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ABSTRACT

We investigate an algebraic structure of the space of solutions of autonomous
nonlinear differential equations of certain type. It is shown that for these equa-
tions infinitely many binary algebraic laws of addition of solutions exist. We
extract commutative and conjugate commutative groups which lead to the con-
jugate differential equations. Besides one is being able to write down particular
form of extended Fourier series for these equations. It is shown that in a space
with a moving field, there always exist metrics geodesics of which are the solu-
tions of a given differential equation and its conjugate equation. Connection
between the invariant group and the algebraic structure of solution space has
also been studied.
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1 Systems of ODE

1. Consider an autonomous system of differential equations of N unknown
functions in the complex field

du® k(1 N

— =F%u,..,u"), (k=1,..,N), (1.1)

dt
where F(u) are defined and differentiable everywhere in the space of their ar-
guments. ¢ is a real independent variable. We assume that the vector field
F(u) is smooth and can only have isolated zeros and infinities. We also assume
that F'(u) does not have other singularities. Let J be the space of solutions
of (1.1). We want to find a binary algebraic operation defined in J. Sup-
pose u1 = (ul, ..., u), ug = (ul,...,ud) are elements of J. We want to find a
solution of (1.1) in the form

uf = @k(ul,ug). (1.2)
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Substituting (1.2) into (1.1) and taking into an account that ui,us € J we
obtain determining equation for ®*:

O
3u§

HP*
aui

Fi(uy) + Fi(ug) = F*(®),(k =1,...N), (1.3)

where repeating index ¢ means summation from 1 to N. The solution ® of
(1.3), as it follows from (1.2), defines a rule: two arbitrary elements w1, ug of J
correspond to the third element in J. But it is a definition of a binary algebraic
operation on the set J [1]. Generally speaking there can be defined infinitely
many algebraic operations (we consider them in section 3). However our goal is
to select, via (1.2-3), only commutative groups. Obviously (1.3) will not change
if we replace uiwith us and us with uw;. Then we can demand commutativity
of @

(I)(’U,l,UQ) = @(UQ,ul). (14)

But if such a function ® exists we can introduce an algebraic law of addition
of the elements in J:

ubFub = dF(uy,up), (k=1,..,N). (1.5)

(1.4) means commutativity of operation (1.5): uy + us = ug + u;.
Let us return to (1.3) and consider its characteristic equations

= Fln), B2 = p(u), 92 = F@). (1.6)

duy
dt

In [2] it is shown that the system (1.3) is solvable and the solution can be
constructed via characteristic functions. Since the system (1.6) is autonomous,
it is easy to see that at least one of the constants can be added with parameter
t. Thus the solution of (1.6) in coordinate form can be presented as

" (ur) = 0%t + e, P (u) = bt + o5, " (@) = 0Pt + ¢, (1.7)
where k = 1,..., N, and c¥, c&, c* are the constants of integration. Generally
b* have components b' = ...bN~1 =0, bV = 1. However such a restriction does
not follow from anywhere and in principle b* can be any nonzero vector. We
will always assume that

Ot

det —
¢ ou’

#0
everywhere in J except some isolated points. We will see it is equivalent to

F(u) having only isolated zeros and infinities.
To construct a solution of (1.3) we consider the system of equalities

exp(cy —*) +exp(ch =) =1, (k=1,..,N) (1.8)
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and substitute (1.7) in (1.8). Then (1.5) will have the form

ur s = ¢ [In(exp p(ur) + exp p(us))], (1.9)

where ¢! is the inverse function of ¢. From (1.9) we immediately have

the condition (1.4). Since ¢! is inverse of ¢, associativity of operation (1.9)
easily follows. But this means that J space with binary operation (1.9) forms
a commutative semigroup.

Example 1 (1.1) As a simple illustration we consider homogeneous equation

u
dt .
will have a form uy +ug = =1 [In(exp p(u1) + exp p(uz))] = exp In(ug + uz) =
Uy + ug. d

=u. Obviously p(u) =Ilnu =1t+c. Inverse to ¢ will be exp. Then (1.9)

Example 2 (1.2) Analogous calculations for the equation

% =u(l —wu)
give uy +ug = (u1 + ug — 2uqug)/(1 — urug). <
2. Let us consider the following equality instead of (1.8):
exp(c® — ) fexp(cd =) =1, (k=1,..,N). (1.10)

We substitute (1.7) into (1.10). Then instead of (1.9) we derive another
algebraic operation on J :

wrFus = = [~ Infexp (—p(ur) + exp (—p(u2)))] (L.11)

It is easy to see that J with binary operation (1.11) also forms a commutative
semigroup. We will call semigroup (1.9) the conjugate semigroup of (1.11), and
semigroup (1.11) - the conjugate semigroup of (1.9).

Example 3 (1.3) For the linear equation described above (1.11) will have the
form:

u1+ug = exp[—In (exp(—Inwuy) + exp(—Inuyz))]

1 1
=exp[—In <— + —)] =tz
U U2 u1 + Uz

d
Example 4 (1.4) For equation d_ltL = u(l — u) the conjugate semigroup will

have the form: wui+us = ujuz/ (U + uz — usus) . <
3. Let us introduce the function

wh = exp®(u), (k=1,...,N), (1.12)
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where ¢ (u) is the left part of (1.7). If u € J, then it follows from (1.7)
that w satisfies system

dw

— =b 1.13

Wb, (113)
where matrix b = diag(b',...,b"). Obviously (1.12) performs a continuous

mapping of the solution space J to the solution space W of the system (1.13)

except may be some isolated singular points. The inverse mapping is:

u=p (lnw). (1.14)

d
Example 5 (1.5) For example, for equation d_ltL = sinw the mapping J — W

. _ u
1s w = tan 5,

u = 2arctanw+2wm (m-integer) is not one-to-one in contrast to w = u/(1—u)

d
where W is the space of solutions of d—l: =w. The tnverse map

and uw = w/(1 + w) which are derived from ccll_? =u(l—u). <

4. Back to mapping (1.12) expp : J — W. It is clear that the inverse
mapping (expy)~! : W — J | generally speaking, is not one to one. Let
us choose a subspace J™ in J in such a way that the mapping J™ — W via
(1.12) and its inverse via (1.14) are diffeomorphisms ((1.7) is smooth). The
map expy : J — W is called a covering. W is called a base of covering and J
- a space of covering. We will call J™ a leaf in J and m an index [3]. m runs
through some discrete set M. Notice that due to the existence and uniqueness
theorem for (1.1), leaves J™ do not intersect for different m (except for some

isolated points). Also J = |J J™. Since W is connected, the number of
meM

leaves does not depend on elements of W [3]. The preimage ¢~ !(In(w)) where
w € W, is a fiber of discrete elements. Let D be a group acting on fibers. Since
u is an arbitrary solution of (1.1), d(u) = u,d € D, implies d is the identity of
D. This means that the group D acts faithfully [3]. Such a covering of J is
called a principal bundle with discrete group D and base W. Easy to see that
each element of a fiber is an element of some leaf.

Let us now consider the algebraic operation (1.9). Let uj,us € J. expgp
maps them to w, w2 in the base space W. But since W as a space of solutions
of linear equation (1.13) is a linear vector space, wy and ws can be added in a
standard way (linear superposition). Then w; + ws is mapped back to J to its
preimage. This preimage is a fiber of discrete elements. We will call elements of
this fiber a sum u;+us. Each element of this fiber is a single-valued sum of some
leaf of the space of covering J. On the other hand, since (1.13) are N distinct
equations, we can introduce the conjugate sum w¥iwk = 1/(1/wh + 1/wk).
Defined algebraic operation in W forms a commutative semigroup. Easy to
see that if wy,wy are images of uy,us € J, then the preimage of w;+wy will be
ui-+us. Obviously, the preimage u;+Fus is a discrete fiber in J.
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5. Since (1.13) is linear and homogeneous, W forms a commutative group
under addition wi + wa, w1, ws € W. e element with elg = 0 is the identity
element of the group, i.e. for any w € W

eo+w = w. (1.15)
Another definition: if for any ¢ element of a commutative group, ¢ # h,
h+q=h, (1.16)

then we call h a conjugate identity element. Thus conjugate identity in W is
ho, hk = 0o, (k = 1, ..., N), satisfying ho + w = hg, Yw € W.
For the algebraic operation w;+ws we have eg+w = eg, ho+w = w.

d . .
For d_ltL = u(l — u) we found u;+us and its conjugate ui+uz. Obviously,

w = 0,u = 1, satisfy 0O+u = u,1+u = 1. For the conjugate sum we have
0fu =0,14u = u.
6. Let the following limits exist
e= lim p '(lnw), h= lim ¢ '(lnw). (1.17)

w—eq w—hg

We also admit that generally some coordinates of e and h can be infinite.

Let us write (1.17) formally: e = ¢~ *(Ineg), h = ¢~ 1(Inhg). Clearly e and h

are preimages of eg and hy and hence are discrete fibers in J. But since ¢! is

inverse of ¢ then the following must take a place:
eo = lim exp p(u), ho = lirr}L exp p(u). (1.18)
Using (1.18-1.19) we immediately obtain:
(ut+e)=wu, (ut+h)=h, uel

These equalities show that under the binary operation (1.9) in J elements
em and h,, of fibers e and h play the role of identity and conjugate identity
respectively. Analogous calculations for conjugate binary operation (1.11) give:

(hu) =u, (etu)=ce, ue J.

Thus when turning from algebra (1.9) to its conjugate algebra (1.11) the
identity and the conjugate identity elements change their places.

7. Let us consider now inverse elements w and —w in W, w + (—w) = eo.
Let u = ¢ }(In(w)) and u~ = o~ (In(—w)). Then from (1.9) it follows that

utu" = w_l[ln(exp('”(“) +exp"”(“7))] = o HIn(w+ (—w))] = ¢ (Iney) = e.
Analogously

utu~ = h.
We showed that v and v~ are inverse elements in both sums (1.9) and (1.11).

d
For example, in the space of solutions of d_ltL = u(1—wu) elements u and u/(2u—1)

are inverse.
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Elements eg, hg € W are fixed points hence do not depend on ¢t. But then
from (1.17-1.18) we conclude that e,h € J also do not depend on t. Then
e, h are fixed solutions of (1.1) if only they have finite coordinates. Above
mentioned examples convince us in that. However inverse is not always true.

d
Example 6 (1.6) If d_t: = Yu, then it is easy to find the mapping w =

exp Vu2. In this case e = +ioo,h = do00. As for the fized point u = 0,
it is a ramification point of the map.<

2 Characteristic functions

The introduction of algebraic operations brings to our attention the character-
istic functions " (u) which satisfy

<pk(u) =bFt + " 21

In our theory the characteristic functions play the central role building the
algebraic and geometric structure of J space. Hence it is important to investi-
gate algebraic properties of ¥ (u).

1. Let us differentiate (2.1) with respect to ¢t. Using (1.1), we obtain

i &Pk
F'(u) 5 vr (2.2)
Multiplying (2.2) by (g—i)_l, we have
oo 1% .
FRlu) = [(6—‘5) 1] b (2.3)

From (2.2-3) immediately follows the connection of singularities of F*(u) and
det(22).

2. Let us multiply (2.1) by an arbitrary nonsingular constant matrix Mk,
Then we can write

¢~ = MFe™, bR = MFb". (2.4)

Obviously the set of all transformations (2.4) forms the general linear group
GL(N). From (2.3-4) it follows that the group GL(N) leaves invariant F'*(u)
and the elements of the space J. But this means that the equation (1.1) is
invariant under the transformation (2.4). We call this group the accompanying
group of differential equation. An infinitesimal notation of elements of the
group GL(N) can be written in the form

e =t atem, b =08 4ok (2.5)
From (1.12) it follows that the elements of W are transformed as

o* = w* + oFwk Inwn, (2.6)
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where n is the summation index, and k is not. Using (2.5-6), it is easy to prove
the invariance of (1.13) under the action of the accompanying group GL(N).

