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Abstract

In this paper, we investigate the existence of positive solutions for singularnth-order bound-
ary value problem

u(n)(t) + a(t) f (t, u(t)) = 0, 0 ≤ t ≤ 1,

u(i)(0) = u(n−2)(1) = 0, 0 ≤ i ≤ n − 2,

wheren ≥ 2, a ∈ C((0,1), [0,+∞)) may be singular att = 0 and (or)t = 1 and the nonlinear
term f is continuous and is allowed to change sign. Our proofs are based on the method of lower
solution and topology degree theorem.
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1. Introduction

Boundary value problems for higher order differential equations play a very impor-

tant role in both theories and applications. Existence of positive solutions for nonlinear

higher order has been studied in the literature by using the Krasnosel’skii and Guo

fixed point theorem, Leggett-Williams fixed point theorem, Lower- and upper- solu-

tions method and so on. We refer the reader to [2-9] for some recent results. However,

to the best of our knowledge, few papers can be found in the literature fornth-order

boundary value problem with sign changing nonlinearity, most papers are dealing with

the existence of positive solutions when the nonlinear termf is nonnegative. For ex-

ample, in [3], by using the Krasnosel’skii and Guo fixed pointtheorem, Eloe and Hen-

derson studied the existence of positive solutions for the following boundary value

problem
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{

u(n)(t) + a(t) f (u(t)) = 0, t ∈ (0, 1),
u(i)(0) = u(n−2)(1) = 0, 0 ≤ i ≤ n − 2,

(1.1)

where

(A1) f : [0,∞] → [0,∞) is continuous;

(A2) a : (0, 1) → [0,∞) is continuous and does not vanish identically on any

subinterval;

(A3) f is either superlinear or sublinear.

Motivated by the above works, in this paper, we study the existence of positive so-

lutions for singularnth-order boundary value problem with sign changing nonlinearity

as follows
{

u(n)(t) + a(t) f (t, u(t)) = 0, t ∈ (0, 1),
u(i)(0) = u(n−2)(1) = 0, 0 ≤ i ≤ n − 2.

(1.2)

Throughout this paper, we assume the following conditions hold.

(C1) f : [0, 1] × [0,∞)→ (−∞,+∞) is continuous;

(C2) a : (0, 1)→ [0,∞) is continuous, and 0<
∫ 1

0
a(t)dt < ∞, if n = 2;

0 <
∫ 1

0
(1− t)a(t)dt < ∞, if n ≥ 3.

The purpose of this paper is to establish the existence of positive solutions for BVP

(1.2) by constructing available operator and combining themethod of lower solution

with the method of topology degree.

The rest of this paper is organized as follows: in section 2, we present some prelim-

inaries and lemmas. Section 3 is devoted to prove the existence of positive solutions

for BVP (1.2). An example is considered in section 4 to illustrate our main results.

2. Preliminary Lemmas

Lemma 2.1. Suppose thaty(t) ∈ C[0, 1], then boundary value problem
{

u(n)(t) + y(t) = 0, 0 ≤ t ≤ 1,
u(i)(0) = u(n−2)(1) = 0, 0 ≤ i ≤ n − 2,

(2.1)

has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where
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G(t, s) =
1

(n − 1)!



















(1− s)tn−1 − (t − s)n−1, 0 ≤ s ≤ t ≤ 1,

(1− s)tn−1, 0 ≤ t < s ≤ 1.

Proof. The proof follows by direct calculations.

Lemma 2.2. G(t, s) has the following properties.

(1) 0≤ G(t, s) ≤ k(s), t, s ∈ [0, 1], where

k(s) =
1− s

(n − 1)!
;

(2)
∂i

∂ti
G(t, s) > 0 on (0, 1)× (0, 1), 0 ≤ i ≤ n − 2;

(3) G′′tt (t, s) := ∂2

∂t2 G(t, s) ≤ (n − 1)(n − 2)k(s), n ≥ 3.

Proof. It is easy to check that (1) and (3) hold. The proof of (2), please see [1].

Remark 2.1. By (C2) and Lemma 2.2, we have

0 <
∫ 1

0
G(t, s)a(s)ds < ∞, n ≥ 2, and 0<

∫ 1

0

∫ 1

0
G′′ττ(τ, s)a(s)dτds < ∞, n ≥ 3.

By the definition of completely continuous operator, we can check that the follow-

ing lemma holds.

Lemma 2.3. Let P is a cone ofX = C[0, 1]. SupposeT : P → X is completely

continuous. DefineA : T X → P by

(Ay)(t) = max{y(t), 0}, y ∈ T X.

