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Abstract

In this paper!, we give a necessary and sufficient condition for the exis-
tence of W — bounded solutions for the nonhomogeneous linear difference
equation x(n 4+ 1) = A(n)x(n) + f(n) on Z. In addition, we give a re-
sult in connection with the asymptotic behavior of the ¥— bounded
solutions of this equation.

1. Introduction

The problem of boundedness of the solutions for the system of ordinary differ-
ential equations X' = A(t)x + f(t) was studied by Coppel in [2]. In [3], [4], [5],
the author proposes a novel concept, ¥— boundedness of solutions (¥ being a ma-
trix function), which is interesting and useful in some practical cases and presents
the existence condition for such solutions. Also, in [1], the author associates this
problem with the concept of W— dichotomy on R of the system x’ = A(t)x.

Naturally, one wonders whether there are any similar concepts and results on
the solutions of difference equations, which can be seen as the discrete version of
differential equations.

In [7], the authors extend the concept of ¥— boundedness to the solutions of
difference equation

x(n + 1) = A(u)x(n) + f(n) (1)

(via W— bounded sequence) and establish a necessary and sufficient condition for
existence of ¥— bounded solutions for the nonhomogeneous linear difference equa-
tion (1) in case f is a ¥— summable sequence on N.

In [6], the author proved a necessary and sufficient condition for the existence
of U— bounded solutions of (1) in case f is a ¥— bounded sequence on N.

Similarly, we can consider solutions of (1) which are bounded not only N but on
the Z.

In this case, the conditions for the existence of at least one ¥ —bounded solution
are rather more complicated, as we will see below.

In this paper, we give a necessary and sufficient condition so that the nonhomo-
geneous linear difference equation (1) have at least one W—bounded solution on Z
for every W—summable function f on Z

Here, V¥ is a matrix function. The introduction of the matrix function ¥ permits
to obtain a mixed asymptotic behavior of the components of the solutions.
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2. Preliminaries

Let RY be the Euclidean d-space. For x = (x1, Xg,....xq)T € R4, let ||x|| =

max{|xq, |xd, ... |xd} be the norm of x. For a d x d real matrix A = (a;;), the norm
d
|A| is defined by |A| = sup ||Ax] . It is well-known that [A| = max > |ay | .
lz]<1 1<i<d ;<4

Let ¥; : Z — (0,00),1i =1, 2, ...d and let the matrix function
U = dlag [\Ifl,\lfg,...\lld].
Then, ¥(n) is invertible for each n € Z.

Definition 1. A function ¢ : Z — RY is called ¥— bounded iff the function
U is bounded (i.e. there exists M > 0 such that || ¥'(n)¢(n)|| < M for all n € Z).

Definition 2. A function ¢ : Z — R? is called ¥— summable on Z if

o0 a
> || ¥(n)p(n)|| is convergent (i.e. lim > || ¥(n)p(n)| is finite).
p——oo [T

n =—00
q— o0

Consider the nonautonomous difference linear equation

y( + 1) = An)y(n) (2)
where the d x d real matrix A(n) is invertible at n € Z. Let Y be the fundamental
matrix of (2) with Y(0) = I (identity d x d matrix). It is well-known that

An—1)A(n—2)---A(1)A(0), n >0
1) Y(n) = Id, n=20 s
[ACDA(2) - Am)] ™, n<0
ii). Y(n + 1) = A(n)Y(n) for all n € Z
iii). the solution of (2) with the initial condition y(0) = yq is
y(n) = Y(n)yo, n € Z;
iv). Y is invertible for each n € Z and
ATHOAT (D) ---A M n—1), n>0
Y '(n) =< I, n=20
A(-1)A(-2)---A(n), n <0

Let the vector space RY represented as a direct sum of three subspaces X_, X,
X, such that a solution y of (2) is ¥— bounded on Z if and only if y(0) € X, and
U— bounded on Z, = {0,1,2,---} if and only if y(0) € X_ & X,. Also let P_, Py,
P. denote the corresponding projection of RY onto X_, X, X, respectively.
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3. Main result

The main result of this paper is the following.