Analogous situation takes place with any group acting in the space J. We
will see later, that if some group G acts on J and leaves (1.1) invariant, then
it also leaves invariant the characteristic functions ©*(u). Using (1.12) we
conclude that the space W of solutions of (1.13) is invariant under the action of
group G.

3. In (2.1) b* and c* are added as components of N-dimensional vectors.
u, F(u), ¢(u) and w are also represented as N-dimensional vectors. In spite
of that, in the equation (1.13) b* appear as elements of a matrix (although
diagonal, but still matrix). Moreover, in contrast to (2.5) there comes up
very interesting nonlinear transformation (2.6). This indirectly points that
elements of J should probably be interpreted as matrices which is equivalent
to the existence of some algebraic structure inside (1.1). But so far we restrict
ourselves from further discussion on this subject.

3 Space of Solutions and Algebraic Operations

1. Let us go back to the characteristic functions (1.7). Let b* % 0 for some
k = ko. Express t from @F (u;) = b¥ot 4 cf°. Then we can write

o (ur) — BP0 (ur) = &, P (uz) — bF™ (ur) = &, (3.1)
©F (@) — BFho (ug) = &", (1)

where 0¥ = b¥/b¥o. In order to construct the general solution of (1.3) we
use the method described in [3]. Let us consider

P*(&1,60,8) =0, (k=1,...,N), (3.2)

where P¥ are arbitrary smooth functions of their arguments. We demand
also

oprP
det — .
e 667&0, (3.3)

for any (é1,¢2,¢). To solve (1.3), we substitute (3.1) into (3.2) and get

PF(p(ur) — bp" (ur), o(uz) — bp™ (u1), p(®) — bp™ (u1)) =0, (3.4)
k=1,..N). (2)

Because of (3.3), we can solve (3.4) for o (®):

P (@) = L¥(p(ur), p(u2)). (3.5)
From (3.5) we can easily find solution of (1.3):
@ = o [L(p(u1), p(uz2))]- (3.6)

EJQTDE, 2001 No. 6, p. 7



From an algebraic point of view, (3.6) defines a binary algebraic operation
in J, which we denote

ur * uz = @~ [L(p(ur), p(u2))]. (3.7)

Since L is determined from (3.2) with P being arbitrary with the single
condition (3.3), one concludes that there are infinitely many binary algebraic
operations in the space J. However we narrow down this set of operations and
require in the future that the equality

o~ [L(p(u), p(uz))] = us

was uniquely solvable for each discrete fiber u; and wuy separately.
As an example consider equation ?1—1; = u with characteristic function ¢ =
Inu=1t+c Let (3.2) have the form: exp(c; — ¢) —exp(cz —¢) = 1. But then

UL * U = UL — Us. (3.8)

Obviously, the derived algebraic operation is noncommutative and nonasso-
ciative. Let us now consider exp(g(c1 — ¢)) + exp(g(c2 — ¢)) = 1, with a real
number gq. Then we find

uy * up = (ud +ud)t/a, (3.9)

It is easy to see that this operation is commutative and associative. The
identity elements are eg = 0, hg = oco. Hence the space J with algebraic
operation (3.9) is a commutative group. When ¢ > 0 this group is isomorphic
to a group with operation w1 + us = uj + w2, when ¢ < 0 it is isomorphic to a
group with operation uj+us = ujus/(u; +uz). Using the transformation (2.4):
¢ +— qip, we obtain (uf + ud)"? — uy + us.

This example raises the question of reducibility and irreducibility of binary
operations. As it was shown, (3.9) is reducible to u; + u2. As for (3.8) and
u1 + ueo, they are irreducible.

2. Consider the case when the system (3.2) has the form:

P*@é,8) =0, (k=1,..,N), (3.10)
Substituting (3.1) into (3.10), we have:
P*(ip(ur) = bp* (u1), o(®) — b (us)) = 0.
By analogy with (3.6), we find
@ = Qp(w))]. (3.11)

This is a unary operation in the space J of solutions of (1.1). It can also
be interpreted as a mapping of J into itself. In other words, (3.11) is a trans-
formation acting in J and leaving (1.1) invariant. By the assumption made in
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subsection 3.1 (3.11) is uniquely solvable for u; and since the identity transfor-
mation ® = wu; is contained in (3.11), the set of transformations (3.11) forms a
group.

3.  Lets perform the transformation (1.12). Then with (2.2), (1.3) is
transformed into

amk i g (9mk i g ki
o biwy + u biwy = bym', (3.12)
where wf = exp pF(uy), wh = exppF(uz), mF = exp*(®), and matrix

b = diag(b',...,bY). Obviously, (3.12) is the determining equation of binary
operations in the space W of solutions of (1.13).

4. It was mentioned in section 2 that one can always find such a represen-
tation of algebraic functions *(u) that vector b* has the form

b=(0,...,0,1). (3.13)

With (3.13), it is easy to find the general solution of (3.12), which has the
form

N
w
q _ pq 2 1 N—-1 1 N—-1
m? = 01—, Wi, ., Wy Was ey Wy ), (3.14)
wy
wy N N
N __ NoyN/W2 1 -1 1 -1
m" =w; 0 (w—]\,,wl,...,w1 JWay ey Wy ),
1

where 6% are arbitrary functions of their arguments and ¢ = 1,..., N — 1.
5. Any binary operation which can exist in W can be presented as

wykws = m(wy, ws), (3.15)

where m(wy,w2) is a solution to (3.12).

In future, like in subsection 3.1, we will narrow down to the binary operations
(3.15) with m (w1, wz) being smooth and (3.15) being uniquely solvable for w
and ws.

6. Since the matrix b is diagonal it is easy to see that the map

wh = 1w, wh — 1/wk, mb— 1/mk, (3.16)

leaves invariant equation (3.12). But then for every operation (3.15) it
makes sense to introduce the conjugate binary operation

7. In 3.2 we showed that the set of all binary operations contains the subset
of unary operations. A unary operation can easily be determined from (3.15).
To do that, we pick those solutions m* of (3.12) which do not contain ws. Then
we will have m = m(w;). Since w; and m(w;) are solutions of (1.13), we can
change m(wy) for w. Finally

@ = w(w) (3.18)
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Obviously, (3.18) is a solution of

—k
g?’ui biw! = b, (3.19)
We have seen that (3.18) is a map from W to W. Using the restrictions on
solutions made in 3.5 and since w = w is a solution of (3.19), we conclude that
the set of transformations (3.18) forms a group.
8. We mentioned that in W space there exist commutative and conjugate
commutative groups with identity elements ey = (0, ...0), ho = (o0, ..., 00).
a) Let us substitute eg into (3.18). By assumption the solutions (1.3)
and (3.12) are sought as smooth functions. Taking into account the action of
accompanying group (2.4), from (3.19) we obtain

() ’lf}(eo) = €. (320)
For hg € W we suppose that the following takes place
ho = w(ho) = ho. (3.21)

This means that under the action of (3.18) eg, hg are fixed points of the
space W.
b) Suppose that ws = eg in (3.12), then

%Z?%)b;w{ = bEmt (w1, eo). (3.22)
Comparing (3.22) and (3.19) we come to conclusion that

m(wi,ep) = Wy (wy). (3.23)
Analogously, in case of w; = ey, we have

m(eo,wg) = U_JQ(’LUQ). (324)

Since unary operations (3.18) are contained in binary ones, we can factorize
m(wy,wse) with respect to wior wy independently. Obviously, it means the
factorization with respect to the group (3.18). Then (3.23-24) will have the
form m(eg, w) = m(w, ep) = w and we conclude that eg is the identity element
of the binary operation (3.15)

eokw = wieg = w. (3.25)
Using the results of section 1, suppose that for hy € W the following holds

hokw = wkhg = hg. (3.26)
From (3.25-26) and (3.17) it is easy to see that

ho¥w = wxhg = w, eg¥w = w¥ey = €. (3.27)
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9. Now we narrow the set of solutions of (3.12) down one more time and
conclude that binary operations (3.15) are associative

(w1>'kw2)>i<w3 = w1>'k(w2>i<w3). (328)

(3.28) and the conditions imposed on m(ws,ws) imply immediately that the
space W with binary operation (3.15) forms a group. eq plays the role of the
identity element and hg - of its conjugate identity element.

It is easy to see that associativity for the conjugate binary operation (3.17)
follows from (3.28)

(’u}l;i;’wg);lé’wg = wl*(wg*wg) (329)

Thus if (3.15) defines a group in W then (3.17) defines its conjugate group.
Identity elements are eg and hg. Existence of such groups follows from section
1.

10. We mentioned that the function (1.14) maps W to J. If we consider
fiber u € J as a single element then (1.12) and (1.14) perform a one-to-one
mapping. Easy to show that if W is a group with binary operation (3.15) then
the space J with the binary operation

upkug = @ Hlnm (exp p(ur), exp o(us))] (3.30)

also forms a group. Maps (1.12) and (1.14) establish an isomorphism be-
tween these two groups. Discrete fibers e = ¢~ (In(eg)) and h = ¢~ 1(In(ho))
are the identity and conjugate identity elements in J and satisfy the following,
coming from (3.25-26)

eku = uke = u, (3.31)
h¥u = ukh = h.

From (3.17) we can easily find the binary operation for the conjugate group

urkuy = o~ = Inm(exp(—p(u1)), exp(—p(u2)))]- (3.32)
In this case the identity and the conjugate identity elements satisfy

eku = u¥e = e, (3.33)

h*u = uxh = u.

We come to the conclusion that in the space of solutions J of (1.1) there
exist a continuum set of binary operations (3.30). The transformation group
which leaves (1.1) invariant forms together with this continuum set one whole
entity. The equation (1.1) stays indifferent to commutativity and associativity.

Finally we point that (1.8) and (1.10) do not come from (1.1). The reason
we used them was to obtain classic algebraic theory in case of linear differential
equations.
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4 Systems of PDE

Consider the system

N k
a’ (u) B F*(u), (4.1)
where the summation is performed by v = 1,...Ng and n = 1,..., N. Ele-
ments of matrices a”(u) and vectors F'(u) - are smooth functions defined every-
where in the space of their arguments. The vector field F'(u) has only isolated
zeros and infinities. Independent variables ¥ are real.
1. As before, we introduce the space of solutions J of system (4.1). In order
to establish a binary algebraic operation in J we will be looking for the solution
of (4.1) of the form

u = D(uy,us), (4.2)

where uq,ug are arbitrary elements of J. Substitute (4.2) into (4.1). Then

we obtain the determining equation for unknown function ®. In this equation

ouj ous

and 2 part of
xl/ xl/
them is determined from (2.1) and another part plays the role of independent

variables. In other words, in the determining equation independent variables are

components u1,us are independent variables. As for

0
u1, ug and some of their partial derivatives if only D and —— do not commute
U1 U9

with the matrix a, (u). But then the determining equation will contain a certain
internal contradiction and such a binary operation will not fit J. To avoid this
contradiction, ® in (2.2) must depend not only on w1, us but also on the points
of co-jet manifold, generated by (2.1). It is interesting that in order to explain
so-called "hidden symmetries” of a differential equation of a field in [4], we had
to go beyond the frameworks of standard theories and construct theory of local
groups with jet-spaces. It seems that the appearance of objects with infinite
number of elements is internally logical for PDE. Recall, for example, that
we can expand solutions of linear equations into special functions. The special
functions are connected with a group representation, and this group, in its turn,
leaves the given equation invariant (symmetry group).

