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Abstract

In this paper, we are interested on the study of the nonexistence of non-

trivial solutions for a class of partial differential equations, in unbounded

domains. This leads us to extend these results to m-equations systems.

The method used is based on energy type identities.
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1 Introduction

The study of the nonexistence of nontrivial solutions of partial differential equa-
tions and systems is the subject of several works of many authors, by using
various methods to obtain the necessary and sufficient conditions, so the stud-
ied problems admit only the null solutions. The works of Esteban & Lions [2],
Pohozaev [6] and Van Der Vorst [7], contains results concerning the semilin-
ear elliptic equations and systems. A semilar result can be found in [4], where
studied equations one of the form

{

λ∂2u
∂t2

− ∂
∂x

(

p (x, y) ∂u
∂x

)

− ∂
∂y

(q (x, y) ∂u
∂y

) + f (x, y, u) = 0 in R × ω,

u + ε ∂u
∂n

= 0 on R×∂ω,

considered in H2(R × ω) ∩ L∞(R × ω), where ω = ]a1, b1[ × ]a2, b2[ and this
equation does not admit nontrivial solutions if the following conditions holds

f(0) = 0, 2F (u) − uf(u) ≤ 0.
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In this work similar results for a class of the partial differential equations and
systems were also obtained.

Let us consider the following problem in H2(R×Ω)∩L∞(R×Ω), Ω a bounded
domain of Rn, for a function λ : R → R, not changing sign and p : R × Ω → R
also had not changing sign.







− ∂
∂t

(

λ (t) ∂u
∂t

)

−
n
∑

i=1

∂
∂xi

(

p (t, x) ∂u
∂xi

)

+ f (x, u) = 0 in R×Ω,

u + ε∂u
∂ν

= 0 on R × ∂Ω.

(1.1)

We use the notations

H = L2 (Ω) ,

‖u (t, x)‖ =

(

∫

Ω

|u(t, x)|
2
dx

)
1

2

, the norm of u in H,

‖∇u (t, x)‖2 =
∫

Ω

n
∑

i=1

∣

∣

∣

∂u
∂xi

∣

∣

∣

2

dx,

F (x, u) =
u
∫

0

f(x, σ)dσ, ∀ x ∈ Ω, u ∈ R.

Let L be the operator defined by

Lu (t, x) = −
n
∑

i=1

∂
∂xi

(

p (t, x) ∂u
∂xi

)

, (t, x) ∈ R × Ω,

and f : Ω × R → R a real continuous function, locally Lipschitz in u, such that

f(x, 0) = 0, ∀ x ∈ Ω.

We assume that
u ∈ H2(R; H) ∩ L∞(R; L∞(Ω)),

satisfies the equation

− ∂
∂t

(

λ (t) ∂u
∂t

(t)
)

+ Lu (t, x) + f(x, u) = 0 , (t, x) ∈ R × Ω, (1.2)

under the boundary conditions

(u + ε ∂u
∂n

) (t, σ) = 0, (t, σ) ∈ R × ∂Ω, Robin condition, (1.3)
u(t, σ) = 0, (t, σ) ∈ R × ∂Ω, Dirichlet condition, (1.4)
∂u(t,σ)

∂n
= 0, (t, σ) ∈ R × ∂Ω, Neumann condition. (1.5)

We extend the above result of (1.1) to the system of m-equations of the form







− ∂
∂t

(

λ (t) ∂uk

∂t

)

−
n
∑

i=1

∂
∂xi

(

pk (t, x) ∂uk

∂xi

)

+ fk (x, u1, ..., um) = 0 in R×Ω,

uk + ε∂uk

∂ν
= 0 on R × ∂Ω.

