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Abstract

We use a fixed point index theorem in cones to study the existence
of positive solutions for boundary value problems of second-order
functional differential equations of the form











y′′(x) + r(x)f(y(w(x))) = 0, 0 < x < 1,
αy(x) − βy′(x) = ξ(x), a ≤ x ≤ 0,
γy(x) + δy′(x) = η(x), 1 ≤ x ≤ b;

where w(x) is a continuous function defined on [0, 1] and r(x) is al-
lowed to have singularities on [0, 1]. The result here is the general-
ization of a corresponding result for ordinary differential equations.

Keywords: functional differential equation, boundary value problem, positive
solution, superlinear and sublinear

1991 AMS classification: 34K10, 34B15

1 Introduction

Boundary value problems (abbr. as BVP) associated with second order diffferential
equations have a long history and many different methods and techniques have been
used and developed in order to obtain various qualitative properties of the solutions
(see [1-5, 8, 11, 15, 17]). In recent years, accompanied by the development of
theory of functional differential equations (abbr. as FDE), many authors have paid
attention to BVP of second order FDE such as

[p(t)x′(t)]′ = f(t, xt, x(t)),

or
x′′(t) = f(t, x(t), x(σ(t)), x′(t), x′(τ(t)))

(for example see [6-7, 10, 12-14, 16]). As pointed out by the authors of [6], the
background for these problems lies in many areas of physics, applied mathematics
and variational problems of control theory.
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In this paper, we investigate the existence of positive solutions for BVP of second-
order FDE with the form:











y′′(x) + r(x)f(y(w(x))) = 0, 0 < x < 1,
αy(x) − βy′(x) = ξ(x), a ≤ x ≤ 0,
γy(x) + δy′(x) = η(x), 1 ≤ x ≤ b.

(1.1)

Here we assume that
(P1) w(x) is a continuous function defined on [0, 1] satisfying

c = inf{w(x); 0 ≤ x ≤ 1} < 1, d = sup{w(x); 0 ≤ x ≤ 1} > 0.

Thus E := {x ∈ [0, 1]; 0 ≤ w(x) ≤ 1} is a compact set and mes E > 0;
(P2) ξ(x) and η(x) are continuous functions defined on [a, 0] and [1, b] respectively,

where a := min{0, c}, b := max{1, d}; furthermore, ξ(0) = η(1) = 0; ξ(x) ≥ 0 as

β = 0 ;
∫ 0
x e−

α
β

sξ(s)ds ≥ 0 as β > 0; η(x) ≥ 0 as δ = 0;
∫ x
1 e

γ

δ
sη(s)ds ≥ 0 as δ > 0.

For the case of w(x) ≡ x, BVP (1.1) is related to two point BVP of ODE for
which Erbe and Wang[4] have got the following theorem:

Theorem A.[4] Assume that w(x) ≡ x, ξ(x) ≡ 0, η(x) ≡ 0 and
(A1) f ∈ C([0, +∞), [0, +∞));
(A2) r ∈ C([0, 1], [0, +∞)) and r(x) 6≡ 0 for any subinterval of [0, 1];
(A3) α, β, γ, δ ≥ 0, ρ := γβ + αγ + αδ > 0.

Then any one of the following is a sufficient condition for the existence of at least
one positive solution of BVP (1.1):

(1) lim
v↓0

f(v)
v

= +∞ and lim
v↑+∞

f(v)
v

= 0 (sublinear case);

(2) lim
v↓0

f(v)
v

= 0 and lim
v↑+∞

f(v)
v

= +∞ (superlinear case).

Motivated by [4], in this paper we shall extend the results of [4] to BVP (1.1).
Firstly, we have the following hypotheses:

(H1) α, β, γ, δ ≥ 0, ρ := γβ + αγ + αδ > 0;
(H2) r(x) is a measurable function defined on [0, 1], and

0 <

∫

E
h(x)r(x)dx ≤

∫ 1

0
h(x)r(x)dx < +∞,

0 <

∫

E
φ1(x)r(x)dx ≤

∫ 1

0
φ1(x)r(x)dx < +∞,

where E is defined as in (P1); h(x) : [0, 1] → [0, 1] is defined by

h(x) =



















1, δβ > 0,
x, β = 0, δ > 0,
1 − x, β > 0, δ = 0,
x(1 − x), β = δ = 0

and φ1(x) (φ1(x) > 0, x ∈ (0, 1)) is the eigenfunction related to the smallest eigen-
value λ1 (λ1 > 0) of the eigenvalue problem

