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BOUNDED WEAK SOLUTIONS TO NONLINEAR

ELLIPTIC EQUATIONS
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Abstract. In this work, we are concerned with a class of elliptic
problems with both absorption terms and critical growth in the
gradient. We suppose that the data belong to Lm(Ω) with m > n/2
and we prove the existence of bounded weak solutions via L∞-
estimates. A priori estimates and Stampacchia’s L∞-regularity
are our main ingredient.

1. Introduction

In this work, we intend to study the Dirichlet problem for some
nonlinear elliptic equations whose model example is:

(P )

{
−∆u+ a(x)u|u|r−1 = β(u)|∇u|2 + f(x) in Ω,

u|∂Ω = 0.

where Ω is a bounded open set in R
N , N > 2, ∆ denotes the Laplace

operator and β is a continuous nonincreasing real function , with β ∈
L1 (R). The real function a (x) is nonnegative and bounded in L∞ (Ω).
Under suitable conditions on the data, we shall study existence and
regularity of solutions for problem (P ).

These kind of problems have been treated in a large literature start-
ing from the classical references [18] and [19]. Later, many works have
been devoted to elliptic problems with lower order terms having qua-
dratic growth with respect to the gradients (see e.g. [8], [9], [13], [15],
[16], [17], [22] and the references therein).

The general problem (P ), though being physically natural, does not
seem to have been studied in the literature. So for special situations,
in the case where a = 0, β is constant and f = 0, this equation may
be considered as the stationary part of equation

ut − ∆u = ε|∇u|2 ,

Key words and phrases. Nonlinear elliptic equations, critical growth, absorption
terms, existence, a priori estimates, weak solutions.
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which appears in the physical theory of growth and roughening of sur-
faces. It is well known as the Kardar-Parisi-Zhang equation (see [16]).
It presents also the viscosity approximation as ε → +∞ of Hamilton-
Jacobi equations from stochastic control theory (see [21]).

For the simpler case where a = 0, β is a constant (we can assume

β = 1 without loss of generality) and f ∈ L
N
2 ; that is when (P ) of the

form

−∆u = |∇u|2 + f (x) in Ω,(1.1)

u = 0 on ∂Ω,

the problem has been studied in [17], where the change of variable
v = eu − 1 leads to the following problem

−∆v = f (x) (v + 1) in Ω,(1.2)

v = 0 on ∂Ω.

Then, provided that f ∈ L
N
2 , it is proved there that (1.1) admits a

unique solution in W 1,2
0 (Ω).

In the case where a = 0, f ∈ Lq with q > N
2
, and β is a continuous

nonnegative function satisfying supplementary conditions according to

each situation, for instance β (s) = 1√
(1+s2)3

, or β (s) = e|s|

(1+s2)
, a pri-

ori estimates have been proved in [1] and [6] to obtain existence and
regularity results, while uniqueness have been shown in [2].

In this paper, to prove existence of bounded weak solutions for (P ),
we assume that f ∈ Lm, m > N

2
, β is a continuous real function

nonincreasing with β ∈ L1 (R) and a is a nonnegative bounded real
function. We shall obtain a solution by an approximating process.
Using a priori estimates and Stampacchia’s L∞-regularity results we
shall show that the approximated solutions converges to a solution of
problem (P ).

2. Preliminaries and main results

In this section, we present some notations and assumptions. We
also recall some concepts and results which will be used in our further
considerations. We will refer the reader to the corresponding references.
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Throughout this paper Ω will denotes a bounded open set in R
N with

N > 2. We denote by c a positive constant which may only depend on
the parameters of our problem, its value my vary from line to line.

For 1 ≤ q ≤ N we denote q∗ = N q
N−q

. Moreover, we denote N ′ = N
N−1

and its Sobolev conjugate by N0 = N
N−2

.