2. To avoid the straightforward introduction of jet-space we do the following.
Let us search for the solution of (2.1) in the form of plane waves

Uy = Ua(2a),

where 2z, = o, z", o, are independent parameters running through the points
of some space Q of dimension Ny. Substitute (2.3) into (2.1) and obtain

aa(ua)% = F(uq), (4.3)

where a, = a,a”(us). Suppose that the following is satisfied

det aq(uq) # 0, # 0. (4.4)
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Assume F(u) = 0. In order to have a nontrivial solution to (4.3), we
demand detaq(uq) = 0, [2,5]. This imposes restrictions on «, (not all «,
are independent and generally they are connected with u,). However at this
point we disregard this case and, to simplify the problem, demand the following
together with (4.4)

F
det 0 # 0, (4.5)
u

0
except some isolated points.

Suppose there are commutative and conjugate commutative groups in the
space of solutions J,, of the equation (4.3) Assume that the identity elements
have finite coordinates, unless mentioned otherwise. Then due to section 1 they
are roots of F'(u) =0. Thus e and h do not depend on «.

Consider the trivial fiber bundle P(§2, W) with base space 2, fibers W, and
projection m(wq) = o € Q. In fibers W, there is a commutative group defined
by usual coordinate addition

whyFwhy = why +why
with its conjugate group defined by
koo k k k
WoqFway = 1/(1/way + 1/wgs),

with £ = 1,..., N. The identity elements of these groups are eq = (0, ..., 0)
and hg = (00, ...,00). Consider another trivial fiber bundle P(£2, J,) with base
space (Q, fibers J, and projection 7(J,) = a € Q. Let us perform fiberwise
mapping exp po : Jo — Wy,. The preimages of fibers W, are J, and, as
described in section 1, J, are fiber bundles with discrete subfibers, base space
W, and discrete group D,. The commutative groups J, are mapped homo-
morphically to the commutative groups W, under exp ¢, : Jo — W,. From
1.3, if the discrete subfiber u, is considered as one element J,, then we can
establish an isomorphism between groups J, and W,,.

3. Let us search for the solution of (4.1) in the form

uf = x*(.., wa, ), (k=1,..,N), (4.6)

where x* are functions of elements of all fibers W, of P(Q,W,). Recall
that W, is a space of solutions of

dw,

—p = bata, ba= diag(bl, ...,bN). (4.7)

But then (4.6) can be interpreted as a certain nonlinear analogy of Fourier
expansion of solutions. Substitute

Wo = €XP Yo (Uq)- (4.8)
in (4.6).
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After re-denoting, (4.6) has the form
ufF =X ug, ), (k=1,...,N). (4.9)

From (4.8) it follows that if u, in (4.9) runs through some fixed discrete
subfiber of fiber J,, then (4.8) will not change. This agrees with analogous
properties of (1.9) and (1.11).

4. Substitute (4.9) into (4.1) and with (4.3-4) we obtain

Z ayx(x) gii a;lji () F7 (us) = FR(x), (k=1,...,N), (4.10)
aEN @

where a;'(uy) is the inverse of aq(u,). It is worth mentioning that y
explicitly depends not only on u, but also on «, which are present in matrices
aq. These matrices generally do not commute for different «. This makes
impossible to construct a ternary relation based on binary relation. Hence the
ternary relation has to be sought from the corresponding equation (4.10). Since
Q) is a continuum space, generally speaking, x must be considered as a function
of continuum number of variables.

Using (4.7) by analogy with (4.10) it is easy to write the determining equa-
tions for (4.6)

ox™ ..
> aan(0) 5o biwh, = FH(x). (4.11)
aEN @

5. In order to study algebraic construction of the solution x we consider the
case when the equation (4.1) is linear and homogeneous. In this case eg = 0
and the conjugate identity is hg = oo. It is easy to show that one of solutions
(4.10) is well-known function

X = talza). (4.12)

ae)

Obviously, (4.12) is a symmetric function of its arguments. Also, if all
arguments are e (for example, u,) then y = u,. If at least one of arguments
in (4.11) is hg, x = ho. Taking this into account, consider (4.10). Clearly this
equation is invariant under the permutation of indices @« — 3,6 — «, a, 3 € €.
Let us search for solution of (4.10) in the set of symmetric functions of their
arguments u,. We demand from (4.9) that if all arguments, except one, are e,
then the following must hold

X €y ey Uy ooy €y.0.) = 1 (4.13)
Besides assume that if one argument in (4.9) is 2 then the following holds

Xk(...,u[g,...,h,...,u,y,...) = hk. (4.14)
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In (4.12-13) a runs through all © set. Using (1.18) and (4.8), for (4.6) we
obtain from (4.13-14)

X(eeey €0y ey Wy veey €0y ove) = Ugyy (4.15)
X(eory W3,y ey ROy ooy Wy o) = h

6. As we mentioned in section 1, the set of solutions J, of (4.3) represents a
principal bundle with discrete group D, and base space W,. Since e, h,uy €
Ja, it follows from (4.13-14) that the space J must also be discrete fiber space.
Same conclusion follows from the fact that J, is a subspace of J for any a € €.
Elements of a discrete fiber cannot be determined immediately from (4.10), but
(4.13-14) give the necessary information how to do that. In order to make
the following considerations easier, we suppose that the discrete groups D,, are
isomorphic for distinct o € Q (this in part is connected to the fact that the
identity elements e and h do not depend on «). J becomes a principal bundle
with discrete group D = D, and with some base space V which is still to be
determined.

7. Let us consider (4.9) in more detail. It is a solution of (4.10). Here
Ua(Za) is a general solution of (4.3) which contains constants of integration cq.
Hence (4.9) contains whole range of constants {c,, « € Q}. Obviously, for every
collection {c, } we have different solutions of (4.1). An inverse problem appears:
can one find a collection {¢, } such that (4.9) is equal to a given solution of (4.1)?
Not every solution of (4.10) fits into this problem. However for linear equations
this problem has one solution when y is (4.12). Let us consider x solution of
(4.10) satisfying conditions of subsection 5. We assume without proof that the
collection of constants {c, } contained in x can always be chosen uniquely in such
a way that the function coincides with a given solution u(z) € J (here we avoid
functional analysis problems of completeness of expansion and normalization
inside x [6]).

Function x is a map P(Q,J,) — J. Then the determining of unique col-
lection {c,} can be interpreted as an existence of inverse function x=! : J —
P(9,J,). Notice that under these maps the elements of the same fiber cannot
be distinguished.

8. Let us consider the linear homogeneous equation with constant coeffi-
cients

oV 51}
a
ox?

— bo, (4.16)

where & and b are N x N diagonal matrices satisfying (4.4-5):

oV

det(apa ) #0, detb =0,
when « #£ 0. Write out plane waves equation

Do

= bV, 4.17
T v (4.17)
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where

R o—10
bo =a, b, a,=a,a".

Assume «,, in (4.7) and (4.17) are the same. It is easy to write the charac-
teristic functions of these equations

Inw® = bk 2, + & Inov” = IA)Zza + ¢k,
Clearly there is a unique nonsingular matrix g, which establishes the fol-
lowing equality

Bk:ﬁ kbn

(03 an - o’

But then we can write Inv® = 8% Inwk. With regard to (4.8) it is easy to
find

vE = exp B r i (ua).

Then we can write solution of (4.16) in the form

P = Z exp B, 50" (ug). (4.18)
acQ

Thus (4.18) can be uniquely associated with the discrete fiber u(x) of (4.1).
The inverse statement is also true, for every solution v(z) to (4.16) which
can always be represented as (4.18), there is a unique discrete fiber u(xz) =
X(eooy Uy -nr) € J.

We can say that there is a one-to-one correspondence between discrete fibers
of J and elements of V of (4.16). But this means that J is discrete fiber space
with discrete group D isomorphic to D, and base space V.

9. Let us denote the right hand side of (4.18) as x(..., wq,...). Obviously
X maps trivial fiber bundle P(Q, W,,) to V, i.e. x: P(Q,W,) — V. But then
there is a one-to-one inverse map Y~' : V — P(Q,W,). Analogously function
(4.6) represents a mapping of P(2, W,,) to J. Elements of J are discrete fibers
u(z), ie. x: P(Q,W) — J. We have seen in subsection 7, that there is an
inverse ! : J — P(Q,W,). Then the following is true

xox 1V o Jyxox iV

10. All arguments of the left hand side of (4.14) (solution to (4.10)) can vary
arbitrarily. Besides, aq(x) and F(x) in (4.10) are smooth functions. Thus the
solutions are smooth too. But then it follows from (4.14) that:

Ox*
oul,

luag=h= 0. (4.19)

aFagp
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It is easy to check that (4.19) does not contradict (4.10). If uq, = h in
(4.10), then an(x) = aq(h), F(x) = F(h) = 0 because of (4.14) . (4.19) implies
that all terms in the left hand side of (4.10) would be zeros, when a # «g. The
term with index o = g is also zero because of the factor F(uq,) = F(h) = 0.
Hence (4.10) is identically true. Notice that in case of (1.1), from (1.3) we can
obtain

0P (u, h)

4 =0
ou’ ’

assuming that ®(u1,us) defines a group u;+us with the identity and the
conjugate identity elements e and h.

11. Let us write symbolically the solution to (4.10), (4.13-14) as a formal
sum

U = S Ua(Za), (4.20)
a€e)

where m € M and u,, represent elements of a discrete fiber in J.
Together with (4.20) we introduce a conjugate sum. To do that, instead of
conditions (4.13-14), we demand that the solution (4.9) of (4.10) satisfies

XE Gy By oo Uy ey By ) = R (4.21)

We write the solution x, of (4.10) under conditions (4.21) as

Um = S U (Za)s (4.22)
a€ef

U € J. We will call (4.20) and (4.22) conjugate "sums”. In the future
the solution to (4.10), (4.13-14) we denote as x(..., Uq, ...), and the solution to

(4.2) as )A((...,ua, ...).  We conclude that the elements of the space J can be
represented as (4.20) or as (4.22).

. . LA .
Analogously we can introduce symmetric function X(...,w,,...) satisfying
(4.11) and conditions

ooy ROy ooy Wary ooy iy ) = War,s (4.23)

A
X(eor, Wg, ooy €0, ooy Weyy .o) = €.

We will call the function )A( the conjugate function of x which was introduced
in subsection 5. Obviously, the function )Ag, like x, is a map
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P(Q,Wy) — J.

12. Let us suppose that in fibers J, there exist commutative groups with
the identity elements e and h. Then the sum of two solutions in J represented
in the form (4.20) should be defined as

Ul‘i'u2 = S’mual'i‘ Sm U2 = Sm (ual‘i‘uoﬁ)- (424)
ae a€eQ acf)

Clearly this operation is commutative and associative. We define for the
conjugate sum

ﬂl;ﬁg = Sm ualilL Sm Ua2 = Sm (ualiuag). (425)
a€E a€e) a€e)

Suppose u, = e in (4.13), then
e= Spe. (4.26)
aeq)

We will always assume summation S in some leaf J,, so the index m can be
discarded except some special circumstances.
Using (4.24) and (4.26) we obtain

ute = Sua+Se = S(ua—i—e) = Su, = u.
Consider u+h. Using (4.14) we can write

UFR = Xy UGy ey Uy wvey Uy o) FX oy Uy vy By oy Ty <o)
= X(eoyugtag, oo ugt+h, ooy uy+iiy, ...)
= X(eoy ug+ag, ooy By ooy Uy Fiy, ...) = h.

Analogously it can be proved that

uth = u,ufe=e.

