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Abstract

In this paper, we establish the existence of at least three positive so-

lutions for the system of higher order boundary value problems on time

scales by using the well-known Leggett-Williams fixed point theorem.

And then, we prove the existence of at least 2k-1 positive solutions for

arbitrary positive integer k.

1 Introduction

The boundary value problems (BVPs) play a major role in many fields of
engineering design and manufacturing. Major established industries such as
the automobile, aerospace, chemical, pharmaceutical, petroleum, electronics
and communications, as well as emerging technologies such as nanotechnology
and biotechnology rely on the BVPs to simulate complex phenomena at differ-
ent scales for design and manufactures of high-technology products. In these
applied settings, positive solutions are meaningful. Due to their important
role in both theory and applications, the BVPs have generated a great deal of
interest over the recent years.

The development of the theory has gained attention by many researchers.
To mention a few, we list some papers Erbe and Wang [7], Eloe and Henderson
[5, 6], Hopkins and Kosmatov [9], Li [10], Atici and Guseinov [11], Anderson
and Avery [2], Avery and Peterson [3] and Peterson, Raffoul and Tisdell [12].
For the time scale calculus and notation for delta differentiation, as well as
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concepts for dynamic equations on time scales, we refer to the introductory
book on time scales by Bohner and Peterson [4]. By an interval we mean the
intersection of real interval with a given time scale.

In this paper, we address the question of the existence of multiple positive
solutions for the nonlinear system of boundary value problems on time scales,

{

y∆(m)

1 + f1(t, y1, y2) = 0, t ∈ [a, b]

y∆(n)

2 + f2(t, y1, y2) = 0, t ∈ [a, b]
(1)

subject to the two-point boundary conditions






y∆(i)

1 (a) = 0, 0 ≤ i ≤ m − 2,
y1(σ

q(b)) = 0,

y∆(j)

2 (a) = 0, 0 ≤ j ≤ n − 2,
y2(σ

q(b)) = 0,

(2)

where fi : [a, σq(b)] × R
2 → R, i = 1, 2 are continuous, m, n ≥ 2, q =

min{m, n}, and σq(b) is right dense so that σq(b) = σr(b) for r ≥ q.
This paper is organized as follows. In Section 2, we prove some lemmas

and inequalities which are needed later. In Section 3, we obtain existence and
uniqueness of a solution for the BVP (1)-(2), due to Schauder fixed point theo-
rem. In Section 4, by using the cone theory techniques, we establish sufficient
conditions for the existence of at least three positive solutions to the BVP
(1)-(2). The main tool in this paper is an applications of the Leggett-Williams
fixed point theorem for operator leaving a Banach space cone invariant, and
then, we prove the existence of at least 2k − 1 positive solutions for arbitrary
positive integer k.

2 Green’s function and bounds

In this section, we construct the Green’s function for the homogeneous
BVP corresponding to the BVP (1)-(2). And then we prove some inequalities
which are needed later.

To obtain a solution (y1(t), y2(t)) of the BVP (1)-(2) we need the Gn(t, s),
(n ≥ 2) which is the Green’s function of the BVP,

−y∆(n)

= 0, t ∈ [a, b] (3)

y∆(i)

(a) = 0, 0 ≤ i ≤ n − 2, (4)

y(σn(b)) = 0. (5)
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Theorem 2.1 The Green’s function for the BVP (3)-(5) is given by

Gn(t, s) =
1

(n − 1)!







∏n−1
i=1

(t−σi−1(a))(σn(b)−σi(s))
(σn(b)−σi−1(a))

, t ≤ s,

∏n−1
i=1

(t−σi−1(a))(σn(b)−σi(s))
(σn(b)−σi−1(a))

−
∏n−1

i=1 (t − σi(s)), σ(s) ≤ t.

Proof: It is easy to check that the BVP (3)-(5) has only trivial solution. Let

y(t, s) be the Cauchy function for −y∆(n)
= 0, and be given by

y(t, s) =
−1

(n − 1)!

