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ABSTRACT

We investigate an algebraic structure of the space of solutions of autonomous
nonlinear differential equations of certain type. It is shown that for these equa-
tions infinitely many binary algebraic laws of addition of solutions exist. We
extract commutative and conjugate commutative groups which lead to the con-
jugate differential equations. Besides one is being able to write down particular
form of extended Fourier series for these equations. It is shown that in a space
with a moving field, there always exist metrics geodesics of which are the solu-
tions of a given differential equation and its conjugate equation. Connection
between the invariant group and the algebraic structure of solution space has
also been studied.
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1 Systems of ODE

1. Consider an autonomous system of differential equations of N unknown
functions in the complex field

duk

dt
= F k(u1, ..., uN ), (k = 1, ..., N), (1.1)

where F (u) are defined and differentiable everywhere in the space of their ar-
guments. t is a real independent variable. We assume that the vector field
F (u) is smooth and can only have isolated zeros and infinities. We also assume
that F (u) does not have other singularities. Let J be the space of solutions
of (1.1). We want to find a binary algebraic operation defined in J . Sup-
pose u1 = (u1

1, ..., u
N
1 ), u2 = (u1

2, ..., u
N
2 ) are elements of J . We want to find a

solution of (1.1) in the form

uk = Φk(u1, u2). (1.2)
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Substituting (1.2) into (1.1) and taking into an account that u1, u2 ∈ J we
obtain determining equation for Φk:

∂Φk

∂ui1
F i(u1) +

∂Φk

∂ui2
F i(u2) = F k(Φ), (k = 1, ...N), (1.3)

where repeating index i means summation from 1 to N . The solution Φ of
(1.3), as it follows from (1.2), defines a rule: two arbitrary elements u1, u2 of J
correspond to the third element in J . But it is a definition of a binary algebraic
operation on the set J [1]. Generally speaking there can be defined infinitely
many algebraic operations (we consider them in section 3). However our goal is
to select, via (1.2-3), only commutative groups. Obviously (1.3) will not change
if we replace u1with u2 and u2 with u1. Then we can demand commutativity
of Φ

Φ(u1, u2) = Φ(u2, u1). (1.4)

But if such a function Φ exists we can introduce an algebraic law of addition
of the elements in J :

uk1+̇u
k
2 = Φk(u1, u2), (k = 1, ..., N). (1.5)

(1.4) means commutativity of operation (1.5): u1 u u2 = u2 u u1.
Let us return to (1.3) and consider its characteristic equations

du1

dt
= F (u1),

du2

dt
= F (u2),

dΦ

dt
= F (Φ). (1.6)

In [2] it is shown that the system (1.3) is solvable and the solution can be
constructed via characteristic functions. Since the system (1.6) is autonomous,
it is easy to see that at least one of the constants can be added with parameter
t. Thus the solution of (1.6) in coordinate form can be presented as

ϕk(u1) = bkt+ ck1 , ϕ
k(u2) = bkt+ ck2 , ϕ

k(Φ) = bkt+ ck, (1.7)

where k = 1, ..., N, and ck1 , c
k
2 , c

k are the constants of integration. Generally
bk have components b1 = ...bN−1 = 0, bN = 1. However such a restriction does
not follow from anywhere and in principle bk can be any nonzero vector. We
will always assume that

det
∂ϕk

∂ui
6= 0

everywhere in J except some isolated points. We will see it is equivalent to
F (u) having only isolated zeros and infinities.

To construct a solution of (1.3) we consider the system of equalities

exp(ck1 − ck) + exp(ck2 − ck) = 1, (k = 1, ..., N) (1.8)
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and substitute (1.7) in (1.8). Then (1.5) will have the form

u1 u u2 = ϕ−1 [ln(expϕ(u1) + expϕ(u2))] , (1.9)

where ϕ−1 is the inverse function of ϕ. From (1.9) we immediately have
the condition (1.4). Since ϕ−1 is inverse of ϕ, associativity of operation (1.9)
easily follows. But this means that J space with binary operation (1.9) forms
a commutative semigroup.

Example 1 (1.1) As a simple illustration we consider homogeneous equation
du

dt
= u. Obviously ϕ(u) ≡ lnu = t+ c. Inverse to ϕ will be exp. Then (1.9)

will have a form u1 u u2 = ϕ−1 [ln(expϕ(u1) + expϕ(u2))] = exp ln(u1 + u2) =
u1 + u2. J

Example 2 (1.2) Analogous calculations for the equation

du

dt
= u(1 − u)

give u1 u u2 = (u1 + u2 − 2u1u2)/(1 − u1u2). J

2. Let us consider the following equality instead of (1.8):

exp(ck − ck1) + exp(ck − ck1) = 1, (k = 1, ..., N). (1.10)

We substitute (1.7) into (1.10). Then instead of (1.9) we derive another
algebraic operation on J :

u1+̈u2 = ϕ−1 [− ln(exp (−ϕ(u1)) + exp (−ϕ(u2)))] . (1.11)

It is easy to see that J with binary operation (1.11) also forms a commutative
semigroup. We will call semigroup (1.9) the conjugate semigroup of (1.11), and
semigroup (1.11) - the conjugate semigroup of (1.9).

Example 3 (1.3) For the linear equation described above (1.11) will have the
form:

u1+̈u2 = exp[− ln (exp(− lnu1) + exp(− lnu2))]

= exp[− ln

(
1

u1
+

1

u2

)
] =

u1u2

u1 + u2
. J

Example 4 (1.4) For equation
du

dt
= u(1 − u) the conjugate semigroup will

have the form: u1+̈u2 = u1u2/ (u1 + u2 − u1u2) . J

3. Let us introduce the function

wk = expϕk(u), (k = 1, ..., N), (1.12)
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where ϕk(u) is the left part of (1.7). If u ∈ J , then it follows from (1.7)
that w satisfies system

dw

dt
= bw, (1.13)

where matrix b = diag(b1, ..., bN). Obviously (1.12) performs a continuous
mapping of the solution space J to the solution space W of the system (1.13)
except may be some isolated singular points. The inverse mapping is:

u = ϕ−1(lnw). (1.14)

Example 5 (1.5) For example, for equation
du

dt
= sinu the mapping J → W

is w = tan u
2 , where W is the space of solutions of

dw

dt
= w. The inverse map

u = 2 arctanw+2πm (m-integer) is not one-to-one in contrast to w = u/(1−u)
and u = w/(1 + w) which are derived from

du

dt
= u(1 − u). J

4. Back to mapping (1.12) expϕ : J → W . It is clear that the inverse
mapping (expϕ)−1 : W → J , generally speaking, is not one to one. Let
us choose a subspace Jm in J in such a way that the mapping Jm → W via
(1.12) and its inverse via (1.14) are diffeomorphisms ((1.7) is smooth). The
map expϕ : J →W is called a covering. W is called a base of covering and J
- a space of covering. We will call Jm a leaf in J and m an index [3]. m runs
through some discrete set M . Notice that due to the existence and uniqueness
theorem for (1.1), leaves Jm do not intersect for different m (except for some
isolated points). Also J =

⋃
m∈M

Jm. Since W is connected, the number of

leaves does not depend on elements of W [3]. The preimage ϕ−1(ln(w)) where
w ∈ W , is a fiber of discrete elements. Let D be a group acting on fibers. Since
u is an arbitrary solution of (1.1), d(u) = u, d ∈ D, implies d is the identity of
D. This means that the group D acts faithfully [3]. Such a covering of J is
called a principal bundle with discrete group D and base W . Easy to see that
each element of a fiber is an element of some leaf.

Let us now consider the algebraic operation (1.9). Let u1, u2 ∈ J . expϕ
maps them to w1, w2 in the base space W . But since W as a space of solutions
of linear equation (1.13) is a linear vector space, w1 and w2 can be added in a
standard way (linear superposition). Then w1 +w2 is mapped back to J to its
preimage. This preimage is a fiber of discrete elements. We will call elements of
this fiber a sum u1+̇u2. Each element of this fiber is a single-valued sum of some
leaf of the space of covering J . On the other hand, since (1.13) are N distinct
equations, we can introduce the conjugate sum wk1 +̈wk2 = 1/(1/wk1 + 1/wk2 ).
Defined algebraic operation in W forms a commutative semigroup. Easy to
see that if w1, w2 are images of u1, u2 ∈ J , then the preimage of w1+̈w2 will be
u1+̈u2. Obviously, the preimage u1+̈u2 is a discrete fiber in J .
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5. Since (1.13) is linear and homogeneous, W forms a commutative group
under addition w1 + w2, w1, w2 ∈ W . e0 element with ek0 = 0 is the identity
element of the group, i.e. for any w ∈W

e0 + w = w. (1.15)

Another definition: if for any q element of a commutative group, q 6= h,

h+ q = h, (1.16)

then we call h a conjugate identity element. Thus conjugate identity in W is
h0, h

k
0 = ∞, (k = 1, ..., N), satisfying h0 + w = h0, ∀w ∈W .

For the algebraic operation w1+̈w2 we have e0+̈w = e0, h0+̈w = w.

For
du

dt
= u(1 − u) we found u1+̇u2 and its conjugate u1+̈u2. Obviously,

u = 0, u = 1, satisfy 0+̇u = u, 1+̇u = 1. For the conjugate sum we have
0+̈u = 0, 1+̈u = u.

6. Let the following limits exist

e = lim
w→e0

ϕ−1(lnw), h = lim
w→h0

ϕ−1(lnw). (1.17)

We also admit that generally some coordinates of e and h can be infinite.
Let us write (1.17) formally: e = ϕ−1(ln e0), h = ϕ−1(lnh0). Clearly e and h
are preimages of e0 and h0 and hence are discrete fibers in J . But since ϕ−1 is
inverse of ϕ then the following must take a place:

e0 = lim
u→e

expϕ(u), h0 = lim
u→h

expϕ(u). (1.18)

Using (1.18-1.19) we immediately obtain:

(uu e) = u, (uu h) = h, u ∈ J.

These equalities show that under the binary operation (1.9) in J elements
em and hm of fibers e and h play the role of identity and conjugate identity
respectively. Analogous calculations for conjugate binary operation (1.11) give:

(h+̈u) = u, (e+̈u) = e, u ∈ J.

Thus when turning from algebra (1.9) to its conjugate algebra (1.11) the
identity and the conjugate identity elements change their places.

7. Let us consider now inverse elements w and −w in W , w + (−w) = e0.
Let u = ϕ−1(ln(w)) and u− = ϕ−1(ln(−w)). Then from (1.9) it follows that

u+̇u− = ϕ−1[ln(expϕ(u) + expϕ(u−))] = ϕ−1[ln(w+(−w))] = ϕ−1(ln e0) = e.
Analogously

u+̈u− = h.

We showed that u and u− are inverse elements in both sums (1.9) and (1.11).

For example, in the space of solutions of
du

dt
= u(1−u) elements u and u/(2u−1)

are inverse.
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Elements e0, h0 ∈ W are fixed points hence do not depend on t. But then
from (1.17-1.18) we conclude that e, h ∈ J also do not depend on t. Then
e, h are fixed solutions of (1.1) if only they have finite coordinates. Above
mentioned examples convince us in that. However inverse is not always true.

Example 6 (1.6) If
du

dt
= 3

√
u, then it is easy to find the mapping w =

exp
3
√
u2. In this case e = ±i∞, h = ±∞. As for the fixed point u = 0,

it is a ramification point of the map.J

2 Characteristic functions

The introduction of algebraic operations brings to our attention the character-
istic functions ϕk(u) which satisfy

ϕk(u) = bkt+ ck. 2.1

In our theory the characteristic functions play the central role building the
algebraic and geometric structure of J space. Hence it is important to investi-
gate algebraic properties of ϕk(u).

1. Let us differentiate (2.1) with respect to t. Using (1.1), we obtain

F i(u)
∂ϕk

∂ui
= bk. (2.2)

Multiplying (2.2) by ( ∂ϕ∂u )−1, we have

F k(u) =

[
(
∂ϕ

∂u
)−1

]k

n

bn. (2.3)

From (2.2-3) immediately follows the connection of singularities of F k(u) and
det(∂ϕ∂u ).

2. Let us multiply (2.1) by an arbitrary nonsingular constant matrix M k
n .

Then we can write

ϕ̄k = Mk
nϕ

n, b̄k = Mk
nb
n. (2.4)

Obviously the set of all transformations (2.4) forms the general linear group
GL(N). From (2.3-4) it follows that the group GL(N) leaves invariant F k(u)
and the elements of the space J . But this means that the equation (1.1) is
invariant under the transformation (2.4). We call this group the accompanying
group of differential equation. An infinitesimal notation of elements of the
group GL(N) can be written in the form

ϕ̄k = ϕk + σknϕ
n, b̄k = bk + σknb

n. (2.5)

From (1.12) it follows that the elements of W are transformed as

w̄k = wk + σknw
k lnwn, (2.6)
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where n is the summation index, and k is not. Using (2.5-6), it is easy to prove
the invariance of (1.13) under the action of the accompanying group GL(N).

Analogous situation takes place with any group acting in the space J . We
will see later, that if some group G acts on J and leaves (1.1) invariant, then
it also leaves invariant the characteristic functions ϕk(u). Using (1.12) we
conclude that the space W of solutions of (1.13) is invariant under the action of
group G.

3. In (2.1) bk and ck are added as components of N -dimensional vectors.
u, F (u), ϕ(u) and w are also represented as N -dimensional vectors. In spite
of that, in the equation (1.13) bk appear as elements of a matrix (although
diagonal, but still matrix). Moreover, in contrast to (2.5) there comes up
very interesting nonlinear transformation (2.6). This indirectly points that
elements of J should probably be interpreted as matrices which is equivalent
to the existence of some algebraic structure inside (1.1). But so far we restrict
ourselves from further discussion on this subject.

