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1. Introduction

In this paper we will study the asymptotic behaviour of positive solutions to the
system

(1)

∣

∣

∣

∣

∣

∣

x′
1(t) = A(t)

1+xn

2
(t)

− x1(t)

x′
2(t) = B(t)

1+xn

1
(t)

− x2(t),

where A and B belong to C+ and C+ is the set of continuous functions g : R −→ R,
which are bounded above and below by positive constants. n is fixed natural number.
The system (1) describes cell differentiation, more precisely - its passes from one
regime of work to other without loss of genetic information. The variables x1 and x2

make sense of concentration of specific metabolits. The parameters A and B reflect
degree of development of base metabolism. The parameter n reflects the highest row
of the repression’s reactions. For more details on the interpretation of (1) one may see
[1]. With C◦ we denote the space of continuous and bounded functions g : R −→ R.
For g ∈ C◦ we define

gL(∞) = lim inft−→∞g(t), gM(∞) = lim supt−→∞g(t),

gL = inf{g(t) : t ∈ R}, gM = sup{g(t) : t ∈ R}.

2. Preliminary results

Here and further next lemmas will pay important role.
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Lemma 1.[2]Let g : (α,∞) −→ R be a bounded and differentiable function.
Then there exists a sequence {tn}

∞
n=1 such that tn−→n−→∞∞, g′(tn) −→n−→∞ 0,

g(tn) −→n−→∞ gM(∞) (resp. g(tn) −→n−→∞ gL(∞)).
Lemma 2.[2]Let g ∈ C◦ be a differentiable function. Then there exists a sequence

{tn}
∞
n=1 such that g′(tn) −→n−→∞ 0, g(tn) −→n−→∞ gM (resp. g(tn) −→n−→∞ gL).
Proposition 1.Let (x1, x2) be a positive solution of (1) and A(t), B(t) ∈ C+.

Then
AL(∞)

1 + Bn
M(∞)

≤ x1L(∞) ≤ x1M (∞) ≤ AM (∞),

BL(∞)

1 + An
M(∞)

≤ x2L(∞) ≤ x2M (∞) ≤ BM (∞).

Proof. From lemma 1 there exists a sequence {tm}
∞
m=1 ⊂ R for which

tm−→m−→∞∞, x′
1(tm) −→m−→∞ 0, x1(tm) −→m−→∞ x1M (∞). Then from

x′
1(tm) = A(tm)

1+xn

2
(tm)

− x1(tm),

as m −→ ∞, we get

0 = lim
m−→∞

A(tm)

1 + xn
2 (tm)

− x1M (∞) ≤ AM(∞) − x1M(∞),

i. e.
x1M(∞) ≤ AM(∞).

Let now {tm}
∞
m=1 be a sequence of R such that tm−→m−→∞∞, x′

2(tm) −→m−→∞ 0,
x2(tm) −→m−→∞ x2L(∞). From

x′
2(tm) =

B(tm)

1 + xn
1 (tm)

− x2(tm),

as m −→ ∞, we find that

0 = lim
m−→∞

B(tm)

1 + xn
1 (tm)

− x2L(∞) ≥
BL(∞)

1 + An
M(∞)

− x2L(∞)

or

x2L(∞) ≥
BL(∞)

1 + An
M(∞)

.

Let {tm}
∞
m=1 ⊂ R is susch that tm−→m−→∞∞, x′

2(tm) −→m−→∞ 0, x2(tm) −→m−→∞

x2M (∞). From

x′
2(tm) =

B(tm)

1 + xn
1 (tm)

− x2(tm),
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as m −→ ∞, we get

0 = lim
m−→∞

B(tm)

1 + xn
1 (tm)

− x2M(∞) ≤ BM(∞) − x2M (∞).

Consequently
x2M (∞) ≤ BM(∞).

Let {tm}
∞
m=1 be a sequence of R such that tm−→m−→∞∞, x′

1(tm) −→m−→∞ 0,
x1(tm) −→m−→∞ x1L(∞). From equality

x′
1(tm) =

A(tm)

1 + xn
2 (tm)

− x1(tm),

as m −→ ∞, we get

0 = lim
m−→∞

A(tm)

1 + xn
2 (tm)

− x1L(∞) ≥
AL(∞)

1 + Bn
M(∞)

− x1L(∞)

or

x1L(∞) ≥
AL(∞)

1 + Bn
M(∞)

.

This completes the proof.
Remark. Proposition 1 shows that (1) is permanent, i. e. there exist positive

constants α and β such that

0 < α ≤ lim inft−→∞xi(t) ≤ lim sup
t−→∞

xi(t) ≤ β < ∞, i = 1, 2,

where (x1(t), x2(t)) is a positive solution of (1). In [3] was proved that permanence im-
plies existence of positive periodic solutions of (1), when A(t) and B(t) are continuous
positive periodic functions.

Let X1 be a positive solution of the equation

x′(t) = A(t) − x(t),

and X2 be a positive solution of the equation

x′(t) = B(t) − x(t).