∫ t

σ(s)

∫ t

σ2(s)

...

∫ t

σn−1(s)
︸ ︷︷ ︸

(n−1) times

∆τ∆τ...∆τ =
−1

(n − 1)!

n−1∏

i=1

(t − σi(s)).

For each fixed s ∈ [a, b], let u(., s) be the unique solution of the BVP

−u∆(n)

(., s) = 0,

u∆(i)

(a, s) = 0, 0 ≤ i ≤ n − 2 and u(σn(b), s) = −y(σn(b), s).

y(t, s) |t=σn(b)=
−1

(n − 1)!

n−1∏

i=1

(σn(b) − σi(s)).

Since

u1(t) = 1, u2(t) =

∫ t

a

∆τ, ..., un(t) =

∫ t

a

∫ t

σ(a)

...

∫ t

σn−2(a)
︸ ︷︷ ︸

(n−1) times

∆τ∆τ...∆τ

are the solutions of −u∆(n)
= 0,

u(t, s) = α1(s).1 + α2(s).

∫ t

a

∆τ + ... + αn(s).

∫ t

a

∫ t

σ(a)

...

∫ t

σn−2(a)
︸ ︷︷ ︸

(n−1) times

∆τ∆τ...∆τ

By using boundary conditions, u∆(i)
(a) = 0, 0 ≤ i ≤ n − 2, we have α1 =

α2 = ... = αn−1 = 0. Therefore, we have

u(t, s) = αn

∫ t

a

∫ t

σ(a)

...

∫ t

σn−2(a)
︸ ︷︷ ︸

(n−1) times

∆τ∆τ...∆τ = αn

n−1∏

i=1

(t − σi−1(a)).
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Since,
u(σn(b), s) = −y(σn(b), s),

it follows that

αn

n−1∏

i=1

(σn(b) − σi−1(a)) =
1

(n − 1)!

n−1∏

i=1

(σn(b) − σi(s)).

From which implies

αn =
1

(n − 1)!

n−1∏

i=1

(σn(b) − σi(s))

(σn(b) − σi−1(a))
.

Hence Gn(t, s) has the form for t ≤ s,

Gn(t, s) =
1

(n − 1)!

n−1∏

i=1

(t − σi−1(a))(σn(b) − σi(s))

(σn(b) − σi−1(a))
.

And for t ≥ σ(s), Gn(t, s) = y(t, s) + u(t, s). It follows that

Gn(t, s) =
1

(n − 1)!

n−1∏

i=1

(t − σi−1(a))(σn(b) − σi(s))

(σn(b) − σi−1(a))
−

1

(n − 1)!

n−1∏

i=1

(t − σi(s)).

2

Lemma 2.2 For (t, s) ∈ [a, σn(b)] × [a, b], we have

Gn(t, s) ≤ Gn(σ(s), s). (6)

Proof: For a ≤ t ≤ s ≤ σn(b), we have

Gn(t, s) =
1

(n − 1)!

n−1∏

i=1

(t − σi−1(a))(σn(b) − σi(s))

(σn(b) − σi−1(a))

≤
1

(n − 1)!

n−1∏

i=1

(σ(s) − σi−1(a))(σn(b) − σi(s))

(σn(b) − σi−1(a))

= Gn(σ(s), s).

Similarly, for a ≤ σ(s) ≤ t ≤ σn(b), we have Gn(t, s) ≤ Gn(σ(s), s). Thus,
we have

Gn(t, s) ≤ Gn(σ(s), s), for all (t, s) ∈ [a, σn(b)] × [a, b].

2
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Lemma 2.3 Let I = [σn(b)+3a

4
,

3σn(b)+a

4
]. For (t, s) ∈ I × [a, b], we have

Gn(t, s) ≥
1

16n−1
Gn(σ(s), s). (7)

Proof: The Green’s function for the BVP (3)-(5) is given in the Theorem 2.1,
clearly shows that

Gn(t, s) > 0 on (a, σn(b)) × (a, b).

