Asymptotic behaviour of positive solutions of the model which describes cell differentiation

Svetlin Georgiev Georgiev

University of Veliko Tarnovo, Department of Mathematical analysis and applications, 5000 Veliko Tarnovo, Bulgaria e-mail: sgg2000bg@yahoo.com

1. Introduction

In this paper we will study the asymptotic behaviour of positive solutions to the system

where A and B belong to C_+ and C_+ is the set of continuous functions $g: \mathcal{R} \longrightarrow \mathcal{R}$, which are bounded above and below by positive constants. n is fixed natural number. The system (1) describes cell differentiation, more precisely - its passes from one regime of work to other without loss of genetic information. The variables x_1 and x_2 make sense of concentration of specific metabolits. The parameters A and B reflect degree of development of base metabolism. The parameter n reflects the highest row of the repression's reactions. For more details on the interpretation of (1) one may see [1]. With C_0 we denote the space of continuous and bounded functions $g: \mathcal{R} \longrightarrow \mathcal{R}$. For $g \in C_0$ we define

$$g_L(\infty) = \lim \inf_{t \longrightarrow \infty} g(t), g_M(\infty) = \lim \sup_{t \longrightarrow \infty} g(t),$$

 $g_L = \inf\{g(t) : t \in \mathcal{R}\}, g_M = \sup\{g(t) : t \in \mathcal{R}\}.$

2. Preliminary results

Here and further next lemmas will pay important role.

Lemma 1.[2] Let $g:(\alpha,\infty)\longrightarrow \mathcal{R}$ be a bounded and differentiable function. Then there exists a sequence $\{t_n\}_{n=1}^{\infty}$ such that $t_n\longrightarrow_{n\longrightarrow\infty}\infty$, $g'(t_n)\longrightarrow_{n\longrightarrow\infty}0$, $g(t_n)\longrightarrow_{n\longrightarrow\infty}g_M(\infty)$ (resp. $g(t_n)\longrightarrow_{n\longrightarrow\infty}g_L(\infty)$).

Lemma 2.[2] Let $g \in \mathcal{C}_{\circ}$ be a differentiable function. Then there exists a sequence $\{t_n\}_{n=1}^{\infty}$ such that $g'(t_n) \xrightarrow[]{} n \xrightarrow[]{} \infty 0$, $g(t_n) \xrightarrow[]{} n \xrightarrow[]{} \infty g_M$ (resp. $g(t_n) \xrightarrow[]{} n \xrightarrow[]{} \infty g_L$).

Proposition 1.Let (x_1, x_2) be a positive solution of (1) and $A(t), B(t) \in \mathcal{C}_+$. Then

$$\frac{A_L(\infty)}{1 + B_M^n(\infty)} \le x_{1L}(\infty) \le x_{1M}(\infty) \le A_M(\infty),$$
$$\frac{B_L(\infty)}{1 + A_M^n(\infty)} \le x_{2L}(\infty) \le x_{2M}(\infty) \le B_M(\infty).$$

Proof. From lemma 1 there exists a sequence $\{t_m\}_{m=1}^{\infty} \subset \mathcal{R}$ for which $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $x_1'(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $x_1(t_m) \longrightarrow_{m \longrightarrow \infty} x_{1M}(\infty)$. Then from

$$x_1'(t_m) = \frac{A(t_m)}{1+x_2^n(t_m)} - x_1(t_m),$$

as $m \longrightarrow \infty$, we get

$$0 = \lim_{m \to \infty} \frac{A(t_m)}{1 + x_2^n(t_m)} - x_{1M}(\infty) \le A_M(\infty) - x_{1M}(\infty),$$

i. e.