Theorem 1. The equation (1) has at least one W— bounded solution on Z for
every W— summable function f on 7Z if and only if there is a positive constant K
such that

| Y(n)Y(n)P_Y™ (k+1) (k) | < K, k+1 <min{On}

| ¥(n)Y(n)(P,+Py)Y ( +1D)¥ k)| < K, n<k+1<0 (3)
| U(n)Y(n)(P, +P )Y~ (k+1)\1fl(k) | < K, 0<k+1<n

| U(n)Y(n)P, Y ' (k+1) ¥ (k) | < K, k+ 1> max{0n}

Proof. First, we prove the "only if” part. We define the sets:

By = {x: Z — R% | x is ¥~ bounded},

B={x:7%Z— RY|xis U— summable on Z},

D={x:7Z— RY|x € By, x(0) € X_® Xy, (x(n +1)—A(n)x(n)) € B}
Obviously, By, B and D are vector spaces over R and the functionals

x— [xlln, = sup || ¥(w)x(n)].

X xllp = 22 (| Wn)x(m)],
X+ [Ix[lp = [Ix[lz, + [[x(n + 1) = A(n)x(n)|s
are norms on By, B and D respectively.
Step 1. It is a simple exercise that (By, || - ||s,) and (B, || - ||g) are Banach

spaces.

Step 2. (D, || - ||p) is a Banach space.

Let (xp)pen be a fundamental sequence in D. Then, (x,)pen is a fundamental
sequence in By. Therefore, there exists a ¥— bounded function x : Z — RY such
that plirgo U(n)x,(n) = ¥(n)x(n), uniformly on Z. From

Ixp(n) = x(u)[| < [ U= (0)[[] ¥(n)(xp(n) — x(n))]],
it follows that the sequence (x;)pen is almost uniformly convergent to function x on
Z. Because x,(0) € X_ @ X4, p € N, it follows that x(0) € X_ @ X.
On the other hand, the sequence (f,)pen, fp(n) = x,(n + 1) — A(n)x,(n), n € Z,
is a fundamental sequence in B. Therefore, there exists a function f € B such that

S| Un)h(n) — U(n)in)| — 0 as p — oo.

n —=——oo

It follows that ¥(n)f,(n) — ¥(n)f(n) and f,(n) — f(n) for each n € Z.
For a fixed but arbitrary n € Z, n > 0, we have
x(o -+ 1) = x(0) = lim fs(n + 1) — x,(0)] =

n

= lim ) [xp(I+ 1)—x,(i)] =

= lim 3 fpli+ D)~ A0 + ARG - x0)] =
= lim 35 [0) — £60) + £ + AGx,0) - x,0] =
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= 3 [£() + AGi)x() — x(D)] + f(n) + Am)x(n) — x(n) =
=x(n) — x(0) + f(n) + A(n)x(n) — x(n) = A(n)x(n) + f(n) — x(0).

Similarly, we have
x(1) — x(0) = A(0)x(0) + £(0) — x(0)