Let u, and u_ be inverse elements in J, so that they satisfy ua{Lu; =e.
Then from (4.24) it immediately follows that the elements u = Su, and u~ =

Sug, are also inverse elements i.e. u+u~ = e. It was shown in section 1 that
if uo+u, = e holds, then u,+u, = h for the conjugate group in J,. Thus for
the conjugate sum (4.25) 444~ = h, where & = Suq, 4~ = Su.

We come to the conclusion that the algebraic operations (4.24) and (4.25)
in J form a commutative group and conjugate commutative group with the
identity elements e and h respectively.
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13. As a simple example we consider the equation when N =1

ou
a’— =sinu, 4.27
D (4.27)
where a” are constants. Then equation (4.3) has the form aafl“T“ = sin Uq.

Its solution space J,, consists of

Uam = 2arctan[cq exp(2za/aq)] + 27m, (4.28)

where m is integer. In the leaf J' we have the following commutative
groups

(a1 Fia2)m = 2arctan [tan(uq1 /2) + tan(ugs /2)] + 27m, (4.29)
(a1 a2 )m = 2arccot [cot(ua1/2) + cot(uaz/2)] + 27m.

In these groups e, = 2mm, h,, = 27m + 7. Let us now consider (4.10) for
(4.27)

Z ?;;: SinUg = Sin Xn,- (4.30)

139

The solution of this equation under condition (4.13-4.14) has the form

Xm = 2 arctan(z tan(uq/2)) + 27wm. (4.31)
acQ

From (4.30) under condition (4.21) we find

X = 2arccot( Y cot(uq/2)) + 2mm. (4.32)
a€e

From (4.31-32) we easily write out corresponding operations (4.24) and
(4.25).«
As another example consider the linear equation for N =1

ou
vZ7 4.
o = (4.33)

where a” are constants. One can easily find

X= ) ta, (4.34)

a€cl)
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x=0"ugh™ (4.35)

(139

dus __ v

where u,, is a solution to Aa'gs™ = Ua, Qo = apa”. Obviously e = 0,h = o
are the identity elements of the commutative groups of the linear equation.
Immediate calculations in these examples convince that (4.19) holds if e and h
have finite coordinates.

14. Let us go back to (4.16). Since @ and b are diagonal matrices and
because of (4.34-35) we can write out conjugate solution which satisfies (4.23):

o = > exp(—Buhon(ua))| L (k=1,..N). (4.36)
a€E)

Using the fiberwise map (4.8) one can establish an isomorphism between
(4.36) and (4.22) if a discrete fiber u(z) € J is seen as a single element. Let us

denote the right hand side of (4.36) as )%(, We, -..), which maps P(Q, W,,) — V.
—1 —
If one introduces a map )Aco;% : V' — J then )A(o% can be called the conjugate
map with respect to x o x .
15. Let us extend the results of subsection 12 to arbitrary binary operations.
In order to do that we introduce an individual binary operation in each fiber J,
of the space P(,J,)

Ua1#(Q)Ua2 = ‘P;l [ (exXp Yo (Ua1), €XP Pa (Ua2))]; (4.37)

where m,, defines binary operation in W,

wal*(a)waﬂ = ma(wala wa2)- (438)

But then one should define the corresponding binary operation in J in the
form of

Uy kg = aéﬂ(uap'k(a)uag), (4.39)

where u; = S"ual,uQ = Suag. It is easy to show that if all the binary
operations (4.37) are associative then so is (4.39). With our assumptions, the
identity elements are e and h. In this case as it follows from section 3, binary
operation (4.39) defines a group in J.

Analogously one can define a conjugate binary operation in J

Qi ¥y = aéﬁ(uali(a)uag), (4.40)
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where 11 = Sug1, U = Suae and

“ozl.*;(a)uo& = ‘P;l[_ In ma(eXp(_@a(ual))a exp(—@a (an)))]

16. If * are characteristic functions of (4.3) then from (2.3) and (4.3) we
can write

-1 k
<aa1<ua>>§F”<ua>[<a“”ng”> ] i (4.41)

n

From section 2 it follows that one can always find such a representation of
¢a(uq) that % does not depend on o € Q. Moreover, from (2.4) b* can be
defined arbitrarily. On the other hand (4.41) represents an identity with respect
to us. Because of (4.4), we can write from (4.41)

F(u) = {%ﬁa;l(u)} - b, (4.42)

where u*, (k = 1,..., N) are arbitrary and not necessarily solutions of (4.1)

and (4.3). From this equality we can immediately conclude that matrix %u(u)agl (u)
does not depend on parameter . But then since b is an arbitrary constant

vector, we can conclude from (4.42) :

L ) (4.43)

ou = ou s

Let us substitute (4.42) in the right hand side of (4.10). We obtain
Ipp(x) — ox -

3 280 5 (a0 () Fla) = b

acQ ax u

Using (4.41) and (4.43) we can finally write

k Ug, -17"
> el [(a%ifa ') Lb”b’“- A

(139
Let us introduce new independent variables
k

k= o (ua). (4.45)

Then we can write
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05 (x) _ 9¢a(X) 0¢a(ua)

ou?, orn ou?,

Using this equality and the fact that b* is an arbitrary element constant
vector, (4.44) becomes

k 7
3 99a (00 OX" _ 5", (4.46)
= ox* orn

where 0¥ is Kronecker’s symbol. Thus we have proved that (4.10) can be
transformed into matrix equation (4.46).
We now prove that one of solutions of (4.46) has the form

> explrk — k(0] =1,(k=1,..,N). (4.47)
a€e

Differentiating (4.47) with respect to 75 we obtain
Opa(x) | o'
k k a _ k ky sk
<Z exp(ra - S%(X)) axl 67"3 - eXp(rﬁ - Wﬁ)(sn

Multiplying this equality by 6%‘; (lX) and taking sum with respect to § gives

> (Z exp (5 — & (1)) %ﬁp) % gﬁ;(lX)

BEQ \aef
ek (x)
=) exp (s — (X)) ;Xl ,

where there is no summation along k index.

k
If we cancel the last equality by > exp (ré - @g(x)) agﬁx (lX) , we obtain
BeEQ

X" 9p(x) 5
arn - oxt b

ae

It is easy to see that taking transpose of this matrix equality gives (4.46).
Thus (4.47) is a solution of (4.46).
Using (4.8) and (4.45), algebraic equation (4.47) can be written as

Z w” exp [—(pi(x)] =1,(k=1,..,N). (4.48)
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Let all uq, = e on 2 except one fixed o € Q. Using (1.18) and (4.8), one
obtains from (4.48)

wk exp [0k (x)] =1,

or, equivalently ¥ (us) — ¢ (x) = 0, and (4.13) follows.

Now let us suppose that for some fixed a € €2 we have u, = h. Then from
(1.18) wq = ho. Thus we conclude that one term in (4.48) is infinity. But in
the right hand side of (4.48) we have 1, so x = h.

Hence we have shown that the solution x of equation (4.47) satisfies (4.13-
14). Immediately from (4.47) it follows that x is a symmetric function of its
arguments.

Using the above argument one can show that

> exp [wh(R) = ¢hua)] =1, (k= 1,.., N) (4.49)
aeN)

is a solution of (4.46). The solution Y of (4.49) satisfies (4.21). Then
(4.47) and (4.49) define the conjugate solutions of equation (4.10). Equation
(4.30) is a simple example. Since g, (u) = Intan(u/2), it is easy to show that
from (4.47) and (4.49) (4.31) and (4.32) follow respectively.

5 Conjugate Equation

In section 1 we have introduced map (1.12) based on (1.8-9). On the other
hand, using (1.10-11) instead of (1.8-9) would give another map

k
© = exp(—¢*(u)), (k=1,...,N). (5.1)

k
A
Using equality (2.1) we can easily see that w satisfies

ak .
d K3
% " (5.2)

where matrix b = diag(b?,...,b"). Clearly the solutions of (1.13) and (5.2)
can be connected by @k(t) = wh(—t).

Function (5.1) performs mapping J — I%/, where I%/ is a solution space of
(5.2). Asin section 1, J is a space of covering, but we choose I%/ as a new base

A
of covering instead of W. Since (5.1) maps J in the new space W it follows
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A
that we have also to consider map ¢~ (—1In) of space W. Let u = ¢~} (—Inw),

A
or w = exp(—p(u)). Let us differentiate the last equality with respect to ¢.
Using (1.13), where matrix b is diagonal, we obtain

Op" da Y
v
Bl
Let us multiply this equality by matrix (Z—‘P)_l. Because of (2.3), finally we
have “
dAk A
m
= —F*(u), (k =1,...N), (5.3)

where F' is the right hand side of (1.1). It is easy to show that for the
commutative groups of (1.1) and (5.3) we can establish the following

. A . A .. A LA
(U1-i-u2)A = U1+ uo, (ul—i-uz)A = U1+ ug,
A A
e =~h, h=e.

7

A
Let J be a space of solutions of (5.3). Then the following take place

A A

e ') : W — JW — J,
NN

e (=)W — J, W — J.

It follows that (5.3) comes up naturally when one investigates algebraic
properties of (1.1). Corresponding commutative groups connect to each other
through operation of conjugation. However, in section 7 we will show that in or-
der to correspond the geometrical theory of differential equations, together with
the operation of conjugation one should also introduce Hermitian conjugation.

o okn o onl o
Let us introduce g, and g satisfying gp,9 = 0L, grn, = Okn, Where
8 Spn are Kronecker symbols.
1. We call the equation
d +
% —Frut), (k=1,..,N), (5.4)

a conjugate equation of equation (1.1). Here F;f (uT) = EknF*”(Equ), F*

is the complex conjugate of F, (§u+)k = ; nuj{ In the future we will do all
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considerations for some fixed leaf J™ of space of solutions J, so we discard index
m. Characteristic functions (2.1) of equation (1.1) in case (5.4) will transform
into

er (uh) = bt +cf, (5.5)

+ _ o + _ o
where b = g,,,b™", ¢ = g;,c™",

) = =™ (gu"). (5.6)

From this equality we immediately have

(u1+u2)t = uf fuf, (5.7)
(u1Fug)t = uf +uf.
Using (5.7), we obtain: (u+e)™ = ut+(e)™ = u™, (ut+h)t =uT+(h)" =

(h)*. But since uT+(e)* = ut, ut+(h)T = (h)* we conclude that (e)™ =
h*, (h)* =e*. Finally,

ef = (W) =gl bl = () = grne™ (5-8)

If we consider general binary operations discussed in section 3, using (5.6),
(5.8) from (3.30) and (3.32) it follows that

(upkug)t = uf¥ug, (urkug)™ = uf %uj. (5.9)
Functions m* in (3.30), (3.32) conjugate as
my = G (5.10)
2. Consider the system of equations
au;‘; vn
S () = —Fy (), (.11)
(k=1,..,N),
where
onlo *up /O o %m0
a™ =g grpa” ] (guT), Bl (uh) = gy, F (gu), (5.12)

(gut)F = g*muf.
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We call the equation (5.11) a conjugate equation to (4.1).
The equation of plane waves for (5.11) will have the form

duf o + (0t
—2ag (u") = =F"(ul). (5.13)
dzg,
Obviously (4.3) and (5.13) are conjugate equations. The commutative
groups in spaces J, and JI are connected by the conjugacy relation (5.7).
Analogously for equations (4.10) we derive the conjugate equations

_14 ot n
S ) Ve P et 0 = B ). (649)
ae) ai

Taking conjugation and regarding (5.8), (4.13-14) and (4.21) will change
places.