−φ′′ = λφ, αφ(0) − βφ′(0) = 0, γφ(1) + δφ′(1) = 0;
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(H3) f(y) is a nonnegative continuous function defined on [0, +∞).
Under the assumptions (H1) − (H3), we allow that r(x) ≡ 0 on some subset of

E, and r(x) has some kind of singularities on [0, 1]. For example, if β = δ = 0, then
φ1(x) = sin πx and

r(x) = x−m(1 − x)−n, 0 < m < 2, 0 < n < 2,

satisfies (H2).
To the best of the authors’ knowledge, there has not been much work done

about the positive solutions for the singular boundary value problems with deviating
arguments, although they have importance in applications.

2 Main Theorem

First, we give the following definitions of solution and positive solution of BVP
(1.1).
Definition. y(x) is said to be a solution of BVP (1.1) if it satisfies the following:

1. y(x) is nonnegative and continuous on [a, b];

2. y(x) = y(a; x) as x ∈ [a, 0], where y(a; x) : [a, 0] → [0, +∞) is defined by

y(a; x) =

{

e
α
β

x
(

1
β

∫ 0
x e

−α
β

s
ξ(s)ds + y(0)

)

, β > 0,
1
α
ξ(x), β = 0;

(2.1)

3. y(x) = y(b; x) as x ∈ [1, b], where y(b; x) : [1, b] → [0, +∞) is defined by

y(b; x) =







e−
γ
δ
x

(

1
δ

∫ x
1 e

γ
δ
sη(s)ds + e

γ
δ y(1)

)

, δ > 0,
1
γ
η(x), δ = 0;

(2.2)

4. while δβ > 0, y′(x) exists and is absolutely continuous on [0, 1]; while β = 0, δ >

0, y′(x) exists and is locally absolutely continuous on (0, 1]; while β > 0, δ = 0,
y′(x) exists and is locally absolutely continuous on [0, 1); while β = δ = 0, y ′(x)
exists and is locally absolutely continuous on (0, 1);

5. y′′(x) = −r(x)f(y(w(x))) for x ∈ (0, 1) almost everywhere.

Furthermore, a solution y(x) of (1.1) is called a positive solution if y(x) > 0 for
x ∈ (0, 1).

Suppose that y(x) is a solution of BVP (1.1), then it could be expressed as

y(x) =











y(a; x), a ≤ x ≤ 0,
∫ 1
0 G(x, t)r(t)f(y(w(t)))dt, 0 ≤ x ≤ 1,

y(b; x), 1 ≤ x ≤ b,

(2.3)

and Green’s function

G(x, t) :=

{

1
ρ
(δ + γ − γx)(β + αt), 0 ≤ t ≤ x ≤ 1,

1
ρ
(δ + γ − γt)(β + αx), 0 ≤ x ≤ t ≤ 1,
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where ρ is given in (H1). It is obvious that 0 < G(x, t) ≤ G(t, t) for (x, t) ∈
(0, 1) × (0, 1).

By an elementary calculation, one can find constants λ and B such that

λBh(x)h(t) ≤ G(x, t) ≤ Bh(t), (x, t) ∈ [0, 1] × [0, 1], (2.4)

where h(x) is decided by (H2).
By using (2.3) and (2.4), we know that for every solution y(x) of BVP (1.1), one

has
{

‖y‖[0,1] ≤ B
∫ 1
0 h(t)r(t)f(y(w(t)))dt,

y(x) ≥ λ‖y‖[0,1]h(x), x ∈ [0, 1],
(2.5)

where ‖y‖[0,1] := sup{|y(x)|; 0 ≤ x ≤ 1}.
Choose σ ∈ (0, 1

4
) such that
∫

Eσ

h(s)r(s)ds > 0,
∫

Eσ

φ1(s)r(s)ds > 0, (2.6)

where Eσ := {x ∈ E; σ ≤ w(x) ≤ 1 − σ}. In this paper, we always assume that σ

satisfies (2.6). Then we have from (2.5) that

y(x) ≥ λ‖y‖[0,1]h(x) ≥ λσo‖y‖[0,1], x ∈ [σ, 1 − σ],

here

σo =











1, δβ > 0,
σ, β > 0, δ = 0 or β = 0, δ > 0,
σ(1 − σ), δ = β = 0.