$$x_{1M}(\infty) \le A_M(\infty).$$

Let now $\{t_m\}_{m=1}^{\infty}$ be a sequence of \mathcal{R} such that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $x_2'(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $x_2(t_m) \longrightarrow_{m \longrightarrow \infty} x_{2L}(\infty)$. From

$$x_2'(t_m) = \frac{B(t_m)}{1 + x_1^n(t_m)} - x_2(t_m),$$

as $m \longrightarrow \infty$, we find that

$$0 = \lim_{m \to \infty} \frac{B(t_m)}{1 + x_1^n(t_m)} - x_{2L}(\infty) \ge \frac{B_L(\infty)}{1 + A_M^n(\infty)} - x_{2L}(\infty)$$

or

$$x_{2L}(\infty) \ge \frac{B_L(\infty)}{1 + A_M^n(\infty)}.$$

Let $\{t_m\}_{m=1}^{\infty} \subset \mathcal{R}$ is susch that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $x_2'(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $x_2(t_m) \longrightarrow_{m \longrightarrow \infty} x_{2M}(\infty)$. From

$$x_2'(t_m) = \frac{B(t_m)}{1 + x_1^n(t_m)} - x_2(t_m),$$

as $m \longrightarrow \infty$, we get

$$0 = \lim_{m \to \infty} \frac{B(t_m)}{1 + x_1^n(t_m)} - x_{2M}(\infty) \le B_M(\infty) - x_{2M}(\infty).$$

Consequently

$$x_{2M}(\infty) \leq B_M(\infty)$$
.

Let $\{t_m\}_{m=1}^{\infty}$ be a sequence of \mathcal{R} such that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $x'_1(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $x_1(t_m) \longrightarrow_{m \longrightarrow \infty} x_{1L}(\infty)$. From equality

$$x_1'(t_m) = \frac{A(t_m)}{1 + x_2^n(t_m)} - x_1(t_m),$$

as $m \longrightarrow \infty$, we get

$$0 = \lim_{m \to \infty} \frac{A(t_m)}{1 + x_2^n(t_m)} - x_{1L}(\infty) \ge \frac{A_L(\infty)}{1 + B_M^n(\infty)} - x_{1L}(\infty)$$

or

$$x_{1L}(\infty) \ge \frac{A_L(\infty)}{1 + B_M^n(\infty)}.$$

This completes the proof.

Remark. Proposition 1 shows that (1) is permanent, i. e. there exist positive constants α and β such that

$$0 < \alpha \le \liminf_{t \to \infty} x_i(t) \le \lim \sup_{t \to \infty} x_i(t) \le \beta < \infty, \quad i = 1, 2,$$

where $(x_1(t), x_2(t))$ is a positive solution of (1). In [3] was proved that permanence implies existence of positive periodic solutions of (1), when A(t) and B(t) are continuous positive periodic functions.

Let X_1 be a positive solution of the equation

$$x'(t) = A(t) - x(t),$$

and X_2 be a positive solution of the equation

$$x'(t) = B(t) - x(t).$$

Proposition 2.Let X_1 , X_2 be as above and A(t), $B(t) \in \mathcal{C}_+$. Then

$$A_L(\infty) \le X_{1L}(\infty) \le X_{1M}(\infty) \le A_M(\infty),$$

$$B_L(\infty) \le X_{2L}(\infty) \le X_{2M}(\infty) \le B_M(\infty).$$

Proof. From lemma 1 there exists a sequence $\{t_m\}_{m=1}^{\infty}$ of \mathcal{R} for which $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $X'_1(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $X_1(t_m) \longrightarrow_{m \longrightarrow \infty} X_{1L}(\infty)$. Then from

$$X_1'(t_m) = A(t_m) - X_1(t_m),$$

as $m \longrightarrow \infty$, we get

$$0 = \lim_{m \to \infty} A(t_m) - X_{1L}(\infty) \ge A_L(\infty) - X_{1L}(\infty),$$

i. e.

$$X_{1L}(\infty) > A_L(\infty)$$
.

Let $\{t_m\}_{m=1}^{\infty}$ be a sequence of \mathcal{R} such that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $X_1'(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $X_1(t_m) \longrightarrow_{m \longrightarrow \infty} X_{1M}(\infty)$. From

$$X_1'(t_m) = A(t_m) - X_1(t_m),$$

as $m \longrightarrow \infty$, we find that

$$0 = \lim_{m \to \infty} A(t_m) - X_{1M}(\infty) \le A_M(\infty) - X_{1M}(\infty)$$

or

$$X_{1M}(\infty) \leq A_M(\infty)$$
.

