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Abstract

We prove a Filippov type existence theorem for solutions of a

higher order differential inclusion in Banach spaces with nonconvex

valued right hand side by applying the contraction principle in the

space of the derivatives of solutions instead of the space of solutions.
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1 Introduction

In this note we study the n-th order differential inclusion

x(n) − λx ∈ F (t, x), a.e. (I) (1.1)

with boundary conditions of the form

x(i)(0) − x(i)(T ) = µi, i = 0, 1, . . . , n− 1, (1.2)

where λ ∈ R, E is real separable Banach space, I = [0, T ], F (·, ·) : I ×E →
P(E) and µi ∈ E, i = 0, 1, . . . , n−1. When λ 6= 0 the linear part in equation
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(1.1) is invertible and, in this case, the problem (1.1)-(1.2) is well known as
a nonresonance problem. Moreover, if µi = 0, i = 0, 1, . . . , n − 1 then the
conditions (1.2) are periodic boundary conditions.

The present note is motivated by a recent paper of Benchohra, Graef,
Henderson and Ntouyas ([1]) in which several existence results concerning
nonresonance impulsive higher order differential inclusions are obtained via
fixed point techniques. The aim of our paper is to provide a Filippov type
result concerning the existence of solutions to problem (1.1)-(1.2). Recall
that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem consists in proving the existence of a
solution starting from a given ”quasi” solution.

Our approach is different from the one in [1] and consists in applying the
contraction principle in the space of derivatives of solutions instead of the
space of solutions. In addition, as usual at a Filippov existence type theorem,
our result provides an estimate between the starting ”quasi” solution and
the solution of the differential inclusion. The idea of applying the set-valued
contraction principle due to Covitz and Nadler ([6]) in the space of derivatives
of the solutions belongs to Kannai and Tallos ([7]) and it was already used
for other results concerning differential inclusions ([3,4,5] etc.).

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use
later.

Let (X, d) be a metric space and consider a set valued map T on X with
nonempty closed values in X. T is said to be a λ-contraction if there exists
0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH(·, ·) denotes the Pompeiu-Hausdorff distance. Recall that the
Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
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If X is complete, then every set valued contraction has a fixed point, i.e.
a point z ∈ X such that z ∈ T (z) ([6]).

We denote by Fix(T ) the set of all fixed points of the set-valued map T .
Obviously, Fix(T ) is closed.

Proposition 2.1. ([8]) Let X be a complete metric space and suppose
that T1, T2 are λ-contractions with closed values in X. Then

dH(Fix(T1), F ix(T2)) ≤
1

1 − λ
sup
z∈X

d(T1(z), T2(z)).

In what follows E is a real separable Banach space with norm | · |, C(I, E)
is the Banach space of all continuous functions from I to E with the norm
‖x(·)‖C = supt∈I |x(t)|, AC

i(I, E) is the space of i-times differentiable func-
tions x : I → E whose i-th derivative xi(·) is absolutely continuous and
L1(I, E) is the Banach space of (Bochner) integrable functions u(·) : I → E

endowed with the norm ‖u(·)‖1 =
∫ 1
0 |u(t)|dt.

A function x(·) ∈ ACn−1(I, E) is called a solution of problem (1.1)-(1.2)
if there exists a function v(·) ∈ L1(I, E) with v(t) ∈ F (t, x(t)), a.e. (I) such
that x(n)(t) − λx(t) = v(t), a.e. (I) and x(·) satisfies conditions (1.2).

In what follows we consider the Green function G(·, ·) : I × I → E

associated to the periodic boundary problem

x(n) − λx = 0, x(i)(0) − x(i)(T ) = 0, i = 0, 1, . . . , n− 1.

For the properties of G(·, ·) we refer to [1].
The next result is well known (e.g. [1]).

Lemma 2.2. ([1]) If v(·) : [0, T ] → E is an integrable function then the
problem

x(n)(t) − λx(t) = v(t) a.e. (I)
x(i)(0) − x(i)(T ) = µi, i = 0, 1, . . . , n− 1.

has a unique solution x(·) ∈ ACn−1(I, E) given by

x(t) = Pµ(t) +
∫ T

0
G(t, s)v(s)ds,

where

Pµ(t) =
n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−1−i. (2.1)
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In the sequel we assume the following conditions on F .

Hypothesis 2.3. (i) F (·, ·) : I ×E → P(E) has nonempty closed values
and for every x ∈ E F (·, x) is measurable.