(2.7)

The following theorem is our main result.
Theorem 1. If (P1), (P2), (H1)− (H3) are satisfied, then any one of the following

is a sufficient condition for the existence of at least one positive solution of BVP(1.1):

(H4) lim inf
v→0+

f(v)
v

> kλ1, lim sup
v→+∞

f(v)
v

< qλ1;

(H5) lim inf
v→+∞

f(v)
v

> kλ1, lim sup
v→0+

f(v)
v

< qλ1, ξ(x) ≡ 0, η(x) ≡ 0;

where k > 0 is large enough such that

kλσo

∫

Eσ

r(x)φ1(x)dx ≥
∫ 1

0
φ1(x)dx,

and q > 0 is small enough such that

q

∫ 1

0
r(x)φ1(x)dx ≤ λσo

∫ 1−σ

σ
φ1(x)dx

(λ and σo are defined as in (2.4) and (2.7) respectively).
Corollary. Using the following (H6) or (H7) instead of (H4) or (H5), the

conclusion of Theorem 1 is true.
(H6) lim

v↓0

f(v)
v

= +∞, lim
v↑+∞

f(v)
v

= 0 (sublinear);

(H7) lim
v↓0

f(v)
v

= 0, lim
v↑+∞

f(v)
v

= +∞ (superlinear), ξ(x) ≡ 0, η(x) ≡ 0.
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It is obvious that our corollary is an extension of Theorem A, and Theorem 1 is
an improvement of Theorem A even for the case w(x) = x. We remark here that
only if δβ > 0 and r(x) is continuous on [0, 1], every positive solution of BVP (1.1)
belongs to C1[a, b]

⋂

C2[0, 1].

3 Proof of Theorem

In this section, we shall show the conclusion of Theorem 1 only for the situation
β > 0, δ = 0. The arguments for the other three cases are similar. First we give a
lemma which will be used later (see [5] or [11]).

Lemma 1. Assume that X is a Banach space, and K ⊂ X is a cone in X. Let
Kp = {u ∈ K; ‖u‖ ≤ p}. Furthermore, assume that Φ : K → K is a compact
map, and Φu 6= u for u ∈ ∂Kp = {u ∈ K; ‖u‖ = p}. Then one has the following
conclusions:

1. if ‖u‖ ≤ ‖Φu‖ for u ∈ ∂Kp, then i(Φ, Kp, K) = 0;

2. if ‖u‖ ≥ ‖Φu‖ for u ∈ ∂Kp, then i(Φ, Kp, K) = 1.

If uo(x) is a solution of BVP (1.1) for f ≡ 0, then it can be expressed as

uo(x) =















1
β
e

α
β

x ∫ 0
x e−

α
β

sξ(s)ds, a ≤ x ≤ 0,

0, 0 ≤ x ≤ 1,
1
γ
η(x), 1 ≤ x ≤ b.

(3.1)

If y(x) is a solution of BVP(1.1), let u(x) = y(x) − uo(x), noting that u(x) ≡ y(x)
as 0 ≤ x ≤ 1, then by using (3.1), we have

u(x) =











e
α
β

x
u(0), a ≤ x ≤ 0,

∫ 1
0 G(x, t)r(t)f(u(w(t)) + uo(w(t)))dt, 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ b.

(3.2)

Let K be a cone in the Banach space X = C[a, b] which is defined as

K = {u ∈ C[a, b]; u(x) ≥ λσo‖u‖, x ∈ [σ, 1 − σ]},

where ‖u‖ := sup{|u(x)|; a ≤ x ≤ b} (noting that ‖u‖[0,1] is defined as in (2.5)).
Define an operator Φ : K → K by

(Φu)(x) =











e
α
β

x ∫ 1
0 G(0, t)r(t)f(u(w(t)) + uo(w(t)))dt, a ≤ x ≤ 0,

∫ 1
0 G(x, t)r(t)f(u(w(t)) + uo(w(t)))dt, 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ b.