In the same way we may prove other pair of inequalities.

3. Asymptotic behaviour of positive solutions

The results which are formulated and proved below are connected to (1) and to

where $A_*, B_* \in \mathcal{C}_+$ and $A(t) - A_*(t) \longrightarrow_{t \longrightarrow \infty} 0$, $B(t) - B_*(t) \longrightarrow_{t \longrightarrow \infty} 0$. We notice that every solution to (1)(resp. (1_{*})) with positive initial data $x(t_\circ) = (x_1(t_\circ), x_2(t_\circ)) > 0$ ($x_*(t_\circ) = (x_{1*}(t_\circ), x_{2*}(t_\circ)) > 0$) is defined and positive in $[t_\circ, \infty)$.

Theorem 1. Let $A, B, A_*, B_* \in \mathcal{C}_+$ and

$$A(t) - A_*(t) \longrightarrow_{t \longrightarrow \infty} 0, B(t) - B_*(t) \longrightarrow_{t \longrightarrow \infty} 0.$$

Let also

$$\frac{n^2 A_M^n(\infty) B_M^n(\infty) (1 + A_M^n(\infty))^{2n} (1 + B_M^n(\infty))^{2n}}{[A_I^n(\infty) + (1 + B_M^n(\infty))^n]^2 [B_I^n(\infty) + (1 + A_M^n(\infty))^n]^2} < 1.$$

If $(x_1(t), x_2(t))$ and $(x_{1*}(t), x_{2*}(t))$ are positive solutions respectively of (1) and (1_*) , then $(x_1(t) - x_{1*}(t), x_2(t) - x_{2*}(t)) \longrightarrow_{t \longrightarrow \infty} (0, 0)$.

Proof. Let $h_1(t) = x_1(t) - x_{1*}(t)$, $h_2(t) = x_2(t) - x_{2*}(t)$. We have

$$h'_{1}(t) = x'_{1}(t) - x'_{1*}(t) =$$

$$= \frac{A(t)}{1 + x_{2}^{n}(t)} - x_{1}(t) - \frac{A_{*}(t)}{1 + x_{2*}^{n}(t)} + x_{1*}(t) =$$

$$= -A(t) \frac{(x_{2}(t) - x_{2*}(t))(x_{2}^{n-1}(t) + x_{2}^{n-2}(t)x_{2*}(t) + \dots + x_{2*}^{n-1}(t))}{(1 + x_{2}^{n}(t))(1 + x_{2*}^{n}(t))} -$$

$$-h_{1}(t) + \frac{A(t) - A_{*}(t)}{(1 + x_{2*}^{n}(t))}.$$

Let

$$\alpha(t) = A(t) \frac{x_2^{n-1}(t) + x_2^{n-2}(t)x_{2*}(t) + \dots + x_{2*}^{n-1}(t)}{(1 + x_2^n(t))(1 + x_{2*}^n(t))}, \quad \beta(t) = \frac{A(t) - A_*(t)}{(1 + x_{2*}^n(t))}.$$

We notice that $\beta(t) \longrightarrow_{t \longrightarrow \infty} 0$. For $h_1(t)$ we get the equation

$$h'_1(t) = -h_1(t) - \alpha(t)h_2(t) + \beta(t).$$

On the other hand

$$h_2'(t) = x_2'(t) - x_{2*}'(t) =$$

$$= \frac{B(t)}{1 + x_1^n(t)} - x_2(t) - \frac{B_*(t)}{1 + x_{1*}^n(t)} + x_{2*}(t) =$$

$$= -B(t) \frac{(x_1(t) - x_{1*}(t))(x_1^{n-1}(t) + x_1^{n-2}(t)x_{1*}(t) + \dots + x_{1*}^{n-1}(t))}{(1 + x_1^n(t))(1 + x_{1*}^n(t))} -$$

$$-h_2(t) + \frac{B(t) - B_*(t)}{(1 + x_{1*}^n(t))}.$$

Let

$$\gamma(t) = B(t) \frac{x_1^{n-1}(t) + x_1^{n-2}(t)x_{1*}(t) + \dots + x_{1*}^{n-1}(t)}{(1 + x_1^n(t))(1 + x_{1*}^n(t))}, \quad \delta(t) = \frac{B(t) - B_*(t)}{(1 + x_{1*}^n(t))},$$

