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ABSTRACT

We study the oscillatory behavior of solutions of the second order linear differential

equation of Euler type: (E) y′′ + λx−αy = 0, x ∈ (0, 1], where λ > 0 and α > 2. Theorem

(a) For 2 ≤ α < 4, all solution curves of (E) have finite arc length; (b) For α ≥ 4, all solution

curves of (E) have infinite arc length. This answers an open problem posed by M. Pasic [8]

§1. In a recent paper [8], M. Pasic introduced the concept of “ rectifiable oscillation” in the

study of oscillatory behavior of solutions of the second order linear differential equation of

Euler type in the finite interval (0, 1]:

(1) y′′ + λx−αy = 0, x ∈ (0, 1].

In case of the Euler’s equations, i.e. α = 2, it is well known that equation (1) is oscillatory

when λ >
1

4
and nonoscillatory if λ ≤ 1

4
. For α > 2, it follows from the Sturm’s Comparison

Theorem that all solutions of (1) are oscillatory as x → 0.

For a real function y(x) defined on the closed interval I = [0, 1], we denote its graph by

G(y) =
{(

t, y(t)
)

: 0 ≤ t ≤ 1
}

as a subset in R
2. G(y) is said to be a rectifiable curve in R

2 if

its arc length LG(y) is finite where LG(y) is defined by

LG(y) = sup

{

m
∑

i=1

‖
(

ti, y(ti)
)

−
(

ti−1, y(ti−1)
)

‖2

}

,
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where supremum is taken over all partitions:

0 = t0 < t1 < · · · < tm = 1 of the unit interval [0, 1] (See Apostol [1], p. 175). Here ‖ · ‖2

denotes the Euclidean norm in R
2.

An oscillatory function y(x) on I = (0, 1] is said to be rectifiable (resp. unrectifiable)

if its graph G(y) is rectifiable (resp. unrectifiable). In other words, it is rectifiable if it has

finite arc length on I and unrectifiable otherwise. Equation (1) is said to be rectifiable (resp.

unrectifiable) oscillatory on I if all its nontrivial solutions are rectifiable (resp. unrectifiable).

In the familiar case of the Euler’s equation, i.e. equation (1) when α = 2 and λ >
1

4
, we

can write down the explicit form of its general solutions

(2) y(x) = c1

√
x cos(ρ logx) + c2

√
x sin(ρ logx),

where ρ2 = λ − 1

4
.

Consider a typical section of the solution curve y(x) of (1) between its two zeros ak+1

and ak where ak+1 < ak and ak → 0 as k → ∞. It is clear from the geometry that its arc

length is bounded above by 2|y(sk)| + ak − ak+1 where y′(sk) = 0 and ak+1 < sk < ak. In

the special case (2) of the Euler equation, we can simply estimate sin(ρ logx) as the case

of cos(ρ logx) is similar. For x ∈ (0, 1], log x is negative, so zeros of sin(ρ logx) are given

by ak = exp(−kπ/ρ) and maxima of sin(ρ logx) occurs at sk = exp(−kπ/2ρ). The curve

sin(ρ logx) over interval (ak+1, ak) is bounded by 2|√sk| and ak − ak+1, hence

LG(y) ≤ 2

∞
∑

k=0

exp(−kπ/4ρ) + 1. < ∞,

so equation (1) when α = 2, λ > 1
4

is rectifiable oscillatory.

When α = 4, equation (1) can also be solved in explicit form, namely, solutions are of

the form

(3) y(x) = c1x cos(
√

λ/x) + c2x sin(
√

λ/x).

The typical section of the solution curve y(x) between two zeros ak+1 and ak with its extrema

at sk, ak+1 < sk < ak, has arc length exceeding 2|y(sk)|. Let us again consider only the case

y(x) = x cos(
√

λ/x) which has zeros at ak = 2
√

λ/(2k + 1)π and at its extrema sk, we have
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|y(sk)| ≥ |y(
√

λ/kπ)| =
√

π/kπ. Clearly
∞
∑

k=0

|y(sk)| >

√
λ

π

∞
∑

k=0

1

k
= ∞, so the length of of the

solution curve x cos(
√

λ/x) is infinite hence the oscillatory solution given in (3) is unrectifiable.

This is interesting because the solution curves given in (3) exhibits a phenomenon whereby a

one dimensional curve can have infinite length within a bounded region in R
2, like the Koch’s

snowflake in fractal geometry, see Devancy [5] p. 182.