(ii) There exists L(·) ∈ L1(I, E) such that for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ E

and d(0, F (t, 0)) ≤ L(t) a.e. (I).
Denote L0 :=

∫ T
0 L(s)ds and M0 := sup(t,s)∈I×I |G(t, s)|.

3 The main result

We are able now to prove our main result.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied and M0L0 <

1. Let y(·) ∈ ACn−1(I, E) be such that there exists q(.) ∈ L1(I, E) with
d(y(n)(t) − λy(t), F (t, y(t))) ≤ q(t), a.e. (I). Denote µ̃i = y(i)(0) − y(i)(T ),
i = 0, 1, . . . , n− 1.

Then for every ε > 0 there exists x(·) a solution of (1.1)-(1.2) satisfying
for all t ∈ I

|x(t) − y(t)| ≤
1

1 −M0L0
sup
t∈I

|Pµ(t) − Pµ̃(t)| +
M0

1 −M0L0

∫ T

0
q(t)dt+ ε,

where Pµ(t) is defined in (2.1).

Proof. For u(·) ∈ L1(I, E) define the following set valued maps:

Mu(t) = F

(

t, Pµ(t) +
∫ T

0
G(t, s)u(s)ds

)

, t ∈ I,

T (u) = {φ(.) ∈ L1(I, E); φ(t) ∈Mu(t) a.e. (I)}.

It follows from the definition and Lemma 2.2 that x(·) is a solution of
(1.1)-(1.2) if and only if x(n)(·) − λx(·) is a fixed point of T (·).

We shall prove first that T (u) is nonempty and closed for every u ∈
L1(I, E). The fact that the set valued mapMu(·) is measurable is well known.
For example the map t → Pµ(t) +

∫ T
0 G(t, s)u(s)ds can be approximated by
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step functions and we can apply Theorem III. 40 in [2]. Since the values of
F are closed with the measurable selection theorem (Theorem III.6 in [2])
we infer that Mu(·) admits a measurable selection φ. One has

|φ(t)| ≤ d(0, F (t, 0)) + dH

(

F (t, 0), F

(

t, Pµ(t) +
∫ T

0
G(t, s)u(s)ds

))

≤ L(t)

(

1 + |Pµ(t)| + sup
t,s∈I

|G(t, s)|
∫ T

0
|u(s)|ds

)

,

which shows that φ ∈ L1(I, E) and T (u) is nonempty.
On the other hand, the set T (u) is also closed. Indeed, if φn ∈ T (u) and

‖φn−φ‖1 → 0 then we can pass to a subsequence φnk
such that φnk

(t) → φ(t)
for a.e. t ∈ I, and we find that φ ∈ T (u).

We show next that T (·) is a contraction on L1(I, E).
Let u, v ∈ L1(I, E) be given, φ ∈ T (u) and let δ > 0. Consider the

following set-valued map:

H(t) = Mv(t) ∩

{

x ∈ E; |φ(t) − x| ≤ L(t)

∣

∣

∣

∣

∣

∫ T

0
G(t, s)(u(s) − v(s))ds

∣

∣

∣

∣

∣

+ δ

}

.

From Proposition III.4 in [2], H(·) is measurable and from Hypothesis 2.3
ii)H(·) has nonempty closed values. Therefore, there exists ψ(·) a measurable
selection of H(·). It follows that ψ ∈ T (v) and according with the definition
of the norm we have

‖φ− ψ‖1 =
∫ T

0
|φ(t) − ψ(t)|dt

≤
∫ T

0
L(t)

(

∫ T

0
|G(t, s)||u(s)− v(s)|ds

)

dt+
∫ T

0
δdt

=
∫ T

0

(

∫ T

0
L(t)|G(t, s)|dt

)

|u(s) − v(s)|ds+ Tδ

≤ M0L0‖u− v‖1 + Tδ.

Since δ > 0 was chosen arbitrary, we deduce that

d(φ, T (v)) ≤M0L0‖u− v‖1.

Replacing u by v we obtain

dH(T (u), T (v)) ≤M0L0‖u− v‖1,
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thus T (·) is a contraction on L1(I, E).
We consider next the following set-valued maps

F1(t, x) = F (t, x) + q(t)B, (t, x) ∈ I ×E,

M1
u(t) = F1

(

t, Pµ̃(t) +
∫ T

0
G(t, s)u(s)ds

)

, t ∈ I, u(·) ∈ L1(I, E),

T1(u) = {ψ(·) ∈ L1(I, E); ψ(t) ∈M1
u(t) a.e. (I)},

where B denotes the closed unit ball in E. Obviously, F1(·, ·) satisfies Hy-
pothesis 2.3.

