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ASYMPTOTIC AND OSCILLATORY BEHAVIOR OF SECOND

ORDER NEUTRAL QUANTUM EQUATIONS WITH MAXIMA

DOUGLAS R. ANDERSON AND JON D. KWIATKOWSKI

Abstract. In this study, the behavior of solutions to certain second order quantum

(q-difference) equations with maxima are considered. In particular, the asymptotic

behavior of non-oscillatory solutions is described, and sufficient conditions for os-

cillation of all solutions are obtained.

1. introduction

Quantum calculus has been utilized since at least the time of Pierre de Fermat [8,

Chapter B.5] to augment mathematical understanding gained from the more tradi-

tional continuous calculus and other branches of the discipline; see Kac and Cheung

[4], for example. In this study we will analyze a second order neutral quantum (q-

difference) equation

D2
q

(

x(t) + p(t)x(q−kt)
)

+ r(t) max
s∈{0,··· ,ℓ}

x(q−st) = 0, (1.1)

where the real scalar q > 1 and the q-derivatives are given, respectively, by the

difference quotient

Dqy(t) =
y(qt) − y(t)

qt − t
, and D2

qy(t) = Dq (Dqy(t)) .

Equation (1.1) is a quantum version of

∆2
(

xn + pnxn−k

)

+ qn max
{n−ℓ,··· ,ℓ}

xs = 0, (1.2)

studied by Luo and Bainov [5]; there the usual forward difference operator ∆yn :=

yn+1 − yn was used. For more results on differential and difference equations related

to (1.1) and (1.2), please see the work by Bainov, Petrov, and Proytcheva [1, 2, 3],

Luo and Bainov [5], Luo and Petrov [6], and Petrov [7]. The particular appeal of

(1.1) is that it is still a discrete problem, but with non-constant step size between

domain points.
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2. preliminary results

For q > 1, define the quantum half line by

(0,∞)q := {· · · , q−2, q−1, 1, q, q2, · · · }.

Let k, ℓ be non-negative integers, r : (0,∞)q → [0,∞), p : (0,∞)q → R, and consider

the second order neutral quantum (q-difference) equation

D2
q

(

x(t) + p(t)x(q−kt)
)

+ r(t) max
s∈{0,··· ,ℓ}

x
(

q−st
)

= 0, (2.1)

where we assume
∑

η∈[t0,∞)q

ηr(η) = ∞, t0 ∈ (0,∞)q. (2.2)

Definition 2.1. A function f : (0,∞)q → R eventually enjoys property P if and only

if there exists t∗ ∈ (0,∞)q such that for t ∈ [t∗,∞)q the function f enjoys property P.

A solution x of (2.1) is non-oscillatory if and only if x(t) < 0 or x(t) > 0 eventually;

otherwise x is oscillatory.

Define the function z : (0,∞)q → R via

z(t) := x(t) + p(t)x(q−kt). (2.3)

Then from (2.1) we have that

D2
qz(t) = −r(t) max

s∈{0,··· ,ℓ}
x(q−st), (2.4)

and

Dqz(t) = Dqz(t0) − (q − 1)
∑

η∈[t0,t)q

ηr(η) max
s∈{0,··· ,ℓ}

x(q−sη). (2.5)

We will use these expressions involving z in the following lemmas.

Lemma 2.2. Assume x is a solution of (2.1), r satisfies (2.2), z is given by (2.3),

and

p ≤ p(t) ≤ P < −1 for all t ∈ [t0,∞)q. (2.6)

(a) If x(t) > 0 eventually, then either

z(t) < 0, Dqz(t) < 0, and D2
qz(t) ≤ 0 eventually and (2.7)

lim
t→∞

z(t) = lim
t→∞

Dqz(t) = −∞, (2.8)

or

z(t) < 0, Dqz(t) > 0, and D2
qz(t) ≤ 0 eventually and (2.9)
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lim
t→∞

z(t) = lim
t→∞

Dqz(t) = 0. (2.10)

(b) If x(t) < 0 eventually, then either

z(t) > 0, Dqz(t) > 0, and D2
qz(t) ≥ 0 eventually and (2.11)

lim
t→∞

z(t) = lim
t→∞

Dqz(t) = ∞, (2.12)

or

z(t) > 0, Dqz(t) < 0, and D2
qz(t) ≥ 0 eventually and (2.13)

(2.10) holds.