Pasic [8] introduced the following two boundary layer conditions:

(I) there exist c > 0 and d ∈ (0, a] depending on y(x) such that |y′(x)| ≤ cx−α/4 for all

x ∈ (0, d).

(II) there exist c > 0 and d ∈ (0, a] depending on y(x) that |y(x)| ≤ cxα/4 for all

x ∈ (0, d),

and proved

Theorem P. For solutions of (1) satisfying boundary layer condition (I)
(

or (II)
)

, we

have for λ > 0,

(a) if 4 > α > 2; then equation (1) is rectifiable oscillatory:

(b) if α ≥ 4, then equation (1) is unrectifiable oscillatory provided that it also admits the

existence of two linearly independent solutions satisfying boundary layer condition

(I)
(

or (II)
)

.

Pasic [8] posed as an open problem whether the additional assumptions of boundary layer

conditions (I) and (II) can be removed for other values of α, α 6= 2 and 4. The purpose of

this paper is to show that both of these boundary layer conditions are superfluorous in the

case of equation (1). We can therefore improve Theorem P to read

Theorem 1. (a) Equation (1) is rectifiable oscillatory for 2 < α < 4, and (b) Equation

(1) is unrectifiable oscillatory for α ≥ 4.

§2. In this section, we shall give the proof of our main theorem. In view of Theorem P, it

suffices to prove that solutions of (1) satisfy either one of the boundary layer conditions (I)

and (II). This can be accomplished by the use of Louiville transformation and an application
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of an asymptotic integration theorem in the elliptic case.

let y(x) = xα/4z(x), then z(x) satisfies, by equation (1), the following second order linear

differential equation,

(4) (xα/2z′)′ +
{

λx−α/2 +
α

4

(α

4
− 1
)

x−2+α/2
}

z = 0, x ∈ (0, 1].

We make the Louiville transformation for α > 2

(5) s =
(α

2
− 1
)

−1

x1−α/2 ẑ(s) = z(x),

which transform the behavior of x near 0 to s near infinity. Using (5), equation (4) becomes

(6)
d2ẑ

ds2
+

[

λ +
α

4

(α

4
− 1
)(α

2
− 1
)

−2 1

s2

]

ẑ = 0, s ≥ 1.

Solutions of (6) have the form

(7) ẑ(s) = (c1 + o(1)) sin
√

λs + (c2 + o(1)) cos
√

λs

see Hartman [6; Chapter XI Theorem 8.1, p.370]. In particular,
dẑ

ds
(s) has the similar form

(7) because the unperturbed equation

(8)
d2û

ds2
+ λû = 0, s ≥ 1

has sin
√

λs and cos
√

λs as fundamental solutions. Since ẑ(s) is bounded by (7) so by (5)

and the transformation y(x) = xα/4z(x), we deduce that y(x) = 0
(

xλ/4
)

satisfying boundary

layer condition (II).

To see that boundary layer condition (I) is also satisfied, we note that

(9) y′(x) = xα/4z′(x) +
α

4
xα/4−1z(x)

and

(10) z′(x) = −x−α/2 dz

ds
(s) = 0

(

x−α/2
)

.

From (9) and (10), we obtain y′(x) = 0
(

x−α/4
)

since for α ≥ 2,
α

4
− 1 ≥ −1

2
≥ −α

4
and

0
(

xα/4−1
)

= 0
(

x−α/4
)

as x → 0. This completes the proof that all solutions of (1) when

α > 2 satisfy both the boundary layer conditions (I) and (II).
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We can now apply Theorem P to complete the proof of our main Theorem. On the

other hand, by using the transformed equation (4), we can also give a much simpler proof

somewhat different from that gives by Pasic [8].

We first consider the unperturbed equation (8)

(11)
(

xα/2u′

)

′

+ λx−α/2u = 0, û(s) = u(x)

which has its general solution given by

u(x) = c1 sin
(√

λ/σxσ
)

+ c2 cos
(√

λ/σxσ
)

, σ =
(α

2
− 1
)

> 0,

Let {xn} be the sequence of consecutive zeros of u(x) = sin
(√

λ/σxσ
)

, i.e.

(12) xn =

( √
λ

σnπ

)1/σ

We denote q(x) =

{

λx−α/2 +
ασ−2

4

(α

4
− 1
)

x−2+α/2

}

the coefficient function in the trans-

formed equation (4) for 2 < α < 4, q(x) ≤ λx−α/2, so by Sturm Comparison Theorem

between two consecutive zeros ak0+1 and ak0
of y(x),

(

{ak} denotes the decreasing sequence

of consecutive zeros of y(x)
)

there exists at least one zero xn0
such that ak0+1 < xn0

< ak0
.