It is easy to show that between solutions of (4.10) and (5.14) the conjugation
rule is

The conjugation rule for commutative groups (4.24) and (4.25) is analogous
to (5.7) and (5.8):

(u1+uz)t = uf Fuf,
(urFug)™ = ueru;r,
(€)+ — h+,

(h)* =e*,

where u1,up € J, and uf,ug € J*.

One can easily write out the corresponding binary operations for the con-
jugate equation (5.11). Without repeating the argument we simply point out
that

(urkug) ™ = u¥ug,
(ur¥ug)t = ufsug

take place.
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6 Group properties of differential equations

Let I'Vo be a space with coordinates z = (z!,...,2N°). We consider space I''V
with coordinates u = (u?,...,u"), where u* = u*(z) are C> on T'Mo. Let '
be a jet-space with elements ¢ = (u, %, %, ..),u € TN, As it was shown in

[4], an arbitrary continuous group which acts in the jet-space, has the form

¥ =a" + N (z,q), (6.1)
it =u* + Az, q),
_ dAk dx\e
pk — pk _ k
v v G T aw e
Pk _ pk 4 d?AF ok d2\H ook AN dA
vo T ve L devdae H dzvdxe VI dxo Ty’
where PF = ZZi,Pfg = dzigid ,.... Note: the repeating upper and lower
indices assume tensor summation. In (6.1) %,, is a total derivative. Group

(6.1) is defined by \’(z,q), A¥(x,q) which are C> and generally depend on
infinite number of variables.
Let us consider the system of first order differential equations

Ii(z,u,P)=0,(k=1,..,N), (6.2)

where I, are C*° functions. By differentiation with respect to x” we can
determine the prolongation of (6.2) up to infinite order. The prolonged equation
determines a surface £ in I'; v, where I'R? v is the topological product Mo x
re.

The principle of invariance of manifold £ with respect to (6.1) [4] asserts
that

%()\, A)Ik|£ = 0, (63)
(k=1,..,N),

where operator (A, A) has the form

o .0 dA* dxT 0

M) =N —+ AN — + (— — P)—+.... 6.4
=X 8) o N wE T (dx” dzxv U)an + (64)
Since 7+ is a total derivative with respect to z” one can easily show that

d
%(A,A) = %(O’A,)\VPV)+)\Vw_ (65)
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v

If (6.2) holds then (‘Z’“ = 0 on manifold £. Taking this into account and
applying (6.5) to (6.2) we obtain

e M), | 2= 50, A — NPT, | . (6.6)

From (6.3) and (6.6) it immediately follows that the subgroup

¥ =a" + \(z,q), (6.7)
a* = u¥ 4+ N\ (z, q) P*

v

of group (6.1) acts trivially on any system of differential equations. In (6.7)
A (z,q) is infinitesimal. Some authors discard (6.7) as infinite. However we
take it into consideration in order to obtain full picture of algebra of differential
equations.

Because of (6.6), we can transfer function A\ into the transformation of u*,
ie.

¥ =a", (6.8)
*5 _ Pf + d]\k(z,Q)7
dx?

where A¥ = A¥(z, q) — \(x, ¢) P¥. Obviously, (6.8) is a factorgroup of group
(6.1) modulo subgroup (6.7).
Let us consider another subgroup of (6.1)

¥ =a¥ + N (z,u), (6.9)
a* = u* + A* (2, u).

This subgroup does not contain subgroup (6.7) in a sense that one cannot de-
termine A (z,u)PF from AF(x,u). (except the case of one independent variable
on manifold £, Ny = 1, when group (6.9) contains a subgroup (6.7). Similar
situation takes place when derivatives P are expressed in terms of = and u from
(6.2)). The principle of invariance (6.3) with given (6.2) imposes very strong
restrictions on A (z,u) and A¥(x,u) and this allows one to find Lie groups of
type (6.9) from the determining equation (6.3).

7 On geometry of space and field

If we think about introducing a metric in differential form then because of the
transformation (6.1) it should be considered not only on I'Vo or I'S? but on
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entire I'}y . This follows from the fact that in (6.1) A¥ and A* depend not
only on x but also on q. Generally, if there are no additional restrictions on the
group (6.1) (besides (6.3)), there is no guarantee that one can split the metric
of I'f y into two separate metrics of I'Noand T'Y.  Mentioning of jet-space
'Y points out that the metric may supposedly be infinite-dimensional. On
the other side, the algebraic theory of differential equations leads to conjugate
equations and hence one has to take them into account to preserve the symmetry
when introducing a metric.

1. Let us consider (1.1) with characteristic equations (2.1). We introduce
new variables

rF = o (u). (7.1)

Then for the conjugate equation (5.4-5) we obtain

r,j = @z(uﬂ. (7.2)

Let the metric be
ds* = gdt® + 2dr} dr*, (7.3)

where ; is a constant connecting dimensions ¢ and r. Substituting (7.1-2)
into (7.3) we obtain:

ds? = gdt* + 2g" (u*, u)du du™, (7.4)

where g* has the form

" au; ou™

gk a‘%’;r(“ﬂ 6QDZ(U)_

In section 5 we introduced the Hermitian conjugation and conjugation (u)* =

N
u. To justify the simultaneous introduction of these two operations we say
that it allows us to write down metric (7.4) which has a real value.

From (7.4) we can write the action integral

to
o du;” du™
20% (u+ k27
/\/g+ it ) S
t1

After simple transformations, using the variational principle and the fact
that det g—;f # 0, we will have
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0Pt duf U dpf duf &

= = Cl,

ukdt O ouf dt

where c, T are constants of integration. Let us select these constants in such
_k N
a way that the following is true: ¢ = b¥, ¢ = g,,,b*". Then taking (2.3) and

(5.6) into account, we easily derive

du

du* duy,
dt

= Fh), Sk = —Ff ().

This means that the solutions of (1.1) and (5.4) are geodesics in space T'V x
I'TN. Hence we obtained the geometry which is generated by the equation
(1.1).

It should be mentioned that if (1.1) splits into two separate equations then
the metric (7.3) breaks into two terms.

Example 7 (7.1) Consider % = u. Here p(u) = In(u), T (u*) = —In(u™).
Then

o 2
ds? = gdt® — mdzﬁdu. <

Example 8 (7.2) Let us consider free movement of a particle in 3-space. Due
to Newton’s first law we have

du®

— =v (k=1,2,3).
dt 7( 773)

Here o*(u) = uk, o (ut) = —uf. From (7.4) we obtain

ds® = gdt* — 2duf du®.

Let u¥ be independent variables. We introduce notation u* = z*. Taking

into account u}l‘ = Eknu”(—t), we have x;: = E,msc”. Then the metric has the
form

ds? = gdt*> — 2g,,, dz"da".

Assuming 5 = 2¢2, where c is the speed of light, we arrive to Minkowski
metric. Recall that Ekn = Ogn, where Oy, is Kronecker’s symbol.<
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2. Let us consider equation (4.3) and introduce the metric in TY x TZ/ as

ds? = g,dz2 +2g,F (ul, e )dul, dult. (7.6)

Metric tensor g,* is determined from (7.5) where ¢ (us) and ¢, (uf) are
characteristic functions of equations (4.3) and (5.13).

For different a equations (4.3) are independent. Then from the argument
used in subsection 1 we define the total metric as follows

s> =) ds?. (7.7)

ae

Taking into account that z, = a, ¥ and hence dz, = a, dx”, the first term
in (7.6) can be represented as g, a, o-dz’dz”. Then (7.7) will take the form

ds? = g, da’dz”™ + 2 Z Gk (ud, ua)uby dul, (7.8)
(139

where

51/7' = Z ;O{VOCT. (79)
acQ

One can see that (7.8) is a metric of the trivial bundle I'No x P(Q, TY TFV),
Thus we obtain the metric of the geometry which is generated by equation (4.1).
The metric is infinite-dimensional and this is consistent with what we mentioned
in the beginning of this section.

Example 9 (7.3) Consider the Dirac equation [7]

oY |~y ,
ﬁ@ + 50’£ = —im, (7.10)

. —
where matrices 3 and o are

10 - 0o T
6 - < 0 -1 > y O = ( ;_’ 0 ) ’
and T is the Pauli matriz [7].

Let us write out the equation of plane waves

dipy, . N
%:—z%(azlﬂJrﬁao)i/)a, (7.11)

v
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—— —2
where Vo = Va(2a), 20 = @’ = aurt + ax, a? = af — a . Using the method
of Foldy-Wouthusen [7], we will bring the matriz asf + Bao to the diagonal
form. In order to do that we introduce the matriz

1 —_——
S = exp 7490, (7.12)
where parameter q can be defined from

!
tanhag = —,
oy

—

where oo = \/ a2. Let
Ug = SaWa- (7.13)
In this case simple calculation shows that equation (7.11) has the form

dug .m

Since B is a diagonal matrix the characteristic equations will have the form
o
@’;(ua) = ZTUBZ In(ul) = biza + cZ, (7.15)

where b =1, (k = 1,...,4), c& are constants of integration.
From (7.14) we easily find the conjugate (in a sense of section 5)

du’ .m
& =4 wl

dza B \/0412, ¢
The Dirac conjugate spinor is i, = ul 3. Multiplying the right hand side
of (7.16) by B we find the characteristic functions

/2
N\ ay

@&Lk(ﬁa) =1 —

(7.16)

ln(’aan)ﬂg = bakZa + Cak, (717)

where boy, = ;knbg.

Let us introduce diagonal matrices p. FElements [uk]; are identities when
1 = j = k and zeros everywhere else. Obviously uy commute with 3. Taking
into account S, 3 = BS; L, from (7.13) it follows that G, = 1;&5;1. Substituting
(7.15) and (7.17) into (7.8) we obtain a metric generated by the Dirac equation

ds” = g, da*da” —2 ) = By (5 o) dbaS i Sadibe, (7.18)
a€eQ

where gk = 1/1/3045;1;%5&1/)& and H,, are some constants of dimension of square

of length. We assume here that gwdm”daf is Minkowski metric.<

EJQTDE, 2001 No. 6, p. 32



3. Let us return to metric (7.4) of space T x TV x I'™N | where T is one-
dimensional space with coordinate t. It is easy to show that the curvature
tensor of space T x I'N x 'tV is identically zero. However the same result
immediately follows from (7.3) because of the existence of transformation (7.1).
Clearly same is true for space I'Vo x P(Q, TN THN).

Thus autonomous equations lead to the metric geometry where the space is
of zero curvature.

8 Symmetry and algebra of ordinary differential
equations

One can easily see that the group methods considered in section 6 do not pro-
vide a way of determining the algebraic structure of the space of solutions of
differential equations. But this does not mean that if we introduce some alge-
braic structure in the space of solutions, group (6.1) remains indifferent. To
investigate this further we consider again autonomous systems.

1. We will conduct our study in a leaf J™ where map expy : J — W is
one to one.

Let us introduce the continuous group in infinitesimal form

t=1t+ At u), (8.1)
¥ =uf + Ak(t, u)

From (6.3) we easily find the invariance condition for (1.1) under the action of
(8.1)

T L) GO G ) S )\

A out T out ot ot ou?

