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1 Introduction

In this paper we consider the existence of positive solutions for second-order
boundary value problems (BVPs) for systems of differential equations with in-
tegral boundary condition on the half-line:

u′′
1(t) + f1(t, u1(t), u2(t)) = 0, t ∈ (0,∞),

u′′
2(t) + f2(t, u1(t), u2(t)) = 0, t ∈ (0,∞),

u1(0) = u2(0) = 0,

u′
1(∞) =

∫ +∞

0

g1(s)u1(s)ds, u′
2(∞) =

∫ +∞

0

g2(s)u2(s)ds,

(1.1)

where u′
i(∞) = limt→+∞ u′

i(t), i = 1, 2.
Nonlocal BVPs have been well studied especially on a compact interval.

Gupta and co-authors, for example [1], has made an extensive study of multi-
point BVPs. The existence of positive solutions was studied by Ma in 1999 for a
type of three-point boundary value problem [2]. Many authors have studied the
existence of positive solutions for multi-point boundary value problems, and ob-
tained many sufficient conditions for the existence of positive solutions. See [3]
for a survey of some of the work done and for references to many contributions.
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Boundary value problems with Riemann-Stieltjes integral boundary condi-
tions (BCs) are now being studied since they include BVPs with two-point,
multipoint and integral BCs as special cases. See [4]–[16] and the references
therein.

In 2000, Ma [4] considered the existence of positive solutions for second order
ordinary differential equations

u′′ + a(t)f(u) = 0

u(0) = 0, u(1) =

∫ β

α

h(t)u(t)dt,

where [α, β] ⊂ (0, 1) and f is either superlinear or sublinear, by reducing this to a
three point BVP. Karakostas and Tsamatos [5]–[8] weakened the restrictions on
the function f and considered boundary conditions given by Riemann-Stieltjes
integral which improved the result of Ma [4]. This was further improved in [15].

Yang [10]–[12] investigated the boundary value problems of differential equa-
tions with some nonlinear BCs

−(au′)′ + bu = g(t)f(t, u), t ∈ [0, 1]

cos γ0u(0) − sin γ0u
′(0) = H1

(

∫ 1

0

u(τ)dα(τ)
)

,

cos γ1u(1) + sin γ1u
′(1) = H2

(

∫ 1

0

u(τ)dβ(τ)
)

.

Afterward, see [14], he studied the boundary value problem for systems of
second-order differential equations with integral boundary condition.

In [15, 16], Webb and Infante used fixed point index theory and gave a general
method for solving problems with integral BCs of Riemann-Stieltjes type. In [16]
they studied the existence of multiple positive solutions of nonlinear differential
equations of the form

−u′′(t) = g(t)f(t, u(t)), t ∈ (0, 1)

with boundary conditions including the following

u(0) = α[u], u(1) = β[u],

u(0) = α[u], u′(1) = β[u],

u(0) = α[u], u′(1) + β[u] = 0,

u′(0) = α[u], u(1) = β[u],

u′(0) + α[u] = 0, u(1) = β[u],

where α, β are linear functionals on C[0, 1] given by

α[u] =

∫ 1

0

u(s)dA(s), β[u] =

∫ 1

0

u(s)dB(s),

with A, B functions of bounded variation. By giving a general approach to
cover all of these boundary conditions (and others) in a unified way, this work
includes much previous work as special cases and improves the previous results.
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In particular, the work of Webb and Infante does not require the functionals
α[u], β[u] to be positive for all positive u so some sign changing measures are
allowed.

Feng [17] studied the existence of positive solutions for a class of boundary-
value problem with integral boundary conditions in Banach spaces.

On the other hand, boundary value problems on infinite intervals occur in
mathematical modeling of various applied problems, see the references of [18].
Several authors have studied problems on infinite intervals. See [18]–[27] and
their references. In [21]–[25], they studied a similar problem

(p(t)x′(t))′ + λq(t)f(t, x(t), x′(t)) = 0, t ∈ [0, +∞)

α1x(0) − β1x
′(0) − γ1 lim

t→0
p(t)x′(t) = δ1,

α2 lim
t→+∞

x(t) + β2 lim
t→+∞

p(t)x′(t) = δ2.