(3.3)

Then we have the following four lemmas.
Lemma 2. Φ(K) ⊂ K.
Proof. It is obvious that 0 ≤ (Φu)(x) ≤ (Φu)(0) as a ≤ x ≤ 0, then one has

‖Φu‖ = ‖Φu‖[0,1]. We have from (2.4) and (3.3) that (noting that h(x) = 1 − x)

‖Φu‖[0,1] ≤ B

∫ 1

0
(1 − t)r(t)f(u(w(t)) + uo(w(t)))dt,
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thus we have

(Φu)(x) ≥ λB
∫ 1
0 (1 − x)(1 − t)r(t)f(u(w(t)) + uo(w(t)))dt,

≥ λ(1 − x)‖Φu‖[0,1],

= λ(1 − x)‖Φu‖, x ∈ [0, 1].

Thus (Φu)(x) ≥ λσo‖Φu‖, σ ≤ x ≤ 1 − σ, i.e. Φ(K) ⊂ K.
Lemma 3. Φ : K → K is completely continuous.
Proof. We can obtain the continuity of Φ from the continuity of f . In fact, if

un, u ∈ K and ‖un−u‖ → 0 as n → ∞, then we have from (3.3) that for a ≤ x ≤ b,

|(Φun)(x) − (Φu)(x)|
≤ max

0≤x≤1
|f(un(w(x)) + uo(w(x))) − f(u(w(x)) + uo(w(x)))| B

∫ 1
0 (1 − t)r(t)dt,

which implies that ‖Φun − Φu‖ → 0 as n → ∞.
Suppose that A ⊂ K is a bounded set, and there exists a constant M1 > 0 such

that ‖u‖ ≤ M1 for u ∈ A. Let ‖uo‖ = M2, then ‖u + uo‖ ≤ M1 + M2 = M for
u ∈ A. We have from (3.3) that

‖Φu‖ ≤ B max
0≤v≤M

f(v)
∫ 1

0
(1 − t)r(t)dt. (3.4)

Thus Φ(A) is bounded in K. Now it is easy to see that Φu ∈ C1[a, 1) ∩ C[a, b], and

(Φu)′(x) = −1
β+α

∫ x
0 (β + αt)r(t)f(u(w(t)) + uo(w(t)))dt

+ α
β+α

∫ 1
x (1 − t)r(t)f(u(w(t)) + uo(w(t)))dt, 0 ≤ x < 1,

(Φu)′(x) = α
β
e

α
β

x ∫ 1
0 G(0, t)r(t)f(u(w(t)) + uo(w(t)))dt, a ≤ x ≤ 0.

(3.5)

For u ∈ A, 0 ≤ x ≤ 1, we have

(Φu)(x) ≤ F (x) := max
0≤v≤M

f(v)
∫ 1

0
G(x, t)r(t)dt, 0 ≤ x ≤ 1. (3.6)

Noting the facts that F (1) = 0 and the continuity of F (x) on [0, 1], we have from
(3.6) that for any ε > 0, one can find a δ1 > 0 (independent with u) such that,
0 < δ1 < 1

4
and

(Φu)(x) <
ε

2
, 1 − 2δ1 < x < 1. (3.7)

On the other hand, for x ∈ [0, 1 − δ1] one has

|(Φu)′(x)| ≤ max
0≤v≤M

f(v)
{

∫ 1−δ1
0 r(t)dt +

∫ 1
0 (1 − t)r(t)dt

}

≤ 1+δ1
δ1

max
0≤v≤M

f(v)
∫ 1
0 (1 − t)r(t)dt = L1.

