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Abstract

In this paper, we investigate the existence of three pesgnlutions for the nonlinear fractional boundary
value problem

Dg,u(t) +a®) f(t,ut),u”(t) =0, O0<t<l, 3<ac<4
u0)=u(0)=u"(0)=u"(1)=0,
whereDg, is the standard Riemann-Liouville fractional derivatiihe method involves applications of a new

fixed-point theorem due to Bai and Ge. The interesting pa@stih the fact that the nonlinear term is allowed to
depend on the second order derivati/e
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1. Introduction

Many papers and books on fractional calculus and fractidifeérential equations have appeared
recently, see for example [1-3, 7-12]. Very recently, E&B&d [5] used the Krasnoselskii's fixed-
point theorem on cone expansion and compression to showitersce and non-existence of positive
solutions of nonlinear fractional boundary value problem :

Dg,u(t) + 1at)f(ut)) =0, O<t<1l, 2<a<3,
uQ)=u©O)=u(@) =0,

whereDg, is the standard Riemann-Liouville fractional derivatitaufmann and Mboumi [6] studied
the existence and multiplicity of positive solutions of tinear fractional boundary value problem :

Dg,ut) +a®)f(ut)) =0, O<t<l 1<a<?
u0)=u'(1)=0.

Motivated by the above works, in this paper we study the erist of three positive solutions for
the following nonlinear fractional boundary value problem
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Dg,u(t) +a(t) f(t,u(t),u”()) =0, O<t<l 3<ac<4, (1.1)
uQ) =u(@©)=u’(0)=u"(1)=0, 1.2
by using a new fixed-point theorem due to Bai and Ge [4]. Heeeirteresting point lies in the fact that
the nonlinear ternf is allowed to depend on the second order derivaiiveTo the best of the authors
knowledge, no one has studied the existence of positivaigntufor nonlinear fractional boundary
value problems (1.1)-(1.2).

Throughout this paper, we assume that the following comkitihold.
(H) f :[0,1] X [0, 00) X (—00, +00) — [0, o0) is continuous;
(H2) a e C([0, 1], [0, +c0)) and there exists @ w < 1 such tha;ﬁ[(l—s)“‘3—(1— 92 Ja(s)ds > 0.

The rest of this paper is organized as follows: In section ,present some preliminaries and
lemmas. Section 3 is devoted to prove the existence of thosiéive solutions for BVP (1.1) and (1.2).

2. Preliminaries

For the convenience of the reader, we present some defgifiom the cone theory on ordered
Banach spaces.

Definition 2.1. The mapy is said to be a nonnegative continuous concave functional @meP of a
real Banach spade provided thaty : P — [0, ) is continuous and

Y(x+ (1-t0y) > tw(X) + (L-ty(y), YxyeP, 0<t<l

Similarly, we say the mag is a nonnegative continuous convex functional on a ¢®oéa real Banach
spacek provided that : P — [0, ) is continuous and

dtx+ (A -1y <tdp(X) + (L -t)o(y), YxyeP, 0<t<l.

Definition 2.2. Letr > a > 0, L > 0 be given ands be a nonnegative continuous concave functional
andy, 8 be nonnegative continuous convex functionals on the €orizefine convex sets:

P(y,r;8.L) = {xe P|y(X) <r,B(X) < L},
P(y,1;8,L) = {xe P|y(X) <1,B(x) < L},
PO.1;8 Ly, a) = {xe P y(X) <r,B(X) < L,y(x) > al,

P(.1;8,Liy,a) = {xe Py(x) <1,B(x) < L,y(x) > al.
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Suppose that the nonnegative continuous convex funcignglon the cond® satisfy
(A1) there existdM > 0 such thaf|x|| < M maxXy(x), 3(x)}, for x € P;
(A2) P(y,r;B,L) # 0, foranyr > 0,L > 0.

Lemma 2.1[4] Let P be a cone in a real Banach spdeandr, > d >b >ry >0, L, > Ly >0
constants. Assume that B are nonnegative continuous convex functionalsPosuch tha{A,) and
(A) are satisfied.y is a nonnegative continuous concave functionalPosuch thaty(X) < y(X) for
all x € P(y,r2:8, L) and letT : P(y,r2;8,L2) — P(y,r2:8, Lo) be a completely continuous operator.
Suppose

() {xeP(y,d;B,La; ¥, b) | w(X) > b} # 0, y(TX) > b for x e P(y, d; 8, Lo; ¢, b),
(i) y(Tx) <ry, B(TX) < Ly for all x e P(y,r1;8, L),
(i) w(TX) > b forall x € P(y,r2; 8, La; v, b) with y(Tx) > d.

