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1. Introduction

In this paper we will study the asymptotic behaviour of positive solutions to the
system

A
(1) 2(1) = T — 0 (t)
wy(t) = 220 — (1),

where A and B belong to C, and C, is the set of continuous functions g : R — R,
which are bounded above and below by positive constants. n is fixed natural number.
The system (1) describes cell differentiation, more precisely - its passes from one
regime of work to other without loss of genetic information. The variables x; and -
make sense of concentration of specific metabolits. The parameters A and B reflect
degree of development of base metabolism. The parameter n reflects the highest row
of the repression’s reactions. For more details on the interpretation of (1) one may see
[1]. With C, we denote the space of continuous and bounded functions g : R — R.
For g € C, we define

gr(o0) = liminf,  g(t), gpr(00) = limsup, . g(1),

gr, = 1inf{g(t) : t € R}, gpr = sup{g(t) : t € R}.

2. Preliminary results

Here and further next lemmas will pay important role.
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Lemma 1.]2|Let g : (a,00) — R be a bounded and differentiable function.
Then there exists a sequence {t,}2, such that t,— 0000, ¢'(tn) —n—oo 0,
9(tn) —n—oco gu(00) (resp. g(tn) —n—oo gr(00)).

Lemma 2.[2|Let g € C, be a differentiable function. Then there exists a sequence
{tn}niy such that g'(tn) —n—o0 0, 9(tn) —n—o0 gur (resp. g(tn) —n—oo gr)-

Proposition 1.Let (x1,25) be a positive solution of (1) and A(t), B(t) € C,.
Then

_Aufo0)
1+ B (o0)
Bi(0)
1+ A% (c0)

< 11(00) < w1r(00) < Ap(00),

< xar,(00) < wopr(00) < Bypy(00).

Proof. From lemma 1 there exists a sequence {t,,}5°_, C R for which
tin—m——0000, T (tm) —m—oo 0, T1(tm) —m—oo T1ar(00). Then from

/ _ _Alm)
xl(tm) T 142D (tm) xl(tm)v

as m — 00, we get

0= Altm) J —mu(09) < Auy(oc) = (o),

m—00 1 4 23 (t,

1 (00) < Apr(00).

Let now {t,,}>°_, be a sequence of R such that t,,— 0000, 25(tm) —m—oco 0,
Zo(tm) —m—oco T2r(00). From

: B(tm)

b)) = —— 0 ao(t

as m — 0o, we find that
B(tm) B(0)
0= —_— — > —
A T gt M) 2 T A (o)~ 2

or

war(o0) > — DU

T T4 Ay (00)

Let {t,,}2°_, C R is susch that t,,— 0000, T5(tm) —m—oo 0, Z2(tm) —m—oo
xopr(00). From
B(tn)

= ay(ty),
1+ 27 (tm) 2(tm)

% (tm)
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as m — 00, we get

B(tm)

OI m —--
m—00 1 + 2(t,,)

— Zopr(00) < Bpr(00) — wapr(00).
Consequently

Let {t,}>°_, be a sequence of R such that t,— ., .00, Z|(tm) —m—oo O,
1 (tm) —m—oo T11(00). From equality

A(tn)

2y (t) = ———2— — 21(tm),
as m — 00, we get
_ A(tn) Ar(0)
O_m—’°°1+l‘g(tm) —IL‘lL(OO) = 1+BJT\L4( ) —ZElL(OO)
or
£15(00) > — %)
A = 14 By (o0)

This completes the proof.
Remark. Proposition 1 shows that (1) is permanent, i. e. there exist positive
constants « and (8 such that

0 < a<liminf, o z;(t) <lim sup z;(t) < f <oo, i=1,2,

t—00

where (z1(t), xo(t)) is a positive solution of (1). In [3] was proved that permanence im-
plies existence of positive periodic solutions of (1), when A(t) and B(t) are continuous
positive periodic functions.

Let X, be a positive solution of the equation

2'(t) = A(t) — x(t),

and X, be a positive solution of the equation
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Proof. From lemma 1 there exists a sequence {t,,}>°_; of R for which ¢,,—,— .00,
Xi(tm) —m—oo 0, X1(tm) —m—oc X12(00). Then from

X{@m) = A(tm) — Xa(tm),
as m — 00, we get

0= lim_A(t) — Xi(00) = Ap(00) — X11(00),
XlL(OO> Z AL(OO>

Let {t,,}>°_, be a sequence of R such that t,,— 0000, X{(tm) —m—oo 0,
X1(tm) —m—oo X1m(00). From

X{@m) = A(tm) - X1<tm)v
as m — 0o, we find that

m——00

In the same way we may prove other pair of inequalities.

3.Asymptotic behaviour of positive solutions
The results which are formulated and proved below are connected to (1) and to

A*
l’&(t) = 1+$£7‘t()t) — 1 <t>
(1*) () = B*ft)
) T 1427(t)

— I‘Q(t),

where A,, B, € C and A(t) — Au(t) —t—00 0, B(t) — Bi(t) —4—0 0.
We notice that every solution to (1)(resp. (1.)) with positive initial data z(t,)
(1(to), z2(ts)) > 0 (24(ts) = (214(ts), T2x(ts)) > 0) is defined and positive in [t,, 0o
Theorem 1. Let A, B, A,, B, € C, and

).

A(t) = Au(t) —4—n0 0, B(t) — Bu(t) —1—o0 0.

Let also
n? Ay (00) By (00) (1 + Afy(00))*" (1 + Bjy(o0))*

[A7(00) + (1 + Biy(00))"[2[Bi(00) + (1 + Ajy(00))"]?