(1.6)
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1 ≤ k ≤ m, where fk : Ω × Rm→ R,are real continuous functions, locally
Lipschitz in ui, verifing

fk(x, u1, ..., 0, ..., um) = 0, ∀ x ∈ Ω,

∃Fm : Ω × Rm → R such that ∂Fm

∂sj
= fj (x, s1, ..., sm) , 1 ≤ j ≤ m,

Let Lk be the operators defined by

Lku (t, x) = −
n
∑

i=1

∂
∂xi

(

pk (t, x) ∂u
∂xi

)

, (t, x) ∈ R × Ω,

we assume that
uk ∈ H2(R; H) ∩ L∞(R; L∞(Ω)),

are solutions of the system

− ∂
∂t

(

λ (t) ∂uk

∂t
(t)

)

+
m
∑

k=1

Lkuk (t, x) + f(x, u1, ..., um) = 0 , (t, x) ∈ R × Ω,

(1.7)
1 ≤ k ≤ m, with boundary conditions

(uk + ε∂uk

∂n
) (t, σ) = 0, (t, σ) ∈ R × ∂Ω, Robin condition, (1.8)

uk(t, σ) = 0, (t, σ) ∈ R × ∂Ω, Dirichlet condition, (1.9)
∂uk(t,σ)

∂n
= 0, (t, σ) ∈ R × ∂Ω, Neumann condition. (1.10)

According to the sign of λ, this type of problems comprises equations of both
hyperbolic or elliptic type.

Our proof is based on energy type identities established in section 2, which
make it possible to obtain the main nonexistence result in section 3. In section
4 we apply the results to some examples.

2 Identities of energy type

In this section, we give essential lemmas for showing the main result of this
paper.

Lemma 1 Let λ and p satisfy

λ′ (t) ≤ 0 (resp ≥ 0) , ∀t ∈ R,
∂p
∂t

(t, x) ≤ 0 (resp ≥ 0) , ∀ (t, x) ∈ R × Ω.
(2.1)

Then the following energ identity,

− 1
2λ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

p(t, x) |∇u|
2
dx

+
∫

Ω

F (x, u)dx +
1

2ε

∫

∂Ω

p(t, s)u2 (t, s) ds = 0.
(2.2)

holds for any solution of the Robin problem of (1.2) − (1.3).
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Proof. The assumptions f ∈ W
1,∞
loc (Ω × R) , p ∈ L∞(R × Ω) and f(x, 0) =

0, ∀x ∈ Ω, allow us to deduce the existence of two positive constants C
1
and C2,

such that

|p(t, x)| ≤ C1, |F (x, u)| ≤ C2 |u (t, x)|
2
.

In addition, consider the functions

Ψ (t) =
1

2

∫

Ω

p(t, x) |∇u|2 dx, Φ (t) =
∫

Ω

F (x, u)dx, t ∈ R,

where Φ and Ψ are of class C1,and

|Ψ (t)| ≤ C1 ‖∇u(t, x)‖2
, |Φ (t)| ≤ C2 ‖u(t, x)‖2

, ∀t ∈ R.

Then,
Φ′ (t) =

∫

Ω

f(x, u)∂u
∂t

dx, ∀t ∈ R,

and

Ψ′ (t) =
∫

Ω

(

n
∑

i=1

p(t, x) ∂u
∂xi

∂2u
∂xi∂t

+ 1
2

∂p
∂t

(t, x) |∇u|
2

)

dx

= −
∫

Ω

n
∑

i=1

∂
∂xi

(

p(t, x) ∂u
∂xi

)

∂u
∂t

dx + 1
2

∫

Ω

∂p
∂t

(t, x) |∇u|
2
dx +

∫

∂Ω

p(t, s)∂u
∂ν

∂u
∂t

(t, s) ds.

Define the function K : R → R by

K (t) = − 1
2λ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ Ψ(t) + Φ(t).