For k > 0 we define the truncature at level ±k as

Tk(s) = min{k,max{s,−k}}.
We also consider Gk(s) = s−Tk (s) = (|s| − k)+

sign (s) . We introduce
T

1,2
0 (Ω) as the set of all measurable functions u : Ω → R

N such that
Tk (u) ∈W

1,2
0 (Ω) for all k > 0. We point out that T 1,2

0 (Ω)∩L∞ (Ω) =
W

1,2
0 (Ω) ∩ L∞ (Ω).

For a measurable function u belonging to T
1,2
0 (Ω) , a gradient can

be defined as a measurable function which is also denoted by ∇u and
satisfies ∇Tk (u) = ∇uχ[|u|<k] for all k > 0 (see e.g. [3]).

We are going to investigate the solution of the following nonlinear
elliptic problem

(P )

{
−∆u+ a(x)u|u|r−1 = β(u)|∇u|2 + f(x) in Ω,

u|∂Ω = 0,

where Ω denotes a bounded open set in R
N with N > 2. u denote a

real function depending on x in R
N .

We denote by γ the real function

(2.1) γ (s) =

∫ s

0

β (σ) dσ.

We assume that r > 1, and that

(2.2) f ∈ Lm (Ω) with m >
N

2
.

Both functions β and a have to satisfy certain structural assumptions
which are described by:

(A) There exists a0 such that a ≥ a0 > 0 a.e in Ω and a ∈ L∞ (Ω).
(B) The real function β is continuous nonincreasing with β ∈ L1 (R) .

Without loss of generality we assume β (0) = 0
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By a weak solution of problem (P ) we mean a function u, such
that both functions β(u) |∇u|2 and a(x)u|u|r−1 are integrable, and the
following equality holds

(2.3)

∫

Ω

∇u∇φ+

∫

Ω

a(x)u|u|r−1φ =

∫

Ω

β(u)|∇u|2φ+

∫

Ω

f φ,

for any test function φ in H1
0 (Ω) ∩ L∞ (Ω).

Theorem 2.1. Let f in Lm (Ω) , m > N
2

and r > 1. Then, under
the assumptions (A) and (B) the problem (P ) has at least one solution
which belongs to W 1,2 (Ω) ∩ L∞ (Ω).

�

3. Fundamental estimates

3.1. Estimates on general problem. In this sections we prove some
basic estimate for regular elliptic problem. The main tools for proving
theorem 2.1 are a priori estimates together with compactness argu-
ments applied to a sequences of bounded approximating solutions. We
shall study the nonlinear elliptic equation

(3.1) −∆u = B(x, u,∇u) + f(x) in Ω,

under the assumption

(3.2) u|∂Ω = 0.

Where B(x, s, ξ) = b (s, ξ) − a (x, s) |s|r−1; a (., .) and b (., .) are two
functions satisfying the following hypothesis:

(a1) a (x, s) : Ω × R → R is measurable in x ∈ RN for any fixed
s ∈ R and continuous in s for a.e. x.

(a2) There exists a constant c > 0 such that for all s and almost
every x

a (x, s) ≥ a (x) s+ c.

(a3) For any α > 0 the function

aα (x) = sup
|s|≤α

{a (x, s) |s|r−1}

is integrable over Ω.
(b1) b (s, ξ) : R × RN → R is measurable in s ∈ R for any fixed

ξ ∈ RN and continuous in ξ for a.e. s.
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(b2) The real function b satisfies

b (s, ξ) ≤ β (s) |ξ|2 , for all s and ξ .

Let us note that if u is a weak solution of (3.1), then it satisfy the
following equality∫

Ω

∇u∇ψ =

∫

Ω

B(x, u,∇u)ψ +

∫

Ω

f ψ,

for all ψ in H1
0 (Ω) ∩ L∞ (Ω).

We will now prove the following basic results. If u is a weak solution
of (3.1) we denote uk = Tk(u). Then we have the following estimates:

Lemma 3.1. Let u be a weak solution of problem (3.1). Then u satis-
fies

||u||Lr(Ω) ≤ c.