F*. (8.2)

2. If we differentiate Ai%‘i—’: with respect to ¢, we get

d, . OpF ON? OpF jaAi Dk 0%k
— v - = — PR /X/LF“7 - T .
i N2 = o ow T i ow duiow
Obviously
L 0%QF . 0 Ot S OFT 0ok
ANFI—— = AN"—(FI ) - A" ———.
ourouw? aul( ou’ ) out ouw’

Using (8.2) and (2.2) we have
d, ;00" i ;.
—(A'—) = —b".
dt( ou’ ) dt
The solution to this equation is

AZ% = \bF + ¥, (8.3)
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where n* satisfy d—g; =0. Since 4 = & + F'(u)

dt
the solutions of (1.1) as

o
ui

we can represent n* along

77k = 9k (bt - Sﬁ(u)) )

where 6% are arbitrary functions of their arguments. Solving (8.3) for A* we

obtain
AF =\ [(%)_1 k (g—i)_lr@”(bt—cp(u)),

n n

b" +

k
where [(g—i)_l} is an element of matrix (g—i)_l. Assuming (2.3) the transfor-
n

mation (8.1) will have form

t=1t+ At u), (8.4)
k

(g—f)] 0" (bt — ().

n

a* = uf + Nt u)F* (u) +

This is the most general infinitesimal transformation leaving (1.1) invariant.
Note: the second additive term in (8.4) corresponds to the subgroup (6.7).

3. Let us go back to equation (1.3) from which we define binary operations
in J. Using the tools developed in section 6 and relation (8.2) we can write
the condition of invariance of equation (1.3) under the action of group (8.1) as
follows

. 0Pk . 0Pk
Al — 4 AL — = Ak 8.5
Y oul + Ay o 0 (8.5)
where
ONF(t,u,) OA(t, up) ; OA(t,up)
Ak = R L Fi(u,) | FR .
= o - |20 i) o [P o)

p=0,1,2. Here uf = ®*. From (1.3) we express F*(®) and substitute into
the right hand side of (8.5). After grouping and taking into account (8.4) we
obtain

[M + (Fﬂ'(@)—wt’ ®) _ Fifu )M> Fi(ul)] ®roen

ot 9P Y o ou}
ON(t, ug) Ja OAE D) OA(tug) | oLk
_ OAF(t,®)
=T @)
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where

AF(t,u) = l<%) ) ] 0" (bt — p(u)). (8.8)

n

From the group properties of differential equations variables u1, us, ® and some
partial derivatives of function ® on manifold (1.3) would be independent. Taking
into account that and the fact that (8.7) must hold identically on manifold (1.3),
we conclude

A= A(t), AF = AF(u). (8.9)

From (8.8-9) we conclude that the functions % must be solutions of equations
Fi(u)2% = 0. Using (3.1) we can write

ik
A (u) = [(g—i) ] 0" (so(U)—W“"(U)), (8.10)

n

where 0% are arbitrary functions of their arguments. Substituting (8.9-10) into
(8.4) we obtain

F=t+ A1), (8.11)
k

%)] 0" (o) ~ b (w)

n

a* = uP 4 Nt)F*(u) +

Thus the requirement of invariance of (1.3) narrows the group (8.4) down to
(8.11).

4. Suppose that when (8.11) acts, the characteristic functions ¢* and com-
ponents of vector b¥ are transformed as follows

" =" + Q" (u,p), b" = b* + B, (8.12)
where B¥ are constants to be determined.

Using (8.1), (8.2) and (6.1), the invariance condition (6.3) of equations (2.2)
leads to the equality

OFT 0N 9pF0QF "

From (8.2) and (8.11) it follows that
QFFk QAR
Ala Fla =

— — - = 0. 8.13
ou’ ou’ (8:.13)
Then the determining equation for group (8.12) is
0QF 9Q" .
Fr— —h' — BY = 0. 8.14
ou’ + dp* ( )
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This equation does not contain parameters A(t) and % of group (8.11). This
means groups (8.12) and (8.11) do not intersect. In other words ¢* and b* are
invariant under the action of group (8.11) while ¢ and u* are invariant under
the action of (8.12). This result is consistent with subsection 2.2.
5. Using (8.12), from (7.1) we determine the transformation rule of r* :
& =rF 4+ Q¥ (u,r). (8.15)
Analogously we can write out the transformation for r;r.
We demand the metric (7.3) to be invariant under transformations ¢ = t+A(t)
and (8.15). After short calculations we can see that
Q" = opr™ + &5, (8.16)
t=t+¢,

where €0, €% oF are constants. Besides, matrix o is anti-Hermitian:

(0)T = —o0. (8.17)
From (8.14) and (8.16) it immediately follows that

BF = oFp". (8.18)

Because of invariance of (1.1), (1.3), (2.2) and metric (7.3), infinitesimal
transformations (8.1) and (8.12) will finally have form

t=1t+¢", (8.19)
k

(g_‘j)l] 0" (io(u) — by (u)),

n

ﬂk:uk—i—gOFk(u)—i—

and

v =" 4 ko, (8.20)
¢F =" ronet +Eh
Clearly (8.20) is the accompanying group which we introduced in Section 2. Tt

follows from (8.17) that (8.20) represents a unitary group.
6. In subsection 3.3 we have considered the following equalities

wy = exp(ug), w2 = expp(uz), m = expp(P). (8.21)

For these it immediately follows that w;, we and m are invariant under the
action of group (8.19). On the other side, (8.19) is the transformation rule for
u1, ug and @, the solution of (1.3). But this means that ui%us in (3.30) and
ui¥ug in (3.32) are transformed via same rule as u; and uz. Analogously, from
(8.21) it follows that wyskws in (3.15) and wy%ws in (3.17) are transformed via
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same rule as w; and wy. Therefore we have shown that the action of groups
(8.19-8.20) is compatible with the binary operations.

7. Let e and h be the identity elements of binary operations (3.30) and
(3.32). Also suppose that e and h have finite coordinates. Then as we have

—1
already seen, F'(e) =0, F'(h) = 0. Since F(e) = (%‘5) blyu=e = 0, we conclude
that

o
I
L)

(8.22)

Same way we obtain

h

h. (8.23)

This implies that if binary operations (3.30) and (3.32) form groups in the
space J with the neutral elements e and h then these groups are preserved
under transformation (8.19-20).

8. Let us solve (3.10) with respect to ¢ and write

& =+ 0% + ¢~ (8.24)
where @* are arbitrary functions of their arguments and £* are constants. Sub-
stituting (3.1) into (8.24) and renaming ®* = a*, u¥ = u*  we have

P* (1) = o (u) + 0" (p(u) — b (u)) + €, (8.25)
and we immediately have the following
@ = (7)) [o(w) + 0p(w) — b () +¢] . (8.26)

Suppose now that 0% and ¢ are infinitesimal values. Moreover suppose
&8 = b¥¢0. Let us expand right hand side of (8.26) in powers of § + b¢® and
disregard quadratic terms. Simple calculations lead to transformation (8.19).
Then (8.19) is a collection of unary operations. In particular we conclude that
the translation group ¢ — t + £° calls for unary operations in space J.

We have shown that the largest continuous group consistent with the binary
operations and metric (7.3) has the form (8.26).

9. One can interpret the solutions of (1.13) as a collection of one-dimensional
representations of translational group ¢ = t + ¢ acting on one-dimensional
real space T, with ¢t € T [7-9]. Then the appearance of spaces W and W+
is connected with existence of irreducible representations of discrete group of
reflections ¢ — —t. This can explain the simultaneous presence of binary and
conjugate binary operations in the space of solutions of differential equations.

9 Symmetry of Equations of plane waves

1. Let ¢4 (uq) be the characteristic functions of equation (4.3):

@Z(ua) = b’;za + cZ. (9.1)
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Like in (7.1-2) let us introduce the variables

7“2 = ‘PZ(Ua)a T;rk = ‘P;rk (ud). (9.2)

Then metric (7.7) generated by equation (4.1) can be represented in the form
ds® = Z(;adzi +drt drk). (9.3)
a€eQ

We will regard z,, ¥, T;rk as independent values for distinct a € 2. Then the
group which leaves invariant the metric (9.3) will have the following (infinitesi-
mal) form:

Zo = Za + Z Tap?3 + &as (9.4)
BeQ

Th=rh+ D [oasl T + €L,
BeQ

where ¢, and ¢F are the group parameters. Obviously 7,5 depend on Ea.
Matrices 7 and o are anti-symmetric and anti-Hermitian respectively.

It would be natural to demand that (9.1) under the action of group (9.4)
(taking into account (9.2)) would transform into the equality

k _7hks | ok
T = baZa + Co-

Let us substitute (9.4) into this equality. Using (9.1-2) and the infinitesimality
of transformation (9.4), we easily find

b 20 = bE 2 + Z ([Jag]i b — Tagbi) 23.
BeEQ

But since by our assumption z, and zg are independent variables, we conclude
that this equality will be identically satisfied with respect to z only if (9.4) has
the form

Za = 2q + &, (9.5)

=k k k k
Ta = Ta + [O’a]nTZ + Eou

where matrix o, satisfies
K\ k
(loalt) = = loalt- (9.6)
From 78 = bk 2, +¢e* and (9.5) it is easy to find
b = bk + [oal) bl (9.7)

Comparing (9.5-7) to (8.20) we can see that (9.5-7) is the accompanying group
of equations (4.3), which leaves invariant metric ds? = godz2 +dr, drk. Thus
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we have shown that geometrically the differential equation narrows group (9.4)
down to group (9.5).

2. From the equality z, = a,2z” and from (9.5) it follows that ¥ must
be transformed linearly. If we assume that the group parameters depend on
a we will have the transformation z¥ = z¥ + [£,]) 27 + &4. This leads to
the conclusion that x¥ should be equipped with index « and therefore in the
theory coordinates z¥% arise for every equation (4.3). Then it follows that
the space I'Vo is a trivial fiber bundle with base Q and fibers T'Yo. In this

6 n 6 n _ 7 . _ 7
case from (4.9) we have 63’;; = aﬁg [aal}j (ua)F7 (uq), where [aal]j (ua)

is (i,7) element of matrix a;'depending on u,. Then (4.10) will have the

form ZQ a’*(x) g;(; = F¥(x). This equation is much wider than the initial
e

(4.1). Therefore in the transformation of ¥ group parameters £, £” should be
independent of a. Then we can write infinitesimal transformation

TV =a¥ + &z + & (9.8)

We assume that (9.8) leaves invariant (7.8). Then

.81/7'5; + .80'7'&17/— = 0 (99>
Let o, is transformed as
a, = ay + 1, (a), (9.10)

where [, () are unknown functions of . Substitute (9.8) and (9.10) in Z, =
a,z". Using (9.5) we obtain 27 (I, () + &Yy ) +£% ap = &,. Taking into account
the independence of ¥ and «,, we derive [, = —£J a, and

fo = a€”. (9.11)
But then (9.10) will eventually be
ay =y — & a,. (9.12)

We notice that the rise of groups (9.8-9) and (9.12) is caused by the conditions
(4.4) and (4.5) applied to equation (4.1).
3. Let us write the equation of plane waves in the form

dig,
— = F,(uqa), 1
o = Fa(ua) (913)

where F,, = a;'F. Suppose now that under the action of groups (9.8-9), (9.12)
we have the following

ak = uk + AE (ug). (9.14)
Also, the invariance condition (6.3) of equation (9.13) leads to

LONE L OF)
Fl,—2 — A, —&
* oud, * oud,

OFk
Oay

(9.15)

=—{ a,

EJQTDE, 2001 No. 6, p. 39



Here we have taken into account the fact that F¥(u,) explicitly depend on a,.
The logic of the determining equation (1.3) allows us to conclude that «, and
U are independent variables.