and, forn € Z, n < 0,
—1

x(n) = x(0) = lim [x,(n) = x,(0)] = lim 37 [xp(i) = xp(i + 1)] =

= lim 5 Bl — AW + AG%G) — %0+ 1) =
= lim 5 Byl — AW () — ) =

-1

= 2. O — Al)x() - (1)) =

i=n
-1

= 2 X)) = A@x(1) - )] + x(0) = Am)x(n) — f(n) =

i=n+l1
=x(n+ 1) — x(0) + x(n) — A(n)x(n) — f(n).
By the above relations, we have that
x(n+ 1) — A(n)x(n) = f(n), n € Z.
It follows that x € D.
Now, from the relations
2. 1) = x)(n+1) = Wm)Am)(xp — x)(n)[| — 0 as p — oo,
I — Xllpy — 0 as p — oo,
it follows that ||x, — x||p — 0 as p — +o0.
Thus, (D, || - ||p) is a Banach space.
Step 3. There exists a positive constant K such that, for every f € B and for
corresponding solution x € D of (1), we have
|8, < K- [f]]5. (4)
We define the operator T : D — B, (Tx)(n) = x(n + 1) — A(n)x(n), n € Z.
Clearly, T is linear and bounded, with ||T|| < 1. Let Tx = 0 be. Then,
x € D and x(n + 1) = A(n)x(n). This shows that x is a U— bounded solution
of (2) with x(0) € X_ @& X;. From the Definition of X, we have x(0) € X,. Thus,
x(0) € Xo N (X_ & X, ) = {0}. It follows that x = 0. This means that the operator
T is one-to-one.
Now, for f € B, let x be a W— bounded solution of the equation (1). Let z be
the solution of the Cauchy problem
20 + 1) = An)a(n) + f(n), #(0) = (P_ + P)x(0).
Then, the function u = x — z is a solution of the equation (2) with
u(0) = x(0) — z(0) = Pox(0) € X,.
It follows that the function u is ¥— bounded on Z. Thus, the function z is ¥—
bounded on Z. It follows that z € D and Tz = f. Consequently, T is onto.

EJQTDE, 2008 No. 26, p. 4



From a fundamental result of Banach ”If T is a bounded one-to-one linear op-
erator from a Banach space onto another, then the inverse operator T~! is also
bounded”, we have that

IT44 < T, for £ € B.
Denoting T~'f = x, we have ||x|lp = ||x||s, + [Ifllz < [T !||If|lz and then
I, < (T = 1)le]s -
Thus, we have (4), where K = |[T7}|| — 1.
Step 4. The end of the proof.
For a fixed but arbitrary k € Z, £ € RY, we consider the function f : Z — R4
defined by 1
[ ¥in)E, ifn=k
f(n) = 0, elsewhere
Obviously, f € B and ||f[|[g = || £ || . The corresponding solution x € D of (1) is
x(n) = G(n,k+1)f(k), where
Y(n)P_Y (k) k < min{0,n}
~Ym)(P, + PL)Y '(k) n<k<0
Ym)(P, + PO)Y (k) 0<k<n
~Y(n)P_ Y '(k) k > max{0,n}
Indeed, we prove this in more cases:

Case k < —1. a). fork+ 1 <n <0,
x(n+1) = G(n+1k+1)f(k) = Y(n+1)P_ Y (k+1)f(k) =
=An)Y(n)P_Y ' (k+1)f(k) = A(n)x(n) = A(n)x(n) + f(n) (because f(n) = 0);
b). for n =k,
x(n+1) = G(n+1,k+1)f(k) = Y(n+1)P_Y 1 (k+1)f(k) =

— Y (k1) (I=Po—P )Y (k+1)1(K) = H(k)~AK)Y (K)(Po-+P4) YL (ke 1)f(K) =
f(k) + A(k)G(k,k+1)f(k) = A(n)x(n) + f(n);

. for n < k,
n+1) G(n+1,k+1)f(k) = —Y(n+1)(Py + P.)Y 1 (k+1)f(k) =
—AM)Y()(Py + P4 )Y L (k+1)6(K) = A(n)x(n) = An)x(n) + f(n);

forn > 0,
x(n+1) = G(n+1,k+1)f(k) = Y(n+1)P_Y 1 (k+1)f(k) =
= Am)Y(n)P_Y 1(k+1)f(k) = A(n)x(n) = A(n)x(n) + f(n);
Casek > — 1. ). forn < 0,
x(n+1) = Gn+1,k+1)f(k) = - Y(n+1)P Y L (k+1)f(k) =
— AM)Y(0)PL Y (eHDEK) = An)x(n) = A(n)x(n) + f(n);
.forn=0and k =0,

x(1) = G(LI0) = Y(1)(Py + P)YH(1(0) = Y(1)(T — P4 )Y~ (1)f(0) =
f(0) — AO)Y(0)P, Y (1f(0) = A(0)x(0) + 1(0);

