF1y (y ∈ Rm),

that is the positive semidefiniteness of the matrix PF2
−PF1

, which was to be shown.

Proof of part d) in Theorem 1.1: Let y1, . . . , ym be a basis in the set CF , and let

y41 , . . . , y
4
m be a basis in the set C∗F4 .

Then, to prove that PF · P ∗F4 = 0, it is enough to show that

yTi PF · P ∗F4y
4
j = 0 (1 ≤ i, j ≤ m).

In other words we have to show that the vectors pK(yi) and pK∗(y
4
j ) are orthogonal.

This follows from the fact that the former vectors are in F , while the latter vectors
are in F4.

To prove the equality PF + P ∗F4 = I, it is enough to verify that

yTi (PF + P ∗F4)y4j = yTi y
4
j (1 ≤ i, j ≤ m).

In other words that

pK(yi)
T y4j + yTi pK∗(y

4
j ) = yTi y

4
j (1 ≤ i, j ≤ m),

or equivalently that

(yi − pK(yi))
T (y4j − pK∗(y

4
j )) = 0 (1 ≤ i, j ≤ m).

This latter equality is the consequence of the fact that the vectors pK(yi)− yi are

in F4 while the vectors pK∗(y
4
j )− y4j are in (F4)4 = F and so are orthogonal.

This way we have finished the proof of part d), and the proof of Theorem 1.1
as well.
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We conclude this section with an illustrative example. Let us consider the
following vectors: a1 := (1, 0) and a2 := (1, 1), and let K := cone {a1, a2} (cone
denotes convex conical hull). Let K∗ denote the dual cone of K. Then, K∗ can be
described as K∗ = cone {a⊥1 , a⊥2 }, with a⊥1 = (0, 1) and a⊥2 = (1,−1).

With these notations the faces of K and K∗ can be given as follows:

F0 = {0}, F1 = cone {a1}, F2 = cone {a2}, F3 = cone {a1, a2} = K,

F40 = cone {a⊥1 , a⊥2 } = K∗, F41 = cone {a⊥1 }, F
4
2 = cone {a⊥2 }, F

4
3 = {0}.

By the help of these faces we obtain the following polyhedral partition of R2:

C0 = F0 − F40 = −K∗, C1 = F1 − F41 = cone {a1,−a⊥1 }
C2 = F2 − F42 = cone {a2,−a⊥2 }, C3 = K.

The projection onto the cone K can be described as follows: for y = (y1, y2),

pK(y) =


0, if y ∈ C0 = −K∗,

(y1, 0), if y ∈ C1,
(y1 + y2, y1 + y2)/2, if y ∈ C2,

y, if y ∈ C3 = K.

3 Algorithm for computing the projection

In this section we will describe an algorithm for calculating the projection of a fixed
vector onto a finitely generated cone. The algorithm economically solves a certain
type of linear complementarity problems as well.

Let A be an m by n real matrix, and let K denote the finitely generated cone
Im+A. Let us fix a vector y ∈ Rm. To compute the projection pK(y), by Lemma
2.1, we have to find a vector x ∈ Rn such that

x ≥ 0, Ax− y ∈ Ker+ (AT ), (Ax)T (Ax− y) = 0.

This problem can be rewritten as a linear complementarity problem

LCP (A) :

{
Find vectors z, x ∈ Rn such that
z −ATAx = −AT y; x, z ≥ 0; zTx = 0.

A finite version of Lemke’s algorithm (see [1]) can be applied to solve LCP (A); if
(x, z) is a solution, then Ax = pK(y) is the projection we searched for.

However, a more economical algorithm can be constructed to find the projec-
tion of a vector; economical in the sense that instead of solving the n-dimensional
LCP (A), it solves a sequence of r(A)-dimensional LCPs, LCP (B1), LCP (B2), . . .,
where B1, B2, . . . are bases of the matrix A. (A matrix B is called a basis of the
matrix A, if B is an m by r(A) submatrix of A, and r(B) = r(A).)