Proof. We will prove (a); the proof of (b) is similar and thus omitted. Since x(t) > 0

eventually and r(t) ≥ 0, it follows from (2.4) that D2
qz(t) ≤ 0 eventually and Dqz is an

eventually nonincreasing function. Then either there exists an L := limt→∞ Dqz(t) ∈
R, or limt→∞ Dqz(t) = −∞. If limt→∞ Dqz(t) = −∞, then limt→∞ z(t) = −∞ and

(2.7) and (2.8) hold. So, let L := limt→∞ Dqz(t) ∈ R; then one of the following three

cases holds: (i) L < 0; (ii) L > 0; (iii) L = 0.

(i) If L < 0, then limt→∞ z(t) = −∞. From (2.3) it follows that the inequality

z(t) > p(t)x(q−kt)
(2.6)

≥ px(q−kt)

holds. Thus limt→∞ x(t) = ∞. From (2.2) and (2.5) we see that limt→∞ Dqz(t) = −∞,

a contradiction.

(ii) If L > 0, we arrive at a contradiction analogous to (i).

(iii) Assume L = 0. Since Dqz is an eventually decreasing function, Dqz(t) > 0

eventually and z is an eventually increasing function. Thus either limt→∞ z(t) = M ∈
R, or limt→∞ z(t) = ∞. If M > 0, then x(t) > z(t) > M/2 for large t ∈ (0,∞)q,

and from assumption (2.2) and equation (2.5) it follows that limt→∞ Dqz(t) = −∞, a

contradiction. Using a similar argument we reach a contradiction if limt→∞ z(t) = ∞.

Therefore we assume there exists a finite limit, limt→∞ z(t) = M ≤ 0. If M < 0, then

M > z(t) > p(t)x(q−kt) ≥ px(q−kt).

Thus for large t we have

M/p < x(q−kt),

and again from assumption (2.2) and equation (2.5) we have that limt→∞ Dqz(t) =

−∞ = L, a contradiction of L = 0. Consequently limt→∞ z(t) = 0, and since z is an

eventually increasing function, z(t) < 0 eventually and (2.9) and (2.10) hold. �
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Lemma 2.3. Assume x is a solution of (2.1), r satisfies (2.2), z is given by (2.3),

and

−1 ≤ p(t) ≤ 0, t ∈ (0,∞)q. (2.14)

Then the following assertions are valid.

(a) If x(t) < 0 eventually, then relations (2.10) and (2.13) hold.

(b) If x(t) > 0 eventually, then relations (2.9) and (2.10) hold.

Proof. We will prove (a); the proof of (b) is similar and thus omitted. From (2.4)

it follows that D2
qz(t) ≥ 0 eventually, and Dqz is an eventually nondecreasing func-

tion. Assumption (2.2) implies that r(t) 6= 0 eventually, and thus either Dqz(t) > 0

eventually or Dqz(t) < 0. Suppose that Dqz(t) > 0. Since Dqz is a nondecreas-

ing function, there exists a constant c > 0 such that Dqz(t) ≥ c eventually. Then

limt→∞ Dqz(t) = ∞. From (2.3) we obtain the inequality

z(t) < p(t)x(q−kt) ≤ −x(q−kt)

and therefore limt→∞ x(t) = −∞. On the other hand, from (2.3) again and from the

inequality z(t) > 0 there follows the estimate

x(t) > −p(t)x(q−kt) ≥ x(q−kt).

The inequalities x(t) < 0 and x(t) > x(q−kt) eventually imply that x is a bounded

function, a contradiction of the condition limt→∞ x(t) = −∞ proved above. Thus

Dqz(t) < 0, and z is an eventually decreasing function. Let L = limt→∞ Dqz(t). Then

limt→∞ z(t) = −∞. From the inequality x(t) < z(t) it follows that limt→∞ x(t) =

−∞, and then (2.5) implies the relation limt→∞ Dqz(t) = ∞. The contradiction

obtained shows that L = 0, that is limt→∞ Dqz(t) = 0. Suppose that z(t) < 0

eventually. Since z is a decreasing function, there exists a constant c < 0 such that

z(t) ≤ c eventually. The inequality z(t) > x(t) implies that x(t) ≤ c eventually.