G(nk) =

I A

7). n=0andk > 0,

x(1) = G(Lk+1)f(k) = =Y(1)P.Y 1 (k+1)f(k) = —A(0)Y(0)P, Y 1 (k+1)f(k) =
= A(0)G(0k+1)f(k) = A(0)x(0) + £(0);
9). for 0 <n =k,

x(

n+1) = G(k+1,k+1)f(k) Y(k+1)(Po + P_)Y ! (k+1)f(k) =
= Y(k+1)(I — Po)Y 1kt 1)f(k) = £(k) — AK)Y(K)P, Y} (k+1)f(k) =
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— A()x(n) + f(n);
g). for 0 < n <k,
x(n+1) = Gnt1krDE(k) = —Y(m+1)P, Y (k+1)f(k) =
— A)Y ()P, Y 1 (k+1)f(k) = A(n)x(n) = A(n)x(n) + f(n);

forn >k + 1,

x(n+1) = G(n+1k+1)f(k) =
— AMY()(Py 1 PY- (it
On the other hand, x(0) € X

_®
<(0) = G(0,k+1)f(k) = {*
Y(n

N

Y(n+1)(Py + P_)Y Hk+1)f(k) =
F1)I(K) = A(n)x(n) = A(n)x(n) + f(n).
X+, because

Yk+Dfk), k+1 <0
P.Y '(k+Df(k), k+1 > 0
Finally, we have

)(P, +P+) (k+1)f(k), n <k+1<0

x(n) = Glok+1)f(k) = { Y(m)(P, + POY 'kt D)fk), 1 >k+1 >0
From the Definitions of X_, X and X, it follows that the function x is ¥—

bounded on Z_ and N. Thus, x is the solution of (1) in D.

Now, we have, || ¥(n)x(n)|| = || ¥(n)G(nk+1)f(k)[| = || T(n)G(nk+1) T (k)¢ ||
The inequality (4) becomes

| P0G+ (006 || < K ¢ ], for al k. €2, € € R
It follows that | ¥(n)G(n,k+1)¥ 1 (k)| < K, for all k, n € Z, which is equivalent

with (3).

by

Now, we prove the ”if” part.
For a given ¥— summable function f : Z — RY, consider u : Z — R¢ defined

( nf Y(n)P_Y ' (k+1)f(k) — _Zl Y(n)P,Y ' (k+1)f(k) —
T ki Y(n)P+Y1(k+f;(rll<), nel
u(n) = k_zl Y(O)PY:(kH)f(k) - kioY(O)P+Y‘1(k+1)f(k), n =0
_rf Y(n)P_Y ' (k+1D)f(k) + ;zl Y ()P, Y ! (k+1)f(k) —
\ T kinY(n)P+Y‘1(k+;;((l)<), vl

Step 5. The function u is well-defined.
Forp,qu q<0<p,wehave

kg 1Y (0)P_Y = (k+1)f(k)[| + Z 1Y (0P Y~ (k+Df(k)|| <
< [ wTH0)] ij | W)Y (O)P_Y~H (k+1) U (k)| W(k)E(k)| +
+ | W) éo [ W)Y (O)PLY ™ (k+1) U (k)| W(k)f(k)|| <