Before describing this algorithm, we prove three propositions and lemmas that
will be used in the proof of the correctness and finiteness of the algorithm.
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Let B be a basis of the matrix A, with corresponding basis tableau T (B).
(The basis tableau T (B) corresponding to a basis B contains the unique coefficients
tij ∈ R such that

aj =
∑
i

{tijai : ai ∈ B} (aj ∈ A),

where aj denotes the j-th column vector of the matrix A.) We use the basis tableau
T (B) for notational convenience only. In each step of the algorithm we will use
only the j∗-th column of the tableau, that is the solution t of the system Bt = aj∗ .
Note that t can be calculated using r(A) by r(A) matrices: it is enough to find an
r(A) by r(A) invertible submatrix of B, and solve the corresponding subsystem of
Bt = aj∗ .

With these notations,

Proposition 3.1. If (x, z) is a solution of LCP (B), then Bx = pIm+ B(y). Fur-
thermore, if

aTj (Bx− y) ≥ 0 (aj ∈ A \B) (4)

holds, then Bx = pIm+ A(y) as well.

Proof. The statement follows from Lemma 2.1, see also the remark made at the
beginning of this section.

If (4) does not hold, then there exist column vectors aj ∈ A \ B such that
aTj (Bx− y) < 0. Choose one of them which minimizes the inner product with the
vector Bx− y: let j∗ be an index such that

aTj∗(Bx− y) = min
{
aTj (Bx− y) : aj ∈ A \B

}
, aj∗ ∈ A \B. (5)

This vector aj∗ will enter the basis B.
From the definition of the index j∗ immediately follows

Lemma 3.1. The minimum in (5) is less than 0.

Now, we will choose the vector ai∗ that leaves the basis B. Let i∗ denote an
index such that

aTi∗(Bx− y) = max
{
aTi (Bx− y) : ai ∈ B, tij∗ 6= 0

}
, ai∗ ∈ B, ti∗j∗ 6= 0. (6)

Remember that Bx = pIm+B(y); so aTi (Bx− y) ≥ 0 holds for every vector ai ∈ B.
Hence the maximum in (6) is at least 0. But more can be claimed:

Lemma 3.2. The maximum in (6) is greater than 0.

Proof. The vector aj∗ can be written in the form

aj∗ =
∑
{tij∗ai : ai ∈ B}.

If aTi (Bx − y) = 0 would hold for every index i such that ai ∈ B, tij∗ 6= 0, then
aTj∗(Bx− y) = 0 would follow, contradicting Lemma 3.1.
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It is well-known (see [11]) that ti∗j∗ 6= 0 implies

Proposition 3.2. The submatrix

B̂ := (B \ {ai∗}) ∪ {aj∗}

is a basis of the matrix A. Furthermore, the corresponding basis tableau T (B̂) can
be obtained from the basis tableau T (B) by pivoting on the (i∗, j∗)-th position of the
latter tableau.

For the new basis B̂ it holds that

Lemma 3.3. The vectors pIm+ B(y) and aj∗ are elements of the cone Im+ B̂.

Proof. As for the solution (x, z) of LCP (B), zTx = 0, z, x ≥ 0 holds, necessarily
xizi = 0 for all indices i. As by Lemma 3.2 zi∗ = aTi∗(Bx − y) > 0, we have

xi∗ = 0. We can see that Bx ∈ Im+ (B \ {ai∗}); consequently Bx ∈ Im+B̂, that is
pIm+ B(y) ∈ Im+B̂. The remaining statement that aj∗ ∈ Im+B̂ is trivial.

The next proposition shows that the new basis B̂ is an improvement over B.

Proposition 3.3. The distance between pIm+ B̂(y) and y is less than the distance

between pIm+ B(y) and y.

Proof. Let S denote the following set of vectors:

S := {s = εBx+ (1− ε)aj∗ : 0 < ε < 1, ε ∈ R}.

By Lemma 3.3, S ⊆ Im+ B̂. Furthermore, from Lemma 3.1 it can easily be seen
that there exists a vector s ∈ S such that the distance between y and s is less than
the distance between y and Bx = pIm+ B(y). (In fact, it can easily be verified that

||y − s||2 − ||y −Bx||2

2(1− ε)
→ aTj∗(Bx− y) (ε→ 1).

Applying Lemma 3.1, we have ||y−s|| < ||y−Bx|| for some s ∈ S.) As the distance
between y and pIm+ B̂(y) is not greater than the distance between y and s, so the
statement follows.

Now, we can describe the algorithm and prove its correctness.

Theorem 3.1. Algorithm 1 finds pK(y) after finite number of steps.