Proposition 2.Let X1, X2 be as above and A(t), B(t) ∈ C+. Then

AL(∞) ≤ X1L(∞) ≤ X1M(∞) ≤ AM(∞),

BL(∞) ≤ X2L(∞) ≤ X2M(∞) ≤ BM(∞).
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Proof. From lemma 1 there exists a sequence {tm}
∞
m=1 of R for which tm−→m−→∞∞,

X ′
1(tm) −→m−→∞ 0, X1(tm) −→m−→∞ X1L(∞). Then from

X ′
1(tm) = A(tm) − X1(tm),

as m −→ ∞, we get

0 = lim
m−→∞

A(tm) − X1L(∞) ≥ AL(∞) − X1L(∞),

i. e.
X1L(∞) ≥ AL(∞).

Let {tm}
∞
m=1 be a sequence of R such that tm−→m−→∞∞, X ′

1(tm) −→m−→∞ 0,
X1(tm) −→m−→∞ X1M(∞). From

X ′
1(tm) = A(tm) − X1(tm),

as m −→ ∞, we find that

0 = lim
m−→∞

A(tm) − X1M(∞) ≤ AM(∞) − X1M(∞)

or
X1M(∞) ≤ AM (∞).

In the same way we may prove other pair of inequalities.

3.Asymptotic behaviour of positive solutions

The results which are formulated and proved below are connected to (1) and to

(1∗)

∣

∣

∣

∣

∣

∣

x′
1(t) = A∗(t)

1+xn

2
(t)

− x1(t)

x′
2(t) = B∗(t)

1+xn

1
(t)

− x2(t),

where A∗, B∗ ∈ C+ and A(t) − A∗(t) −→t−→∞ 0, B(t) − B∗(t) −→t−→∞ 0.
We notice that every solution to (1)(resp. (1∗)) with positive initial data x(t◦) =

(x1(t◦), x2(t◦)) > 0 (x∗(t◦) = (x1∗(t◦), x2∗(t◦)) > 0) is defined and positive in [t◦,∞).
Theorem 1. Let A, B, A∗, B∗ ∈ C+ and

A(t) − A∗(t) −→t−→∞ 0, B(t) − B∗(t) −→t−→∞ 0.

Let also
n2An

M(∞)Bn
M(∞)(1 + An

M(∞))2n(1 + Bn
M(∞))2n

[An
L(∞) + (1 + Bn

M (∞))n]2[Bn
L(∞) + (1 + An

M(∞))n]2
< 1.
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If (x1(t), x2(t)) and (x1∗(t), x2∗(t)) are positive solutions respectively of (1) and (1∗),
then (x1(t) − x1∗(t), x2(t) − x2∗(t)) −→t−→∞ (0, 0).

Proof. Let h1(t) = x1(t) − x1∗(t), h2(t) = x2(t) − x2∗(t). We have

h′
1(t) = x′

1(t) − x′
1∗(t) =

=
A(t)

1 + xn
2 (t)

− x1(t) −
A∗(t)

1 + xn
2∗(t)

+ x1∗(t) =

= −A(t)
(x2(t) − x2∗(t))(x

n−1
2 (t) + xn−2

2 (t)x2∗(t) + · · ·+ xn−1
2∗ (t))

(1 + xn
2 (t))(1 + xn

2∗(t))
−

−h1(t) +
A(t) − A∗(t)

(1 + xn
2∗(t))

.

Let

α(t) = A(t)
xn−1

2 (t) + xn−2
2 (t)x2∗(t) + · · ·+ xn−1

2∗ (t)

(1 + xn
2 (t))(1 + xn

2∗(t))
, β(t) =

A(t) − A∗(t)

(1 + xn
2∗(t))

.

We notice that β(t) −→t−→∞ 0. For h1(t) we get the equation

h′
1(t) = −h1(t) − α(t)h2(t) + β(t).

On the other hand
h′

2(t) = x′
2(t) − x′

2∗(t) =

=
B(t)

1 + xn
1 (t)

− x2(t) −
B∗(t)

1 + xn
1∗(t)

+ x2∗(t) =

= −B(t)
(x1(t) − x1∗(t))(x

n−1
1 (t) + xn−2

1 (t)x1∗(t) + · · ·+ xn−1
1∗ (t))

(1 + xn
1 (t))(1 + xn

1∗(t))
−

−h2(t) +
B(t) − B∗(t)

(1 + xn
1∗(t))

.

Let

γ(t) = B(t)
xn−1

1 (t) + xn−2
1 (t)x1∗(t) + · · ·+ xn−1

1∗ (t)

(1 + xn
1 (t))(1 + xn

1∗(t))
, δ(t) =

B(t) − B∗(t)

(1 + xn
1∗(t))

,

δ(t) −→t−→∞ 0. Then

h′
2(t) = −γ(t)h1(t) − h2(t) + δ(t).
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For h1(t) and h2(t) we find the system

∣

∣

∣

∣

∣

h′
1(t) = −h1(t) − α(t)h2(t) + β(t)

h′
2(t) = −γ(t)h1(t) − h2(t) + δ(t).