For x ∈ [a, 0], one has from (3.5) and (3.4) that

|(Φu)′(x)| ≤
α

β
|(Φu)(x)| ≤

α

β
B max

0≤v≤M
f(v)

∫ 1

0
r(t)(1 − t)dt = L2.
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Let δ2 = ε
max{L1,L2}

, then for x1, x2 ∈ [a, 1 − δ1], |x1 − x2| < δ2, we have

|(Φu)(x1) − (Φu)(x2)| ≤ max{L1, L2}|x1 − x2| < ε. (3.8)

Define δo = min{δ1, δ2}, then by using (3.7) − (3.8) and the fact that (Φu)(x) ≡ 0
for x ∈ [1, b] , we obtain that

|(Φu)(x1) − (Φu)(x2)| < ε,

for x1, x2 ∈ [a, b], |x1−x2| < δo, which implies that Φ(A) is equicontinuous. In view
of the Arzela-Ascoli lemma, we know that Φ̄(A) is a compact set; thus Φ : K → K

is completely continuous.
Lemma 4. (H6) implies that there exists ro, Ro : 0 < ro < Ro such that

i(Φ, Kr, K) = 0, 0 < r ≤ ro; i(Φ, KR, K) = 1, R ≥ Ro.

Proof. By using the first equality of (H6) we can choose ro > 0 such that

f(v) ≥ Mv, 0 ≤ v ≤ ro,

where M satisfies λ2TBσoM > 2 and

T =
∫

Eσ

(1 − s)r(s)ds.

If u ∈ ∂Kr (0 < r ≤ ro), one has

u(x) ≥ λσo‖u‖ = λσor, x ∈ [σ, 1 − σ]. (3.9)

Then we obtain ( noting that uo(x) ≡ 0 as x ∈ [0, 1])

(Φu)(1
2
) =

∫ 1
0 G(1

2
, s)r(s)f(u(w(s)) + uo(w(s)))ds

≥ 1
2
λB

∫

Eσ
(1 − s)r(s)f(u(w(s)))ds

≥ 1
2
λ2BσorTM

> r = ‖u‖.

This leads to
‖Φu‖ > ‖u‖, ∀u ∈ ∂Kr.

Thus we have from Lemma 1 i(Φ, Kr, K) = 0, for 0 < r ≤ ro.
On the other hand, the second equality of (H6) leads to: for ∀ε > 0, there is a

R′ > ro + ‖uo‖ such that

f(v) ≤ εv, v > R′, (3.10)

where ε satisfies

εB(1 + ‖uo‖)
∫ 1

0
(1 − s)r(s)ds <

1

2
. (3.11)

Choose

Ro > 1 + 2B max{f(v); 0 ≤ v ≤ R′ + ‖uo‖}
∫ 1

0
(1 − s)r(s)ds. (3.12)
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Thus, if u ∈ ∂KR and R ≥ Ro, then we have from (3.10)-(3.12) that

(Φu)(x) ≤ B
∫ 1
0 (1 − s)r(s)f(u(w(s)) + uo(w(s)))ds

= B
∫

u(w(s))>R′(1 − s)r(s)f(u(w(s)) + uo(w(s)))ds

+B
∫

0≤u(w(s))≤R′(1 − s)r(s)f(u(w(s)) + uo(w(s)))ds

≤ εB(‖u‖ + ‖uo‖)
∫ 1
0 (1 − s)r(s)ds

+B max{f(v); 0 ≤ v ≤ R′ + ‖uo‖}
∫ 1
0 (1 − s)r(s)ds

< 1
2
‖u‖ + 1

2
+ B max{f(v); 0 ≤ v ≤ R′ + ‖uo‖}

∫ 1
0 (1 − s)r(s)ds

< 1
2
‖u‖ + 1

2
R, 0 ≤ x ≤ 1.

That is
‖Φu‖ = ‖Φu‖[0,1] < ‖u‖, ∀u ∈ ∂KR, .

Thus i(Φ, KR, K) = 1 for R ≥ Ro.
Lemma 5. (H7) implies that there exists ro, Ro : 0 < ro < Ro such that

i(Φ, Kr, K) = 1, 0 < r ≤ ro; i(Φ, KR, K) = 0, R ≥ Ro.

Proof. Since ξ(x) ≡ 0, η(x) ≡ 0, we have uo(x) ≡ 0. By the first equality of
(H7), one can choose a ro > 0 such that

f(v) ≤ εv, 0 ≤ v ≤ ro, (3.13)

where ε > 0 satisfies

0 < εB

∫ 1

0
(1 − s)r(s)ds <

1

2
. (3.14)

If u ∈ ∂Kr, 0 < r ≤ ro, then we have from (3.3), (3.13) and (3.14) that

0 ≤ (Φu)(x) ≤ B
∫ 1
0 (1 − s)r(s)f(u(w(s)))ds

≤ εB
∫ 1
0 (1 − s)r(s)u(w(s))ds

≤ εB‖u‖
∫ 1
0 (1 − s)r(s)ds

< ‖u‖, 0 ≤ x ≤ 1,

That is
‖Φu‖ = ‖Φu‖[0,1] < ‖u‖, ∀u ∈ ∂Kr.