In [26], by applying fixed-point theorems, Tian, Ge, and Shan [26] considered
the existence of positive solutions for the three-point boundary value problem
on the half-line. Thereafter, Tian and Ge [27] studied the existence of positive
solutions for the multi-point boundary value problem on the half-line.

Motivated by the papers mentioned above, in this paper we investigate the
existence of positive solutions of boundary value problems for systems of second-
order differential equations (1.1) with integral boundary condition on the half-
line.

2 Preliminaries

Throughout the paper, we denote R
+ = [0, +∞).

Definition We say fi : R
+ ×R

+ ×R
+ → R

+ is an L1-Carathéodory function if
(1) fi(·, x, y) is measurable for any (x, y) ∈ R

+ × R
+;

(2) fi(t, ·, ·) is continuous for almost every t ∈ R
+;

(3) for each r1, r2 > 0, there exists φr1,r2
∈ L∞[0, +∞) such that

0 ≤ fi

(

t, (1 + t)x, (1 + t)y
)

≤ φr1,r2
(t),

for all x ∈ [0, r1], y ∈ [0, r2] and almost every t ∈ [0, +∞).

We assume that the following conditions hold.

(H1) gi ∈ L1[0, +∞) is nonnegative and 1 −
∫ +∞

0
sgi(s)ds > 0, i = 1, 2;

(H2) fi is an L1-Carathéodory function, i = 1, 2.

For convenience, we denote

ci =
1

1 −
∫ +∞

0
sgi(s)ds

, i = 1, 2.

Let

C(R+) = {x : R
+ → R : x is continuous and sup

t∈R+

|x(t)|

1 + t
< +∞}.

Define ‖x‖1 = supt∈R+

|x(t)|
1+t

. Then (C(R+), ‖ · ‖1) is a Banach space.
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Let

X = {(u1, u2) ∈ C(R+) × C(R+) : sup
t∈R+

|ui|

1 + t
< +∞, i = 1, 2}

with the norm ‖(u1, u2)‖ = ‖u1‖1 + ‖u2‖1. It is easy to prove that (X, ‖ · ‖) is
a Banach space.

In this paper, the main tool we use is the following Krasnosel’skii’s fixed
point theorem in cones, see for example [28].

Theorem 2.1 Let E be a Banach space and let K ⊂ E be a cone in E. Suppose
that Ω1, Ω2 are bounded open subsets of K with 0 ∈ Ω1, Ω1 ⊂ Ω2, and A : K →
K is a completely continuous operator such that either

‖Aw‖ ≤ ‖w‖, w ∈ ∂Ω1, ‖Aw‖ ≥ ‖w‖, w ∈ ∂Ω2,

or

‖Aw‖ ≥ ‖w‖, w ∈ ∂Ω1, ‖Aw‖ ≤ ‖w‖, w ∈ ∂Ω2.

Then A has a fixed point in Ω2 \ Ω1.

Lemma 2.2 Assume that (H1) holds. Then for any yi ∈ L1[0, +∞) and yi ≥ 0,
the boundary value problem

u′′
i (t) + yi(t) = 0 (2.1)

ui(0) = 0, u′
i(∞) =

∫ +∞

0

gi(s)ui(s)ds, (2.2)

has a unique solution ui ∈ C(R+), and

ui(t) =

∫ +∞

0

Hi(t, s)yi(s)ds, i = 1, 2, (2.3)

where

Hi(t, s) = G(t, s) + tci

∫ +∞

0

gi(r)G(s, r)dr, i = 1, 2,

and
G(t, s) = min{s, t}

Proof. In fact, for any yi ∈ L1[0, +∞) and yi ≥ 0, by the methods of [15] and
[16], it is easy to show that the unique solution of (2.1) and (2.2) is given by

ui(t) =

∫ +∞

0

Hi(t, s)yi(s)ds, i = 1, 2,

where Hi(t, s) can be written

Hi(t, s) = G(t, s) + tciGi(s), i = 1, 2,

with Gi(s) =
∫ +∞

0
gi(r)G(s, r)dr.