For a ≤ t ≤ s < σn(b) and t ∈ I, we have

Gn(t, s)

Gn(σ(s), s)
=

n−1∏

i=1

(t − σi−1(a))(σn(b) − σi(s))

(σ(s) − σi−1(a))(σn(b) − σi(s))

≥
n−1∏

i=1

(t − σi−1(a))

(σn(b) − a)

≥
1

4n−1
.

And for a ≤ σ(s) ≤ t < σn(b) and t ∈ I, we have

Gn(t, s)

Gn(σ(s), s)

=

∏n−1
i=1 (t − σi−1(a))(σn(b) − σi(s)) −

∏n−1
i=1 (t − σi(s))(σn(b) − σi(a))

∏n−1
i=1 (σ(s) − σi−1(a))(σn(b) − σi(s))

≥

∏n−1
i=1 (t − σi−1(a))(σn(b) − σi(s)) −

∏n−1
i=1 (t − σi(s))(σn(b) − σi(a))

∏n−1
i=1 (σn(b) − σi−1(a))(σn(b) − σi(s))

≥
[(σ(s) − a)(σ2(b) − t)]

∏n−1
i=2 (t − σi−1(a))(σn(b) − σi(s))

∏n−1
i=1 (σn(b) − σi−1(a))(σn(b) − σi(a))

≥
1

16n−1
.

2

Remark:

Gn(t, s) ≥ γGn(σ(s), s) and Gm(t, s) ≥ γGm(σ(s), s),

for all (t, s) ∈ I × [a, σq(b)], where γ = min
{

1
16n−1 ,

1
16m−1

}
.
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3 Existence and Uniqueness

In this section, we give the existence and local uniqueness of solution of the
BVP (1)-(2). To prove this result, we define B = E×E and for (y1, y2) ∈ B, we
denote the norm by ‖(y1, y2)‖ = ‖y1‖0+‖y2‖0, where E = {y : y ∈ C[a, σq(b)]}
with the norm ‖y‖0 = maxt∈[a,σq(b)]{|y(t)|}, obviously (B, ‖ . ‖) is a Banach
space.

Theorem 3.1 If M satisfies

Q ≤ Mε,

where ε = 1
2max{εm,εn}

,

εm = max
t∈[a,σq(b)]

∫ σ(b)

a

Gm(t, s)∆s; and εn = max
t∈[a,σq(b)]

∫ σ(b)

a

Gn(t, s)∆s

and Q > 0 satisfies

Q ≥ max
‖(y1,y2)‖≤M

{|f1(t, y1, y2)|, |f2(t, y1, y2)|}, for t ∈ [a, σq(b)],

then the BVP (1)-(2) has a solution in the cone P contained in B.

Proof: Set P = {(y1, y2) ∈ B :‖ (y1, y2) ‖≤ M} the P is a cone in B, Note
that P is closed, bounded and convex subset of B to which the Schauder fixed
point theorem is applicable. Define T : P → B by

T (y1, y2)(t) :=

(
∫ σ(b)

a

Gm(t, s)f1(s, y1, y2)∆s,

∫ σ(b)

a

Gn(t, s)f2(s, y1, y2)∆s

)

:= (Tm(y1, y2)(t), Tn(y1, y2)(t)),

for t ∈ [a, σq(b)]. Obviously the solution of the BVP (1)-(2) is the fixed point
of operator T . It can be shown that T : P → B is continuous. Claim that
T : P → P . If (y1, y2) ∈ P , then

‖ T (y1, y2) ‖ =‖ Tm(y1, y2) ‖0 + ‖ Tn(y1, y2) ‖0

= max
t∈[a,σq(b)]

|Tm(y1, y2)| + max
t∈[a,σq(b)]

|Tn(y1, y2)|

≤ (εm + εn)Q

≤
Q

ε
,

where
Q ≥ max

‖(y1,y2)‖≤M
{|f1(t, y1, y2)|, |f2(t, y1, y2)|},
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for t ∈ [a, σq(b)]. Thus we have

‖ T (y1, y2) ‖≤ M,

where M satisfies Q ≤ Mε. 2

Corollary 3.2 If the functions f1, f2, as defined in equation (1), are contin-

uous and bounded. Then the BVP (1)-(2) has a solution.