The function K is absolutely continuous and differentiable in R, and

K ′(t) = − 1
2λ′ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
− λ (t)

∫

Ω

∂u
∂t

∂2u
∂t2

dx + Ψ′(t) + Φ′(t)

= 1
2λ′ (t)

∥

∥

∂u
∂t

(t)
∥

∥

2
+ 1

2

∫

Ω

∂p
∂t

(t, x) |∇u|2 dx +
∫

∂Ω

p(t, s)∂u
∂ν

∂u
∂t

(t, s) ds

+
∫

Ω

(

− ∂
∂t

(

λ (t) ∂u
∂t

)

−
n
∑

i=1

∂
∂xi

(

p(t, x) ∂u
∂xi

)

+ f(x, u)

)

∂u
∂t

dx.

Because u is solution of (1.2) − (1.3), we deduce that

K ′(x) = 1
2λ′ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

∂p
∂t

|∇u|
2
dx +

∫

∂Ω

p(t, x)∂u
∂ν

∂u
∂t

(t, s) ds,

while on the boundary,

∫

∂Ω

p(t, x)∂u
∂ν

∂u
∂t

(t, s) ds = −
1

ε

∫

∂Ω

p(t, s)∂u
∂t

u (t, s) ds.

Also

K ′(t) = 1
2λ′ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

∂p
∂t

(t, x) |∇u|
2
dx −

1

ε

∫

∂Ω

p(t, s)∂u
∂t

u (t, s)ds

=
1

2
λ′ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

∂p
∂t

(t, x) |∇u|2 dx

− 1
2ε

∂
∂t

(

∫

∂Ω

p(t, s)u2 (t, s) ds

)

+ 1
2ε

∫

∂Ω

∂p
∂t

(t, s)u2 (t, s) ds,
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i.e
d
dt

(

K(t) + 1
2ε

∫

∂Ω

p(t, s)u2 (t, s) ds

)

= 1
2λ′ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2

+ 1
2

∫

Ω

∂p
∂t

(t, x) |∇u|2 dx + 1
2ε

∫

∂Ω

∂p
∂t

(t, s)u2 (t, s) ds.

We set

M (t) = K(t) +
1

2ε

∫

∂Ω

p(t, s)u2 (t, s)ds.

Conditions (2.1) imply that

M ′ (t) ≤ 0 (resp ≥ 0) , ∀t ∈ R,

i.e H is monotonous. But also this function verifies

lim
|t|→+∞

M (t) = 0,

because M ∈ L2 (R) . Hence M (t) = 0, ∀t ∈ R, and this gives the desired result.

Lemma 2 Let λ and p verify (2.1). The solution of the Dirichlet problem (1.2) , (1.4)
or the Neumann problem (1.2) , (1.5) , satisfies the following energ identity

− 1
2λ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

p(t, x) |∇u|2 dx +
∫

Ω

F (x, u)dx = 0. (2.3)

Proof. For the problem (1.2) , (1.4), the fact that u = 0 on the boundary
implies that

∫

∂Ω

p(t, x)∂u
∂ν

∂u
∂t

(t, s) ds = d
dt

(

∫

∂Ω

p(t, x)∂u
∂ν

u (t, s) ds

)

−
∫

∂Ω

∂p
∂t

∂u
∂ν

u (t, s) ds −
∫

∂Ω

p(t, x) ∂2u
∂t∂ν

u (t, s)ds = 0.

For the problem (1.2) , (1.5), the fact that ∂u
∂ν

= 0 on the boundary implies that
∫

∂Ω

p(t, x)∂u
∂ν

∂u
∂t

(t, s) ds = 0.

The remainder of the proof is similar to that of Lemma 1.

Lemma 3 Let λ and pk satisfy

λ′ (t) ≤ 0 (resp ≥ 0) , ∀t ∈ R,
∂pk

∂t
(t, x) ≤ 0 (resp ≥ 0) , 1 ≤ k ≤ m, ∀ (t, x) ∈ R × Ω.

(2.4)

Then any solutions of the system (1.7)−(1.8) satisfies for all t ∈ R, the following
energetic identity

− 1
2

∑m
k=1 λ (t)

∥

∥

∂uk

∂t
(t, x)

∥

∥

2
+ 1

2

∑m
k=1

∫

Ω

pk(t, x) |∇uk|
2
dx

+
∫

Ω

Fm(x, u1, ..., um)dx +
1

2ε

∑m
k=1

∫

∂Ω

pk(t, s)u2
k (t, s) ds = 0.