Repeating this procedure to all pairs of consecutive zeros aa0+j and ak0+j−1, we obtain

another zero xn0+nj−1, nj ≥ j such that ak0+j < xn0+nj−1 < ak0+j−1.

We note that for the segment of the solution curve Γk =
{(

x, y(x)
)

: ak+1 ≤ x ≤ ak

}

its

arc length L(Γk) satisfies

(13) 2 |y (sk)| ≤ L (Γk) ≤ 2 |y (sk)| + (ak − ak+1) ,

where y(x) attains its extrema sk between ak+1 and ak, i.e. y′(sk) = 0. Piecing together the

segments Γk, we note that the arc length of the Graph of solution curve satisfies

(14) LG(y) =

∞
∑

k=0

L(Γk) + arc length {(x, y(x) : a0 ≤ x ≤ 1} .

the last term in (14) is a positive constant depending on the solution y(x) which we denote

by M0. From (13) and (14), we obtain

(15) 2
∞
∑

k=0

|y(sk)| ≤ LG(y) ≤ 2
∞
∑

k=0

|y(sk)| + M0 + a0,
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since
∞
∑

k=0

(ak − ak+1) = a0. Estimate (15) allows us to conclude that the solution y(x)

is rectifiable or unrectifiable depending on whether the series
∞
∑

k=0

|y(sk)| is convergent or

divergent.

Writing k = k0 + j, we obtain the estimate

(16) ak = ak0+j < xn0+nj−1 ≤ xn0+j−1 = kα

(

1

n0 + k − k0 − 1

)

where kα =

(√
λ

σπ

)1/σ

, σ =
(α

2
− 1
)

. Since |y(x)| ≤ cxα/4 for x ∈ (0, b] and ak+1 < sk < ak,

we find

(17)
∞
∑

k=0

|y(sk)| ≤
∞
∑

k=0

s
α/4

k ≤ c
∞
∑

k=0

a
α/4

k .

Now consider α/4σ as a function of α which for α > 2 is decreasing in α and equals to 1 at

α = 4. Combining (16)and (17), we obtain for k1 ≥ n0 − k0 − 1

∞
∑

k=k1

|y(sk)| ≤ ckα/4
α

∞
∑

k=1

(

1

k

)α/4σ

< ∞,

since α/4σ > 1 for 2 < α < 4. This proves (a).

Returning to the case when α ≥ 4, we have q(x) ≥ λx−α/2 so we can apply Sturm’s

Comparison theorem to equations (4) and (11) and conclude that between two zeros (12) of

solutions of (11), xk0+1 < xk0
, there exists at least one zero ai0 , i.e. xk0+1 < ai0 < xk0

.

Repeating this process to all pairs of consecutive zeros, xk0+k < xk0+k−1, we obtain ai0+ik

satisfying xk0+k < ai0+ik
< xk0+k−1 where ik ≥ k. Hence by (12)

(18) Kα

(

1

k0 + k

)1/σ

= xk0+k < ai0+ik
< ai0+k, kα =

(√
λ

σπ

)1/σ

.

Let w(x) be a linearly independent solution of y(x) chosen such that the Wronskian

W (y, w)(x) = y(x)w′(x) − w(x)y′(x) is a constant, say W (y, w) ≡ 1. Evaluating W (y, w)(x)

at x = sk where y′(sk) = 0, we obtain by boundary layer condition (II) when applied to w(x)

the following estimate :

(19) |y (sk)| ≥ 1

|w′(sk)| ≥
1

c
s

α/4

k ≥ 1

c
a

α/4

k+1
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Combining (18) and (19), we have

(20)

∞
∑

k=i0+1

|y (sk)| ≥ Kα/4
α c−1

∞
∑

k=i0+1

(

1

k0 + k

)α/4σ

= ∞,

since α/4σ ≤ 1 for α ≥ 4. The divergence of the series in (20) shows that solution g(x) is

unrectifiable. This completes the proof of (b).

§3. In this section, we show that our Theorem can be further extended to give a somewhat

more general result for the harmonic oscillator equation:

(21) y′′ + f(x)y = 0, x ∈ (0, 1]

where f(x) > 0 and f(x) ∼ λx−α, λ > 0, α > 2, as x → 0, i.e. lim
x→∞

xαf(x) = λ. If

f(x) ∈ C2(0, 1] and satisfies

(22) lim
ε→0

∫ 1

ε

f−
1

4 (x)

∣

∣

∣

∣

(

f−
1

4 (x)
)

′′

∣

∣

∣

∣

dx < ∞,

then conclusion of the Theorem remains valid.