Proof: Choose P > sup{|f1(t, y1, y2)|, |f2(t, y1, y2)|}, t ∈ [a, σq(b)]. Pick M

large enough so that P < Mε, where ε = 1
2max{εm,εn}

. Then there is a number
Q > 0 such that P > Q where

Q ≥ max
‖(y1,y2)‖≤M

{|f1(t, y1, y2)|, |f2(t, y1, y2)|}, t ∈ [a, σq(b)].

Hence
1

ε
<

M

P
≤

M

Q
,

and then the BVP (1)-(2) has a solution by Theorem 3.1. 2

4 Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions
for the system of BVPs (1)-(2). And also we establish the 2k − 1 positive
solutions for arbitrary positive integer k.

Let B be a real Banach space with cone P . A map S : P → [0,∞) is said
to be a nonnegative continuous concave functional on P , if S is continuous
and

S(λx + (1 − λ)y) ≥ λS(x) + (1 − λ)S(y),

for all x, y ∈ P and λ ∈ [0, 1]. Let a′ and b′ be two real numbers such that
0 < a′ < b′ and S be a nonnegative continuous concave functional on P . We
define the following convex sets

Pa′ = {y ∈ P :‖ y ‖< a′},

P (S, a′, b′) = {y ∈ P : a′ ≤ S(y), ‖ y ‖≤ b′}.

We now state the famous Leggett-Williams fixed point theorem.
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Theorem 4.1 Let T : P c′ → P c′ be completely continuous and S be a non-

negative continuous concave functional on P such that S(y) ≤‖ y ‖ for all

y ∈ P c′. Suppose that there exist a′, b′, c′, and d′ with 0 < d′ < a′ < b′ ≤ c′

such that

(i){y ∈ P (S, a′, b′) : S(y) > a′} 6= ∅ and S(Ty) > a′ for y ∈ P (S, a′, b′),

(ii) ‖ Ty ‖< d′ for ‖ y ‖≤ d′,

(iii)S(Ty) > a′ for y ∈ P (S, a′, c′) with ‖ T (y) ‖> b′.

Then T has at least three fixed points y1, y2, y3 in P c′ satisfying

‖ y1 ‖< d′, a′ < S(y2), ‖ y3 ‖> d′, S(y3) < a′. 2

For convenience, we let

Cm = min
t∈I

∫

s∈I

Gm(t, s)∆s; Cn = min
t∈I

∫

s∈I

Gn(t, s)∆s.

Theorem 4.2 Assume that there exist real numbers d0, d1, and c with 0 <

d0 < d1 < d1

γ
< c such that

f1(t, y1(t), y2(t)) <
d0

2εm

and f2(t, y1(t), y2(t)) <
d0

2εn

, (8)

for t ∈ [a, σq(b)] and (y1, y2) ∈ [0, d0] × [0, d0],

f1(t, y1(t), y2(t)) >
d1

2Cm

or f2(t, y1(t), y2(t)) >
d1

2Cn

, (9)

for t ∈ I and (y1, y2) ∈ [d1,
d1

γ
] × [d1,

d1

γ
],

f1(t, y1(t), y2(t)) <
c

2εm

and f2(t, y1(t), y2(t)) <
c

2εn

, (10)

for t ∈ [a, σq(b)] and (y1, y2) ∈ [0, c] × [0, c].
Then the BVP (1)-(2) has at least three positive solutions.

Proof: We consider the Banach space B = E×E where E = {y|y ∈ C[a, σq(b)]}
with the norm

‖ y ‖0= max
t∈[a,σq(b)]

| y(t) | .
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And for (y1, y2) ∈ B, we denote the norm by ‖ (y1, y2) ‖=‖ y1 ‖0 + ‖ y2 ‖0.
Then define a cone P in B by

P = {(y1, y2) ∈ B : y1(t) ≥ 0 and y2(t) ≥ 0, t ∈ [a, σq(b)]}.