(2.5)
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Lemma 4 Let λ and pk verify (2.5). Then the solutions of the systems (1.7)−
(1.9) or (1.7)− (1.10) , satisfies for all t ∈ R, the following estimate

− 1
2

∑m

k=1 λ (t)
∥

∥

∂uk

∂t
(t, x)

∥

∥

2
+ 1

2

∑m

k=1

∫

Ω

pk(t, x) |∇uk|
2
dx +

∫

Ω

Fm(x, u1, ..., um)dx = 0.

(2.6)

Proof. Let us define the function Km : R → R by

Km (t) = − 1
2

∑m
k=1 λ (t)

∥

∥

∂uk

∂t
(t, x)

∥

∥

2
+ Ψm(t) + Φm(t),

where the functions Ψm and Φm are defined as follows

Ψm (t) =
1

2

∫

Ω

∑m

k=1 pk(t, x) |∇uk|
2
dx, t ∈ R,

Φm (t) =
∫

Ω

Fm(x, u1, ..., um)dx, t ∈ R,

the rest of the proof is similar to the proofs of the preceding lemmas.

3 The main Result

Theorem 1 Let us suppose that λ, F and f verify

λ (t) > 0 (resp < 0) , ∀t ∈ R,

2F (x, u) − uf (x, u) ≤ 0 (resp ≥ 0) ,
(3.1)

and (2.1) holds. Then the problem (1.2)−(1.3) admit only the null solution.
Proof. Let us define the function E by

E (t) = ‖u (x, t)‖
2
.

Multiplying equation (1.1) by u and integrating the new equation on Ω, we
obtains

∫

Ω

[

− ∂
∂t

(

λ (t) ∂u
∂t

)

−
n
∑

i=1

∂
∂xi

(

p (t, x) ∂u
∂xi

)

− f (x, u)

]

udx

=
∫

Ω

[

− 1
2

(

λ′ (t)
∂(u2)

∂t
+ λ (t)

∂2(u2)
∂t2

)

+ λ (t)
(

∂u
∂t

)2

+p (t, x) |∇u|2 + uf (x, u)
]

dx −
n
∑

i=1

∫

∂Ω

p (t, s) ∂u
∂xi

u (t, s) νids

= − 1
2 (λ (t)E′′ (t) + λ′ (t)E′ (t)) + λ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+

∫

Ω

p (t, x) |∇u|
2
dx

+
∫

Ω

uf (x, u) dx −
∫

∂Ω

p (t, s) ∂u
∂ν

u (t, s) ds = 0.

Using identity (2.2), we have

d
dt

(λ (t)E′ (t)) = λ (t)E′′ (t) + λ′ (t)E′ (t)

= 2λ (t)
∥

∥

∂u
∂t

(t)
∥

∥

2
+ 2

∫

Ω

p (t, x) |∇u (t, x)|2 dx

+2
∫

Ω

u (t, x) f (x, u (t, x)) dx + 2
ε

∫

∂Ω

p (t, s)u2 (t, s) ds

= 4λ (t)
∥

∥

∂u
∂t

(t)
∥

∥

2
− 2

∫

Ω

(2F (x, u) − uf (x, u)) dx.
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If λ (t) > 0, the assumption (3.1) implies that

d
dt

(λ (t)E′ (t)) = λ (t)E′′ (t) + λ′ (t)E′ (t) ≥ 0 , ∀t ∈ R. (3.2)

We conclude that
E′ (t) ≤ 0,

otherwise,
∃t1 ≥ 0, E′ (t1) ≥ 0. (3.3)