From (2.5) it follows that limt→∞ Dqz(t) = ∞. The contradiction obtained shows

that z(t) > 0, and since z is an eventually decreasing function, then there exists a

finite limit M = limt→∞ z(t). If M > 0, then z(t) > M eventually. From (2.3) it

follows that

M < z(t) < p(t)x(q−kt) ≤ −x(q−kt),

that is x(q−kt) < −M . From (2.5) we obtain that limt→∞ Dqz(t) = ∞, a contradic-

tion. Hence, M = 0, in other words limt→∞ z(t) = 0. Since z is a decreasing function,

z(t) > 0 eventually, and we have shown that if x is an eventually negative solution of

(2.1), then (2.10) and (2.13) are valid. �
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Lemma 2.4. The function x is an eventually negative solution of (2.1) if and only

if −x is an eventually positive solution of the equation

D2
q

(

y(t) + p(t)y(q−kt)
)

+ r(t) min
s∈{0,··· ,ℓ}

y
(

q−st
)

= 0.

Lemma 2.4 is readily verified.

3. main results

In this section we present the main results on the oscillatory and asymptotic

behavior of solutions to (2.1).

Theorem 3.1. Assume r satisfies (2.2), and

−1 < p ≤ p(t) ≤ 0, t ∈ (0,∞)q. (3.1)

If x is a nonoscillatory solution of (2.1), then limt→∞ x(t) = 0.

Proof. Let x(t) > 0 eventually. Then Lemma 2.3 implies that z(t) < 0 eventually and

limt→∞ z(t) = 0. From (3.1) we have that

x(t) < −p(t)x(q−kt) < x(q−kt),

so that x is bounded. Let c = lim supt→∞ x(t), and suppose that c > 0. Choose an

increasing quantum sequence of points {ti} from (0,∞)q such that limi→∞ ti = ∞
and limi→∞ x(ti) = c. Set d = lim supi→∞ x(q−kti), and note that d ≤ c. Choose a

subsequence of points {tj} ⊂ {ti} such that d = limj→∞ x(q−ktj), and pass to the

limit in the inequality z(tj) ≥ x(tj) + px(q−ktj) as j → ∞. We then see that

0 ≥ c + pd ≥ c + pc = c(1 + p) > 0,

a contradiction. Thus lim supt→∞ x(t) = 0 and limt→∞ x(t) = 0. The case where

x(t) < 0 eventually is similar and is omitted. �

Theorem 3.2. Assume r satisfies (2.2), and condition (2.6) holds. If x is a bounded

nonoscillatory solution of (2.1), then limt→∞ x(t) = 0.

Proof. Let x(t) > 0 eventually; the case where x(t) < 0 eventually is similar and is

omitted. Since x is bounded, it follows from (2.3) that z is also bounded. Since (2.6)

holds, Lemma 2.2 implies that z(t) < 0 eventually and limt→∞ z(t) = 0. As in the

proof of Theorem 3.1, let c = lim supt→∞ x(t), and suppose that c > 0. Choose an

increasing quantum sequence of points {ti} from (0,∞)q such that limi→∞ ti = ∞
and limi→∞ x(ti) = c. Set d = lim supi→∞ x(q−kti), and note that d ≤ c. Choose a
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subsequence of points {tj} ⊂ {ti} such that d = limj→∞ x(q−ktj), and pass to the

limit in the inequality

z(tj) ≤ x(tj) + Px(q−ktj)

as j → ∞. We then see a contradiction, so that lim supt→∞ x(t) = 0 and limt→∞ x(t) =

0. �

Theorem 3.3. Assume condition (2.6) holds, and the coefficient function r satisfies

0 < r ≤ r(t) ≤ R, t ∈ [t0,∞)q. (3.2)

If x is an eventually positive solution of (2.1), then either limt→∞ x(t) = ∞ or

limt→∞ x(t) = 0.