3 Space of Solutions and Algebraic Operations

1. Let us go back to the characteristic functions (1.7). Let bk0 6= 0 for some
k = k0. Express t from ϕk0(u1) = bk0t+ ck01 . Then we can write

ϕk(u1) − b̃kϕk0 (u1) = c̃k1 , ϕk(u2) − b̃kϕk0(u1) = c̃k2 , (3.1)

ϕk(Φ) − b̃kϕk0 (u1) = c̃k, (1)

where b̃k = bk/bk0 . In order to construct the general solution of (1.3) we
use the method described in [3]. Let us consider

P k(c̃1, c̃2, c̃) = 0, (k = 1, ..., N), (3.2)

where P k are arbitrary smooth functions of their arguments. We demand
also

det
∂P

∂c̃
6= 0, (3.3)

for any (c̃1, c̃2, c̃). To solve (1.3), we substitute (3.1) into (3.2) and get

P k(ϕ(u1) − b̃ϕk0 (u1), ϕ(u2) − b̃ϕk0(u1), ϕ(Φ) − b̃ϕk0(u1)) = 0, (3.4)

k = 1, ..., N). (2)

Because of (3.3), we can solve (3.4) for ϕk(Φ):

ϕk(Φ) = Lk(ϕ(u1), ϕ(u2)). (3.5)

From (3.5) we can easily find solution of (1.3):

Φ = ϕ−1[L(ϕ(u1), ϕ(u2))]. (3.6)
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From an algebraic point of view, (3.6) defines a binary algebraic operation
in J , which we denote

u1 ∗ u2 = ϕ−1[L(ϕ(u1), ϕ(u2))]. (3.7)

Since L is determined from (3.2) with P being arbitrary with the single
condition (3.3), one concludes that there are infinitely many binary algebraic
operations in the space J . However we narrow down this set of operations and
require in the future that the equality

ϕ−1[L(ϕ(u1), ϕ(u2))] = u3

was uniquely solvable for each discrete fiber u1 and u2 separately.
As an example consider equation du

dt = u with characteristic function ϕ ≡
lnu = t+ c. Let (3.2) have the form: exp(c1 − c) − exp(c2 − c) = 1. But then

u1 ∗ u2 = u1 − u2. (3.8)

Obviously, the derived algebraic operation is noncommutative and nonasso-
ciative. Let us now consider exp(q(c1 − c)) + exp(q(c2 − c)) = 1, with a real
number q. Then we find

u1 ∗ u2 = (uq1 + uq2)
1/q . (3.9)

It is easy to see that this operation is commutative and associative. The
identity elements are e0 = 0, h0 = ∞. Hence the space J with algebraic
operation (3.9) is a commutative group. When q > 0 this group is isomorphic
to a group with operation u1 u u2 = u1 + u2, when q < 0 it is isomorphic to a
group with operation u1+̈u2 = u1u2/(u1 +u2). Using the transformation (2.4):
ϕ 7−→ qϕ, we obtain (uq1 + uq2)

1/q 7−→ u1 + u2.
This example raises the question of reducibility and irreducibility of binary

operations. As it was shown, (3.9) is reducible to u1 + u2. As for (3.8) and
u1 + u2, they are irreducible.

2. Consider the case when the system (3.2) has the form:

P k(c̃1, c̃) = 0, (k = 1, ..., N), (3.10)

Substituting (3.1) into (3.10), we have:

P k(ϕ(u1) − b̃ϕk0(u1), ϕ(Φ) − b̃ϕk0(u1)) = 0.

By analogy with (3.6), we find

Φ = ϕ−1[Q(ϕ(u1))]. (3.11)

This is a unary operation in the space J of solutions of (1.1). It can also
be interpreted as a mapping of J into itself. In other words, (3.11) is a trans-
formation acting in J and leaving (1.1) invariant. By the assumption made in
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subsection 3.1 (3.11) is uniquely solvable for u1 and since the identity transfor-
mation Φ = u1 is contained in (3.11), the set of transformations (3.11) forms a
group.

3. Lets perform the transformation (1.12). Then with (2.2), (1.3) is
transformed into

∂mk

∂wi1
bijw

j
1 +

∂mk

∂wi2
bijw

j
2 = bkim

i, (3.12)

where wk1 = expϕk(u1), w
k
2 = expϕk(u2), mk = expϕk(Φ), and matrix

b = diag(b1, ..., bN). Obviously, (3.12) is the determining equation of binary
operations in the space W of solutions of (1.13).

4. It was mentioned in section 2 that one can always find such a represen-
tation of algebraic functions ϕk(u) that vector bk has the form

b = (0, ..., 0, 1). (3.13)

With (3.13), it is easy to find the general solution of (3.12), which has the
form

mq = θq(
wN2
wN1

, w1
1 , ..., w

N−1
1 , w1

2 , ..., w
N−1
2 ), (3.14)

mN = wN1 θ
N (
wN2
wN1

, w1
1 , ..., w

N−1
1 , w1

2 , ..., w
N−1
2 ),

where θk are arbitrary functions of their arguments and q = 1, ..., N − 1.
5. Any binary operation which can exist in W can be presented as

w1∗̇w2 = m(w1, w2), (3.15)

where m(w1, w2) is a solution to (3.12).
In future, like in subsection 3.1, we will narrow down to the binary operations

(3.15) with m(w1, w2) being smooth and (3.15) being uniquely solvable for w1

and w2.
6. Since the matrix b is diagonal it is easy to see that the map

wk1 7→ 1/wk1 , wk2 7→ 1/wk2 , mk 7→ 1/mk, (3.16)

leaves invariant equation (3.12). But then for every operation (3.15) it
makes sense to introduce the conjugate binary operation

w1∗̈w2 = 1/m(1/w1, 1/w2). (3.17)

7. In 3.2 we showed that the set of all binary operations contains the subset
of unary operations. A unary operation can easily be determined from (3.15).
To do that, we pick those solutions mk of (3.12) which do not contain w2. Then
we will have m = m(w1). Since w1 and m(w1) are solutions of (1.13), we can
change m(w1) for w̄. Finally

w̄ = w̄(w) (3.18)
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Obviously, (3.18) is a solution of

∂w̄k

∂wi
bijw

j = bki w̄
i. (3.19)

We have seen that (3.18) is a map from W to W . Using the restrictions on
solutions made in 3.5 and since w̄ = w is a solution of (3.19), we conclude that
the set of transformations (3.18) forms a group.

8. We mentioned that in W space there exist commutative and conjugate
commutative groups with identity elements e0 = (0, ...0), h0 = (∞, ...,∞).

a) Let us substitute e0 into (3.18). By assumption the solutions (1.3)
and (3.12) are sought as smooth functions. Taking into account the action of
accompanying group (2.4), from (3.19) we obtain

e0 = w̄(e0) = e0. (3.20)

For h0 ∈ W we suppose that the following takes place

h̄0 = w̄(h0) = h0. (3.21)

This means that under the action of (3.18) e0, h0 are fixed points of the
space W .

b) Suppose that w2 = e0 in (3.12), then

∂mk(w1, e0)

∂wi1
bijw

j
1 = bkim

i(w1, e0). (3.22)

Comparing (3.22) and (3.19) we come to conclusion that

m(w1, e0) = w̄1(w1). (3.23)

Analogously, in case of w1 = e0, we have

m(e0, w2) = w̄2(w2). (3.24)

Since unary operations (3.18) are contained in binary ones, we can factorize
m(w1, w2) with respect to w1or w2 independently. Obviously, it means the
factorization with respect to the group (3.18). Then (3.23-24) will have the
form m(e0, w) = m(w, e0) = w and we conclude that e0 is the identity element
of the binary operation (3.15)

e0∗̇w = w∗̇e0 = w. (3.25)

Using the results of section 1, suppose that for h0 ∈W the following holds

h0∗̇w = w∗̇h0 = h0. (3.26)

From (3.25-26) and (3.17) it is easy to see that

h0∗̈w = w∗̈h0 = w, e0∗̈w = w∗̈e0 = e0. (3.27)
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9. Now we narrow the set of solutions of (3.12) down one more time and
conclude that binary operations (3.15) are associative

(w1∗̇w2)∗̇w3 = w1∗̇(w2∗̇w3). (3.28)

(3.28) and the conditions imposed on m(w1, w2) imply immediately that the
space W with binary operation (3.15) forms a group. e0 plays the role of the
identity element and h0 - of its conjugate identity element.

It is easy to see that associativity for the conjugate binary operation (3.17)
follows from (3.28)

(w1∗̈w2)∗̈w3 = w1∗̈(w2∗̈w3). (3.29)

Thus if (3.15) defines a group in W then (3.17) defines its conjugate group.
Identity elements are e0 and h0. Existence of such groups follows from section
1.

10. We mentioned that the function (1.14) maps W to J . If we consider
fiber u ∈ J as a single element then (1.12) and (1.14) perform a one-to-one
mapping. Easy to show that if W is a group with binary operation (3.15) then
the space J with the binary operation

u1∗̇u2 = ϕ−1[lnm (expϕ(u1), expϕ(u2))] (3.30)

also forms a group. Maps (1.12) and (1.14) establish an isomorphism be-
tween these two groups. Discrete fibers e = ϕ−1(ln(e0)) and h = ϕ−1(ln(h0))
are the identity and conjugate identity elements in J and satisfy the following,
coming from (3.25-26)

e∗̇u = u∗̇e = u, (3.31)

h∗̇u = u∗̇h = h.

From (3.17) we can easily find the binary operation for the conjugate group

u1∗̈u2 = ϕ−1[− lnm(exp(−ϕ(u1)), exp(−ϕ(u2)))]. (3.32)

In this case the identity and the conjugate identity elements satisfy

e∗̈u = u∗̈e = e, (3.33)

h∗̈u = u∗̈h = u.

We come to the conclusion that in the space of solutions J of (1.1) there
exist a continuum set of binary operations (3.30). The transformation group
which leaves (1.1) invariant forms together with this continuum set one whole
entity. The equation (1.1) stays indifferent to commutativity and associativity.

Finally we point that (1.8) and (1.10) do not come from (1.1). The reason
we used them was to obtain classic algebraic theory in case of linear differential
equations.
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4 Systems of PDE

Consider the system

aνkn (u)
∂un

∂xν
= F k(u), (4.1)

where the summation is performed by ν = 1, ...N0 and n = 1, ..., N . Ele-
ments of matrices aν(u) and vectors F (u) - are smooth functions defined every-
where in the space of their arguments. The vector field F (u) has only isolated
zeros and infinities. Independent variables xν are real.

1. As before, we introduce the space of solutions J of system (4.1). In order
to establish a binary algebraic operation in J we will be looking for the solution
of (4.1) of the form

u = Φ(u1, u2), (4.2)

where u1, u2 are arbitrary elements of J . Substitute (4.2) into (4.1). Then
we obtain the determining equation for unknown function Φ. In this equation

components u1, u2 are independent variables. As for
∂ui1
∂xν

and
∂ui2
∂xν

, part of

them is determined from (2.1) and another part plays the role of independent
variables. In other words, in the determining equation independent variables are

u1, u2 and some of their partial derivatives if only
∂Φ

∂u1
and

∂Φ

∂u2
do not commute

with the matrix aν(u). But then the determining equation will contain a certain
internal contradiction and such a binary operation will not fit J . To avoid this
contradiction, Φ in (2.2) must depend not only on u1, u2 but also on the points
of ∞-jet manifold, generated by (2.1). It is interesting that in order to explain
so-called ”hidden symmetries” of a differential equation of a field in [4], we had
to go beyond the frameworks of standard theories and construct theory of local
groups with jet-spaces. It seems that the appearance of objects with infinite
number of elements is internally logical for PDE. Recall, for example, that
we can expand solutions of linear equations into special functions. The special
functions are connected with a group representation, and this group, in its turn,
leaves the given equation invariant (symmetry group).

2. To avoid the straightforward introduction of jet-space we do the following.
Let us search for the solution of (2.1) in the form of plane waves

uα = uα(zα),

where zα = ανx
ν , αν are independent parameters running through the points

of some space Ω of dimension N0. Substitute (2.3) into (2.1) and obtain

aα(uα)
duα
dzα

= F (uα), (4.3)

where aα = ανa
ν(uα). Suppose that the following is satisfied

det aα(uα) 6= 0, α 6= 0. (4.4)
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Assume F (u) ≡ 0. In order to have a nontrivial solution to (4.3), we
demand det aα(uα) = 0, [2,5]. This imposes restrictions on αν (not all αν
are independent and generally they are connected with uα). However at this
point we disregard this case and, to simplify the problem, demand the following
together with (4.4)

det
∂F

∂u
6= 0, (4.5)

except some isolated points.
Suppose there are commutative and conjugate commutative groups in the

space of solutions Jα of the equation (4.3) Assume that the identity elements
have finite coordinates, unless mentioned otherwise. Then due to section 1 they
are roots of F (u) = 0. Thus e and h do not depend on α.