So we have the conclusion that i(Φ, Kr, K) = 1, 0 < r ≤ ro.
On the other hand, the second equality of (H7) implies that ∀M > 0, there is an

Ro > ro such that
f(v) ≥ Mv, v > λσoRo; (3.15)

here we choose M > 0 such that λ2TBσoM > 2. For u ∈ ∂KR, R ≥ Ro, we have
from the definition of KR that

u(x) ≥ λσo‖u‖ = λσoR, x ∈ [σ, 1 − σ]. (3.16)

Thus we have from (3.3),(3.15)-(3.16) that

(Φu)(1
2
) =

∫ 1
0 G(1

2
, s)r(s)f(u(w(s)))ds

≥ 1
2
λB

∫

Eσ
(1 − s)r(s)f(u(w(s)))ds

≥ 1
2
λ2BσoRM

∫

Eσ
(1 − s)r(s)ds

= 1
2
λ2BσoRTM

> R = ‖u‖,
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which leads to
‖Φu‖ > ‖u‖ ∀u ∈ ∂KR.

Thus i(Φ, KR, K) = 0 for R ≥ Ro.
Now by using the above lemmas, we can show the conclusions of Theorem 1.
Proof of Theorem 1. For 0 < m < 1 < n, define f1(u) = um, f2(u) = un, u ≥

0, so that f1(u) satisfies (H6) and f2(u) satisfies (H7). Define Φi : K → K (i = 1, 2)
as follows:

(Φiu)(x) =











e
α
β

x ∫ 1
0 G(0, t)r(t)fi(u(w(t)) + uo(w(t)))dt, a ≤ x ≤ 0,

∫ 1
0 G(x, t)r(t)fi(u(w(t)) + uo(w(t)))dt, 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ b.

(3.17)

Then Φiu (i = 1, 2) are completely continuous operators. One has from Lemma 4-5
that

i(Φ1, Kr, K) = 0, 0 < r ≤ ro; i(Φ1, KR, K) = 1, R ≥ Ro, (3.18)

and

i(Φ2, Kr, K) = 1, 0 < r ≤ ro; i(Φ2, KR, K) = 0, R ≥ Ro, (3.19)

Define Hi(s, u) = (1 − s)Φu + sΦiu (i = 1, 2) so that for any s ∈ [0, 1], Hi is a
completely continuous operator. Furthermore, for any ω > 0 and i = 1, 2, we have

|Hi(s1, u) − Hi(s2, u)| ≤ |s1 − s2|[‖Φiu‖ + ‖Φu‖]

as s1, s2 ∈ [0, 1], u ∈ Kω. Note that ‖Φiu‖+‖Φu‖ is uniformly bounded in Kω. Thus
Hi(s, u) is continuous on u ∈ Kω uniformly for s ∈ [0, 1]. According to Lemma 7.2.3
in [18], we conclude that Hi(s, u) is a completely continuous operater on [0, 1]×Kω.

Suppose that (H4) holds. By using the first inequality of (H4) and the definition
of f1, one can find ε > 0 and r1 : 0 < r1 ≤ ro such that

{

f(u) ≥ (kλ1 + ε)u, 0 ≤ u ≤ r1,

f1(u) ≥ (kλ1 + ε)u, 0 ≤ u ≤ r1.
(3.20)

In what follows, we shall show that H1(s, u) 6= u for u ∈ ∂Kr1
and s ∈ [0, 1]. If this

is not true, then there exist s1 : 0 ≤ s1 ≤ 1 and u1 ∈ ∂Kr1
such that H1(s1, u1) = u1.