Proof. We consider for m > 1 the following function

ψm (s) = (m− 1)
∫ s

0
1

(1+t)m if s ≥ 0,

ψm (s) = −ψm (−s) if s ≤ 0.

Taking ψm (u) as test function in (3.1), where m is such that 0 <

m− 1 < r −1, we obtain∫

Ω

∇u∇ψm(u) =

∫

Ω

B(x, u,∇u)ψm(u) +

∫

Ω

fψm (u) .

∫

Ω

∇u∇ψm(u)+

∫

Ω

a(x, u)|u|r−1ψm(u) ≤
∫

Ω

b(u,∇u )ψm(u)+

∫

Ω

fψm (u) .

∫

Ω

∇u∇ψm(u)+

∫

Ω

a(x)u|u|r−1ψm(u) ≤
∫

Ω

β (u) |∇u|2ψm(u)+

∫

Ω

fψm (u) .

Then we have∫

Ω

|∇u|2 ψ′
m(u)+

∫

Ω

a(x)u|u|r−1ψm(u) ≤
∫

Ω

β (u) |∇u|2ψm(u)+

∫

Ω

fψm (u) .

(m− 1)

∫

Ω

|∇u|2 1

(1 + |u|)m
+

∫

Ω

a(x)u|u|r−1ψm(u) ≤
∫

Ω

fψm (u) .

(3.3) (m−1)

∫

Ω

|∇u|2 1

(1 + |u|)m
+

∫

Ω

a0 u |u|r−1ψm(u) ≤
∫

Ω

fψm (u) .

Since s|s|r−1ψ(s) is nonnegative, then using the fact that

s|s|r−1ψm(s) ≥ |s|rψm(1), (ψm(1) = 1 − 2−m+1), for s > 1.
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We get for all u
∫

Ω

|u|r ≤
∫

Ω

u|u|r−1ψm(u)

ψm(1)
+ |Ω|.

Then we obtain ∫

Ω

|u|r ≤ c.

�

Lemma 3.2. Let u be a weak solution of problem (3.1). Then, for
N > 2 and r > 1, one has

∇u ∈ Lq (Ω) for any q, 1 ≤ q < N ′ =
N

N − 1

and

u ∈ Lq∗ (Ω) where q∗ =
qN

N − q
.

Proof. Let q ∈ [1, N ′[, where N ′ = N
N−1

. We note that N ′ ∈]1, N [.

We chose m such that 0 < m < m0 = (N ′ − q)N−1
N−q

and we use

Hölder’s inequality to obtain
(3.4)

∫

Ω

|∇u|qdx ≤
(∫

Ω

|∇u|2 1

(1 + |u|)m
dx

) q

2

(∫

Ω

(1 + |u|)m q

2−q dx

) 2−q

2

.

Moreover m < m0 is equivalent to m q
2−q

< q∗, thus we get for any

ε > 0, that

(3.5) (1 + |u|)m q

2−q ≤ ε|u|q∗ + c (ε) .

From (3.3) and (3.4), we obtain

(3.6)

∫

Ω

|∇u|qdx ≤ c1

(∫

Ω

|u|q∗dx
) 2−q

2

+ c2.

Since q < N , then from Sobolev’s inequality, we have

||u− ũ||Lq∗(Ω) ≤ ||∇u ||Lq(Ω),

where

ũ := mes(Ω)−1

∫

Ω

u(x) dx.

This implies that

(3.7)

(∫

Ω

|u|q∗dx
)1/q∗

≤
(∫

Ω

|∇u|qdx
)1/q

+ |Ω| 1

q∗ ||ũ||r.
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From lemma 3.1, we have for r > 1 that

||ũ||rr ≤
1

|Ω|

∫

Ω

|u|rdx ≤ c.