 $\delta(t) \longrightarrow_{t \longrightarrow \infty} 0$. Then

$$h_2'(t) = -\gamma(t)h_1(t) - h_2(t) + \delta(t).$$

For $h_1(t)$ and $h_2(t)$ we find the system

$$\begin{vmatrix}
h'_1(t) = -h_1(t) - \alpha(t)h_2(t) + \beta(t) \\
h'_2(t) = -\gamma(t)h_1(t) - h_2(t) + \delta(t).
\end{vmatrix}$$

Let $h(t) = (h_1(t), h_2(t))$ and |h|(t) = |h(t)|. We assume that $|h_1|_M(\infty) > 0$. From lemma 1 there exists a sequence $\{t_m\}_{m=1}^{\infty}$ of \mathcal{R} such that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $h'_1(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $|h_1|(t_m) \longrightarrow_{m \longrightarrow \infty} |h_1|_M(\infty)$. From

$$|h'_1(t_m)| = |-h_1(t_m) - \alpha(t_m)h_2(t_m) + \beta(t_m)|,$$

as $m \longrightarrow \infty$, we have

$$0 \ge |h_1|_M(\infty) - \alpha_M(\infty)|h_2|_M(\infty),$$

i. e.

$$(2) |h_1|_M(\infty) \le \alpha_M(\infty)|h_2|_M(\infty).$$

Since $|h_1|_M(\infty) > 0$ then $|h_2|_M(\infty) > 0$. Let now $\{t_m\}_{m=1}^{\infty} \subset \mathcal{R}$ is such that $t_m \longrightarrow_{m \longrightarrow \infty} \infty$, $h_2'(t_m) \longrightarrow_{m \longrightarrow \infty} 0$, $|h_2|(t_m) \longrightarrow_{m \longrightarrow \infty} |h_2|_M(\infty)$. As $m \longrightarrow \infty$, from

$$|h_2'(t_m)| = |-\gamma(t_m)h_1(t_m) - h_2(t_m) + \delta(t_m)|,$$

we get

$$0 \ge |h_2|_M(\infty) - \gamma_M(\infty)|h_1|_M(\infty)$$

or

$$|h_2|_M(\infty) \le \gamma_M(\infty)|h_1|_M(\infty).$$

From last inequality and (2) we find that

$$|h_1|_M(\infty)|h_2|_M(\infty) \le \alpha_M(\infty)\gamma_M(\infty)|h_1|_M(\infty)|h_2|_M(\infty),$$

from where

$$1 \leq \alpha_M(\infty)\gamma_M(\infty)$$
.

Since

$$\alpha_M(\infty) = \left(A(t) \frac{x_2^{n-1}(t) + x_2^{n-2}(t)x_{2*}(t) + \dots + x_{2*}^{n-1}(t)}{(1 + x_2^n(t))(1 + x_{2*}^n(t))} \right)_M(\infty) \le$$

$$\leq A_M(\infty) \cdot \frac{n \cdot B_M^{n-1}(\infty)}{\left(1 + \frac{B_L^n(\infty)}{(1 + A_M^n(\infty))^n}\right)^2} = \frac{n \cdot A_M(\infty) \cdot B_M^{n-1}(\infty)(1 + A_M^n(\infty))^{2n}}{[(1 + A_M^n(\infty))^n + B_L^n(\infty)]^2},$$

$$\gamma_{M}(\infty) = \left(B(t) \frac{x_{1}^{n-1}(t) + x_{1}^{n-2}(t)x_{1*}(t) + \dots + x_{1*}^{n-1}(t)}{(1 + x_{1}^{n}(t))(1 + x_{1*}^{n}(t))}\right)_{M}(\infty) \leq$$