Let h(t) = (h1(t), h2(t)) and |h|(t) = |h(t)|. We assume that |h1|M(∞) > 0. From
lemma 1 there exists a sequence {tm}

∞
m=1 of R such that tm −→m−→∞ ∞, h′

1(tm) −→m−→∞

0, |h1|(tm) −→m−→∞ |h1|M(∞). From

|h′
1(tm)| = | − h1(tm) − α(tm)h2(tm) + β(tm)|,

as m −→ ∞, we have

0 ≥ |h1|M(∞) − αM(∞)|h2|M(∞),

i. e.

(2) |h1|M(∞) ≤ αM(∞)|h2|M(∞).

Since |h1|M(∞) > 0 then |h2|M(∞) > 0. Let now {tm}
∞
m=1 ⊂ R is such that

tm −→m−→∞ ∞, h′
2(tm) −→m−→∞ 0, |h2|(tm) −→m−→∞ |h2|M(∞). As m −→ ∞,

from
|h′

2(tm)| = | − γ(tm)h1(tm) − h2(tm) + δ(tm)|,

we get
0 ≥ |h2|M(∞) − γM(∞)|h1|M(∞)

or
|h2|M(∞) ≤ γM(∞)|h1|M(∞).

From last inequality and (2) we find that

|h1|M(∞)|h2|M(∞) ≤ αM(∞)γM(∞)|h1|M(∞)|h2|M(∞),

from where
1 ≤ αM(∞)γM(∞).

Since

αM(∞) =

(

A(t)
xn−1

2 (t) + xn−2
2 (t)x2∗(t) + · · · + xn−1

2∗ (t)

(1 + xn
2 (t))(1 + xn

2∗(t))

)

M

(∞) ≤

≤ AM(∞).
n.Bn−1

M (∞)
(

1 +
Bn

L
(∞)

(1+An

M
(∞))n

)2 =
n.AM(∞).Bn−1

M (∞)(1 + An
M(∞))2n

[(1 + An
M(∞))n + Bn

L(∞)]2
,
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γM(∞) =

(

B(t)
xn−1

1 (t) + xn−2
1 (t)x1∗(t) + · · ·+ xn−1

1∗ (t)

(1 + xn
1 (t))(1 + xn

1∗(t))

)

M

(∞) ≤

≤ BM(∞).
n.An−1

M (∞)
(

1 +
An

L
(∞)

(1+Bn

M
(∞))n

)2 =
n.BM (∞).An−1

M (∞)(1 + Bn
M(∞))2n

[(1 + Bn
M(∞))n + An

L(∞)]2
.

Therefore we get the contradiction

1 ≤
n2.An

M(∞).Bn
M(∞)(1 + An

M(∞))2n(1 + Bn
M(∞))2n

[(1 + Bn
M(∞))n + An

L(∞)]2.[(1 + An
M(∞))n + Bn

L(∞)]2
.

The proof is complete.
Let

r1 =
A2

M(∞)

A2
L(∞)

, r2 =
B2

M(∞)

B2
L(∞)

,

p1 =
1

r1

1

1 + Bn
M(∞)rn

2

, p2 =
1

r2

1

1 + An
M (∞)rn

1

.

Theorem 2.Let A, B, A∗, B∗ ∈ C+, A(t)−A∗(t) −→t−→∞ 0, B(t)−B∗(t) −→t−→∞ 0.
If (x1(t), x2(t)) and (x1∗(t), x2∗(t)) are positive solutions respectively to (1) and (1∗)
and

n2rn
1 rn

2 An
M(∞)Bn

M(∞)

(1 + An
L(∞)pn

1 )2(1 + Bn
L(∞)pn

2 )2
< 1,

then (x1(t) − x1∗(t), x2(t) − x2∗(t)) −→t−→∞ (0, 0).
Proof. Let x = x1

X1
, y = x2

X2
, where X1 and X2 as in proposition 2. Then

x′(t) =
1

X1(t)
.x′

1(t) −
x1(t)

X2
1 (t)

.X ′
1(t) =

=
1

X1(t)
.

[

A(t)

1 + xn
2 (t)

− x1(t)

]

−
x1(t)

X2
1 (t)

[A(t) − X1(t)] =

=
1

X1(t)
.

A(t)

1 + Xn
2 (t)yn(t)

−
A(t)

X1(t)
.
x1(t)

X1(t)
= −

A(t)

X1(t)
.x(t) +

A(t)

X1(t)[1 + Xn
2 (t)yn(t)]

,

i. e.

x′(t) = −
A(t)

X1(t)
.x(t) +

A(t)

X1(t)[1 + Xn
2 (t)yn(t)]

.

y′(t) =
1

X2(t)
.x′

2(t) −
x2(t)

X2
2 (t)

.X ′
2(t) =

=
1

X2(t)
.

[

B(t)

1 + xn
1 (t)

− x2(t)

]

−
x2(t)

X2
2 (t)

[B(t) − X2(t)] =
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