As an example we consider equation (7.11) which appeared on the base of
Dirac equation (7.10). We are looking for the solution of equation (9.15) in the
form

AL = ALva

Simple calculations result in

1
AG = g8l Invs, where vt = B,9" = o', 4? = fo®,9" = .

Using (9.14) we obtain well-known transformation of Dirac spinor
- 1.,
Vo = Vo + g&slw v v

i 98
@ Qut, *

of the solutions of equation (9.13)

Let us consider expression A The following take place in the space J,

k
doa g 4 _ 0 pigy )2 (9.16)

dze % dz., 0Oz oul,

Then one can verify that the following is true

) k ) J ) J k ) . k
L(Aza@a):(pzaAa_NaFa) 84,00(_‘_[&z 0 (Fj&pa).

dz, ou?, ou?, out, ) o, ou?, oud,

Let us transform the right hand side of this equality. Using (9.15) and taking
into account that a,, and u* are independent variables, we derive

d i dply
dza (Aa dui, ) (5)

0 Ok .0 Ok .0 Ok
— _ta, piPa g 9 (v PPa) pi 9 (%)
G (Pt ) + P (Sovger ) +higer (R55) - ©

We can divide (9.1) by nonzero b¥ and obtain the representation of the charac-
teristic functions ¥ with b% either 1 or 0. But then taking (9.16) into account
we derive the final form of (9.17)

k k
4 (Ai 00 _ev,, 3%) ~0. (9.18)

dza > Oul, Oag

Without the repetition of the argument presented in section 8, we note that the
general solution of (9.18) on J, has form

ok

A
ao{a—

* Oul,

— ghon 5o = 05 (@alta) = ol (ua) )
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where 0% are arbitrary functions of their arguments. Solving this equality for
A% we obtain

k
o\ ok =
Ak _ @ Yo, o k _ ko ) 1
« l(aua) ] |:€a_Oé aag + 904 ((pa boz(pa ) (9 9)
_17k
Using equality F¥ = (%‘j—z) } b7, direct substitution gives that (9.19) iden-

tically satisfies (9.15).

Functions 6% in (9.19) are arbitrary and hence one can always express con-
stants &V, b from (9.19). Let us substitute (9.19) into (9.14). Finally we
obtain the infinitesimal transformation

a, = oy — & g, (9.20)

s v
Zafza+£ Ay,

ik .
(52) ] ot + €5, 525 4 02 (0 — Bt

-k _ k
uo’c*ua+

Gua aaa

It is easy to check that group (9.20) which identically satisfies (9.15), leaves

invariant equation (1.3) (if we assign indices « to the functions in (1.3)).

— k
The action of (9.12) gives F¥ = FF —¢va, giﬂ . But then the characteristic

functions ¢, are invariant under the action of (9.20) which is consistent with
Section 8.

On the basis of subsection 8.7 we come to the conclusion that the neutral
elements e and h do not change under the action of (9.20)

e=e, h=h.

As we expected the algebraic structure of trivial fiber bundle P(,.J,) under
the action of group (9.20) does not change.

10 Symmetry of field equations

We want to investigate the group properties of differential equation (4.1). In
the previous section we have seen that the rotation group (9.8) (with parameters
€Y) and the translation group (with parameters £¥) act in space I'Vo. Let us
study the correlation of these groups with the algebraic structure of space J of
solutions.

1. Let

v =ax" +&". (10.1)
Then &” = o¥, and phase variable z, is transformed as follows

%o = 2o + &y, (10.2)
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as it follows from (9.5) and (9.11).

Let us consider the group which leaves invariant (4.3) and preserves the
algebraic structure of the solution space J, of equations (4.3). As we have
shown in section 8, such a group has the following infinitesimal form

Zo = 2o + &y, (10.3)
k

(42) T e -t

n

ﬂi = UZ + f”al,Fa]f(ua) +

where

k
Fi(u0) = [(@a) ™" (ua)F" (uo).

Thus we have shown that (10.3) is contained in (9.20).
Besides (10.3) there is also the accompanying group

(e (e

_ k
or = ok + [oal, v + £,

bE = bk + [oa]F b7, (10.4)

where matrix o, satisfies conditions (9.6).

Let us now study equation (4.10) under the action of group (10.3). We
seek for transformation of function x in (4.10) in the class of the following
transformations

Y=+ QM tas X)), (10.5)

where Q* are symmetric functions of u,. It follows from section 6 that in
general case (@ must also be a function of all derivatives of x with respect to u.
However we restrict ourselves with transformation (10.5) in order to understand
better the group properties of algebraic structure of solution space of the initial
differential equation (4.1).

Since uq in (4.10) play the role of independent variables, from (6.1) we have

o _ o 99t 0gtor  onLont
our  Our  Our - Ox! ounr  Oum dul)’

(10.6)

where A¥ is present in (10.3) and has the form

AI; = éyauFa(ua) +

1k
@%) 1 o (‘Pa(“a)*gaw'é“(ua))- (10.7)

n

From (8.2) and (10.3) we can find that

- QFk Ok
AP il ) 10.
“Fu G 0 (10.8)
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After simple calculations, using (10.6) and (10.8), the invariance condition (6.3)
for equation (4.10) becomes

daal; i k -
Q7 Aesl800 D 17 () + [aa]f () 3% Fi(ua)+ | QP
> k() 9Q1 OX" i =Q—7 0
a€e) [aoz]l (X) X" oul, a(ua) X

This equation is defined on the manifold (4.10).

We see that equation (10.9) does not contain the parameters of group (10.3).
But this means that the action of group (10.3) does not depend on group (10.5).
Obviously (10.9) contains the trivial solution

Q*=o. (10.10)

In this case the arguments of function y are transformed under the action of
(10.3), but the form of the function does not change. On this stage we will
consider only cases (10.10) and (10.3).

In subsection 4.2 we have pointed out that the identity elements e and h do
not depend on a. But then from (8.22-23) we can see that these elements are
invariant with respect to group (10.3). Hence the following is true

AR (e) =0,AX(h) =0. (10.11)

We show now that conditions (4.13-15) are preserved with transformation
(10.3). Indeed, it follows from (10.11) that

Using (4.19) and (10.11) we easily find that

X’“(...,ag, vy By Ty, ) = Xk(...,ug +Ag, b uy + A L)

ax*
= Xk(...,ug, s By Uy, ) F Z

aeQ\ag a

A uag = nA (ua) = h.

Binary operations that could exist in the space of solutions J of the equation
(4.1) are defined in the form (4.39). We use the results of section 8 and take
into account (10.10) to write the following formula

Upktg = X (ory Uy ¥ (@) Uays o)

= X(eor, Uy ¥(@) Ty o) = X(eoos Uy s - )¥X oy Uy o) = Up kg

One can easily show that if (4 39) defines a group with the identity elements e
and h then %é = ke = @ = uke, wkh = h = h = ukh.

By the same argument for the conjugate binary operation (4.40) we see that
(10.3) also preserves it: ui¥ug = tg%uUs.

2. Let us consider equation (4.33) for N = 1. In order for (4.33) to be
invariant under (9.8), we introduce the transformation @ = u, @” = a” + /a”
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Let us go back to system (4.16). It represents N first order linear equations
which can be written in the form (4.33). But then the action of the group (9.8)
leads to the transformation of the form

° ok
o =ov* b, =0, (10.12)

—vk

5 o vk ook
v

an, a j, goa’ no

v o
where @ , b are diagonal matrices presented in (4.16). From the obvious equality

where ao = ozl,tozy, it follows that transformation (10.12) preserves the algebraic
structure of equation (4.16). Indeed, the equality v* = exp 3,%¢"(u,) from
subsection 4.8 points out that the characteristic functions ¢* must be invariant
under the action of (9.8). But then, taking into account (4.8), we conclude that
the binary operations (3.15) and (3.17) do not change under transformation
(9.8).

3. Let us investigate equation (4.10) under the action of groups (9.8) and
(9.20). We will be seeking the transformation of functions x in (4.10) in the
class

=X QR uas - X), (10.13)

where Q* are assumed to be symmetric functions of their arguments u,. Taking
into account (10.6) and (9.5), the condition of invariance (6.3) of equation (4.10)
takes form

k 9 19a,5() Ox™
) 8w (N aes T QT gurt | (1) = QnaFk(X) )
Q" Q" ax™ a\ta) = on
s | tan(0GE + a0 55 ox"

Equation (10.14) is defined on manifold (4.10).

It should be mentioned that in (10.14), like in (10.9), functions (9.19) are
not explicitly present. This means that the transformation of u,, does not affect
the form of the function Y*.

One can easily see that equation (10.14) is symmetric in arguments u,,. But
since, like in section 4, we build our theory in the class of symmetric functions, it
is reasonable to seek the solution of (10.14) in this class. Then (9.20) and (10.13)
transform the symmetric function u = x(..., uq,...) into symmetric function
% = X(...,Ug,...). In section 4 we defined a binary operation in the form of
(4.39). Then we suppose that w = X(...,Ug,...) defines a binary operation
which can be represented as

1_1,1>i<’l_1,2 = )_((...77]5(1, )*)2(, 17,@2, ) = X(...,ﬂdl*ud% )

In the preceeding subsections we proved that the transformation (9.20) preserves
the binary operations, therefore we can write

X(eoos Uy ¥y s o) = X(oves Uy KUy o) = U kuz.
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Thus

’U/1>i<’u/2 = ﬂl*ﬂg. (1015)

Let us continue our argument for the case when (4.37) defines a group in the
space J,. Let the identity elements e and h be transformed into the solutions
€ and h of the transformed equation (4.1) under the action of (10.13). From
equality Tie = uke = W, wkh = ukh = h it follows immediately that € and &
must be the identity elements. By assumption, e and h have finite coordinates,
consequently F(e) =0, F(h) = 0. On the other hand we consider only those
F(u) that can only have isolated zeros. The parameters of the infinitesimal
group can always be chosen so small that € belongs to some neighborhood of e,
in which F(u) does not have other zeros than e. Since € is the identity element
and F(€) = 0 we conclude € = e. Analogously, h = h. So

e=eh=nh (10.16)

In order for @ = X(..., Ug, ...) to define a group (4.39) in the space of solutions
of the transformed equation (4.1) function x must satisfy conditions analogous
to (4.13-14). We have € = e under the action of group (4.20). Then from
transformation (10.13) we obtain

X(ooos € oy Ty o€y o) = Xy €y ey ey ) F Qe €y oy Uy oy €, 0 Ug ).

By analogy with (4.13) the left hand side of the derived equality must equal to
Us = U + Aq(ty). But then we finally obtain

QF (sl oyl ooy € i Ua) = AR (ug). (10.17)
Using (4.14), the same argument leads to
QF(oes Uy oy By ey Uy, i h) = 0. (10.18)

In subsection 4.10 we have shown that equality (4.19) follows from (4.14).
Let us consider (10.6) and assume that one of the arguments u,, on the right
hand side is h and on the left hand side ug, = h, where @, = aoy —&Jps. By
the remark made above the following must be true

X
%h@,:hﬁﬂo =0.
Then using (4.19), from (10.6) we derive

oQk

Gy tag=hiaras = 0- (10.19)

It is easy to check that (10.17-19) do not contradict to equation (10.14).
We have studied how the group (9.8) acts on the binary operation (4.39).
As for the conjugate binary operation (4.40) the determining equation for @
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will still be (10.14) if we look for the transformation of this operation in the
frame of (10.13). The conditions (4.21) lead to equalities that are obtained
from (10.17-19) through the exchange of the identity elements e and h.

We mentioned that the equation (10.14) does not connect the transforma-
tions (9.20) and (10.13) and in principle they can be independent. However the
invariance of algebraic structure of space J with respect to the action of groups
(9.20) and (10.13) leads to conditions (10.17-19). Obviously these conditions
connect the transformations (9.20) and (10.13). Moreover the choice of trans-
formation (10.13) depends on which binary operation we want to transform,
(4.39) or (4.40).

A simple example would be equation (4.27). Let the following be the in-
finitesimal form of the group which leaves invariant the equations a, ZZ“ =
sin u,, of plane waves :

T = Uq + o SIN U, (10.20)

where £, are group parameters. It is easy to see that the invariant group of
equation (4.30) is

X =X+ Esiny, (10.21)

with the group parameter &.