Equation (3.2) implies that λ (t)E′ (t) is an increasing function

λ (t1)E′ (t1) ≤ λ (t)E′ (t) , ∀t ≥ t1,

but, one has
lim

|t|→+∞
E′ (t) = 0,

because E′ ∈ L2 (R), then

λ (t1)E′ (t1) ≤ 0 and λ (t1) > 0 ⇒ E′ (t1) ≤ 0,

which contradicts relation (3.3). Hence,

E′ (t) ≤ 0, ∀t ∈ R

i.e E is monotonous. But, this function verifies

lim
|t|→+∞

E (t) = 0,

witch implies that
E (t) = 0, ∀t ∈ R,

Thus u = 0 in R × 
.
If λ (t) < 0, we deduce by the same manner that u = 0 in R × 
.

Theorem 2 Let λ, F and f verify (3.1) and (2.1) holds. Then the only solution
of the problems (1.2) − (1.4) or (1.2) − (1.5) is the null solution.

Proof. Identical to that of Theorem 1.

Theorem 3 Let us suppose that λ, Fm and fk, 1 ≤ k ≤ m, satisfy

λ (t) > 0 (resp < 0) , ∀t ∈ R,

Fm (x, u1, ..., um) −
∑m

k=1 ukfk (x, u1, ..., um) ≤ 0 (resp ≥ 0) ,
(3.4)

and (2.5) holds. Then the system (1.7)− (1.8) admit only the null solutions.
Proof. Multiplying equation (1.6) by uk and integrating the new equation on
Ω, one obtains

− 1
2

(

λ (t) d2

dt2
‖uk (t, x)‖

2
+ λ′ (t) d

dt
‖uk (t, x)‖

2
)

+ λ (t)
∥

∥

∂uk

∂t
(t, x)

∥

∥

2
+

∫

Ω

pk (t, x) |∇uk|
2
dx

+
∫

Ω

ukfk (x, u1, ..., um) dx −
∫

∂Ω

pk (t, s) ∂uk

∂ν
uk (t, s) ds = 0.
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The sum on k from 1 to m gives

− 1
2 (λ (t)E′′

m (t) + λ′ (t)E′
m (t)) + λ (t)

∑m

k=1

∥

∥

∂uk

∂t
(t, x)

∥

∥

2
+

∑m

k=1

∫

Ω

pk (t, x) |∇uk|
2
dx

+
∑m

k=1

∫

Ω

uk (t, x) fk (x, u1, ..., um) dx −
∑m

k=1

∫

∂Ω

pk (t, s) ∂uk

∂ν
uk (t, s) ds = 0.

By using identity (2.6), we deduce that

d
dt

(λ (t) E′
m (t)) = λ (t)E′′

m (t) + λ′ (t)E′
m (t)

= 4λ (t)
∑m

k=1

∥

∥

∂uk

∂t
(t)

∥

∥

2
− 2

∫

Ω

(2Fm (x, u1, ..., um) −
∑m

k=1 uk (t, x) fk (x, u1, ..., um)) dx.

Then the assumption (3.4) gives the result.

Theorem 4 Let λ, p and F verify

λ (t) > 0, p (t, x) < 0 and F (x, u) ≤ 0, ∀ (t, x) ∈ R × Ω,

or
λ (t) < 0, p (t, x) > 0 and F (x, u) ≥ 0, ∀ (t, x) ∈ R × Ω,

(3.5)

and (2.1) holds. Then the problems (1.2) − (1.3), (1.2) − (1.4) and (1.2) − (1.5)
admit only the null solution.

Proof. Assumptions (3.4) and equality (2.3) allow is

− 1
2λ (t)

∥

∥

∂u
∂t

(t, x)
∥

∥

2
+ 1

2

∫

Ω

p(t, x) |∇u|
2
dx +

∫

Ω

F (x, u)dx = 0,

which implies that
∂u
∂t

(t, x) = 0, ∀ (t, x) ∈ R × Ω,

i.e.
u (t, x) = u (x) .