< K| ~1(0)] (é | W (k)f(k) H) :
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—1
and then, > Y(0)P_Y!(k+1)f(k) and Z Y( )PLY1(k+1)f(k) are absolutely
ki

convergent series. Thus, u(0) is well- deﬁned
Form,n € Z, m > n > 0, we have

3 Y0P,y (et 1)i(9)| =

= 55 ) () Y P Y ek DT () (V89| <

< U] 35 | WY )P Y e DU 9] BRI <
<kl (£ emi 1),

and then, Y Y(n)P,Y'(k+1)f(k) is an absolutely convergent series for n > 0.
k=n
Forme Z,ne N, m <n — 1, we have
n—1
S V)P Y (e 1)) =

knfm = ) (¥ ()Y )Py~ (k1) W (k) (P (K)f(k)) |
< [ ¥ (n) knglm | () Y(m)P_Y = (k+ 1)U (K)[]| w(k)f(k)| <

< KU > [ ek)ik)],

k=m

n—1
and then, > Y(n)P_Y!(k+1)f(k) is an absolutely convergent series for n > 0.
k =—o0

Thus, the function u is well defined for n > 0.
Similarly, the function u is well defined for n < 0.
Step 6. The function u is a solution of the equation (1).
Indeed, using the expresion of the function u, we obtain:
0
eu(l)= > Y(OP_-Y '(k+D)f(k) + Y(1)PoY *(1)f(0) —

k =—0

- i Y(D)P,LY ' (k+1)f(k) = A(0)[ i Y(O)P_Y ' (k+1)f(k) +

k=1 k =—c0

+ Y(OPY ((0) = 30 Y(O)P, Y (ke 1)f(K)] =
A 3 Y0¥ (k) + Y (0)P- Y (DF(0) + Y (0) oY (1)1(0)
i Y(O)PL Y (It D)f(l) + Y(0)PL Y1 (1)f(0)] =

= A0)u(0) + AOY(O)(P_ + Py + P)Y-H(1)(0) = AQO)(0) + (0]

e forn >0, u(m+l) = 3 Y(nt)PoY L (k+1)f(K) +
£ YRR DK — 3 Yk P YA (1)) =
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= A(n)[ nil Y(n)P_Y ' (k+1)f(k) + Y(n)P_Y ' (n+1)f(n) +

k =—o0

5 Y ()PeY L (k4 DE(K) + Y(0)PoY ! (n41)f(n) —

n

A?n)u(n jr Y(n+1)(P_ + Py + P.)Y Y(n+1)f(n) = A(n)u(n) + f(n);
eu(0)= > Y(O)P_Y ' (k+1)f(k) — 2_: Y(0)PLY 1 (k+1)f(k) =

k =—o0

S YW)PLY (kb DEK) + Y()PL Y (n1)f(n)] =
)

AL S Y-DPY (b Dilk) — 3 Y(-1)P, Y (k1)) =

k =—o0

CACD] S YD Yk 1D)ik) + Y(—1)P_Y-0)f(—1) —

k =—o0

T Y(—1)PeY (kD)) + Y(—1)PoY-L(0)H(—1) —

— 2 Y(=DP Y MR+ DEK) + V(=P YL (0)f(=1)] =
= A(=Du(~1) + Y(0)(P_ + Py + P,)Y " (0)f(~1) =

= A(=1)u(-1) + f(—1);

oforn<—1,umtl) = > Y(n+1)P Y L(kr1)E(k) —

k =—o0

— _Zl Y (n+1)Po Y (k+1)f(k) — i Y(n+1)P, Y 1 (k+1)f(k) =
k = n+1 k =n+1

= A(n)[ nil Y(n)P_Y Hk+1)f(k) + Y(n)P_Y ! (n+1)f(n) —

k =—o0

- 21 Y(0)PoY L (k+1)f(k) + Y(0)PoY 1 (n+1)f(n) —

_ i Y()P, Y (k1)) + Y(m)P, Y (nt 1)f(n)] =

= A(n)u(n) + Y(n+1)(P_ + Pg + P )Y 1 (n+1)f(n) = A(n)u(n) + f(n).
These relations show that the function u is a solution of the equation (1).
Step 7. The function u is ¥— bounded on Z.