Then,A ◦ T : P→ P is also a completely continuous operator.

3. Main results

Let X = C[0, 1], P = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]} with ‖u‖ = max
t∈[0,1]

|u(t)|. Set

f1(t, u) = max{0, f (t, u)}, f2(t, u) = max{0,− f (t, u)},

and

δ =
∫ 1

0
k(s)a(s)ds, w(t) =

∫ 1

0
G(t, s)a(s)ds.

For convenience, we introduce the following notations
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f∞ = lim sup
u→∞

max
0≤t≤1

f (t, u)
u
, f 0 = lim sup

u→0+
max
0≤t≤1

f (t, u)
u
,

f 1∞ = lim sup
u→∞

max
0≤t≤1

f1(t, u)
u
, f 10 = lim sup

u→0+
max
0≤t≤1

f1(t, u)
u
,

f 2∞ = lim sup
u→∞

max
0≤t≤1

f2(t, u)
u
, f 20 = lim sup

u→0+
max
0≤t≤1

f2(t, u)
u
.

Theorem 3.1. Suppose that(C1) and(C2) hold, in addition assumef 1∞ = A < +∞,

f 2∞ = B < +∞ (or f 10 = A < +∞, f 20 = B < +∞) with A + B < 1
δ

and there existr, λ

with r > λ > 0 such that


















λ ≤ min
t∈[0,1]

f (t, λw(t)), n = 2,

λ ≥ max
t∈[0,1]

f (t, λw(t)), n ≥ 3.
(3.1)

Then BVP(1.2)has a positive solutionu∗(t) satisfying

0 < λw(t) ≤ u∗(t), 0 < t < 1 and ‖u∗‖ ≤ r.

Proof. Let

g(t, u(t)) =

{

f (t, u(t)), u(t) ≥ λw(t),
f (t, λw(t)), u(t) ≤ λw(t).

(3.2)

Define the operatorT : P→ X by

(Tu)(t) =
∫ 1

0
G(t, s)a(s)g(s, u(s))ds, 0 ≤ t ≤ 1. (3.3)

Similar to the proof of Lemma 2.1 in [7], we can easily check thatT is a completely

continuous operator.

Define the operatorA : X → P by

(Au)(t) = max{u(t), 0}. (3.4)

By Lemma 2.3, we getA ◦ T : P→ P is also completely continuous.

If f 1∞ = A < +∞, f 2∞ = B < +∞, then by hypothesisA + B < 1
δ
, we may take

A0 > A, B0 > B such thatA0 + B0 <
1
δ
, f 1∞ < A0 and f 2∞ < B0. Thus, we choose

L > 0 such that

f1(t, u) < A0u, f2(t, u) < B0u, if u ≥ L, t ∈ [0, 1], (3.5)
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and there existsr > L such that

f1(t, u) < A0r, f2(t, u) < B0r, if λw(t) ≤ u(t) ≤ L, t ∈ [0, 1]. (3.6)

LetΩ = {u ∈ P : ‖u‖ < r}. Then, foru ∈ ∂Ω, we have by (3.5) and (3.6) that

max
t∈[0,1]

u∈[λw(t),r]

f1(t, u) = max















max
t∈[0,1]

u∈[λw(t),L]

f1(t, u), max
t∈[0,1]
u∈[L,r]

f1(t, u)















< A0r. (3.7)

Similarly,

max
t∈[0,1]

u∈[λw(t),r]

f2(t, u) < B0r. (3.8)

Thus, for eachu ∈ ∂Ω, from (3.7) and (3.8), we have

(A ◦ T )u(t) = max
{

∫ 1

0
G(t, s)a(s)g(s, u(s))ds, 0

}

≤
∫ 1

0
G(t, s)a(s)|g(s, u(s))|ds

≤ max
t∈[0,1]
u∈[0,r]

|g(t, u)|
∫ 1

0
k(s)a(s)ds

= δ max
t∈[0,1]

u∈[λw(t),r]

| f (t, u)|

= δ max
t∈[0,1]

u∈[λw(t),r]

( f1(t, u) + f2(t, u))

< δ(A0 + B0)r < r = ‖u‖, (3.9)

which implies

‖(A ◦ T )u‖ < ‖u‖, ∀u ∈ ∂Ω.

Thus, we have

degP{I − A ◦ T, Ω, 0} = 1,

where degP means the degree on coneP. Hence,A ◦ T has a fixed pointu∗ in Ω, i.e.,

(A ◦ T )(u∗) = u∗, u∗ ∈ Ω.