Consider the trivial fiber bundle P (Ω,Wα) with base space Ω, fibers Wα and
projection π(wα) = α ∈ Ω. In fibers Wα there is a commutative group defined
by usual coordinate addition

wkα1+̇w
k
α2 = wkα1 + wkα2

with its conjugate group defined by

wkα1+̈w
k
α2 = 1/(1/wkα1 + 1/wkα2),

with k = 1, ..., N . The identity elements of these groups are e0 = (0, ..., 0)
and h0 = (∞, ...,∞). Consider another trivial fiber bundle P (Ω, Jα) with base
space Ω, fibers Jα and projection π(Jα) = α ∈ Ω. Let us perform fiberwise
mapping expϕα : Jα → Wα. The preimages of fibers Wα are Jα and, as
described in section 1, Jα are fiber bundles with discrete subfibers, base space
Wα and discrete group Dα. The commutative groups Jα are mapped homo-
morphically to the commutative groups Wα under expϕα : Jα → Wα. From
1.3, if the discrete subfiber uα is considered as one element Jα, then we can
establish an isomorphism between groups Jα and Wα.

3. Let us search for the solution of (4.1) in the form

uk = χk(..., wα, ...), (k = 1, ..., N), (4.6)

where χk are functions of elements of all fibers Wα of P (Ω,Wα). Recall
that Wα is a space of solutions of

dwα
dt

= bαwα, bα = diag(b1α, ..., b
N
α ). (4.7)

But then (4.6) can be interpreted as a certain nonlinear analogy of Fourier
expansion of solutions. Substitute

wα = expϕα(uα). (4.8)

in (4.6).
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After re-denoting, (4.6) has the form

uk = χk(..., uα, ...), (k = 1, ..., N). (4.9)

From (4.8) it follows that if uα in (4.9) runs through some fixed discrete
subfiber of fiber Jα, then (4.8) will not change. This agrees with analogous
properties of (1.9) and (1.11).

4. Substitute (4.9) into (4.1) and with (4.3-4) we obtain

∑

α∈Ω

a k
αn(χ)

∂χn

∂uiα
a−1i

α j (uα)F j(uα) = F k(χ), (k = 1, ..., N), (4.10)

where a−1
α (uα) is the inverse of aα(uα). It is worth mentioning that χ

explicitly depends not only on uα but also on αν which are present in matrices
aα. These matrices generally do not commute for different α. This makes
impossible to construct a ternary relation based on binary relation. Hence the
ternary relation has to be sought from the corresponding equation (4.10). Since
Ω is a continuum space, generally speaking, χ must be considered as a function
of continuum number of variables.

Using (4.7) by analogy with (4.10) it is easy to write the determining equa-
tions for (4.6)

∑

α∈Ω

a k
αn(χ)

∂χn

∂wiα
bijw

j
α = F k(χ). (4.11)

5. In order to study algebraic construction of the solution χ we consider the
case when the equation (4.1) is linear and homogeneous. In this case e0 = 0
and the conjugate identity is h0 = ∞. It is easy to show that one of solutions
(4.10) is well-known function

χ =
∑

α∈Ω

uα(zα). (4.12)

Obviously, (4.12) is a symmetric function of its arguments. Also, if all
arguments are e0 (for example, uα) then χ = uα. If at least one of arguments
in (4.11) is h0, χ = h0. Taking this into account, consider (4.10). Clearly this
equation is invariant under the permutation of indices α → β, β → α, α, β ∈ Ω.
Let us search for solution of (4.10) in the set of symmetric functions of their
arguments uα. We demand from (4.9) that if all arguments, except one, are e,
then the following must hold

χk(..., e, ..., uα, ..., e, ...) = ukα. (4.13)

Besides assume that if one argument in (4.9) is h then the following holds

χk(..., uβ, ..., h, ..., uγ , ...) = hk. (4.14)
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In (4.12-13) α runs through all Ω set. Using (1.18) and (4.8), for (4.6) we
obtain from (4.13-14)

χ(..., e0, ..., wα, ..., e0, ...) = uα, (4.15)

χ(..., wβ , ..., h0, ..., wγ , ...) = h.

6. As we mentioned in section 1, the set of solutions Jα of (4.3) represents a
principal bundle with discrete group Dα and base space Wα. Since e, h, uα ∈
Jα, it follows from (4.13-14) that the space J must also be discrete fiber space.
Same conclusion follows from the fact that Jα is a subspace of J for any α ∈ Ω.
Elements of a discrete fiber cannot be determined immediately from (4.10), but
(4.13-14) give the necessary information how to do that. In order to make
the following considerations easier, we suppose that the discrete groups Dα are
isomorphic for distinct α ∈ Ω (this in part is connected to the fact that the
identity elements e and h do not depend on α). J becomes a principal bundle
with discrete group D ∼= Dα and with some base space V which is still to be
determined.

7. Let us consider (4.9) in more detail. It is a solution of (4.10). Here
uα(zα) is a general solution of (4.3) which contains constants of integration cα.
Hence (4.9) contains whole range of constants {cα, α ∈ Ω}. Obviously, for every
collection {cα} we have different solutions of (4.1). An inverse problem appears:
can one find a collection {cα} such that (4.9) is equal to a given solution of (4.1)?
Not every solution of (4.10) fits into this problem. However for linear equations
this problem has one solution when χ is (4.12). Let us consider χ solution of
(4.10) satisfying conditions of subsection 5. We assume without proof that the
collection of constants {cα} contained in χ can always be chosen uniquely in such
a way that the function coincides with a given solution u(x) ∈ J (here we avoid
functional analysis problems of completeness of expansion and normalization
inside χ [6]).

Function χ is a map P (Ω, Jα) → J . Then the determining of unique col-
lection {cα} can be interpreted as an existence of inverse function χ−1 : J →
P (Ω, Jα). Notice that under these maps the elements of the same fiber cannot
be distinguished.

8. Let us consider the linear homogeneous equation with constant coeffi-
cients

◦
a
ν ∂v

∂xν
=

◦

bv, (4.16)

where
◦
a
ν

and
◦

b are N ×N diagonal matrices satisfying (4.4-5):

det(αν
◦
a
ν
) 6= 0, det

◦

b = 0,

when α 6= 0. Write out plane waves equation

dvα
dzα

= b̂αvα, (4.17)
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where

b̂α =
◦
a
−1

α

◦

b,
◦
aα = ανa

ν .

Assume αν in (4.7) and (4.17) are the same. It is easy to write the charac-
teristic functions of these equations

lnwkα = bkαzα + ckα, ln v
k
α = b̂kαzα + ĉkα.

Clearly there is a unique nonsingular matrix βα which establishes the fol-
lowing equality

b̂kα = β k
αnb

n
α.

But then we can write ln vkα = βkαn lnwkα. With regard to (4.8) it is easy to
find

vkα = expβ k
αnϕ

n
α(uα).

Then we can write solution of (4.16) in the form

vk =
∑

α∈Ω

expβ k
αnϕ

n
α(uα). (4.18)

Thus (4.18) can be uniquely associated with the discrete fiber u(x) of (4.1).
The inverse statement is also true, for every solution v(x) to (4.16) which
can always be represented as (4.18), there is a unique discrete fiber u(x) =
χ(..., uα, ...) ∈ J .

We can say that there is a one-to-one correspondence between discrete fibers
of J and elements of V of (4.16). But this means that J is discrete fiber space
with discrete group D isomorphic to Dα and base space V .

9. Let us denote the right hand side of (4.18) as χ̃(..., wα, ...). Obviously
χ̃ maps trivial fiber bundle P (Ω,Wα) to V , i.e. χ̃ : P (Ω,Wα) → V . But then
there is a one-to-one inverse map χ̃−1 : V → P (Ω,Wα). Analogously function
(4.6) represents a mapping of P (Ω,Wα) to J . Elements of J are discrete fibers
u(x), i.e. χ : P (Ω,W ) → J . We have seen in subsection 7, that there is an
inverse χ−1 : J → P (Ω,Wα). Then the following is true

χ ◦ χ̃−1 : V → J, χ̃ ◦ χ−1 : J → V.

10. All arguments of the left hand side of (4.14) (solution to (4.10)) can vary
arbitrarily. Besides, aα(χ) and F (χ) in (4.10) are smooth functions. Thus the
solutions are smooth too. But then it follows from (4.14) that:

∂χk

∂uiα
|uα0

=h
α6=α0

= 0. (4.19)
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It is easy to check that (4.19) does not contradict (4.10). If uα0
= h in

(4.10), then aα(χ) = aα(h), F (χ) = F (h) = 0 because of (4.14) . (4.19) implies
that all terms in the left hand side of (4.10) would be zeros, when α 6= α0. The
term with index α = α0 is also zero because of the factor F (uα0

) = F (h) = 0.
Hence (4.10) is identically true. Notice that in case of (1.1), from (1.3) we can
obtain

∂Φ(u, h)

∂ui
= 0,

assuming that Φ(u1, u2) defines a group u1+̇u2 with the identity and the
conjugate identity elements e and h.

11. Let us write symbolically the solution to (4.10), (4.13-14) as a formal
sum

um = Ṡm
α∈Ω

uα(zα), (4.20)

where m ∈ M and um represent elements of a discrete fiber in J .
Together with (4.20) we introduce a conjugate sum. To do that, instead of

conditions (4.13-14), we demand that the solution (4.9) of (4.10) satisfies

χkm(..., h, ..., uα, ..., h, ...) = u k
αm, (4.21)

χkm(..., uβ, ..., e, ..., uγ , ...) = ekm.

We write the solution χm of (4.10) under conditions (4.21) as

um = S̈m
α∈Ω

uα(zα), (4.22)

ûm ∈ J . We will call (4.20) and (4.22) conjugate ”sums”. In the future
the solution to (4.10), (4.13-14) we denote as χ(..., uα, ...), and the solution to

(4.2) as
∧
χ(..., uα, ...). We conclude that the elements of the space J can be

represented as (4.20) or as (4.22).

Analogously we can introduce symmetric function
∧
χ(..., wα, ...) satisfying

(4.11) and conditions

∧
χ(..., h0, ..., wα, ..., h0, ...) = wα, (4.23)

∧
χ(..., wβ , ..., e0, ..., wγ , ...) = e.

We will call the function
∧
χ the conjugate function of χ which was introduced

in subsection 5. Obviously, the function
∧
χ, like χ, is a map
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P (Ω,Wα) → J.

12. Let us suppose that in fibers Jα there exist commutative groups with
the identity elements e and h. Then the sum of two solutions in J represented
in the form (4.20) should be defined as

u1+̇u2 = Ṡm
α∈Ω

uα1+̇ Ṡm
α∈Ω

uα2 = Ṡm
α∈Ω

(uα1+̇uα2). (4.24)

Clearly this operation is commutative and associative. We define for the
conjugate sum

û1+̈û2 = S̈m
α∈Ω

uα1+̈ S̈m
α∈Ω

uα2 = S̈m
α∈Ω

(uα1+̈uα2). (4.25)

Suppose uα = e in (4.13), then

e = Ṡm
α∈Ω

e. (4.26)

We will always assume summation Ṡ in some leaf Jm so the index m can be
discarded except some special circumstances.

Using (4.24) and (4.26) we obtain

u+̇e = Ṡuα+̇Ṡe = Ṡ(uα+̇e) = Ṡuα = u.

Consider u+̇h. Using (4.14) we can write

u+̇h = χ(..., uβ , ..., uα, ..., uγ , ...)+̇χ(..., ũβ , ..., h, ..., ũγ , ...)

= χ(..., uβ+̇ũβ, ..., uα+̇h, ..., uγ+̇ũγ , ...)

= χ(..., uβ+̇ũβ, ..., h, ..., uγ+̇ũγ , ...) = h.

Analogously it can be proved that

u+̈h = u, u+̈e = e.

Let uα and u−α be inverse elements in Jα so that they satisfy uα+̇u−α = e.
Then from (4.24) it immediately follows that the elements u = Ṡuα and u− =
Ṡu−α are also inverse elements i.e. u+̇u− = e. It was shown in section 1 that
if uα+̇u−α = e holds, then uα+̈u−α = h for the conjugate group in Jα. Thus for
the conjugate sum (4.25) û+̈û− = h, where û = S̈uα, û− = S̈u−α .

We come to the conclusion that the algebraic operations (4.24) and (4.25)
in J form a commutative group and conjugate commutative group with the
identity elements e and h respectively.
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13. As a simple example we consider the equation when N = 1

aν
∂u

∂xν
= sinu, (4.27)

where aν are constants. Then equation (4.3) has the form aα
duα

dzα
= sinuα.

Its solution space Jα consists of

uαm = 2 arctan[cα exp(zα/aα)] + 2πm, (4.28)

where m is integer. In the leaf Jmα we have the following commutative
groups

(uα1+̇uα2)m = 2 arctan [tan(uα1/2) + tan(uα2/2)] + 2πm, (4.29)

(uα1+̈uα2)m = 2 arccot [cot(uα1/2) + cot(uα2/2)] + 2πm.

In these groups em = 2πm, hm = 2πm+ π. Let us now consider (4.10) for
(4.27)

∑

α∈Ω

∂χm
∂uα

sinuα = sinχm. (4.30)

The solution of this equation under condition (4.13-4.14) has the form

χm = 2 arctan(
∑

α∈Ω

tan(uα/2)) + 2πm. (4.31)

From (4.30) under condition (4.21) we find

∧
χm = 2 arccot(

∑

α∈Ω

cot(uα/2)) + 2πm. (4.32)

From (4.31-32) we easily write out corresponding operations (4.24) and
(4.25).J

As another example consider the linear equation for N = 1

aν
∂u

∂xν
= u, (4.33)

where aν are constants. One can easily find

χ =
∑

α∈Ω

uα, (4.34)
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∧
χ = (

∑

α∈Ω

u−1
α )−1, (4.35)

where uα is a solution to aα
duα

dzα
= uα, aα = ανa

ν . Obviously e = 0, h = ∞
are the identity elements of the commutative groups of the linear equation.
Immediate calculations in these examples convince that (4.19) holds if e and h
have finite coordinates.