Using (3.6) and (3.7), we deduce that

||u ||Lq∗(Ω) ≤
1

2

(∫

Ω

|u|q∗dx
) 2−q

2q

+ c.

Now, since N > 2, 2−q
2q

< 1
q∗

= N−q
qN

, we obtain

||u ||Lq∗(Ω) ≤ c.

�

Lemma 3.3. For a weak solution of (3.1).The following estimates

(3.8)

∫

[|u|>k]

|∇u|2dx ≤ c

∫

Ω

|f Gk (u) |,

and

(3.9)

∫

Ω

|∇uk|2dx ≤ c

∫

Ω

|f uk|,

hold for all k > 0.

Proof. We define the following functions

ϕk,h (s) = Gk (Th (s)) ,

ψk,h (s) = eγ(Tk(s))ϕk,h (s) .

Taking ψk,h (u) as a test function in (3.1), we obtain

∫

Ω

β(uk)ψk,h(u)∇u∇uk +

∫

Ω

eγ(uk)∇u∇ukϕk,h(u)

=

∫

Ω

B(x, u,∇u)ψk,h(u) +

∫

Ω

f ψk,h(u).

∫

Ω

β(uk)ψk,h(u)∇u∇uk+

∫

Ω

eγ(uk)∇u∇ukϕk,h(u)+

∫

Ω

a(x, u)|u|r−1ψk,h(u)

≤
∫

Ω

b(u,∇u)ψk,h(u) +

∫

Ω

f ψk,h(u).
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(3.10)∫

Ω

β(uk)ψk,h(u)∇u∇uk+

∫

Ω

eγ(uk)∇u∇ukϕk,h(u)+

∫

Ω

a(x)u|u|r−1ψk,h(u)

≤
∫

Ω

β(u)|∇u|2ψk,h(u) +

∫

Ω

f ψk,h(u).

We note that∫

Ω

β(uk)ψk,h(u)∇u∇uk =

∫

[u<k]

β(u)eγ(u)ϕk,h(u)|∇u|2.

Applying monotone convergence theorem, we have

lim
h→+∞

∫

Ω

β(uk)ϕk,h(u)∇u∇uk =

∫

Ω

β(u)eγ(u)Gk(u)|∇u|2,

lim
h→+∞

∫

Ω

β(u)|∇u|2ψk,h(u) =

∫

Ω

β(u)|∇u|2eγ(u)Gk(u).

Letting h tend to infinity in (3.10) and applying Lebesgue’s domi-
nated convergence theorem, we obtain

∫

Ω

β(u)|∇u|2eγ(u)Gk(u)+

∫

Ω

eγ(u)∇u∇Gk(u)+

∫

Ω

a(x)u|u|r−1eγ(u)Gk(u)

≤
∫

Ω

β(u)|∇u|2eγ(u)Gk(u) +

∫

Ω

f eγ(u)Gk(u).

Then, we obtain
∫

Ω

eγ(u)∇u∇Gk(u) ≤
∫

Ω

f Gk(u).

Therefore, we have
∫

[|u|>k]

|∇Gk(u)|2dx ≤ c

∫

Ω

|f Gk (u) |,

which implies that (3.8) is satisfied.
To prove the second assertion, let us take

φk,h = eγ(uk)uh

as a test function in (3.1), we obtain
∫

Ω

β(uk)φk,h(u)∇u∇uk +

∫

Ω

eγ(uk)∇u∇uk

=

∫

Ω

B(x, u,∇u)φk,h(u) +

∫

Ω

f φk,h(u).
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∫

Ω

β(uk)φk,h(u)∇u∇uk +

∫

Ω

eγ(uk)∇u∇uk +

∫

Ω

a(x, u)|u|r−1φk,h(u)

≤
∫

Ω

β(u)|∇u|2φk,h(u) +

∫

Ω

f φk,h(u).