< 1.
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If (z1(t), zo(t)) and (x1.(t), x24.(t)) are positive solutions respectively of (1) and (1),
then (z1(t) — x1.(t), x2(t) — 24(t)) —+—0 (0,0).
Proof. Let hq(t) = x1(t) — 214(t), ho(t) = x2(t) — 22.(t). We have

(1) = (1) — o (1) =
AW A1)
T l4an(t) nll) =17 2. (1)
(ealt) — wan () (@5 (0) + 232 (O)na
Al (L a5(0)(1 + a5, (¢
A(t) — AL(t)
A+ ah0)

+1.(t) =

) 4 -+ ab (1)

t
)

—hy(t) +

Let

~

+ 2y () () +- - + 25, (1)
(1 + a5 (0)(1 + a5.(1))

A(t) = A1)

T
alt) = A(t) R

p(t) =

~—

We notice that 3(t) — .o 0. For hy(t) we get the equation
Ry (t) = —hy(t) — a(t)ha(t) + B(t).

On the other hand
hy(t) = wy(t) — w4, (t) =

— x5(t) — : f*xi)@) + D9, (1) =

B
1 ap(t)
21 (t) — w0 (D) (@71 (8) + 272 (D (t) + - -+ 271 (1)

_ gt -
= —B(t) (L+a2(t) (1 + 23,(1))

B(t) — B.(1)
~h )
Let

w () + 2t B () + -+ 2l ()
(1 +27(8) (1 + 21.(¢))

)

(14 21.(1)

B(t) — B.(

1(8) = B i(t) =

|

d(t) —+— 00 0. Then

hy(t) = =) (t) — ha(t) + 0(2).
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For hy(t) and hy(t) we find the system

hi(t) = =ha(t) — a(t)ha(t) + B(1)
hy(t) = = (0)ha(t) — ha(t) 4 6(2).

Let h(t) = (hi(t), ho(t)) and |h|(t) = |h(t)]. We assume that |hi|p(c0) > 0. From
lemma 1 there exists a sequence {t,,}>°_, of R such that ¢, — .00 00, B} (t;) —m— oo
0, |h1|(tm) —m—oo |P1|a(00). From

|7y (tm)] = | = ha(tm) — a(tm)ha(tm) + B(tm)],

as m — 00, we have

0 = |ha|ar(00) — cunr(00)|hafar(c0),

(2) |ha|ar(o0) < aar(00)|ha|ar(o0).

Since |hi|ar(00) > 0 then |ho|a(co) > 0. Let now {¢,,}°_; C R is such that
bt ——m—oo 00, hy(tm) —m—oo 0, |ha|(tm) —m—oo |h2|am(00). As m — oo,
from

|h,2(tm)| = | = y(tm)h(tm) — ha(tm) + 0(tm)],

we get
0 > |ha|ar(00) — yar(o0)|hafar(00)

|ha|ar(00) < yar(00)|hy|ar(00).

From last inequality and (2) we find that

|11 (00) [ hafar (00) < cnr(00)yas (00) | as (00) o ar (00),

from where
1 < an(o0)ym(o0).

Since
o (o0) — 2y () + 2y P (O)we. () + -+ an (1) ~
o) = (a0 e ), S
n.By; ' (00) n.Apr(00). By H(00) (1 + ARy (00))"
< Aur(00). B (00 2= Al (00))™ "(00)]? ’
(1+%) [(1+ A3 (c0))" + Bi(o0)]

EJQTDE, 2000 No. 6, p. 6



_ N OB O L O B ke s P (O W
”M(OO)‘<B“) 0+ o)1+ o) >M( )<
n. A”fl( ) n.BM(oo).Aﬁjl(oo)(l + B]’Q(oo))%
< Ba (o). 00 2= B, (00))" + A" (00)]? '
i i) 1+ By ()" + A7 (o0)]

Therefore we get the contradiction
| o AR (00) By (00) (1 + Ay (00))*"(1+ By (00)*
— [(1 4 Bjy(o0))™ + A7 (00)]2.[(1 + Afy(00))" + By (c0)]?

The proof is complete.
Let

A3y (o) _ Bii()

Az(0)” T Bi(oo)

1 1 1 1

ml+ By (oo)s P27 T+ Ay (co)rt

Theorem 2.Let A, B, A,, B, € Cy, A(t) — Ay(t) ——00 0, B(t) — By (t) —¢——0 0.

If (z1(t), 22(t)) and (x1.(t), xox(t)) are positive solutions respectively to (1) and (1)
and

r =

b1 =

n?riry Ay (00) By (00)
(1+ A% (o0)pi)*(1 + Bi(oo)py)?

then (z1(t) — 214(t), 22(t) — 224(t)) —+—o0 (0,0).
Proof. Let x = £+, y = £, where X; and X as in proposition 2. Then

<1,

1 .Tl(t

~—

a'(t) = mx&(t} 1(t) X|(t) =
1 A(t) 1(t) B
Xty ll +a5(t) xl(t)] X2(1) [At) — Xa(t)] =
- 1 A(t) _ A(t) x1(2) _ A(t) () A(t)
X0 TR0 N0 X0 50 X 0L X0 )
1. e. A "
w(t) = CXi(t) ' X1+ X3y (t)]
! L / l’z(t) /
Yy <t> = X2<t>x2<t> - % 2(t> =
T (1) [1 +an(t) 9”2(”] - %[B(t) — Xs(t)] =

EJQTDE, 2000 No. 6, p. 7