For (y1, y2) ∈ P , we define

S(y1, y2) = min
t∈I

{y1(t)} + min
t∈I

{y2(t)} .

We denote

Tm(y1, y2)(t) :=

∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s,

Tn(y1, y2)(t) :=

∫ σ(b)

a

Gn(t, s)f2(s, y1(s), y2(s))∆s,

for t ∈ [a, σq(b)] and the operator T (y1, y2)(t) := (Tm(y1, y2)(t), Tn(y1, y2)(t)).

It is easy to check that S is a nonnegative continuous concave functional
on P with S(y1, y2)(t) ≤‖ (y1, y2) ‖ for (y1, y2) ∈ P and that T : P →
P is completely continuous and fixed points of T are solutions of the BVP
(1)-(2). First, we prove that if there exists a positive number r such that
f1(t, y1(t), y2(t)) < r

2εm
and f2(t, y1(t), y2(t)) < r

2εn
for (y1, y2) ∈ [0, r] × [0, r],

then T : P r → Pr. Indeed, if (y1, y2) ∈ P r, then for t ∈ [a, σq(b)].

‖ T (y1, y2) ‖ = max
t∈[a,σq(b)]

|

∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s |

+ max
t∈[a,σq(b)]

|

∫ σ(b)

a

Gn(t, s)f2(s, y1(s), y2(s))∆s |

<
r

2εm

∫ σ(b)

a

Gm(t, s)∆s +
r

2εn

∫ σ(b)

a

Gn(t, s)∆s = r.

Thus, ‖ T (y1, y2) ‖< r, that is, T (y1, y2) ∈ Pr. Hence, we have shown that if
(8) and (10) hold, then T maps P d0 into Pd0 and P c into Pc. Next, we show
that {(y1, y2) ∈ P (S, d1,

d1

γ
) : S(y1, y2) > d1} 6= ∅ and S(T (y1, y2)) > d1 for all

(y1, y2) ∈ P (S, d1,
d1

γ
). In fact, the constant function

d1 + d1

γ

2
∈

{

(y1, y2) ∈ P (S, d1,
d1

γ
) : S(y1, y2) > d1

}

.
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Moreover, for (y1, y2) ∈ P (S, d1,
d1

γ
), we have

d1

γ
≥‖ (y1, y2) ‖≥ y1(t) + y2(t) ≥ min

t∈I
{y1(t)} + min

t∈I
{y2(t)} = S(y1, y2) ≥ d1,

for all t ∈ I. Thus, in view of (9) we see that

S(T (y1, y2))

= min
t∈I

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

+ min
t∈I

{
∫ σ(b)

a

Gn(t, s)f2(s, y1(s), y2(s))∆s

}

≥ min
t∈I

{∫

s∈I

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

+ min
t∈I

{∫

s∈I

Gn(t, s)f2(s, y1(s), y2(s))∆s

}

>
d1

2Cm

min
t∈I

{∫

s∈I

Gm(t, s)∆s

}

+
d1

2Cn

min
t∈I

{∫

s∈I

Gn(t, s)∆s

}

= d1,

as required. Finally, we show that if (y1, y2) ∈ P (S, d1, c) and ‖ T (y1, y2) ‖>
d1

γ
,

then S(T (y1, y2)) > d1. To see this, we suppose that (y1, y2) ∈ P (S, d1, c) and
‖ T (y1, y2) ‖>

d1

γ
, then, by Lemma 2.3, we have

S(T (y1, y2)) = min
t∈I

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

+ min
t∈I

{
∫ σ(b)

a

Gn(t, s)f2(s, y1(s), y2(s))∆s

}

≥ γ

∫ σ(b)

a

Gm(σ(s), s)f1(s, y1(s), y2(s))∆s

+ γ

∫ σ(b)

a

Gn(σ(s), s)f2(s, y1(s), y2(s))∆s

≥ γ max
t∈[a,σq(b)]

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

+ γ max
t∈[a,σq(b)]

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

,
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for all t ∈ [a, σq(b)]. Thus

S(T (y1, y2)) ≥ γ max
t∈[a,σq(b)]

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

+ γ max
t∈[a,σq(b)]

{
∫ σ(b)

a

Gm(t, s)f1(s, y1(s), y2(s))∆s

}

= γ ‖ T (y1, y2) ‖> γ
d1

γ
= d1.