14. Let us go back to (4.16). Since
◦
a
ν

and
◦

b are diagonal matrices and
because of (4.34-35) we can write out conjugate solution which satisfies (4.23):

v̂k =

[
∑

α∈Ω

exp(−β k
αnϕ

n
α(uα))

]−1

, (k = 1, ...N). (4.36)

Using the fiberwise map (4.8) one can establish an isomorphism between
(4.36) and (4.22) if a discrete fiber u(x) ∈ J is seen as a single element. Let us

denote the right hand side of (4.36) as
∧
χ̃(..., wα, ...), which maps P (Ω,Wα) → V .

If one introduces a map
∧
χ◦

∧
χ̃
−1

: V → J then
∧
χ◦

∧
χ̃
−1

can be called the conjugate
map with respect to χ ◦ χ̃−1.

15. Let us extend the results of subsection 12 to arbitrary binary operations.
In order to do that we introduce an individual binary operation in each fiber Jα
of the space P (Ω, Jα)

uα1∗̇(α)uα2 = ϕ−1
α [lnmα(expϕα(uα1), expϕα(uα2))], (4.37)

where mα defines binary operation in Wα

wα1∗̇(α)wα2 = mα(wα1, wα2). (4.38)

But then one should define the corresponding binary operation in J in the
form of

u1∗̇u2 = Ṡ
α∈Ω

(uα1∗̇(α)uα2), (4.39)

where u1 = Ṡuα1, u2 = Ṡuα2. It is easy to show that if all the binary
operations (4.37) are associative then so is (4.39). With our assumptions, the
identity elements are e and h. In this case as it follows from section 3, binary
operation (4.39) defines a group in J .

Analogously one can define a conjugate binary operation in J

û1∗̈û2 = S̈
α∈Ω

(uα1∗̈(α)uα2), (4.40)
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where û1 = S̈uα1, û2 = S̈uα2 and

uα1∗̈(α)uα2 = ϕ−1
α [− lnmα(exp(−ϕα(uα1)), exp(−ϕα(uα2)))].

16. If ϕkα are characteristic functions of (4.3) then from (2.3) and (4.3) we
can write

(a−1
α (uα))knF

n(uα) =

[(
∂ϕα(uα)

∂uα

)−1
]k

n

bnα. (4.41)

From section 2 it follows that one can always find such a representation of
ϕα(uα) that bkα does not depend on α ∈ Ω. Moreover, from (2.4) bk can be
defined arbitrarily. On the other hand (4.41) represents an identity with respect
to uα. Because of (4.4), we can write from (4.41)

F (u) =

[
∂ϕα(u)

∂u
a−1
α (u)

]−1

b, (4.42)

where uk, (k = 1, ..., N) are arbitrary and not necessarily solutions of (4.1)

and (4.3). From this equality we can immediately conclude that matrix ∂ϕα(u)
∂u a−1

α (u)
does not depend on parameter α. But then since b is an arbitrary constant
vector, we can conclude from (4.42) :

∂ϕα(u)

∂u
a−1
α (u) =

∂ϕβ(u)

∂u
a−1
β (u). (4.43)

Let us substitute (4.42) in the right hand side of (4.10). We obtain

∑

α∈Ω

∂ϕβ(χ)

∂χ
a−1
β (χ)aα(χ)

∂χ

∂uα
a−1
α (uα)F (uα) = b.

Using (4.41) and (4.43) we can finally write

∑

α∈Ω

∂ϕkα(χ)

∂uiα

[(
∂ϕα(uα)

∂uα

)−1
]i

n

bn = bk. (4.44)

Let us introduce new independent variables

rkα = ϕkα(uα). (4.45)

Then we can write
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∂ϕkα(χ)

∂uiα
=
∂ϕkα(χ)

∂rnα

∂ϕnα(uα)

∂uiα
.

Using this equality and the fact that bk is an arbitrary element constant
vector, (4.44) becomes

∑

α∈Ω

∂ϕkα(χ)

∂χi
∂χi

∂rnα
= δkn, (4.46)

where δkn is Kronecker’s symbol. Thus we have proved that (4.10) can be
transformed into matrix equation (4.46).

We now prove that one of solutions of (4.46) has the form

∑

α∈Ω

exp[rkα − ϕkα(χ)] = 1, (k = 1, ..., N). (4.47)

Differentiating (4.47) with respect to rnβ we obtain

(
∑

α∈Ω

exp(rkα − ϕkα(χ))
∂ϕkα(χ)

∂χi

)
∂χi

∂rnβ
= exp(rkβ − ϕkβ)δ

k
n.

Multiplying this equality by
∂ϕn

β(χ)

∂χl and taking sum with respect to β gives

∑

β∈Ω

(
∑

α∈Ω

exp
(
rkα − ϕkα(χ)

) ∂ϕkα(χ)

∂χi

)
∂χi

∂rnβ

∂ϕnβ(χ)

∂χl

=
∑

β∈Ω

exp
(
rkβ − ϕkβ(χ)

) ∂ϕkβ(χ)

∂χl
,

where there is no summation along k index.

If we cancel the last equality by
∑
β∈Ω

exp
(
rkβ − ϕkβ(χ)

)
∂ϕk

β(χ)

∂χl , we obtain

∑

α∈Ω

∂χi

∂rnα

∂ϕnα(χ)

∂χl
= δil .

It is easy to see that taking transpose of this matrix equality gives (4.46).
Thus (4.47) is a solution of (4.46).

Using (4.8) and (4.45), algebraic equation (4.47) can be written as

∑

α∈Ω

wkα exp
[
−ϕkα(χ)

]
= 1, (k = 1, ..., N). (4.48)
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Let all uα = e on Ω except one fixed α ∈ Ω. Using (1.18) and (4.8), one
obtains from (4.48)

wkα exp
[
−ϕkα(χ)

]
= 1,

or, equivalently ϕkα(uα) − ϕkα(χ) = 0, and (4.13) follows.
Now let us suppose that for some fixed α ∈ Ω we have uα = h. Then from

(1.18) wα = h0. Thus we conclude that one term in (4.48) is infinity. But in
the right hand side of (4.48) we have 1, so χ = h.

Hence we have shown that the solution χ of equation (4.47) satisfies (4.13-
14). Immediately from (4.47) it follows that χ is a symmetric function of its
arguments.

Using the above argument one can show that

∑

α∈Ω

exp
[
ϕkα(

∧
χ) − ϕkα(uα)

]
= 1, (k = 1, ..., N) (4.49)

is a solution of (4.46). The solution
∧
χ of (4.49) satisfies (4.21). Then

(4.47) and (4.49) define the conjugate solutions of equation (4.10). Equation
(4.30) is a simple example. Since ϕα(u) = ln tan(u/2), it is easy to show that
from (4.47) and (4.49) (4.31) and (4.32) follow respectively.

5 Conjugate Equation

In section 1 we have introduced map (1.12) based on (1.8-9). On the other
hand, using (1.10-11) instead of (1.8-9) would give another map

4
w
k

= exp(−ϕk(u)), (k = 1, ..., N). (5.1)

Using equality (2.1) we can easily see that
4
w
k

satisfies

d
4
w
k

dt
= −bki

4
w
i

, (5.2)

where matrix b = diag(b1, ..., bN). Clearly the solutions of (1.13) and (5.2)

can be connected by
4
w
k

(t) = wk(−t).
Function (5.1) performs mapping J →

4

W , where
4

W is a solution space of

(5.2). As in section 1, J is a space of covering, but we choose
4

W as a new base

of covering instead of W . Since (5.1) maps J in the new space
4

W it follows
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that we have also to consider map ϕ−1(− ln) of space W . Let
4
u = ϕ−1(− lnw),

or w = exp(−ϕ(
4
u)). Let us differentiate the last equality with respect to t.

Using (1.13), where matrix b is diagonal, we obtain

∂ϕk

∂
4
u
i

d
4
u
i

dt
= −bk.

Let us multiply this equality by matrix ( ∂ϕ
∂
∆
u
)−1. Because of (2.3), finally we

have

d
4
u
k

dt
= −F k(4u), (k = 1, ...N), (5.3)

where F is the right hand side of (1.1). It is easy to show that for the
commutative groups of (1.1) and (5.3) we can establish the following

(u1+̇u2)
4 =

4
u1+̈

4
u2, (u1+̈u2)

4 =
4
u1+̇

4
u2,

4
e = h,

4

h = e.

Let
∆

J be a space of solutions of (5.3). Then the following take place

ϕ−1(ln) : W → J,
4

W →
4

J,

ϕ−1(− ln) : W →
4

J,
4

W → J.

It follows that (5.3) comes up naturally when one investigates algebraic
properties of (1.1). Corresponding commutative groups connect to each other
through operation of conjugation. However, in section 7 we will show that in or-
der to correspond the geometrical theory of differential equations, together with
the operation of conjugation one should also introduce Hermitian conjugation.

Let us introduce
◦
gkn and

◦
g
kn

satisfying
◦
gkn

◦
g
nl

= δlk,
◦
gkn = δkn, where

δkn, δkn are Kronecker symbols.
1. We call the equation

du+
k

dt
= −F+

k (u+), (k = 1, ..., N), (5.4)

a conjugate equation of equation (1.1). Here F+
k (u+) =

◦
gknF

∗n(
◦
gu+), F ∗

is the complex conjugate of F , (
◦
gu+)k =

◦
g
kn
u+
n . In the future we will do all
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considerations for some fixed leaf Jm of space of solutions J , so we discard index
m. Characteristic functions (2.1) of equation (1.1) in case (5.4) will transform
into

ϕ+
k (u+) = b+k t+ c+k , (5.5)

where b+k =
◦
gknb

∗n, c+k =
◦
gknc

∗n,

ϕ+
k (u+) = −◦

gknϕ
∗n(

◦
gu+). (5.6)

From this equality we immediately have

(u1+̇u2)
+ = u+

1 +̈u+
2 , (5.7)

(u1+̈u2)
+ = u+

1 +̇u+
2 .

Using (5.7), we obtain: (u+̇e)+ = u++̈(e)+ = u+, (u+̇h)+ = u++̈(h)+ =
(h)+. But since u++̈(e)+ = u+, u++̈(h)+ = (h)+ we conclude that (e)+ =
h+, (h)+ = e+. Finally,

e+k = (h)+k =
◦
gknh

∗n, h+
k = (e)+k =

◦
gkne

∗n. (5.8)

If we consider general binary operations discussed in section 3, using (5.6),
(5.8) from (3.30) and (3.32) it follows that

(u1∗̇u2)
+ = u+

1 ∗̈u+
2 , (u1∗̈u2)

+ = u+
1 ∗̇u+

2 . (5.9)

Functions mk in (3.30), (3.32) conjugate as

m+
k =

◦
gknm

∗n. (5.10)

2. Consider the system of equations

∂u+
n

∂xν
a+νn

k (u+) = −F+
k (u+), (5.11)

(k = 1, ..., N),

where

a+νn
k =

◦
g
nl◦
gkpa

∗νp
l (

◦
gu+), F+

k (u+) =
◦
gknF

∗n(
◦
gu+), (5.12)

(
◦
gu+)k = gknu+

n .
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We call the equation (5.11) a conjugate equation to (4.1).
The equation of plane waves for (5.11) will have the form

du+
α

dzα
a+
α (u+) = −F+(u+

α ). (5.13)

Obviously (4.3) and (5.13) are conjugate equations. The commutative
groups in spaces Jα and J+

α are connected by the conjugacy relation (5.7).
Analogously for equations (4.10) we derive the conjugate equations

∑

α∈Ω

F+
j (u+

α )(a+
α )−1j

i (u+
α )
∂χ+

n

∂u+
αi

a+n
αk (χ+) = F+

k (χ+). (5.14)

Taking conjugation and regarding (5.8), (4.13-14) and (4.21) will change
places.

It is easy to show that between solutions of (4.10) and (5.14) the conjugation
rule is

(Ṡuα(zα))+ = S̈+u+
α (zα),

(S̈uα(zα))+ = Ṡ+u+
α (zα).

The conjugation rule for commutative groups (4.24) and (4.25) is analogous
to (5.7) and (5.8):

(u1+̇u2)
+ = u+

1 +̈u+
2 ,

(u1+̈u2)
+ = u+

1 +̇u+
2 ,

(e)+ = h+,

(h)+ = e+,

where u1, u2 ∈ J , and u+
1 , u

+
2 ∈ J+.

One can easily write out the corresponding binary operations for the con-
jugate equation (5.11). Without repeating the argument we simply point out
that

(u1∗̇u2)
+ = u+

1 ∗̈u+
2 ,

(u1∗̈u2)
+ = u+

1 ∗̇u+
2

take place.
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6 Group properties of differential equations

Let ΓN0 be a space with coordinates x = (x1, ..., xN0). We consider space ΓN

with coordinates u = (u1, ..., uN), where uk = uk(x) are C∞ on ΓN0 . Let Γ∞
N

be a jet-space with elements q = (u, dudx ,
d2u
dx2 , ...), u ∈ ΓN . As it was shown in

[4], an arbitrary continuous group which acts in the jet-space, has the form

x̄ν = xν + λν(x, q), (6.1)

ūk = uk + Λk(x, q),

P̄ kν = P kν +
dΛk

dxν
− dλσ

dxν
P kσ ,

P̄ kνσ = P kνσ +
d2Λk

dxνdxσ
− P kµ

d2λµ

dxνdxσ
− P kνµ

dλµ

dxσ
− P kσµ

dλµ

dxν
,

..........................................................................

where P kν = duk

dxν , P
k
νσ = d2uk

dxνdxσ , .... Note: the repeating upper and lower

indices assume tensor summation. In (6.1) d
dxν is a total derivative. Group

(6.1) is defined by λν(x, q), Λk(x, q) which are C∞ and generally depend on
infinite number of variables.