Note that u1(x) satisfies

−u′′
1(x) = (1 − s1)r(x)f(u1(w(x)) + uo(w(x)))

+s1r(x)f1(u1(w(x)) + uo(w(x))), 0 < x < 1;
(3.21)

and
{

αu1(x) − βu′
1(x) = 0, a ≤ x ≤ 0,

u1(x) = 0, 1 ≤ x ≤ b.
(3.22)

Multiplying both sides of (3.21) by φ1(x) and then integrating it from 0 to 1, after
two times of integrating by parts, we get from (3.22) that

λ1

∫ 1
0 u1(x)φ1(x)dx =

∫ 1
0 φ1(x)[(1 − s1)r(x)f(u1(w(x)) + uo(w(x)))

+s1r(x)f1(u1(w(x)) + uo(w(x)))]dx.
(3.23)
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Noting that uo(w(x)) ≡ 0 as x ∈ Eσ, we obtain from (3.20) and (H4) that

λ1

∫ 1
0 u1(x)φ1(x)dx ≥

∫

Eσ
φ1(x)r(x)[(1 − s1)f(u1(w(x)))) + s1f1(u1(w(x)))]dx

≥
∫

Eσ
φ1(x)r(x)[(1 − s1)(kλ1 + ε)u1(w(x))

+s1(kλ1 + ε)u1(w(x))]dx

≥ (λ1 + ε
k
)kλσo‖u1‖

∫

Eσ
φ1(x)r(x)dx

≥ (λ1 + ε
k
)‖u1‖

∫ 1
0 φ1(x)dx.

(3.24)
We also have

λ1

∫ 1

0
u1(x)φ1(x)dx ≤ λ1‖u1‖

∫ 1

0
φ1(x)dx, (3.25)

which together with (3.24) leads to

λ1 ≥ λ1 +
ε

k
.

This is impossible. Thus H1(s, u) 6= u for u ∈ ∂Kr1
and s ∈ [0, 1]. In view of the

homotopic invariant property of topological degree (see [9] or [18]) and (3.18) we
know that

i(Φ, Kr1
, K) = i(H1(0, ·), Kr1

, K)
= i(H1(1, ·), Kr1

, K) = i(Φ1, Kr1
, K) = 0.

(3.26)

On the other hand, according to the second inequality of (H4), there exist ε > 0
and R′ > Ro such that

f(u) ≤ (qλ1 − ε)u, u ≥ R′.

If C = max
0≤u≤R′

|f(u) − (qλ1 − ε)u| + 1, then we deduce that

f(u) ≤ (qλ1 − ε)u + C, ∀u ≥ 0. (3.27)

Define H(s, u) = sΦu, s ∈ [0, 1]. We shall show that there exists a R1 ≥ R′ such
that

H(s, u) 6= u, ∀s ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.28)

If ∃s1 ∈ [0, 1], u1 ∈ K such that H(s1, u1) = u1, then it is similar to the argument
of (3.24)-(3.25) that

λ1

∫ 1
0 u1(x)φ1(x)dx

= s1

∫ 1
0 r(x)φ1(x)f(u1(w(x)) + uo(w(x)))dx

≤ q(λ1 −
ε
q
)‖u1 + uo‖

∫ 1
0 r(x)φ1(x)dx + C

∫ 1
0 r(x)φ1(x)dx

≤ q(λ1 −
ε
q
)‖u1‖

∫ 1
0 r(x)φ1(x)dx + C1

∫ 1
0 r(x)φ1(x)dx,

(3.29)

and
λ1

∫ 1
0 u1(x)φ1(x)dx ≥ λ1λσo‖u1‖

∫ 1−σ
σ φ1(x)dx

≥ λ1q‖u1‖
∫ 1
0 r(x)φ1(x)dx,

(3.30)

where C1 = q(λ1 −
ε
q
)‖uo‖ + C. Combining (3.29) with (3.30), we have

‖u1‖ ≤
C1

ε
= R̄.
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Define R1 = max{R′, R̄}, then (3.28) is true. By the homotopic invariant property
of topological degree, one has

i(Φ, KR1
, K) = i(H(1, ·), KR1

, K)
= i(H(0, ·), KR1

, K) = i(θ, KR1
, K) = 1,

(3.31)

where θ is zero operator. In view of (3.26),(3.31), we obtain

i(Φ, KR1
\Kr1

, K) = 1.