ThenT has at least three fixed points, X, X3 € P(y, r2; 8, Lo). Further,

X1 € P(y,r1;8,L1), X2 € {P(y,r2; 8, L2; ¢, b) | y(X) > by},
and

X3 € P(y,12:8,L2) \ (P(y,r2; 8, La; ¥, b) U P(y,11; B, L1)).
The above fixed-point theorem is fundamental in the proofunfroain result.
Next, we give some definitions from the fractional calculus.

Definition 2.3. The Riemann-Liouville fractional integral of order> 0 of a functionu : (0, ) — R

is defined as
u(s)

1 t
12 u(t) = ds.
.00 =75 . (-9
Definition 2.4. The Riemann-Liouville fractional derivative of order> 0 of a continuous function
u:(0,0) > Ris

d o
Dg.u(®) = 4= [15-eu)]

wheren = [a] + 1, provided that the right side is pointwise defined ol
The following lemma is crucial in finding an integral repretion of the boundary value problem

1. ).

Lemma 2.2.[3] Suppose that € C(0, 1) N L(0, 1) with a fractional derivative of order > 0. Then
18, D& u(t) = u(t) + crt” ™t + ot 2+ -+ cpt® ™.
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forsomeci e R,i =12, ...,n.

From Lemmas 2.2, we now give an integral representationeo$ttution of the linearized problem.
Lemma 2.3.If y € C[O0, 1], then the boundary value problem

Dg ut) +y(t) =0, O0<t<l 3<aci4 (2.1)
u(0) = u(0)=u"(0)=u"(1) =0, (2.2)

has a unique solution
1
ut = [ 6t 9y9ds
0

where
1 { tr1(1-9 3 (t-92 1 O0<s<t<l],

G(t, S) = @ ta—l(l _ S)a—3’ O<t<s<l

Proof. From Lemma 2.2, we get
ut) = Clta_l + Czta_2 + Cgta_3 + C4110[_4 -

By (2.2), there are, = c3 = ¢4 = 0, andc; = ﬁ fol(l — 5)?~3y(s)ds. Hence, the unique solution of
BVP (2.1), (2.2) is
1ta-1(1 _ Q-3 t (+ _ Q-1 1
w) = [T ygds- [T y9ds= [ 6 9usds
0 ['(@) o I(e) 0

The proof is complete.

Lemma 2.4.G(t, s) has the following properties.
(i) 0<G(t,9) <h(s), t,se[0,1],

where
(1-973—-(1-91

I'(e) ’

h(s) =
(i) G(t,9) > %t“‘lh(s), for0<t,s<1.

Proof. It is easy to check that (i) holds. Next, we prove (ii) holdst * s, then
G(t,s) tri(1-9*3—(t—9*?
h(s  (1-9r3-(1-90°t
. 2t -t 3 — (t- 92(t—t9* 3  (t—ts)* 32t -9
- (1-93—-(1-9get  (1-973(2-9)
a-3 _ -2 a-1
_ -9t t

> —.
2-5S —2-s 2
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If t < s, then

6y __ tta-9m° -9
O A-9 (-9 @-93 > 2

The proof is complete.

3. Main results

Let X = {ue C?[0,1] : u(0) = u'(0) = 0}. Then we have the following lemma.
Lemma 3.1. Foru € X, |[ullo < [[U']lo < [IU”llo, wherellullo = MaXp<t<1 [U(t)]-

By Lemma 3.1 X is a Banach space when it is endowed with the njuiin= [|u”|lo.

It is easy to know that

0 Ca-1 [t (1-92 3 - (t-9*2 O0<s<t<l
b9 = T(a) { t*=2(1 - 9)3, O<t<s<l (3-1)
92 C@-De-2)[ t1-9)73-(t-93 0<s<t<l,
ﬁe(t’ S = I'(a) { (t(1 - 9)*73, O<t<s<l (32)
We define the operatdr by
Tu(t) = fl G(t,s9)a(s)f(su(s),u’(s))ds, 0<t<l (3.3)
0

From (3.1) and (3.3) , we havieu(0) = (Tu)’(0) = 0. Moreover, we obtain by (1, (H») and (3.3) that

1 62 )
(Tu)”(t) = fo ﬁG(t, s)a(s)f(s u(s),u”(s))dse C0,1], Yue X

Thus,T : X — X. By Lemma 2.3u(t) is a solution of the fractional boundary value problem Y4{112)
if and only if u(t) is a fixed point of the operatdr.