Let us consider the system of first order differential equations

Ik(x, u, P ) = 0, (k = 1, ..., N), (6.2)

where Ik are C∞ functions. By differentiation with respect to xν we can
determine the prolongation of (6.2) up to infinite order. The prolonged equation
determines a surface £ in Γ∞

N0N
, where Γ∞

N0N
is the topological product ΓN0 ×

Γ∞
N .

The principle of invariance of manifold £ with respect to (6.1) [4] asserts
that

κ(λ,Λ)Ik |£ = 0, (6.3)

(k = 1, ..., N),

where operator κ(λ,Λ) has the form

κ(λ,Λ) = λν
∂

∂xν
+ Λk

∂

∂uk
+ (

dΛk

dxν
− dλσ

dxν
P kσ )

∂

∂P kν
+ .... (6.4)

Since d
dxν is a total derivative with respect to xν one can easily show that

κ(λ,Λ) = κ(0,Λ − λνPν) + λν
d

dxν
. (6.5)
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If (6.2) holds then dIk

dxν = 0 on manifold £. Taking this into account and
applying (6.5) to (6.2) we obtain

κ(λ,Λ)Ik |£= κ(0,Λ − λνPν)Ik |£ . (6.6)

From (6.3) and (6.6) it immediately follows that the subgroup

x̄ν = xν + λν(x, q), (6.7)

ūk = uk + λν(x, q)P kν ,

of group (6.1) acts trivially on any system of differential equations. In (6.7)
λν(x, q) is infinitesimal. Some authors discard (6.7) as infinite. However we
take it into consideration in order to obtain full picture of algebra of differential
equations.

Because of (6.6), we can transfer function λν into the transformation of uk,
i.e.

x̄ν = xν , (6.8)

ūk = uk + Λ̃k(x, q),

P̄ kν = P kν +
dΛ̃k(x, q)

dxν
,

.......................,

where Λ̃k = Λk(x, q)−λν(x, q)P kν . Obviously, (6.8) is a factorgroup of group
(6.1) modulo subgroup (6.7).

Let us consider another subgroup of (6.1)

x̄ν = xν + λν(x, u), (6.9)

ūk = uk + Λk(x, u).

This subgroup does not contain subgroup (6.7) in a sense that one cannot de-
termine λν(x, u)P kν from Λk(x, u). (except the case of one independent variable
on manifold £, N0 = 1, when group (6.9) contains a subgroup (6.7). Similar
situation takes place when derivatives P kν are expressed in terms of x and u from
(6.2)). The principle of invariance (6.3) with given (6.2) imposes very strong
restrictions on λν(x, u) and Λk(x, u) and this allows one to find Lie groups of
type (6.9) from the determining equation (6.3).

7 On geometry of space and field

If we think about introducing a metric in differential form then because of the
transformation (6.1) it should be considered not only on ΓN0 or Γ∞

N but on
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entire Γ∞
N0N

. This follows from the fact that in (6.1) λν and Λk depend not
only on x but also on q. Generally, if there are no additional restrictions on the
group (6.1) (besides (6.3)), there is no guarantee that one can split the metric
of Γ∞

N0N
into two separate metrics of ΓN0and Γ∞

N . Mentioning of jet-space
Γ∞
N points out that the metric may supposedly be infinite-dimensional. On

the other side, the algebraic theory of differential equations leads to conjugate
equations and hence one has to take them into account to preserve the symmetry
when introducing a metric.

1. Let us consider (1.1) with characteristic equations (2.1). We introduce
new variables

rk = ϕk(u). (7.1)

Then for the conjugate equation (5.4-5) we obtain

r+k = ϕ+
k (u+). (7.2)

Let the metric be

ds2 =
◦
gdt2 + 2dr+k dr

k, (7.3)

where
◦
g is a constant connecting dimensions t and r. Substituting (7.1-2)

into (7.3) we obtain:

ds2 =
◦
gdt2 + 2gkn(u

+, u)du+
k du

n, (7.4)

where gkn has the form

gkn =
∂ϕ+

l (u+)

∂u+
k

∂ϕl(u)

∂un
. (7.5)

In section 5 we introduced the Hermitian conjugation and conjugation (u)4 =
4
u. To justify the simultaneous introduction of these two operations we say
that it allows us to write down metric (7.4) which has a real value.

From (7.4) we can write the action integral

t2∫

t1

√
◦
g + 2gkn(u

+, u)
du+

k

dt

dun

dt
dt.

After simple transformations, using the variational principle and the fact
that det ∂ϕ∂u 6= 0, we will have

EJQTDE, 2001 No. 6, p. 29



∂ϕl

∂uk
duk

dt
=

˜
c
l

,
∂ϕ+

l

∂u+
k

du+
k

dt
=

≈

c l,

where
˜
c,

≈

c are constants of integration. Let us select these constants in such

a way that the following is true:
˜
c
k

= bk,
≈

ck =
◦
gknb

∗n. Then taking (2.3) and
(5.6) into account, we easily derive

duk

dt
= F k(u),

du+
k

dt
= −F+

k (u+).

This means that the solutions of (1.1) and (5.4) are geodesics in space ΓN ×
Γ+N . Hence we obtained the geometry which is generated by the equation
(1.1).

It should be mentioned that if (1.1) splits into two separate equations then
the metric (7.3) breaks into two terms.

Example 7 (7.1) Consider du
dt = u. Here ϕ(u) = ln(u), ϕ+(u+) = − ln(u+).

Then

ds2 =
◦
gdt2 − 2

u+u
du+du. J

Example 8 (7.2) Let us consider free movement of a particle in 3-space. Due
to Newton’s first law we have

duk

dt
= bk, (k = 1, 2, 3).

Here ϕk(u) = uk, ϕ+
k (u+) = −u+

k . From (7.4) we obtain

ds2 =
◦
gdt2 − 2du+

k du
k.

Let uk be independent variables. We introduce notation uk = xk. Taking

into account u+
k =

◦
gknu

n(−t), we have x+
k =

◦
gknx

n. Then the metric has the
form

ds2 =
◦
gdt2 − 2

◦
gkndx

kdxn.

Assuming
◦
g = 2c2, where c is the speed of light, we arrive to Minkowski

metric. Recall that
◦
gkn = δkn, where δkn is Kronecker’s symbol.J
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2. Let us consider equation (4.3) and introduce the metric in ΓNα ×Γ+N
α as

ds2 =
◦
gαdz

2
α + 2g k

αn(u
+
α , uα)du+

αkdu
n
α. (7.6)

Metric tensor g k
αn is determined from (7.5) where ϕkα(uα) and ϕ+

αk(u
+
α ) are

characteristic functions of equations (4.3) and (5.13).
For different α equations (4.3) are independent. Then from the argument

used in subsection 1 we define the total metric as follows

ds2 =
∑

α∈Ω

ds2α. (7.7)

Taking into account that zα = ανx
ν and hence dzα = ανdx

ν , the first term

in (7.6) can be represented as
◦
gαανατdx

νdxτ . Then (7.7) will take the form

ds2 =
◦
gντdx

νdxτ + 2
∑

α∈Ω

g k
αn(u

+
α , uα)u+

αkdu
n
α, (7.8)

where

◦
gντ =

∑

α∈Ω

◦
gανατ . (7.9)

One can see that (7.8) is a metric of the trivial bundle ΓN0 ×P (Ω,ΓNα ,Γ
+N
α ).

Thus we obtain the metric of the geometry which is generated by equation (4.1).
The metric is infinite-dimensional and this is consistent with what we mentioned
in the beginning of this section.

Example 9 (7.3) Consider the Dirac equation [7]

β
∂ψ

∂x4
+ β

→
σ
∂ψ

∂
→
x

= −imψ, (7.10)

where matrices β and
→
σ are

β =

(
1 0
0 −1

)
,
→
σ =

(
0

→
τ

→
τ 0

)
,

and τ is the Pauli matrix [7].
Let us write out the equation of plane waves

dψα
dzα

= −i m
α2
ν

(α4β + β
→
α

→
σ )ψα, (7.11)
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where ψα = ψα(zα), zα = ανx
ν = α4x

4 +
→
α

→
x, α2

ν = α4
4 −

→
α

2
. Using the method

of Foldy-Wouthusen [7], we will bring the matrix α4β + β
→
α

→
σ to the diagonal

form. In order to do that we introduce the matrix

Sα = exp
1

2
q
→
α

→
σ , (7.12)

where parameter q can be defined from

tanhαq =
α

α4
,

where α =

√
→

α2. Let

uα = Sαψα. (7.13)

In this case simple calculation shows that equation (7.11) has the form

duα
dzα

= −i m√
α2
ν

βuα. (7.14)

Since β is a diagonal matrix the characteristic equations will have the form

ϕkα(uα) ≡ i

√
α2
ν

m
βkn ln(unα) = bkαzα + ckα, (7.15)

where bkα = 1, (k = 1, ..., 4), ckα are constants of integration.
From (7.14) we easily find the conjugate (in a sense of section 5)

du+
α

dzα
= −i m√

α2
ν

u+
αβ. (7.16)

The Dirac conjugate spinor is ũα = u+
αβ. Multiplying the right hand side

of (7.16) by β we find the characteristic functions

ϕ+
αk(ũα) ≡ i

√
α2
ν

m
ln(ũαn)β

n
k = bαkzα + c̃αk, (7.17)

where bαk =
◦
gknb

n
α.

Let us introduce diagonal matrices µk. Elements [µk]
i
j are identities when

i = j = k and zeros everywhere else. Obviously µk commute with β. Taking
into account Sαβ = βS−1

α , from (7.13) it follows that ũα = ψ̃αS
−1
α . Substituting

(7.15) and (7.17) into (7.8) we obtain a metric generated by the Dirac equation

ds2 =
◦
gντdx

νdxτ − 2
∑

α∈Ω

Hαα
2
ν

m2
gkα(ψ̃α, ψα)dψ̃αS

−1
α µkSαdψα, (7.18)

where gkα = 1/ψ̃αS
−1
α µkSαψα and Hα are some constants of dimension of square

of length. We assume here that
◦
gντdx

νdxτ is Minkowski metric.J
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3. Let us return to metric (7.4) of space T × ΓN × Γ+N , where T is one-
dimensional space with coordinate t. It is easy to show that the curvature
tensor of space T × ΓN × Γ+N is identically zero. However the same result
immediately follows from (7.3) because of the existence of transformation (7.1).
Clearly same is true for space ΓN0 × P (Ω,ΓNα ,Γ

+N
α ).

Thus autonomous equations lead to the metric geometry where the space is
of zero curvature.

8 Symmetry and algebra of ordinary differential

equations

One can easily see that the group methods considered in section 6 do not pro-
vide a way of determining the algebraic structure of the space of solutions of
differential equations. But this does not mean that if we introduce some alge-
braic structure in the space of solutions, group (6.1) remains indifferent. To
investigate this further we consider again autonomous systems.

1. We will conduct our study in a leaf Jm where map expϕ : J → W is
one to one.

Let us introduce the continuous group in infinitesimal form

t̄ = t+ λ(t, u), (8.1)

ūk = uk + Λk(t, u)

From (6.3) we easily find the invariance condition for (1.1) under the action of
(8.1)

Λi
∂F k

∂ui
− F i

∂Λk

∂ui
=
∂Λk

∂t
− ∂λ

∂t
F k − F i

∂λ

∂ui
F k. (8.2)

2. If we differentiate Λi ∂ϕ
k

∂ui with respect to t, we get

d

dt
(Λi

∂ϕk

∂ui
) =

∂Λi

∂t

∂ϕk

∂ui
+ F j

∂Λi

∂uj
∂ϕk

∂ui
+ ΛiF j

∂2ϕk

∂ui∂uj
.

Obviously

ΛiF j
∂2ϕk

∂ui∂uj
= Λi

∂

∂ui
(F j

∂ϕk

∂uj
) − Λi

∂F j

∂ui
∂ϕk

∂uj
.

Using (8.2) and (2.2) we have

d

dt
(Λi

∂ϕk

∂ui
) =

dλ

dt
bk.

The solution to this equation is

Λi
∂ϕk

∂ui
= λbk + ηk, (8.3)
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where ηk satisfy dηk

dt = 0. Since d
dt = ∂

∂t +F i(u) ∂
∂ui , we can represent ηk along

the solutions of (1.1) as

ηk = θk (bt− ϕ(u)) ,

where θk are arbitrary functions of their arguments. Solving (8.3) for Λk we
obtain

Λk = λ

[(
∂ϕ

∂u

)−1
]k

n

bn +

[(
∂ϕ

∂u

)−1
]k

n

θn(bt− ϕ(u)),

where
[
(∂ϕ∂u )−1

]k
n

is an element of matrix ( ∂ϕ∂u )−1. Assuming (2.3) the transfor-

mation (8.1) will have form

t̄ = t+ λ(t, u), (8.4)

ūk = uk + λ(t, u)F k(u) +

[(
∂ϕ

∂u

)−1
]k

n

θn(bt− ϕ(u)).

This is the most general infinitesimal transformation leaving (1.1) invariant.
Note: the second additive term in (8.4) corresponds to the subgroup (6.7).