EJQTDE, 2009 No. 31, p. 4



Lemma 2.3 Assume that (H1) holds. Let δ ∈ (0, 1), then for all t ∈ [δ, 1
δ
], τ, s ∈

R
+, we have

Hi(τ, s) ≥ 0, Hi(t, s) ≥
δ

1 + τ
Hi(τ, s). (2.4)

Proof. It is clear that Hi(τ, s) ≥ 0.
For t ∈ [δ, 1

δ
], τ, s ∈ R

+, noting that G(t, s) = min{t, s}, we have

δ

1 + τ
G(τ, s) ≤

δ

1 + τ
τ < δ ≤ t.

and
δ

1 + τ
G(τ, s) ≤

δ

1 + τ
s < s.

This proves δ
1+τ

G(τ, s) ≤ min{t, s} = G(t, s). Therefore, it follows that

Hi(t, s) ≥
δ

1 + τ
Hi(τ, s), for s, τ ∈ R

+, t ∈ [δ,
1

δ
].

The lemma is proved.

Lemma 2.4 Assume that (H1) holds. If yi ∈ L1[0, +∞), yi ≥ 0, then the
unique solution ui(t) of the boundary value problem (2.1) and (2.2) satisfies
ui(t) ≥ 0 and minδ≤t≤ 1

δ

ui(t) ≥ δ‖ui‖1, i = 1, 2.

Proof. It is clear that ui(t) ≥ 0, for all t ∈ R
+, i = 1, 2.

From (2.3) and (2.4), for any t ∈ [δ, 1
δ
], s, τ ∈ R

+, i = 1, 2, we have

ui(t) =

∫ +∞

0

Hi(t, s)yi(s)ds

≥ δ

∫ +∞

0

1

1 + τ
Hi(τ, s)yi(s)ds

= δ
1

1 + τ
ui(τ).

Hence,
min

δ≤t≤ 1
δ

ui(t) ≥ δ‖ui‖1, i = 1, 2.

The lemma is proved.
Let

K = {(u1, u2) ∈ X : ui ≥ 0, min
δ≤t≤ 1

δ

ui(t) ≥ δ‖ui‖1, i = 1, 2}.

Then K ⊂ X is a cone in X .

By (H2), for (u1, u2) ∈ K, let
ui(s)

1 + s
≤ ri for all s ≥ 0, then we have

∫ +∞

0

fi(s, u1(s), u2(s))ds =

∫ +∞

0

fi

(

s, (1 + s)
u1(s)

1 + s
, (1 + s)

u2(s)

1 + s

)

ds

≤

∫ +∞

0

φr1,r2
(s)ds < +∞.
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So
∫ +∞

0
fi(s, u1(s), u2(s))ds is convergent and fi ∈ L1[0, +∞). Hence, from

Lemma 2.2, we know that the boundary value problem (1.1) is equivalent to

ui(t) =

∫ +∞

0

Hi(t, s)fi(s, u1(s), u2(s))ds, i = 1, 2.

Define Ti : K → C(R+) by

T1(u1, u2)(t) =

∫ +∞

0

H1(t, s)f1(s, u1(s), u2(s))ds,

T2(u1, u2)(t) =

∫ +∞

0

H2(t, s)f2(s, u1(s), u2(s))ds.

Let
T (u1, u2)(t) = (T1(u1, u2)(t), T2(u1, u2)(t)).

Lemma 2.5 ([29]) Let M ⊂ C(R+), then M is a relatively compact if the
following conditions hold:

(a) all functions from M are uniformly bounded in C(R+);

(b) the functions from {y : y = x
1+t

, x ∈ M} are equicontinuous on any
compact interval of [0, +∞);

(c) the functions from {y : y = x
1+t

, x ∈ M} and are equiconvergent at infinity,
that is , for any ε > 0, there exists a T = T (ε) > 0, such that |y(t) −
y(+∞)| < ε, for all t > T , and x ∈ M .

Lemma 2.6 Assume that (H1)(H2) hold. Then T : K → K is completely
continuous.