(3.11)∫

Ω

β(uk)φk,h(u)∇u∇uk +

∫

Ω

eγ(uk)∇u∇uk +

∫

Ω

a(x)u|u|r−1φk,h(u)

≤
∫

Ω

β(u)|∇u|2φk,h(u) +

∫

Ω

f φk,h(u).

The monotone Convergence Theorem yields

lim
h→+∞

∫

Ω

β(uk)φk,h(u)∇u∇uk =

∫

Ω

β(u)eγ(u)uk|∇u|2,

lim
h→+∞

∫

Ω

β(u)|∇u|2φk,h(u) =

∫

Ω

β(u)|∇u|2eγ(u)uk.

Now, applying Lebesgue’s dominated convergence theorem in (3.11),
we obtain

∫

Ω

β(u)eγ(u)|∇u|2Tk(u) +

∫

Ω

eγ(u)∇u∇uk +

∫

Ω

a(x)u|u|r−1eγ(u)uk

≤
∫

Ω

β(u)|∇u|2eγ(u)uk +

∫

Ω

f eγ(u)uk.

After simplifications we have∫

Ω

eγ(u)∇u∇uk ≤
∫

Ω

f eγ(u)uk.

Therefore, we get∫

[|u|<k]

eγ(u)|∇u|2dx ≤ c

∫

Ω

|f uk|.

Finally, by Fatou’s lemma, we deduce that∫

Ω

|∇uk)|2dx ≤ c

∫

Ω

|f uk|.

�

Lemma 3.4. There exists a constant c such that the solution of problem
(3.1) satisfies ∫

[|u|≥k]

|b(u,∇u)| ≤ c.
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Proof. Let us consider

ϕk(s) = γ (Gk(s) + k sign(s)) − γ (k sign(s)) ,

ψk,h(s) = ϕk(Th(s)).

Taking eγ(uh)ψk,h(u) as test function in (3.1), we obtain
∫

Ω

β(uh)e
γ(uh)ψk,h(u)∇u∇uk +

∫

Ω

eγ(uh)∇u∇ψk,h(u)

≤
∫

Ω

B(x, u,∇u)eγ(uh)ψk,h(u) +

∫

Ω

f eγ(uh)ψk,h(u).

∫

Ω

β(uh)e
γ(uh)ψk,h(u)∇u∇uk+

∫

Ω

eγ(uh)∇u∇ψk,h(u)+

∫

Ω

a(x, u)|u|r−1eγ(uh)ψk,h(u)

≤
∫

Ω

β(u)|∇u|2eγ(uh)ψk,h(u) +

∫

Ω

f eγ(uh)ψk,h(u).

(3.12)∫

Ω

β(uh)e
γ(uh)ψk,h(u)∇u∇uk+

∫

Ω

eγ(uh)∇u∇ψk,h(u)+

∫

Ω

a(x)u|u|r−1eγ(uh)ψk,h(u)

≤
∫

Ω

β(u)|∇u|2eγ(uh)ψk,h(u) +

∫

Ω

f eγ(uh)ψk,h(u).

We note that∫

Ω

β(uh)e
γ(uh)ψk,h(u)∇u∇uk =

∫

[u<h]

β(u)eγ(u)ϕk,h(u)|∇u|2.

From Monotone Convergence Theorem, we have

lim
h→+∞

∫

Ω

β(uh)e
γ(uh)∇u∇ukψk,h(u) =

∫

Ω

β(u)|∇u|2eγ(u)ϕk(u).

Letting h tend to infinity in (3.12) and applying Lebesgue’s domi-
nated convergence theorem, we obtain

∫

Ω

β(u)eγ(u)|∇u|2ϕk(u)+

∫

Ω

eγ(u)∇u∇ϕk(u)+

∫

Ω

a(x)u|u|r−1eγ(u)ϕk(u)

≤
∫

Ω

β(u)|∇u|2eγ(u)ϕk(u) +

∫

Ω

f eγ(u)ϕk(u).