To sum up the above, all the hypotheses of Theorem 4.2 are satisfied.
Hence T has at least three fixed points, that is, the BVP (1)-(2) has at least
three positive solutions (y1, y2), (u1, u2), and (w1, w2) such that

‖ (y1, y2) ‖< d0, d1 < min
t∈I

(u1, u2), ‖ (w1, w2) ‖> d0, min
t∈I

(w1, w2) < d1.

2

Now, we establish the existence of at least 2k− 1 positive solutions for the
BVP (1)-(2), by using induction on k.

Theorem 4.3 Let k be an arbitrary positive integer. Assume that there exist

numbers ai(1 ≤ i ≤ k) and bj(1 ≤ j ≤ k − 1) with 0 < a1 < b1 < b1
γ

< a2 <

b2 < b2
γ

< ... < ak−1 < bk−1 <
bk−1

γ
< ak such that

f1(t, y1(t), y2(t)) <
ai

2εm

and f2(t, y1(t), y2(t)) <
ai

2εn

, (11)

for t ∈ [a, σq(b)] and (y1, y2) ∈ [0, ai] × [0, ai], 1 ≤ i ≤ k

f1(t, y1(t), y2(t)) >
bj

2Cm

or f2(t, y1(t), y2(t)) >
bj

2Cn

(12)

for t ∈ I and (y1, y2) ∈ [bj ,
bj

γ
] × [bj ,

bj

γ
], 1 ≤ j ≤ k − 1.

Then the BVP (1)-(2) has at least 2k − 1 positive solutions in P ak
.

Proof: We use induction on k. First, for k = 1, we know from (11) that
T : P a1 → Pa1 , then, it follows from Schauder fixed point theorem that the
BVP (1)-(2) has at least one positive solution in P a1 . Next, we assume that
this conclusion holds for k = r. In order to prove that this conclusion holds
for k = r + 1, we suppose that there exist numbers ai(1 ≤ i ≤ r + 1) and
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bj(1 ≤ j ≤ r) with 0 < a1 < b1 < b1
γ

< a2 < b2 < b2
γ

< ... < ar < br < br

γ
<

ar+1 such that

f1(t, y1(t), y2(t)) <
ai

2εm

and f2(t, y1(t), y2(t)) <
ai

2εn

, (13)

for t ∈ [a, σq(b)] and (y1, y2) ∈ [0, ai] × [0, ai], 1 ≤ i ≤ r + 1

f1(t, y1(t), y2(t)) >
bj

2Cm

or f2(t, y1(t), y2(t)) >
bj

2Cn

(14)

for t ∈ I and (y1, y2) ∈ [bj ,
bj

γ
] × [bj ,

bj

γ
], 1 ≤ j ≤ r. By assumption, the BVP

(1)-(2) has at least 2r − 1 positive solutions (ui, u
′
i)(i = 1, 2, ..., 2r − 1) in

P ar
. At the same time, it follows from Theorem 4.2, (13) and (14) that the

BVP (1)-(2) has at least three positive solutions (u1, u
′
1), (v1, v2) and (w1, w2)

in P ar+1 such that, ‖ (u1, u
′
1) ‖< ar, br < mint∈I(v1(t), v2(t)), ‖ (w1, w2) ‖>

ar, mint∈I(w1(t), w2(t)) < br. Obviously, (v1, v2) and (w1, w2) are different
from (ui, u

′
i)(i = 1, 2, ..., 2r− 1). Therefore, the BVP(1)-(2) has at least 2r +1

positive solutions in P ar+1 which shows that this conclusion also holds for
k = r + 1. 2
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