Given the asymptotic behavior f(x) ∼ λx−α, λ > 0, α > 2 and condition (22), we can

employ the WKB type asymptotic integration formula for solutions of (21) due to Wintner

[9] see Coppel [4; p.122], which states that lim
ε→0

∫ 1

ε

√

f(x)dx = ∞ plus condition (22) imply

that all solutions of (21) satisfy the asymptotic formula:

(23) y(x) = f−
1

4 (x)

{

c1 sin

∫ 1

x

√

f(ξ)dξ + c2 cos

∫ 1

x

√

f(ξ)dξ + o(1)

}

and

(24) y′(x) = f
1

4 (x)

{

c1 sin

∫ 1

x

√

f(ξ)dξ + c2 cos

∫ 1

x

√

f(ξ)dξ + o(1)

}

,

which together imply y(x) = 0
(

f−
1

4 (x)
)

and y′(x) = 0
(

f
1

4 (x)
)

as x → 0. The asymptotic

behaviour f(x) ∼ λx−α shows that for 0 < ε < λ, there exists δ > 0 and 0 < b < 1 such that

(25) 0 < λ − ε < f(x)xα < λ + ε for all x ∈ (0, b].
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Since α > 2, (25) yields lim
ε→0

∫ 1

ε

√

f(x)dx = ∞ so that subject to (22) formula (23) and (24)

are applicable. We note that zeros ak of y(x) occur at:

∫ 1

ak

√

f(ξ)dξ = kπ

which by (25) gives the estimate

(26)
√

λ − ε

∫ 1

ak

dξ

ξα/2+1=σ
≤ kπ or

√
λ − ε

σ
{aσ

k − 1} ≤ kπ

where σ =
α

2
− 1 > 0. Denote λ−1

1 =
√

λ − ε/σ. It follows from (26) that

(27) ak ≥
(

1

λ1kπ + 1

)
1

σ

; k = 1, 2, · · · · · ·

Let w(x) be another solution of (21) which is linearly independent from y(x) and can be

chosen so that the Wronskian y(x)w′(x)−y′(x)w(x) ≡ 1. As before, denote {sk} be sequence

of consecutive extrema of y(x), i.e. y′(sk) = 0, ak+1 < sk < ak. Since w′(x) also satisfies

(24), so by (25)

(28) |y(sk)| ≥ 1

|w′(sk)| ≥
1

f1/4(sk)
>

s
α/4

k

(λ + ε)1/4
= λ2s

α/4

k ,

where λ2 = (λ + ε)−1/4. Since sk > ak+1, we obtain form (27) and (28)

(29)
∞
∑

k=1

|y(sk)| ≥ λ2

∞
∑

k=1

a
α/4

k+1 ≥ λ2

∞
∑

k=1

(

1

λ1kπ + 1

)α/4σ

.

Again we note that α/4σ = α/(2α − 4) is decreasing in α and equals to 1 when α = 4.

So if α ≥ 4 we have α/4σ ≤ 1. Thus the infinite series appeared as the last term in (29)

diverges, so does
∞
∑

k=1

|y(sk)|. Returning to the estimate (15) which related the arc length of

the solution curve y(x) to
∞
∑

k=1

|y(sk)|, the divergence of
∞
∑

k=1

|y| proves that y(x) has infinite

arc length, i.e. y(x) is unrectifiable.

The case 2 < λ < 4 is similar. We leave the details to the interested reader and therefore

conclude that solution curves of (21) have finite arclength. Hence we have proved
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Theorem 2. Suppose that f(x) ∈ C2(0, 1] and f(x) > 0. If f(x) ∼ λx−α, λ > 0, α > 2 as

x → 0 and f(x) satisfies (22), thus

(a) for α < 4, all solution of (21) are rectifiable oscillatory; and

(b) for α ≥ 4, all solutions of (21) are unrectifiable oscillatory.

§4. In this last section, we give another example of unrectifiable oscillation and several

remarks concerning results discussed in this paper.

Example. Consider a special case of equation (21)

(30) y′′ + x−4 exp(2/x)y = 0,

where the coefficient f(x) is highly singular at x = 0, but is not of Euler type, i.e. f(x) is

not asymptotic to a negative power of x. Furthermore, f(x) = x−4 exp (2/x) satisfies

(i)

∫ 1

ε

√

f(x)dx = exp(1/ε) − e → ∞ as ε → 0

(ii) lim
ε→0

∫ 1

ε

f−
1

4 (x)

∣

∣

∣

∣

(

f−
1

4 (x)
)

′′

∣

∣

∣

∣

dx = lim
ε→0

∫ 1

ε

1

4x3
exp

(

− 1

x

)

dx < ∞,

so condition (22) of Wintner’s asymptotic formula is satisfied. Hence all solutions of (30)

satisfy the boundary layer conditions (I) and (II) introduced in Pasic [8].