Proof. (1) T : K → K. For any (u1, u2) ∈ K,

Ti(u1, u2)(t)

1 + t
=

∫ +∞

0

Hi(t, s)

1 + t
fi(s, u1(s), u2(s))ds

=

∫ +∞

0

G(t, s) + tciGi(s)

1 + t
fi(s, u1(s), u2(s))ds

≤
(

1 + ci

∫ +∞

0

rgi(r)dr
)(

∫ +∞

0

φr1,r2
(s)ds

)

= ci

∫ +∞

0

φr1,r2
(s)ds < +∞.

So, T (u1, u2) ∈ X . From Lemma 2.4, we have T (u1, u2) ∈ K.

(2) T : K → K is continuous.
For any convergent sequence (u1,n, u2,n) → (u1, u2), then u1,n → u1, and

u2,n → u2, as n → +∞, and there are constants r1, r2 > 0, such that

‖u1,n‖, ‖u1‖ ≤ r1 and ‖u2,n‖, ‖u2‖ ≤ r2.
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By (H2), for a.e. s ∈ [0, +∞), we have

|fi(s, u1,n(s), u2,n(s)) − fi(s, u1(s), u2(s))| → 0, as n → +∞,

and
|fi(s, u1,n(s), u2,n(s)) − fi(s, u1(s), u2(s))| ≤ 2φr1,r2

(s).

From the Lebesgue dominated convergence theorem, we have

‖Ti(u1,n, u2,n) − Ti(u1, u2)‖1

≤ sup
t∈R+

∫ +∞

0

Hi(t, s)

1 + t
|fi(s, u1(s), u2(s)) − fi(s, u1,n(s), u2,n(s))|ds → 0.

So,
‖Ti(u1,n, u2,n) − Ti(u1, u2)‖1 → 0, n → +∞.

Hence, T : K → K continuous.
(3) T : K → K is relatively compact.
The proof of compactness follows from the Lemma 2.5 as in [29]
So, T : K → K is completely continuous. The lemma is proved.

3 The main result

We assume

(H3) There exist nonnegative functions ai ∈ L1[0, +∞), and continuous func-
tions hi ∈ C[R+ × R

+, R+], i = 1, 2, such that

fi(t, x, y) ≤ ai(t)hi(x, y), t, x, y ∈ R
+,

∫ +∞

0

sai(s)ds < +∞.

Obviously, if (H3) holds then
∫ +∞

0 ai(s)ds < +∞ and if (H1) and (H3) hold

then
∫ +∞

0
Hi(t,s)

1+t
(1 + s)ai(s)ds < +∞ for t ∈ R

+ and i = 1, 2.

Denote

h0
i = lim

x+y→0+

hi(x, y)

x + y
, h∞

i = lim
x+y→+∞

hi(x, y)

x + y
;

f0
i = lim

x+y→0+

inf
δ≤t≤ 1

δ

fi(t, x, y)

x + y
, f∞

i = lim
x+y→+∞

inf
δ≤t≤ 1

δ

fi(t, x, y)

x + y
;

Ni = inf
δ≤t≤ 1

δ

∫ 1
δ

δ

Hi(t, s)

1 + t
ds, ni = sup

t∈R+

∫ +∞

0

Hi(t, s)

1 + t
(1 + s)ai(s)ds.

Theorem 3.1 Suppose that hypotheses (H1) − (H3) hold and satisfy

(1) there exist positive numbers δ, mi, Mi, 0 < δ < 1, such that m1n1 +
m2n2 ≤ 1, M1N1δ + M2N2δ ≥ 1;

(2) 0 ≤ h0
i < mi, Mi < f∞

i ≤ +∞.

Then, the boundary value problem (1.1) has at least one positive solution.
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Proof. For 0 ≤ h0
i < mi and by continuity of hi, there exists a δ1 > 0 (δ1 < 1),

such that
hi(u1, u2) ≤ mi(u1 + u2), u1 + u2 ∈ (0, δ1].

Let
Ω1 = {(u1, u2) ∈ K : ‖(u1, u2)‖ < δ1}.