Then, we have
∫

Ω

eγ(u)∇u∇ϕk(u) ≤
∫

Ω

f eγ(u)ϕk(u) + c,
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which yields
∫

[|u|<h]

ϕ′
k(u)|∇u|2 ≤ c

∫

Ω

f ϕk(u) for all k > 0.

Therefore from Fatou’s lemma, we obtain
∫

Ω

ϕ′
k(u)|∇u|2 ≤ c

∫

Ω

f ϕk(u) for all k > 0,

and then we have ∫

Ω

|β(u)|χ[|u|≥k]|∇u|2 ≤ c.

Finally, this implies that

(3.13)

∫

[|u|≥k]

|b(u,∇u)| ≤ c.

�

3.2. Estimates on the approximating solutions. This section is
devoted to study the limiting process of the approximating problem.
We consider the following sequence of problems which we denote by
(Pn) :

(3.14) −∆un = Bn(x, un,∇un) + fn (x) in Ω,

under the assumption

un|∂Ω = 0.

Where Bn(x, un,∇un) = bn(un,∇un) − an(x, un)|un|r−1, an and bn
are two sequences of functions defined by

an(x, s) = a(x)Tn(s), fn = Tn(f) and bn(s, ξ) = Tn(β(s))|ξ|2.

From standard result by Leray and Lions (see e.g. [19]) there exist
weak solutions, for problem(3.14), which we denote by un ∈ H1

0 (Ω) ∩
L∞(Ω) satisfying for all v ∈ H1

0 (Ω) ∩ L∞(Ω)
∫

Ω

∇un∇v =

∫

Ω

Bn(x, un,∇un)v +

∫

Ω

fn v.

It yields that,

(3.15)

∫

Ω

∇un∇v +

∫

Ω

an(x, un)|un|r−1v =

∫

Ω

bn(un,∇un)v +

∫

Ω

fn v.
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Hence the previous result of the precedent section can be applied.
Using lemma (3.3) we deduce that there exist a constant c such that

∫

Ω

|∇Gk(un)|2dx ≤ c

∫

Ω

|f Gk (u) |.

Applying Hölder’s inequality, we obtain
∫

Ω

|∇Gk(un)|2dx ≤ c ||f ||Lm(Ω)

(∫

Ω

|Gk (un) |m′

) 1

m′

.

Using Sobolev’s imbedding theorem, we obtain for N = 2N
N−2

that

(∫

Ω

|eGk(un)|N
) 2

N

≤ c ||f ||Lm(Ω)

(∫

Ω

|Gk (un) |m′

) 1

m′

.

Denoting AK = {|u| ≥ k}, we get

(∫

Ω

|Gk(un)|N
) 2

N

≤ c |AK |
1

m′ −
1

N

(∫

Ω

|Gk (un) |N
) 1

N

.

Thus (∫

Ω

|Gk(un)|N
) 1

N

≤ c |AK |
1

m′−
1

N .

In this stage by using Stampacchia’s L∞-regularity procedure (see
[24]) we obtain that un is bounded uniformly in L∞(Ω). That is

||un||L∞(Ω) ≤ c,

where c > 0 is a constant that only depends on the parameters of the
problem.

Using lemma 3.3 we obtain

(3.16)

∫

Ω

|∇un|2dx ≤ c,

that is un is bounded in H1
0 (Ω).

Afterwards we consider λ > max{|β(s)|; |s| ≤ k}. Then
∫

Ω

|bn(un,∇un)| =

∫

Ω∩[|un|<k]

|bn(un,∇un)| +
∫

Ω∩[|un|≥k]

|bn(un,∇un)|

≤ λ

∫

Ω

|∇Tk(un)|2 +

∫

[|un|≥k]

|bn(un,∇un)|.
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From (3.16) and lemma (3.4) we obtain

(3.17)

∫

Ω

|bn(un,∇un)|dx ≤ c,

that is bn(un,∇un) equi-integrable.