$$\leq B_{M}(\infty) \cdot \frac{n \cdot A_{M}^{n-1}(\infty)}{\left(1 + \frac{A_{L}^{n}(\infty)}{(1 + B_{M}^{n}(\infty))^{n}}\right)^{2}} = \frac{n \cdot B_{M}(\infty) \cdot A_{M}^{n-1}(\infty)(1 + B_{M}^{n}(\infty))^{2n}}{[(1 + B_{M}^{n}(\infty))^{n} + A_{L}^{n}(\infty)]^{2}}.$$

Therefore we get the contradiction

$$1 \leq \frac{n^2.A_M^n(\infty).B_M^n(\infty)(1+A_M^n(\infty))^{2n}(1+B_M^n(\infty))^{2n}}{[(1+B_M^n(\infty))^n+A_L^n(\infty)]^2.[(1+A_M^n(\infty))^n+B_L^n(\infty)]^2}.$$

The proof is complete.

Let

$$r_1 = \frac{A_M^2(\infty)}{A_L^2(\infty)}, \quad r_2 = \frac{B_M^2(\infty)}{B_L^2(\infty)},$$

$$p_1 = \frac{1}{r_1} \frac{1}{1 + B_M^n(\infty)r_2^n}, \quad p_2 = \frac{1}{r_2} \frac{1}{1 + A_M^n(\infty)r_1^n}.$$

Theorem 2.Let $A, B, A_*, B_* \in \mathcal{C}_+$, $A(t) - A_*(t) \longrightarrow_{t \longrightarrow \infty} 0$, $B(t) - B_*(t) \longrightarrow_{t \longrightarrow \infty} 0$. If $(x_1(t), x_2(t))$ and $(x_{1*}(t), x_{2*}(t))$ are positive solutions respectively to (1) and (1*) and

$$\frac{n^2 r_1^n r_2^n A_M^n(\infty) B_M^n(\infty)}{(1 + A_L^n(\infty) p_1^n)^2 (1 + B_L^n(\infty) p_2^n)^2} < 1,$$

then $(x_1(t) - x_{1*}(t), x_2(t) - x_{2*}(t)) \longrightarrow_{t \longrightarrow \infty} (0, 0).$

Proof. Let $x = \frac{x_1}{X_1}$, $y = \frac{x_2}{X_2}$, where X_1 and X_2 as in proposition 2. Then

$$x'(t) = \frac{1}{X_1(t)} \cdot x'_1(t) - \frac{x_1(t)}{X_1^2(t)} \cdot X'_1(t) =$$

$$= \frac{1}{X_1(t)} \cdot \left[\frac{A(t)}{1 + x_2^n(t)} - x_1(t) \right] - \frac{x_1(t)}{X_1^2(t)} [A(t) - X_1(t)] =$$

$$= \frac{1}{X_1(t)} \cdot \frac{A(t)}{1 + X_2^n(t)y^n(t)} - \frac{A(t)}{X_1(t)} \cdot \frac{x_1(t)}{X_1(t)} = -\frac{A(t)}{X_1(t)} \cdot x(t) + \frac{A(t)}{X_1(t)[1 + X_2^n(t)y^n(t)]},$$
i. e.
$$x'(t) = -\frac{A(t)}{X_1(t)} \cdot x(t) + \frac{A(t)}{X_1(t)[1 + X_2^n(t)x^n(t)]}.$$

$$x'(t) = -\frac{A(t)}{X_1(t)} \cdot x(t) + \frac{A(t)}{X_1(t)[1 + X_2^n(t)y^n(t)]} \cdot$$

$$y'(t) = \frac{1}{X_2(t)} \cdot x_2'(t) - \frac{x_2(t)}{X_2^2(t)} \cdot x_2'(t) =$$

$$= \frac{1}{X_2(t)} \cdot \left[\frac{B(t)}{1 + x_1^n(t)} - x_2(t) \right] - \frac{x_2(t)}{X_2^2(t)} [B(t) - X_2(t)] =$$