In section 4.13 it was shown that the identity elements are e = 2mm, h =
2mm + w, where m is an integer. We have also shown that the function y
satisfies conditions (4.13-14) and (4.19).

From (10.21) it follows that @ = sin . Since function x of (4.31) satisfies
(4.14) and (4.19) then (10.18) and (10.19) are satisfied identically. As for
the condition (10.17), it imposes restrictions on the group (10.20) and we have
§a =¢&.

4. Back to the solution (4.47) of equation (4.10). The action of groups
(9.20) and (10.13) gives

S exp [k (ta + Aa) = eE(+ Q)] = 1, (k= 1,.., N), (10.22)
a€eQ

where AX is (9.19). Since A, and Q are infinitely small functions, from (10.22)
it is easy to write

> exp [k (ua) — 0h(X)]

a€eQ

- e gn| =0

oun * ou™

Here the summation is assumed along the index n but not k. From this equality
it is easy to express @) via A,

ik
Q= || D exp [@hilup) — 0f ()] as%)() X (10.23)
BeN
X Z exp (g (ua) — (X)) &pg‘if;:a)A; 9)
aEeQ
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An immediate verification shows that (10.23) satisfies (10.17). Let us now
substitute (9.19) into (10.23) and finally obtain

ik

Q"= || D exp [#hi(us) — ()] a%y X (10.24)
BEQ

< 3 exp ot ua) — 0] [, 22 1 o). (10)

(139

where 07 = 0" (cpa(ua) — by ko (ua))
If we disregard functions 67 then obtain

Q" =gTy,

where T%% can be found from (10.24). Let us construct the tangent vector

0 0
Xo=> AN — 4+TF — 10.25
Z ax au]gt + a axk7 ( )
(139
where a is a double index (7) and the function 6 is not present in A¥,. Since
(10.25) is the generator of the rotation group, we have the following equality

[Xaa Xb] = Cngca

where C¢, are the structural constants of the rotation group. Hence we have
approached the problem of irreducible representations of the rotation group for
nonlinear equations (4.1).

By analogy with (4.47) we can consider the solution (4.49) of equation (4.10).
Then instead of the transformation (10.13) we will have

k
where 62 is derived from (10.24) with the simple change in exponents: ¢, (tq)—
Pa(X) = Pa(X) — Paltia).

We have rather extensively studied algebraic properties of the solution space
of the differential equations (4.1). The revealed algebro-geometrical properties
of these equations can equally be extended to the conjugate space of solutions
of equations (5.11).

11 Homomorphic and isomorphic relations

1. Together with (1.1) we consider the system of the same dimension N:

dv*

i e, M), (11.1)
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where functions f*(v) (by analogy with F*(u)) are defined and smooth for all
points in T')Y except may be some isolated points. As in the case of (1.1),
equation f(v) = 0 has isolated solutions. Let the characteristic equations of
(11.1) be

YF(v) = 1kt + A (11.2)

Since both systems (1.1) and (11.1) have the same dimension, there exists such
a space W of dimension N that the following maps take place:

expp:Jy =W, expy:J, =W, (11.3)

where J,, and J, are the spaces of the solutions of (1.1) and (11.1) respectively.
Let us consider the mapping: J, — W — J,. Then we can write exp p(u) =
exp¥(v). Taking the principal value of logarithm we obtain

p(u) = (v). (11.4)

Immediately follows

v = p(u), (11.5)

where ;1 = 1)~! 0 . Hence we have obtained the map p : J, — J,.

As it was shown in section 1, J, and J, are fiber spaces. Discrete groups
D, and D, act in discrete fibers of J,, and J, respectively. If one can establish
homomorphic relation between groups D, and D, then the spaces J, and J,
should be called homomorphic. If D, and D, are isomorphic then we call the
spaces J, and J, isomorphic. Note that these relations are regulated by the

map p = 1~ o from where it follows that J, 2 W v, Jy. Also if the binary
operations (3.15) and (3.17) take place in the space W then it is easy to see
that

p(ur *uz) = plur) * p(uz). (11.6)

If ey, hy and ey, h, are the identity elements in J, and J, respectively then
there is the following connection between them

ey = pilew), hy = 1(hy). (11.7)

d d
We conclude that the spaces of solutions of GL. u(l — ) and d_ltL = sinu

are homomorphic. The spaces of solutions of d—? = u and d—? = u(l — u) are

isomorphic. Finally we note that the conjugate spaces of solutions J and J*
of equations (1.1) and (5.4) are isomorphic.

2. Let us consider the collection of equations (4.3) with « running through
the set 2. Recall that we assumed that the discrete groups D, are isomorphic
for different . Then it is easy to show that J,,a € € are isomorphic too.
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Consider the following equation

k() 2~ k), (11.8)

o) o

where k,n = 1,..,N;v = 1,..., No. We assume that the summation is per-
formed along the repeating indices. Restrictions imposed on @“*(v) and F*(v)
are the same as those on functions in (4.1). Therefore the following takes place

det [a,a”(v)] £ 0, det 01;—1(}10 # 0. (11.9)
Suppose that the characteristic functions of plane waves of the equation (11.8)
are Yo (vy). Let J, are the spaces of solutions of equations of plane waves
of (11.8). Similar to section 4 we suppose that discrete groups D, acting in
discrete fibers of spaces .J,, are isomorphic. Using the argument of the previous
subsection we can construct the maps p, = 1/;;1 0y o — ja. The spaces
Jo and J, will be homomorphic or isomorphic depending on whether discrete
groups Dy and D, are homomorphic or isomorphic.
Since J,, and J, are fibers in the spaces of solutions J,, and J, of equations
(4.1) and (11.8) respectively, we can perform fiberwise mapping

fo  Jo = o, (11.10)
so that the following holds
(pa(ua) = wa(va)- (11.11)

Using (4.47), an arbitrary solution v € .J, can be presented in the implicit form

S exp [0 (va) — vE ()] = 1. (11.12)

139

With (11.4) and the map (11.10) we have > exp [ (uq) — ¥E(v)] = 1. Taking
acQ
into account (4.8), we finally have

> whexp [-ykw)] =1. (11.13)

Let u € J,, be some solution. Using (4.18) by x = u we define the coefficients of
expansion w” (z,). Let us substitute w¥(z,) in (11.13). Solving the algebraic
equation (11.13) for v we obtain the rule of mapping of the space J,, into space
Iy

Therefore if the discrete groups D, and D,, are homomorphic then the spaces
Jy and J, are homomorphic. Also the homomorphic relations are established
between the binary operations in the spaces J, and J,. Analogous argument

is used when D, and D, are isomorphic, i.e. J,, and J, are isomorphic.
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3. As we mentioned, the metric (7.8) corresponds to equation (4.1). Let
us introduce the fiberwise mapping (11.10). From (11.11) it follows that the
second terms of the arising metrics satisfy the following equality:

S dgfdel = dudduk.

aE a€e)

As for the first terms ;Vde”de and Ewdm”d:ﬁ, they can have different sig-
natures. If the signatures are the same then the metric

° k
ds* = g, dx"dx" + Z drt, drk,
a€ef)

with 78 = ok (uy) = ¥ (v,) is common for both equations (4.1) and (11.8).
4. The form of the function ¢ (v,) does not change under the action of
group (9.20). Let us consider 9% = pF (ts). Since (9.20) is an infinitesimal

transformation, we can write

_ ok (ua) [ (0ga) ] Doy
k _ k « v n v e n
v& - :u’a (Ua) + au; aua 6 auba + gaal/ aag + ea :

But on the other hand, taking into account (11.11), we can write

Ol (ua) _ 00~ (pa) B0 (ua) _ 00 () D) (1a)

oul, a(pg oul, aw(ﬂl out,
and using
awfloic % _ 5k
aw‘& avg n?
we derive
a(va)\ '] opn
~k _ _k o\ Vo v n v Pa n
Vg = Uy + ( 0. ) 1 [E a bl + &y, Do +0a] . (11.4)

From (9.1), (11.11) and 9k (v,) = X2, + AX we can conclude that ¥ = b%,
Ak = ¢k From these equalities we write

0% (1P (1a) — bapl? (wa) ) = 05 (Y (v) = Bt (va)) -

Taking partial derivatives of (11.11) with respect to a,, (o, and u, in (9.15) are
considered to independent variables) we obtain

Do (Ue) _ i (va)
Oay, Oa,
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Summarizing this argument, (11.4) will have the form

_11k "
=k | () ] i+ o, 2alel ol

Ovg da,

where 6% = g (’L/Ja(va) — Dok (’Ua)).
Therefore, the group (9.20) is isomorphically mapped under the fiberwise
mapping (11.10) into the group (11.15).
Analogously it can be shown that the accompanying group (10.4) is also
isomorphically mapped under the map (11.10-11) into the accompanying group
b = bk + 0, b

an a?

1k k k
’l/)a = wa + Oan Z'

Conclusion

It is the nature of differential equations that they bind independent variables
(space-time) and field variables. Our goal was to set a path on the way of
studying algebro-geometrical patterns of space and field to which the theory of
differential equations eventually brings.

We have showed that the superposition principle of quantum mechanics [6,7]
is not only the case of linear differential equations. It seems that this principle
can be extended to nonlinear equations (at least autonomous). Turns out that
the group of reflections plays the fundamental role in algebro-geometric prop-
erties of space and field. This group is connected with the appearance of the
binary and conjugate binary operations, existence of two mutually conjugate
identity elements of the group and also mutually conjugate expansion of the
quazilinear equation into plane waves. We should also mention the conjugate
equations. The discovery of these objects allowed us to introduce the metric
of space and field (space of field variables). It was shown that every equation
together with its conjugate has its own metric so that geodesics of this geometry
are the solutions of the equations. The curvature of this geometry is zero. The
introduction of the metric allows one to revise the groups of symmetries of differ-
ential equations. Simultaneously, the existence of the accompanying group has
been detected. This group leaves the metrics invariant. The variables of differ-
ential equation are indifferent with respect to the accompanying group. It has
also been shown that invariance groups of differential equations are the collec-
tion of unary operations acting in the space of solutions. The unary operations
are the special form of the binary operations. Hence the differential equation
generates a single ensemble of interconnected algebro-geometrical objects.

In the construction of algebraic structures in the space of solutions of differ-
ential equations the central role is played by the characteristic functions which
are solutions to ordinary differential equations. The entire construction of
algebro-geometric structure of differential equations is based on the character-
istic functions. We showed that for partial differential equations there exists
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so-called extended Fourier series which is expressed in terms of the characteristic
functions of plain waves. For nonlinear differential equations under considera-
tion we also have managed to find the particular form (4.47) and (4.49) of these
series.

We have investigated wide range of differential equations. We want to point
out that the study of the general differential equations was not our goal. Our
approach allowed us simply to detect and magnify essential algebro-geometric
properties of phenomena described by differential equations. The investigated
class of equations is restricted because of conditions (4.4-5) imposed on (4.1).
We can see from (4.16-17) that we have equations of the field with mass. Then
the equations of Maxwell and Einstein of gravitational field are left beyond the
scope of our study. In particular, if the right hand side of (4.1) is absent then
det a,, = 0 is the condition that must be imposed on in order for the equation
(4.3) to have a nontrivial solution. This condition imposes a restriction on «,
which can be interpreted as characteristic directions [2,5]. Hence such a class of
equations needs independent study which may expand and complete our view
of algebro-geometric properties of the objects associated with space and field.

Authors would like to express their sincere appreciation to professor D. F.
Kurdgelaidze, who, with his friendly advice and critical notes stimulated deep-
ened study of the arising questions and results.
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