3. Let us go back to equation (1.3) from which we define binary operations
in J . Using the tools developed in section 6 and relation (8.2) we can write
the condition of invariance of equation (1.3) under the action of group (8.1) as
follows

Ai1
∂Φk

∂ui1
+Ai2

∂Φk

∂ui2
= Ak0 , (8.5)

where

Akρ =
∂Λk(t, uρ)

∂t
−
[
∂λ(t, uρ)

∂t
+ F i(uρ)

∂λ(t, uρ)

∂uiρ

]
F k(uρ), (8.6)

ρ = 0, 1, 2. Here uk0 = Φk. From (1.3) we express F k(Φ) and substitute into
the right hand side of (8.5). After grouping and taking into account (8.4) we
obtain
[
∂Λ̃i(t, u1)

∂t
+

(
F j(Φ)

∂λ(t,Φ)

∂Φj
− F j(u1)

∂λ(t, u1)

∂uj1

)
F i(u1)

]
∂Φk

∂ui1
+ (8.7)

+

[
∂Λ̃i(t, u2)

∂t
+

(
F j(Φ)

∂λ(t,Φ)

∂Φj
− F j(u2)

∂λ(t, u2)

∂uj2

)
F i(u2)

]
∂Φk

∂ui2
(3)

=
∂Λ̃k(t,Φ)

∂t
, (4)
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where

Λ̃k(t, u) =

[(
∂ϕ

∂u

)−1
]k

n

θn (bt− ϕ(u)) . (8.8)

From the group properties of differential equations variables u1, u2,Φ and some
partial derivatives of function Φ on manifold (1.3) would be independent. Taking
into account that and the fact that (8.7) must hold identically on manifold (1.3),
we conclude

λ = λ(t), Λ̃k = Λ̃k(u). (8.9)

From (8.8-9) we conclude that the functions θk must be solutions of equations

F i(u)∂θ
k

∂ui = 0. Using (3.1) we can write

Λ̃k(u) =

[(
∂ϕ

∂u

)−1
]k

n

θn
(
ϕ(u) − b̃ϕk0(u)

)
, (8.10)

where θk are arbitrary functions of their arguments. Substituting (8.9-10) into
(8.4) we obtain

t̄ = t+ λ(t), (8.11)

ūk = uk + λ(t)F k(u) +

[(
∂ϕ

∂u

)−1
]k

n

θn
(
ϕ(u) − b̃ϕk0(u)

)
.

Thus the requirement of invariance of (1.3) narrows the group (8.4) down to
(8.11).

4. Suppose that when (8.11) acts, the characteristic functions ϕk and com-
ponents of vector bk are transformed as follows

ϕ̄k = ϕk +Qk(u, ϕ), b̄k = bk +Bk, (8.12)

where Bk are constants to be determined.
Using (8.1), (8.2) and (6.1), the invariance condition (6.3) of equations (2.2)

leads to the equality

(
Λj
∂F i

∂uj
− F j

∂Λi

∂uj

)
∂ϕk

∂ui
+ F i

∂Qk

∂ui
+
∂Qk

∂ϕi
bi −Bk = 0.

From (8.2) and (8.11) it follows that

Λi
∂F k

∂ui
− F i

∂Λk

∂ui
= 0. (8.13)

Then the determining equation for group (8.12) is

F i
∂Qk

∂ui
+
∂Qk

∂ϕi
bi −Bk = 0. (8.14)
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This equation does not contain parameters λ(t) and θk of group (8.11). This
means groups (8.12) and (8.11) do not intersect. In other words ϕk and bk are
invariant under the action of group (8.11) while t and uk are invariant under
the action of (8.12). This result is consistent with subsection 2.2.

5. Using (8.12), from (7.1) we determine the transformation rule of rk :

r̄k = rk +Qk(u, r). (8.15)

Analogously we can write out the transformation for r+k .
We demand the metric (7.3) to be invariant under transformations t̄ = t+λ(t)

and (8.15). After short calculations we can see that

Qk = σknr
n + ξk, (8.16)

t̄ = t+ ξ0,

where ξ0, ξk, σkn are constants. Besides, matrix σ is anti-Hermitian:

(σ)+ = −σ. (8.17)

From (8.14) and (8.16) it immediately follows that

Bk = σknb
n. (8.18)

Because of invariance of (1.1), (1.3), (2.2) and metric (7.3), infinitesimal
transformations (8.1) and (8.12) will finally have form

t̄ = t+ ξ0, (8.19)

ūk = uk + ξ0F k(u) +

[(
∂ϕ

∂u

)−1
]k

n

θn(ϕ(u) − b̃ϕk0(u)),

and

b̄k = bk + σknb
n, (8.20)

ϕ̄k = ϕk + σknϕ
n + ξk.

Clearly (8.20) is the accompanying group which we introduced in Section 2. It
follows from (8.17) that (8.20) represents a unitary group.

6. In subsection 3.3 we have considered the following equalities

w1 = expϕ(u1), w2 = expϕ(u2), m = expϕ(Φ). (8.21)

For these it immediately follows that w1, w2 and m are invariant under the
action of group (8.19). On the other side, (8.19) is the transformation rule for
u1, u2 and Φ, the solution of (1.3). But this means that u1∗̇u2 in (3.30) and
u1∗̈u2 in (3.32) are transformed via same rule as u1 and u2. Analogously, from
(8.21) it follows that w1∗̇w2 in (3.15) and w1∗̈w2 in (3.17) are transformed via
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same rule as w1 and w2. Therefore we have shown that the action of groups
(8.19-8.20) is compatible with the binary operations.

7. Let e and h be the identity elements of binary operations (3.30) and
(3.32). Also suppose that e and h have finite coordinates. Then as we have

already seen, F (e) = 0, F (h) = 0. Since F (e) =
(
∂ϕ
∂u

)−1

b|u=e = 0, we conclude

that

ē = e. (8.22)

Same way we obtain

h̄ = h. (8.23)

This implies that if binary operations (3.30) and (3.32) form groups in the
space J with the neutral elements e and h then these groups are preserved
under transformation (8.19-20).

8. Let us solve (3.10) with respect to c̃ and write

c̃k = c̃k1 + θk(c̃) + ξk. (8.24)

where θk are arbitrary functions of their arguments and ξk are constants. Sub-
stituting (3.1) into (8.24) and renaming Φk = ūk, uk1 = uk, we have

ϕk(ū) = ϕk(u) + θk(ϕ(u) − b̃ϕk0(u)) + ξk, (8.25)

and we immediately have the following

ūk =
(
ϕ−1

)k [
ϕ(u) + θ(ϕ(u) − b̃ϕk0 (u)) + ξ

]
. (8.26)

Suppose now that θk and ξk are infinitesimal values. Moreover suppose
ξk = bkξ0. Let us expand right hand side of (8.26) in powers of θ + bξ0 and
disregard quadratic terms. Simple calculations lead to transformation (8.19).
Then (8.19) is a collection of unary operations. In particular we conclude that
the translation group t→ t+ ξ0 calls for unary operations in space J .

We have shown that the largest continuous group consistent with the binary
operations and metric (7.3) has the form (8.26).

9. One can interpret the solutions of (1.13) as a collection of one-dimensional
representations of translational group t̄ = t + ξ0 acting on one-dimensional
real space T , with t ∈ T [7-9]. Then the appearance of spaces W and W+

is connected with existence of irreducible representations of discrete group of
reflections t → −t. This can explain the simultaneous presence of binary and
conjugate binary operations in the space of solutions of differential equations.

9 Symmetry of Equations of plane waves

1. Let ϕα(uα) be the characteristic functions of equation (4.3):

ϕkα(uα) = bkαzα + ckα. (9.1)
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Like in (7.1-2) let us introduce the variables

rkα = ϕkα(uα), r+αk = ϕ+
αk(u

+
α ). (9.2)

Then metric (7.7) generated by equation (4.1) can be represented in the form

ds2 =
∑

α∈Ω

(
◦
gαdz

2
α + dr+αkdr

k
α). (9.3)

We will regard zα, rkα, r+αk as independent values for distinct α ∈ Ω. Then the
group which leaves invariant the metric (9.3) will have the following (infinitesi-
mal) form:

z̄α = zα +
∑

β∈Ω

ταβzβ + ξα, (9.4)

r̄kα = rkα +
∑

β∈Ω

[σαβ ]
k
n r

n
β + ξkα,

where ξα and ξkα are the group parameters. Obviously ταβ depend on
◦
gα.

Matrices τ and σ are anti-symmetric and anti-Hermitian respectively.
It would be natural to demand that (9.1) under the action of group (9.4)

(taking into account (9.2)) would transform into the equality

r̄kα = b̄kαz̄α + c̄kα.

Let us substitute (9.4) into this equality. Using (9.1-2) and the infinitesimality
of transformation (9.4), we easily find

b̄kαzα = bkαzα +
∑

β∈Ω

(
[σαβ ]

k
n b

n
β − ταβb

k
α

)
zβ .

But since by our assumption zα and zβ are independent variables, we conclude
that this equality will be identically satisfied with respect to z only if (9.4) has
the form

z̄α = zα + ξα, (9.5)

r̄kα = rkα + [σα]kn r
n
α + ξkα,

where matrix σα satisfies

(
[σα]

k
n

)+

= − [σα]
k
n . (9.6)

From r̄kα = b̄kαz̄α +c̄kα and (9.5) it is easy to find

b̄kα = bkα + [σα]kn b
n
α. (9.7)

Comparing (9.5-7) to (8.20) we can see that (9.5-7) is the accompanying group
of equations (4.3), which leaves invariant metric ds2α = gαdz

2
α + dr+αkdr

k
α. Thus
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we have shown that geometrically the differential equation narrows group (9.4)
down to group (9.5).

2. From the equality zα = ανx
ν and from (9.5) it follows that xν must

be transformed linearly. If we assume that the group parameters depend on
α we will have the transformation x̄ν = xν + [ξα]

ν
σ x

σ + ξνα. This leads to
the conclusion that xν should be equipped with index α and therefore in the
theory coordinates xνα arise for every equation (4.3). Then it follows that
the space ΓN0 is a trivial fiber bundle with base Ω and fibers ΓN0

α . In this

case from (4.9) we have ∂χn

∂xν
α

= αν
∂χn

∂ui
α

[
a−1
α

]i
j
(uα)F j(uα), where

[
a−1
α

]i
j
(uα)

is (i, j) element of matrix a−1
α depending on uα. Then (4.10) will have the

form
∑
α∈Ω

aνkn (χ)∂χ
n

∂xν
α

= F k(χ). This equation is much wider than the initial

(4.1). Therefore in the transformation of xν group parameters ξνσ , ξ
ν should be

independent of α. Then we can write infinitesimal transformation

x̄ν = xν + ξνσx
σ + ξν . (9.8)

We assume that (9.8) leaves invariant (7.8). Then

◦
gντξ

τ
σ +

◦
gστ ξ

τ
ν = 0. (9.9)

Let αν is transformed as

ᾱν = αν + lν(α), (9.10)

where lν(α) are unknown functions of α. Substitute (9.8) and (9.10) in z̄α =
ᾱν x̄

ν . Using (9.5) we obtain xσ(lσ(α)+ξνσαν)+ξ
σασ = ξα. Taking into account

the independence of xν and αν we derive lν = −ξσν ασ and

ξα = ανξ
ν . (9.11)

But then (9.10) will eventually be

ᾱν = αν − ξσνασ . (9.12)

We notice that the rise of groups (9.8-9) and (9.12) is caused by the conditions
(4.4) and (4.5) applied to equation (4.1).

3. Let us write the equation of plane waves in the form

duα
dzα

= Fα(uα), (9.13)

where Fα = a−1
α F. Suppose now that under the action of groups (9.8-9), (9.12)

we have the following

ūkᾱ = ukα + Λkα(uα). (9.14)

Also, the invariance condition (6.3) of equation (9.13) leads to

F iα
∂Λkα
∂uiα

− Λiα
∂F kα
∂uiα

= −ξνσαν
∂F kα
∂ασ

. (9.15)
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Here we have taken into account the fact that F kα (uα) explicitly depend on αν .
The logic of the determining equation (1.3) allows us to conclude that αν and
uα are independent variables.

As an example we consider equation (7.11) which appeared on the base of
Dirac equation (7.10). We are looking for the solution of equation (9.15) in the
form

Λkα = Akαnψ
n
α.

Simple calculations result in

Λkα =
1

8
ξνσ [γν , γ

σ]knψ
n
α, where γ4 = β, γ1 = βσ1, γ2 = βσ2, γ3 = βσ3.

Using (9.14) we obtain well-known transformation of Dirac spinor

ψ̄kα = ψkα +
1

8
ξνσ [γν , γ

σ]knψ
n
α.

Let us consider expression Λiα
∂ϕk

α

∂ui
α
. The following take place in the space Jα

of the solutions of equation (9.13)

dϕkα
dzα

= bkα,
d

dzα
=

∂

∂zα
+ F iα(uα)

∂

∂uiα
. (9.16)

Then one can verify that the following is true

d

dzα

(
Λiα

∂ϕkα
∂uiα

)
=

(
F iα

∂Λjα
∂uiα

− Λiα
∂F jα
∂uiα

)
∂ϕkα

∂ujα
+ Λiα

∂

∂uiα

(
F jα

∂ϕkα

∂ujα

)
.