Indeed, for n > 0 we have

| Tm)um)|| = | kr;loo‘l’(ﬂ)Y(n)P—Yl(kH)‘l’l(k)‘l’(k)f(k) +
+ :z_:lo\I!(n)Y(n)POY—l(kJrl)\I!—l(k)\Il(k)f(k) _

- kgin\lf(n)Y(n)Pﬂl(kH)w1<k>\1f<k>f<k>|| -

S W) Y)PY (e 1) (W) +

k =—oc0

+ nil U(n)Y(n)(Py + PL)Y H(k+1)T 1 (k)¥(k)f(k) —
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= 2 Y@YmPLY (kD) ()W (K)f(K)| <

< 2 YmY@PY (kD)W K] W k)fk)[] +

+ 2 Y)Y @)(Po + P)Y ™ (k+ 1)U (K[| w(k)f(k)] +

3 VP Y e8] WOOT9 <
SK(Z RICLCNIRES SR TEE N RS o R 751 H):

= Kk_Z W (k)f(k)[| = KI[f]|s .
For n < 0, we have

[ W(m)um)[| = | kif Y)Y (m)P_Y = (k1)U (k) W (k)f(k) —

- 21 W(n)Y(n)PoY ! (k-+1) 0 (k)W (k)f(k) —

- Y ) Y@)PLY (e )T (U R)E()| =

kfn

ST W)Y @P_Y (ke ) U W (R)(K) —

k =—00

— Y )Y (@)(Po + P)Y (k)T (U (R)E() —

- ; U(n)Y(n)PLY Hk+1)T (k) T(k)f(k)]| <
< 5 Iwe)YeP Y e ()] w9 +

£ TRV )Py + PV (R )E ()] B +

3 UYL Y ke ) w9109 <

SK< T vl + T e |+ 5 e -

- K Z PR = K]l -

Similarly, H W(O0)u(0)] < K15

Therefore, || ¥(n)u(n)| < K||f||s, for all n € Z.

Thus, the solution u of the equation (1) is ¥— bounded on Z.
The proof is now complete.

Corollary 1. If the homogeneous equation (2) has no nontrivial ¥— bounded
solution on Z, then, the equation (1) has a unique ¥— bounded solution on Z for
every W— summable function f on Z if and only if there exists a positive constant
K such that, for k, n € Z,
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| Ym)Ym)P_ Y (k+1)¥ (k) | < K, fork+l<n
{ | \I[(H>Y(H)P+Yil(k+1)qj_l<k) | < K, forn < k+1 (5)

Proof. Indeed, in this case, Py = 0. Now, the Corollary follows from the above
Theorem.

Finally, we give a result in which we will see that the asymptotic behavior of
U — bounded solutions of (1) is determined completely by the asymptotic behavior
of the fundamental matrix Y of (2).

Theorem 2. Suppose that:

1°. the fundamental matrix Y of (2) satisfies the conditions (3) for some K > 0
and the conditions

i). lirin | U(n)Y(n)Py | = 0;

ii). lirf | U(n)Y(n)P_ | =0;

iii). lim |¥(n)Y(n)Py|=0.

2°. the function f : Z — RY is ¥— summable on Z.
Then, every W— bounded solution x of (1) satisfies the condition

lirin | ¥(n)x(n)|| = 0.

Proof. Let x be a U— bounded solution of (1). Let u be the ¥— bounded
solution of (1) from the proof of Theorem 1 (”if” part).
Let the function y(n) = x(n) — u(n) — Y(n)Py(x(0) — u(0)), n € Z.
It is easy to see that y is a W— bounded solution of (2) and then y(0) € X,.
On the other hand,
y(0) = (I — P)(x(0) — u(0)) = (P_ + P,)(x(0) — u(0)) € X_ & X..
Thus, y(0) € (X_ & Xy) N Xg = {0}. It follows that y = 0 and then
x(n) = u(n) + Y(n)Po(x(0) — u(0)), n € Z.
Now, we prove that nErinoo | ¥(n)x(n)|| = 0.
For n > 0, we have