For any (u1, u2) ∈ ∂Ω1, t ∈ R
+, we have

Ti(u1, u2)(t)

1 + t
=

∫ +∞

0

Hi(t, s)

1 + t
fi(s, u1(s), u2(s))ds

≤

∫ +∞

0

Hi(t, s)

1 + t
ai(s)hi(u1(s), u2(s))ds

≤ mi(‖u1‖1 + ‖u2‖1)

∫ +∞

0

Hi(t, s)

1 + t
(1 + s)ai(s)ds

≤ mini(‖u1‖1 + ‖u2‖1).

So,

‖T (u1, u2)‖ = ‖T1(u1, u2)‖1 + ‖T2(u1, u2)‖1

≤ m1n1(‖u1‖1 + ‖u2‖1) + m2n2(‖u1‖1 + ‖u2‖1)

≤ ‖u1‖1 + ‖u2‖1 = ‖(u1, u2)‖.

Therefore
‖T (u1, u2)‖ ≤ ‖(u1, u2)‖, (u1, u2) ∈ ∂Ω1. (3.1)

For Mi < f∞
i ≤ +∞, there exists δ2 > 1 such that

fi(t, u1, u2) ≥ Mi(u1 + u2), t ∈ [δ,
1

δ
], u1 + u2 > δδ2.

Let
Ω2 = {(u1, u2) ∈ K : ‖(u1, u2)‖ < δ2}.

For (u1, u2) ∈ Ω2 ⊂ K, by Lemma 2.4, we have

min
δ≤t≤ 1

δ

ui(t) ≥ δ‖ui‖1, i = 1, 2.

Hence,
min

δ≤t≤ 1
δ

(u1(t) + u2(t)) ≥ δ(‖u1‖1 + ‖u2‖1).

So for (u1, u2) ∈ ∂Ω2 and t ∈ R
+, we get

Ti(u1, u2)(t)

1 + t
≥

∫ 1
δ

δ

Hi(t, s)

1 + t
fi(s, u1(s), u2(s))ds

≥ δMi(‖u1‖1 + ‖u2‖1)

∫ 1
δ

δ

Hi(t, s)

1 + t
ds

≥ δMiNi(‖u1‖1 + ‖u2‖1).
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We have

‖T (u1, u2)‖ = ‖T1(u1, u2)‖1 + ‖T2(u1, u2)‖1

≥ δM1N1(‖u1‖1 + ‖u2‖1) + δM2N2(‖u1‖1 + ‖u2‖1)

≥ (‖u1‖1 + ‖u2‖1) ≥ ‖(u1, u2)‖.

Therefore
‖T (u1, u2)‖ ≥ ‖(u1, u2)‖, (u1, u2) ∈ ∂Ω2. (3.2)

From (3.1) and (3.2) and Theorem 2.1, we know that T has at least one
positive solution in K ∩ (Ω2 \Ω1). Therefore the boundary value problem (1.1)
has at least one positive solution.

The theorem is proved.

Theorem 3.2 Suppose that hypotheses (H1) − (H3) hold and satisfy

(1) there exist positive numbers δ, pi, Pi, 0 < δ < 1, such that 0 ≤ h∞
i < pi,

Pi < f0
i ≤ +∞;

(2) p1n1 + p2n2 ≤ 1, P1N1δ + P2N2δ ≥ 1.

Then, the boundary value problem (1.1) has at least one positive solution.

Proof. For Pi < f0
i ≤ +∞, there exists a δ3 > 0 (δ3 < 1), such that

fi(t, u1, u2) ≥ Pi(u1 + u2), t ∈ [δ,
1

δ
], 0 < u1 + u2 < δ3.

Let
Ω3 = {(u1, u2) ∈ K : ‖(u1, u2)‖ < δ3}.

For (u1, u2) ∈ Ω3 ⊂ K, from Lemma 2.4 we have

min
δ≤t≤ 1

δ

ui(t) ≥ δ‖ui‖1, i = 1, 2.

Hence,
min

δ≤t≤ 1
δ

(u1(t) + u2(t)) ≥ δ(‖u1‖1 + ‖u2‖1).