Once again let w(x) be the solution of (30) linearly independent of y(x) such that the

Wronkian W (y, w)(x) = (yw′ − wy′)(x) ≡ 1. Denote {xn} the sequence of consecutive

zeros of y(x), xn → 0 as n → ∞ and {sn} the corresponding consecutive extrema {sn}, i.e.

y′(sn) = 0, such that xn+1 < sn < xn (the uniqueness of sn between the two zeros xn+1 and

xn is guaranteed by the concavity of y(x), i.e. y′′(x) ≤ 0).

Using the asymptotic formula (23), (24) of any solution y(x) and w(x) of (30), we can

determine its extrema sn by the formula

(31) e
1

sn − e =

(

n +
1

2

)

π or sn =

[

log

(

e +

(

n +
1

2

)

π

)]

−1

We can now estimate |y(sn)| by using (31) to obtain

(32)

|y(sn)| =
1

|w′(sn)| ≥ sn exp

(

− 1

2sn

)

=

[

log

(

e + n +
1

2

)

π

]

−1 [

e +

(

n +
1

2

)

π

]

−
1

2

≥
[

e +

(

n +
1

2

)

π

]

−1

≥ [(n + 2)π]
−1

.
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since log x ≤ √
x for large value of x and e + 1

2
π ≤ 2π.

Summing up the terms |y(sn)| in (32), we find

∞
∑

n=1

|y(sn)| ≥ 1

π

∞
∑

n=3

1

n
= ∞,

which proves that y(x) is unrectifiable oscillatory.

Remark 1. Condition (22) required for Wintner’s asymptotic formula has another form

given by Atkinson [3];

(30) lim
ε→0

∫ 1

ε

f−
3

2 (x)|f ′′(x)|dx < ∞

which may be easier to apply. (See Coppel [4; p.122]).

Suppose that f(x) ∼ x−α, α > 2, as x → 0 and f(x) is sufficiently smooth such that its

second derivative satisfies f ′′(x) ∼ x−α−2. Then it is easy to see that

lim
ε→0

∫ 1

ε

f−3/2|f ′′|x = lim
ε→0

(

1 − εα/2−1

α
2
− 1

)

=
2

α − 2
< ∞

which is of course finite because α > 2.

Remark 2. The proof can be modified if we assume instead of f(x) ∼ λx−α, λ > 0, α > 2,

as x → 0 the inequality.

m1x
−α ≤ f(x) ≤ m2x

−α, x ∈ (0, b]

where m1, m2, and b are positive constants and 0 < b < 1.

Remark 3. It may be of interest to digress to a discussion on the oscillation criteria of

equations (21) over the finite interval (0, 1]. If we are concerned with the semi-infinite interval

[1,∞), then the standard Fite-Wintner oscillation criterion states that

∫

∞

1

xµa(x)dx = ∞ for

any µ < 1 implies oscillation of (21). However the condition that

∫ 1

0

√

a(x)dx = ∞ imposed

in Theorem 2 does not always ensure oscillation since the Euler equation y′′ +
1

4
x−2y = 0 has

y(x) =
√

x as a nonoscillatory solution. The corresponding Fite-Wintner oscillation criterion

for the finite interval is

∫ 1

0

x2−µa(x)dx = ∞ for any µ < 1, which is satisfied for a(x) = λx−α,

λ > 0, α > 2.
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Remark 4. Oscillation of the harmonic oscillator (21) was traditionally discussed for the

semi-infinite interval where the independent variable x relates to time and the dependent

variable y relates to the travelling waves. However for studies in some areas such as nuclear

physics, the independent variable x relates to radial distance from the centre of the nuclei and

the dependent variable y relates to nuclear charge of the atom(s). How does one interpret

the physical meaning of unrectifiable oscillation in physical problems is certainly a most

interesting question.

Remark 5. The characteristic exhibited by solution y(x) in (3) is interesting because it

arises from a simple linear differential equations whilst its solution curve over a finite interval

has infinite arclength. Such curves are also known as fractals which normally associated with

chaos in nonlinear dynamical systems. See e.g., Le Mehaute [7]. Addison [2] for further

discussions on fractal geometry and chaos.
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