If f 10 = A < +∞, f 20 = B < +∞, then we takeA0 > A, B0 > B such that

A0 + B0 <
1
δ
, f 10 < A0 and f 20 < B0. Taker > 0 such that
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f1(t, u) < A0u, f2(t, u) < B0u, if 0 < u(t) ≤ r, t ∈ [0, 1].

Then, foru ∈ ∂Ω, similar to the proof of (3.9), we have thatA ◦ T has a fixed pointu∗

in Ω. Hence, in any case we always have thatA ◦ T has a fixed pointu∗ in Ω.

In the following, we shall show the following relation holds

(Tu∗)(t) ≥ λw(t), t ∈ [0, 1]. (3.10)

Assume the contrary, then there existst0 ∈ [0, 1] such that

(Tu∗)(t0) − λw(t0) = min
t∈[0,1]
{(Tu∗)(t) − λw(t)} = M < 0. (3.11)

Obviously,t0 , 0, sot0 ∈ (0, 1] and

(Tu∗)′(t0) − λw′(t0) = 0. (3.12)

There are two cases to consider.

Case 1. t0 = 1. It is obvious thatTu∗(t)−λw(t) on [0, 1] is continuous. From (3.11), we

have that there existst1 ∈ [0, 1) such that (Tu∗)(t1)−λw(t1) = 0 and (Tu∗)(t)−λw(t) < 0

for t ∈ (t1, 1].

If n = 2, then by (3.1), (3.3) and (3.12), one has

(Tu∗)′(t) − λw′(t) = (Tu∗)′(1)− λw′(1)−
∫ 1

t
[(Tu∗)′(s) − λw′(s)]′ds

=
∫ 1

t
a(s)[g(s, u∗(s)) − λ]ds

=
∫ 1

t
a(s)[ f (s, λw(s)) − λ]ds

≥ [ min
t∈[0,1]

f (t, λw(t)) − λ]
∫ 1

t
a(s)ds ≥ 0.

Then, we have that (Tu∗)′(t) − λw′(t) ≥ 0.

If n ≥ 3, from (3.1), (3.3) and (3.12), we get

(Tu∗)′(t) − λw′(t) = (Tu∗)′(1)− λw′(1)−
∫ 1

t
[(Tu∗)′(τ) − λw′(τ)]′dτ

=
∫ 1

t

∫ 1

0
G′′ττ(τ, s)a(s)[λ − g(s, u∗(s))]dsdτ

=
∫ 1

t

∫ 1

0
G′′ττ(τ, s)a(s)[λ − f (s, λw(s))]dsdτ
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≥ [λ − max
t∈[0,1]

f (t, λw(t))]
∫ 1

t

∫ 1

0
G′′ττ(τ, s)a(s)dsdτ ≥ 0.

Then, we have (Tu∗)′(t) − λw′(t) ≥ 0. Therefore, in any case we always have that

(Tu∗)′(t) − λw′(t) ≥ 0, which implies

(Tu∗)(t0) − λw(t0) = (Tu∗)(1)− λw(1) ≥ (Tu∗)(t1) − λw(t1) = 0.

It contradicts (3.11), so (3.10) holds.

Case 2. t0 ∈ (0, 1). Obviously,Tu∗(t) − λw(t) on [0, 1] is continuous. By (3.11) and

t0 ∈ (0, 1), we have that there existst2 ∈ [0, t0)∪ (t0, 1] such that (Tu∗)(t2)− λw(t2) = 0

and (Tu∗)(t) − λw(t) < 0 for t ∈ (t2, t0] or t ∈ [t0, t2). Without loss of generality, we

assume thatt ∈ (t2, t0].

If n = 2, we have by (3.1), (3.3) and (3.12) that

(Tu∗)′(t) − λw′(t) = (Tu∗)′(t0) − λw′(t0) −
∫ t0

t
[(Tu∗)′(s) − λw′(s)]′ds

=
∫ t0

t
a(s)[g(s, u∗(s)) − λ]ds

=
∫ t0

t
a(s)[ f (s, λw(s)) − λ]ds

≥ [ min
t∈[0,1]

f (t, λw(t)) − λ]
∫ t0

t
a(s)ds ≥ 0.

Thus, (Tu∗)′(t) − λw′(t) ≥ 0.