For (u1, u2) ∈ ∂Ω3 and t ∈ R
+,

Ti(u1, u2)(t)

1 + t
≥

∫ 1
δ

δ

Hi(t, s)

1 + t
fi(s, u1(s), u2(s))ds

≥ δPi(‖u1‖1 + ‖u2‖1)

∫ 1
δ

δ

Hi(t, s)

1 + t
ds

≥ δPiNi(‖u1‖1 + ‖u2‖1).

We can get

‖T (u1, u2)‖ = ‖T1(u1, u2)‖1 + ‖T2(u1, u2)‖1

≥ δP1N1(‖u1‖1 + ‖u2‖1) + δP2N2(‖u1‖1 + ‖u2‖1)

≥ (‖u1‖1 + ‖u2‖1) ≥ ‖(u1, u2)‖.
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Therefore
‖T (u1, u2)‖ ≥ ‖(u1, u2)‖, (u1, u2) ∈ ∂Ω3. (3.3)

For 0 ≤ h∞
i < pi, there exists a R0 > 0, such that

hi(u1, u2) ≤ pi(‖u1‖1 + ‖u2‖1), ‖u1‖1 + ‖u2‖1 > R0.

Denote qi = max0≤‖u1‖1+‖u2‖1≤R0
hi(u1, u2), then we have

hi(u1, u2) ≤ qi + pi(‖u1‖1 + ‖u2‖1), (u1, u2) ∈ X.

There exists a δ4 (δ4 > max{1, δ3, (q1n1 + q2n2)(1 − p1n1 − p2n2)
−1}).

Let
Ω4 = {(u1, u2) ∈ K : ‖(u1, u2)‖ < δ4}.

For any (u1, u2) ∈ ∂Ω4 and t ∈ R
+, we have

Ti(u1, u2)(t)

1 + t
≤

∫ +∞

0

Hi(t, s)

1 + t
ai(s)hi(u1(s), u2(s))ds

≤

∫ +∞

0

Hi(t, s)

1 + t
ai(s)(qi + pi(u1 + u2))ds

< pi(‖u1‖1 + ‖u2‖1)

∫ +∞

0

Hi(t, s)

1 + t
(1 + s)ai(s)ds

+ qi

∫ +∞

0

Hi(t, s)

1 + t
(1 + s)ai(s)ds

≤ pini(‖u1‖1 + ‖u2‖1) + qini.

So,

‖T (u1, u2)‖ = ‖T1(u1, u2)‖1 + ‖T2(u1, u2)‖1

≤ (p1n1 + p2n2)(‖u1‖1 + ‖u2‖1) + q1n1 + q2n2

≤ (‖u1‖1 + ‖u2‖1) = ‖(u1, u2)‖.

Therefore
‖T (u1, u2)‖ ≤ ‖(u1, u2)‖, (u1, u2) ∈ ∂Ω4. (3.4)

From (3.3) and (3.4) and Theorem 2.1, we know T has at least one positive
solution at K ∩ (Ω4 \ Ω3). Therefore the boundary value problem (1.1) has at
least one positive solution.

The theorem is proved.

4 Illustration

We give an example to illustrate our results.
Example Consider the following the boundary value problem:

u′′
1(t) + (u1 + u2)

2e−t = 0,

u′′
2(t) + (u1 + u2)

3
2 e−t = 0,

u1(0) = u2(0) = 0,

u′
1(∞) =

∫ +∞

0

e−2su1(s)ds, u′
2(∞) =

∫ +∞

0

e−2su2(s)ds.
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In this example,

f1(t, u1, u2) = (u1+u2)
2e−t, f2(t, u1, u2) = (u1+u2)

3
2 e−t, g1(s) = g1(s) = e−2s,

a1(t) = a2(t) = e−t, h1(u1, u2) = (u1 + u2)
2, h2(u1, u2) = (u1 + u2)

3
2 .

For the constants r1, r2 > 0, we take φr1,r2
(t) = (1 + r1 + r2)

2(1 + t)2e−t. Let
δ = 1

2 .
Since ni ≤

68
27 and Ni ≥

1
9 , we take mi = 1

6 , Mi = 10. Then the conditions
in Theorem 3.1 are all satisfied. By Theorem 3.1, the boundary value problem
mentioned in the example above has at least one positive solution.
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