Proof. Lemma 2.2 implies that either limt→∞ z(t) = −∞ or limt→∞ z(t) = 0. First,

we consider limt→∞ z(t) = −∞. Then

z(t) > p(t)x(q−kt) ≥ px(q−kt),

so that limt→∞ x(t) = ∞. Next, we consider limt→∞ z(t) = 0. In this case Lemma

2.2 implies that z is an eventually negative increasing function. If the solution x does

not vanish at infinity, then there exist a constant c > 0 and an increasing quantum

sequence of points {ti} from (t0,∞)q such that ti+1 > qℓti and x(ti) > c/2 for each

i ∈ N. Then, we have

max
s∈{0,··· ,ℓ}

x
(

q−st
)

> c/2, t ∈ [ti, ti+ℓ]q.

From this last inequality and (3.2) we obtain the estimate

(q − 1)
∑

η∈[ti,qℓti]q

ηr(η) max
s∈{0,··· ,ℓ}

x
(

q−sη
)

> (q − 1)(ℓ + 1)t0rc/2. (3.3)

It then follows from (3.3) and the choice of the quantum sequence {ti} that

(q − 1)
∑

η∈[t0,∞)q

ηr(η) max
s∈{0,··· ,ℓ}

x
(

q−sη
)

≥ (q − 1)

∞
∑

i=1

∑

η∈[ti,qℓti]q

ηr(η) max
s∈{0,··· ,ℓ}

x
(

q−sη
)

> (q − 1)
∞

∑

i=1

(ℓ + 1)t0rc/2 = ∞.

From (2.5) we then see that limt→∞ Dqz(t) = −∞. On the other hand, Lemma 2.2

implies that Dqz(t) > 0 eventually, a contradiction. Thus limt→∞ x(t) = 0. �

Theorem 3.4. Assume condition (3.2) holds, and p(t) ≡ −1. If x is an eventually

positive solution of (2.1), then limt→∞ x(t) = 0.
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Proof. Lemma 2.3 implies that limt→∞ z(t) = 0, where z is an eventually increasing

negative function. Suppose that the solution x does not vanish at infinity. From

(2.3) and the fact that z(t) < 0, it follows that x(t) < x(q−kt) eventually, so that x

is bounded. Let c = lim supt→∞ x(t) > 0. Choose an increasing quantum sequence

of points {ti} from (0,∞)q such that such that ti+1 > qℓti and x(ti) > c/2 for each

i ∈ N. Then, we have

max
s∈{0,··· ,ℓ}

x
(

q−st
)

> c/2, t ∈ [ti, ti+ℓ]q.

The proof is then completed in a way identical to the proof of Theorem 3.3. �

We now present a few sufficient conditions for the oscillation of all solutions of (2.1).

Theorem 3.5. Assume r satisfies (2.2), and at least one of the following conditions

1 < p ≤ p(t) ≤ P, (3.4)

0 ≤ p(t) ≤ P < 1, (3.5)

p(t) ≡ 1, (3.6)

holds for all t ∈ [t0,∞)q. Then each solution of (2.1) oscillates.

Proof. Assume to the contrary that x is a nonoscillatory solution of (2.1). Let x(t) > 0

eventually; the case where x(t) < 0 eventually is similar and is omitted.

First, let (3.4) hold. By (2.4), D2
qz(t) ≤ 0 eventually and Dqz(t) is nonincreasing.

From (2.2) we know that Dqz(t) 6= 0 eventually, and since x(t) > 0 and p(t) >

0 in this case, z(t) > 0 and Dqz(t) > 0 eventually. Suppose that limt→∞ z(t) =

c < ∞; we will show that lim inft→∞ x(t) > 0. To this end, assume instead that

lim inft→∞ x(t) = 0. Choose an increasing quantum sequence of points {ti} from

(0,∞)q such that limi→∞ ti = ∞ and limi→∞ x(q−kti) = 0. It then follows from (2.3)

that limi→∞ x(ti) = c. Using (2.3) and (3.4) we have that

z(qkti) = x(qkti) + p(qkti)x(ti) > p(qkti)x(ti) ≥ px(ti);

letting i → ∞ we see that c ≥ pc > c, a contradiction. Thus lim inf t→∞ x(t) > 0, so

that there exists a positive constant d with x(t) ≥ d > 0 eventually. From (2.2) and

(2.5) it follows that limt→∞ Dqz(t) = −∞, a contradiction of Dqz(t) > 0 eventually.