Let us transform the right hand side of this equality. Using (9.15) and taking
into account that αν and ukα are independent variables, we derive

d

dzα

(
Λiα

∂ϕkα
∂uiα

)
(5)

= −ξνσαν
∂

∂ασ

(
F iα

∂ϕkα
∂uiα

)
+ F iα

∂

∂uiα

(
ξνσαν

∂ϕkα
∂ασ

)
+ Λiα

∂

∂uiα

(
F jα

∂ϕkα

∂ujα

)
. (6)

We can divide (9.1) by nonzero bkα and obtain the representation of the charac-
teristic functions ϕkα with bkα either 1 or 0. But then taking (9.16) into account
we derive the final form of (9.17)

d

dzα

(
Λiα

∂ϕkα
∂uiα

− ξνσαν
∂ϕkα
∂ασ

)
= 0. (9.18)

Without the repetition of the argument presented in section 8, we note that the
general solution of (9.18) on Jα has form

Λiα
∂ϕkα
∂uiα

− ξνσαν
∂ϕkα
∂ασ

= θkα

(
ϕα(uα) − b̃αϕ

k0
α (uα)

)
,
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where θkα are arbitrary functions of their arguments. Solving this equality for
Λkα, we obtain

Λkα =

[(
∂ϕα
∂uα

)−1
]k

n

[
ξνσαν

∂ϕkα
∂ασ

+ θkα

(
ϕα − b̃αϕ

k0
α

)]
. (9.19)

Using equality F kα =

[(
∂ϕα

∂uα

)−1
]k

n

bnα, direct substitution gives that (9.19) iden-

tically satisfies (9.15).
Functions θkα in (9.19) are arbitrary and hence one can always express con-

stants ξνανb
k
α from (9.19). Let us substitute (9.19) into (9.14). Finally we

obtain the infinitesimal transformation

ᾱν = αν − ξσνασ , (9.20)

z̄α = zα + ξναν ,

ūkᾱ = ukα +

[(
∂ϕα
∂uα

)−1
]k

n

[
ξνανb

n
α + ξνσαν

∂ϕnα
∂ασ

+ θnα

(
ϕα − b̃αϕ

k0
α

)]
.

It is easy to check that group (9.20) which identically satisfies (9.15), leaves
invariant equation (1.3) (if we assign indices α to the functions in (1.3)).

The action of (9.12) gives F̄ kᾱ = F kα − ξνσαν
∂Fk

α

∂ασ
. But then the characteristic

functions ϕα are invariant under the action of (9.20) which is consistent with
Section 8.

On the basis of subsection 8.7 we come to the conclusion that the neutral
elements e and h do not change under the action of (9.20)

ē = e, h̄ = h.

As we expected the algebraic structure of trivial fiber bundle P (Ω, Jα) under
the action of group (9.20) does not change.

10 Symmetry of field equations

We want to investigate the group properties of differential equation (4.1). In
the previous section we have seen that the rotation group (9.8) (with parameters
ξνσ) and the translation group (with parameters ξν) act in space ΓN0 . Let us
study the correlation of these groups with the algebraic structure of space J of
solutions.

1. Let

x̄ν = xν + ξν . (10.1)

Then ᾱν = αν , and phase variable zα is transformed as follows

z̄α = zα + ξναν , (10.2)
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as it follows from (9.5) and (9.11).
Let us consider the group which leaves invariant (4.3) and preserves the

algebraic structure of the solution space Jα of equations (4.3). As we have
shown in section 8, such a group has the following infinitesimal form

z̄α = zα + ξναν , (10.3)

ūkα = ukα + ξνανF
k
α(uα) +

[(
∂ϕα
∂uα

)−1
]k

n

θnα

(
ϕ(uα) − b̃αϕ

k0
α (uα)

)
,

where

F kα (uα) =
[
(aα)

−1
]k
n

(uα)Fn(uα).

Thus we have shown that (10.3) is contained in (9.20).
Besides (10.3) there is also the accompanying group

b̄kα = bkα + [σα]
k
n b

n, (10.4)

ϕ̄kα = ϕkα + [σα]kn ϕ
n
α + ξnα,

where matrix σα satisfies conditions (9.6).
Let us now study equation (4.10) under the action of group (10.3). We

seek for transformation of function χ in (4.10) in the class of the following
transformations

χ̄k = χk +Qk(..., uα, ...;χ), (10.5)

where Qk are symmetric functions of uα. It follows from section 6 that in
general case Q must also be a function of all derivatives of χ with respect to uα.
However we restrict ourselves with transformation (10.5) in order to understand
better the group properties of algebraic structure of solution space of the initial
differential equation (4.1).

Since uα in (4.10) play the role of independent variables, from (6.1) we have

∂χ̄k

∂ūnα
=
∂χk

∂unα
+
∂Qk

∂unα
+
∂Qk

∂χl
∂χl

∂unα
− ∂Λlα
∂unα

∂χk

∂ulα
, (10.6)

where Λkα is present in (10.3) and has the form

Λkα = ξνανFα(uα) +

[(
∂ϕα
∂uα

)−1
]k

n

θnα

(
ϕα(uα) − b̃αϕ

k0
α (uα)

)
. (10.7)

From (8.2) and (10.3) we can find that

Λiα
∂F kα
∂uiα

− F iα
∂Λkα
∂uiα

= 0. (10.8)
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After simple calculations, using (10.6) and (10.8), the invariance condition (6.3)
for equation (4.10) becomes

∑

α∈Ω



 Qj
∂[aα]kl (χ)

∂χj

∂χl

∂ui
α
F iα(uα) + [aα]

k
l (χ) ∂Q

l

∂ui
α
F iα(uα)+

[aα]
k
l (χ) ∂Q

l

∂χn

∂χn

∂ui
α
F iα(uα)



 = Ql
∂F k(χ)

∂χl
. (7)

This equation is defined on the manifold (4.10).
We see that equation (10.9) does not contain the parameters of group (10.3).

But this means that the action of group (10.3) does not depend on group (10.5).
Obviously (10.9) contains the trivial solution

Qk = 0. (10.10)

In this case the arguments of function χ are transformed under the action of
(10.3), but the form of the function does not change. On this stage we will
consider only cases (10.10) and (10.3).

In subsection 4.2 we have pointed out that the identity elements e and h do
not depend on α. But then from (8.22-23) we can see that these elements are
invariant with respect to group (10.3). Hence the following is true

Λkα(e) = 0,Λkα(h) = 0. (10.11)

We show now that conditions (4.13-15) are preserved with transformation
(10.3). Indeed, it follows from (10.11) that

χ(..., ē, ..., ūα, ..., ē, ...) = χ(..., e, ..., ūα, ..., e, ...) = ūα.

Using (4.19) and (10.11) we easily find that

χk(..., ūβ, ..., h̄, ..., ūγ , ...) = χk(..., uβ + Λβ , ..., h, ..., uγ + Λγ , ...)

= χk(..., uβ , ..., h, ..., uγ , ...) +
∑

α∈Ω\α0

∂χk

∂uiα
|uα0

=hΛ
i(uα) = h.

Binary operations that could exist in the space of solutions J of the equation
(4.1) are defined in the form (4.39). We use the results of section 8 and take
into account (10.10) to write the following formula

u1∗̇u2 = χ(..., uα1
∗̇(α)uα2

, ...)

= χ(..., ūα1
∗̇(α)ūα2

, ...) = χ(..., ūα1
, ...)∗̇χ(..., ūα2

, ...) = ū1∗̇ū2.

One can easily show that if (4.39) defines a group with the identity elements e
and h then ū∗̇ē = ū∗̇e = ū = u∗̇e, ū∗̇h = h = h̄ = u∗̇h.

By the same argument for the conjugate binary operation (4.40) we see that
(10.3) also preserves it: u1∗̈u2 = ū1∗̈ū2.

2. Let us consider equation (4.33) for N = 1. In order for (4.33) to be
invariant under (9.8), we introduce the transformation u = u, aν = aν + ξνσa

σ.
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Let us go back to system (4.16). It represents N first order linear equations
which can be written in the form (4.33). But then the action of the group (9.8)
leads to the transformation of the form

v̄k = vk,
◦

bn =
◦

b
k

n, (10.12)

◦
a
νk

n =
◦
a
νk

n + ξνσ
◦
a
σk

n ,

where
◦
a
ν
,
◦

b are diagonal matrices presented in (4.16). From the obvious equality

◦
aα =

◦
aα,

where
◦
aα = αν

◦
a
ν
, it follows that transformation (10.12) preserves the algebraic

structure of equation (4.16). Indeed, the equality vkα = expβ k
αnϕ

n
α(uα) from

subsection 4.8 points out that the characteristic functions ϕkα must be invariant
under the action of (9.8). But then, taking into account (4.8), we conclude that
the binary operations (3.15) and (3.17) do not change under transformation
(9.8).

3. Let us investigate equation (4.10) under the action of groups (9.8) and
(9.20). We will be seeking the transformation of functions χ in (4.10) in the
class

χ̄k = χk +Qk(..., uα, ...;χ), (10.13)

where Qk are assumed to be symmetric functions of their arguments uα. Taking
into account (10.6) and (9.5), the condition of invariance (6.3) of equation (4.10)
takes form

∑

α∈Ω


 −ξνσανaσkn(χ) ∂χ

∂u
αi

+Ql
∂a k

αn(χ)
∂χl

∂χn

∂u
αi

+

a k
αn(χ)∂Q

n

∂ui
α

+ a k
αl (χ) ∂Q

l

∂χn

∂χn

∂u
αi


F iα(uα) = Qn

∂F k(χ)

∂χn
. (8)

Equation (10.14) is defined on manifold (4.10).
It should be mentioned that in (10.14), like in (10.9), functions (9.19) are

not explicitly present. This means that the transformation of uα does not affect
the form of the function χk.

One can easily see that equation (10.14) is symmetric in arguments uα. But
since, like in section 4, we build our theory in the class of symmetric functions, it
is reasonable to seek the solution of (10.14) in this class. Then (9.20) and (10.13)
transform the symmetric function u = χ(..., uα, ...) into symmetric function
u = χ(..., uα, ...). In section 4 we defined a binary operation in the form of
(4.39). Then we suppose that u = χ(..., uα, ...) defines a binary operation
which can be represented as

ū1∗̇ū2 = χ̄(..., ūᾱ1, ...)∗̇χ̄(..., ūᾱ2, ...) = χ̄(..., ūᾱ1∗̇uᾱ2, ...).

In the preceeding subsections we proved that the transformation (9.20) preserves
the binary operations, therefore we can write

χ(..., uα1
∗̇uα2

, ...) = χ(..., uα1
∗̇uα2

, ...) = u1∗̇u2.
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Thus

u1∗̇u2 = u1∗̇u2. (10.15)

Let us continue our argument for the case when (4.37) defines a group in the
space Jα. Let the identity elements e and h be transformed into the solutions
e and h of the transformed equation (4.1) under the action of (10.13). From
equality u∗̇e = u∗̇e = u, u∗̇h = u∗̇h = h it follows immediately that e and h
must be the identity elements. By assumption, e and h have finite coordinates,
consequently F (e) = 0, F (h) = 0. On the other hand we consider only those
F (u) that can only have isolated zeros. The parameters of the infinitesimal
group can always be chosen so small that e belongs to some neighborhood of e,
in which F (u) does not have other zeros than e. Since e is the identity element
and F (e) = 0 we conclude e = e. Analogously, h = h. So

e = e, h = h (10.16)

In order for u = χ(..., uα, ...) to define a group (4.39) in the space of solutions
of the transformed equation (4.1) function χ must satisfy conditions analogous
to (4.13-14). We have e = e under the action of group (4.20). Then from
transformation (10.13) we obtain

χ(..., e, ..., uα, ...e, ...) = χ(..., e, ...uα, ...e, ...) +Q(..., e, ..., uα, ..., e, ...;uα).

By analogy with (4.13) the left hand side of the derived equality must equal to
uᾱ = uα + Λα(uα). But then we finally obtain

Qk(..., e, ..., uα, ..., e, ...;uα) = Λkα(uα). (10.17)

Using (4.14), the same argument leads to

Qk(..., uβ, ..., h, ..., uγ , ...;h) = 0. (10.18)

In subsection 4.10 we have shown that equality (4.19) follows from (4.14).
Let us consider (10.6) and assume that one of the arguments uα0

on the right
hand side is h and on the left hand side uα0

= h, where α0ν = α0ν − ξσνα0σ . By
the remark made above the following must be true

∂χ

∂uα
|uα0

=h,α6=α0
= 0.

Then using (4.19), from (10.6) we derive

∂Qk

∂uiα
|uα0

=h,α6=α0
= 0. (10.19)

It is easy to check that (10.17-19) do not contradict to equation (10.14).
We have studied how the group (9.8) acts on the binary operation (4.39).

As for the conjugate binary operation (4.40) the determining equation for Q
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will still be (10.14) if we look for the transformation of this operation in the
frame of (10.13). The conditions (4.21) lead to equalities that are obtained
from (10.17-19) through the exchange of the identity elements e and h.

We mentioned that the equation (10.14) does not connect the transforma-
tions (9.20) and (10.13) and in principle they can be independent. However the
invariance of algebraic structure of space J with respect to the action of groups
(9.20) and (10.13) leads to conditions (10.17-19). Obviously these conditions
connect the transformations (9.20) and (10.13). Moreover the choice of trans-
formation (10.13) depends on which binary operation we want to transform,
(4.39) or (4.40).

A simple example would be equation (4.27). Let the following be the in-
finitesimal form of the group which leaves invariant the equations aα

duα

dzα
=

sinuα of plane waves

uα = uα + ξα sinuα, (10.20)

where ξα are group parameters. It is easy to see that the invariant group of
equation (4.30) is

χ = χ+ ξ sinχ, (10.21)

with the group parameter ξ.
In section 4.13 it was shown that the identity elements are e = 2πm, h =

2πm + π, where m is an integer. We have also shown that the function χ
satisfies conditions (4.13-14) and (4.19).