Proof. The correctness of the algorithm follows from Propositions 3.1 and 3.2. The
finiteness of the algorithm is a consequence of Proposition 3.3: as the distance
between the vectors pIm+ B(y) and y decreases with each step, so there can be no
repetition in the sequence of the bases, and there are only finitely many of the bases
of A.
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Algorithm 1 Algorithm for computing the projection economically.

Funct PROJ(y,A)

1: Let B be any basis of A, and set e := 0
2: while ( e = 0 ) do
3: Compute a solution (x, z) of LCP (B)
4: if (4) holds then
5: Set e := 1
6: else
7: Choose j∗ according to (5)
8: Choose i∗ according to (6)
9: Set B := B ∪ {aj∗} \ {ai∗}

10: end if
11: end while
12: return Bx

Finally, we remark that Algorithm 1 can be applied to solve economically any
LCP of the form

(LCP ) : Find x, z such that z −Mx = q; z, x ≥ 0; zTx = 0,

where M is a symmetric positive semidefinite matrix, q ∈ ImM . To see this it is
enough to note that a matrix A can be found such that M = ATA using Cholesky
decomposition (see [11]). Then ImM = Im (AT ), so q = −AT y for some vector
y. This way we have rewritten (LCP ) as LCP (A), and the algorithm discussed in
this section can be applied to solve the problem.

4 Remarks on the conical inverse

In this section we describe a concept closely related to the projection onto a finitely
generated cone and also to the Moore-Penrose generalized inverse of a matrix.

Let A be an m by n real matrix. For every vector y ∈ Rm there exists a unique
vector x∗ ∈ Rn such that Ax∗ = pImA(y) and

||x∗|| = min{||x|| : Ax = pImA(y), x ∈ Rn}.

The dependence of the vector x∗ on the vector y turns out to be linear (see [11]):
there exists a unique matrix, called the Moore-Penrose generalized inverse of the
matrix A and denoted by A− such that x∗ = A−y for every y ∈ Rm.

It is also well-known (see [8]) that the Moore-Penrose generalized inverse can
be alternatively defined as the unique matrix A− ∈ Rn×m satisfying the four con-
ditions: a) AA−A = A; b) A−AA− = A−; c) (AA−)T = AA−; d) (A−A)T = A−A.

Similarly as in the case of the projection map, this concept can also be general-
ized via replacing the subspace ImA with the finitely generated cone Im+A. The
map defined this way is called the conical inverse of the matrix A, and is denoted
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by A<. Thus for every vector y ∈ Rm, A<(y) is the unique vector in Rn satisfying
AA<(y) = pIm+ A(y), A<(y) ≥ 0, and

||A<(y)|| = min{||x|| : Ax = pIm+ A(y), x ≥ 0}.

The next proposition describes a certain relation between the two inverses de-
fined above.

Proposition 4.1. For every vector y ∈ Rm, it holds that

(A,−A)<(y) = (max{A−y, 0},−min{A−y, 0})

where the max and min are meant elementwise.

Proof. Let us consider the following two programs:

(P̂ ) : Find min
x1,x2≥0

||y −Ax1 +Ax2||

and
(P ) : Find min

x
||y −Ax||.

The variable transformations

x := x1 − x2 resp. x1 := max{x, 0}, x2 := −min{x, 0}

show the equivalence of programs (P̂ ) and (P ).
Furthermore, it can easily be seen that

• if x is an optimal solution of program (P ), then the vector

(x1, x2) := (max{x, 0}+ p,−min{x, 0}+ p)

is an optimal solution of program (P̂ ) for any vector p ≥ 0;

• if (x1, x2) is an optimal solution of program (P̂ ), then the vector x := x1−x2
is an optimal solution of program (P ) such that

(x1, x2) = (max{x, 0}+ p,−min{x, 0}+ p)

for some vector p ≥ 0.

Consequently, the optimal solution of (P̂ ) with the least norm will be

(x1, x2) = (max{x, 0},−min{x, 0}),

where x is the optimal solution of (P ) with the least norm; which was to be shown.

Thus any algorithm for calculating the conical inverse can be used for calcu-
lating the Moore-Penrose generalized inverse. Conversely also, as the following
proposition shows.
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Proposition 4.2. The vector x equals A<(y) if and only if for some vector z,
(x, z) is a solution of the following linear complementarity problem:

(LCP<) :

{
Find x, z such that x, z ≥ 0; zTx = 0;
x− (I −A−A)z = A−pIm+ A(y).