But the following condition is necessary
∫

R×Ω

|u (t, x)|
2
dtdx =

∫

R×Ω

|u (x)|
2
dtdx < +∞,

then u ≡ 0.

Theorem 5 Let λ, pk (1 ≤ k ≤ m)and f satisfy

λ (t) > 0, pk (t, x) < 0 and Fm (x, u1, ..., um) ≤ 0, ∀ (t, x) ∈ R × Ω,

or
λ (t) < 0, pk (t, x) > 0 and Fm (x, u1, ..., um) ≥ 0, ∀ (t, x) ∈ R × Ω.

(3.6)

and (2.4) holds. Then the systems (1.7)− (1.8) , (1.7)− (1.9) and (1.7)− (1.10)
admit only the null solutions.

Proof. Similar to that of Theorem 2.

Remark 1 Note that one can apply these results in the field R+ × Ω, with the
condition

u (0, x) = 0, ∀x ∈ Ω.
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4 Applications

Example 1 Let
θ, θ1, θ2 : Ω → R,

be a nonnegative functions of class C (R) , p, q ≥ 1 and m ∈ R, such that

f(x, u) = mu + θ1 (x) |u|
p−1

u + θ2 (x) |u|
q−1

u.

Then the problem defined by






∂2u
∂t2

−
n
∑

i=1

∂
∂xi

(

θ (x) ∂u
∂xi

)

+ f(x, u) = 0 in R × Ω,
(

u + ε ∂u
∂n

)

(x, σ) = 0 on R × ∂Ω,

(4.1)

admits anly the null solution.

In this case it suffice to check that

2F (x, u) − uf(x, u) =

θ1 (x) ( 2
p+1 − 1) |u|p+1 + θ2 (x) ( 2

q+1 − 1) |u|q+1 ≤ 0,

and apply Theorem 1.

Example 2 Let Ω be a bounded open of set Rn. Then, problem










∂
∂t

(

e−t2 ∂u
∂t

)

− ∆u = θ (x) |u|
p−1

u in R+ × Ω,
(

u + ε ∂u
∂n

)

(t, σ) = 0 on R+ × ∂Ω,

u (0, x) = 0, ∀x ∈ Ω,

(4.2)

where
p ≥ 1, θ : Ω → R, is nonnegative,

admits only the trivial solution, u ≡ 0.

Indeed,

λ (t) = −e−t2 < 0, λ′ (t) = 2te−t2 ≥ 0, ∀t ≥ 0,

2F (x, u) − uf(x, u) = θ (x) ( 2
p+1 − 1) |u|

p+1
≥ 0.

Theorem 1 gives the result.

Example 3 Let Ω be a bounded open of set Rn, p, q ≥ 1,Then, the system






− ∂
∂t

(

λ (t) ∂u
∂t

)

− ∆u + (p + 1) θ (x) u |u|
p−1

|v|
q+1

= 0 in R × Ω,

− ∂
∂t

(

λ (t) ∂v
∂t

)

− ∆v + (q + 1) θ (x) v |v|
q−1

|u|
p+1

= 0 in R × Ω,
(

u + ε ∂u
∂n

)

(t, σ) =
(

v + ε ∂v
∂n

)

(t, σ) = 0 on R × ∂Ω,

(4.3)

where
θ : Ω → R, is nonnegative,
λ (t) > 0 of a class L∞ (R) ,

admit only the trivial solutions, u ≡ v ≡ 0.
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Indeed, there exist a function F defined as follows

F (x, u, v) = θ (x) |u|
p+1

|v|
q+1

,

witch satisfies

∂F
∂u

= f1(x, u, v) = (p + 1) θ (x) u |u|
p−1

|v|
q+1

,
∂F
∂v

= f2(x, u, v) = (q + 1) θ (x) v |v|
q−1

|u|
p+1

,

F (x, u, v) − uf1(x, u, v) − vf2 (x, u, v) = −θ (x) (p + q + 1) |u|
p+1

|v|
q+1

≤ 0.

Theorem 3 gives the result.
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