Thus Φ has a fixed point in KR1
\Kr1

.
Now assume that (H5) is true. The first inequality and the definition of f2 lead

to: ∃ε > 0 and R′ > Ro such that
{

f(u) ≥ (kλ1 + ε)u, u > R′,

f2(u) ≥ (kλ1 + ε)u, u > R′.

Let
C = max

0≤u≤R′

|f(u) − (kλ1 + ε)u| + max
0≤u≤R′

|f2(u) − (kλ1 + ε)u| + 1,

then we have

f(u) ≥ (kλ1 + ε)u − C, f2(u) ≥ (kλ1 + ε)u − C, ∀u ≥ 0. (3.32)

We want to show that ∃R1 ≥ R′ such

H2(s, u) 6= u, ∀s ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.33)

In fact, if there are s1 ∈ [0, 1], u1 ∈ K such that H2(s1, u1) = u1, then using (3.32),
it is analogous to the argument of (3.24)-(3.25) that

λ1

∫ 1
0 u1(x)φ1(x)dx ≥

∫

Eσ
φ1(x)r(x){(1 − s1)[(kλ1 + ε)u1(w(x)) − C]

+s1[(kλ1 + ε)u1(w(x)) − C]}dx

≥ (λ1 + ε
k
)kλσo‖u1‖

∫

Eσ
φ1(x)r(x)dx −

∫

Eσ
Cφ1(x)r(x)dx;

(3.34)
λ1

∫ 1
0 u1(x)φ1(x)dx ≤ λ1‖u1‖

∫ 1
0 φ1(x)dx

≤ λ1kλσo‖u1‖
∫

Eσ
r(x)φ1(x)dx.

(3.35)

(3.34)-(3.35) lead to ‖u1‖ ≤ C
λσoε

= R̄. Let R1 = max{R′, R̄}. We obtain (3.33) and
then we have

i(Φ, KR1
, K) = i(Φ2, KR1

, K) = 0. (3.36)

On the other hand, noting that ξ(x) ≡ 0, µ(x) ≡ 0, one has uo(x) ≡ 0 for
x ∈ [a, b]. Define H(s, u) as above. By the second inequality of (H5), there exist
ε > 0 and r1 : 0 < r1 ≤ ro such that

f(u) ≤ (qλ1 − ε)u, 0 ≤ u ≤ r1. (3.37)

We could also show that

H(s, u) 6= u, ∀s ∈ [0, 1], u ∈ ∂Kr1
.
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But we omit the details. Thus we obtain

i(Φ, Kr1
, K) = i(θ, Kr1

, K) = 1. (3.38)

In view of (3.36),(3.38), we obtain

i(Φ, KR1
\Kr1

, K) = −1.

Thus Φ has a fixed point in KR1
\Kr1

.
Suppose that u is the fixed point of Φ in KR1

\Kr1
. Let y(x) = u(x) + uo(x).

Since y(x) = u(x) for x ∈ [0, 1] and 0 < r1 ≤ ‖u‖ = ‖u‖[0,1] = ‖y‖[0,1] ≤ R1, we have
from (2.5) that y(x) is the positive solution of BVP(1.1).

Thus we complete the proof.
Example. Let us introduce an example to illustrate the usage of our theorem.

Consider the BVP:










y′′(x) + r(x)y
1

2 (x − 1
3
) = 0, 0 < x < 1,

y(x) = − sin πx, − 1
3
≤ x ≤ 0,

y(1) = 0;
(3.39)

where

r(x) =







π2 (sin πx)
∣

∣

∣sin π(x − 1
3
)
∣

∣

∣

− 1

2

, x ∈ [0, 1
3
) ∪ (1

3
, 1],

0, x = 1
3
.

Then w(x) = x − 1
3
, a = −1

3
, b = 1, f(v) = v

1

2 , α = γ = 1, β = δ = 0, E = [ 1
3
, 1].

Since
f(v)

v
=

v
1

2

v
= v− 1

2

we have lim
v→+∞

f(v)
v

= 0, lim
v→0+

f(v)
v

= +∞. Thus (P1), (P2), (H1) − (H3), (H6) are

satisfied and (3.39) has at least one positive solution y(x). In fact,

y(x) =

{

− sin πx, −1
3
≤ x ≤ 0,

sin πx, 0 < x ≤ 1,

is a positive solution of (3.39).
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