Consequently, limt→∞ z(t) = ∞. By (2.3) and (3.4), we must have limt→∞ x(t) = ∞,

which again implies by (2.2) and (2.5) that limt→∞ Dqz(t) = −∞, a contradiction.

We conclude that if (3.4) holds, then (2.1) has no eventually positive solutions.
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Next, let (3.5) hold. As in the previous case, through two contradictions we arrive

at the result.

Finally, let (3.6) hold. As in the first case, D2
qz(t) ≤ 0, Dqz(t) > 0, and z(t) > 0

eventually. Using (2.3) twice, we see that

x(qkt) − x(q−kt) = z(qkt) − z(t);

as z is eventually increasing, it follows that x(qkt) > x(q−kt) eventually. Thus

lim inft→∞ x(t) > 0. As in the first case, this leads to a contradiction and the re-

sult follows. �

4. example

In this section we offer an example related to the results of the previous section.

Note that in Theorem 3.1, in the case where p(t) < 0 eventually, we do not consider the

oscillatory behavior of solutions of (2.1) because there always exists a nonoscillatory

solution. This is shown in the following example.

Example 4.1. Consider the quantum equation

D2
q

(

x(t) + p(t)x(q−kt)
)

+ r(t) max
s∈{0,··· ,ℓ}

x(q−st) = 0, t ∈ (t0,∞)q, (4.1)

where q = 2, k = 2, r(t) = 1/t, t0 = 8, ℓ is a positive integer, and

p(t) =
1 − 6t + 4t2 + 4t3

−8t2(4 − 6t + t2)
∈

[−2257

10240
, 0

)

, t ∈ [t0,∞)q.

Then (4.1) has a negative solution x that satisfies limt→∞ x(t) = 0.

Proof. Since r(t) = 1/t,

∑

η∈[t0,∞)q

ηr(η) =
∑

η∈[23,∞)
2

1 = ∞,

so that (2.2) is satisfied. Using a computer algebra system, one can verify that

x(t) = −
√

t exp

(− ln2(t)

2 ln(2)

)

is a negative, increasing solution of (4.1) that vanishes at infinity, as guaranteed by

Theorem 3.1. �

EJQTDE, 2009 No. 16, p. 8



References

[1] D. Bainov, V. Petrov, and V. Proytcheva, Oscillatory and asymptotic behavior of second order

neutral differential equations with maxima, Dynamic Systems Appl., 4 (1995) 137–146.

[2] D. Bainov, V. Petrov, and V. Proytcheva, Oscillation and nonoscillation of first order neutral

differential equations with maxima, SUT J. Math., 31 (1995) 17–28.

[3] D. Bainov, V. Petrov, and V. Proytcheva, Existence and asymptotic behavior of nonoscillatory

solutions of second order neutral differential equations with maxima, J. Comput. Appl. Math.,

83 (1997) 237–249.

[4] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.

[5] J. W. Luo and D. D. Bainov, Oscillatory and asymptotic behavior of second-order neutral dif-

ference equations with maxima, J. Comput. Appl. Math., 131 (2001) 333–341.

[6] J. W. Luo and V. A. Petrov, Oscillation of second order neutral differential equations with

maxima, J. Math. Sci. Res. Hot-Line, 3:11 (1999) 17–22.

[7] V. A. Petrov, Nonoscillatory solutions of neutral differential equations with maxima, Commun.

Appl. Anal., 2 (1998) 129–142.

[8] G. F. Simmons, Calculus Gems: Brief Lives and Memorable Mathematics, McGraw-Hill, New

York, 1992.

(Received January 19, 2009)

Department of Mathematics and Computer Science, Concordia College, Moor-

head, MN 56562 USA

E-mail address : andersod@cord.edu, jdkwiatk@cord.edu

EJQTDE, 2009 No. 16, p. 9