From (10.21) it follows that Q = ξ sinχ. Since function χ of (4.31) satisfies
(4.14) and (4.19) then (10.18) and (10.19) are satisfied identically. As for
the condition (10.17), it imposes restrictions on the group (10.20) and we have
ξα = ξ.

4. Back to the solution (4.47) of equation (4.10). The action of groups
(9.20) and (10.13) gives

∑

α∈Ω

exp
[
ϕkα(uα + Λα) − ϕkα(χ+Q)

]
= 1, (k = 1, ..., N), (10.22)

where Λkα is (9.19). Since Λα and Q are infinitely small functions, from (10.22)
it is easy to write

∑

α∈Ω

exp
[
ϕkα(uα) − ϕkα(χ)

] [∂ϕkα(uα)

∂un
Λnα − ∂ϕkα(χ)

∂un
Qn
]

= 0.

Here the summation is assumed along the index n but not k. From this equality
it is easy to express Q via Λα

Qk =






∑

β∈Ω

exp
[
ϕkβ(uβ) − ϕkβ(χ)

] ∂ϕβ(χ)

∂u




−1



k

n

× (10.23)

×
∑

α∈Ω

exp
[
ϕnα(uα) − ϕnβ(χ)

] ∂ϕnα(uα)

∂ui
Λiα. (9)
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An immediate verification shows that (10.23) satisfies (10.17). Let us now
substitute (9.19) into (10.23) and finally obtain

Qk =







∑

β∈Ω

exp
[
ϕkβ(uβ) − ϕkβ(χ)

] ∂ϕβ(χ)

∂u




−1



k

n

× (10.24)

×
∑

α∈Ω

exp
[
ϕnα(uα) − ϕnβ(χ)

] [
ξνσαν

∂ϕnα(uα)

∂ασ
+ θnα

]
, (10)

where θnα = θnα

(
ϕα(uα) − b̃αϕ

k0
α (uα)

)
.

If we disregard functions θnα then obtain

Qk = ξνσT
kσ
ν ,

where T kσν can be found from (10.24). Let us construct the tangent vector

Xa =
∑

α∈Ω

Λkaα
∂

∂ukα
+ T ka

∂

∂χk
, (10.25)

where a is a double index
(
σ
ν

)
and the function θnα is not present in Λkaα. Since

(10.25) is the generator of the rotation group, we have the following equality

[Xa, Xb] = CcabXc,

where Ccab are the structural constants of the rotation group. Hence we have
approached the problem of irreducible representations of the rotation group for
nonlinear equations (4.1).

By analogy with (4.47) we can consider the solution (4.49) of equation (4.10).
Then instead of the transformation (10.13) we will have

∧
χ
k

=
∧
χ
k

+
∧

Q
k

,

where
∧

Q
k

is derived from (10.24) with the simple change in exponents: ϕα(uα)−
ϕα(χ) → ϕα(

∧
χ) − ϕα(uα).

We have rather extensively studied algebraic properties of the solution space
of the differential equations (4.1). The revealed algebro-geometrical properties
of these equations can equally be extended to the conjugate space of solutions
of equations (5.11).

11 Homomorphic and isomorphic relations

1. Together with (1.1) we consider the system of the same dimension N :

dvk

dt
= fk(v1, ...vN ), (11.1)
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where functions fk(v) (by analogy with F k(u)) are defined and smooth for all
points in ΓNν except may be some isolated points. As in the case of (1.1),
equation f(v) = 0 has isolated solutions. Let the characteristic equations of
(11.1) be

ψk(v) = lkt+Ak. (11.2)

Since both systems (1.1) and (11.1) have the same dimension, there exists such
a space W of dimension N that the following maps take place:

expϕ : Ju →W, expψ : Jv →W, (11.3)

where Ju and Jv are the spaces of the solutions of (1.1) and (11.1) respectively.
Let us consider the mapping: Ju → W → Jv. Then we can write expϕ(u) =
expψ(v). Taking the principal value of logarithm we obtain

ϕ(u) = ψ(v). (11.4)

Immediately follows

v = µ(u), (11.5)

where µ = ψ−1 ◦ ϕ. Hence we have obtained the map µ : Ju → Jv .
As it was shown in section 1, Ju and Jv are fiber spaces. Discrete groups

Du and Dv act in discrete fibers of Ju and Jv respectively. If one can establish
homomorphic relation between groups Du and Dv then the spaces Ju and Jv
should be called homomorphic. If Du and Dv are isomorphic then we call the
spaces Ju and Jv isomorphic. Note that these relations are regulated by the

map µ = ψ−1 ◦ϕ from where it follows that Ju
ϕ→W

ψ−1

→ Jv. Also if the binary
operations (3.15) and (3.17) take place in the space W then it is easy to see
that

µ(u1 ∗ u2) = µ(u1) ∗ µ(u2). (11.6)

If eu, hu and ev, hv are the identity elements in Ju and Jv respectively then
there is the following connection between them

ev = µ(eu), hv = µ(hu). (11.7)

We conclude that the spaces of solutions of
du

dt
= u(1 − u) and

du

dt
= sinu

are homomorphic. The spaces of solutions of
du

dt
= u and

du

dt
= u(1 − u) are

isomorphic. Finally we note that the conjugate spaces of solutions J and J+

of equations (1.1) and (5.4) are isomorphic.
2. Let us consider the collection of equations (4.3) with α running through

the set Ω. Recall that we assumed that the discrete groups Dα are isomorphic
for different α. Then it is easy to show that Jα, α ∈ Ω are isomorphic too.
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Consider the following equation

ãνkn (v)
∂vn

∂xν
= F̃ k(v), (11.8)

where k, n = 1, ..., N ; ν = 1, ..., N0. We assume that the summation is per-
formed along the repeating indices. Restrictions imposed on ãνkn (v) and F̃ k(v)
are the same as those on functions in (4.1). Therefore the following takes place

det [αν ã
ν(v)] 6= 0, det

∂F̃ (v)

∂v
6= 0. (11.9)

Suppose that the characteristic functions of plane waves of the equation (11.8)
are ψα(vα). Let J̃α are the spaces of solutions of equations of plane waves
of (11.8). Similar to section 4 we suppose that discrete groups D̃α acting in
discrete fibers of spaces J̃α are isomorphic. Using the argument of the previous
subsection we can construct the maps µα = ψ−1

α ◦ ϕα : Jα → J̃α. The spaces
Jα and J̃α will be homomorphic or isomorphic depending on whether discrete
groups Dα and D̃α are homomorphic or isomorphic.

Since Jα and J̃α are fibers in the spaces of solutions Ju and Jv of equations
(4.1) and (11.8) respectively, we can perform fiberwise mapping

µα : Jα → J̃α, (11.10)

so that the following holds

ϕα(uα) = ψα(vα). (11.11)

Using (4.47), an arbitrary solution v ∈ J̃v can be presented in the implicit form

∑

α∈Ω

exp
[
ψkα(vα) − ψkα(v)

]
= 1. (11.12)

With (11.4) and the map (11.10) we have
∑
α∈Ω

exp
[
ϕkα(uα) − ψkα(v)

]
= 1. Taking

into account (4.8), we finally have

∑

α∈Ω

wkα exp
[
−ψkα(v)

]
= 1. (11.13)

Let u ∈ Ju be some solution. Using (4.18) by χ = u we define the coefficients of
expansion wkα(zα). Let us substitute wkα(zα) in (11.13). Solving the algebraic
equation (11.13) for v we obtain the rule of mapping of the space Ju into space
Jv.

Therefore if the discrete groupsDα and D̃α are homomorphic then the spaces
Ju and Jv are homomorphic. Also the homomorphic relations are established
between the binary operations in the spaces Ju and Jv . Analogous argument
is used when Dα and D̃α are isomorphic, i.e. Ju and Jv are isomorphic.
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3. As we mentioned, the metric (7.8) corresponds to equation (4.1). Let
us introduce the fiberwise mapping (11.10). From (11.11) it follows that the
second terms of the arising metrics satisfy the following equality:

∑

α∈Ω

dϕ+
αkdϕ

k
α =

∑

α∈Ω

dψ+
αkdψ

k
α.

As for the first terms
◦
gντdx

νdxτ and
◦̃
gντdx

νdxτ , they can have different sig-
natures. If the signatures are the same then the metric

ds2 =
◦
gντdx

νdxτ +
∑

α∈Ω

dr+αkdr
k
α,

with rkα = ϕkα(uα) = ψkα(vα) is common for both equations (4.1) and (11.8).
4. The form of the function ϕkα(vα) does not change under the action of

group (9.20). Let us consider v̄kᾱ = µkα(ūᾱ). Since (9.20) is an infinitesimal
transformation, we can write

v̄kᾱ = µkα(uα) +
∂µkα(uα)

∂uiα

[(
∂ϕα
∂uα

)−1
]i

n

[
ξνανb

n
α + ξνσαν

∂ϕnα
∂ασ

+ θnα

]
.

But on the other hand, taking into account (11.11), we can write

∂µkα(uα)

∂uiα
=
∂ψ−1k

α (ϕα)

∂ϕjα

∂ϕjα(uα)

∂uiα
=
∂ψ−1k

α (ψα)

∂ψjα

∂ϕjα(uα)

∂uiα
,

and using

∂ψ−1k
α

∂ψjα

∂ψjα
∂vnα

= δkn,

we derive

v̄kᾱ = vkα +

[(
∂ψα(vα)

∂vα

)−1
]k

n

[
ξνανb

n
α + ξνσαν

∂ϕnα
∂ασ

+ θnα

]
. (11.4)

From (9.1), (11.11) and ψkα(vα) = lkαzα + Akα we can conclude that lkα = bkα,
Akα = ckα. From these equalities we write

θkα

(
ϕα(uα) − b̃αϕ

k0
α (uα)

)
= θkα

(
ψα(vα) − b̃αψ

k0
α (vα)

)
.

Taking partial derivatives of (11.11) with respect to αν (αν and uα in (9.15) are
considered to independent variables) we obtain

∂ϕnα(uα)

∂αν
=
∂ψnα(vα)

∂αν
.
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Summarizing this argument, (11.4) will have the form

v̄kᾱ = vkα +

[(
∂ψα(vα)

∂vα

)−1
]k

n

[
ξνανb

n
α + ξνσαν

∂ψnα(vα)

∂ασ
+ θnα

]
, (11.15)

where θkα = θkα

(
ψα(vα) − b̃αψ

k0
α (vα)

)
.

Therefore, the group (9.20) is isomorphically mapped under the fiberwise
mapping (11.10) into the group (11.15).

Analogously it can be shown that the accompanying group (10.4) is also
isomorphically mapped under the map (11.10-11) into the accompanying group

b̄kα = bkα + σ k
αn b

n
α,

ψ̄kα = ψkα + σ k
αn ψ

n
α.

Conclusion
It is the nature of differential equations that they bind independent variables

(space-time) and field variables. Our goal was to set a path on the way of
studying algebro-geometrical patterns of space and field to which the theory of
differential equations eventually brings.

We have showed that the superposition principle of quantum mechanics [6,7]
is not only the case of linear differential equations. It seems that this principle
can be extended to nonlinear equations (at least autonomous). Turns out that
the group of reflections plays the fundamental role in algebro-geometric prop-
erties of space and field. This group is connected with the appearance of the
binary and conjugate binary operations, existence of two mutually conjugate
identity elements of the group and also mutually conjugate expansion of the
quazilinear equation into plane waves. We should also mention the conjugate
equations. The discovery of these objects allowed us to introduce the metric
of space and field (space of field variables). It was shown that every equation
together with its conjugate has its own metric so that geodesics of this geometry
are the solutions of the equations. The curvature of this geometry is zero. The
introduction of the metric allows one to revise the groups of symmetries of differ-
ential equations. Simultaneously, the existence of the accompanying group has
been detected. This group leaves the metrics invariant. The variables of differ-
ential equation are indifferent with respect to the accompanying group. It has
also been shown that invariance groups of differential equations are the collec-
tion of unary operations acting in the space of solutions. The unary operations
are the special form of the binary operations. Hence the differential equation
generates a single ensemble of interconnected algebro-geometrical objects.

In the construction of algebraic structures in the space of solutions of differ-
ential equations the central role is played by the characteristic functions which
are solutions to ordinary differential equations. The entire construction of
algebro-geometric structure of differential equations is based on the character-
istic functions. We showed that for partial differential equations there exists
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so-called extended Fourier series which is expressed in terms of the characteristic
functions of plain waves. For nonlinear differential equations under considera-
tion we also have managed to find the particular form (4.47) and (4.49) of these
series.

We have investigated wide range of differential equations. We want to point
out that the study of the general differential equations was not our goal. Our
approach allowed us simply to detect and magnify essential algebro-geometric
properties of phenomena described by differential equations. The investigated
class of equations is restricted because of conditions (4.4-5) imposed on (4.1).
We can see from (4.16-17) that we have equations of the field with mass. Then
the equations of Maxwell and Einstein of gravitational field are left beyond the
scope of our study. In particular, if the right hand side of (4.1) is absent then
det aα = 0 is the condition that must be imposed on in order for the equation
(4.3) to have a nontrivial solution. This condition imposes a restriction on αν
which can be interpreted as characteristic directions [2,5]. Hence such a class of
equations needs independent study which may expand and complete our view
of algebro-geometric properties of the objects associated with space and field.

Authors would like to express their sincere appreciation to professor D. F.
Kurdgelaidze, who, with his friendly advice and critical notes stimulated deep-
ened study of the arising questions and results.
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