Proof. Let x0 ≥ 0 be a vector such that Ax0 = pIm+ A(y). To find A<(y) we have
to find the unique optimal solution of the following convex quadratic program:

(QP ) : Find min

{
1

2
||x||2 : Ax = Ax0, x ≥ 0

}
.

By the Kuhn-Tucker conditions (see [1]), the vector x ≥ 0 is an optimal solution of
program (QP ) if and only if there exists a vector z ≥ 0 such that zTx = 0,

x− z ∈ Im (AT ), x− x0 ∈ KerA. (7)

It is well-known that

PIm (AT ) = A−A, PKerA = I −A−A,

so (7) can be rewritten as

(I −A−A)(x− z) = 0, A−Ax = A−Ax0. (8)

It is easy to see that (8) holds if and only if (x, z) satisfies the following equality

x− (I −A−A)z = A−Ax0.

We can see that x = A<(y) if and only if there exists a vector z such that (x, z) is
a solution of (LCP<); the proof is complete.

Note that any problem of minimizing a strictly convex quadratic function

q(x) :=
1

2
xTMx+ cTx (x ∈ Rn)

(with M = V TV ∈ Rn×n symmetric positive definite, V ∈ Rn×n invertible, c ∈
Rn) over a non-empty polyhedron

P̃ := {x : Ãx = b̃, x ≥ 0}

(with Ã ∈ Rm×n, b̃ ∈ Rm) can be transformed (applying an invertible affine
transformation of Rn, namely x := V x + V −1T c, x ∈ Rn) into the form of (QP ),
and in turn (QP ) can be formulated (homogenized) as a projection (of the vector
(0, 1) ∈ Rn+1) problem onto the polyhedral cone{(

x
λ

)
: Ax− λ ·Ax0 = 0, x ≥ 0, λ ≥ 0

}
⊆ Rn+1



670 Miklós Ujvári

(or the constraint Ax = Ax0 can be replaced with x = x0 + Bx̃, where B is a
basis of KerA, which results again in a projection problem), see [6]. Similarly, the
minimizing of the strictly convex quadratic function q(x) over a finitely generated
set Q̃+ R̃ (with

Q̃ :=

{
k∑

i=1

λiỹi : λi ≥ 0,

k∑
i=1

λi = 1

}
,

R̃ :=

∑̀
j=1

µj z̃j : µj ≥ 0


for some vectors ỹi, z̃j ∈ Rn) can be reduced to solving a projection problem onto
a finitely generated cone of the form

k∑
i=1

λi

(
yi
1

)
+
∑̀
j=1

µj

(
zj
0

)
: λi, µj ≥ 0


for some vectors yi, zj ∈ Rn. The proof of this statement is an adaptation of the
results in Chapters 5 and 6 of [6] (as finitely generated sets are polyhedrons, see
[7], Theorem 19.1, or [12], [13]), and is left to the reader.

Finally, we mention some open problems concerning the projection and the
conical inverse:

• Testing Algorithm 1 on numerical examples (and the comparison of its effi-
ciency with Lemke’s algorithm) is a possible direction for further research.
What is the number of the smaller LCPs we have to solve in the course of
the algorithm?

• Is it true, that similarly to the case of the projection, the conical inverse is
also continuous and made up from linear parts? (This statement is trivial if
the m by n matrix A has rank r(A) = n.)

• We can see from Proposition 4.2 that the conical inverse for a fixed vector y
can be calculated via solving an n-dimensional LCP. Is it possible to construct
an algorithm to compute A<(y) more economically, similarly as in the case
of the projection map? Can this algorithm (or a combination of the two
algorithms) be used for solving economically general classes of LCPs?

5 Conclusion

In this paper we examined the properties of the projection onto a finitely generated
cone. Our main result shows that this map is made up of linear parts with a
structure resembling the facial structure of the finitely generated cone we project
onto (the map is linear if and only if we project onto a subspace). Also we presented



On the Projection onto a Finitely Generated Cone 671

an algorithm for computing the projection of a fixed vector. The algorithm is
economical in the sense that it calculates with matrices whose size depends on the
dimension of the finitely generated cone and not on the number of the generating
vectors of the cone. Some remarks and open problems concerning the conical inverse
conclude the paper.
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[2] Ekárt, A., Németh, A. B., and Németh, S. Z. Rapid heuristic projection on
simplicial cones. Manuscript, 2010.
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