Define the coné c X by
: 1
P= {u e X:ut) =0, Yt e[0,1], min u(t) > —a)“‘1||u||0},
w<t<1 2
where O< w < 1 asin (H).

Let the nonnegative continuous convex functionalg and the nonnegative continuous concave
functionaly be defined on the corfe by

y(U) = (r)gteSvl(IU(t)l, B) = @gflu”(t)l, Y(u) = wrgtinIU(t)l.

Theny, B,y : P — [0, o0) are three continuous nonnegative functionals such|thiat maxy(u), B(u)},
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and (A1), (A2) hold; vy, 8 are convexy is concave and there holggu) < y(u), for allu € P.

For 3< a < 4, itis rather straightforward that

a=1

— (Y2 — — a=2
maxt®3(1 - t*2) = = 2(“ 3) . maxtrl1-t) =2 2(“ 1) . (34)

O<t<1 20 -5\2a -5 O<t<1 20 —3\20 -3

For convenience, we denote

B (?<a>253 - 52>)(2a—5) . N- r<a><21a—3>(;—13)a_2’

ZF(a) f [@-9"°-@-9"|a(9ds> 0, (by (H)

where 3< a < 4.
We are now in a position to present and prove our main result.

Theorem 3.2. Assume thafH1) and(Hz) hold. Suppose there exist constants —<= 2. 5 b>ry>0,

L, > L1 > Osuch thar#] < min{2— If the following assumptions hold

Nllallo MIIaJI }

(Ha) f(t.u,v) < min{gii- }, for (t.u,v) € [0, 1] x [0, r1] X [-Ly, La];

Nllallo” Mllallo

(Ha) f(t,uv) > 2, for (t,u,v) € [w, 1] x |b, 2] x [-La, L2];

(Hs) f(t,u,v) < mln{ for (t,u,v) € [0,1] x [0,r2] x [-Lo, L2],

Nllallo” Mllallo}

then BVP (1.1)-(1.2) has at least three positive solutiansi,, andus such that
max <r max|u’’ (t)| < Lg;
max u(t) <rg, Osgllul 0l < Ly;

b < min ux(t) < maxuy(t) < ro, maxlu ') < Ly;
w<t<1 O<t<1

2b
< — ()] <
533>1<U3(t) o1 Mnaxiug 0l < L.

Proof. By (H1), (Hz), Lemma 2.4 and (3.3), far € P, we haveTu(t) > 0, Vt € [0, 1], and

min Tu(t) = m|n fl G(t, s)a(s) f(s, u(s), u”’(s))ds

w<t<1
1
> j; wngtiglG(t, s)a(s)f(s u(s), u”(s))ds

=

NII—‘

1
W 1[ h(s)a(s) f(s, u(s), u”(s)ds
0
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1 1 1

> Zt maxf G(t, 9a(s) f (s, u(s), u’(s))ds = Zw* Y Tullp, te][0,1].
2 o<t<1 Jo 2

Thus, T(P) c P. Moreover, it is easy to check by the Arzela-Ascoli theordrat the operator is

completely continuous. We now show that all the conditiohlseznma 2.1 are satisfied.

If u € P(y,r2; 8, L2), theny(u) = maxpe<1 [U(t)] < r2, B(U) = Madpci<r U7 (t)] < Lo, and assumption
(Hs) implies
£t u(t), U’ (1) < min{ r.__Lo } vt € [0, 1] (35)
e B Nlallo” Mllallo J ° T '

Thus, by (3.4), (3.2) and (3.3), we get

Tu) = max|(Tu)”(t)| = ma
'B( u) Ogtle u) ()l Osts)l(

1 (92 ’
fo ot a9 (s u(s).u (S))ds‘

L, 1 92
< max —G(t, s)ds
<l <[ szet

Mlal|p Ost<

L(e-De-2)
"M T o

t 1
f (31 - 93 - (t- 9" %) ds+ f 31 - s)“‘3ds]
0 t

a=3
La-1 _3 o Lra-1la-2 [a-3)\*2
= 22~ maxte3(1-tr2) = =2
M I'(@) o<t<1 ( ) M T'(@) 2a/—5(2a/—5)
Lo
=— -M=L,
M 2

Moreover, we obtain by (3.5) that

Tu) = max
7( ) O<t<1

1
j(; G(t, s)a(s) f(s, u(s), u”(s))ds‘

1
o
<4 max G(t, s)ds
< lallog o M2 fo t.s)