If n ≥ 3, from (3.1), (3.3), (3.12) and Lemma 2.2 (2), we obtain

(Tu∗)′(t) − λw′(t) = (Tu∗)′(t0) − λw′(t0) −
∫ t0

t
[(Tu∗)′(τ) − λw′(τ)]′dτ

=
∫ t0

t

∫ 1

0
G′′ττ(τ, s)a(s)[λ − g(s, u∗(s)]dsdτ

=
∫ t0

t

∫ 1

0
G′′ττ(τ, s)a(s)[λ − f (s, λw(s))]dsdτ

≥ [λ − max
t∈[0,1]

f (t, λw(t))]
∫ t0

t

∫ 1

0
G′′ττ(τ, s)a(s)dsdτ ≥ 0.

Thus, (Tu∗)′(t)−λw′(t) ≥ 0. Hence, in any case we always have that (Tu∗)′(t)−λw′(t) ≥

0, which implies

(Tu∗)(t0) − λw(t0) ≥ (Tu∗)(t2) − λw(t2) = 0.

It contradicts (3.11), so (3.10) holds. Thus, (A ◦ T )u∗ = Tu∗ = u∗, u∗ ∈ Ω, i.e., BVP
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(1.2) has a positive solutionu∗(t) satisfying 0< λw(t) ≤ u∗(t), 0< t < 1, and‖u∗‖ ≤ r.

Corollary 3.1 Suppose that(C1) and(C2) hold, in addition assumef 1∞ = 0, f 2∞ = 0 (

or f 10 = 0, f 20 = 0 ), if there exists a constantλ > 0 such that


















λ ≤ min
t∈[0,1]

f (t, λw(t)), n = 2,

λ ≥ max
t∈[0,1]

f (t, λw(t)), n ≥ 3.

Then BVP(1.2)has a positive solution.

Theorem 3.2. Suppose that(C2) holds, in addition assumef (t, 0) ≥ 0, a(t) f (t, 0) . 0

and f 1∞ = A < +∞ , f 2∞ = B < +∞ ( or f 10 = A < +∞, f 20 = B < +∞ ) with

A + B < 1
δ
. Then BVP(1.2)has a positive solution.

Proof: Similar to the proof of Theorem 3.1, we can complete the proofof Theorem

3.2, so we omit it here.

Corollary 3.4. Suppose that(C2) holds, in addition assumef (t, 0) ≥ 0, a(t) f (t, 0) . 0,

f 1∞ = 0 and f 2∞ = 0 ( or f 10 = 0 and f 20 = 0 ). Then BVP(1.2) has a positive

solution.

Corollary 3.3. Suppose that(C2) holds, in addition assumef : [0, 1]×[0,∞)→ [0,∞),

a(t) f (t, 0) . 0 and f∞ = A < +∞ ( or f 0 = A < +∞ ) with A < 1
δ
. Then BVP(1.2)has

a positive solution.

Remark 3.1. Suppose that (C2) holds, in addition assumef : [0, 1] × [0,∞)→ [0,∞),

a(t) f (t, 0) . 0 and f∞ = 0 ( or f 0 = 0 ). Then BVP (1.2) has a positive solution.

4. An example

Example 4.1. Let a(t) =
(n − 1)!
2(1− t)

, n ≥ 3, and

f (t, u) =























[1 + ln(1+ (e − 1)t)](u + u
1
2 + 1), (t, u) ∈ [0, 1] × [0, 1],

[1 + ln(1+ (e − 1)t)][3 − (2e−2 + 6)(u − 1)], (t, u) ∈ [0, 1] × [1, 2],
−[1 + ln(1+ (e − 1)t)](e−u + 3

2 + sinπu)u, (t, u) ∈ [0, 1] × [2,∞).

By simple calculation, we have

0 < δ =
∫ 1

0
k(s)a(s)ds =

∫ 1

0
1−s

(n−1)! ·
(n−1)!
2(1−s) ds = 1

2 < ∞.
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It is easy to see thatf ∈ C([0, 1]× [0,∞),R) and f (t, 0) > 0, a(t) f (t, 0) . 0,∀t ∈ [0, 1].

Owing to f (t, u) > 0, (t, u) ∈ [0, 1] × [0, 1], and f (t, u) < 0, (t, u) ∈ [0, 1] × [2,∞), we

have

f1(t, u) = f (t, u), f2(t, u) = 0, (t, u) ∈ [0, 1] × [0, 1],

and

f1(t, u) = 0, f2(t, u) = − f (t, u), (t, u) ∈ [0, 1] × [2,∞).

By calculating, we obtain that

A = f 1∞ =
1
2 , B = f 2∞ =

1
2 ,

and soA + B = 1 < 2 = 1
δ
. Therefore, by Theorem 3.2, BVP (1.2) has a positive

solution.
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