Lemma 3.5. Let un a sequence of functions satisfying (3.15 ). Then

(3.18) lim
n,m→+∞

∫

Ω

|∇un −∇um|dx = 0.

Proof. We consider Am,n
ε = {|un − um| ≤ ε} ∩ Ω.

We apply the weak formulation (3.15) successively to un and um and
substitute v by the function defined by ξ = inf(un − um, ε) if un ≥ um

and ξ = − inf(um − un, ε) if un ≤ um.

After substraction, we obtain
∫

Am,n
ε

|∇un −∇um|2dx ≤ ε(

∫

Ω

|fn +Bn(x, un,∇un)|dx

+

∫

Ω

|fm +Bm(x, um,∇um)|dx).

The equi-integrability of fn and Bn(x, un,∇un) gives

(3.19)

∫

Am,n
ε

|∇un −∇um|2dx ≤ ε c.

Let us now observe that by Hölder’s inequality, we have
(3.20)
∫

Ω

|∇un−∇um|dx ≤ c

(∫

Am,n
ε

|∇un −∇um|2dx
) 1

2

+

∫

A
m,n

ε

|∇un−∇um|dx;

where A
m,n

ε = {|un − um| ≥ ε} ∩ Ω.

Since lim
n,m→+∞

∫
A

m,n

ε
|∇un − ∇um|d = 0 (the measure of A

m,n

ε tends

to 0 for n,m tending to +∞), then from (3.19) and (3.20), we have

lim
n,m→+∞

∫

Ω

|∇un −∇um|dx = 0.

�
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4. Existence and regularity results

Let un be the solution of the approximating problem. Then for all
ψ ∈ H1

0 (Ω) ∩ L∞ (Ω) , we have
∫

Ω

∇un∇ψ =

∫

Ω

Bn(x, un,∇un)ψ +

∫

Ω

fn ψ.

∫

Ω

∇un∇ψ +

∫

Ω

an(x, un)|un|r−1ψ =

∫

Ω

bn(un,∇un)ψ +

∫

Ω

fn ψ.

From the construction of fn we have

fn → f in L1(Ω) for n tending to + ∞.

From lemma (3.2) the solution un is bounded independently on n in
W 1,q (Ω) , for any q, 1 ≤ q < q0. Then, up to a subsequence ,that we
denote again by un, there exist u ∈ W 1,q (Ω) , for any q, 1 ≤ q < q0,

such that un converge to u weakly in W 1,q (Ω) , for any q, 1 ≤ q < q0.

From Rellich-Kondrachov’s theorem we have the almost every where
convergence in Ω. That is

un → u weakly in W 1,q (Ω) for any q, 1 ≤ q < q0.

(4.1) un → u almost every where in Ω .

an(x, un) → a(x, u) almost every where in Ω.

Taking into account the equi-integrability of un in Lr (Ω) , it follows
that of an(x, un)|un|r−1 in L1 (Ω) . Hence, we have

(4.2) an(x, un)|un|r−1 → a(x, u)|u|r−1 in L1 (Ω) .

From lemma 3.5 we have up to a subsequence un, that

(4.3) ∇un → ∇u almost every where in Ω .

Since ∇un is bounded in Lq (Ω) for any q, 1 ≤ q < N ′, we have

∇un → ∇u in Lq (Ω) for any q, 1 ≤ q < N ′,

and then we conclude that

∆un → ∆u in L1 (Ω) .

Now, we have from (4.1) and (4.3) that

βn(un)|∇un|2 → β(u)|∇u|2 almost every where in Ω.

bn(un,∇un) → b(u,∇u) almost every where in Ω.

B (x, un,∇un) → B (x, u,∇u) almost every where in Ω.
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From (3.17) we obtain that

bn(un,∇un) → β(u)|∇u|2 in L1 (Ω) ,

and from (4.2), that

B (x, un,∇un) → B (x, u,∇u) in L1 (Ω) .

Which conclude to the desired convergence result.
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