= r, 1 max
~ NT(e) ost=1

t 1
f (" '(1- 93 - (t- 9" %) ds+ f (1 - s)“‘3ds]
0 t

-1

> a1 a2 ) 1 1 a—1\2
_2 2 paxtela-t?) = 2
N T(a)(a = 2) ooyt (¢ ) NF(a)Za—3(2a—3
rz
“2 Nzt
N 2

Hence, T : P(y,r2;8,Ls) — P(y,r28,Lz). Similarly, if u € P(y,r1;5,L1), then assumption (&)
yields f(t, u(t), u”(t)) < min{m, m} fort € [0, 1]. As in the argument above, we can obtain that
T : P(y,r1:8,L1) = P(y,r1: 8, L1). Hence, condition (ii) of Lemma 2.1 is satisfied.
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To check condition (i) of Lemma 2.1, we choog) = <= 2. 0<t<1. Itiseasy to see thalt) =
2 € Py, 253, Lo b), w(U) = w(:2) > b, and solu € P(y, 25, Lz b) | y(u) > b} # 0.
Hence, ifu € P(y, -2 " 258 Ly, b), thenb <u(t) < znbl, [u”(t)] < Lo for w <t < 1. From assumption
(Ha), we havef (t, u(t), u”(t)) > n% forw <t < 1. Thus, by Lemma 2.4 and (3.2), we have

1
w(Tu) = wn;tigl fo G(t, sa(s)f(s u(s), u”(s))ds‘

1
>
0 wstsl
-1 1

’7 7

’7

a-1 1
e [la- 9 a9 ases

=b,

Y(Tu) > b, YueP(y, 25, Loy, b).

This shows that condition (i) of Lemma 2.1 is satisfied Wellgnshow that (iii) of Lemma 2.1 also
holds. Suppose thate P(y, r2; 8, Lo; ¢, b) with y(Tu) > —%. Then, by the definition of andTu € P,
we have

1
w(TW) = min fo G(t, 9a(9)f(s u(s, u”(s»ds{

4

X ' G(t, 9)a(s) f(s u(s), u”(s))ds
<t<1Jo

> v(Tu) >

So, the condition (iii) of Lemma 2.1 is satisfied. Theref@eapplication of Lemma 2.1 implies that the
boundary value problem (1.1)-(1.2) has at least threeipesiblutionsus, Uy, andus in P(a, 2; 3, L,)

such that
maxuy(t) <r,  maxjuy () < Ly;

b < min ux(t) < maxux(t) <r,,  max|uy(t)| < Lo;
wst<1 2(0) O<t<1 2() <12 05t31| 2 (O < Lo

2b
< — <
5‘33)1(“3(0 — maXIu (0] < La.
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The proof is complete.

Finally, we give an example to illustrate thifextiveness of our result.

Example 3.1.Consider the nonlinear fractional boundary value problem :
(3.6)

D3ou(t) + a(t) f(t, u(t),u” () =0, O<t<1,
(3.7)

uQ) =u(@©)=u"(0)=u"(1)=0,
wherea(t) = 100(1-t), and
5lcost| + a3 + ) :

(a0
slcost] + &84 + (Bl) us 2.

f(t,u,v) :{

Seta = 3.6,w = 3, we have

_e-De-2)(a-3 Z_:g_ B 1 a-1 3%%_
- e (2a—5) = 03125 N_F(a/)(Za/—3)(2a—3) = 0.8397

f [(1 93 -(1-9* 1]a(s)ds 0.12

llallo =100 m=
2F (@)
Obviously,a(t) satisfies condition (). Chooser; = 1,b = 2,r, = 1500,L; = 30, andL, = 600,

then
= 16.6667,

b
m
mln{ } 0.0119 min{r—z, Lo } ~ 17.8635
Nilallo’ I\/|II<’:1||o Nllallo” Mllallo
Consequentlyf (t, u, v) satisfy
f(t,u,v) < 0.0119, for €, u,v) € [0,1] x [0, 1] x [-30, 30];

2—b = 242515
w?®

f(t,u,v) > 16.6667, for ¢, u,v) € [1/2, 1] x [2, 24.2515] x [-60Q 600];

f(t,u,v) < 17.8635, for €, u,Vv) € [0, 1] x [0, 1500]x [-60Q, 600],
Then all the assumptions of Theorem 3.2 hold. Hence, wittofidra 3.2, nonlinear fractional boundary

value problem (3.6), (3.7) has at least three positive Ewigt;, Uy, uz, such that

maxuy(t) < 1, ma )| < 30;
max ua(t) XIul( I

2< /mln uo(t) < maxuz(t) < 150Q max|u ' (t)] < 600;

maxu3(t) < 242515 maxlu ; (t)] < 600,
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