Repeating the previous step of the proof we obtain that T1 is also a
M0L0-contraction on L1(I, E) with closed nonempty values.

We prove next the following estimate

dH(T (u), T1(u)) ≤ sup
t∈I

|Pµ(t) − Pµ̃(t)|L0 +
∫ T

0
q(t)dt. (3.1)

Let φ ∈ T (u), δ > 0 and define

H1(t) = M1
u(t) ∩

{

z ∈ E; |φ(t) − z| ≤ L(t)|Pµ(t) − Pµ̃(t)| + q(t) +
δ

T

}

.

With the same arguments used for the set valued map H(·), we deduce
that H1(·) is measurable with nonempty closed values. Hence let ψ(·) be a
measurable selection of H1(·). It follows that ψ ∈ T1(u) and one has

‖φ− ψ‖1 =
∫ T

0
|φ(t) − ψ(t)|dt

≤
∫ T

0

[

L(t)|Pµ(t) − Pµ̃(t)| + q(t) +
δ

T

]

dt

≤
∫ T

0
L(t)|Pµ(t) − Pµ̃(t)|dt+

∫ T

0
q(t) + δ

≤ L0 sup
t∈I

|Pµ(t) − Pµ̃(t)| +
∫ T

0
q(t)dt+ δ.

Since δ is arbitrary, as above we obtain (3.1).
We apply Proposition 2.1 and we infer that

dH(Fix(T ), F ix(T1)) ≤
L0

1 −M0L0
sup
t∈I

|Pµ(t) − Pµ̃(t)| +
1

1 −M0L0

∫ T

0
q(t)dt.
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Since v(·) = y(n)(·) − λy(·) ∈ Fix(T1) it follows that there exists u(·) ∈
Fix(T ) such that for any ε > 0

‖v − u‖1 ≤
L0

1 −M0L0

sup
t∈I

|Pµ(t) − Pµ̃(t)| +
1

1 −M0L0

∫ T

0
q(t)dt+

ε

M0

.

We define x(t) = Pµ(t) +
∫ T
0 G(t, s)u(s)ds, t ∈ I and we have

|x(t) − y(t)| ≤ |Pµ(t) − Pµ̃(t)| +
∫ T

0
|G(t, s)||u(s)− v(s)|ds

≤ sup
t∈I

|Pµ(t) − Pµ̃(t)| + sup
t∈I

|Pµ(t) − Pµ̃(t)|
M0L0

1 −M0L0

+
1

1 −M0L0

M0

∫ T

0
q(t)dt+ ε

≤
1

1 −M0L0
sup
t∈I

|Pµ(t) − Pµ̃(t)| +
M0

1 −M0L0

∫ T

0
q(t)dt+ ε,

which completes the proof.

References

[1] M. Benchohra, J. R. Graef, J. Henderson and S. K. Ntouyas, Nonres-
onance impulsive higher order functional nonconvex-valued differential
inclusions, Electron. J. Qual. Theory Differ. Equ. (2002), No 13, 13pp
(electronic).

[2] C. Castaing and M. Valadier, Convex Analysis and Measurable Multi-
functions, LNM 580, Springer, Berlin, 1977.

[3] A. Cernea, A Filippov type existence theorem for an infinite operational
differential inclusion, Stud. Cerc. Mat. 50 (1998), 15-22.

[4] A. Cernea, An existence theorem for some nonconvex hyperbolic differ-
ential inclusions, Mathematica (Cluj) 45(68) (2003), 121-126.

[5] A. Cernea, Existence for nonconvex integral inclusions via fixed points,
Arch. Math. (Brno) 39 (2003), 293-298.

[6] H. Covitz and S. B. Nadler jr., Multivalued contraction mapping in gen-
eralized metric spaces, Israel J. Math. 8 (1970), 5-11.

EJQTDE, 2007 No. 8, p. 7



[7] Z. Kannai and P. Tallos, Stability of solution sets of differential inclusions,
Acta Sci. Math. (Szeged) 61(1995), 197-207.

[8] T.C. Lim, On fixed point stability for set valued contractive mappings
with applications to generalized differential equations, J. Math. Anal.
Appl. 110 (1985), 436-441.

(Received December 15, 2006)

EJQTDE, 2007 No. 8, p. 8