x(n) = Y(n)Po(x(0) — u(0)) + nil Y(n)P_Y 1 (k+1)f(k) +

k =—c0

+ nilY(n)PoY’l(k+1)f(k) — i Y(n)P, Y Hk+1)f(k)
and then - e

\I’(n)_Xl(H) = U(n)Y(n)Po(x(0) — u(0)) +
+ Y W)Y ()PoY (k1)U (k)W (K)E(k) +

5 W)Y @)(Py + P (k1)U (U (K(K) ~

— S Um)Y()PL Y Hk+1)0 k)W (k)f(k).
k=n
By the hypotheses, for a given € > 0, there exist:
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e n; € N such that, for n > ny,

2. 1 Pf(k)[| < 5% and 12 W (fR) < 3k

k =—o0

e n, € N, ny > ny, such that, for n > ns,
1 -1

Y <5 (14 E Y ])
=T
e n3 € N, ng > ny, such that, for n > njs,

| )Y (n)Po | < £ (1 + [|x(0) — u(©0) )"

e ny € N, ny > ng, such that, for n > ny,

ni -1
wYeEerP)| < (14 3 1Y i )
Then, for n > ny we have -

W ()x(n) | <[ Wm0)Y@)Po [[[x(0) — u(0)[ +

—ni

+ 2 [ YmY@P Y (k+ D)W (K[| wk)f(k)[] +

k =—oc0

T E@Y@P- (YD) +

k =—ni+1

+OY | WW)Y(@)(Po + P)IY (e DIE)]| +

k=0

5 W@ Y@)P) + PY ) E )| PR +

k=mni1+1

+ Z | W ()Y ()P Y (kD)W R[] W (k)fk)]| <

(1 + 11x(0) = u(0) )" [x(0) = u(0)] -

KOS R+ | P@Y@P- | S Y kDR +

k =—oc0 k =—ni+1
ni
+ [ Ym)Ym)(Po + P)| X0 YT (k+ DIk +
K=0
+K EH vl + K 2 (| W] <
= n =n
< +K5K+§+§+K5LK:5.
This shows that hrf | ¥(n)x(n)|| = 0.
Similarly, lim || ¥(n)x(n)|| = 0.

The proof is now complete.
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Corollary 2. Suppose that:
1°. the homogeneous equation (2) has no nontrivial ¥— bounded solution on Z;
2°. the fundamental matrix Y of (2) satisfies:
a). the conditions (5) for some K > 0;
b). the conditions:
i). nliffoo | U(n)Ym)P_ | =0

ii). lim |¥(n)Y(n)P; |=0.
2°. the function f : Z — RY is U— summable on Z.

Then, the equation (1) has a unique solution x on Z such that

lim || W(n)x(n)]| = 0.
Proof. It results from the above Corollary and Theorem 2.

Note that the Theorem 2 (and the Corollary 2) is no longer true if we require
that the function f be ¥ — bounded on Z, instead of the condition 2° of the Theorem.
This is shown by the next

Example 1. Consider the system (1) with

A<n>:(éS)

=0,1,2,..
—1,-2...

and

Then, Y(n) = ( is the fundamental matrix of (2) with Y(0) = I,.

Consider ¥(n (03n) n e Z.

The first hypothesis of the Theorem 2 is satisfied with

POIOQ,P,:IQ,PJFIOQaHdK:l.

In addition, we have || U(n)f(n)|| = 1 forn > 0 and || ¥(n)f(n)|| = 0 for n < 0.
The function f is not ¥— summable on Z, but it is ¥— bounded on Z.
On the other hand, the solutions on Z of the system (1) are

(2;C1), for n < 0,
2C2
X(Il) = , C1, Cg € R.
—n _ 1—n
<2n01+2 2 ),fornZO.
2(32
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It results from this that there is no solution x for lirf | ¥(n)x(n)|| = 0.
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